1051
|
Kaplan MH, Daniel C, Schindler U, Grusby MJ. Stat proteins control lymphocyte proliferation by regulating p27Kip1 expression. Mol Cell Biol 1998; 18:1996-2003. [PMID: 9528771 PMCID: PMC121429 DOI: 10.1128/mcb.18.4.1996] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/1997] [Accepted: 01/15/1998] [Indexed: 02/07/2023] Open
Abstract
The proliferation of lymphocytes in response to cytokine stimulation is essential for a variety of immune responses. Recent studies with signal transducer and activator of transcription 6 (Stat6)-deficient mice have demonstrated that this protein is required for the normal proliferation of lymphocytes in response to interleukin-4 (IL-4). In this report, we show that the impaired IL-4-induced proliferative response of Stat6-deficient lymphocytes is not due to an inability to activate alternate signaling pathways, such as those involving insulin receptor substrates, or to a failure to upregulate IL-4 receptor levels. Cell cycle analysis showed that the percentage of Stat6-deficient lymphocytes that transit from the G1 to the S phase of the cell cycle following IL-4 stimulation is lower than that of control lymphocytes. Although the regulation of many genes involved in the control of cytokine-induced proliferation is normal in Stat6-deficient lymphocytes, protein levels of the cdk inhibitor p27Kip1 were found to be markedly dysregulated. p27Kip1 is expressed at significantly higher levels in Stat6-deficient lymphocytes than in control cells following IL-4 stimulation. The higher level of p27Kip1 expression seen in IL-4-stimulated Stat6-deficient lymphocytes correlates with decreased cdk2-associated kinase activity and is the result of the increased accumulation of protein rather than altered mRNA expression. Similarly, higher levels of p27Kip1 protein expression are also seen following IL-12 stimulation of Stat4-deficient lymphocytes than are seen following stimulation of control cells. These data suggest that Stat proteins may control the cytokine-induced proliferative response of activated T cells by regulating the expression of cell cycle inhibitors so that cyclin-cdk complexes may function to promote transition from the G1 to the S phase of the cell cycle.
Collapse
Affiliation(s)
- M H Kaplan
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
1052
|
Combs HL, Shankland SJ, Setzer SV, Hudkins KL, Alpers CE. Expression of the cyclin kinase inhibitor, p27kip1, in developing and mature human kidney. Kidney Int 1998; 53:892-6. [PMID: 9551395 DOI: 10.1111/j.1523-1755.1998.00842.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been shown that glomerular visceral epithelial cells (VEC) proliferate during glomerulogenesis, but differentiated VEC of the fetal kidney do not. It is also recognized that the proliferative capacity of the VEC in mature kidneys is very limited, and according to some investigators, may be completely absent. The basis for this remains unknown. Cell proliferation is controlled by cell cycle-related proteins, of which one class, the cyclin kinase inhibitors (CKI), cause cell cycle arrest and inhibit proliferation. A role for CKI in kidney development is not known. Accordingly, we examined the expression of the CKI p27kip1 (p27) in developing and mature human kidney tissue. Concomitant expression of markers of cell proliferation, Ki-67-related antigen (Ki-67) and proliferating cell nuclear antigen (PCNA), also were examined in fetal and mature human kidney tissue by immunocytochemical techniques. In developing kidney, Ki-67 and PCNA expression are most pronounced in the nephrogenic zone where expression correlates inversely with increasing glomerular maturation. In well-differentiated glomeruli, Ki-67 and PCNA expression is present in some parietal epithelial cells but is absent in the VEC. In contrast, p27 staining exhibits a reverse gradient of expression. p27 is absent in the proliferating tissue exhibiting the earliest stages of differentiation, whereas expression is widespread in the differentiated epithelial cells of more mature glomeruli, in which detectable cell proliferation has ceased. Expression of p27 was not identified in fetal mesangial or glomerular endothelial cells. In the mature human kidney, the pattern of p27 expression identified in differentiated fetal glomeruli persists and appears to be constitutive and specific for glomerular VEC. This pattern of p27 expression in terminally differentiated VEC may explain their limited proliferative capacity in response to injury. This is the first demonstration of a potential role for p27 in human renal development.
Collapse
Affiliation(s)
- H L Combs
- Department of Pathology, University of Washington, School of Medicine, Seattle, USA
| | | | | | | | | |
Collapse
|
1053
|
Affiliation(s)
- G A Kaltsas
- Department of Endocrinology, St. Bartholomew's Hospital, London, U.K
| | | |
Collapse
|
1054
|
Abstract
Gene targeting technology in mice by homologous recombination has become an important method to generate loss-of-function of genes in a predetermined locus. Although the inactivation is limited to irreversible alteration of chromosomal DNA and a surprising variety of genes have given unexpected and disappointing results, modification of the basic technology now provides additional choices for a more specific and variety of manipulations of the mouse genome. This includes conditional cell-type specific gene targeting, knockin technique and the induction of the specific balanced chromosomal translocations. In the past decade this technique not only generated a wealth of knowledge concerning the roles of growth factors, oncogenes, hormone receptors and Hox genes but also helped to produce animal models for several human genetic disorders. In the future it may provide more powerful and necessary tools to dissect the psychiatric disorders, understanding the complex central nervous system and to correct the inherited disorders.
Collapse
Affiliation(s)
- B S Shastry
- Eye Research Institute, Oakland University, Rochester, Missouri 48309, USA
| |
Collapse
|
1055
|
Kiyokawa H, Koff A. Roles of cyclin-dependent kinase inhibitors: lessons from knockout mice. Curr Top Microbiol Immunol 1998; 227:105-20. [PMID: 9479827 DOI: 10.1007/978-3-642-71941-7_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- H Kiyokawa
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
1056
|
Affiliation(s)
- L Hengst
- Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
1057
|
Chellappan SP, Giordano A, Fisher PB. Role of cyclin-dependent kinases and their inhibitors in cellular differentiation and development. Curr Top Microbiol Immunol 1998; 227:57-103. [PMID: 9479826 DOI: 10.1007/978-3-642-71941-7_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- S P Chellappan
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
1058
|
Tanner FC, Yang ZY, Duckers E, Gordon D, Nabel GJ, Nabel EG. Expression of cyclin-dependent kinase inhibitors in vascular disease. Circ Res 1998; 82:396-403. [PMID: 9486668 DOI: 10.1161/01.res.82.3.396] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Arterial lesions in cardiovascular diseases are characterized by proliferation and migration of smooth muscle cells as well as deposition of connective tissue matrix. Factors that stimulate vascular smooth muscle cell (VSMC) proliferation are well described; however, the role of proteins that limit intimal hyperplasia is not well understood. To examine the function of Kip/Cip and INK cyclin-dependent kinase inhibitors (CKIs) in vascular diseases, the expression of p27Kip1 and p16INK was examined in VSMCs in vitro and in porcine arteries and human atherosclerosis in vivo. Western blot and fluorescence activated cell-sorting analysis demonstrated that levels of p27Kip1, but not p16INK, increased during serum deprivation of primary VSMC cultures and caused G1 arrest. p27Kip1 inhibited Cdk2 activity, suggesting that Kip CKIs promote G1 arrest in VSMCs by binding cyclin E/Cdk2. In porcine arteries, p27Kip1, but not p16INK, was constitutively expressed at low levels. Immediately after balloon injury, cell proliferation increased as p27Kip1 levels declined. Three weeks after injury, p27Kip1 was strongly expressed in intimal VSMCs when VSMC proliferation was < 2%, suggesting that p27Kip1 functions as an inhibitor of cell proliferation in injured arteries. In contrast, p16INK expression was detected only transiently early after injury. CKI expression was examined in 35 human coronary arteries, ranging from normal to advanced atherosclerosis. p27Kip1 expression was abundant in nonproliferating VSMCs and macrophages within normal (7 of 8) and atherosclerotic (25 of 27) arteries. p21Cip1 levels were undetectable in normal arteries but were elevated in atherosclerotic (19 of 27) arteries. p16INK could not be detected in normal or atherosclerotic arteries (0 of 35). Thus, the Kip/Cip and INK CKIs have different temporal patterns of expression in VSMCs in vitro and in injured arteries and atherosclerotic lesions in vivo. In contrast to p16INK, p27Kip1 likely contributes to the remodeling process in vascular diseases by the arrest of VSMCs in the G1 phase of the cell cycle.
Collapse
Affiliation(s)
- F C Tanner
- Department of Internal Medicine, University of Michigan, Ann Arbor 48109-0644, USA
| | | | | | | | | | | |
Collapse
|
1059
|
Palapattu GS, Bao S, Kumar TR, Matzuk MM. Transgenic mouse models for tumor suppressor genes. CANCER DETECTION AND PREVENTION 1998; 22:75-86. [PMID: 9466053 DOI: 10.1046/j.1525-1500.1998.00012.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The identification and cloning of tumor suppressor genes has mostly relied on familial human cancer predisposition syndromes and reverse genetics. Recent advances in manipulating the mouse genome by gene targeting techniques in embryonic stem (ES) cells has led to the generation of mutant mouse models mimicking many human syndromes. Mice lacking one or both alleles of known tumor suppressor genes have been generated to evaluate the normal function of these genes in vivo. These mice have proven to be highly susceptible to tumor development, indicating that the mouse is a potent in vivo assay system for tumor suppressor genes. The initiation of gonadal tumor development in mice lacking both copies of the alpha-inhibin gene demonstrates that this assay is also useful for identifying new tumor suppressor genes. In the future, murine ES cell/gene targeting strategies will continue to be used to identify novel tumor suppressors and analyze their in vivo roles in growth control.
Collapse
Affiliation(s)
- G S Palapattu
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
1060
|
Abstract
An immunosuppressant Rapamycin (Rap) has been reported to cause G1 arrest by inhibiting p70 S6 kinase and G1 cyclin/cdks kinase activities when added to quiescent cells with mitogens. However, antiproliferative effects of Rap on exponentially growing cells have been poorly investigated. We examined the intracellular events after the treatment of Rap in exponentially growing T cells and found that Rap upregulated a cdks inhibitor, p27Kip1 at both mRNA and protein levels in Rap-sensitive cells. Antiproliferative effect of Rap was mainly ascribed to the inhibition of cyclin E/cdk2 kinase activity through the formation of cyclin E/cdk2-p27Kip1 complex rather than inhibition of p70 S6 kinase activity. Furthermore, we showed that Rap-sensitive cells with elevated p27Kip1 expression lost sensitivity to Rap when antisense p27Kip1 was introduced, which indicates that the basal level of p27Kip1 is one of the limiting factors that determine the sensitivity to Rap in already cycling cells. These data suggest the presence of a putative threshold level of p27Kip1 at late G1 phase in already cycling cells. Rap may cause G1 arrest by upregulating the amount of p27Kip1 beyond the threshold in some Rap-sensitive cells that are exponentially growing.
Collapse
|
1061
|
The Upregulation of p27Kip1 by Rapamycin Results in G1 Arrest in Exponentially Growing T-Cell Lines. Blood 1998. [DOI: 10.1182/blood.v91.2.561] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractAn immunosuppressant Rapamycin (Rap) has been reported to cause G1 arrest by inhibiting p70 S6 kinase and G1 cyclin/cdks kinase activities when added to quiescent cells with mitogens. However, antiproliferative effects of Rap on exponentially growing cells have been poorly investigated. We examined the intracellular events after the treatment of Rap in exponentially growing T cells and found that Rap upregulated a cdks inhibitor, p27Kip1 at both mRNA and protein levels in Rap-sensitive cells. Antiproliferative effect of Rap was mainly ascribed to the inhibition of cyclin E/cdk2 kinase activity through the formation of cyclin E/cdk2-p27Kip1 complex rather than inhibition of p70 S6 kinase activity. Furthermore, we showed that Rap-sensitive cells with elevated p27Kip1 expression lost sensitivity to Rap when antisense p27Kip1 was introduced, which indicates that the basal level of p27Kip1 is one of the limiting factors that determine the sensitivity to Rap in already cycling cells. These data suggest the presence of a putative threshold level of p27Kip1 at late G1 phase in already cycling cells. Rap may cause G1 arrest by upregulating the amount of p27Kip1 beyond the threshold in some Rap-sensitive cells that are exponentially growing.
Collapse
|
1062
|
|
1063
|
Garkavtsev I, Hull C, Riabowol K. Molecular aspects of the relationship between cancer and aging: tumor suppressor activity during cellular senescence. Exp Gerontol 1998; 33:81-94. [PMID: 9467719 DOI: 10.1016/s0531-5565(97)00086-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Normal cells cultured in vitro lose their proliferative potential after a finite number of doublings in a process termed replicative cellular senescence (Hayflick, 1965). The roles that growth inhibitory tumor suppressors play in the establishment and maintainence of cellular senescence have been reported in many different systems. The Rb and p53 tumor suppressors are examples of growth inhibitors that lose the ability to be regulated and are constantly activated during senescence. Other proteins that inhibit the initiation of DNA synthesis in early passage fibroblasts and that link the action of tumor suppressors with the cell cycle machinery, are also expressed at higher levels in senescent cells. For example, the increased expression of the cyclin-dependent kinase inhibitor p16 may contribute to arresting the growth of senescent cells. Identification and characterization of additional genes encoding growth inhibitors that are upregulated in senescent cells, such as the recently isolated p33ING1 protein, should provide a better understanding of the "aging program" that ceases to operate in the generation of immortal cancer cells.
Collapse
Affiliation(s)
- I Garkavtsev
- Department of Medical Biochemistry, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
1064
|
Niculescu AB, Chen X, Smeets M, Hengst L, Prives C, Reed SI. Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol 1998; 18:629-43. [PMID: 9418909 PMCID: PMC121530 DOI: 10.1128/mcb.18.1.629] [Citation(s) in RCA: 566] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It has been proposed that the functions of the cyclin-dependent kinase inhibitors p21(Cip1/Waf1) and p27Kip1 are limited to cell cycle control at the G1/S-phase transition and in the maintenance of cellular quiescence. To test the validity of this hypothesis, p21 was expressed in a diverse panel of cell lines, thus isolating the effects of p21 activity from the pleiotropic effects of upstream signaling pathways that normally induce p21 expression. The data show that at physiological levels of accumulation, p21, in addition to its role in negatively regulating the G1/S transition, contributes to regulation of the G2/M transition. Both G1- and G2-arrested cells were observed in all cell types, with different preponderances. Preponderant G1 arrest in response to p21 expression correlated with the presence of functional pRb. G2 arrest was more prominent in pRb-negative cells. The arrest distribution did not correlate with the p53 status, and proliferating-cell nuclear antigen (PCNA) binding activity of p21 did not appear to be involved, since p27, which lacks a PCNA binding domain, produced similar arrest distributions [corrected], DNA endoreduplication occurred in pRb-negative but not in pRb-positive cells, suggesting that functional pRb is necessary to prevent DNA replication in p21 G2-arrested cells. These results suggest that the primary target of the Cip/Kip family of inhibitors leading to efficient G1 arrest as well as to blockade of DNA replication from either G1 or G2 phase is the pRb regulatory system. Finally, the tendency of Rb-negative cells to undergo endoreduplication cycles when p21 is expressed may have negative implications in the therapy of Rb-negative cancers with genotoxic agents that activate the p53/p21 pathway.
Collapse
Affiliation(s)
- A B Niculescu
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
1065
|
Hnasko R, Khurana S, Shackleford N, Steinmetz R, Low MJ, Ben-Jonathan N. Two distinct pituitary cell lines from mouse intermediate lobe tumors: a cell that produces prolactin-regulating factor and a melanotroph [seecomments]. Endocrinology 1997; 138:5589-96. [PMID: 9389547 DOI: 10.1210/endo.138.12.5656] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The intermediate lobe (IL) of the pituitary produces a PRL-regulating factor (PRF). Targeted tumorigenesis, using the POMC promoter ligated to SV40 large T antigen (Tag), generated transgenic mice that develop IL tumors with PRF activity. Our goal was to establish and characterize a PRF-producing cell line. Two cell lines, which differ markedly in size and morphology, were independently developed from IL tumors and designated mIL5 and mIL39. These cells are transformed, as judged by rapid proliferation, low serum requirements, and generation of secondary tumors in nude mice. RT-PCR revealed that mIL39, but not mIL5 cells, express POMC and dopamine D2 receptors, typical of a melanotroph phenotype. Although mIL5 cells originated from an IL tumor, they do not express messenger RNA for SV40 Tag. The bioassay for PRF used GH3 cells stably transfected with the PRL promoter ligated to a luciferase reporter gene (GH3/luc). Coculture of mIL5 with GH3/luc cells induced cell-density dependent increases in PRL gene expression and release, whereas mIL39 cells showed negligible PRF activity. Incubation of GH3/luc cells with conditioned media from mIL5, but not mIL39 cells, stimulated PRL gene expression and release up to 10-fold. Coculture of mIL5 cells with primary rat anterior pituitary cells stimulated PRL, but not GH, release. Fractionation of mIL5 cell extracts by reverse phase HPLC resolved PRF activity into one major and one minor peak. In conclusion, we have developed two novel and distinct cell lines from mouse intermediate lobe tumors. The first reported melanotroph cell line, mIL39, could provide a valuable model for studying dopaminergic regulation of POMC gene expression and release. In contrast, the mIL5 cells do not express POMC, D2 receptors, or SV40 Tag and appear to have been immortalized by a spontaneous mutation(s). These cells produce and secrete a potent PRF and could be used for the purification and biochemical characterization of PRF.
Collapse
Affiliation(s)
- R Hnasko
- Department of Cell Biology, University of Cincinnati Medical School, Ohio 45267, USA
| | | | | | | | | | | |
Collapse
|
1066
|
Abstract
Although abnormalities involving the short arm of chromosome 12 (12p) are one of the most frequently observed rearrangements in childhood acute lymphoblastic leukemia (ALL), little is known about the frequency of different structural abnormalities and their relationship to the status of the ETV6 (also named TEL) gene in this region. Of 815 children with newly diagnosed ALL, 94 (11.5%) had a total of 104 cytogenetic 12p abnormalities. Loss of genetic material was observed in 67 (64%) of these abnormalities. Cases with 12p alterations had a much lower frequency of hyperdiploidy greater than 50 (7%) than did the ALL population in general, but these cases had a similar distribution of immunophenotype and similar 5-year event-free survival (70% ± 5% SE v 64% ± 2%, P = .64). Rearrangement of the ETV6 gene was identified in 36 (56%) of 64 cases evaluated. The ETV6-CBFA2 (TEL-AML1) fusion transcript was found in 25 (66%) of 38 cases evaluated, and all but one of these showed ETV6 rearrangement. Importantly, ETV6 rearrangement was associated with a favorable prognosis (5-year event-free survival: 89% ± 6% v 60% ± 1%, P < .01). We conclude that most but not all 12p cytogenetic abnormalities in childhood ALL involve ETV6, and that rearrangement of ETV6 is associated with a favorable treatment outcome.
Collapse
|
1067
|
Abstract
Abstract
Although abnormalities involving the short arm of chromosome 12 (12p) are one of the most frequently observed rearrangements in childhood acute lymphoblastic leukemia (ALL), little is known about the frequency of different structural abnormalities and their relationship to the status of the ETV6 (also named TEL) gene in this region. Of 815 children with newly diagnosed ALL, 94 (11.5%) had a total of 104 cytogenetic 12p abnormalities. Loss of genetic material was observed in 67 (64%) of these abnormalities. Cases with 12p alterations had a much lower frequency of hyperdiploidy greater than 50 (7%) than did the ALL population in general, but these cases had a similar distribution of immunophenotype and similar 5-year event-free survival (70% ± 5% SE v 64% ± 2%, P = .64). Rearrangement of the ETV6 gene was identified in 36 (56%) of 64 cases evaluated. The ETV6-CBFA2 (TEL-AML1) fusion transcript was found in 25 (66%) of 38 cases evaluated, and all but one of these showed ETV6 rearrangement. Importantly, ETV6 rearrangement was associated with a favorable prognosis (5-year event-free survival: 89% ± 6% v 60% ± 1%, P < .01). We conclude that most but not all 12p cytogenetic abnormalities in childhood ALL involve ETV6, and that rearrangement of ETV6 is associated with a favorable treatment outcome.
Collapse
|
1068
|
Zavitz KH, Zipursky SL. Controlling cell proliferation in differentiating tissues: genetic analysis of negative regulators of G1-->S-phase progression. Curr Opin Cell Biol 1997; 9:773-81. [PMID: 9425341 DOI: 10.1016/s0955-0674(97)80077-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Withdrawal from the cell cycle as cells begin to differentiate is accomplished by the downregulation of cyclin-dependent kinase activities in G1 phase. Recent analysis of loss-of-function mutations in flies, worms, and mice has provided insight into the roles of various negative regulators of G1 phase in developing organisms.
Collapse
Affiliation(s)
- K H Zavitz
- Department of Biological Chemistry, School of Medicine, University of California at Los Angeles 90095, USA.
| | | |
Collapse
|
1069
|
Timchenko NA, Harris TE, Wilde M, Bilyeu TA, Burgess-Beusse BL, Finegold MJ, Darlington GJ. CCAAT/enhancer binding protein alpha regulates p21 protein and hepatocyte proliferation in newborn mice. Mol Cell Biol 1997; 17:7353-61. [PMID: 9372966 PMCID: PMC232591 DOI: 10.1128/mcb.17.12.7353] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CCAAT/enhancer binding protein alpha (C/EBP alpha) is expressed at high levels in quiescent hepatocytes and in differentiated adipocytes. In cultured cells, C/EBP alpha inhibits cell proliferation in part via stabilization of the p21 protein. The role of C/EBP alpha in regulating hepatocyte proliferation in vivo is presented herein. In C/EBP alpha knockout newborn mice, p21 protein levels are reduced in the liver, and the fraction of hepatocytes synthesizing DNA is increased. Greater than 30% of the hepatocytes in C/EBP alpha knockout animals continue to proliferate at day 17 of postnatal life when cell division in wild-type littermates is low (3%). p21 protein levels are relatively high in wild-type neonates but undetectable in C/EBP alpha knockout mice. The reduction of p21 protein in the highly proliferating livers that lack C/EBP alpha suggests that p21 is responsible for C/EBP alpha-mediated control of liver proliferation in newborn mice. During rat liver regeneration, the amounts of both C/EBP alpha and p21 proteins are decreased before DNA synthesis (6 to 12 h) and then return to presurgery levels at 48 h. Although C/EBP alpha controls p21 protein levels, p21 mRNA is not influenced by C/EBP alpha in liver. Using coimmunoprecipitation and a mammalian two-hybrid assay system, we have shown the interaction of C/EBP alpha and p21 proteins. Study of p21 stability in liver nuclear extracts showed that C/EBP alpha blocks proteolytic degradation of p21. Our data demonstrate that C/EBP alpha regulates hepatocyte proliferation in newborn mice and that in liver, the level of p21 protein is under posttranscriptional control, consistent with the hypothesis that protein-protein interaction with C/EBP alpha determines p21 levels.
Collapse
Affiliation(s)
- N A Timchenko
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
1070
|
Abstract
Progression through the eukaryotic cell cycle is regulated by the activities of a family of cyclin dependent kinases (CDKs). These kinases are negatively regulated by phosphorylation and by the action of cyclin kinase inhibitors (CKIs). In mammalian cells, two classes of CKIs have been identified, the INK4 class and the CIP/KIP class. These CKIs are versatile negative regulators of CDK function and have potential roles in development, checkpoint control and tumour suppression. Analysis of CKI knockout indicates that although these inhibitors are not generally required for survival, the phenotypes observed span the gamut of what might be expected for loss of a cell cycle inhibitor. This chapter summarizes our current understanding of the roles of CKIs in growth control.
Collapse
Affiliation(s)
- J W Harper
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
1071
|
Abstract
Transgenic and knockout mice have been proposed as substitutes for one of the standard 2-yr rodent assays. The advantages of using genetically engineered mouse models is that fewer mice are needed, the time to develop disease is greatly reduced, and the mice are predisposed to developing cancer by virtue of gain or loss of functions. The models currently being used have yielded a large amount of data and have proved to be informative for risk assessment; however, they are still far from ideal. In fact, they inherently do not reflect the complexity of mutation and carcinogenesis in humans. Recent advances in technology and the creation of new knockout mice may produce more useful and more sensitive models. This review covers two recent advances in technology--inducible and regulatable gene expression and targeted genetic modifications in the genome--that will allow us to make better models. I also discuss new gene deletion and transgenic mouse models and their potential impact on risk-assessment assays. These models are presented in the context of four basic components or events that occur in the multistep process leading to cancer: maintenance of gene expression patterns, genome stability and DNA repair, cell-cell communication and signaling, and cell-cycle regulation. Finally, surrogate markers and utility in risk assessment are also discussed. This review is meant to stimulate further discussion in the field and to generate excitement about working toward the next generation of risk-assessment models.
Collapse
Affiliation(s)
- M P Rosenberg
- Department of Genomics, Glaxo Wellcome Research, Inc., Research Triangle Park, North Carolina
| |
Collapse
|
1072
|
Chin L, Pomerantz J, Polsky D, Jacobson M, Cohen C, Cordon-Cardo C, Horner JW, DePinho RA. Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev 1997; 11:2822-34. [PMID: 9353252 PMCID: PMC316663 DOI: 10.1101/gad.11.21.2822] [Citation(s) in RCA: 283] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/1997] [Accepted: 08/26/1997] [Indexed: 02/05/2023]
Abstract
The familial melanoma gene (INK4a/MTS1/CDKN2) encodes potent tumor suppressor activity. Although mice null for the ink4a homolog develop a cancer-prone condition, a pathogenetic link to melanoma susceptibility has yet to be established. Here we report that mice with melanocyte-specific expression of activated H-rasG12V on an ink4a-deficient background develop spontaneous cutaneous melanomas after a short latency and with high penetrance. Consistent loss of the wild-type ink4a allele was observed in tumors arising in ink4a heterozygous transgenic mice. No homozygous deletion of the neighboring ink4b gene was detected. Moreover, as in human melanomas, the p53 gene remained in a wild-type configuration with no observed mutation or allelic loss. These results show that loss of ink4a and activation of Ras can cooperate to accelerate the development of melanoma and provide the first in vivo experimental evidence for a causal relationship between ink4a deficiency and the pathogenesis of melanoma. In addition, this mouse model affords a system in which to identify and analyze pathways involved in tumor progression against the backdrop of genetic alterations encountered in human melanomas.
Collapse
Affiliation(s)
- L Chin
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
1073
|
Friessen AJ, Miskimins WK, Miskimins R. Cyclin-dependent kinase inhibitor p27kip1 is expressed at high levels in cells that express a myelinating phenotype. J Neurosci Res 1997; 50:373-82. [PMID: 9364322 DOI: 10.1002/(sici)1097-4547(19971101)50:3<373::aid-jnr3>3.0.co;2-f] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Terminal cellular differentiation is generally accompanied by exit from the cell cycle but the molecular basis of how the two events are coupled is poorly understood. In the central nervous system (CNS) the terminally differentiated, non-proliferating myelin-synthesizing cells, oligodendrocytes, arise from stem cells that are proliferation competent. To study the molecular mechanisms that link oligodendrocyte differentiation and cell cycle control, the D6P2T cell line has been used. This cell line responds similarly to oligodendrocytes in culture in response to increased cyclic AMP (cAMP). Upon increasing cAMP levels, D6P2T cells increase transcription of the endogenous myelin basic protein (MBP) gene. The increase in MBP gene transcription is accompanied by withdrawal of the cells from the cell cycle. The mechanism of cell cycle withdrawal in response to cAMP was found to involve a dramatic increase in the level of the cyclin-dependent kinase (cdk) inhibitor p27kip1 with little or no change in the levels of the cyclins D1 and E. The increase in p27kip1 is at least partially attributable to an increase in the mRNA levels for p27kip1. A striking increase in the cdk inhibitor p27kip1 was also shown to occur in vivo in oligodendrocytes, the cells responsible for myelination in the CNS. In contrast to D6P2T cells, however, this increase in p27kip1 was accompanied by a decrease in the levels of cyclin E.
Collapse
Affiliation(s)
- A J Friessen
- Department of Biochemistry and Molecular Biology, University of South Dakota School of Medicine, Vermillion 57069, USA
| | | | | |
Collapse
|
1074
|
Stefaneanu L, Kovacs K. Transgenic models of pituitary diseases. Microsc Res Tech 1997; 39:194-204. [PMID: 9361270 DOI: 10.1002/(sici)1097-0029(19971015)39:2<194::aid-jemt10>3.0.co;2-m] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transgenic mice are valuable experimental models of human endocrine diseases. Targeted ablation of specific cell lineages or insertion of genes coding for releasing factors, hormones, growth factors, and oncogenes fused with appropriate promoters, or mutated genes, can induce several pituitary disorders. Various hyposecretory and hypersecretory states have been induced, some of them due to functioning pituitary adenomas. Adenohypophysial changes in such disorders have been thoroughly investigated in many of the transgenic lines. Functioning and silent pituitary adenomas resemble those seen in human patients, and are invaluable models of tumorigenesis. The available models have not been sufficiently exploited and new models are expected in the near future. In this review, the morphologic changes of the pituitary are described in transgenic mice and, when available, the ultrastructural alterations are included.
Collapse
Affiliation(s)
- L Stefaneanu
- Department of Pathology, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | | |
Collapse
|
1075
|
Blain SW, Montalvo E, Massagué J. Differential interaction of the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 with cyclin A-Cdk2 and cyclin D2-Cdk4. J Biol Chem 1997; 272:25863-72. [PMID: 9325318 DOI: 10.1074/jbc.272.41.25863] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although p27(Kip1) has been considered a general inhibitor of G1 and S phase cyclin-dependent kinases, we report that the interaction of p27 with two such kinases, cyclin A-Cdk2 and cyclin D-Cdk4, is different. In Mv1Lu cells containing a p27 inducible system, a 6-fold increase over the basal p27 level completely inhibited Cdk2 and cell cycle progression. In contrast, the same or a larger increase in p27 levels did not inhibit Cdk4 or its homologue Cdk6, despite extensive binding to these kinases. A p27-cyclin A-Cdk2 complex formed in vitro was essentially inactive, whereas a p27-cyclin D2-Cdk4 complex was active as a retinoblastoma kinase and served as a substrate for the Cdk-activating kinase Cak. High concentrations of p27 inhibited cyclin D2-Cdk4, apparently by conversion of active complexes into inactive ones by the binding of additional p27 molecules. In contrast to their differential interaction, cyclin A-Cdk2 and cyclin D2-Cdk4 were similarly inhibited by bound p21(Cip1/Waf1). Roles of cyclin A-Cdk2 as a p27 target and cyclin D2-Cdk4 as a p27 reservoir may result from the differential ability of bound p27 to inhibit the kinase subunit in these complexes.
Collapse
Affiliation(s)
- S W Blain
- Cell Biology Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
1076
|
Piva R, Cavalla P, Bortolotto S, Cordera S, Richiardi P, Schiffer D. p27/kip1 expression in human astrocytic gliomas. Neurosci Lett 1997; 234:127-30. [PMID: 9364514 DOI: 10.1016/s0304-3940(97)00688-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the cell cycle, p27/kip1 acts as an inhibitory protein of cyclin-cdk complexes. p27/kip1 immunohistochemistry was performed in 50 gliomas (15 astrocytomas, 15 anaplastic astrocytomas and 20 glioblastomas) by a polyclonal antiserum. In the same tumours, proliferation marker Ki-67 was studied by MIB-1 antibody. For both, a labelling index (LI) was calculated after counting at least 1000 cells at x1000 magnification. p27 is diffusely and strongly expressed in astrocytomas (LI mean = 44.4%), whereas positive nuclei decrease in number and in staining intensity in anaplastic astrocytomas (LI mean = 5.86%) and glioblastomas (LI mean = 2.1%). An inverse correlation has been found between MIB-1 LI and p27 LI calculated in the same areas. Interestingly, in malignant gliomas the absence of p27 was independent from any histological feature of differentiation or anaplasia. p27 expression is thus reduced in malignant gliomas as in other malignancies. Since mutations of p27/kip1 are extremely rare, posttranslational changes are hypothesised also in astrocytic gliomas.
Collapse
Affiliation(s)
- R Piva
- Department of Neuroscience, University of Turin, Italy
| | | | | | | | | | | |
Collapse
|
1077
|
Swanger WJ, Roberts JM. p57KIP2 targeted disruption and Beckwith-Wiedemann syndrome: is the inhibitor just a contributor? Bioessays 1997; 19:839-42. [PMID: 9363677 DOI: 10.1002/bies.950191002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Beckwith-Wiedemann syndrome is a human congenital disorder characterized by a wide variety of growth abnormalities, including developmental defects and predisposition to certain tumors. Genetic evidence has suggested a role for p57KIP2, a member of a family of cell cycle inhibitory genes, in Beckwith-Wiedemann syndrome. Two independent groups have reported the generation and characterization of mice lacking functional p57KIP2. These mice demonstrate a number of abnormal phenotypes which overlap with, although do not completely recapitulate, Beckwith-Wiedemann syndrome. These findings advance the molecular characterization of a human disorder, and provide insight into the interplay between regulation of cell division and development.
Collapse
Affiliation(s)
- W J Swanger
- Fred Hutchinson Cancer Research Center, Seattle, WA 98107, USA.
| | | |
Collapse
|
1078
|
Casaccia-Bonnefil P, Tikoo R, Kiyokawa H, Friedrich V, Chao MV, Koff A. Oligodendrocyte precursor differentiation is perturbed in the absence of the cyclin-dependent kinase inhibitor p27Kip1. Genes Dev 1997; 11:2335-46. [PMID: 9308962 PMCID: PMC316517 DOI: 10.1101/gad.11.18.2335] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/1997] [Accepted: 07/21/1997] [Indexed: 02/05/2023]
Abstract
During development of the central nervous system, oligodendrocyte progenitor cells (O-2A) undergo an orderly pattern of cell proliferation and differentiation, culminating in the ability of oligodendrocytes to myelinate axons. Here we report that p27(Kip1), a cyclin-dependent kinase inhibitor, is an important component of the decision of O-2A cells to withdraw from the cell cycle. In vitro, accumulation of p27 correlates with differentiation of oligodendrocytes. Furthermore, only a fraction of O-2A cells derived from p27-knockout mice differentiate successfully compared to controls. Inability to differentiate correlates with continued proliferation, suggesting that p27 is an important component of the machinery required for the G1/G0 transition in O-2A cells. In vivo, expansion of O-2A precursors before withdrawal, in part, leads to a greater number of oligodendrocytes. Together these data indicate a role for p27 during the decision to withdraw from the cell cycle in the oligodendrocyte lineage.
Collapse
Affiliation(s)
- P Casaccia-Bonnefil
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
1079
|
Zhang Y, Lin SC. Molecular characterization of the cyclin-dependent kinase inhibitor p27 promoter. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1353:307-17. [PMID: 9349726 DOI: 10.1016/s0167-4781(97)00063-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
p27Kip1 is a member of the family of cyclin-dependent kinase inhibitors (CKIs), which play critical roles in the regulation of cell cycle. To study the transcriptional regulation that controls the expression of p27, we have isolated the p27 promoter, defined its transcription initiation site, and performed various analyses for sequences upstream to 3 kb. Transient transfection assays using fusion reporters containing progressively truncated p27 promoter fragments showed that a region of 170 bp upstream of the start site is sufficient for maximal transcription activity. Detailed sequence analysis of this 170 bp region identified several GC-rich segments, putative sites of the transcription factor Sp1. Footprinting experiments revealed two Sp1-protected boxes, named BoxI and BoxII, which are located at positions -133 to -117 and -87 to -72, respectively. Binding of Sp1 to the two boxes was further demonstrated by gel mobility shift assays and supershift assays. Co-transfection studies in Drosophila Schneider line 2 cells showed that Sp1 indeed activates the p27 promoter constructs that harbor one or both of the GC-rich sequences. Furthermore, the GC-rich sequences could confer Sp1-dependent transactivation to a heterologous prolactin minimal promoter. Mutations in the GC-rich sequences abolished both binding and transactivation by Sp1. Taken together, our data strongly show that the p27 promoter is activated by the ubiquitously expressed transcription factor Sp1, which may provide a molecular mechanism for the constitutive nature of p27 transcription.
Collapse
Affiliation(s)
- Y Zhang
- Regulatory Biology Laboratory, Institute of Molecular and Cell Biology, National University of Singapore, Singapore
| | | |
Collapse
|
1080
|
Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol 1997; 17:5598-611. [PMID: 9271435 PMCID: PMC232408 DOI: 10.1128/mcb.17.9.5598] [Citation(s) in RCA: 526] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Raf family of protein kinases display differences in their abilities to promote the entry of quiescent NIH 3T3 cells into the S phase of the cell cycle. Although conditional activation of deltaA-Raf:ER promoted cell cycle progression, activation of deltaRaf-1:ER and deltaB-Raf:ER elicited a G1 arrest that was not overcome by exogenously added growth factors. Activation of all three deltaRaf:ER kinases led to elevated expression of cyclin D1 and cyclin E and reduced expression of p27Kip1. However, activation of deltaB-Raf:ER and deltaRaf-1:ER induced the expression of p21Cip1, whereas activation of deltaA-Raf:ER did not. A catalytically potentiated form of deltaA-Raf:ER, generated by point mutation, strongly induced p21Cip1 expression and elicited cell cycle arrest similarly to deltaB-Raf:ER and deltaRaf-1:ER. These data suggested that the strength and duration of signaling by Raf kinases might influence the biological outcome of activation of this pathway. By titration of deltaB-Raf:ER activity we demonstrated that low levels of Raf activity led to activation of cyclin D1-cdk4 and cyclin E-cdk2 complexes and to cell cycle progression whereas higher Raf activity elicited cell cycle arrest correlating with p21Cip1 induction and inhibition of cyclin-cdk activity. Using green fluorescent protein-tagged forms of deltaRaf-1:ER in primary mouse embryo fibroblasts (MEFs) we demonstrated that p21Cip1 was induced by Raf in a p53-independent manner, leading to cell cycle arrest. By contrast, activation of Raf in p21Cip1(-/-) MEFs led to a robust mitogenic response that was similar to that observed in response to platelet-derived growth factor. These data indicate that, depending on the level of kinase activity, Raf can elicit either cell cycle progression or cell cycle arrest in mouse fibroblasts. The ability of Raf to elicit cell cycle arrest is strongly associated with its ability to induce the expression of the cyclin-dependent kinase inhibitor p21Cip1 in a manner that bears analogy to alpha-factor arrest in Saccharomyces cerevisiae. These data are consistent with a role for Raf kinases in both proliferation and differentiation of mammalian cells.
Collapse
Affiliation(s)
- D Woods
- Department of Cell Signaling, DNAX Research Institute, Palo Alto, California 94304, USA
| | | | | | | | | | | |
Collapse
|
1081
|
Alevizopoulos K, Vlach J, Hennecke S, Amati B. Cyclin E and c-Myc promote cell proliferation in the presence of p16INK4a and of hypophosphorylated retinoblastoma family proteins. EMBO J 1997; 16:5322-33. [PMID: 9311992 PMCID: PMC1170164 DOI: 10.1093/emboj/16.17.5322] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Retroviral expression of the cyclin-dependent kinase (CDK) inhibitor p16(INK4a) in rodent fibroblasts induces dephosphorylation of pRb, p107 and p130 and leads to G1 arrest. Prior expression of cyclin E allows S-phase entry and long-term proliferation in the presence of p16. Cyclin E prevents neither the dephosphorylation of pRb family proteins, nor their association with E2F proteins in response to p16. Thus, cyclin E can bypass the p16/pRb growth-inhibitory pathway downstream of pRb activation. Retroviruses expressing E2F-1, -2 or -3 also prevent p16-induced growth arrest but are ineffective against the cyclin E-CDK2 inhibitor p27(Kip1), suggesting that E2F cannot substitute for cyclin E activity. Thus, cyclin E possesses an E2F-independent function required to enter S-phase. However, cyclin E may not simply bypass E2F function in the presence of p16, since it restores expression of E2F-regulated genes such as cyclin A or CDC2. Finally, c-Myc bypasses the p16/pRb pathway with effects indistinguishable from those of cyclin E. We suggest that this effect of Myc is mediated by its action upstream of cyclin E-CDK2, and occurs via the neutralization of p27(Kip1) family proteins, rather than induction of Cdc25A. Our data imply that oncogenic activation of c-Myc, and possibly also of cyclin E, mimics loss of the p16/pRb pathway during oncogenesis.
Collapse
Affiliation(s)
- K Alevizopoulos
- Swiss Institute for Experimental Cancer Research, CH-1066 Epalinges, Switzerland
| | | | | | | |
Collapse
|
1082
|
Vlach J, Hennecke S, Amati B. Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. EMBO J 1997; 16:5334-44. [PMID: 9311993 PMCID: PMC1170165 DOI: 10.1093/emboj/16.17.5334] [Citation(s) in RCA: 548] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The p27(Kip1) protein associates with G1-specific cyclin-CDK complexes and inhibits their catalytic activity. p27(Kip1) is regulated at various levels, including translation, degradation by the ubiquitin/proteasome pathway and non-covalent sequestration. Here, we describe point mutants of p27 deficient in their interaction with either cyclins (p27(c-)), CDKs (p27(k-)) or both (p27(ck-)), and demonstrate that each contact is critical for kinase inhibition and induction of G1 arrest. Through its intact cyclin contact, p27(k-) associated with active cyclin E-CDK2 and, unlike wild type p27, p27(c-) or p27(ck-), was efficiently phosphorylated by CDK2 on a conserved C-terminal CDK target site (TPKK). Retrovirally expressed p27(k-) was rapidly degraded through the proteasome in Rat1 cells, but was stabilized by secondary mutation of the TPKK site to VPKK. In this experimental setting, exogenous wild-type p27 formed inactive ternary complexes with cellular cyclin E-CDK2, was not degraded through the proteasome, and was not further stabilized by the VPKK mutation. p27(ck-), which was not recruited to cyclin E-CDK2, also remained stable in vivo. Thus, selective degradation of p27(k-) depended upon association with active cyclin E-CDK2 and subsequent phosphorylation. Altogether, these data show that p27 must be phosphorylated by CDK2 on the TPKK site in order to be degraded by the proteasome. We propose that cellular p27 must also exist transiently in a cyclin-bound non-inhibitory conformation in vivo.
Collapse
Affiliation(s)
- J Vlach
- Swiss Institute for Experimental Cancer Research, CH-1066 Epalinges, Switzerland
| | | | | |
Collapse
|
1083
|
Shiyanov P, Hayes S, Chen N, Pestov DG, Lau LF, Raychaudhuri P. p27Kip1 induces an accumulation of the repressor complexes of E2F and inhibits expression of the E2F-regulated genes. Mol Biol Cell 1997; 8:1815-1827. [PMID: 9307976 PMCID: PMC305739 DOI: 10.1091/mbc.8.9.1815] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
p27Kip1 is an inhibitor of the cyclin-dependent kinases and it plays an inhibitory role in the progression of cell cycle through G1 phase. To investigate the mechanism of cell cycle inhibition by p27Kip1, we constructed a cell line that inducibly expresses p27Kip1 upon addition of isopropyl-1-thio-beta-D-galactopyranoside in the culture medium. Isopropyl-1-thio-beta-D-galactopyranoside-induced expression of p27Kip1 in these cells causes a specific reduction in the expression of the E2F-regulated genes such as cyclin E, cyclin A, and dihydrofolate reductase. The reduction in the expression of these genes correlates with the p27Kip1-induced accumulation of the repressor complexes of the E2F family of factors (E2Fs). Our previous studies indicated that p21WAF1 could disrupt the interaction between cyclin/cyclin-dependent kinase 2 (cdk2) and the E2F repressor complexes E2F-p130 and E2F-p107. We show that p27Kip1, like p21WAF1, disrupts cyclin/cdk2-containing complexes of E2F-p130 leading to the accumulation of the E2F-p130 complexes, which is found in growth-arrested cells. In transient transfection assays, expression of p27Kip1 specifically inhibits transcription of a promoter containing E2F-binding sites. Mutants of p27Kip1 harboring changes in the cyclin- and cdk2-binding motifs are deficient in inhibiting transcription from the E2F sites containing reporter gene. Moreover, these mutants of p27Kip1 are also impaired in disrupting the interaction between cyclin/cdk2 and the repressor complexes of E2Fs. Taken together, these observations suggest that p27Kip1 reduces expression of the E2F-regulated genes by generating repressor complexes of E2Fs. Furthermore, the results also demonstrate that p27Kip1 inhibits expression of cyclin A and cyclin E, which are critical for progression through the G1-S phases.
Collapse
Affiliation(s)
- P Shiyanov
- Department of Biochemistry, University of Illinois at Chicago 60612, USA
| | | | | | | | | | | |
Collapse
|
1084
|
Mateo MS, Saez AI, Sanchez-Beato M, Garcia P, Sanchez-Verde L, Martinez JC, Orradre JL, Piris MA. Expression of p21WAF1/CIP1 in fetal and adult tissues: simultaneous analysis with Ki67 and p53. J Clin Pathol 1997; 50:645-53. [PMID: 9301547 PMCID: PMC500105 DOI: 10.1136/jcp.50.8.645] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS To determine the expression of p21WAF1/CIP1 in relation to the expression of Ki67 and p53 in various normal adult and fetal tissues, and to investigate its distribution throughout the cell cycle. METHODS The expression of p21WAF1/CIP1 in relation to Ki67 and p53 was analysed in adult and fetal tissues using immunohistochemical techniques. Heat induced epitope retrieval techniques were used to characterise the presence of p21WAF1/CIP1 in different tissues, as well as to detect its distribution throughout the cell cycle. In addition, flow cytometry and western blotting were used to test whether the level of p21WAF1/CIP1 expression varied at different phases of the cell cycle in phytohaemagglutinin (PHA) stimulated lymphocytes. RESULTS p21WAF1/CIP1 expression varied from one tissue to another, and it was restricted mainly to the squamous and glandular epithelium, where it appeared in association with p53. Human tissues in which p21WAF1/CIP1 was found showed a mutually exclusive topographical sequential expression between p21WAF1/CIP1 and Ki67. This was confirmed by double labelling studies, which showed that p21WAF1/CIP1 positive cells were in the G0 phase. Unlike these findings of a decline in p21WAF1/CIP1 expression after the G0 phase, PHA stimulated lymphocytes showed a level of p21WAF1/CIP1 expression that rose as the cell progressed through the cell cycle. CONCLUSIONS The analysis of p21WAF1/CIP1 expression in relation to the status of p53 should take into account the existence of variable p21WAF1/CIP1 expression in different tissues. This could provide an explanation for the varying frequency of p53 mutations in tumours of different cellular origin. In tissues characterised by regular p21WAF1/CIP1 expression, it appears in a pattern that is consistent with the proposed role of this inhibitor of cyclin dependent kinases in cell cycle arrest-that of inducing cell differentiation. The conflicting results of in vivo and in vitro studies could support the hypothesis that microenvironmental conditions may influence the location of p21WAF1/CIP1 in different phases of the cell cycle.
Collapse
Affiliation(s)
- M S Mateo
- Department of Pathology, Hospital Virgen de la Salud, Toledo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
1085
|
Affiliation(s)
- S J Shankland
- Department of Medicine, University of Washington, Seattle, USA.
| |
Collapse
|
1086
|
Minami S, Ohtani-Fujita N, Igata E, Tamaki T, Sakai T. Molecular cloning and characterization of the human p27Kip1 gene promoter. FEBS Lett 1997; 411:1-6. [PMID: 9247132 DOI: 10.1016/s0014-5793(97)00660-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
p27Kip1 is an inhibitor of multiple cyclin-dependent kinases (cdk), and can arrest the cell-cycle progression by inhibiting the phosphorylation of the retinoblastoma gene family products. Tumor formation in p27Kip1 knockout mice clearly shows that p27Kip1 plays an important role in inhibiting tumor formation and progression. To investigate the mechanism of transcriptional p27Kip1 gene expression, we isolated the genomic DNA fragment of the 5' flanking region of the human p27Kip1 gene and characterized its promoter region. The human p27Kip1 promoter is TATA-less, and the sequence is highly homologous to the murine p27Kip1 promoter sequence. In the promoter assay, deletion from -774 to -435 relative to the initiating codon resulted in a 15-20-fold reduction of the p27Kip1 promoter activity, suggesting that the elements for basal promoter activity exist in this highly conserved 340 bp region, where putative CTF and ATF sites are conserved.
Collapse
Affiliation(s)
- S Minami
- Department of Preventive Medicine, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Japan
| | | | | | | | | |
Collapse
|
1087
|
Kelly MA, Rubinstein M, Asa SL, Zhang G, Saez C, Bunzow JR, Allen RG, Hnasko R, Ben-Jonathan N, Grandy DK, Low MJ. Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron 1997; 19:103-13. [PMID: 9247267 DOI: 10.1016/s0896-6273(00)80351-7] [Citation(s) in RCA: 304] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dopamine secreted from hypophysial hypothalamic neurons is a principal inhibitory regulator of pituitary hormone secretion. Mice with a disrupted D2 dopamine receptor gene had chronic hyperprolactinemia and developed anterior lobe lactotroph hyperplasia without evidence of adenomatous transformation. Unexpectedly, the mutant mice had no hyperplasia of the intermediate lobe melanotrophs. Aged female D2 receptor -/- mice developed uterine adenomyosis in response to prolonged prolactin exposure. These data reveal a critical role of hypothalamic dopamine in controlling pituitary growth and support a multistep mechanism for the induction and perpetuation of lactotroph hyperplasia, involving the lack of dopamine signaling, a low androgen/estrogen ratio, and a final autocrine or paracrine "feed-forward" stimulation of mitogenesis, probably by prolactin itself.
Collapse
Affiliation(s)
- M A Kelly
- Vollum Institute, Oregon Health Sciences University, Portland 97201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1088
|
Features of Macrophage Differentiation Induced by p19INK4d, a Specific Inhibitor of Cyclin D–Dependent Kinases. Blood 1997. [DOI: 10.1182/blood.v90.1.126] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AbstractThe mitogen-dependent induction of cyclin D–dependent kinase activity is required for cells to enter the DNA synthetic (S) phase of their division cycle. Immature 32Dcl3 myeloid cells (32D) proliferating in the presence of interleukin-3 (IL-3) normally express cyclins D2 and D3, which assemble into binary holoenzyme complexes with their catalytic subunits, CDK4 and CDK6. When 32D cells are switched to medium containing granulocyte colony-stimulating factor (G-CSF ) instead of IL-3, D-type cyclins are degraded and, in the absence of their associated kinase activity, the cells arrest in the first gap phase (G1 ) of the cell cycle and differentiate to neutrophils. We derived 32D cells in which the expression of p19INK4d, a specific polypeptide inhibitor of CDK4 and CDK6, is regulated by the heavy metal-inducible sheep metallothionein promoter. Induction of p19INK4d in response to zinc prolonged cell survival in the absence of growth factor treatment. When maintained in medium containing both IL-3 and zinc, these cells lost cyclin D–dependent kinase activity, underwent G1 phase arrest, and acquired certain morphologic, antigenic, and functional properties of mononuclear phagocytes. Cells induced to express p19INK4d did not synthesize receptors for macrophage colony-stimulating factor (M-CSF/CSF-1) and reverted to an immature myeloid phenotype when shifted back into medium containing IL-3 alone. These cells exhibited accelerated differentiation to neutrophils in response to G-CSF but also gave rise to macrophage-like cells when maintained in medium containing both G-CSF and zinc. Therefore, the acquisition of macrophage properties in response to zinc treatment neither depended upon IL-3 nor upon G1 phase arrest per se and instead reflects some ability of p19INK4d, and presumably cyclin D–dependent kinases, to affect myeloid differentiation.
Collapse
|
1089
|
Features of Macrophage Differentiation Induced by p19INK4d, a Specific Inhibitor of Cyclin D–Dependent Kinases. Blood 1997. [DOI: 10.1182/blood.v90.1.126.126_126_137] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mitogen-dependent induction of cyclin D–dependent kinase activity is required for cells to enter the DNA synthetic (S) phase of their division cycle. Immature 32Dcl3 myeloid cells (32D) proliferating in the presence of interleukin-3 (IL-3) normally express cyclins D2 and D3, which assemble into binary holoenzyme complexes with their catalytic subunits, CDK4 and CDK6. When 32D cells are switched to medium containing granulocyte colony-stimulating factor (G-CSF ) instead of IL-3, D-type cyclins are degraded and, in the absence of their associated kinase activity, the cells arrest in the first gap phase (G1 ) of the cell cycle and differentiate to neutrophils. We derived 32D cells in which the expression of p19INK4d, a specific polypeptide inhibitor of CDK4 and CDK6, is regulated by the heavy metal-inducible sheep metallothionein promoter. Induction of p19INK4d in response to zinc prolonged cell survival in the absence of growth factor treatment. When maintained in medium containing both IL-3 and zinc, these cells lost cyclin D–dependent kinase activity, underwent G1 phase arrest, and acquired certain morphologic, antigenic, and functional properties of mononuclear phagocytes. Cells induced to express p19INK4d did not synthesize receptors for macrophage colony-stimulating factor (M-CSF/CSF-1) and reverted to an immature myeloid phenotype when shifted back into medium containing IL-3 alone. These cells exhibited accelerated differentiation to neutrophils in response to G-CSF but also gave rise to macrophage-like cells when maintained in medium containing both G-CSF and zinc. Therefore, the acquisition of macrophage properties in response to zinc treatment neither depended upon IL-3 nor upon G1 phase arrest per se and instead reflects some ability of p19INK4d, and presumably cyclin D–dependent kinases, to affect myeloid differentiation.
Collapse
|
1090
|
Fredersdorf S, Burns J, Milne AM, Packham G, Fallis L, Gillett CE, Royds JA, Peston D, Hall PA, Hanby AM, Barnes DM, Shousha S, O'Hare MJ, Lu X. High level expression of p27(kip1) and cyclin D1 in some human breast cancer cells: inverse correlation between the expression of p27(kip1) and degree of malignancy in human breast and colorectal cancers. Proc Natl Acad Sci U S A 1997; 94:6380-5. [PMID: 9177226 PMCID: PMC21058 DOI: 10.1073/pnas.94.12.6380] [Citation(s) in RCA: 289] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The expression of cyclin-dependent kinase inhibitor p27(kip1) in human tumors and normal tissues was investigated using a panel of novel anti-p27(kip1) mAbs. An inverse correlation between expression of p27(kip1) and cell proliferation was generally observed after analyzing its expression in 25 different normal human tissues. In some highly proliferative human breast cancer cells, however, high level p27(kip1) expression was seen, indicating the existence of a mechanism by which some growing tumor cells may tolerate this inhibitor of cell cycle progression. Detailed studies demonstrated a correlation between the high level expression of p27(kip1) and cyclin D1 in human breast cancer cells. There was also an inverse correlation between the expression of p27(kip1) and the degree of tumor malignancy in human breast and colorectal cancers, indicating that p27(kip1) may be a useful prognostic marker in these cancers.
Collapse
Affiliation(s)
- S Fredersdorf
- Ludwig Institute for Cancer Research, Imperial College School of Medicine at St. Mary's, Norfolk Place, London, W2 1PG, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1091
|
Affiliation(s)
- I Shimon
- Division of Endocrinology and Metabolism, Cedars-Sinai Research Institute-University of California School of Medicine, Los Angeles 90048, USA
| | | |
Collapse
|
1092
|
Abstract
CDK inhibitors are thought to prevent cell proliferation by negatively regulating cyclin-CDK complexes. We propose that the opposite is also true, that cyclin-CDK complexes in mammmalian cells can promote cell cycle progression by directly down-regulating CDK inhibitors. We show that expression of cyclin E-CDK2 in murine fibroblasts causes phosphorylation of the CDK inhibitor p27Kip1 on T187, and that cyclin E-CDK2 can directly phosphorylate p27 T187 in vitro. We further show that cyclin E-CDK2-dependent phosphorylation of p27 results in elimination of p27 from the cell, allowing cells to transit from G1 to S phase. Moreover, mutation of T187 in p27 to alanine creates a p27 protein that causes a G1 block resistant to cyclin E and whose level of expression is not modulated by cyclin E. A kinetic analysis of the interaction between p27 and cyclin E-CDK2 explains how p27 can be regulated by the same enzyme it targets for inhibition. We show that p27 interacts with cyclin E-CDK2 in at least two distinct ways: one resulting in p27 phosphorylation and release, the other in tight binding and cyclin E-CDK2 inhibition. The binding of ATP to the CDK governs which state predominates. At low ATP (< 50 microM) p27 is primarily a CDK inhibitor, but at ATP concentrations approaching physiological levels (> 1 mM) p27 is more likely to be a substrate. Thus, we have identified p27 as a biologically relevant cyclin E-CDK2 substrate, demonstrated the physiological consequences of p27 phosphorylation, and developed a kinetic model to explain how p27 can be both an inhibitor and a substrate of cyclin E-CDK2.
Collapse
Affiliation(s)
- R J Sheaff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington 98104, USA
| | | | | | | | | |
Collapse
|
1093
|
Chen D, Krasinski K, Sylvester A, Chen J, Nisen PD, Andrés V. Downregulation of cyclin-dependent kinase 2 activity and cyclin A promoter activity in vascular smooth muscle cells by p27(KIP1), an inhibitor of neointima formation in the rat carotid artery. J Clin Invest 1997; 99:2334-41. [PMID: 9153274 PMCID: PMC508071 DOI: 10.1172/jci119414] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Abnormal proliferation of vascular smooth muscle cells (VSMCs) contributes to intimal hyperplasia during atherosclerosis and restenosis, but the endogenous cell cycle regulatory factors underlying VSMC growth in response to arterial injury are not well understood. In the present study, we report that downregulation of cyclin-dependent kinase 2 (cdk2) activity in serum-deprived VSMCs was associated with the formation of complexes between cdk2 and its inhibitory protein p27(KIP1) (p27). Ectopic overexpression of p27 in serum-stimulated VSMCs resulted in the inhibition of cdk2 activity and repression of cyclin A promoter activity. Collectively, these findings indicate that p27 may contribute to VSMC growth arrest in vitro. Using the rat carotid model of balloon angioplasty, a marked upregulation of p27 was observed in injured arteries. High levels of p27 expression in the media and neointima correlated with downregulation of cdk2 activity at 2 wk after angioplasty, and adenovirus-mediated overexpression of p27 in balloon-injured arteries attenuated neointimal lesion formation. Thus, the inhibition of cdk2 function and repression of cyclin A gene transcription through the induction of the endogenous p27 protein provides a mechanism for the inhibition of VSMC growth at late time points after angioplasty.
Collapse
Affiliation(s)
- D Chen
- Department of Medicine (Cardiology), St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135, USA
| | | | | | | | | | | |
Collapse
|
1094
|
Dirks PB, Rutka JT. Current concepts in neuro-oncology: the cell cycle--a review. Neurosurgery 1997; 40:1000-13; discussion 1013-5. [PMID: 9149259 DOI: 10.1097/00006123-199705000-00025] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Uncontrolled cellular proliferation is the hallmark of human malignant brain tumors. Their growth proceeds inexorably, in part because their cellular constituents have an altered genetic code that enables them to evade the checks and balances of the normal cell cycle. Recently, a number of major advances in molecular biology have led to the identification of several critical genetic and enzymatic pathways that are disturbed in cancer cells resulting in uncontrolled cell cycling. We now know that the progression of a cell through the cell cycle is controlled in part by a series of protein kinases, the activity of which is regulated by a group of proteins called cyclins. Cyclins act in concert with the cyclin-dependent kinases (CDKs) to phosphorylate key substrates that facilitate the passage of the cell through each phase of the cell cycle. A critical target of cyclin-CDK enzymes is the retinoblastoma tumor suppressor protein, and phosphorylation of this protein inhibits its ability to restrain activity of a family of transcription factors (E2F family), which induce expression of genes important for cell proliferation. In addition to the cyclins and CDKS, there is an emerging family of CDK inhibitors, which modulate the activity of cyclins and CDKs. CDK inhibitors inhibit cyclin-CDK complexes and transduce internal or external growth-suppressive signals, which act on the cell cycle machinery. Accordingly, all CDK inhibitors are candidate tumor suppressor genes. It is becoming clear that a common feature of cancer cells is the abrogation of cell cycle checkpoints, either by aberrant expression of positive regulators (for example, cyclins and CDKs) or the loss of negative regulators, including p21Cip1 through loss of function of its transcriptional activator p53, or deletion or mutation of p16ink4A (multiple tumor suppressor 1/CDKN2) and the retinoblastoma tumor suppressor protein. In this review, we describe in detail our current knowledge of the normal cell cycle and how it is disturbed in cancer cells. Because there have now been a number of recent studies showing alterations in cell cycle gene expression in human brain tumors, we will review the derangements in both the positive and negative cell cycle regulators that have been reported for these neoplasms. A thorough understanding of the molecular events of the cell cycle may lead to new opportunities by which astrocytoma cell proliferation can be controlled either pharmacologically or by gene transfer techniques.
Collapse
Affiliation(s)
- P B Dirks
- Brain Tumor Research Laboratory, Hospital for Sick Children, University of Toronto, Ontario, Canada
| | | |
Collapse
|
1095
|
Kerkhoff E, Rapp UR. Induction of cell proliferation in quiescent NIH 3T3 cells by oncogenic c-Raf-1. Mol Cell Biol 1997; 17:2576-86. [PMID: 9111327 PMCID: PMC232107 DOI: 10.1128/mcb.17.5.2576] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The c-Raf-1 kinase is activated by different mitogenic stimuli and has been shown to be an important mediator of growth factor responses. Fusion of the catalytic domain of the c-Raf-1 kinase with the hormone binding domain of the estrogen receptor (deltaRaf-ER) provides a hormone-regulated form of oncogenic activated c-Raf-1. We have established NIH 3T3 cells stably expressing a c-Raf-1 deletion mutant-estrogen receptor fusion protein (c-Raf-1-BxB-ER) (N-BxB-ER cells). The transformed morphology of these cells is dependent on the presence of the estrogen antagonist 4-hydroxytamoxifen. Addition of 4-hydroxytamoxifen to N-BxB-ER cells arrested by density or serum starvation causes reentry of these cells into cell proliferation. Increases in the cell number are obvious by 24 h after activation of the oncogenic c-Raf-1 protein in confluent cells. The onset of proliferation in serum-starved cells is further delayed and takes about 48 h. In both cases, the proliferative response of the oncogenic c-Raf-1-induced cell proliferation is weaker than the one mediated by serum and does not lead to exponential growth. This is reflected in a markedly lower expression of the late-S- and G2/M-phase-specific cyclin B protein and a slightly lower expression of the cyclin A protein being induced at the G1/S transition. Oncogenic activation of c-Raf-1 induces the expression of the heparin binding epidermal growth factor. The Jnk1 kinase is putatively activated by the action of the autocrine growth factor. The kinetics of Jnk1 kinase activity is delayed and occurs by a time when we also detect DNA synthesis and the expression of the S-phase-specific cyclin A protein. This finding indicates that oncogenic activation of the c-Raf-1 protein can trigger the entry into the cell cycle without the action of the autocrine growth factor loop. The activation of the c-Raf-1-BxB-ER protein leads to an accumulation of high levels of cyclin D1 protein and a repression of the p27Kip1 cyclin-dependent kinase inhibitor under all culture conditions tested.
Collapse
Affiliation(s)
- E Kerkhoff
- Institut für Medizinische Strahlenkunde und Zellforschung, University of Würzburg, Germany
| | | |
Collapse
|
1096
|
Onishi T, Hruska K. Expression of p27Kip1 in osteoblast-like cells during differentiation with parathyroid hormone. Endocrinology 1997; 138:1995-2004. [PMID: 9112398 DOI: 10.1210/endo.138.5.5146] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PTH is a major systemic regulator of bone metabolism and plays an important role in both bone formation and resorption. PTH either inhibits or stimulates osteoblastic cell proliferation depending on the model that is studied. We analyzed the cell cycle of the UMR-106 cell line, a relatively differentiated osteoblastic osteogenic sarcoma line in which PTH is known to inhibit proliferation but the mechanism of action is unknown. PTH decreased the proportion of cells in S phase and increased the number of G1 phase cells. We examined the effect of PTH on the regulators of the G1 phase cyclin-dependent kinases and found that PTH increased p27Kip1, but not p21Cip1, levels. This effect was mimicked by 8-bromo-cAMP, but not by phorbol 12-myristate 13-acetate. The protein kinase A inhibitor KT5720 abolished the effect of PTH on the increase in p27Kip1 expression. PTH increased CDK2-associated p27Kip1 without affecting the levels of CDK2. CDK2 activity was down-regulated by both PTH and 8-bromo-cAMP treatment. These data suggest that PTH blocks entry of cells into S phase and inhibits cell proliferation as the consequence of an increase in p27Kip1, which is mediated through the protein kinase A pathway. The inhibition of G1 cyclin-dependent kinases by p27Kip1 could cause a reduction of phosphorylation of key substrates and inactivation of transcription factors essential for entry into S phase. The inhibition of cell cycle progression through PKA-mediated p27Kip1 induction might play an important role in PTH-induced differentiation of osteoblasts.
Collapse
Affiliation(s)
- T Onishi
- Renal Division, Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
1097
|
Dean M. Towards a unified model of tumor suppression: lessons learned from the human patched gene. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1332:M43-52. [PMID: 9141460 DOI: 10.1016/s0304-419x(96)00043-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M Dean
- Human Genetics Section, Laboratory of Genomic Diversity, National Cancer Institute-Frederick Cancer Research and Development, MD 21702, USA.
| |
Collapse
|
1098
|
Yan Y, Frisén J, Lee MH, Massagué J, Barbacid M. Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev 1997; 11:973-83. [PMID: 9136926 DOI: 10.1101/gad.11.8.973] [Citation(s) in RCA: 386] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
p57(Kip2) is a paternally imprinted gene that encodes a potent inhibitor of several cyclin/Cdk complexes. p57(Kip2) is primarily expressed in terminally differentiated cells, associates with G1 Cdks, and can cause cell cycle arrest in G1 phase. To investigate the role of p57(Kip2) in vivo, we have ablated the p57(Kip2) gene by homologous recombination in ES cells and generated mice devoid of p57(Kip2) expression. Most p57(Kip2) null mice die after birth and display severe developmental defects with varying degrees of penetrance. As expected, heterozygous mice that inherit a maternal, but not a paternal, targeted allele exhibit similar deficiencies and neonatal death. Developmental defects of p57(Kip2) mutant mice include cleft palate and gastrointestinal abnormalities ranging from an inflated GI tract to loss of the jejunum and ileum. These tissues display a significant increase of apoptotic cells in the absence of p57(Kip2). Most p57(Kip2) mutant mice have short limbs, a defect attributable to abnormal endochondral ossification caused by delayed cell cycle exit during chondrocyte differentiation. A similar defect has been observed in mice lacking p107 and p130, thus suggesting that p57(Kip2) might be an upstream regulator of these Rb-related proteins. The p57(Kip2) locus has been implicated in the Beckwith-Wiedemann syndrome and in the development of sporadic Wilms' tumors and lung carcinomas. To date, we have not observed neoplastic development even in those p57(Kip2) mutant mice that have survived for >5 months of age. These findings indicate that p57(Kip2) has an important role during mouse development that cannot be compensated by other Cdk inhibitors.
Collapse
Affiliation(s)
- Y Yan
- Department of Molecular Oncology, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543, USA
| | | | | | | | | |
Collapse
|
1099
|
Abstract
The complex range of pituitary regulatory mechanisms reviewed here underlies the critical function of the pituitary in sustaining all higher life forms. Thus, the ultimate net secretion of pituitary hormones is determined by signal integration from all three tiers of pituitary control. It is clear from our current knowledge that the trophic hormone cells of the anterior pituitary are uniquely specialized to respond to these signals. Unravelling their diversity and complexity will shed light upon the normal function of the master gland. Understanding these control mechanisms will lead to novel diagnosis and therapy of disordered pituitary function (357).
Collapse
Affiliation(s)
- D Ray
- Cedars-Sinai Research Institute, UCLA School of Medicine 90048-1865, USA
| | | |
Collapse
|
1100
|
Abstract
The eukaryotic cell cycle is regulated by the temporal activation of different cyclin-dependent kinase (CDK)/cyclin complexes. Whilst the level of the catalytic subunit of the complex, the CDK, remains relatively constant through the cycle, the level of the cyclin subunit generally oscillates. Cyclins are synthesized, bind and activate the CDK and are then destroyed. In this review, we summarize the current knowledge of the regulation of the cell cycle by CDK/cyclin complexes with special emphasis on new developments in cyclin biosynthesis and destruction, the structural analysis of the CDK/cyclin complexes and the role of a set of inhibitors of CDK/cyclin complexes that are important for the coordination of the different stages of the cell cycle.
Collapse
Affiliation(s)
- M Arellano
- Departamento de Microbiología y Genética, Universidad de Salamanca, Spain
| | | |
Collapse
|