1051
|
Begara-Morales JC, Sánchez-Calvo B, Chaki M, Mata-Pérez C, Valderrama R, Padilla MN, López-Jaramillo J, Luque F, Corpas FJ, Barroso JB. Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5983-96. [PMID: 26116026 PMCID: PMC4566986 DOI: 10.1093/jxb/erv306] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The ascorbate-glutathione cycle is a metabolic pathway that detoxifies hydrogen peroxide and involves enzymatic and non-enzymatic antioxidants. Proteomic studies have shown that some enzymes in this cycle such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR) are potential targets for post-translational modifications (PMTs) mediated by nitric oxide-derived molecules. Using purified recombinant pea peroxisomal MDAR and cytosolic and chloroplastic GR enzymes produced in Escherichia coli, the effects of peroxynitrite (ONOO(-)) and S-nitrosoglutathione (GSNO) which are known to mediate protein nitration and S-nitrosylation processes, respectively, were analysed. Although ONOO(-) and GSNO inhibit peroxisomal MDAR activity, chloroplastic and cytosolic GR were not affected by these molecules. Mass spectrometric analysis of the nitrated MDAR revealed that Tyr213, Try292, and Tyr345 were exclusively nitrated to 3-nitrotyrosine by ONOO(-). The location of these residues in the structure of pea peroxisomal MDAR reveals that Tyr345 is found at 3.3 Å of His313 which is involved in the NADP-binding site. Site-directed mutagenesis confirmed Tyr345 as the primary site of nitration responsible for the inhibition of MDAR activity by ONOO(-). These results provide new insights into the molecular regulation of MDAR which is deactivated by nitration and S-nitrosylation. However, GR was not affected by ONOO(-) or GSNO, suggesting the existence of a mechanism to conserve redox status by maintaining the level of reduced GSH. Under a nitro-oxidative stress induced by salinity (150mM NaCl), MDAR expression (mRNA, protein, and enzyme activity levels) was increased, probably to compensate the inhibitory effects of S-nitrosylation and nitration on the enzyme. The present data show the modulation of the antioxidative response of key enzymes in the ascorbate-glutathione cycle by nitric oxide (NO)-PTMs, thus indicating the close involvement of NO and reactive oxygen species metabolism in antioxidant defence against nitro-oxidative stress situations in plants.
Collapse
Affiliation(s)
- Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Biochemistry and Molecular Biology Division, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Biochemistry and Molecular Biology Division, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Biochemistry and Molecular Biology Division, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| | - Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Biochemistry and Molecular Biology Division, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Biochemistry and Molecular Biology Division, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| | - María N Padilla
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Biochemistry and Molecular Biology Division, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| | | | - Francisco Luque
- Center for Advanced Studies in Olives and Olive Oil, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080 Granada, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Biochemistry and Molecular Biology Division, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain Center for Advanced Studies in Olives and Olive Oil, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| |
Collapse
|
1052
|
Jozefczak M, Bohler S, Schat H, Horemans N, Guisez Y, Remans T, Vangronsveld J, Cuypers A. Both the concentration and redox state of glutathione and ascorbate influence the sensitivity of arabidopsis to cadmium. ANNALS OF BOTANY 2015; 116:601-12. [PMID: 26070641 PMCID: PMC4577996 DOI: 10.1093/aob/mcv075] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/20/2015] [Accepted: 04/17/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Cadmium (Cd) is a non-essential trace element that elicits oxidative stress. Plants respond to Cd toxicity via increasing their Cd-chelating and antioxidative capacities. They predominantly chelate Cd via glutathione (GSH) and phytochelatins (PCs), while antioxidative defence is mainly based on the use and recycling of both GSH and ascorbate (AsA), complemented by superoxide dismutase (SOD) and catalase (CAT). In addition, both metabolites act as a substrate for the regeneration of other essential antioxidants, which neutralize and regulate reactive oxygen species (ROS). Together, these functions influence the concentration and cellular redox state of GSH and AsA. In this study, these two parameters were examined in plants of Arabidopsis thaliana exposed to sub-lethal Cd concentrations. METHODS Wild-type plants and mutant arabidopsis plants containing 30-45 % of wild-type levels of GSH (cad2-1) or 40-50 % of AsA (vtc1-1), together with the double-mutant (cad2-1 vtc1-1) were cultivated in a hydroponic system and exposed to sub-lethal Cd concentrations. Cadmium detoxification was investigated at different levels including gene expression and metabolite concentrations. KEY RESULTS In comparison with wild-type plants, elevated basal thiol levels and enhanced PC synthesis upon exposure to Cd efficiently compensated AsA deficiency in vtc1-1 plants and contributed to decreased sensitivity towards Cd. Glutathione-deficient (cad2-1 and cad2-1 vtc1-1) mutants, however, showed a more oxidized GSH redox state, resulting in initial oxidative stress and a higher sensitivity to Cd. In order to cope with the Cd stress to which they were exposed, GSH-deficient mutants activated multiple alternative pathways. CONCLUSIONS Our observations indicate that GSH and AsA deficiency differentially alter plant GSH homeostasis, resulting in opposite Cd sensitivities relative to wild-type plants. Upon Cd exposure, GSH-deficient mutants were hampered in chelation. They experienced phenotypic disturbances and even more oxidative stress, and therefore activated multiple alternative pathways such as SOD, CAT and ascorbate peroxidase, indicating a higher Cd sensitivity. Ascorbate deficiency, however, was associated with enhanced PC synthesis in comparison with wild-type plants after Cd exposure, which contributed to decreased sensitivity towards Cd.
Collapse
Affiliation(s)
- Marijke Jozefczak
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Sacha Bohler
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Henk Schat
- Free University of Amsterdam, Institute of Molecular and Cellular Biology, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands
| | - Nele Horemans
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, B-3590 Diepenbeek, Belgium, Belgian Nuclear Research Centre, Biosphere Impact Studies, Boeretang 200, B-2400 Mol, Belgium and
| | - Yves Guisez
- University of Antwerp, Department of Biology, Middelheim campus, G.U616, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Tony Remans
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Ann Cuypers
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, B-3590 Diepenbeek, Belgium,
| |
Collapse
|
1053
|
Sandalio LM, Romero-Puertas MC. Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks. ANNALS OF BOTANY 2015; 116:475-85. [PMID: 26070643 PMCID: PMC4577995 DOI: 10.1093/aob/mcv074] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/10/2015] [Accepted: 04/15/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Peroxisomes are highly dynamic, metabolically active organelles that used to be regarded as a sink for H2O2 generated in different organelles. However, peroxisomes are now considered to have a more complex function, containing different metabolic pathways, and they are an important source of reactive oxygen species (ROS), nitric oxide (NO) and reactive nitrogen species (RNS). Over-accumulation of ROS and RNS can give rise oxidative and nitrosative stress, but when produced at low concentrations they can act as signalling molecules. SCOPE This review focuses on the production of ROS and RNS in peroxisomes and their regulation by antioxidants. ROS production is associated with metabolic pathways such as photorespiration and fatty acid β-oxidation, and disturbances in any of these processes can be perceived by the cell as an alarm that triggers defence responses. Genetic and pharmacological studies have shown that photorespiratory H2O2 can affect nuclear gene expression, regulating the response to pathogen infection and light intensity. Proteomic studies have shown that peroxisomal proteins are targets for oxidative modification, S-nitrosylation and nitration and have highlighted the importance of these modifications in regulating peroxisomal metabolism and signalling networks. The morphology, size, number and speed of movement of peroxisomes can also change in response to oxidative stress, meaning that an ROS/redox receptor is required. Information available on the production and detection of NO/RNS in peroxisomes is more limited. Peroxisomal homeostasis is critical for maintaining the cellular redox balance and is regulated by ROS, peroxisomal proteases and autophagic processes. CONCLUSIONS Peroxisomes play a key role in many aspects of plant development and acclimation to stress conditions. These organelles can sense ROS/redox changes in the cell and thus trigger rapid and specific responses to environmental cues involving changes in peroxisomal dynamics as well as ROS- and NO-dependent signalling networks, although the mechanisms involved have not yet been established. Peroxisomes can therefore be regarded as a highly important decision-making platform in the cell, where ROS and RNS play a determining role.
Collapse
Affiliation(s)
- L M Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - M C Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
1054
|
Palma JM, Sevilla F, Jiménez A, del Río LA, Corpas FJ, Álvarez de Morales P, Camejo DM. Physiology of pepper fruit and the metabolism of antioxidants: chloroplasts, mitochondria and peroxisomes. ANNALS OF BOTANY 2015; 116:627-36. [PMID: 26220658 PMCID: PMC4578004 DOI: 10.1093/aob/mcv121] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/04/2015] [Accepted: 06/25/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Pepper (Capsicum annuum) contains high levels of antioxidants, such as vitamins A and C and flavonoids. However, information on the role of these beneficial compounds in the physiology of pepper fruit remains scarce. Recent studies have shown that antioxidants in ripe pepper fruit play a key role in responses to temperature changes, and the redox state at the time of harvest affects the nutritional value for human consumption. In this paper, the role of antioxidant metabolism of pepper fruit during ripening and in the response to low temperature is addressed, paying particular attention to ascorbate, NADPH and the superoxide dismutase enzymatic system. The participation of chloroplasts, mitochondria and peroxisomes in the ripening process is also investigated. SCOPE AND RESULTS Important changes occur at a subcellular level during ripening of pepper fruit. Chloroplasts turn into chromoplasts, with drastic conversion of their metabolism, and the role of the ascorbate-glutathione cycle is essential. In mitochondria from red fruits, higher ascorbate peroxidase (APX) and Mn-SOD activities are involved in avoiding the accumulation of reactive oxygen species in these organelles during ripening. Peroxisomes, whose antioxidant capacity at fruit ripening is substantially affected, display an atypical metabolic pattern during this physiological stage. In spite of these differences observed in the antioxidative metabolism of mitochondria and peroxisomes, proteomic analysis of these organelles, carried out by 2-D electrophoresis and MALDI-TOF/TOF and provided here for the first time, reveals no changes between the antioxidant metabolism from immature (green) and ripe (red) fruits. CONCLUSIONS Taken together, the results show that investigation of molecular and enzymatic antioxidants from cell compartments, especially chloroplasts, mitochondria and peroxisomes, is a useful tool to study the physiology of pepper fruit, particularly in the context of expanding their shelf-life after harvest and in maintaining their nutritional value.
Collapse
Affiliation(s)
- José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain and
| | - Francisca Sevilla
- Group of Abiotic Stress, Production and Quality, Department of Biology of Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain
| | - Ana Jiménez
- Group of Abiotic Stress, Production and Quality, Department of Biology of Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain
| | - Luis A del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain and
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain and
| | - Paz Álvarez de Morales
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain and
| | - Daymi M Camejo
- Group of Abiotic Stress, Production and Quality, Department of Biology of Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain
| |
Collapse
|
1055
|
Romero-Oliva CS, Contardo-Jara V, Pflugmacher S. Time dependent uptake, bioaccumulation and biotransformation of cell free crude extract microcystins from Lake Amatitlán, Guatemala by Ceratophyllum demersum, Egeria densa and Hydrilla verticillata. Toxicon 2015; 105:62-73. [PMID: 26325293 DOI: 10.1016/j.toxicon.2015.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/07/2015] [Accepted: 08/25/2015] [Indexed: 01/10/2023]
Abstract
Recent studies evidence that macrophytes can uptake and bioaccumulate microcystins (MC) from contaminated environments, suggesting their use in phytoremediation. In the present study Ceratophyllum demersum, Egeria densa and Hydrilla verticillata were exposed to cell free crude extracts (CE) containing three MC congeners MC-LR, MC-RR and MC-YR at a total MC concentration of 104.4 ± 7.6 μg/L from Lake Amatitlán, Guatemala. Time dependent total glutathione (tGSH), glutathione disulfide (GSSG), disappearance of MC from exposure medium and macrophyte uptake as well as calculated uptake and biotransformation rates and bioconcentration factors (BCF) were monitored after 1, 4, 8 hours (h) and 1, 3, 7 and 14 days (d). Results showed that tGSH concentrations in all exposed macrophytes were enhanced by CE. Disappearance of 62.1 ± 13, 40.8 ± 3.1 and 37.8 ± 3.5 μg/L total MCs from exposure mediums with E. densa, H. verticillata and C. demersum were observed after 1 h. Followed by the total elimination of MCs in exposure medium from H. verticillata after 14 d. Highest MC bioaccumulation capacity (BCF), was observed in E. densa followed by C. demersum and H. verticillata. The here presented results imply the strong MC phytoremediation potential of the evaluated macrophytes.
Collapse
Affiliation(s)
- Claudia Suseth Romero-Oliva
- Technische Universität Berlin, Department of Ecotoxicological Impact Research and Ecotoxicology, Ernst-Reuter-Platz 1, 10587 Berlin, Germany.
| | - Valeska Contardo-Jara
- Technische Universität Berlin, Department of Ecotoxicological Impact Research and Ecotoxicology, Ernst-Reuter-Platz 1, 10587 Berlin, Germany.
| | - Stephan Pflugmacher
- Technische Universität Berlin, Department of Ecotoxicological Impact Research and Ecotoxicology, Ernst-Reuter-Platz 1, 10587 Berlin, Germany.
| |
Collapse
|
1056
|
Ostaszewska-Bugajska M, Rychter AM, Juszczuk IM. Antioxidative and proteolytic systems protect mitochondria from oxidative damage in S-deficient Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2015; 186-187:25-38. [PMID: 26339750 DOI: 10.1016/j.jplph.2015.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 06/05/2023]
Abstract
We examined the functioning of the antioxidative defense system in Arabidopsis thaliana under sulphur (S) deficiency with an emphasis on the role of mitochondria. In tissue extracts and in isolated mitochondria from S-deficient plants, the concentration of non-protein thiols declined but protein thiols did not change. Superoxide anion and hydrogen peroxide were accumulated in leaf blades and the generation of superoxide anion by isolated mitochondria was higher. Lower abundance of reduced (GSH) plus oxidized (GSSG) glutathione in the leaf and root tissues, and leaf mitochondria from S-deficient plants was accompanied by a decrease in the level of GSH and the changes in the GSH/GSSG ratios. In the chloroplasts, the total level of glutathione decreased. Lower levels of reduced (AsA) and oxidized (DHA) ascorbate were reflected in much higher ratios of AsA/DHA. Sulphur deficiency led to an increase in the activity of cytosolic, mitochondrial and chloroplastic antioxidative enzymes, peroxidases, catalases and superoxide dismutases. The protein carbonyl level was higher in the leaves of S-deficient plants and in the chloroplasts, while in the roots, leaf and root mitochondria it remained unchanged. Protease activity in leaf extracts of S-deficient plants was higher, but in root extracts it did not differ. The proteolytic system reflected subcellular specificity. In leaf and root mitochondria the protease activity was higher, whereas in the chloroplasts it did not change. We propose that the preferential incorporation of S to protein thiols and activation of antioxidative and proteolytic systems are likely important for the survival of S-deficient plants and that the mitochondria maintain redox homeostasis.
Collapse
Affiliation(s)
- Monika Ostaszewska-Bugajska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Poland.
| | - Anna M Rychter
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Poland.
| | - Izabela M Juszczuk
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Poland.
| |
Collapse
|
1057
|
Fortunato AA, Debona D, Bernardeli AMA, Rodrigues FÁ. Changes in the Antioxidant System in Soybean Leaves Infected by Corynespora cassiicola. PHYTOPATHOLOGY 2015; 105:1050-8. [PMID: 25738549 DOI: 10.1094/phyto-10-14-0283-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Considering the importance of target spot, caused by the fungus Corynespora cassiicola, to reduce soybean yield in Brazil and that more basic information regarding the soybean-C. cassiicola interaction is needed, the present study aimed to investigate whether the cellular damage caused by C. cassiicola infection could activate the antioxidant system and whether a more efficient antioxidant system could be associated with an increase in soybean resistance to target spot. The activities of the antioxidant enzymes superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione peroxidase, glutathione reductase, glutathione S-transferase as well as the concentrations of ascorbate (AsA), hydrogen peroxide (H2O2), superoxide (O2•-), and malondialdehyde (MDA) were measured in soybean plants from two cultivars differing in resistance to the pathogen. The number of lesions per square centimeter was significantly reduced by 14% in plants from cultivar Fundacep 59 compared with plants from cultivar TMG 132. The area under the disease progress curve was significantly lower, by 15%, in plants from Fundacep 59 than in plants from TMG 132. Generally, antioxidant enzyme activities and AsA concentration significantly increased in response to C. cassiicola infection in plants from both cultivars, however more prominent increases were recorded for plants from Fundacep 59. The concentrations of MDA, H2O2, and O2•- also increased, particularly for plants from TMG 132. The results from this study highlight the importance of a more efficient antioxidative system in the removal of reactive oxygen species generated in soybean plants during C. cassiicola infection, contributing to the resistance to target spot.
Collapse
Affiliation(s)
- Alessandro Antônio Fortunato
- Universidade Federal de Viçosa, Departamento de Fitopatologia, Laboratório da Interação Planta-Patógeno, Viçosa, Minas Gerais State 36570-900, Brazil
| | - Daniel Debona
- Universidade Federal de Viçosa, Departamento de Fitopatologia, Laboratório da Interação Planta-Patógeno, Viçosa, Minas Gerais State 36570-900, Brazil
| | - Arthur Martins Almeida Bernardeli
- Universidade Federal de Viçosa, Departamento de Fitopatologia, Laboratório da Interação Planta-Patógeno, Viçosa, Minas Gerais State 36570-900, Brazil
| | - Fabrício Ávila Rodrigues
- Universidade Federal de Viçosa, Departamento de Fitopatologia, Laboratório da Interação Planta-Patógeno, Viçosa, Minas Gerais State 36570-900, Brazil
| |
Collapse
|
1058
|
Xue J, Luo D, Xu D, Zeng M, Cui X, Li L, Huang H. CCR1, an enzyme required for lignin biosynthesis in Arabidopsis, mediates cell proliferation exit for leaf development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:375-87. [PMID: 26058952 DOI: 10.1111/tpj.12902] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/03/2015] [Indexed: 05/20/2023]
Abstract
After initiation, leaves first undergo rapid cell proliferation. During subsequent development, leaf cells gradually exit the proliferation phase and enter the expansion stage, following a basipetally ordered pattern starting at the leaf tip. The molecular mechanism directing this pattern of leaf development is as yet poorly understood. By genetic screening and characterization of Arabidopsis mutants defective in exit from cell proliferation, we show that the product of the CINNAMOYL CoA REDUCTASE (CCR1) gene, which is required for lignin biosynthesis, participates in the process of cell proliferation exit in leaves. CCR1 is expressed basipetally in the leaf, and ccr1 mutants exhibited multiple abnormalities, including increased cell proliferation. The ccr1 phenotypes are not due to the reduced lignin content, but instead are due to the dramatically increased level of ferulic acid (FeA), an intermediate in lignin biosynthesis. FeA is known to have antioxidant activity, and the levels of reactive oxygen species (ROS) in ccr1 were markedly reduced. We also characterized another double mutant in CAFFEIC ACID O-METHYLTRANSFERASE (comt) and CAFFEOYL CoA 3-O-METHYLTRANSFERASE (ccoaomt), in which the FeA level was dramatically reduced. Cell proliferation in comt ccoaomt leaves was decreased, accompanied by elevated ROS levels, and the mutant phenotypes were partially rescued by treatment with FeA or another antioxidant (N-acetyl-L-cysteine). Taken together, our results suggest that CCR1, FeA and ROS coordinate cell proliferation exit in normal leaf development.
Collapse
Affiliation(s)
- Jingshi Xue
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Dexian Luo
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Deyang Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Minhuan Zeng
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Xiaofeng Cui
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Laigeng Li
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Hai Huang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
1059
|
Bárzana G, Aroca R, Ruiz-Lozano JM. Localized and non-localized effects of arbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying. PLANT, CELL & ENVIRONMENT 2015; 38:1613-27. [PMID: 25630435 DOI: 10.1111/pce.12507] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/17/2015] [Accepted: 01/20/2015] [Indexed: 05/20/2023]
Abstract
The arbuscular mycorrhizal (AM) symbiosis alters host plant physiology under drought stress, but no information is available on whether or not the AM affects respond to drought locally or systemically. A split-root system was used to obtain AM plants with total or only half root system colonized as well as to induce physiological drought affecting the whole plant or non-physiological drought affecting only the half root system. We analysed the local and/or systemic nature of the AM effects on accumulation of osmoregulatory compounds and aquaporins and on antioxidant systems. Maize plants accumulated proline both, locally in roots affected by drought and systemically when the drought affected the whole root system, being the last effect ampler in AM plants. PIPs (plasma membrane intrinsic proteins) aquaporins were also differently regulated by drought in AM and non-AM root compartments. When the drought affected only the AM root compartment, the rise of lipid peroxidation was restricted to such compartment. On the contrary, when the drought affected the non-AM root fraction, the rise of lipid peroxidation was similar in both root compartments. Thus, the benefits of the AM symbiosis not only rely in a lower oxidative stress in the host plant, but it also restricts locally such oxidative stress.
Collapse
Affiliation(s)
- Gloria Bárzana
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, 18008, Spain
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, 18008, Spain
| | - Juan Manuel Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, 18008, Spain
| |
Collapse
|
1060
|
Śpiewak K, Stochel G, Brindell M. Influence of redox activation of NAMI-A on affinity to serum proteins: transferrin and albumin. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1067692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- K. Śpiewak
- Faculty of Chemistry, Department of Inorganic Chemistry, Jagiellonian University, Krakow, Poland
| | - G. Stochel
- Faculty of Chemistry, Department of Inorganic Chemistry, Jagiellonian University, Krakow, Poland
| | - M. Brindell
- Faculty of Chemistry, Department of Inorganic Chemistry, Jagiellonian University, Krakow, Poland
| |
Collapse
|
1061
|
Szalonek M, Sierpien B, Rymaszewski W, Gieczewska K, Garstka M, Lichocka M, Sass L, Paul K, Vass I, Vankova R, Dobrev P, Szczesny P, Marczewski W, Krusiewicz D, Strzelczyk-Zyta D, Hennig J, Konopka-Postupolska D. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants. PLoS One 2015; 10:e0132683. [PMID: 26172952 PMCID: PMC4501783 DOI: 10.1371/journal.pone.0132683] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/18/2015] [Indexed: 11/18/2022] Open
Abstract
Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress.
Collapse
Affiliation(s)
- Michal Szalonek
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Barbara Sierpien
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Wojciech Rymaszewski
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | | | - Maciej Garstka
- Department of Metabolic Regulation, University of Warsaw, Warsaw, Poland
| | - Malgorzata Lichocka
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Laszlo Sass
- Laboratory of Molecular Stress and Photobiology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Kenny Paul
- Laboratory of Molecular Stress and Photobiology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Imre Vass
- Laboratory of Molecular Stress and Photobiology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Praha, Czech Republic
| | - Peter Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Praha, Czech Republic
| | - Pawel Szczesny
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Waldemar Marczewski
- Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute—National Research Institute, Mlochow, Poland
| | - Dominika Krusiewicz
- Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute—National Research Institute, Mlochow, Poland
| | - Danuta Strzelczyk-Zyta
- Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute—National Research Institute, Mlochow, Poland
| | - Jacek Hennig
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Dorota Konopka-Postupolska
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
- * E-mail:
| |
Collapse
|
1062
|
Tripathi P, Singh RP, Sharma YK, Tripathi RD. Arsenite stress variably stimulates pro-oxidant enzymes, anatomical deformities, photosynthetic pigment reduction, and antioxidants in arsenic-tolerant and sensitive rice seedlings. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1562-71. [PMID: 25683332 DOI: 10.1002/etc.2937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/16/2014] [Accepted: 02/10/2015] [Indexed: 05/08/2023]
Abstract
Contamination of arsenic (As) in rice (Oryza sativa L.) paddies and subsequent uptake by rice plants is a serious concern, because rice is a staple crop for millions of people. Identification of As toxicity and detoxification mechanisms in paddy rice cultivars would help to reduce As-associated risk. Arsenic tolerance and susceptibility mechanisms were investigated in 2 differential As-accumulating rice genotypes, Triguna and IET-4786, selected from initial screening of 52 rice cultivars as an As-tolerant and an As-sensitive cultivar, respectively, on the basis of root and shoot length during various arsenite (AsIII) exposures (0-50 μM). Indicators of oxidative stress, such as pro-oxidant enzymes (reduced nicotinamide adenine dinucleotide phosphate [NADPH] oxidase and ascorbate oxidase) and nitric oxide, were more numerous in the sensitive cultivar than in the tolerant cultivar. Arsenic-induced anatomical deformities were frequent in the sensitive cultivar, showing more distorted and flaccid root cells than the tolerant cultivar. Chlorophyll and carotenoid synthesis were inhibited in both cultivars, although the decline was more prominent in the sensitive cultivar at higher doses of As. Furthermore, the tolerant cultivar tolerated As stress by producing more antioxidants, such as proline, sustaining the ratio of ascorbate, dehydroascorbate, and glutathione peroxidase (GPX) activity as well as As detoxifying enzymes arsenate reductase, whereas these respective metabolic activities declined in sensitive cultivar, resulting in greater susceptibility to As toxicity.
Collapse
Affiliation(s)
- Preeti Tripathi
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar (Central) University, Lucknow, India
- Department of Botany, University of Lucknow, Lucknow, India
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow, India
| | - Rana Pratap Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar (Central) University, Lucknow, India
| | | | - Rudra Deo Tripathi
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow, India
| |
Collapse
|
1063
|
Nahar K, Hasanuzzaman M, Alam MM, Fujita M. Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. AOB PLANTS 2015; 7:plv069. [PMID: 26134121 PMCID: PMC4526754 DOI: 10.1093/aobpla/plv069] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/23/2015] [Indexed: 05/20/2023]
Abstract
Drought is considered one of the most acute environmental stresses presently affecting agriculture. We studied the role of exogenous glutathione (GSH) in conferring drought stress tolerance in mung bean (Vigna radiata L. cv. Binamoog-1) seedlings by examining the antioxidant defence and methylglyoxal (MG) detoxification systems and physiological features. Six-day-old seedlings were exposed to drought stress (-0.7 MPa), induced by polyethylene glycol alone and in combination with GSH (1 mM) for 24 and 48 h. Drought stress decreased seedling dry weight and leaf area; resulted in oxidative stress as evidenced by histochemical detection of hydrogen peroxide (H2O2) and [Formula: see text] in the leaves; increased lipid peroxidation (malondialdehyde), reactive oxygen species like H2O2 content and [Formula: see text] generation rate and lipoxygenase activity; and increased the MG level. Drought decreased leaf succulence, leaf chlorophyll and relative water content (RWC); increased proline (Pro); decreased ascorbate (AsA); increased endogenous GSH and glutathione disulfide (GSSG) content; decreased the GSH/GSSG ratio; increased ascorbate peroxidase and glutathione S-transferase activities; and decreased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase. The activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) increased due to drought stress. In contrast to drought stress alone, exogenous GSH enhanced most of the components of the antioxidant and glyoxalase systems in drought-affected mung bean seedlings at 24 h, but GSH did not significantly affect AsA, Pro, RWC, leaf succulence and the activities of Gly I and DHAR after 48 h of stress. Thus, exogenous GSH supplementation with drought significantly enhanced the antioxidant components and successively reduced oxidative damage, and GSH up-regulated the glyoxalase system and reduced MG toxicity, which played a significant role in improving the physiological features and drought tolerance.
Collapse
Affiliation(s)
- Kamrun Nahar
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Md Mahabub Alam
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| |
Collapse
|
1064
|
Du Z, Jia XL, Wang Y, Wu T, Han ZH, Zhang XZ. Redox homeostasis and reactive oxygen species scavengers shift during ontogenetic phase changes in apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:283-94. [PMID: 26025541 DOI: 10.1016/j.plantsci.2015.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 05/12/2023]
Abstract
The change from juvenile to adult phase is a universal phenomenon in perennial plants such as apple. To validate the changes in hydrogen peroxide (H2O2) levels and scavenging during ontogenesis in apple seedlings, the H2O2 contents, its scavenging capacity, and the expression of related genes, as well as miR156 levels, were measured in leaf samples from different nodes in seedlings of 'Zisai Pearl' (Malus asiatica)×'Red Fuji' (M. domestica). Then in vitro shoots were treated with redox modulating chemicals to verify the response of miR156 to redox alteration. The expression of miR156 decreased gradually during ontogenesis, indicating a progressive loss of juvenility. During the phase changes, H2O2 and ascorbate contents, the ratio of ascorbate to dehydroascorbate, the ascorbate peroxidase, catalase and glutathione reductase activities, and the expressions of some MdGR and MdAPX gene family members increased remarkably. However, the glutathione content and glutathione to glutathione disulfide ratio declined. In chemicals treated in vitro shoots, the changes in miR156 levels were coordinated with GSH contents and GSH/GSSG ratio but not H2O2 contents. Conclusively, the relative reductive thiol redox status is critical for the maintenance of juvenility and the reductive ascorbate redox environment was elevated and sustained during the reproductive phase.
Collapse
Affiliation(s)
- Zhen Du
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing 100193, China
| | - Xiao Lin Jia
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing 100193, China
| | - Yi Wang
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing 100193, China
| | - Ting Wu
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing 100193, China
| | - Zhen Hai Han
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing 100193, China
| | - Xin Zhong Zhang
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing 100193, China.
| |
Collapse
|
1065
|
Domingos S, Scafidi P, Cardoso V, Leitao AE, Di Lorenzo R, Oliveira CM, Goulao LF. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways. FRONTIERS IN PLANT SCIENCE 2015; 6:457. [PMID: 26157448 PMCID: PMC4476107 DOI: 10.3389/fpls.2015.00457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/08/2015] [Indexed: 05/11/2023]
Abstract
Understanding abscission is both a biological and an agronomic challenge. Flower abscission induced independently by shade and gibberellic acid (GAc) sprays was monitored in grapevine (Vitis vinifera L.) growing under a soilless greenhouse system during two seasonal growing conditions, in an early and late production cycle. Physiological and metabolic changes triggered by each of the two distinct stimuli were determined. Environmental conditions exerted a significant effect on fruit set as showed by the higher natural drop rate recorded in the late production cycle with respect to the early cycle. Shade and GAc treatments increased the percentage of flower drop compared to the control, and at a similar degree, during the late production cycle. The reduction of leaf gas exchanges under shade conditions was not observed in GAc treated vines. The metabolic profile assessed in samples collected during the late cycle differently affected primary and secondary metabolisms and showed that most of the treatment-resulting variations occurred in opposite trends in inflorescences unbalanced in either hormonal or energy deficit abscission-inducing signals. Particularly concerning carbohydrates metabolism, sucrose, glucose, tricarboxylic acid metabolites and intermediates of the raffinose family oligosaccharides pathway were lower in shaded and higher in GAc samples. Altered oxidative stress remediation mechanisms and indolacetic acid (IAA) concentration were identified as abscission signatures common to both stimuli. According to the global analysis performed, we report that grape flower abscission mechanisms triggered by GAc application and C-starvation are not based on the same metabolic pathways.
Collapse
Affiliation(s)
- Sara Domingos
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisbon, Portugal
- Agri4Safe-BioTrop, Instituto de Investigação Científica Tropical I.P., LisbonPortugal
| | - Pietro Scafidi
- Dipartimento di Scienze Agrarie e Forestali, University of PalermoPalermo, Italy
| | - Vania Cardoso
- Agri4Safe-BioTrop, Instituto de Investigação Científica Tropical I.P., LisbonPortugal
| | - Antonio E. Leitao
- Agri4Safe-BioTrop, Instituto de Investigação Científica Tropical I.P., LisbonPortugal
| | - Rosario Di Lorenzo
- Dipartimento di Scienze Agrarie e Forestali, University of PalermoPalermo, Italy
| | - Cristina M. Oliveira
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisbon, Portugal
| | - Luis F. Goulao
- Agri4Safe-BioTrop, Instituto de Investigação Científica Tropical I.P., LisbonPortugal
| |
Collapse
|
1066
|
Kalemba EM, Suszka J, Ratajczak E. The role of oxidative stress in determining the level of viability of black poplar (Populus nigra) seeds stored at different temperatures. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:630-642. [PMID: 32480707 DOI: 10.1071/fp14336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 03/11/2015] [Indexed: 06/11/2023]
Abstract
Black poplar (Populus nigra L.) is one of the most threatened tree species in Europe since up to 99% of its natural habitat has disappeared. Black poplar seeds are characterised by short longevity. It was recently demonstrated that black poplar seeds can be successfully stored at -10°C, -20°C and -196°C for at least 2 years but not at higher temperatures. In the present study, the role of oxidative stress in determining the level of viability of black poplar seeds stored at -196°C, -20°C, -10°C, -3°C and 3°C for 3 months, 1 year and 2 years was monitored. The superoxide anion radicals (O2-•) and hydrogen peroxide (H2O2) increased during storage and had an impact on membrane integrity as determined by changes in the content of fatty acids and phospholipids and increases in electrolyte leakage. The level of non-enzymatic and enzymatic components of the ascorbate-glutathione (AsA-GSH) cycle was also investigated. The level of O2-• was strongly correlated with the level of seed germination after 1 and 2 years of storage. This was accompanied by changes in the redox potential, as well as changes in the content of linoleic acid and phosphatydiloglycerol over the same period of time. In particular, the deleterious effect of H2O2 was observed after 2 years of storage when its accumulation was highly correlated with changes in the composition of fatty acids and phospholipids. Despite increased activity of AsA-GSH cycle enzymes, the level of reducing agents was insufficient and seeds exhibited large increases in the redox potential when stored at -3°C and still higher when stored at 3°C. Overall, the results of the study demonstrate that oxidative stress increases during seed storage, especially at the warmer temperatures and injures seed tissues; resulting in a loss of viability.
Collapse
Affiliation(s)
- Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Jan Suszka
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Ewelina Ratajczak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
1067
|
Vidigal P, Martin-Hernandez AM, Guiu-Aragonés C, Amâncio S, Carvalho L. Selective silencing of 2Cys and type-IIB Peroxiredoxins discloses their roles in cell redox state and stress signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:591-601. [PMID: 25319151 DOI: 10.1111/jipb.12296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/08/2014] [Indexed: 05/12/2023]
Abstract
Peroxiredoxins (Prx) catalyse the reduction of hydrogen peroxide (H2O2) and, in association with catalases and other peroxidases, may participate in signal transduction by regulating intercellular H2O2 concentration that in turn can control gene transcription and cell signaling. Using virus-induced-gene-silencing (VIGS), 2-Cys Peroxiredoxin (2CysPrx) family and type-II Peroxiredoxin B (PrxIIB) gene were silenced in Nicotiana benthamiana, to study the impact that the loss of function of each Prx would have in the antioxidant system under control (22 °C) and severe heat stress conditions (48 °C). The results showed that both Prxs, although in different organelles, influence the regeneration of ascorbate to a significant extent, but with different purposes. 2CysPrx affects abscisic acid (ABA) biosynthesis through ascorbate, while PrxIIB does it probably through the xanthophyll cycle. Moreover, 2CysPrx is key in H2O2 scavenging and in consequence in the regulation of ABA signaling downstream of reactive oxygen species and PrxIIB provides an important assistance for H2O2 peroxisome scavenges.
Collapse
Affiliation(s)
- Patrícia Vidigal
- Departamento de Recursos Naturais, Ambiente e Território (DRAT)/Centro de Botânica Aplicada à Agricultura (CBAA), Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Ana Montserrat Martin-Hernandez
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB) Campus Universitat Autonoma de Barcelona (UAB), Edificio Center for Research in Agricultural Genomics (CRAG), Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Cèlia Guiu-Aragonés
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB) Campus Universitat Autonoma de Barcelona (UAB), Edificio Center for Research in Agricultural Genomics (CRAG), Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Sara Amâncio
- Departamento de Recursos Naturais, Ambiente e Território (DRAT)/Centro de Botânica Aplicada à Agricultura (CBAA), Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Luísa Carvalho
- Departamento de Recursos Naturais, Ambiente e Território (DRAT)/Centro de Botânica Aplicada à Agricultura (CBAA), Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| |
Collapse
|
1068
|
Singh VP, Singh S, Kumar J, Prasad SM. Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbate-glutathione cycle: Possible involvement of nitric oxide. JOURNAL OF PLANT PHYSIOLOGY 2015; 181:20-9. [PMID: 25974366 DOI: 10.1016/j.jplph.2015.03.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/20/2015] [Accepted: 03/21/2015] [Indexed: 05/23/2023]
Abstract
In plants, hydrogen sulfide (H2S) is an emerging novel signaling molecule that is involved in growth regulation and abiotic stress responses. However, little is known about its role in the regulation of arsenate (As(V)) toxicity. Therefore, hydroponic experiments were conducted to investigate whether sodium hydrosulfide (NaHS; a source of H2S) is involved in the regulation of As(V) toxicity in pea seedlings. Results showed that As(V) caused decreases in growth, photosynthesis (measured as chlorophyll fluorescence) and nitrogen content, which was accompanied by the accumulation of As. As(V) treatment also reduced the activities of cysteine desulfhydrase and nitrate reductase, and contents of H2S and nitric oxide (NO). However, addition of NaHS ameliorated As(V) toxicity in pea seedlings, which coincided with the increased contents of H2S and NO. The cysteine level was higher under As(V) treatment in comparison to all other treatments (As-free; NaHS; As(V)+NaHS). The content of reactive oxygen species (ROS) and damage to lipids, proteins and membranes increased by As(V) while NaHS alleviated these effects. Enzymes of the ascorbate-glutathione cycle (AsA-GSH cycle) showed inhibition of their activities following As(V) treatment while their activities were increased by application of NaHS. The redox status of ascorbate and glutathione was disturbed by As(V) as indicated by a steep decline in their reduced/oxidized ratios. However, simultaneous NaHS application restored the redox status of the ascorbate and glutathione pools. The results of this study demonstrated that H2S and NO might both be involved in reducing the accumulation of As and triggering up-regulation of the AsA-GSH cycle to counterbalance ROS-mediated damage to macromolecules. Furthermore, the results suggest a crucial role of H2S in plant priming, and in particular for pea seedlings in mitigating As(V) stress.
Collapse
Affiliation(s)
- Vijay Pratap Singh
- Govt Ramanuj Pratap Singhdev Post Graduate College, Baikunthpur, Koriya, 497335, Chhattisgarh, India.
| | - Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, India
| | - Jitendra Kumar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, India.
| |
Collapse
|
1069
|
Proteome evolution of wheat (Triticum aestivum L.) aleurone layer at fifteen stages of grain development. J Proteomics 2015; 123:29-41. [DOI: 10.1016/j.jprot.2015.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/11/2015] [Accepted: 03/09/2015] [Indexed: 12/19/2022]
|
1070
|
Shigeoka S, Maruta T. Cellular redox regulation, signaling, and stress response in plants. Biosci Biotechnol Biochem 2015; 78:1457-70. [PMID: 25209493 DOI: 10.1080/09168451.2014.942254] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cellular and organellar redox states, which are characterized by the balance between oxidant and antioxidant pool sizes, play signaling roles in the regulation of gene expression and protein function in a wide variety of plant physiological processes including stress acclimation. Reactive oxygen species (ROS) and ascorbic acid (AsA) are the most abundant oxidants and antioxidants, respectively, in plant cells; therefore, the metabolism of these redox compounds must be strictly and spatiotemporally controlled. In this review, we provided an overview of our previous studies as well as recent advances in (1) the molecular mechanisms and regulation of AsA biosynthesis, (2) the molecular and genetic properties of ascorbate peroxidases, and (3) stress acclimation via ROS-derived oxidative/redox signaling pathways, and discussed future perspectives in this field.
Collapse
Affiliation(s)
- Shigeru Shigeoka
- a Faculty of Agriculture, Department of Advanced Bioscience , Kinki University , Nara , Japan
| | | |
Collapse
|
1071
|
Lismont C, Nordgren M, Van Veldhoven PP, Fransen M. Redox interplay between mitochondria and peroxisomes. Front Cell Dev Biol 2015; 3:35. [PMID: 26075204 PMCID: PMC4444963 DOI: 10.3389/fcell.2015.00035] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/09/2015] [Indexed: 12/14/2022] Open
Abstract
Reduction-oxidation or “redox” reactions are an integral part of a broad range of cellular processes such as gene expression, energy metabolism, protein import and folding, and autophagy. As many of these processes are intimately linked with cell fate decisions, transient or chronic changes in cellular redox equilibrium are likely to contribute to the initiation and progression of a plethora of human diseases. Since a long time, it is known that mitochondria are major players in redox regulation and signaling. More recently, it has become clear that also peroxisomes have the capacity to impact redox-linked physiological processes. To serve this function, peroxisomes cooperate with other organelles, including mitochondria. This review provides a comprehensive picture of what is currently known about the redox interplay between mitochondria and peroxisomes in mammals. We first outline the pro- and antioxidant systems of both organelles and how they may function as redox signaling nodes. Next, we critically review and discuss emerging evidence that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. Key issues include possible physiological roles, messengers, and mechanisms. We also provide examples of how data mining of publicly-available datasets from “omics” technologies can be a powerful means to gain additional insights into potential redox signaling pathways between peroxisomes and mitochondria. Finally, we highlight the need for more studies that seek to clarify the mechanisms of how mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress. The outcome of such studies may open up exciting new avenues for the community of researchers working on cellular responses to organelle-derived oxidative stress, a research field in which the role of peroxisomes is currently highly underestimated and an issue of discussion.
Collapse
Affiliation(s)
- Celien Lismont
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| | - Marcus Nordgren
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| | - Paul P Van Veldhoven
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| | - Marc Fransen
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| |
Collapse
|
1072
|
Paudel JR, Bede JC. Ethylene Signaling Modulates Herbivore-Induced Defense Responses in the Model Legume Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:569-79. [PMID: 25608182 DOI: 10.1094/mpmi-10-14-0348-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
One or more effectors in the labial saliva (LS) of generalist Noctuid caterpillars activate plant signaling pathways to modulate jasmonate (JA)-dependent defense responses; however, the exact mechanisms involved have yet to be elucidated. A potential candidate in this phytohormone interplay is the ethylene (ET) signaling pathway. We compared the biochemical and molecular responses of the model legume Medicago truncatula and the ET-insensitive skl mutant to herbivory by fourth instar Spodoptera exigua (Hübner) caterpillars with intact or impaired LS secretions. Cellular oxidative stress increases rapidly after herbivory, as evidenced by changes in oxidized-to-reduced ascorbate (ASC) and glutathione (GSH) ratios. The caterpillar-specific increase in GSH ratios and the LS-specific increase in ASC ratios are alleviated in the skl mutant, indicating that ET signaling is required. Ten hours postherbivory, markers of the JA and JA/ET pathways are differentially expressed; MtVSP is induced and MtHEL is repressed in a caterpillar LS- and ET-independent manner. In contrast, expression of the classic marker of the systemic acquired resistance pathway, MtPR1, is caterpillar LS-dependent and requires ET signaling. Caterpillar LS further suppresses the induction of JA-related trypsin inhibitor activity in an ET-dependent manner. Findings suggest that ET is involved in the caterpillar LS-dependent, salicylic acid/NPR1-mediated attenuation of JA-dependent induced responses.
Collapse
Affiliation(s)
- Jamuna Risal Paudel
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Qc, Canada, H9X 3V9, Canada
| | - Jacqueline C Bede
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Qc, Canada, H9X 3V9, Canada
| |
Collapse
|
1073
|
Yao Y, You J, Ou Y, Ma J, Wu X, Xu G. Ultraviolet-B protection of ascorbate and tocopherol in plants related with their function on the stability on carotenoid and phenylpropanoid compounds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 90:23-31. [PMID: 25749732 DOI: 10.1016/j.plaphy.2015.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/26/2015] [Indexed: 05/21/2023]
Abstract
Ascorbate and tocopherol are important hydrophilic or lipophilic antioxidants in plants, while their crucial roles in the antioxidant defense system under ultraviolet B radiation were not well understood. The mutants of Arabidopsis thaliana deficient in ascorbate (vtc1 and vtc2) or tocopherol (vte1) were used to analyze their physiological, biochemical and metabolic change in responses to Ultraviolet B radiation. Results showed that loss of either ascorbate or tocopherol caused reduction in phenylpropanoid and flavonol glycosides compounds, as well as reduction in superoxide dismutase activity and total cellular antioxidant capacity. This ultimately led to higher oxidative stress as well as lower levels of photosynthetic pigments (carotenoid and chlorophyll) and CO2 assimilation rate in the vtc1, vtc2, and vte1 mutants than the wild type under UV-B radiation, besides unstable early light-induced protein (ELIP1) in those mutants. On the other hand, the loss of tocopherol in vte1 mutants was compensated by the increase of zeaxanthin and anthocyanin contents, which armed vte1 mutants with higher heat dissipation capacity in PS II and higher antioxidative capacity than vtc mutants. Consequently the tolerance to UV-B radiation were much higher in vte1 mutant than in vtc mutants, furthermore, PS II function and light harvesting protein (LHCb1) abundance were reduced only in ascorbate-deficient mutant relative to wild type. Our results suggested that the ascorbate and tocopherol provided not only direct protective function against UV-B radiation but also indirect effects by influencing other protective system, in particular by affecting the stability of various carotenoid and phenylpropanoid compounds.
Collapse
Affiliation(s)
- Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; China Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China.
| | - Jingjing You
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yongbin Ou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jinbiao Ma
- China Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China
| | - Xiuli Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Gang Xu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
1074
|
Kaur R, Gupta AK, Taggar GK. Induced resistance by oxidative shifts in pigeonpea (Cajanus cajan L.) following Helicoverpa armigera (Hübner) herbivory. PEST MANAGEMENT SCIENCE 2015; 71:770-782. [PMID: 24974811 DOI: 10.1002/ps.3851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/09/2014] [Accepted: 06/25/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Oxidative responses in leaves, developing seeds and the pod wall of nine pigeonpea genotypes were investigated against Helicoverpa armigera feeding. Out of nine genotypes, four were moderately resistant, three were intermediate and two were moderately susceptible genotypes. RESULTS A significant shift in the oxidative status of pigeonpea following herbivory was depicted by the upregulation of diamine oxidase (DAO), polyamine oxidase (PAO) and lipoxygenase 2 (LOX 2) activities. Polyphenol oxidase (PPO) activity was significantly higher in the infested pod wall and leaves of moderately resistant genotypes than in those of moderately susceptible genotypes. H. armigera infestation markedly enhanced phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) activities in wounded tissues. The decline in ascorbate peroxidase (APX) activity and ascorbate content was lower in moderately resistant genotypes than in moderately susceptible genotypes. A significant decrease in LOX 3 activity was also observed in the infested pod wall of moderately resistant and intermediate genotypes. A lower malondialdehyde (MDA) content and higher proline content of the infested pod wall and developing seeds was observed. Higher activities of PPO, PAL and proline content in leaves of uninfested moderately resistant genotypes could either be an unrelated observation or alternatively could help in identifying H. armigera-resistant genotypes. CONCLUSION The increase in activities of PPO, DAO, PAO, PAL and TAL and higher proline and lower MDA content upon herbivory suggested their integrated contribution in providing resistance to pigeonpea against H. armigera.
Collapse
Affiliation(s)
- Rimaljeet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | | | | |
Collapse
|
1075
|
Salbitani G, Vona V, Bottone C, Petriccione M, Carfagna S. Sulfur Deprivation Results in Oxidative Perturbation in Chlorella sorokiniana (211/8k). PLANT & CELL PHYSIOLOGY 2015; 56:897-905. [PMID: 25647328 DOI: 10.1093/pcp/pcv015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Indexed: 05/08/2023]
Abstract
Sulfur deficiency in plant cells has not been considered as a potential abiotic factor that can induce oxidative stress. We studied the antioxidant defense system of Chlorella sorokiniana cultured under sulfur (S) deficiency, imposed for a maximum period of 24 h, to evaluate the effect of an S shortage on oxidative stress. S deprivation induced an immediate (30 min) but transient increase in the intracellular H2O2 content, which suggests that S limitation can lead to a temporary redox disturbance. After 24 h, S deficiency in Chlorella cells decreased the glutathione content to <10% of the value measured in cells that were not subjected to S deprivation. Consequently, we assumed that the cellular antioxidative mechanisms could be altered by a decrease in the total glutathione content. The total ascorbate pool increased within 2 h after the initiation of S depletion, and remained high until 6 h; however, ascorbate regeneration was inhibited under limited S conditions, indicated by a significant decrease in the ascorbate/dehydroascorbate (AsA/DHA) ratios. Furthermore, ascorbate peroxidase (APX) and superoxide dismutase (SOD) were activated under S deficiency, but we assumed that these enzymes were involved in maintaining the cellular H2O2 balance for at least 4 h after the initiation of S starvation. We concluded that S deprivation triggers redox changes and induces antioxidant enzyme activities in Chlorella cells. The accumulation of total ascorbate, changes in the reduced glutathione/oxidized glutathione (GSH/GSSG) ratios and an increase in the activity of SOD and APX enzymes indicate that oxidative perturbation occurs during S deprivation.
Collapse
Affiliation(s)
- Giovanna Salbitani
- Dipartimento di Biologia, Università di Napoli Federico II, Via Foria 223, I-80139 Napoli, Italy
| | - Vincenza Vona
- Dipartimento di Biologia, Università di Napoli Federico II, Via Foria 223, I-80139 Napoli, Italy
| | - Claudia Bottone
- Dipartimento di Biologia, Università di Napoli Federico II, Via Foria 223, I-80139 Napoli, Italy
| | - Milena Petriccione
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Unità di ricerca per la Frutticoltura, Via Torrino 2, 81100 Caserta, Italy
| | - Simona Carfagna
- Dipartimento di Biologia, Università di Napoli Federico II, Via Foria 223, I-80139 Napoli, Italy
| |
Collapse
|
1076
|
Hernández LE, Sobrino-Plata J, Montero-Palmero MB, Carrasco-Gil S, Flores-Cáceres ML, Ortega-Villasante C, Escobar C. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2901-11. [PMID: 25750419 DOI: 10.1093/jxb/erv063] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The accumulation of toxic metals and metalloids, such as cadmium (Cd), mercury (Hg), or arsenic (As), as a consequence of various anthropogenic activities, poses a serious threat to the environment and human health. The ability of plants to take up mineral nutrients from the soil can be exploited to develop phytoremediation technologies able to alleviate the negative impact of toxic elements in terrestrial ecosystems. However, we must select plant species or populations capable of tolerating exposure to hazardous elements. The tolerance of plant cells to toxic elements is highly dependent on glutathione (GSH) metabolism. GSH is a biothiol tripeptide that plays a fundamental dual role: first, as an antioxidant to mitigate the redox imbalance caused by toxic metal(loid) accumulation, and second as a precursor of phytochelatins (PCs), ligand peptides that limit the free ion cellular concentration of those pollutants. The sulphur assimilation pathway, synthesis of GSH, and production of PCs are tightly regulated in order to alleviate the phytotoxicity of different hazardous elements, which might induce specific stress signatures. This review provides an update on mechanisms of tolerance that depend on biothiols in plant cells exposed to toxic elements, with a particular emphasis on the Hg-triggered responses, and considering the contribution of hormones to their regulation.
Collapse
Affiliation(s)
- Luis E Hernández
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain
| | - Juan Sobrino-Plata
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain Department of Environmental Sciences, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, ES-45070 Toledo, Spain
| | - M Belén Montero-Palmero
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain Department of Environmental Sciences, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, ES-45070 Toledo, Spain
| | - Sandra Carrasco-Gil
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain † Present address: Aula Dei Experimental Research Station-CSIC, Avd. Montañana, ES- 50059 Zaragoza, Spain
| | - M Laura Flores-Cáceres
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain
| | - Cristina Ortega-Villasante
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain
| | - Carolina Escobar
- Department of Environmental Sciences, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, ES-45070 Toledo, Spain
| |
Collapse
|
1077
|
Oztetik E. Biomarkers of ecotoxicological oxidative stress in an urban environment: using evergreen plant in industrial areas. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:903-14. [PMID: 25716306 DOI: 10.1007/s10646-015-1433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2015] [Indexed: 05/08/2023]
Abstract
Plants react to air pollution by increased production of reactive oxygene species and oxidative stress, which triggers multiple defense mechanisms. In this study, some parameters that serve as biomarkers for antioxidative defense, such as glutathione S-transferase (GST) activity, glutathione (GSH), malondialdehyde, chlorophyll and total soluble protein contents, were investigated on the needles of Cedrus libani (A. Rich.) grown around two industrial areas in Eskisehir. The measurements revealed that metabolism in needles of C. libani trees is largely directed towards defence against ROS, due to effects of air pollution in the sampling areas. We observed significant increases in all parameters, except chlorophyll contents, which were strongly decreased. However, these sharp changes were also prominent not only between sampling sites and control site, but also among the areas investigated, suggesting the quantitative influence of the extent of pollution. Together with total soluble protein contents, the correlation between GST activities and GSH contents suggests that damage due to oxidative stress was most probably reduced due to the increased antioxidant capacity. Therefore, we can suggest C. libani as a good model for biomonitoring atmospheric quality with the oxidative stress parameters providing an effective measure for early environmental assessment due to their sensitivities of even low levels of pollution.
Collapse
Affiliation(s)
- Elif Oztetik
- Department of Biology, Science Faculty, Anadolu University, 26470, Eskisehir, Turkey,
| |
Collapse
|
1078
|
Serrano I, Romero-Puertas MC, Sandalio LM, Olmedilla A. The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2827-37. [PMID: 25750430 DOI: 10.1093/jxb/erv099] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Successful sexual reproduction often relies on the ability of plants to recognize self- or genetically-related pollen and prevent pollen tube growth soon after germination in order to avoid self-fertilization. Angiosperms have developed different reproductive barriers, one of the most extended being self-incompatibility (SI). With SI, pistils are able to reject self or genetically-related pollen thus promoting genetic variability. There are basically two distinct systems of SI: gametophytic (GSI) and sporophytic (SSI) based on their different molecular and genetic control mechanisms. In both types of SI, programmed cell death (PCD) has been found to play an important role in the rejection of self-incompatible pollen. Although reactive oxygen species (ROS) were initially recognized as toxic metabolic products, in recent years, a new role for ROS has become apparent: the control and regulation of biological processes such as growth, development, response to biotic and abiotic environmental stimuli, and PCD. Together with ROS, nitric oxide (NO) has become recognized as a key regulator of PCD. PCD is an important mechanism for the controlled elimination of targeted cells in both animals and plants. The major focus of this review is to discuss how ROS and NO control male-female cross-talk during fertilization in order to trigger PCD in self-incompatible pollen, providing a highly effective way to prevent self-fertilization.
Collapse
Affiliation(s)
- Irene Serrano
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - María C Romero-Puertas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - Luisa M Sandalio
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - Adela Olmedilla
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| |
Collapse
|
1079
|
Hernández I, Munné-Bosch S. Linking phosphorus availability with photo-oxidative stress in plants. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2889-900. [PMID: 25740928 DOI: 10.1093/jxb/erv056] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants have evolved a plethora of mechanisms to circumvent the potential damaging effects of living under low phosphorus availability in the soil. These mechanisms include different levels of organization, from root-shoot signalling at the whole-plant level to specific biochemical responses at the subcellular level, such as reductions in photosynthesis and the consequent activation of photo- and antioxidant mechanisms in chloroplasts. Some recent studies clearly indicate that severe phosphorus deficiency can lead to alterations in the photosynthetic apparatus, including reductions in CO2 assimilation rates, a down-regulation of photosynthesis-related genes and photoinhibition at the photosystem II level, thus causing potential photo-oxidative stress. Photo-oxidative stress is characterized by an increased production of reactive oxygen species in chloroplasts, which at low concentrations can serve a signalling, protective role, but when present at high concentrations can cause damage to lipids, proteins and nucleic acids, thus leading to irreversible injuries. We discuss here the mechanisms that phosphate-starved plants have evolved to withstand photo-oxidative stress, including changes at the subcellular level (e.g. activation of photo- and antioxidant protection mechanisms in chloroplasts), cellular and tissular levels (e.g. activation of photorespiration and anthocyanin accumulation) and whole-plant level (alterations in source-sink relationships modulated by hormones). Of particular importance is the current evidence demonstrating that phosphate-starved plants activate simultaneous responses at multiple levels, from transcriptional changes to root-shoot signalling, to prevent oxidative damage. In this review, we summarize current knowledge about the occurrence of photo-oxidative stress in phosphate-starved plants and highlight the mechanisms these plants have evolved to prevent oxidative damage under phosphorus limitation at the subcellular, cellular and whole-plant levels.
Collapse
Affiliation(s)
- Iker Hernández
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, E-08028 Barcelona, Spain
| | - Sergi Munné-Bosch
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, E-08028 Barcelona, Spain
| |
Collapse
|
1080
|
Correa-Aragunde N, Foresi N, Lamattina L. Nitric oxide is a ubiquitous signal for maintaining redox balance in plant cells: regulation of ascorbate peroxidase as a case study. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2913-21. [PMID: 25750426 DOI: 10.1093/jxb/erv073] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Oxidative and nitrosative stresses and their respective antioxidant responses are common metabolic adjustments operating in all biological systems. These stresses result from an increase in reactive oxygen species (ROS) and reactive nitrogen species (RNS) and an imbalance in the antioxidant response. Plants respond to ROS and RNS accumulation by increasing the level of the antioxidant molecules glutathione and ascorbate and by activating specific antioxidant enzymes. Nitric oxide (NO) is a free radical considered to be toxic or protective depending on its concentration, combination with ROS compounds, and subcellular localization. In this review we focus on the mechanisms of NO action in combination with ROS on the regulation of the antioxidant system in plants. In particular, we describe the redox post-translational modifications of cytosolic ascorbate peroxidase and its influence on enzyme activity. The regulation of ascorbate peroxidase activity by NO as a redox sensor of acute oxidative stress or as part of a hormone-induced signalling pathway leading to lateral root development is presented and discussed.
Collapse
Affiliation(s)
- Natalia Correa-Aragunde
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina
| | - Noelia Foresi
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina
| |
Collapse
|
1081
|
Jia Y, Wong DCJ, Sweetman C, Bruning JB, Ford CM. New insights into the evolutionary history of plant sorbitol dehydrogenase. BMC PLANT BIOLOGY 2015; 15:101. [PMID: 25879735 PMCID: PMC4404067 DOI: 10.1186/s12870-015-0478-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/23/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Sorbitol dehydrogenase (SDH, EC 1.1.1.14) is the key enzyme involved in sorbitol metabolism in higher plants. SDH genes in some Rosaceae species could be divided into two groups. L-idonate-5-dehydrogenase (LIDH, EC 1.1.1.264) is involved in tartaric acid (TA) synthesis in Vitis vinifera and is highly homologous to plant SDHs. Despite efforts to understand the biological functions of plant SDH, the evolutionary history of plant SDH genes and their phylogenetic relationship with the V. vinifera LIDH gene have not been characterized. RESULTS A total of 92 SDH genes were identified from 42 angiosperm species. SDH genes have been highly duplicated within the Rosaceae family while monocot, Brassicaceae and most Asterid species exhibit singleton SDH genes. Core Eudicot SDHs have diverged into two phylogenetic lineages, now classified as SDH Class I and SDH Class II. V. vinifera LIDH was identified as a Class II SDH. Tandem duplication played a dominant role in the expansion of plant SDH family and Class II SDH genes were positioned in tandem with Class I SDH genes in several plant genomes. Protein modelling analyses of V. vinifera SDHs revealed 19 putative active site residues, three of which exhibited amino acid substitutions between Class I and Class II SDHs and were influenced by positive natural selection in the SDH Class II lineage. Gene expression analyses also demonstrated a clear transcriptional divergence between Class I and Class II SDH genes in V. vinifera and Citrus sinensis (orange). CONCLUSIONS Phylogenetic, natural selection and synteny analyses provided strong support for the emergence of SDH Class II by positive natural selection after tandem duplication in the common ancestor of core Eudicot plants. The substitutions of three putative active site residues might be responsible for the unique enzyme activity of V. vinifera LIDH, which belongs to SDH Class II and represents a novel function of SDH in V. vinifera that may be true also of other Class II SDHs. Gene expression analyses also supported the divergence of SDH Class II at the expression level. This study will facilitate future research into understanding the biological functions of plant SDHs.
Collapse
Affiliation(s)
- Yong Jia
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, 5005, Australia.
| | - Darren C J Wong
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, 5005, Australia.
- Present address: Wine Research Center, Faculty of Land and Food Systems, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada.
| | - Crystal Sweetman
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, 5005, Australia.
- Present address: School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, 5001, Australia.
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, 5005, Australia.
| | - Christopher M Ford
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
1082
|
Pöschl U, Shiraiwa M. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene. Chem Rev 2015; 115:4440-75. [PMID: 25856774 DOI: 10.1021/cr500487s] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Manabu Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| |
Collapse
|
1083
|
Esposito JBN, Esposito BP, Azevedo RA, Cruz LS, da Silva LC, de Souza SR. Protective effect of Mn(III)-desferrioxamine B upon oxidative stress caused by ozone and acid rain in the Brazilian soybean cultivar Glycine max "Sambaiba". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5315-24. [PMID: 25510614 DOI: 10.1007/s11356-014-3951-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 12/04/2014] [Indexed: 06/04/2023]
Abstract
This study aimed to investigate the effects of the Mn complex (Mn(III)-desferrioxamine B (MnDFB)) on oxidative stress in the Brazilian soybean cultivar Glycine max "Sambaiba" following exposure to ozone and acid rain. We determined the suitable dose of MnDFB to apply to G. max seedlings using a dose-response curve. The highest superoxide dismutase (SOD) activity and Mn content in leaves were found upon the application of 8 μM MnDFB. Thus, G. max seedlings pretreated with 8 μM MnDFB were individually exposed to ozone and acid rain simulated. Pretreatment with MnDFB reduced lipid peroxidation upon ozone exposure and increased SOD activity in leaves; it did not alter the metal content in any part of the plant. Conversely, following acid rain exposure, neither the metal content in leaves nor SOD enzyme activity were directly affected by MnDFB, unlike pH. Our findings demonstrated that exogenous MnDFB application before ozone exposure may modulate the MnSOD, Cu/ZnSOD, and FeSOD activities to combat the ROS excess in the cell. Here, we demonstrated that the applied dose of MnDFB enhances antioxidative defenses in soybean following exposure to acid rain and especially to ozone.
Collapse
|
1084
|
Noctor G, Lelarge-Trouverie C, Mhamdi A. The metabolomics of oxidative stress. PHYTOCHEMISTRY 2015; 112:33-53. [PMID: 25306398 DOI: 10.1016/j.phytochem.2014.09.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 05/20/2023]
Abstract
Oxidative stress resulting from increased availability of reactive oxygen species (ROS) is a key component of many responses of plants to challenging environmental conditions. The consequences for plant metabolism are complex and manifold. We review data on small compounds involved in oxidative stress, including ROS themselves and antioxidants and redox buffers in the membrane and soluble phases, and we discuss the wider consequences for plant primary and secondary metabolism. While metabolomics has been exploited in many studies on stress, there have been relatively few non-targeted studies focused on how metabolite signatures respond specifically to oxidative stress. As part of the discussion, we present results and reanalyze published datasets on metabolite profiles in catalase-deficient plants, which can be considered to be model oxidative stress systems. We emphasize the roles of ROS-triggered changes in metabolites as potential oxidative signals, and discuss responses that might be useful as markers for oxidative stress. Particular attention is paid to lipid-derived compounds, the status of antioxidants and antioxidant breakdown products, altered metabolism of amino acids, and the roles of phytohormone pathways.
Collapse
Affiliation(s)
- Graham Noctor
- Institut de Biologie des Plantes, UMR8618 CNRS, Université de Paris sud, 91405 Orsay Cedex, France.
| | | | - Amna Mhamdi
- Institut de Biologie des Plantes, UMR8618 CNRS, Université de Paris sud, 91405 Orsay Cedex, France
| |
Collapse
|
1085
|
Yokawa K, Baluška F. Pectins, ROS homeostasis and UV-B responses in plant roots. PHYTOCHEMISTRY 2015; 112:80-3. [PMID: 25220496 DOI: 10.1016/j.phytochem.2014.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/18/2014] [Accepted: 08/15/2014] [Indexed: 05/04/2023]
Abstract
Light from the sun contains far-red, visible and ultra violet (UV) wavelength regions. Almost all plant species have been evolved under the light environment. Interestingly, several photoreceptors, expressing both in shoots and roots, process the light information during the plant life cycle. Surprisingly, Arabidopsis root apices express besides the UVR8 UV-B receptor, also root-specific UV-B sensing proteins RUS1 and RUS2 linked to the polar cell-cell transport of auxin. In this mini-review, we focus on reactive oxygen species (ROS) signaling and possible roles of pectins internalized via endocytic vesicle recycling system in the root-specific UV-B perception and ROS homeostasis.
Collapse
Affiliation(s)
- Ken Yokawa
- IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | | |
Collapse
|
1086
|
Flores-Cáceres ML, Hattab S, Hattab S, Boussetta H, Banni M, Hernández LE. Specific mechanisms of tolerance to copper and cadmium are compromised by a limited concentration of glutathione in alfalfa plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:165-173. [PMID: 25711824 DOI: 10.1016/j.plantsci.2015.01.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/11/2014] [Accepted: 01/23/2015] [Indexed: 05/27/2023]
Abstract
The induction of oxidative stress is a characteristic symptom of metal phytotoxicity and is counteracted by antioxidants such as glutathione (GSH) or homoglutathione (hGSH). The depletion of GSH│hGSH in fifteen-day-old alfalfa (Medicago sativa) plants pre-incubated with 1mM buthionine sulfoximine (BSO) affected antioxidant responses in a metal-specific manner under exposure to copper (Cu; 0, 6, 30 and 100μM) or cadmium (Cd; 0, 6 and 30μM) for 7 days. The phytotoxic symptoms observed with excess Cu were accompanied by an inhibition of root glutathione reductase (GR) activity, a response that was augmented in Cd-treated plants but reverted when combined with BSO. The synthesis of phytochelatins (PCs) was induced by Cd, whereas the biothiol concentration decreased in Cu-treated plants, which did not accumulate PCs. The depletion of GSH│hGSH by BSO also produced a strong induction of oxidative stress under excess Cu stress, primarily due to impaired GSH│hGSH-dependent redox homeostasis. In addition, the synthesis of PCs was required for Cd detoxification, apparently also determining the distribution of Cd in plants, as less metal was translocated to the shoots in BSO-incubated plants. Therefore, specific GSH│hGSH-associated mechanisms of tolerance were triggered by stress due to each metal.
Collapse
Affiliation(s)
- María Laura Flores-Cáceres
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Spain; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Sabrine Hattab
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Spain; Laboratory of Biochemistry and Environmental Toxicology, Institute Supérieur Agronomique de Chott-Mariem, Sousse, Tunisia; Centre Regional de Recherches en Horticulture et Agriculture Biologique, Chott-Mariem, Sousse, Tunisia
| | - Sarra Hattab
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Spain; Laboratory of Biochemistry and Environmental Toxicology, Institute Supérieur Agronomique de Chott-Mariem, Sousse, Tunisia
| | - Hamadi Boussetta
- Laboratory of Biochemistry and Environmental Toxicology, Institute Supérieur Agronomique de Chott-Mariem, Sousse, Tunisia; Centre Regional de Recherches en Horticulture et Agriculture Biologique, Chott-Mariem, Sousse, Tunisia
| | - Mohammed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Institute Supérieur Agronomique de Chott-Mariem, Sousse, Tunisia; Centre Regional de Recherches en Horticulture et Agriculture Biologique, Chott-Mariem, Sousse, Tunisia
| | - Luis E Hernández
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|
1087
|
Peng Z, Dittmer NT, Lang M, Brummett LM, Braun CL, Davis LC, Kanost MR, Gorman MJ. Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 59:58-71. [PMID: 25701385 PMCID: PMC4387078 DOI: 10.1016/j.ibmb.2015.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 06/01/2023]
Abstract
Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surprising because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism.
Collapse
Affiliation(s)
- Zeyu Peng
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| | - Neal T Dittmer
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| | - Minglin Lang
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| | - Lisa M Brummett
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| | - Caroline L Braun
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| | - Lawrence C Davis
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
1088
|
Musiienko MM, Zhuk VV, Batsmanova LM. [Signal function of cytokinin 6-benzylaminopurine in the reaction of Triticum aestivum L. mesophyll cells to hyperthermia]. UKRAINIAN BIOCHEMICAL JOURNAL 2015; 86:66-73. [PMID: 25816607 DOI: 10.15407/ubj86.06.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The signaling effect of 6-benzylaminopurine (BAP) on leaf mesophyll cells of Triticum aestivum L. under hyperthermic conditions was studied. It was found that BAP regulated photosynthetic pigment, hydrogen peroxide content and activity of antioxidant enzymes, namely superoxide dismutase, ascorbate peroxidase and catalase under high-temperature conditions. The additive effect of BAP and high temperature on the activation of cell antioxidant systems was demonstrated. BAP regulated reducing processes in mesophyll leaf cells under high-temperature conditions.
Collapse
|
1089
|
Krueger T, Fisher PL, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Davy SK. Transcriptomic characterization of the enzymatic antioxidants FeSOD, MnSOD, APX and KatG in the dinoflagellate genus Symbiodinium. BMC Evol Biol 2015; 15:48. [PMID: 25887897 PMCID: PMC4416395 DOI: 10.1186/s12862-015-0326-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/24/2015] [Indexed: 11/26/2022] Open
Abstract
Background The diversity of the symbiotic dinoflagellate Symbiodinium sp., as assessed by genetic markers, is well established. To what extent this diversity is reflected on the amino acid level of functional genes such as enzymatic antioxidants that play an important role in thermal stress tolerance of the coral-Symbiodinium symbiosis is, however, unknown. Here we present a predicted structural analysis and phylogenetic characterization of the enzymatic antioxidant repertoire of the genus Symbiodinium. We also report gene expression and enzymatic activity under short-term thermal stress in Symbiodinium of the B1 genotype. Results Based on eight different ITS2 types, covering six clades, multiple protein isoforms for three of the four investigated antioxidants (ascorbate peroxidase [APX], catalase peroxidase [KatG], manganese superoxide dismutase [MnSOD]) are present in the genus Symbiodinium. Amino acid sequences of both SOD metalloforms (Fe/Mn), as well as KatG, exhibited a number of prokaryotic characteristics that were also supported by the protein phylogeny. In contrast to the bacterial form, KatG in Symbiodinium is characterized by extended functionally important loops and a shortened C-terminal domain. Intercladal sequence variations were found to be much higher in both peroxidases, compared to SODs. For APX, these variable residues involve binding sites for substrates and cofactors, and might therefore differentially affect the catalytic properties of this enzyme between clades. While expression of antioxidant genes was successfully measured in Symbiodinium B1, it was not possible to assess the link between gene expression and protein activity due to high variability in expression between replicates, and little response in their enzymatic activity over the three-day experimental period. Conclusions The genus Symbiodinium has a diverse enzymatic antioxidant repertoire that has similarities to prokaryotes, potentially as a result of horizontal gene transfer or events of secondary endosymbiosis. Different degrees of sequence evolution between SODs and peroxidases might be the result of potential selective pressure on the conserved molecular function of SODs as the first line of defence. In contrast, genetic redundancy of hydrogen peroxide scavenging enzymes might permit the observed variations in peroxidase sequences. Our data and successful measurement of antioxidant gene expression in Symbiodinium will serve as basis for further studies of coral health. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0326-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Krueger
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand. .,Laboratory for Biological Geochemistry, ENAC, École polytechnique fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
| | - Paul L Fisher
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand. .,School of Civil Engineering, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Susanne Becker
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand.
| | - Stefanie Pontasch
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand.
| | - Sophie Dove
- School of Biological Sciences & ARC Centre of Excellence for Coral Reef Studies, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Ove Hoegh-Guldberg
- Global Change Institute, University of Queensland, Brisbane, QLD 4072, Australia.
| | - William Leggat
- Comparative Genomics Centre, School of Pharmacy and Molecular Sciences & ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand.
| |
Collapse
|
1090
|
Bela K, Horváth E, Gallé Á, Szabados L, Tari I, Csiszár J. Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. JOURNAL OF PLANT PHYSIOLOGY 2015; 176:192-201. [PMID: 25638402 DOI: 10.1016/j.jplph.2014.12.014] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 05/18/2023]
Abstract
The plant glutathione peroxidase (GPX) family consists of multiple isoenzymes with distinct subcellular locations which exhibit different tissue-specific expression patterns and environmental stress responses. Contrary to most of their counterparts in animal cells, plant GPXs contain cysteine instead of selenocysteine in their active site and while some of them have both glutathione peroxidase and thioredoxin peroxidase functions, the thioredoxin regenerating system is much more efficient in vitro than the glutathione system. At present, the function of these enzymes in plants is not completely understood. The occurrence of thiol-dependent activities of plant GPX isoenzymes suggests that - besides detoxification of H2O2 and organic hydroperoxides - they may be involved in regulation of the cellular redox homeostasis by maintaining the thiol/disulfide or NADPH/NADP(+) balance. GPXs may represent a link existing between the glutathione- and the thioredoxin-based system. The various thiol buffers, including Trx, can affect a number of redox reactions in the cells most probably via modulation of thiol status. It is still required to identify the in vivo reductant for particular GPX isoenzymes and partners that GPXs interact with specifically. Recent evidence suggests that plant GPXs does not only protect cells from stress induced oxidative damage but they can be implicated in plant growth and development. Following a more general introduction, this study summarizes present knowledge on plant GPXs, highlighting the results on gene expression analysis, regulation and signaling of Arabidopsis thaliana GPXs and also suggests some perspectives for future research.
Collapse
Affiliation(s)
- Krisztina Bela
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Edit Horváth
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Ágnes Gallé
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre of HAS, Temesvári krt. 62., H-6726 Szeged, Hungary
| | - Irma Tari
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary.
| |
Collapse
|
1091
|
|
1092
|
Laing WA, Martínez-Sánchez M, Wright MA, Bulley SM, Brewster D, Dare AP, Rassam M, Wang D, Storey R, Macknight RC, Hellens RP. An upstream open reading frame is essential for feedback regulation of ascorbate biosynthesis in Arabidopsis. THE PLANT CELL 2015; 27:772-86. [PMID: 25724639 PMCID: PMC4558653 DOI: 10.1105/tpc.114.133777] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/18/2015] [Accepted: 02/11/2015] [Indexed: 05/18/2023]
Abstract
Ascorbate (vitamin C) is an essential antioxidant and enzyme cofactor in both plants and animals. Ascorbate concentration is tightly regulated in plants, partly to respond to stress. Here, we demonstrate that ascorbate concentrations are determined via the posttranscriptional repression of GDP-l-galactose phosphorylase (GGP), a major control enzyme in the ascorbate biosynthesis pathway. This regulation requires a cis-acting upstream open reading frame (uORF) that represses the translation of the downstream GGP open reading frame under high ascorbate concentration. Disruption of this uORF stops the ascorbate feedback regulation of translation and results in increased ascorbate concentrations in leaves. The uORF is predicted to initiate at a noncanonical codon (ACG rather than AUG) and encode a 60- to 65-residue peptide. Analysis of ribosome protection data from Arabidopsis thaliana showed colocation of high levels of ribosomes with both the uORF and the main coding sequence of GGP. Together, our data indicate that the noncanonical uORF is translated and encodes a peptide that functions in the ascorbate inhibition of translation. This posttranslational regulation of ascorbate is likely an ancient mechanism of control as the uORF is conserved in GGP genes from mosses to angiosperms.
Collapse
Affiliation(s)
- William A Laing
- The New Zealand Institute for Plant and Food Research, Auckland 1142, New Zealand
| | | | - Michele A Wright
- The New Zealand Institute for Plant and Food Research, Auckland 1142, New Zealand
| | - Sean M Bulley
- The New Zealand Institute for Plant and Food Research, Auckland 1142, New Zealand
| | - Di Brewster
- The New Zealand Institute for Plant and Food Research, Auckland 1142, New Zealand
| | - Andrew P Dare
- The New Zealand Institute for Plant and Food Research, Auckland 1142, New Zealand
| | - Maysoon Rassam
- The New Zealand Institute for Plant and Food Research, Auckland 1142, New Zealand
| | - Daisy Wang
- The New Zealand Institute for Plant and Food Research, Auckland 1142, New Zealand
| | - Roy Storey
- The New Zealand Institute for Plant and Food Research, Auckland 1142, New Zealand
| | - Richard C Macknight
- The New Zealand Institute for Plant and Food Research, Auckland 1142, New Zealand Biochemistry Department, University of Otago, Dunedin 9054, New Zealand
| | - Roger P Hellens
- The New Zealand Institute for Plant and Food Research, Auckland 1142, New Zealand Biochemistry Department, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
1093
|
Sousa RHV, Carvalho FEL, Ribeiro CW, Passaia G, Cunha JR, Lima-Melo Y, Margis-Pinheiro M, Silveira JAG. Peroxisomal APX knockdown triggers antioxidant mechanisms favourable for coping with high photorespiratory H2 O2 induced by CAT deficiency in rice. PLANT, CELL & ENVIRONMENT 2015; 38:499-513. [PMID: 25039271 DOI: 10.1111/pce.12409] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 06/03/2023]
Abstract
The physiological role of peroxisomal ascorbate peroxidases (pAPX) is unknown; therefore, we utilized pAPX4 knockdown rice and catalase (CAT) inhibition to assess its role in CAT compensation under high photorespiration. pAPX4 knockdown induced co-suppression in the expression of pAPX3. The rice mutants exhibited metabolic changes such as lower CAT and glycolate oxidase (GO) activities and reduced glyoxylate content; however, APX activity was not altered. CAT inhibition triggered different changes in the expression of CAT, APX and glutathione peroxidase (GPX) isoforms between non-transformed (NT) and silenced plants. These responses were associated with alterations in APX, GPX and GO activities, suggesting redox homeostasis differences. The glutathione oxidation-reduction states were modulated differently in mutants, and the ascorbate redox state was greatly affected in both genotypes. The pAPX suffered less oxidative stress and photosystem II (PSII) damage and displayed higher photosynthesis than the NT plants. The improved acclimation exhibited by the pAPX plants was indicated by lower H2 O2 accumulation, which was associated with lower GO activity and glyoxylate content. The suppression of both pAPXs and/or its downstream metabolic and molecular effects may trigger favourable antioxidant and compensatory mechanisms to cope with CAT deficiency. This physiological acclimation may involve signalling by peroxisomal H2 O2 , which minimized the photorespiration.
Collapse
Affiliation(s)
- Rachel H V Sousa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, 60440-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
1094
|
Zhang Y, Du N, Wang L, Zhang H, Zhao J, Sun G, Wang P. Physical and chemical indices of cucumber seedling leaves under dibutyl phthalate stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3477-3488. [PMID: 25242588 DOI: 10.1007/s11356-014-3524-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 08/26/2014] [Indexed: 06/03/2023]
Abstract
Phthalic acid ester (PAE) pollution to soil can lead to phytotoxicity in plants and potential health risks to human being. Dibutyl phthalate (DBP) as a kind of PAE has a large usage amount and large residues in soil. To analyze antioxidant responses of plants to DBP stress, effects of varying DBP concentrations on cucumber seedlings growth had been investigated. Malonaldehyde (MDA), hydrogen peroxide (H2O2), chlorophyll, proline, glutathione (GSH), and oxidized glutathione (GSSH) contents and activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD) were studied. The results showed that H2O2 content increased in cucumber seedlings with the increase of DBP concentration. The chlorophyll content in the higher DBP significantly declined compared to the control. In the present study, a disturbance of the GSH redox balance was evidenced by a marked decrease in GSH/GSSG ratio in cucumber seedlings subjected DBP stress. Our results indicated that DBP treatment not only inhibited antioxidant capacity and antioxidant enzyme activity in seedlings' leaves but might also induce chlorophyll degradation or reduce the synthesis of chlorophyll. Moreover, it could also enhance the accumulation of reactive oxygen species (ROS) which induced membrane lipid peroxidation. DBP also altered the ultrastructure of mesophyll cells, damaged membrane structure of chloroplast and mitochondrion, and increased the number and size of starch grains in chloroplasts reducing the photosynthetic capacity.
Collapse
Affiliation(s)
- Ying Zhang
- Northeast Agricultural University, School of Resources & Environment, Harbin, Heilongjiang Province, China,
| | | | | | | | | | | | | |
Collapse
|
1095
|
Mostofa MG, Hossain MA, Fujita M. Trehalose pretreatment induces salt tolerance in rice (Oryza sativa L.) seedlings: oxidative damage and co-induction of antioxidant defense and glyoxalase systems. PROTOPLASMA 2015; 252:461-75. [PMID: 25164029 DOI: 10.1007/s00709-014-0691-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/15/2014] [Indexed: 05/20/2023]
Abstract
Salinity in the form of abiotic stress adversely effects plant growth, development, and productivity. Various osmoprotectants are involved in regulating plant responses to salinity; however, the precise role of trehalose (Tre) in this process remains to be further elucidated. The present study investigated the regulatory role of Tre in alleviating salt-induced oxidative stress in hydroponically grown rice seedlings. Salt stress (150 and 250 mM NaCl) for 72 h resulted in toxicity symptoms such as stunted growth, severe yellowing, and leaf rolling, particularly at 250 mM NaCl. Histochemical observation of reactive oxygen species (ROS; O2 (∙-) and H2O2) indicated evident oxidative stress in salt-stressed seedlings. In these seedlings, the levels of lipoxygenase (LOX) activity, malondialdehyde (MDA), H2O2, and proline (Pro) increased significantly whereas total chlorophyll (Chl) and relative water content (RWC) decreased. Salt stress caused an imbalance in non-enzymatic antioxidants, i.e., ascorbic acid (AsA) content, AsA/DHA ratio, and GSH/GSSG ratio decreased but glutathione (GSH) content increased significantly. In contrast, Tre pretreatment (10 mM, 48 h) significantly addressed salt-induced toxicity symptoms and dramatically depressed LOX activity, ROS, MDA, and Pro accumulation whereas AsA, GSH, RWC, Chl contents, and redox status improved considerably. Salt stress stimulated the activities of SOD, GPX, APX, MDHAR, DHAR, and GR but decreased the activities of CAT and GST. However, Tre-pretreated salt-stressed seedlings counteracted SOD and MDHAR activities, elevated CAT and GST activities, further enhanced APX and DHAR activities, and maintained GPX and GR activities similar to the seedlings stressed with salt alone. In addition, Tre pretreatment enhanced the activities of methylglyoxal detoxifying enzymes (Gly I and Gly II) more efficiently in salt-stressed seedlings. Our results suggest a role for Tre in protecting against salt-induced oxidative damage attributed to reduced ROS accumulation, elevation of non-enzymatic antioxidants, and co-activation of the antioxidative and glyoxalase systems.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan,
| | | | | |
Collapse
|
1096
|
Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria. Proc Natl Acad Sci U S A 2015; 112:E1392-400. [PMID: 25646482 DOI: 10.1073/pnas.1424840112] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant mitochondria have a fully operational tricarboxylic acid (TCA) cycle that plays a central role in generating ATP and providing carbon skeletons for a range of biosynthetic processes in both heterotrophic and photosynthetic tissues. The cycle enzyme-encoding genes have been well characterized in terms of transcriptional and effector-mediated regulation and have also been subjected to reverse genetic analysis. However, despite this wealth of attention, a central question remains unanswered: "What regulates flux through this pathway in vivo?" Previous proteomic experiments with Arabidopsis discussed below have revealed that a number of mitochondrial enzymes, including members of the TCA cycle and affiliated pathways, harbor thioredoxin (TRX)-binding sites and are potentially redox-regulated. We have followed up on this possibility and found TRX to be a redox-sensitive mediator of TCA cycle flux. In this investigation, we first characterized, at the enzyme and metabolite levels, mutants of the mitochondrial TRX pathway in Arabidopsis: the NADP-TRX reductase a and b double mutant (ntra ntrb) and the mitochondrially located thioredoxin o1 (trxo1) mutant. These studies were followed by a comparative evaluation of the redistribution of isotopes when (13)C-glucose, (13)C-malate, or (13)C-pyruvate was provided as a substrate to leaves of mutant or WT plants. In a complementary approach, we evaluated the in vitro activities of a range of TCA cycle and associated enzymes under varying redox states. The combined dataset suggests that TRX may deactivate both mitochondrial succinate dehydrogenase and fumarase and activate the cytosolic ATP-citrate lyase in vivo, acting as a direct regulator of carbon flow through the TCA cycle and providing a mechanism for the coordination of cellular function.
Collapse
|
1097
|
Sudhani HP, Moreno J. Control of the ribulose 1,5-bisphosphate carboxylase/oxygenase activity by the chloroplastic glutathione pool. Arch Biochem Biophys 2015; 567:30-4. [DOI: 10.1016/j.abb.2014.12.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 11/24/2022]
|
1098
|
Sultana N, Florance HV, Johns A, Smirnoff N. Ascorbate deficiency influences the leaf cell wall glycoproteome in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2015; 38:375-84. [PMID: 24393051 DOI: 10.1111/pce.12267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/04/2013] [Accepted: 12/07/2013] [Indexed: 05/10/2023]
Abstract
The cell wall forms the first line of interaction between the plant and the external environment. Based on the observation that ascorbate-deficient vtc mutants of Arabidopsis thaliana have increased cell wall peroxidase activity, the cell wall glycoproteome of vtc2-2 was investigated. Glycoproteins were purified from fully expanded leaves by Concanavalin A affinity chromatography and analysed by liquid chromatography quadrupole time-of-flight mass spectrometry. This procedure identified 63 proteins with predicted glycosylation sites and cell wall localization. Of these, 11 proteins were differentially expressed between vtc2-2 and wild type. In particular, PRX33/34 were identified as contributing to increased peroxidase activity in response to ascorbate deficiency. This is the same peroxidase previously shown to contribute to hydrogen peroxide generation and pathogen resistance. Three fasciclin-like arabinogalactan proteins (FLA1, 2 and 8) had lower abundance in vtc2-2. Inspection of published microarray data shows that these also have lower gene expression in vtc1 and vtc2-1 and are decreased in expression by pathogen challenge and oxidative stresses. Ascorbate deficiency therefore impacts expression of cell wall proteins involved in pathogen responses and these presumably contribute to the increased resistance of vtc mutants to biotrophic pathogens.
Collapse
Affiliation(s)
- Nighat Sultana
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | | | | | | |
Collapse
|
1099
|
Sáez CA, Roncarati F, Moenne A, Moody AJ, Brown MT. Copper-induced intra-specific oxidative damage and antioxidant responses in strains of the brown alga Ectocarpus siliculosus with different pollution histories. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:81-9. [PMID: 25521566 DOI: 10.1016/j.aquatox.2014.11.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/18/2014] [Accepted: 11/22/2014] [Indexed: 06/04/2023]
Abstract
Inter- and intra-specific variation in metal resistance has been observed in the ecologically and economically important marine brown macroalgae (Phaeophyceae), but the mechanisms of cellular tolerance are not well elucidated. To investigate inter-population responses of brown seaweeds to copper (Cu) pollution, the extent of oxidative damage and antioxidant responses were compared in three strains of the filamentous brown seaweed Ectocarpus siliculosus, the model organism for the algal class Phaeophyceae that diverged from other major eukaryotic groups over a billion year ago. Strains isolated from locations with different pollution histories (i.e. LIA, from a pristine site in Scotland; REP and Es524 from Cu-contaminated sites in England and Chile, respectively) were exposed to total dissolved Cu concentrations (CuT) of up to 2.4 μM (equivalent to 128 nM Cu(2+)) for 10 d. LIA exhibited oxidative stress, with increases in hydrogen peroxide (H2O2) and lipid peroxidation (measured as TBARS levels), and decreased concentrations of photosynthetic pigments. Es524 presented no apparent oxidative damage whereas in REP, TBARS increased, revealing some level of oxidative damage. Adjustments to activities of enzymes and antioxidant compounds concentrations in Es524 and REP were strain and treatment dependent. Mitigation of oxidative stress in Es524 was by increased activities of superoxide dismutases (SOD) at low CuT, and catalase (CAT) and ascorbate peroxidase (APX) at all CuT, accompanied by higher levels of antioxidants (ascorbate, glutathione, phenolics) at higher CuT. In REP, only APX activity increased, as did the antioxidants. For the first time evidence is presented for distinctive oxidative stress defences under excess Cu in two populations of a species of brown seaweed from environments contaminated by Cu.
Collapse
Affiliation(s)
- Claudio A Sáez
- School of Marine Science and Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, PL4 8AA Plymouth, United Kingdom; Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile
| | - Francesca Roncarati
- School of Marine Science and Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, PL4 8AA Plymouth, United Kingdom
| | - Alejandra Moenne
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile
| | - A John Moody
- School of Biological Sciences, Faculty of Science and Environment, Plymouth University, Drake Circus, PL4 8AA Plymouth, United Kingdom
| | - Murray T Brown
- School of Marine Science and Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, PL4 8AA Plymouth, United Kingdom.
| |
Collapse
|
1100
|
Benina M, Ribeiro DM, Gechev TS, Mueller-Roeber B, Schippers JHM. A cell type-specific view on the translation of mRNAs from ROS-responsive genes upon paraquat treatment of Arabidopsis thaliana leaves. PLANT, CELL & ENVIRONMENT 2015; 38:349-63. [PMID: 24738758 DOI: 10.1111/pce.12355] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 05/10/2023]
Abstract
Oxidative stress causes dramatic changes in the expression levels of many genes. The formation of a functional protein through successful mRNA translation is central to a coordinated cellular response. To what extent the response towards reactive oxygen species (ROS) is regulated at the translational level is poorly understood. Here we analysed leaf- and tissue-specific translatomes using a set of transgenic Arabidopsis thaliana lines expressing a FLAG-tagged ribosomal protein to immunopurify polysome-bound mRNAs before and after oxidative stress. We determined transcript levels of 171 ROS-responsive genes upon paraquat treatment, which causes formation of superoxide radicals, at the whole-organ level. Furthermore, the translation of mRNAs was determined for five cell types: mesophyll, bundle sheath, phloem companion, epidermal and guard cells. Mesophyll and bundle sheath cells showed the strongest response to paraquat treatment. Interestingly, several ROS-responsive transcription factors displayed cell type-specific translation patterns, while others were translated in all cell types. In part, cell type-specific translation could be explained by the length of the 5'-untranslated region (5'-UTR) and the presence of upstream open reading frames (uORFs). Our analysis reveals insights into the translational regulation of ROS-responsive genes, which is important to understanding cell-specific responses and functions during oxidative stress.
Collapse
Affiliation(s)
- Maria Benina
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000, Plovdiv, Bulgaria; Institute of Molecular Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | | | | | | | | |
Collapse
|