51
|
Guryanova SV. Bacteria and Allergic Diseases. Int J Mol Sci 2024; 25:10298. [PMID: 39408628 PMCID: PMC11477026 DOI: 10.3390/ijms251910298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Microorganisms colonize all barrier tissues and are present on the skin and all mucous membranes from birth. Bacteria have many ways of influencing the host organism, including activation of innate immunity receptors by pathogen-associated molecular patterns and synthesis of various chemical compounds, such as vitamins, short-chain fatty acids, bacteriocins, toxins. Bacteria, using extracellular vesicles, can also introduce high-molecular compounds, such as proteins and nucleic acids, into the cell, regulating the metabolic pathways of the host cells. Epithelial cells and immune cells recognize bacterial bioregulators and, depending on the microenvironment and context, determine the direction and intensity of the immune response. A large number of factors influence the maintenance of symbiotic microflora, the diversity of which protects hosts against pathogen colonization. Reduced bacterial diversity is associated with pathogen dominance and allergic diseases of the skin, gastrointestinal tract, and upper and lower respiratory tract, as seen in atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, food allergies, and asthma. Understanding the multifactorial influence of microflora on maintaining health and disease determines the effectiveness of therapy and disease prevention and changes our food preferences and lifestyle to maintain health and active longevity.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; ; Tel.: +7-(915)3150073
- Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| |
Collapse
|
52
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
53
|
Khanmohammadi M, Danish H, Sekar NC, Suarez SA, Chheang C, Peter K, Khoshmanesh K, Baratchi S. Cyclic stretch enhances neutrophil extracellular trap formation. BMC Biol 2024; 22:209. [PMID: 39289752 PMCID: PMC11409804 DOI: 10.1186/s12915-024-02009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Neutrophils, the most abundant leukocytes circulating in blood, contribute to host defense and play a significant role in chronic inflammatory disorders. They can release their DNA in the form of extracellular traps (NETs), which serve as scaffolds for capturing bacteria and various blood cells. However, uncontrolled formation of NETs (NETosis) can lead to excessive activation of coagulation pathways and thrombosis. Once neutrophils are migrated to infected or injured tissues, they become exposed to mechanical forces from their surrounding environment. However, the impact of transient changes in tissue mechanics due to the natural process of aging, infection, tissue injury, and cancer on neutrophils remains unknown. To address this gap, we explored the interactive effects of changes in substrate stiffness and cyclic stretch on NETosis. Primary neutrophils were cultured on a silicon-based substrate with stiffness levels of 30 and 300 kPa for at least 3 h under static conditions or cyclic stretch levels of 5% and 10%, mirroring the biomechanics of aged and young arteries. RESULTS Using this approach, we found that neutrophils are sensitive to cyclic stretch and that increases in stretch intensity and substrate stiffness enhance nuclei decondensation and histone H3 citrullination (CitH3). In addition, stretch intensity and substrate stiffness promote the response of neutrophils to the NET-inducing agents phorbol 12-myristate 13-acetate (PMA), adenosine triphosphate (ATP), and lipopolysaccharides (LPS). Stretch-induced activation of neutrophils was dependent on calpain activity, the phosphatidylinositol 3-kinase (PI3K)/focal adhesion kinase (FAK) signalling and actin polymerization. CONCLUSIONS In summary, these results demonstrate that the mechanical forces originating from the surrounding tissue influence NETosis, an important neutrophil function, and thus identify a potential novel therapeutic target.
Collapse
Affiliation(s)
- Manijeh Khanmohammadi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Habiba Danish
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nadia Chandra Sekar
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - Chanly Chheang
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Karlheinz Peter
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Khashayar Khoshmanesh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
54
|
Singh J, Zlatar L, Muñoz-Becerra M, Lochnit G, Herrmann I, Pfister F, Janko C, Knopf J, Leppkes M, Schoen J, Muñoz LE, Schett G, Herrmann M, Schauer C, Mahajan A. Calpain-1 weakens the nuclear envelope and promotes the release of neutrophil extracellular traps. Cell Commun Signal 2024; 22:435. [PMID: 39252008 PMCID: PMC11384698 DOI: 10.1186/s12964-024-01785-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
The inducers of neutrophil extracellular trap (NET) formation are heterogeneous and consequently, there is no specific pathway or signature molecule indispensable for NET formation. But certain events such as histone modification, chromatin decondensation, nuclear envelope breakdown, and NET release are ubiquitous. During NET formation, neutrophils drastically rearrange their cytoplasmic, granular and nuclear content. Yet, the exact mechanism for decoding each step during NET formation still remains elusive. Here, we investigated the mechanism of nuclear envelope breakdown during NET formation. Immunofluorescence microscopic evaluation revealed a gradual disintegration of outer nuclear membrane protein nesprin-1 and alterations in nuclear morphology during NET formation. MALDI-TOF analysis of NETs that had been generated by various inducers detected the accumulation of nesprin-1 fragments. This suggests that nesprin-1 degradation occurs before NET release. In the presence of a calpain-1, inhibitor nesprin-1 degradation was decreased in calcium driven NET formation. Microscopic evaluation confirmed that the disintegration of the lamin B receptor (LBR) and the collapse of the actin cytoskeleton occurs in early and later phases of NET release, respectively. We conclude that the calpain-1 degrades nesprin-1, orchestrates the weakening of the nuclear membrane, contributes to LBR disintegration, and promoting DNA release and finally, NETs formation.
Collapse
Affiliation(s)
- Jeeshan Singh
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Leticija Zlatar
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Marco Muñoz-Becerra
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Irmgard Herrmann
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Felix Pfister
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Uniklinikum Erlangen, Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Uniklinikum Erlangen, Erlangen, Germany
| | - Jasmin Knopf
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Moritz Leppkes
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Department of Medicine 1 - Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Luis E Muñoz
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Christine Schauer
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Aparna Mahajan
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
55
|
Boșca AB, Dinte E, Mihu CM, Pârvu AE, Melincovici CS, Șovrea AS, Mărginean M, Constantin AM, Băbțan AM, Muntean A, Ilea A. Local Drug Delivery Systems as Novel Approach for Controlling NETosis in Periodontitis. Pharmaceutics 2024; 16:1175. [PMID: 39339210 PMCID: PMC11435281 DOI: 10.3390/pharmaceutics16091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Periodontitis is a chronic inflammation caused by periodontopathogenic bacteria in the dental biofilm, and also involves the inflammatory-immune response of the host. Polymorphonuclear neutrophils (PMNs) play essential roles in bacterial clearance by multiple mechanisms, including the formation of neutrophil extracellular traps (NETs) that retain and destroy pathogens. During PD progression, the interaction between PMNs, NETs, and bacteria leads to an exaggerated immune response and a prolonged inflammatory state. As a lesion matures, PMNs accumulate in the periodontal tissues and die via NETosis, ultimately resulting in tissue injury. A better understanding of the role of NETs, the associated molecules, and the pathogenic pathways of NET formation in periodontitis, could provide markers of NETosis as reliable diagnostic and prognostic tools. Moreover, an assessment of NET biomarker levels in biofluids, particularly in saliva or gingival crevicular fluid, could be useful for monitoring periodontitis progression and treatment efficacy. Preventing excessive NET accumulation in periodontal tissues, by both controlling NETs' formation and their appropriate removal, could be a key for further development of more efficient therapeutic approaches. In periodontal therapy, local drug delivery (LDD) systems are more targeted, enhancing the bioavailability of active pharmacological agents in the periodontal pocket and surrounding tissues for prolonged time to ensure an optimal therapeutic outcome.
Collapse
Affiliation(s)
- Adina Bianca Boșca
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Elena Dinte
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Alina Elena Pârvu
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Stanca Melincovici
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Alina Simona Șovrea
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Mariana Mărginean
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Anne-Marie Constantin
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Anida-Maria Băbțan
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (A.I.)
| | - Alexandrina Muntean
- Department of Paediatric Dentistry, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (A.I.)
| |
Collapse
|
56
|
van Zyl M, Cramer E, Sanders JSF, Leuvenink HGD, Lisman T, van Rooy MJ, Hillebrands JL. The role of neutrophil extracellular trap formation in kidney transplantation: Implications from donors to the recipient. Am J Transplant 2024; 24:1547-1557. [PMID: 38719094 DOI: 10.1016/j.ajt.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/19/2024] [Accepted: 04/05/2024] [Indexed: 05/23/2024]
Abstract
Kidney transplantation remains the gold standard for patients with end-stage renal disease, but severe donor organ shortage has led to long waiting lists. The utilization of expanded criteria donor kidneys within the category of deceased donors has enlarged the pool of available kidneys for transplantation; however, these grafts often have an increased risk for delayed graft function or reduced graft survival following transplantation. During brain or circulatory death, neutrophils are recruited to the vascular beds of kidneys where a proinflammatory microenvironment might prime the formation of neutrophil extracellular traps (NETs), web-like structures, containing proteolytic enzymes, DNA, and histones. NETs are known to cause tissue damage and specifically endothelial damage while activating other systems such as coagulation and complement, contributing to tissue injury and an unfavorable prognosis in various diseases. In lung transplantation and kidney transplantation studies, NETs have also been associated with primary graft dysfunction or rejection. In this review, the role that NETs might play across the different phases of transplantation, already initiated in the donor, during preservation, and in the recipient, will be discussed. Based on current knowledge, NETs might be a promising therapeutic target to improve graft outcomes.
Collapse
Affiliation(s)
- Maryna van Zyl
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands; Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Elodie Cramer
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan-Stephan F Sanders
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, Groningen, the Netherlands
| | - Ton Lisman
- Department of Surgery, University Medical Center Groningen, Groningen, the Netherlands
| | - Mia-Jeanne van Rooy
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
57
|
Zukas K, Cayford J, Serneo F, Atteberry B, Retter A, Eccleston M, Kelly TK. Rapid high-throughput method for investigating physiological regulation of neutrophil extracellular trap formation. J Thromb Haemost 2024; 22:2543-2554. [PMID: 38866247 DOI: 10.1016/j.jtha.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Neutrophils, the most abundant white blood cells in humans, play pivotal roles in innate immunity, rapidly migrating to sites of infection and inflammation to phagocytose, neutralize, and eliminate invading pathogens. Neutrophil extracellular trap (NET) formation is increasingly recognized as an essential rapid innate immune response, but when dysregulated, it contributes to pathogenesis of sepsis and immunothrombotic disease. OBJECTIVES Current NETosis models are limited, routinely employing nonphysiological triggers that can bypass natural NET regulatory pathways. Models utilizing isolated neutrophils and immortalized cell lines do not reflect the complex biology underlying neutrophil activation and NETosis that occurs in whole blood. To our knowledge, we report the first human ex vivo model utilizing naturally occurring molecules to induce NETosis in whole blood. This approach could be used for drug screening and, importantly, inadvertent activators of NETosis. METHODS Here we describe a novel, high-throughput ex vivo whole blood-induced NETosis model using combinatorial pooling of native NETosis-inducing factors in a more biologically relevant Synthetic-Sepsis model. RESULTS We found different combinations of factors evoked distinct neutrophil responses in the rate of NET generation and/or magnitude of NETosis. Despite interdonor variability, similar sets of proinflammatory molecules induced consistent responses across donors. We found that at least 3 biological triggers were necessary to induce NETosis in our system including either tumor necrosis factor-α or lymphotoxin-α. CONCLUSION These findings emphasize the importance of investigating neutrophil physiology in a biologically relevant context to enable a better understanding of disease pathology, risk factors, and therapeutic targets, potentially providing novel strategies for disease intervention and treatment.
Collapse
Affiliation(s)
- Kieran Zukas
- Innovation Lab, Volition America, Carlsbad, CA 92011, USA
| | - Justin Cayford
- Innovation Lab, Volition America, Carlsbad, CA 92011, USA
| | - Finley Serneo
- Innovation Lab, Volition America, Carlsbad, CA 92011, USA
| | | | - Andrew Retter
- Department of Critical Care, Guy's & St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Mark Eccleston
- Innovation Lab, Volition America, Carlsbad, CA 92011, USA
| | | |
Collapse
|
58
|
Ma X, Li J, Li M, Qi G, Wei L, Zhang D. Nets in fibrosis: Bridging innate immunity and tissue remodeling. Int Immunopharmacol 2024; 137:112516. [PMID: 38906006 DOI: 10.1016/j.intimp.2024.112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Fibrosis, a complex pathological process characterized by excessive deposition of extracellular matrix components, leads to tissue scarring and dysfunction. Emerging evidence suggests that neutrophil extracellular traps (NETs), composed of DNA, histones, and antimicrobial proteins, significantly contribute to fibrotic diseases pathogenesis. This review summarizes the process of NETs production, molecular mechanisms, and related diseases, and outlines the cellular and molecular mechanisms associated with fibrosis. Subsequently, this review comprehensively summarizes the current understanding of the intricate interplay between NETs and fibrosis across various organs, including the lung, liver, kidney, skin, and heart. The mechanisms by which NETs contribute to fibrogenesis, including their ability to promote inflammation, induce epithelial-mesenchymal transition (EMT), activate fibroblasts, deposit extracellular matrix (ECM) components, and trigger TLR4 signaling were explored. This review aimed to provide insights into the complex relationship between NETs and fibrosis via a comprehensive analysis of existing reports, offering novel perspectives for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Xueni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jipin Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Muyang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Guoqing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lina Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
59
|
Chen J, Cao Y, Xiao J, Hong Y, Zhu Y. The emerging role of neutrophil extracellular traps in the progression of rheumatoid arthritis. Front Immunol 2024; 15:1438272. [PMID: 39221253 PMCID: PMC11361965 DOI: 10.3389/fimmu.2024.1438272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease with a complex etiology. Neutrophil extracellular traps (NETs are NETwork protein structures activated by neutrophils to induce the cleavage and release of DNA-protein complexes). Current studies have shown the critical involvement of NETs in the progression of autoimmune diseases, Neutrophils mostly gather in the inflammatory sites of patients and participate in the pathogenesis of autoimmune diseases in various ways. NETs, as the activated state of neutrophils, have attracted much attention in immune diseases. Many molecules released in NETs are targeted autoantigens in autoimmune diseases, such as histones, citrulline peptides, and myeloperoxidase. All of these suggest that NETs have a direct causal relationship between the production of autoantigens and autoimmune diseases. For RA in particular, as a disorder of the innate and adaptive immune response, the pathogenesis of RA is inseparable from the generation of RA. In this article, we investigate the emerging role of NETs in the pathogenesis of RA and suggest that NETs may be an important target for the treatment of inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Jingjing Chen
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Yang Cao
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Jing Xiao
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Yujie Hong
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Yan Zhu
- The Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
60
|
Flora GD, Ghatge M, Nayak MK, Barbhuyan T, Kumskova M, Chauhan AK. Deletion of pyruvate dehydrogenase kinases reduces susceptibility to deep vein thrombosis in mice. Blood Adv 2024; 8:3906-3913. [PMID: 38838230 PMCID: PMC11321300 DOI: 10.1182/bloodadvances.2024013199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
ABSTRACT Neutrophils contribute to deep vein thrombosis (DVT) by releasing prothrombotic neutrophil extracellular traps (NETs). NET formation (known as NETosis) is an energy-intensive process that requires an increased rate of aerobic glycolysis. The metabolic enzymes pyruvate dehydrogenase kinases (PDKs) inhibit the pyruvate dehydrogenase complex to divert the pyruvate flux from oxidative phosphorylation toward aerobic glycolysis. Herein, we identified that the combined deletion of PDK2 and PDK4 (PDK2/4-/-) renders mice less susceptible to DVT (measured by thrombus incidence, weight, and length) in the inferior vena cava-stenosis model at day 2 after surgery. Compared with wild-type (WT) mice, the venous thrombus obtained from PDK2/4-/- mice exhibited reduced citrullinated histone content, a known marker of NETs. In line with in vivo observations, phorbol 12-myristate 13-acetate (PMA)-stimulated PDK2/4-/- neutrophils displayed reduced NETosis and secretion of cathepsin G and elastase compared with PMA-stimulated WT neutrophils. The formation of platelet aggregates mediated by PMA-stimulated PDK2/4-/- neutrophils were significantly reduced compared with PMA-stimulated WT neutrophils. Finally, PDK2/4-/- neutrophils exhibited reduced levels of intracellular Ca2+ concentration, extracellular signal-regulated kinase 1/2 (Erk1/2) phosphorylation, and glycolytic proton efflux rate (a measure of aerobic glycolysis), known to facilitate NETosis. Together, these findings elucidate, to our knowledge, for the first time, the fundamental role of PDK2/4 in regulating NETosis and acute DVT.
Collapse
Affiliation(s)
- Gagan D. Flora
- Division of Hematology/Oncology, Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Madankumar Ghatge
- Division of Hematology/Oncology, Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Manasa K. Nayak
- Division of Hematology/Oncology, Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Tarun Barbhuyan
- Division of Hematology/Oncology, Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Mariia Kumskova
- Division of Hematology/Oncology, Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Anil K. Chauhan
- Division of Hematology/Oncology, Department of Internal Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
61
|
Tang H, Zhong Y, Wu Y, Huang Y, Liu Y, Chen J, Xi T, Wen Y, He T, Yang S, Liu F, Xiong R, Jin R. Increased neutrophil extracellular trap formation in oligoarticular, polyarticular juvenile idiopathic arthritis and enthesitis-related arthritis: biomarkers for diagnosis and disease activity. Front Immunol 2024; 15:1436193. [PMID: 39185410 PMCID: PMC11341361 DOI: 10.3389/fimmu.2024.1436193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Objective Neutrophil extracellular traps (NETs) are important factors in initiating and perpetuating inflammation. However, the role of NETs in different subtypes of juvenile idiopathic arthritis (JIA) has been rarely studied. Therefore, we aimed to explore the ability of JIA-derived neutrophils to release NETs and the effect of TNF-α (tumor necrosis factor-alpha) inhibitors on NET formation both in vitro and in vivo, and evaluate the associations of NET-derived products with clinical and immune-related parameters. Methods The ability of neutrophils to release NETs and the effect of adalimumab on NET formation was assessed via in vitro stimulation and inhibition studies. Plasma NET-derived products were detected to assess the incidence of NET formation in vivo. Furthermore, flow cytometry and western blotting were used to detect NET-associated signaling components in neutrophils. Results Compared to those derived from HCs, neutrophils derived from patients with oligoarticular-JIA, polyarticular-JIA and enthesitis-related arthritis were more prone to generate NETs spontaneously and in response to TNF-α or PMA in vitro. Excessive NET formation existed in peripheral circulation of JIA patients, and elevated plasma levels of NET-derived products (cell-free DNA and MPO-DNA complexes) could accurately distinguish JIA patients from HCs and were positively correlated with disease activity. Multiple linear regression analysis showed that erythrocyte sedimentation rate and TNF-α levels were independent variables and were positively correlated with cell-free DNA concentration. Notably, TNF-α inhibitors could effectively prevent NET formation both in vitro and in vivo. Moreover, the phosphorylation levels of NET-associated kinases in JIA-derived neutrophils were markedly increased. Conclusion Our data suggest that NETs might play pathogenic roles and may be involved in TNF-α-mediated inflammation in JIA. Circulating NET-derived products possess potential diagnostic and disease monitoring value. Furthermore, the preliminary results related to the molecular mechanisms of NET formation in JIA patients provide a theoretical basis for NET-targeted therapy.
Collapse
Affiliation(s)
- Hongxia Tang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yucheng Zhong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yali Wu
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yanmei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jing Chen
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ting Xi
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yini Wen
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ting He
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shanshan Yang
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Fan Liu
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Runji Xiong
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
62
|
Long D, Mao C, Xu Y, Zhu Y. The emerging role of neutrophil extracellular traps in ulcerative colitis. Front Immunol 2024; 15:1425251. [PMID: 39170617 PMCID: PMC11335521 DOI: 10.3389/fimmu.2024.1425251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by chronic non-recessive inflammation of the intestinal mucosa involving both innate and adaptive immune responses. Currently, new targeted therapies are urgently needed for UC, and neutrophil extracellular traps (NETs) are new therapeutic options. NETs are DNA-based networks released from neutrophils into the extracellular space after stimulation, in which a variety of granule proteins, proteolytic enzymes, antibacterial peptides, histones, and other network structures are embedded. With the deepening of the studies on NETs, their regulatory role in the development of autoimmune and autoinflammatory diseases has received extensive attention in recent years. Increasing evidence indicates that excess NETs exacerbate the inflammatory response in UC, disrupting the structure and function of the intestinal mucosal barrier and increasing the risk of thrombosis. Although NETs are usually assigned a deleterious role in promoting the pathological process of UC, they also appear to have a protective role in some models. Despite such progress, comprehensive reviews describing the therapeutic promise of NETs in UC remain limited. In this review, we discuss the latest evidence for the formation and degradation of NETs, focusing on their double-edged role in UC. Finally, the potential implications of NETs as therapeutic targets for UC will be discussed. This review aims to provide novel insights into the pathogenesis and therapeutic options for UC.
Collapse
Affiliation(s)
- Dan Long
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
63
|
Keuters MH, Keksa-Goldsteine V, Rõlova T, Jaronen M, Kettunen P, Halkoluoto A, Goldsteins G, Koistinaho J, Dhungana H. Benserazide is neuroprotective and improves functional recovery after experimental ischemic stroke by altering the immune response. Sci Rep 2024; 14:17949. [PMID: 39095453 PMCID: PMC11297251 DOI: 10.1038/s41598-024-68986-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Stroke is a leading cause of permanent disability worldwide. Despite intensive research over the last decades, key anti-inflammatory strategies that have proven beneficial in pre-clinical animal models have often failed in translation. The importance of neutrophils as pro- and anti-inflammatory peripheral immune cells has often been overlooked in ischemic stroke. However, neutrophils rapidly infiltrate into the brain parenchyma after stroke and secrete an array of pro-inflammatory factors including reactive oxygen species, proteases, cytokines, and chemokines exacerbating damage. In this study, we demonstrate the neuroprotective and anti-inflammatory effect of benserazide, a clinically used DOPA decarboxylase inhibitor, using both in vitro models of inflammation and in vivo mouse models of focal cerebral ischemia. Benserazide significantly attenuated PMA-induced NETosis in isolated human neutrophils. Furthermore, benserazide was able to protect both SH-SY5Y and iPSC-derived human cortical neurons when challenged with activated neutrophils demonstrating the clinical relevance of this study. Additional in vitro data suggest the ability of benserazide to polarize macrophages towards M2-phenotypes following LPS stimulation. Neuroprotective effects of benserazide are further demonstrated by in vivo studies where peripheral administration of benserazide significantly attenuated neutrophil infiltration into the brain, altered microglia/macrophage phenotypes, and improved the behavioral outcome post-stroke. Overall, our data suggest that benserazide could serve as a drug candidate for the treatment of ischemic stroke. The importance of our results for future clinical trials is further underlined as benserazide has been approved by the European Medicines Agency as a safe and effective treatment in Parkinson's disease when combined with levodopa.
Collapse
Affiliation(s)
- Meike Hedwig Keuters
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Velta Keksa-Goldsteine
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Taisia Rõlova
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland
| | - Merja Jaronen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pinja Kettunen
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland
| | - Aurora Halkoluoto
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland
| | - Gundars Goldsteins
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland.
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland.
| | - Hiramani Dhungana
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland.
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
64
|
Cooper KN, Potempa J, Bagaitkar J. Dying for a cause: The pathogenic manipulation of cell death and efferocytic pathways. Mol Oral Microbiol 2024; 39:165-179. [PMID: 37786286 PMCID: PMC10985052 DOI: 10.1111/omi.12436] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Cell death is a natural consequence of infection. However, although the induction of cell death was solely thought to benefit the pathogen, compelling data now show that the activation of cell death pathways serves as a nuanced antimicrobial strategy that couples pathogen elimination with the generation of inflammatory cytokines and the priming of innate and adaptive cellular immunity. Following cell death, the phagocytic uptake of the infected dead cell by antigen-presenting cells and the subsequent lysosomal fusion of the apoptotic body containing the pathogen serve as an important antimicrobial mechanism that furthers the development of downstream adaptive immune responses. Despite the complexity of regulated cell death pathways, pathogens are highly adept at evading them. Here, we provide an overview of the remarkable diversity of cell death and efferocytic pathways and discuss illustrative examples of virulence strategies employed by pathogens, including oral pathogens, to counter their activation and persist within the host.
Collapse
Affiliation(s)
- Kelley N Cooper
- Department of Immunology and Microbiology, University of Louisville, Louisville, KY
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Juhi Bagaitkar
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State College of Medicine, Columbus, OH
| |
Collapse
|
65
|
Ma Y, Wei J, He W, Ren J. Neutrophil extracellular traps in cancer. MedComm (Beijing) 2024; 5:e647. [PMID: 39015554 PMCID: PMC11247337 DOI: 10.1002/mco2.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Neutrophil extracellular traps (NETs), which consist of chromatin DNA studded with granule proteins, are released by neutrophils in response to both infectious and sterile inflammation. Beyond the canonical role in defense against pathogens, the extrusion of NETs also contributes to the initiation, metastasis, and therapeutic response of malignant diseases. Recently, NETs have been implicated in the development and therapeutic responses of various types of tumors. Although extensive work regarding inflammation in tumors has been reported, a comprehensive summary of how these web-like extracellular structures initiate and propagate tumor progression under the specific microenvironment is lacking. In this review, we demonstrate the initiators and related signaling pathways that trigger NETs formation in cancers. Additionally, this review will outline the current molecular mechanisms and regulatory networks of NETs during dormant cancer cells awakening, circulating tumor cells (CTCs) extravasation, and metastatic recurrence of cancer. This is followed by a perspective on the current and potential clinical potential of NETs as therapeutic targets in the treatment of both local and metastatic disease, including the improvement of the efficacy of existing therapies.
Collapse
Affiliation(s)
- Yuxi Ma
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
| | - Jielin Wei
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
| | - Wenshan He
- Department of Breast and Thyroid SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jinghua Ren
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
| |
Collapse
|
66
|
Lou J, Zhang J, Deng Q, Chen X. Neutrophil extracellular traps mediate neuro-immunothrombosis. Neural Regen Res 2024; 19:1734-1740. [PMID: 38103239 PMCID: PMC10960287 DOI: 10.4103/1673-5374.389625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/29/2023] [Accepted: 10/14/2023] [Indexed: 12/18/2023] Open
Abstract
Neutrophil extracellular traps are primarily composed of DNA and histones and are released by neutrophils to promote inflammation and thrombosis when stimulated by various inflammatory reactions. Neutrophil extracellular trap formation occurs through lytic and non-lytic pathways that can be further classified by formation mechanisms. Histones, von Willebrand factor, fibrin, and many other factors participate in the interplay between inflammation and thrombosis. Neuro-immunothrombosis summarizes the intricate interplay between inflammation and thrombosis during neural development and the pathogenesis of neurological diseases, providing cutting-edge insights into post-neurotrauma thrombotic events. The blood-brain barrier defends the brain and spinal cord against external assaults, and neutrophil extracellular trap involvement in blood-brain barrier disruption and immunothrombosis contributes substantially to secondary injuries in neurological diseases. Further research is needed to understand how neutrophil extracellular traps promote blood-brain barrier disruption and immunothrombosis, but recent studies have demonstrated that neutrophil extracellular traps play a crucial role in immunothrombosis, and identified modulators of neuro-immunothrombosis. However, these neurological diseases occur in blood vessels, and the mechanisms are unclear by which neutrophil extracellular traps penetrate the blood-brain barrier to participate in immunothrombosis in traumatic brain injury. This review discusses the role of neutrophil extracellular traps in neuro-immunothrombosis and explores potential therapeutic interventions to modulate neutrophil extracellular traps that may reduce immunothrombosis and improve traumatic brain injury outcomes.
Collapse
Affiliation(s)
- Jianbo Lou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
67
|
Caldeira JLA, Costa DG, Polveiro RC, Gomes do Rêgo ME, Barbosa WF, de Oliveira LL, Moreira MAS. Short communication: Goat mastitis and the formation of neutrophil extracellular traps (NETs). Vet Immunol Immunopathol 2024; 274:110793. [PMID: 38943998 DOI: 10.1016/j.vetimm.2024.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 07/01/2024]
Abstract
Mastitis, an inflammation of the mammary gland affecting milk production and quality in dairy herds, is often associated with Staphylococcus spp. in goats. Neutrophils are crucial in combating infections by migrating into milk and deploying various defense strategies, including the release of neutrophil extracellular traps (NETs) composed of DNA, histones, and bactericidal proteins. This study investigated whether NETs are released by goat neutrophils stimulated in vitro by Staphylococcus aureus and Staphylococcus warneri, two common pathogens of goat mastitis. PMNs were isolated from blood from healthy adult goats. We evaluated goat NET formation by stimulating cells with: phorbol 12-myristate 13-acetate (PMA) as a positive control, cytochalasin for inhibition of actin polymerization, S. aureus, and S. warneri. NET formation was observed in response to chemical stimulation and bacterial presence, effectively trapping pathogens. Variations in NET formation between S. aureus and S. warneri suggest pathogen-specific responses. These findings suggest that the formation of NETs may be an important complementary mechanism in the defense against mastitis in goats. In conclusion, this study unveils a novel defense mechanism in goats, indicating the role of NETs against S. aureus and S. warneri in mastitis.
Collapse
Affiliation(s)
- Jéssica Lobo Albuquerque Caldeira
- Bacterial Diseases Laboratory, Department of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Daiene Gaione Costa
- Bacterial Diseases Laboratory, Department of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Richard Costa Polveiro
- Bacterial Diseases Laboratory, Department of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maria Eduarda Gomes do Rêgo
- Bacterial Diseases Laboratory, Department of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner Faria Barbosa
- Department of Statistics, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Leandro Licursi de Oliveira
- Immunochemistry and Glycobiology Laboratory, Department of General Biology, Universidade Federal de Viçosa, University Campus, PH Rolfs Avenue, Viçosa, Minas Gerais 36570-000, Brazil
| | - Maria Aparecida Scatamburlo Moreira
- Bacterial Diseases Laboratory, Department of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
68
|
O’Donovan CJ, Tan LT, Abidin MAZ, Roderick MR, Grammatikos A, Bernatoniene J. Diagnosis of Chronic Granulomatous Disease: Strengths and Challenges in the Genomic Era. J Clin Med 2024; 13:4435. [PMID: 39124702 PMCID: PMC11313294 DOI: 10.3390/jcm13154435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic granulomatous disease (CGD) is a group of rare primary inborn errors of immunity characterised by a defect in the phagocyte respiratory burst, which leads to severe and life-threatening infective and inflammatory complications. Despite recent advances in our understanding of the genetic and molecular pathophysiology of X-linked and autosomal recessive CGD, and growth in the availability of functional and genetic testing, there remain significant barriers to early and accurate diagnosis. In the current review, we provide an up-to-date summary of CGD pathophysiology, underpinning current methods of diagnostic testing for CGD and closely related disorders. We present an overview of the benefits of early diagnosis and when to suspect and test for CGD. We discuss current and historical methods for functional testing of NADPH oxidase activity, as well as assays for measuring protein expression of NADPH oxidase subunits. Lastly, we focus on genetic and genomic methods employed to diagnose CGD, including gene-targeted panels, comprehensive genomic testing and ancillary methods. Throughout, we highlight general limitations of testing, and caveats specific to interpretation of results in the context of CGD and related disorders, and provide an outlook for newborn screening and the future.
Collapse
Affiliation(s)
- Conor J. O’Donovan
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Lay Teng Tan
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- Department of Paediatrics, University Malaya Medical Center, Lembah Pantai, Kuala Lumpur 59100, Malaysia
| | - Mohd A. Z. Abidin
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- Department of Paediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Marion R. Roderick
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Alexandros Grammatikos
- Department of Immunology, Southmead Hospital, North Bristol NHS Trust, Bristol BS10 5NB, UK
| | - Jolanta Bernatoniene
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
69
|
Kortam N, Liang W, Shiple C, Huang S, Gedert R, Clair JS, Sarosh C, Foster C, Tsou PS, Varga J, Knight JS, Khanna D, Ali RA. Elevated neutrophil extracellular traps in systemic sclerosis-associated vasculopathy and suppression by a synthetic prostacyclin analog. Arthritis Res Ther 2024; 26:139. [PMID: 39054558 PMCID: PMC11270934 DOI: 10.1186/s13075-024-03379-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVES Neutrophils and neutrophil extracellular traps (NETs) contribute to the vascular complications of multiple diseases, but their role in systemic sclerosis (SSc) is understudied. We sought to test the hypothesis that NETs are implicated in SSc vasculopathy and that treatment with prostacyclin analogs may ameliorate SSc vasculopathy not only through vasodilation but also by inhibiting NET release. METHODS Blood from 125 patients with SSc (87 diffuse cutaneous SSc and 38 limited cutaneous SSc) was collected at a single academic medical center. Vascular complications such as digital ulcers, pulmonary artery hypertension, and scleroderma renal crisis were recorded. The association between circulating NETs and vascular complications was determined using in vitro and ex vivo assays. The impact of the synthetic prostacyclin analog epoprostenol on NET release was determined. RESULTS Neutrophil activation and NET release were elevated in patients with SSc-associated vascular complications compared to matched patients without vascular complications. Neutrophil activation and NETs positively correlated with soluble E-selectin and VCAM-1, circulating markers of vascular injury. Treatment of patients with digital ischemia with a synthetic prostacyclin analog boosted neutrophil cyclic AMP, which was associated with the blunting of NET release and reduced NETs in circulation. CONCLUSION Our study demonstrates an association between NETs and vascular complications in SSc. We also identified the potential for an additional therapeutic benefit of synthetic prostacyclin analogs, namely to reduce neutrophil hyperactivity and NET release in SSc patients.
Collapse
Affiliation(s)
- Neda Kortam
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Wenying Liang
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Claire Shiple
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Suiyuan Huang
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Rosemary Gedert
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - James St Clair
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Cyrus Sarosh
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Caroline Foster
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Ramadan A Ali
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
70
|
Jing Q, Liu R, Jiang Q, Liu Y, He J, Zhou X, Yu OY, Chu CH, Cheng L, Ren B, Li M. Staphylococcus aureus wraps around Candida albicans and synergistically escapes from Neutrophil extracellular traps. Front Immunol 2024; 15:1422440. [PMID: 39050841 PMCID: PMC11266059 DOI: 10.3389/fimmu.2024.1422440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Background NETs, a unique neutrophil immune mechanism, are vital in defending against microbial invasions. Understanding the mechanisms of co-infection by Candida albicans and Staphylococcus aureus, which often leads to higher mortality and poorer prognosis, is crucial for studying infection progression. Methods In our study, we established a mouse model of subcutaneous infection to characterize the inflammation induced by co-infection. By purifying and extracting NETs to interact with microorganisms, we delve into the differences in their interactions with various microbial species. Additionally, we investigated the differences in NETs production by neutrophils in response to single or mixed microorganisms through the interaction between neutrophils and these microorganisms. Furthermore, we analyzed the gene expression differences during co-infection using transcriptomics. Results In vivo, C. albicans infections tend to aggregate, while S. aureus infections are more diffuse. In cases of co-infection, S. aureus adheres to and wraps C. albicans. NETs exhibit strong killing capability against C. albicans but weaker efficacy against S. aureus. When NETs interact with mixed microorganisms, they preferentially target and kill the outer layer of S. aureus. In the early stages, neutrophils primarily rely on phagocytosis to kill S. aureus, but as the bacteria accumulate, they stimulate neutrophils to produce NETs. Interestingly, in the presence of neutrophils, S. aureus promotes the proliferation and hyphal growth of C. albicans. Conclusion Our research has showed substantial differences in the progression of co-infections compared to single-microbial infections, thereby providing scientific evidence for NETs as potential therapeutic targets in the treatment of co-infections.
Collapse
Affiliation(s)
- Qi Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qingsong Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yingshuang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jinzhi He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ollie Yiru Yu
- Faculty of Dentistry, the University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chun-Hung Chu
- Faculty of Dentistry, the University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
71
|
Ma H, Liang X, Li SS, Li W, Li TF. The role of anti-citrullinated protein antibody in pathogenesis of RA. Clin Exp Med 2024; 24:153. [PMID: 38972923 PMCID: PMC11228005 DOI: 10.1007/s10238-024-01359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/21/2024] [Indexed: 07/09/2024]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune rheumatic disease that causes chronic synovitis, bone erosion, and joint destruction. The autoantigens in RA include a wide array of posttranslational modified proteins, such as citrullinated proteins catalyzed by peptidyl arginine deiminase4a. Pathogenic anti-citrullinated protein antibodies (ACPAs) directed against a variety of citrullinated epitopes are abundant both in plasma and synovial fluid of RA patients. ACPAs play an important role in the onset and progression of RA. Intensive and extensive studies are being conducted to unveil the mechanisms of RA pathogenesis and evaluate the efficacy of some investigative drugs. In this review, we focus on the formation and pathogenic function of ACPAs.
Collapse
Affiliation(s)
- Hang Ma
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xu Liang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shan-Shan Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wei Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Tian-Fang Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
72
|
Rysenga CE, May-Zhang L, Zahavi M, Knight JS, Ali RA. Taxifolin inhibits NETosis through activation of Nrf2 and provides protective effects in models of lupus and antiphospholipid syndrome. Rheumatology (Oxford) 2024; 63:2006-2015. [PMID: 37815837 DOI: 10.1093/rheumatology/kead547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/06/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVES Taxifolin (dihydroquercetin) is a bioactive plant flavonoid that exhibits anti-inflammatory and anti-oxidative properties. We hypothesized that taxifolin might be an effective dietary supplement to ameliorate symptoms arising from thrombo-inflammatory diseases such as lupus and APS. METHODS We used in vitro assays and a mouse model to determine mechanisms by which taxifolin inhibits neutrophil extracellular trap (NET) formation (i.e. NETosis) and venous thrombosis in lupus and APS. RESULTS At doses ranging from 0.1 to 1 µg/ml, taxifolin inhibited NETosis from control neutrophils stimulated with autoantibodies isolated from lupus and APS patients, and its suppressive effects were mitigated by blocking the antioxidant transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2). Furthermore, taxifolin at a dose as low as 20 mg/kg/day reduced in vivo NETosis in thrombo-inflammatory mouse models of lupus and APS while also significantly attenuating autoantibody formation, inflammatory cytokine production and large-vein thrombosis. CONCLUSION Our study is the first to demonstrate the protective effects of taxifolin in the context of lupus and APS. Importantly, our study also suggests a therapeutic potential to neutralize neutrophil hyperactivity and NETosis that could have relevance to a variety of thrombo-inflammatory diseases.
Collapse
Affiliation(s)
- Christine E Rysenga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Miela Zahavi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ramadan A Ali
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
73
|
Bork F, Greve CL, Youn C, Chen S, N C Leal V, Wang Y, Fischer B, Nasri M, Focken J, Scheurer J, Engels P, Dubbelaar M, Hipp K, Zalat B, Szolek A, Wu MJ, Schittek B, Bugl S, Kufer TA, Löffler MW, Chamaillard M, Skokowa J, Kramer D, Archer NK, Weber ANR. naRNA-LL37 composite DAMPs define sterile NETs as self-propagating drivers of inflammation. EMBO Rep 2024; 25:2914-2949. [PMID: 38783164 PMCID: PMC11239898 DOI: 10.1038/s44319-024-00150-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are a key antimicrobial feature of cellular innate immunity mediated by polymorphonuclear neutrophils (PMNs). NETs counteract microbes but are also linked to inflammation in atherosclerosis, arthritis, or psoriasis by unknown mechanisms. Here, we report that NET-associated RNA (naRNA) stimulates further NET formation in naive PMNs via a unique TLR8-NLRP3 inflammasome-dependent pathway. Keratinocytes respond to naRNA with expression of psoriasis-related genes (e.g., IL17, IL36) via atypical NOD2-RIPK signaling. In vivo, naRNA drives temporary skin inflammation, which is drastically ameliorated by genetic ablation of RNA sensing. Unexpectedly, the naRNA-LL37 'composite damage-associated molecular pattern (DAMP)' is pre-stored in resting neutrophil granules, defining sterile NETs as inflammatory webs that amplify neutrophil activation. However, the activity of the naRNA-LL37 DAMP is transient and hence supposedly self-limiting under physiological conditions. Collectively, upon dysregulated NET release like in psoriasis, naRNA sensing may represent both a potential cause of disease and a new intervention target.
Collapse
Affiliation(s)
- Francesca Bork
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Carsten L Greve
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Christine Youn
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Sirui Chen
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Vinicius N C Leal
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Science, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Berenice Fischer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Masoud Nasri
- Division of Translational Oncology, Department of Oncology, Hematology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Otfried-Müller Str. 10, 72076, Tübingen, Germany
| | - Jule Focken
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Germany
| | - Jasmin Scheurer
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Germany
| | - Pujan Engels
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Marissa Dubbelaar
- Institute of Immunology, Department of Peptide-based Immunotherapy, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Baher Zalat
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Andras Szolek
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Meng-Jen Wu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Birgit Schittek
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Germany
- iFIT - Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- CMFI - Cluster of Excellence (EXC 2124) "Controlling microbes to fight infection", University of Tübingen, Tübingen, Germany
| | - Stefanie Bugl
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Thomas A Kufer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, Fruwirthstr. 12, 70593, Stuttgart, Germany
| | - Markus W Löffler
- Institute of Immunology, Department of Peptide-based Immunotherapy, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- iFIT - Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty, University of Tübingen, Otfried-Müller-Str. 4/1, 72076, Tübingen, Germany
| | - Mathias Chamaillard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Julia Skokowa
- Division of Translational Oncology, Department of Oncology, Hematology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Otfried-Müller Str. 10, 72076, Tübingen, Germany
- iFIT - Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Daniela Kramer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Alexander N R Weber
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
- iFIT - Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
- CMFI - Cluster of Excellence (EXC 2124) "Controlling microbes to fight infection", University of Tübingen, Tübingen, Germany.
| |
Collapse
|
74
|
Zheng CM, Hou YC, Liao MT, Tsai KW, Hu WC, Yeh CC, Lu KC. Potential role of molecular hydrogen therapy on oxidative stress and redox signaling in chronic kidney disease. Biomed Pharmacother 2024; 176:116802. [PMID: 38795643 DOI: 10.1016/j.biopha.2024.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Oxidative stress plays a key role in chronic kidney disease (CKD) development and progression, inducing kidney cell damage, inflammation, and fibrosis. However, effective therapeutic interventions to slow down CKD advancement are currently lacking. The multifaceted pharmacological effects of molecular hydrogen (H2) have made it a promising therapeutic avenue. H2 is capable of capturing harmful •OH and ONOO- while maintaining the crucial reactive oxygen species (ROS) involved in cellular signaling. The NRF2-KEAP1 system, which manages cell redox balance, could be used to treat CKD. H2 activates this pathway, fortifying antioxidant defenses and scavenging ROS to counteract oxidative stress. H2 can improve NRF2 signaling by using the Wnt/β-catenin pathway and indirectly activate NRF2-KEAP1 in mitochondria. Additionally, H2 modulates NF-κB activity by regulating cellular redox status, inhibiting MAPK pathways, and maintaining Trx levels. Treatment with H2 also attenuates HIF signaling by neutralizing ROS while indirectly bolstering HIF-1α function. Furthermore, H2 affects FOXO factors and enhances the activity of antioxidant enzymes. Despite the encouraging results of bench studies, clinical trials are still limited and require further investigation. The focus of this review is on hydrogen's role in treating renal diseases, with a specific focus on oxidative stress and redox signaling regulation, and it discusses its potential clinical applications.
Collapse
Affiliation(s)
- Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 11031, Taiwan; TMU Research Centre of Urology and Kidney, Taipei Medical University, New Taipei City 11031, Taiwan
| | - Yi-Chou Hou
- Division of Nephrology, Department of Internal Medicine, Cardinal-Tien Hospital, School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City, Taiwan; Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Wan-Chung Hu
- Department of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Medical Tzu Chi Foundation, New Taipei City 23142, Taiwan
| | - Chien-Chih Yeh
- Division of colon and Rectal Surgery, Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan; National Defense Medical Center, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 24352, Taiwan.
| |
Collapse
|
75
|
Asiri A, Hazeldine J, Moiemen N, Harrison P. IL-8 Induces Neutrophil Extracellular Trap Formation in Severe Thermal Injury. Int J Mol Sci 2024; 25:7216. [PMID: 39000323 PMCID: PMC11241001 DOI: 10.3390/ijms25137216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Neutrophil extracellular traps (NETs) have a dual role in the innate immune response to thermal injuries. NETs provide an early line of defence against infection. However, excessive NETosis can mediate the pathogenesis of immunothrombosis, disseminated intravascular coagulation (DIC) and multiple organ failure (MOF) in sepsis. Recent studies suggest that high interleukin-8 (IL-8) levels in intensive care unit (ICU) patients significantly contribute to excessive NET generation. This study aimed to determine whether IL-8 also mediates NET generation in patients with severe thermal injuries. IL-8 levels were measured in serum samples from thermally injured patients with ≥15% of the total body surface area (TBSA) and healthy controls (HC). Ex vivo NET generation was also investigated by treating isolated neutrophils with serum from thermal injured patients or normal serum with and without IL-8 and anti-IL-8 antibodies. IL-8 levels were significantly increased compared to HC on days 3 and 5 (p < 0.05) following thermal injury. IL-8 levels were also significantly increased at day 5 in septic versus non-septic patients (p < 0.001). IL-8 levels were also increased in patients who developed sepsis compared to HC at days 3, 5 and 7 (p < 0.001), day 10 (p < 0.05) and days 12 and 14 (p < 0.01). Serum containing either low, medium or high levels of IL-8 was shown to induce ex vivo NETosis in an IL-8-dependent manner. Furthermore, the inhibition of DNase activity in serum increased the NET-inducing activity of IL-8 in vitro by preventing NET degradation. IL-8 is a major contributor to NET formation in severe thermal injury and is increased in patients who develop sepsis. We confirmed that DNase is an important regulator of NET degradation but also a potential confounder within assays that measure serum-induced ex vivo NETosis.
Collapse
Affiliation(s)
- Ali Asiri
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (A.A.); (J.H.); (N.M.)
- The Scar Free Foundation Centre for Conflict Wound Research, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham Foundation Trust, Mindelsohn Way, Birmingham B15 2WB, UK
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (A.A.); (J.H.); (N.M.)
- The Scar Free Foundation Centre for Conflict Wound Research, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham Foundation Trust, Mindelsohn Way, Birmingham B15 2WB, UK
| | - Naiem Moiemen
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (A.A.); (J.H.); (N.M.)
- The Scar Free Foundation Centre for Conflict Wound Research, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham Foundation Trust, Mindelsohn Way, Birmingham B15 2WB, UK
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (A.A.); (J.H.); (N.M.)
- The Scar Free Foundation Centre for Conflict Wound Research, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham Foundation Trust, Mindelsohn Way, Birmingham B15 2WB, UK
| |
Collapse
|
76
|
Palestra F, Memoli G, Ventrici A, Trocchia M, Galdiero M, Varricchi G, Loffredo S. Ca 2+-Dependent Processes of Innate Immunity in IBD. Cells 2024; 13:1079. [PMID: 38994933 PMCID: PMC11240513 DOI: 10.3390/cells13131079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
IBD is an uncontrolled inflammatory condition of the gastrointestinal tract, which mainly manifests in two forms: ulcerative colitis (UC) and Crohn's disease (CD). The pathogenesis of IBD appears to be associated with an abnormal response of innate and adaptive immune cells. Innate immunity cells, such as macrophages, mast cells, and granulocytes, can produce proinflammatory (e.g., TNF-α) and oxidative stress (ROS) mediators promoting intestinal damage, and their abnormal responses can induce an imbalance in adaptive immunity, leading to the production of inflammatory cytokines that increase innate immune damage, abate intestinal barrier functions, and aggravate inflammation. Considering that Ca2+ signalling plays a key role in a plethora of cellular functions, this review has the purpose of deepening the potential Ca2+ involvement in IBD pathogenesis.
Collapse
Affiliation(s)
- Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.P.); (G.M.); (A.V.); (M.T.); (M.G.); (G.V.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131 Naples, Italy
| | - Gina Memoli
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.P.); (G.M.); (A.V.); (M.T.); (M.G.); (G.V.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131 Naples, Italy
| | - Annagioia Ventrici
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.P.); (G.M.); (A.V.); (M.T.); (M.G.); (G.V.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131 Naples, Italy
| | - Marialuisa Trocchia
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.P.); (G.M.); (A.V.); (M.T.); (M.G.); (G.V.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131 Naples, Italy
| | - Mariarosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.P.); (G.M.); (A.V.); (M.T.); (M.G.); (G.V.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131 Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.P.); (G.M.); (A.V.); (M.T.); (M.G.); (G.V.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.P.); (G.M.); (A.V.); (M.T.); (M.G.); (G.V.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy
| |
Collapse
|
77
|
Chen J, Wang T, Li X, Gao L, Wang K, Cheng M, Zeng Z, Chen L, Shen Y, Wen F. DNA of neutrophil extracellular traps promote NF-κB-dependent autoimmunity via cGAS/TLR9 in chronic obstructive pulmonary disease. Signal Transduct Target Ther 2024; 9:163. [PMID: 38880789 PMCID: PMC11180664 DOI: 10.1038/s41392-024-01881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by persistent airway inflammation even after cigarette smoking cessation. Neutrophil extracellular traps (NETs) have been implicated in COPD severity and acute airway inflammation induced by short-term cigarette smoke (CS). However, whether and how NETs contribute to sustained airway inflammation in COPD remain unclear. This study aimed to elucidate the immunoregulatory mechanism of NETs in COPD, employing human neutrophils, airway epithelial cells (AECs), dendritic cells (DCs), and a long-term CS-induced COPD mouse model, alongside cyclic guanosine monophosphate-adenosine monophosphate synthase and toll-like receptor 9 knockout mice (cGAS--/-, TLR9-/-); Additionally, bronchoalveolar lavage fluid (BALF) of COPD patients was examined. Neutrophils from COPD patients released greater cigarette smoke extract (CSE)-induced NETs (CSE-NETs) due to mitochondrial respiratory chain dysfunction. These CSE-NETs, containing oxidatively-damaged DNA (NETs-DNA), promoted AECs proliferation, nuclear factor kappa B (NF-κB) activation, NF-κB-dependent cytokines and type-I interferons production, and DC maturation, which were ameliorated/reversed by silencing/inhibition of cGAS/TLR9. In the COPD mouse model, blocking NETs-DNA-sensing via cGAS-/- and TLR9-/- mice, inhibiting NETosis using mitoTEMPO, and degrading NETs-DNA with DNase-I, respectively, reduced NETs infiltrations, airway inflammation, NF-κB activation and NF-κB-dependent cytokines, but not type-I interferons due to IFN-α/β receptor degradation. Elevated NETs components (myeloperoxidase and neutrophil elastase activity) in BALF of COPD smokers correlated with disease severity and NF-κB-dependent cytokine levels, but not type-I interferon levels. In conclusion, NETs-DNA promotes NF-κB-dependent autoimmunity via cGAS/TLR9 in long-term CS exposure-induced COPD. Therefore, targeting NETs-DNA and cGAS/TLR9 emerges as a potential strategy to alleviate persistent airway inflammation in COPD.
Collapse
Affiliation(s)
- Jun Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoou Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lijuan Gao
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mengxin Cheng
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zijian Zeng
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
78
|
Tambralli A, Harbaugh A, NaveenKumar SK, Radyk MD, Rysenga CE, Sabb K, Hurley JM, Sule GJ, Yalavarthi S, Estes SK, Hoy CK, Smith T, Sarosh C, Madison JA, Schaefer JK, Sood SL, Zuo Y, Sawalha AH, Lyssiotis CA, Knight JS. Neutrophil glucose flux as a therapeutic target in antiphospholipid syndrome. J Clin Invest 2024; 134:e169893. [PMID: 38869951 PMCID: PMC11290966 DOI: 10.1172/jci169893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Neutrophil hyperactivity and neutrophil extracellular trap release (NETosis) appear to play important roles in the pathogenesis of the thromboinflammatory autoimmune disease known as antiphospholipid syndrome (APS). The understanding of neutrophil metabolism has advanced tremendously in the past decade, and accumulating evidence suggests that a variety of metabolic pathways guide neutrophil activities in health and disease. Our previous work characterizing the transcriptome of APS neutrophils revealed that genes related to glycolysis, glycogenolysis, and the pentose phosphate pathway (PPP) were significantly upregulated. Here, we found that neutrophils from patients with APS used glycolysis more avidly than neutrophils from people in the healthy control group, especially when the neutrophils were from patients with APS with a history of microvascular disease. In vitro, inhibiting either glycolysis or the PPP tempered phorbol myristate acetate- and APS IgG-induced NETosis, but not NETosis triggered by a calcium ionophore. In mice, inhibiting either glycolysis or the PPP reduced neutrophil reactive oxygen species production and suppressed APS IgG-induced NETosis ex vivo. When APS-associated thrombosis was evaluated in mice, inhibiting either glycolysis or the PPP markedly suppressed thrombosis and circulating NET remnants. In summary, these data identify a potential role for restraining neutrophil glucose flux in the treatment of APS.
Collapse
Affiliation(s)
- Ajay Tambralli
- Division of Rheumatology, Department of Internal Medicine
- Division of Pediatric Rheumatology, Department of Pediatrics
| | | | | | | | | | - Kaitlyn Sabb
- Division of Rheumatology, Department of Internal Medicine
| | | | - Gautam J. Sule
- Division of Rheumatology, Department of Internal Medicine
| | | | | | - Claire K. Hoy
- Division of Rheumatology, Department of Internal Medicine
| | - Tristin Smith
- Division of Rheumatology, Department of Internal Medicine
| | - Cyrus Sarosh
- Division of Rheumatology, Department of Internal Medicine
| | - Jacqueline A. Madison
- Division of Rheumatology, Department of Internal Medicine
- Division of Pediatric Rheumatology, Department of Pediatrics
| | - Jordan K. Schaefer
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Suman L. Sood
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yu Zuo
- Division of Rheumatology, Department of Internal Medicine
| | - Amr H. Sawalha
- Departments of Pediatrics, Medicine, and Immunology, and Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
79
|
Jones C, La Flamme A, Larsen P, Hally K. CPHEN-017: Comprehensive phenotyping of neutrophil extracellular traps (NETs) on peripheral human neutrophils. Cytometry A 2024. [PMID: 38867433 DOI: 10.1002/cyto.a.24851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024]
Abstract
With the recent discovery of their ability to produce neutrophil extracellular traps (NETs), neutrophils are increasingly appreciated as active participants in infection and inflammation. NETs are characterized as large, web-like networks of DNA and proteins extruded from neutrophils, and there is considerable interest in how these structures drive disease in humans. Advancing research in this field is contingent on developing novel tools for quantifying NETosis. To this end, we have developed a 7-marker flow cytometry panel for analyzing NETosis on human peripheral neutrophils following in vitro stimulation, and in fresh circulating neutrophils under inflammatory conditions. This panel was optimized on neutrophils isolated from whole blood and analyzed fresh or in vitro stimulated with phorbol 12-myristate 13-acetate (PMA) or ionomycin, two known NET-inducing agonists. Neutrophils were identified as SSChighFSChighCD15+CD66b+. Neutrophils positive for amine residues and 7-Aminoactinomycin D (7-AAD), our DNA dye of choice, were deemed necrotic (Zombie-NIR+7-AAD+) and were removed from downstream analysis. Exclusion of Zombie-NIR and positivity for 7-AAD (Zombie-NIRdim7-AAD+) was used here as a marker of neutrophil-appendant DNA, a key feature of NETs. The presence of two NET-associated proteins - myeloperoxidase (MPO) and neutrophil elastase (NE) - were utilized to identify neutrophil-appendant NET events (SSChighFSChighCD15+CD66b+Zombie NIRdim7-AAD+MPO+NE+). We also demonstrate that NETotic neutrophils express citrullinated histone H3 (H3cit), are concentration-dependently induced by in vitro PMA and ionomycin stimulation but are disassembled with DNase treatment, and are present in both chronic and acute inflammation. This 7-color flow cytometry panel provides a novel tool for examining NETosis in humans.
Collapse
Affiliation(s)
- Ceridwyn Jones
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Anne La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Peter Larsen
- Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
| | - Kathryn Hally
- Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
| |
Collapse
|
80
|
Lu Y, Elrod J, Herrmann M, Knopf J, Boettcher M. Neutrophil Extracellular Traps: A Crucial Factor in Post-Surgical Abdominal Adhesion Formation. Cells 2024; 13:991. [PMID: 38891123 PMCID: PMC11171752 DOI: 10.3390/cells13110991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Post-surgical abdominal adhesions, although poorly understood, are highly prevalent. The molecular processes underlying their formation remain elusive. This review aims to assess the relationship between neutrophil extracellular traps (NETs) and the generation of postoperative peritoneal adhesions and to discuss methods for mitigating peritoneal adhesions. A keyword or medical subject heading (MeSH) search for all original articles and reviews was performed in PubMed and Google Scholar. It included studies assessing peritoneal adhesion reformation after abdominal surgery from 2003 to 2023. After assessing for eligibility, the selected articles were evaluated using the Critical Appraisal Skills Programme checklist for qualitative research. The search yielded 127 full-text articles for assessment of eligibility, of which 7 studies met our criteria and were subjected to a detailed quality review using the Critical Appraisal Skills Programme (CASP) checklist. The selected studies offer a comprehensive analysis of adhesion pathogenesis with a special focus on the role of neutrophil extracellular traps (NETs) in the development of peritoneal adhesions. Current interventional strategies are examined, including the use of mechanical barriers, advances in regenerative medicine, and targeted molecular therapies. In particular, this review emphasizes the potential of NET-targeted interventions as promising strategies to mitigate postoperative adhesion development. Evidence suggests that in addition to their role in innate defense against infections and autoimmune diseases, NETs also play a crucial role in the formation of peritoneal adhesions after surgery. Therefore, therapeutic strategies that target NETs are emerging as significant considerations for researchers. Continued research is vital to fully elucidate the relationship between NETs and post-surgical adhesion formation to develop effective treatments.
Collapse
Affiliation(s)
- Yuqing Lu
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Julia Elrod
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Martin Herrmann
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
81
|
Sue T, Ichikawa T, Hattori S, Otani H, Fujimura S, Higuchi T, Okumura N, Higuchi Y. Quantitative evaluation of citrullinated fibrinogen for detection of neutrophil extracellular traps. Immunol Res 2024; 72:409-417. [PMID: 38087184 DOI: 10.1007/s12026-023-09446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/28/2023] [Indexed: 07/03/2024]
Abstract
Activated neutrophils release neutrophil extracellular traps (NETs) composed of chromatin filaments containing bactericidal proteins and enzymes. This process, known as NETosis, is an innate host defense mechanism. However, NET accumulation can lead to uncontrolled inflammation and organ damage. Therefore, NET detection provides clinically important information for the assessment of inflammatory conditions. We investigated whether quantification of citrullinated fibrinogen (C-Fbg), which is catalyzed by peptidylarginine deiminase (PAD) released during NETosis, can be used to detect NETs. Human neutrophils were stimulated with fibrinogen using phorbol 12-myristate 13-acetate (PMA). The myeloperoxidase (MPO)-DNA complex and C-Fbg concentrations in the culture supernatants were quantified using an enzyme-linked immunosorbent assay. The protein levels of peptidylarginine deiminase 2 and 4 in culture supernatants and mRNA levels in PMA-stimulated neutrophils were also assessed. The levels of the MPO-DNA complex in the supernatants of PMA-stimulated neutrophils increased, indicating NETosis. C-Fbg level also increased, which was suppressed by both NETosis and PAD inhibitors. PAD2 was detected in the culture supernatant; however, PAD4, but not PAD2, mRNA levels increased in PMA-stimulated neutrophils. This study quantitatively demonstrates that fibrinogen is citrullinated by PAD derived from PMA-stimulated neutrophils upon NETosis. Although further studies are needed for clinical application, quantification of C-Fbg in blood may help detect the presence of NETs.
Collapse
Affiliation(s)
- Tsubasa Sue
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Tomoki Ichikawa
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Shu Hattori
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Hikaru Otani
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Satoshi Fujimura
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Tsukasa Higuchi
- Department of General Pediatrics, Nagano Children's Hospital, Azumino, Japan
- Life Science Research Center, Nagano Children's Hospital, Azumino, Japan
| | - Nobuo Okumura
- Department of Biomedical Laboratory Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yumiko Higuchi
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
- Department of Biomedical Laboratory Sciences, Shinshu University School of Medicine, Matsumoto, Japan.
| |
Collapse
|
82
|
Wei Z, Jin Q, Liu W, Liu T, He K, Jin Z, Chen M, Jiang Y, Qian Y, Hong H, Zhang D, Liu Q, Yang Z, Li Q. Gliotoxin elicits immunotoxicity in the early innate immune system of ducks. Poult Sci 2024; 103:103717. [PMID: 38643746 PMCID: PMC11039318 DOI: 10.1016/j.psj.2024.103717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/17/2024] [Accepted: 03/31/2024] [Indexed: 04/23/2024] Open
Abstract
Gliotoxin (GT) belongs to the epipolythiodioxopiperazine (ETP) family, which is considered a crucial virulence determinant among the secondary metabolites produced by Aspergillus fumigatus. The metabolites are commonly found in food and feed, contributing to the invasion and immune escape of Aspergillus fumigatus, thereby posing a significant threat to the health of livestock, poultry, and humans. Heterophil extracellular traps (HETs), a novel form of innate immune defense, have been documented in the chicken's innate immune systems for capturing and eliminating invading microbes. However, the effects and mechanisms of GT on the production of duck HETs in vitro remain unknown. In this study, we first confirmed the presence of HETs in duck innate immune systems and further investigated the molecular mechanism underlying GT-induced HETs release. Our results demonstrate that GT can trigger typical release of HETs in duck. The structures of GT-induced HETs structures were characterized by DNA decoration, citrullinated histones 3, and elastase. Furthermore, NADPH oxidase, glycolysis, ERK1/2 and p38 signaling pathway were found to regulate GT-induced HETs. In summary, our findings reveal that gliotoxin activates HETs release in the early innate immune system of duck while providing new insights into the immunotoxicity of GT towards ducks.
Collapse
Affiliation(s)
- Zhengkai Wei
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, PR China.
| | - Qinqin Jin
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Wei Liu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Tingting Liu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Kaifeng He
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, PR China
| | - Zha Jin
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Meiyi Chen
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Yuqian Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Yuxiao Qian
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Hongrong Hong
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Dezhi Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, PR China
| | - Quan Liu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Qianyong Li
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, PR China
| |
Collapse
|
83
|
Quiroga J, Cortes B, Sarmiento J, Morán G, Henríquez C. Characterization of extracellular trap production and release by equine neutrophils in response to different stimuli. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 155:105151. [PMID: 38423491 DOI: 10.1016/j.dci.2024.105151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
This study explores Neutrophil Extracellular Trap (NET) formation in equine neutrophils, which is crucial for eliminating infections and is implicated in various equine inflammatory diseases. We investigated the molecular pathways involved in NET release by equine neutrophils in response to stimuli. We use PMA, A23187, LPS, PAF, OZ, and cytokines, observing NET release in response to PMA, PAF, and A23187. In contrast, LPS, OZ, and the cytokines tested did not induce DNA release or did not consistently induce citrullination of histone 4. Peptidyl-arginine deiminase inhibition completely halted NET release, while NADPH oxidase and mitochondrial reactive oxygen species only played a role in PMA-induced NETs. Neutrophil elastase inhibition modestly affected PAF-induced NET liberation but not in PMA or A23187-induced NET, while myeloperoxidase did not contribute to NET release. We expect to provide a foundation for future investigations into the role of NETs in equine health and disease and the search for potential therapeutic targets.
Collapse
Affiliation(s)
- John Quiroga
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile
| | - Bayron Cortes
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile
| | - José Sarmiento
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Chile
| | - Gabriel Morán
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile
| | - Claudio Henríquez
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile.
| |
Collapse
|
84
|
Mannherz HG, Budde H, Jarkas M, Hassoun R, Malek-Chudzik N, Mazur AJ, Skuljec J, Pul R, Napirei M, Hamdani N. Reorganization of the actin cytoskeleton during the formation of neutrophil extracellular traps (NETs). Eur J Cell Biol 2024; 103:151407. [PMID: 38555846 DOI: 10.1016/j.ejcb.2024.151407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
We analyzed actin cytoskeleton alterations during NET extrusion by neutrophil-like dHL-60 cells and human neutrophils in the absence of DNase1 containing serum to avoid chromatin degradation and microfilament disassembly. NET-formation by dHL-60 cells and neutrophils was induced by Ionomycin or phorbol-12-myristat-13-acetate (PMA). Subsequent staining with anti-actin and TRITC-phalloidin showed depolymerization of the cortical F-actin at spatially confined areas, the NET extrusion sites, effected by transient activation of the monooxygenase MICAL-1 supported by the G-actin binding proteins cofilin, profilin, thymosin ß4 and probably the F-actin fragmenting activity of gelsolin and/or its fragments, which also decorated the formed NETs. MICAL-1 itself appeared to be proteolyzed by neutrophil elastase possibly to confine its activity to the NET-extrusion area. The F-actin oxidization activity of MICAL-1 is inhibited by Levosimendan leading to reduced NET-formation. Anti-gasdermin-D immunohistochemistry showed a cytoplasmic distribution in non-stimulated cells. After stimulation the NET-extrusion pore displayed reduced anti-gasdermin-D staining but accumulated underneath the plasma membrane of the remaining cell body. A similar distribution was observed for myosin that concentrated together with cortical F-actin along the periphery of the remaining cell body suggesting force production by acto-myosin interactions supporting NET expulsion as indicated by the inhibitory action of the myosin ATPase inhibitor blebbistatin. Isolated human neutrophils displayed differences in their content of certain cytoskeletal proteins. After stimulation neutrophils with high gelsolin content preferentially formed "cloud"-like NETs, whereas those with low or no gelsolin formed long "filamentous" NETs.
Collapse
Affiliation(s)
- Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Germany; Department of Cellular and Translational Physiology, Institute of Physiology, Medical Faculty, Ruhr-University Bochum, and Molecular and Experimental Cardiology, Institute for Research and Education, St. Josef Hospital, Clinics of the Ruhr-University Bochum, Germany.
| | - Heidi Budde
- Department of Cellular and Translational Physiology, Institute of Physiology, Medical Faculty, Ruhr-University Bochum, and Molecular and Experimental Cardiology, Institute for Research and Education, St. Josef Hospital, Clinics of the Ruhr-University Bochum, Germany.
| | - Muhammad Jarkas
- Department of Cellular and Translational Physiology, Institute of Physiology, Medical Faculty, Ruhr-University Bochum, and Molecular and Experimental Cardiology, Institute for Research and Education, St. Josef Hospital, Clinics of the Ruhr-University Bochum, Germany.
| | - Roua Hassoun
- Department of Cellular and Translational Physiology, Institute of Physiology, Medical Faculty, Ruhr-University Bochum, and Molecular and Experimental Cardiology, Institute for Research and Education, St. Josef Hospital, Clinics of the Ruhr-University Bochum, Germany.
| | - Natalia Malek-Chudzik
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, University of Wroclaw, Poland.
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland.
| | - Jelena Skuljec
- Department of Neurology, University Medicine Essen, Germany; Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, Germany.
| | - Refik Pul
- Department of Neurology, University Medicine Essen, Germany; Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, Germany.
| | - Markus Napirei
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Germany
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Medical Faculty, Ruhr-University Bochum, and Molecular and Experimental Cardiology, Institute for Research and Education, St. Josef Hospital, Clinics of the Ruhr-University Bochum, Germany; Department of Physiology, University Maastricht, Maastricht, the Netherlands; HCEMM-SU Cardiovascular Comorbidities Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest 1089, Hungary.
| |
Collapse
|
85
|
Aslanian-Kalkhoran L, Mehdizadeh A, Aghebati-Maleki L, Danaii S, Shahmohammadi-Farid S, Yousefi M. The role of neutrophils and neutrophil extracellular traps (NETs) in stages, outcomes and pregnancy complications. J Reprod Immunol 2024; 163:104237. [PMID: 38503075 DOI: 10.1016/j.jri.2024.104237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Neutrophils are the main components of innate immunity to eliminate infectious pathogens. Neutrophils play a role in several stages of the reproductive cycle, and their presence in the female reproductive system is highly regulated, so their function may change during pregnancy. Emerging evidence suggests that neutrophils are important at all stages of pregnancy, from implantation, placentation, and connective tissue regeneration to birth, as well as birth itself. Neutrophil extracellular traps (NETs) are defined as extracellular strands of unfolded DNA together with histone complexes and neutrophil granule proteins. NET formation is a new mechanism of these cells for their defense function. These strands containing DNA and antimicrobial peptides were initially recognized as one of the defense mechanisms of neutrophils, but later it was explained that they are involved in a variety of non-infectious diseases. Since the source of inflammation and tissue damage is the irregular activity of neutrophils, it is not surprising that NETosis are associated with a number of inflammatory conditions and diseases. The overexpression of NET components or non-principled NET clearance is associated with the risk of production and activation of autoantibodies, which results in participation in autoinflammatory and autoimmune disorders (SLE, RA), fibrosis, sepsis and other disorders such as vascular diseases, for example, thrombosis and atherosclerosis. Recent published articles have shown the role of neutrophils and extracellular traps (NETs) in pregnancy, childbirth and pregnancy-related diseases. The aim of this study was to identify and investigate the role of neutrophils and neutrophil extracellular traps (NETs) in the stages of pregnancy, as well as the complications caused by these cells.
Collapse
Affiliation(s)
- Lida Aslanian-Kalkhoran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Centre, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | | | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
86
|
Garley M, Nowak K, Jabłońska E. Neutrophil microRNAs. Biol Rev Camb Philos Soc 2024; 99:864-877. [PMID: 38148491 DOI: 10.1111/brv.13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Neutrophils are considered 'first-line defence' cells as they can be rapidly recruited to the site of the immune response. As key components of non-specific immune mechanisms, neutrophils use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to fight pathogens. Recently, immunoregulatory abilities of neutrophils associated with the secretion of several mediators, including cytokines and extracellular vesicles (EVs) containing, among other components, microRNAs (miRNAs), have also been reported. EVs are small structures released by cells into the extracellular space and are present in all body fluids. Microvesicles show the composition and status of the releasing cell, its physiological state, and pathological changes. Currently, EVs have gained immense scientific interest as they act as transporters of epigenetic information in intercellular communication. This review summarises findings from recent scientific reports that have evaluated the utility of miRNA molecules as biomarkers for effective diagnostics or even as start-points for new therapeutic strategies in neutrophil-mediated immune reactions. In addition, this review describes the current state of knowledge on miRNA molecules, which are endogenous regulators of gene expression besides being involved in the regulation of the immune response.
Collapse
Affiliation(s)
- Marzena Garley
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, Bialystok, 15-269, Poland
| | - Karolina Nowak
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, Bialystok, 15-269, Poland
| |
Collapse
|
87
|
Naveh CA, Roberts K, Zakrzewski P, Rice CM, Ponce-Garcia FM, Fleming K, Thompson M, Panyapiean N, Jiang H, Diezmann S, Moura PL, Toye AM, Amulic B. Neutrophils cultured ex vivo from CD34 + stem cells are immature and genetically tractable. J Transl Med 2024; 22:526. [PMID: 38822352 PMCID: PMC11143668 DOI: 10.1186/s12967-024-05337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Neutrophils are granulocytes with essential antimicrobial effector functions and short lifespans. During infection or sterile inflammation, emergency granulopoiesis leads to release of immature neutrophils from the bone marrow, serving to boost circulating neutrophil counts. Steady state and emergency granulopoiesis are incompletely understood, partly due to a lack of genetically amenable models of neutrophil development. METHODS We optimised a method for ex vivo production of human neutrophils from CD34+ haematopoietic progenitors. Using flow cytometry, we phenotypically compared cultured neutrophils with native neutrophils from donors experiencing emergency granulopoiesis, and steady state neutrophils from non-challenged donors. We carry out functional and proteomic characterisation of cultured neutrophils and establish genome editing of progenitors. RESULTS We obtain high yields of ex vivo cultured neutrophils, which phenotypically resemble immature neutrophils released into the circulation during emergency granulopoiesis. Cultured neutrophils have similar rates of ROS production and bacterial killing but altered degranulation, cytokine release and antifungal activity compared to mature neutrophils isolated from peripheral blood. These differences are likely due to incomplete synthesis of granule proteins, as demonstrated by proteomic analysis. CONCLUSION Ex vivo cultured neutrophils are genetically tractable via genome editing of precursors and provide a powerful model system for investigating the properties and behaviour of immature neutrophils.
Collapse
Affiliation(s)
- Claire A Naveh
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Kiran Roberts
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Przemysław Zakrzewski
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Christopher M Rice
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Fernando M Ponce-Garcia
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Kathryn Fleming
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Megan Thompson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Nawamin Panyapiean
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Huan Jiang
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Stephanie Diezmann
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Pedro L Moura
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge (MedH), Karolinska Institutet, Huddinge, Sweden
| | - Ashley M Toye
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| | - Borko Amulic
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
88
|
Hernández González LL, Pérez-Campos Mayoral L, Hernández-Huerta MT, Mayoral Andrade G, Martínez Cruz M, Ramos-Martínez E, Pérez-Campos Mayoral E, Cruz Hernández V, Antonio García I, Matias-Cervantes CA, Avendaño Villegas ME, Lastre Domínguez CM, Romero Díaz C, Ruiz-Rosado JDD, Pérez-Campos E. Targeting Neutrophil Extracellular Trap Formation: Exploring Promising Pharmacological Strategies for the Treatment of Preeclampsia. Pharmaceuticals (Basel) 2024; 17:605. [PMID: 38794175 PMCID: PMC11123764 DOI: 10.3390/ph17050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Neutrophils, which constitute the most abundant leukocytes in human blood, emerge as crucial players in the induction of endothelial cell death and the modulation of endothelial cell responses under both physiological and pathological conditions. The hallmark of preeclampsia is endothelial dysfunction induced by systemic inflammation, in which neutrophils, particularly through the formation of neutrophil extracellular traps (NETs), play a pivotal role in the development and perpetuation of endothelial dysfunction and the hypertensive state. Considering the potential of numerous pharmaceutical agents to attenuate NET formation (NETosis) in preeclampsia, a comprehensive assessment of the extensively studied candidates becomes imperative. This review aims to identify mechanisms associated with the induction and negative regulation of NETs in the context of preeclampsia. We discuss potential drugs to modulate NETosis, such as NF-κβ inhibitors, vitamin D, and aspirin, and their association with mutagenicity and genotoxicity. Strong evidence supports the notion that molecules involved in the activation of NETs could serve as promising targets for the treatment of preeclampsia.
Collapse
Affiliation(s)
- Leticia Lorena Hernández González
- National Technology of Mexico/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (L.L.H.G.); (M.M.C.); (C.M.L.D.); (C.R.D.)
- Faculty of Biological Systems and Technological Innovation, Autonomous University “Benito Juárez” of Oaxaca, Oaxaca 68125, Mexico
| | - Laura Pérez-Campos Mayoral
- Research Center, Faculty of Medicine UNAM-UABJO, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (G.M.A.); (E.P.-C.M.)
| | - María Teresa Hernández-Huerta
- CONAHCyT, Faculty of Medicine and Surgery, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (M.T.H.-H.); (C.A.M.-C.)
| | - Gabriel Mayoral Andrade
- Research Center, Faculty of Medicine UNAM-UABJO, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (G.M.A.); (E.P.-C.M.)
| | - Margarito Martínez Cruz
- National Technology of Mexico/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (L.L.H.G.); (M.M.C.); (C.M.L.D.); (C.R.D.)
| | - Edgar Ramos-Martínez
- School of Sciences, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico;
| | - Eduardo Pérez-Campos Mayoral
- Research Center, Faculty of Medicine UNAM-UABJO, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (G.M.A.); (E.P.-C.M.)
| | | | | | - Carlos Alberto Matias-Cervantes
- CONAHCyT, Faculty of Medicine and Surgery, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (M.T.H.-H.); (C.A.M.-C.)
| | - Miriam Emily Avendaño Villegas
- National Technology of Mexico/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (L.L.H.G.); (M.M.C.); (C.M.L.D.); (C.R.D.)
| | | | - Carlos Romero Díaz
- National Technology of Mexico/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (L.L.H.G.); (M.M.C.); (C.M.L.D.); (C.R.D.)
- Research Center, Faculty of Medicine UNAM-UABJO, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (G.M.A.); (E.P.-C.M.)
| | - Juan de Dios Ruiz-Rosado
- Kidney and Urinary Tract Research Center, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Division of Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Eduardo Pérez-Campos
- National Technology of Mexico/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (L.L.H.G.); (M.M.C.); (C.M.L.D.); (C.R.D.)
- Clinical Pathology Laboratory, “Eduardo Pérez Ortega”, Oaxaca 68000, Mexico
| |
Collapse
|
89
|
Ru YX, Dong SX, Liu J, Liu JH, Zhou Y, Eyden B. Malformation of the endoplasmic reticulum system evolving into giant inclusions and Auer bodies in acute promyelocytic leukemia: an ultrastructural study of 6 cases. Ultrastruct Pathol 2024; 48:221-233. [PMID: 38619116 DOI: 10.1080/01913123.2024.2340965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
The endoplasmic reticulum(ER)is the largest membranous network serving as a region for protein, lipid and steroid synthesis, transport and storage. Detailed information about ER-cisternae, ER-tubules and rough endoplasmic reticulum (rER) is scarce in human blood cells. This study describes a series of giant inclusions and Auer bodies in promyeloblasts in six patients with acute promyelocytic leukemia (APL), by light microscopy, transmission electron microscopy (TEM) and cytochemical stains. TEM revealed that giant inclusions and pro-Auer bodies were associated with rER and surrounded by tubular structures composed of degenerated or redundant membrane in promyeloblasts, which corresponded with elements of the ER system. This paper reveals that in the promyeloblasts of APL, ER is the source of and transforms progressively into giant inclusions and Auer bodies.
Collapse
Affiliation(s)
- Yong-Xin Ru
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shu-Xu Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jing Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jin-Hua Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Brian Eyden
- Department of Histopathology, Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
90
|
Zhou Y, Deng S, Du C, Zhang L, Li L, Liu Y, Wang Y, Zhang Y, Zhu L. Leukotriene B4-induced neutrophil extracellular traps impede the clearance of Pneumocystis. Eur J Immunol 2024; 54:e2350779. [PMID: 38440842 DOI: 10.1002/eji.202350779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 03/06/2024]
Abstract
Pneumocystis pneumonia (PCP) is a fungal pulmonary disease with high mortality in immunocompromised patients. Neutrophils are essential in defending against fungal infections; however, their role in PCP is controversial. Here we aim to investigate the effects of neutrophil extracellular traps (NETs) on Pneumocystis clearance and lung injury using a mouse model of PCP. Intriguingly, although neutrophils play a fundamental role in defending against fungal infections, NETs failed to eliminate Pneumocystis, but instead impaired the killing of Pneumocystis. Mechanically, Pneumocystis triggered Leukotriene B4 (LTB4)-dependent neutrophil swarming, leading to agglutinative NET formation. Blocking Leukotriene B4 with its receptor antagonist Etalocib significantly reduced the accumulation and NET release of neutrophils in vitro and in vivo, enhanced the killing ability of neutrophils against Pneumocystis, and alleviated lung injury in PCP mice. This study identifies the deleterious role of agglutinative NETs in Pneumocystis infection and reveals a new way to prevent NET formation, which provides new insights into the pathogenesis of PCP.
Collapse
Affiliation(s)
- Yanxi Zhou
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shuwei Deng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chunjing Du
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liang Zhang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lan Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yujia Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yijie Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yue Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liuluan Zhu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
91
|
James P, Kaushal D, Beaumont Wilson R. NETosis in Surgery: Pathophysiology, Prevention, and Treatment. Ann Surg 2024; 279:765-780. [PMID: 38214150 PMCID: PMC10997183 DOI: 10.1097/sla.0000000000006196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To provide surgeons with an understanding of the latest research on NETosis, including the pathophysiology and treatment of conditions involving neutrophil extracellular traps (NETs) in the care of surgical patients. BACKGROUND A novel function of neutrophils, the formation of NETs, was described in 2004. Neutrophils form mesh-like structures of extruded decondensed chromatin, comprising DNA and histones decorated with bactericidal proteins. These NETs exert antimicrobial action by trapping microorganisms and preventing their wider dissemination through the body. RESULTS A narrative review of the existing literature describing NETosis was conducted, including NET pathophysiology, conditions related to NET formation, and treatments relevant to surgeons. CONCLUSIONS In addition to its canonical antimicrobial function, NETosis can exacerbate inflammation, resulting in tissue damage and contributing to numerous diseases. NETs promote gallstone formation and acute pancreatitis, impair wound healing in the early postoperative period and in chronic wounds, and facilitate intravascular coagulation, cancer growth, and metastasis. Agents that target NET formation or removal have shown promising efficacy in treating these conditions, although large clinical trials are required to confirm these benefits.
Collapse
Affiliation(s)
- Philippa James
- Department of General Surgery, Campbelltown Hospital, Sydney, NSW, Australia
| | - Devesh Kaushal
- Department of General Surgery, Campbelltown Hospital, Sydney, NSW, Australia
| | - Robert Beaumont Wilson
- Faculty of Medicine, University of New South Wales, Liverpool Clinical School, Sydney, NSW, Australia
| |
Collapse
|
92
|
Affiliation(s)
- Guozheng Wang
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- Department of Haematology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Simon Timothy Abrams
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- Department of Haematology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- Roald Dahl Haemostasis & Thrombosis Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
93
|
Arya SB, Collie SP, Xu Y, Fernandez M, Sexton JZ, Mosalaganti S, Coulombe PA, Parent CA. Neutrophils secrete exosome-associated DNA to resolve sterile acute inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.21.590456. [PMID: 38712240 PMCID: PMC11071349 DOI: 10.1101/2024.04.21.590456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Acute inflammation, characterized by a rapid influx of neutrophils, is a protective response that can lead to chronic inflammatory diseases when left unresolved. Secretion of LTB 4 -containing exosomes is required for effective neutrophil infiltration during inflammation. In this study, we show that neutrophils release nuclear DNA in a non-lytic, rapid, and repetitive manner, via a mechanism distinct from suicidal NET release and cell death. The packaging of nuclear DNA occurs in the lumen of nuclear envelope (NE)-derived multivesicular bodies (MVBs) that harbor the LTB 4 synthesizing machinery and is mediated by the lamin B receptor (LBR) and chromatin decondensation. Disruption of secreted exosome-associated DNA (SEAD) in a model of sterile inflammation in mouse skin amplifies and prolongs the presence of neutrophils, impeding the onset of resolution. Together, these findings advance our understanding of neutrophil functions during inflammation and the physiological significance of NETs, with implications for novel treatments for inflammatory disorders.
Collapse
|
94
|
黄 嘉, 方 金, 吴 芝, 吴 建, 方 颖, 林 蒋. [Neutrophil extracellular traps extrusion from neutrophils stably adhered to ICAM-1 by lipoteichoic acid stimulation]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:304-312. [PMID: 38686411 PMCID: PMC11058506 DOI: 10.7507/1001-5515.202401062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Indexed: 05/02/2024]
Abstract
The effect of neutrophil extracellular traps (NETs) on promoting intravascular microthrombi formation and exacerbating the severity of sepsis in patients has gained extensive attention. However, in sepsis, the mechanisms and key signaling molecules mediating NET formation during direct interactions of endothelial cells and neutrophils still need further explored. Herein, we utilized lipoteichoic acid (LTA), a component shared by Gram-positive bacteria, to induce NET extrusion from neutrophils firmly adhered to the glass slides coated with intercellular adhesion molecule-1(ICAM-1). We also used Sytox green to label NET-DNA and Flou-4 AM as the intracellular Ca 2+ signaling indicator to observe the NET formation and fluctuation of Ca 2+ signaling. Our results illustrated that LTA was able to induce NET release from neutrophils firmly attached to ICAM-1-coated glass slides, and the process was time-dependent. In addition, our study indicated that LTA-induced NET release by neutrophils stably adhered to ICAM-1 depended on Ca 2+ signaling but not intracellular reactive oxygen species (ROS). This study reveals NET formation mediated by direct interactions between endothelial ICAM-1 and neutrophils under LTA stimulation and key signaling molecules involved, providing the theoretical basis for medicine development and clinical treatment for related diseases.
Collapse
Affiliation(s)
- 嘉祺 黄
- 华南理工大学 生物科学与工程学院(广州 510006)School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - 金花 方
- 华南理工大学 生物科学与工程学院(广州 510006)School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - 芝伟 吴
- 华南理工大学 生物科学与工程学院(广州 510006)School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - 建华 吴
- 华南理工大学 生物科学与工程学院(广州 510006)School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - 颖 方
- 华南理工大学 生物科学与工程学院(广州 510006)School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - 蒋国 林
- 华南理工大学 生物科学与工程学院(广州 510006)School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
95
|
Zhang L, Hu Z, Yang L, Liu T, Xun J, Zhang Q, Wang X, Gao H, Jin Z. Saikosaponin a promotes neutrophil extracellular trap formation and bactericidal activity. Nat Prod Res 2024:1-8. [PMID: 38635418 DOI: 10.1080/14786419.2024.2343918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/26/2024] [Indexed: 04/20/2024]
Abstract
This study aimed to investigate the effects of SSa, one of the major triterpenoid saponins extracted from Radix bupleuri, on neutrophil extracellular trap (NET) formation and the mechanism associated with this process. Using Sytox green and immunofluorescence assays, we found SSa rapidly induced NET formation, which depended on NADPH oxidase (NOX)-independent ROS production and autophagy. Pharmacologic inhibitor studies indicated that ERK and PI3K/AKT signalling were also required for SSa-induced NET formation, whereas protein arginine deiminase 4 (PAD4) was not required. Furthermore, we found that SSa promoted neutrophil bactericidal activity mainly through NET formation. Based on flow cytometry and the Cell Counting Kit-8 (CCK-8) assays, the results demonstrated that SSa-induced NET formation occurred without neutrophil death. Taken together, these findings indicated that SSa could be a potential natural product to boost innate immune defense against pathogen attack via NET formation.
Collapse
Affiliation(s)
- Lanqiu Zhang
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Zhengwei Hu
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Lei Yang
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Tianyu Liu
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Jing Xun
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Qi Zhang
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Ximo Wang
- Tianjin Haihe Hospital, Tianjin University, Tianjin, China
| | - Hejun Gao
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhongkui Jin
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
96
|
Manda-Handzlik A, Stojkov D, Wachowska M, Surmiak M. Editorial: Neutrophil extracellular traps: mechanistic and functional insight. Front Immunol 2024; 15:1407232. [PMID: 38698859 PMCID: PMC11063356 DOI: 10.3389/fimmu.2024.1407232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Affiliation(s)
- Aneta Manda-Handzlik
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Malgorzata Wachowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
97
|
Vandepas LE, Stefani C, Domeier PP, Traylor-Knowles N, Goetz FW, Browne WE, Lacy-Hulbert A. Extracellular DNA traps in a ctenophore demonstrate immune cell behaviors in a non-bilaterian. Nat Commun 2024; 15:2990. [PMID: 38582801 PMCID: PMC10998917 DOI: 10.1038/s41467-024-46807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/08/2024] [Indexed: 04/08/2024] Open
Abstract
The formation of extracellular DNA traps (ETosis) is a first response mechanism by specific immune cells following exposure to microbes. Initially characterized in vertebrate neutrophils, cells capable of ETosis have been discovered recently in diverse non-vertebrate taxa. To assess the conservation of ETosis between evolutionarily distant non-vertebrate phyla, we observed and quantified ETosis using the model ctenophore Mnemiopsis leidyi and the oyster Crassostrea gigas. Here we report that ctenophores - thought to have diverged very early from the metazoan stem lineage - possess immune-like cells capable of phagocytosis and ETosis. We demonstrate that both Mnemiopsis and Crassostrea immune cells undergo ETosis after exposure to diverse microbes and chemical agents that stimulate ion flux. We thus propose that ETosis is an evolutionarily conserved metazoan defense against pathogens.
Collapse
Affiliation(s)
- Lauren E Vandepas
- NRC Research Associateship Program, Seattle, WA, USA.
- Northwest Fisheries Science Center, National Oceanographic and Atmospheric Administration, Seattle, WA, 98112, USA.
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA.
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.
| | - Caroline Stefani
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Phillip P Domeier
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Nikki Traylor-Knowles
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, 33149, USA
| | - Frederick W Goetz
- Northwest Fisheries Science Center, National Oceanographic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - William E Browne
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Adam Lacy-Hulbert
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| |
Collapse
|
98
|
Wang M, Jin Z, Huang H, Cheng X, Zhang Q, Tang Y, Zhu X, Zong Z, Li H, Ning Z. Neutrophil hitchhiking: Riding the drug delivery wave to treat diseases. Drug Dev Res 2024; 85:e22169. [PMID: 38477422 DOI: 10.1002/ddr.22169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Neutrophils are a crucial component of the innate immune system and play a pivotal role in various physiological processes. From a physical perspective, hitchhiking is considered a phenomenon of efficient transportation. The combination of neutrophils and hitchhikers has given rise to effective delivery systems both in vivo and in vitro, thus neutrophils hitchhiking become a novel approach to disease treatment. This article provides an overview of the innovative and feasible application of neutrophils as drug carriers. It explores the mechanisms underlying neutrophil function, elucidates the mechanism of drug delivery mediated by neutrophil-hitchhiking, and discusses the potential applications of this strategy in the treatment of cancer, immune diseases, inflammatory diseases, and other medical conditions.
Collapse
Affiliation(s)
- Menghui Wang
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang University, Nanchang, Jiangxi Province, China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhenhua Jin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Haoyu Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xifu Cheng
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Qin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Ying Tang
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiaoping Zhu
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Hui Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhikun Ning
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
99
|
Caldwell BA, Li L. Epigenetic regulation of innate immune dynamics during inflammation. J Leukoc Biol 2024; 115:589-606. [PMID: 38301269 PMCID: PMC10980576 DOI: 10.1093/jleuko/qiae026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
Innate immune cells play essential roles in modulating both immune defense and inflammation by expressing a diverse array of cytokines and inflammatory mediators, phagocytizing pathogens to promote immune clearance, and assisting with the adaptive immune processes through antigen presentation. Rudimentary innate immune "memory" states such as training, tolerance, and exhaustion develop based on the nature, strength, and duration of immune challenge, thereby enabling dynamic transcriptional reprogramming to alter present and future cell behavior. Underlying transcriptional reprogramming are broad changes to the epigenome, or chromatin alterations above the level of DNA sequence. These changes include direct modification of DNA through cytosine methylation as well as indirect modifications through alterations to histones that comprise the protein core of nucleosomes. In this review, we will discuss recent advances in our understanding of how these epigenetic changes influence the dynamic behavior of the innate immune system during both acute and chronic inflammation, as well as how stable changes to the epigenome result in long-term alterations of innate cell behavior related to pathophysiology.
Collapse
Affiliation(s)
- Blake A. Caldwell
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| |
Collapse
|
100
|
Sheng M, Cui X. A machine learning-based diagnostic model for myocardial infarction patients: Analysis of neutrophil extracellular traps-related genes and eQTL Mendelian randomization. Medicine (Baltimore) 2024; 103:e37363. [PMID: 38518057 PMCID: PMC10956947 DOI: 10.1097/md.0000000000037363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/02/2024] [Indexed: 03/24/2024] Open
Abstract
To identify neutrophil extracellular trap (NET)-associated gene features in the blood of patients with myocardial infarction (MI) using bioinformatics and machine learning, with the aim of exploring potential diagnostic utility in atherosclerosis. The datasets GSE66360 and GSE48060 were downloaded from the Gene Expression Omnibus (GEO) public database. GSE66360 was used as the training set, and GSE48060 was used as an independent validation set. Differential genes related to NETs were screened using R software. Machine learning was performed based on the differential expression of NET-related genes across different samples. The advantages and disadvantages of 4 machine learning algorithms (Random Forest [RF], Extreme Gradient Boosting [XGBoost, XGB], Generalized Linear Models [GLM], and Support Vector Machine-Recursive Feature Elimination [SVM-RFE]) were compared, and the optimal method was used to screen feature genes and construct diagnostic models, which were then validated in the external validation dataset. Correlations between feature genes and immune cells were analyzed, and samples were reclustered based on the expression of feature genes. Differences in downstream molecular mechanisms and immune responses were explored for different clusters. Weighted Gene Co-expression Network Analysis was performed on different clusters, and disease-related NET genes were extracted, followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Finally, Mendelian randomization was employed to further investigate the causal relationship between the expression of model genes and the occurrence of MI. Forty-seven NET-related differential genes were obtained, and after comparing the 4 machine learning methods, support vector machine was used to screen ATG7, MMP9, interleukin 6 (IL6), DNASE1, and PDE4B as key genes for the construction of diagnostic models. The diagnostic value of the model was validated in an independent external validation dataset. These five genes showed strong correlations with neutrophils. Different sample clusters also demonstrated differential enrichment in pathways such as nitrogen metabolism, complement and coagulation cascades, cytokine-cytokine receptor interaction, renin-angiotensin system, and steroid biosynthesis. The Mendelian randomization results demonstrate a causal relationship between the expression of ATG7 and the incidence of myocardial infarction. The feature genes ATG7, MMP9, IL6, DNASE1, and PDE4B, identified using bioinformatics, may serve as potential diagnostic biomarkers and therapeutic targets for Myocardial infarction. Specifically, the expression of ATG7 could potentially be a significant factor in the occurrence of MI.
Collapse
Affiliation(s)
- Meng Sheng
- Changde Vocational Technology College, Changde, Hunan, China
| | - Xueying Cui
- Qingyun County People’s Hospital, Qingyun, Shandong, China
| |
Collapse
|