11101
|
Daniel Maxim L, Yu CP, Oberdörster G, Utell MJ. Quantitative risk analyses for RCF: survey and synthesis. Regul Toxicol Pharmacol 2003; 38:400-16. [PMID: 14623489 DOI: 10.1016/j.yrtph.2003.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Refractory ceramic fiber (RCF) is a high-temperature insulating fiber used principally in industrial applications. Epidemiological studies on occupationally exposed cohorts have not indicated that exposure leads to fibrosis, increased lung cancer, or mesothelioma. However, inhalation bioassays with rats and hamsters have shown that these animals can develop each of these endpoints when exposed to high levels of RCF-particle mixtures. This work summarizes relevant quantitative risk analyses based upon analysis of the rat bioassay studies, which lead to predicted unit risks that range nearly three orders of magnitude. Additionally, we identify key assumptions that affect the risk estimates and provide additional estimates using the benchmark dose methodology favored by the U.S. EPA in cases where mechanistic models are inadequate or not available. We show that a key determinant of risk is how lung burdens are normalized (e.g., in terms of the number of fibers per square centimeter of lung surface or the number of fibers per milligram dry lung) for species conversion. Plausible values of unit potency/risk range from 1.4x10(-4) to 7.2x10(-4), neglecting any allowance for the effects of particulate material in the RCF tested in the bioassay experiments.
Collapse
|
11102
|
M-CSF targeting into LCL nucleus behaves as a malignancy promotor. Chin J Cancer Res 2003. [DOI: 10.1007/bf02974889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
11103
|
Wittamer V, Franssen JD, Vulcano M, Mirjolet JF, Le Poul E, Migeotte I, Brézillon S, Tyldesley R, Blanpain C, Detheux M, Mantovani A, Sozzani S, Vassart G, Parmentier M, Communi D. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. ACTA ACUST UNITED AC 2003; 198:977-85. [PMID: 14530373 PMCID: PMC2194212 DOI: 10.1084/jem.20030382] [Citation(s) in RCA: 688] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dendritic cells (DCs) and macrophages are professional antigen-presenting cells (APCs) that play key roles in both innate and adaptive immunity. ChemR23 is an orphan G protein–coupled receptor related to chemokine receptors, which is expressed specifically in these cell types. Here we present the characterization of chemerin, a novel chemoattractant protein, which acts through ChemR23 and is abundant in a diverse set of human inflammatory fluids. Chemerin is secreted as a precursor of low biological activity, which upon proteolytic cleavage of its COOH-terminal domain, is converted into a potent and highly specific agonist of ChemR23, the chemerin receptor. Activation of chemerin receptor results in intracellular calcium release, inhibition of cAMP accumulation, and phosphorylation of p42–p44 MAP kinases, through the Gi class of heterotrimeric G proteins. Chemerin is structurally and evolutionary related to the cathelicidin precursors (antibacterial peptides), cystatins (cysteine protease inhibitors), and kininogens. Chemerin was shown to promote calcium mobilization and chemotaxis of immature DCs and macrophages in a ChemR23-dependent manner. Therefore, chemerin appears as a potent chemoattractant protein of a novel class, which requires proteolytic activation and is specific for APCs.
Collapse
Affiliation(s)
- Valérie Wittamer
- Institut de Recherche en Biologie Humaine et Moléculaire, ULB Campus Erasme, 808 Route de Lennik, B-1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11104
|
Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 2003; 83:1325-58. [PMID: 14506307 DOI: 10.1152/physrev.00023.2003] [Citation(s) in RCA: 1547] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ca2+ sensitivity of smooth muscle and nonmuscle myosin II reflects the ratio of activities of myosin light-chain kinase (MLCK) to myosin light-chain phosphatase (MLCP) and is a major, regulated determinant of numerous cellular processes. We conclude that the majority of phenotypes attributed to the monomeric G protein RhoA and mediated by its effector, Rho-kinase (ROK), reflect Ca2+ sensitization: inhibition of myosin II dephosphorylation in the presence of basal (Ca2+ dependent or independent) or increased MLCK activity. We outline the pathway from receptors through trimeric G proteins (Galphaq, Galpha12, Galpha13) to activation, by guanine nucleotide exchange factors (GEFs), from GDP. RhoA. GDI to GTP. RhoA and hence to ROK through a mechanism involving association of GEF, RhoA, and ROK in multimolecular complexes at the lipid cell membrane. Specific domains of GEFs interact with trimeric G proteins, and some GEFs are activated by Tyr kinases whose inhibition can inhibit Rho signaling. Inhibition of MLCP, directly by ROK or by phosphorylation of the phosphatase inhibitor CPI-17, increases phosphorylation of the myosin II regulatory light chain and thus the activity of smooth muscle and nonmuscle actomyosin ATPase and motility. We summarize relevant effects of p21-activated kinase, LIM-kinase, and focal adhesion kinase. Mechanisms of Ca2+ desensitization are outlined with emphasis on the antagonism between cGMP-activated kinase and the RhoA/ROK pathway. We suggest that the RhoA/ROK pathway is constitutively active in a number of organs under physiological conditions; its aberrations play major roles in several disease states, particularly impacting on Ca2+ sensitization of smooth muscle in hypertension and possibly asthma and on cancer neoangiogenesis and cancer progression. It is a potentially important therapeutic target and a subject for translational research.
Collapse
Affiliation(s)
- Andrew P Somlyo
- Dept. of Molecular Physiology and Biological Physics, Univ. of Virginia, PO Box 800736, Charlottesville, VA 22908-0736.
| | | |
Collapse
|
11105
|
Joyce JA, Laakkonen P, Bernasconi M, Bergers G, Ruoslahti E, Hanahan D. Stage-specific vascular markers revealed by phage display in a mouse model of pancreatic islet tumorigenesis. Cancer Cell 2003; 4:393-403. [PMID: 14667506 DOI: 10.1016/s1535-6108(03)00271-x] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The vasculature in the angiogenic stages of a mouse model of pancreatic islet carcinogenesis was profiled in vivo with phage libraries that display short peptides. We characterized seven peptides distinguished by their differential homing to angiogenic progenitors, solid tumors, or both. None homed appreciably to normal pancreatic islets or other organs. Five peptides selectively homed to neoplastic lesions in the pancreas and not to islet beta cell tumors growing subcutaneously, xenotransplant tumors from a human cancer cell line, or an endogenously arising squamous cell tumor of the skin. Three peptides with distinctive homing to angiogenic islets, tumors, or both colocalized with markers that identify endothelial cells or pericytes. One peptide is homologous with pro-PDGF-B, which is expressed in endothelial cells, while its receptor is expressed in pericytes.
Collapse
Affiliation(s)
- Johanna A Joyce
- Department of Biochemistry and Biophysics, Diabetes and Comprehensive Cancer Centers, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
11106
|
Mohammed FF, Smookler DS, Khokha R. Metalloproteinases, inflammation, and rheumatoid arthritis. Ann Rheum Dis 2003; 62 Suppl 2:ii43-7. [PMID: 14532148 PMCID: PMC1766743 DOI: 10.1136/ard.62.suppl_2.ii43] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ideally, the inflammatory response occurs rapidly to terminate infection. It also must halt in a timely manner to stop this reaction from inflicting self damage. Such a highly regulated process results from altering balances in pro- and anti-inflammatory signals orchestrated by multiple cell types and factors within the tissue microenvironment. The discovery of new substrates of metalloproteinases within this microenvironment has disclosed a new function in inflammation. The role of these proteases now extends beyond extracellular matrix remodelling enzymes to that of mediators of inflammatory signals involving various chemokines and cytokines. As natural inhibitors of these metalloproteinases, TIMPs have the potential of regulating the inflammatory response and affecting diseases such as rheumatoid arthritis. TIMP-3, in particular, stands out as an important regulator of inflammation with its ability to specifically inhibit proinflammatory cytokines and tissue destruction in the joint.
Collapse
Affiliation(s)
- F F Mohammed
- Ontario Cancer Institute/University Health Network, Toronto, Canada
| | | | | |
Collapse
|
11107
|
Bisacchi D, Benelli R, Vanzetto C, Ferrari N, Tosetti F, Albini A. Anti-angiogenesis and angioprevention: mechanisms, problems and perspectives. CANCER DETECTION AND PREVENTION 2003; 27:229-38. [PMID: 12787731 DOI: 10.1016/s0361-090x(03)00030-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recognition that angiogenesis is a key early event in tumor progression and metastasis has led to the development of new strategies for cancer therapy. The generation of a new blood vessel network under physiological conditions is regulated by the concerted action of activators and inhibitors. Perturbation of this balance, as it occurs in solid tumor growth and metastasis, appears to be a critical point in tumorigenesis. This has led to the "angiogenic switch" hypothesis: the point at which a tumor acquires the potential to induce angiogenesis is a critical step towards malignancy. Based on experimental evidence, prevention of blood vessel development appears to be the mechanism of action of many successful chemopreventive drugs of natural or synthetic origin: a novel concept that we termed "angioprevention". The hypothesis that anti-angiogenesis is at the basis of tumor prevention also suggests that many anti-angiogenic drugs could be used for chemoprevention in higher risk populations or in early intervention. There is a growing body of experimental evidence that anti-angiogenic strategies will contribute to the future therapy of cancer, several compounds with anti-angiogenic properties are now under clinical investigation including anti-inflammatory compounds, as inflammation may play a key role in angiogenesis. We must persevere in the development of novel, powerful and safer angiogenesis inhibitors and in the use of anti-angiogenic drugs in combination with other natural or synthetic anti-cancer agents in a biological therapy strategy.
Collapse
Affiliation(s)
- D Bisacchi
- Molecular Oncology Laboratory, National Cancer Research Institute-Genova (IST), Genova, Italy
| | | | | | | | | | | |
Collapse
|
11108
|
Abstract
Aspirin (acetylsalicylate) is an inexpensive drug that is used extensively to reduce cardiovascular disease risk. Emerging evidence suggests that aspirin reduces the risk of other chronic diseases such as certain forms of cancer. Salicylate may contribute to the disease reduction effects. It is present naturally in fruits and vegetables and individuals with a low intake of these foods may be 'salicylate deficient'. This deleterious state may constitute a significant public health threat. Interventions to prevent deficiency, such as low-dose aspirin programmes, could have substantial beneficial health impacts around the world.
Collapse
Affiliation(s)
- Gareth Morgan
- National Public Health Service for Wales, 36 Orchard Street, Swansea, U.K.
| |
Collapse
|
11109
|
Palumbo JS, Talmage KE, Liu H, La Jeunesse CM, Witte DP, Degen JL. Plasminogen supports tumor growth through a fibrinogen-dependent mechanism linked to vascular patency. Blood 2003; 102:2819-27. [PMID: 12829586 DOI: 10.1182/blood-2003-03-0881] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growth of Lewis lung carcinoma (LLC) was sustained in plasminogen-deficient mice when transplanted into the dorsal skin but was dramatically suppressed in another anatomic location, the footpad. This unanticipated negative effect of plasminogen deficiency on footpad tumor growth was entirely relieved by superimposing a deficit in fibrinogen. This finding was not simply an unusual feature of LLC tumors--T241 fibrosarcoma growth in the footpad was also restricted by plasminogen deficiency in a fibrinogen-dependent manner. The probable mechanistic basis for suppression of tumor growth was revealed through transmission electron microscopy studies of tumor tissues. Occlusive microvascular thrombi were commonplace within footpad tumors from plasminogen-deficient mice, whereas no such lesions were observed within either dorsal skin tumors from plasminogen-deficient mice or footpad tumors from mice that also lacked fibrinogen. The data infer that tumor growth in the footpad of plasminogen-deficient mice is compromised as a function of the formation and persistence of vaso-occlusive thrombi that limit tumor blood supply. These studies indicate that plasminogen and fibrinogen can serve as critical determinants of tumor growth, but their relative importance is dependent on the tumor microenvironment. Furthermore, these studies suggest that one target of plasmin(ogen) relevant to tumor progression in vivo is intravascular fibrin.
Collapse
Affiliation(s)
- Joseph S Palumbo
- Division of Hematology/Oncology, Children's Hospital Research Foundation, and University of Cincinnati College of Medicine, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
11110
|
|
11111
|
Klein TW, Newton C, Larsen K, Lu L, Perkins I, Nong L, Friedman H. The cannabinoid system and immune modulation. J Leukoc Biol 2003; 74:486-96. [PMID: 12960289 DOI: 10.1189/jlb.0303101] [Citation(s) in RCA: 372] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Studies on the effects of marijuana smoking have evolved into the discovery and description of the endocannabinoid system. To date, this system is composed of two receptors, CB1 and CB2, and endogenous ligands including anandamide, 2-arachidonoyl glycerol, and others. CB1 receptors and ligands are found in the brain as well as immune and other peripheral tissues. Conversely, CB2 receptors and ligands are found primarily in the periphery, especially in immune cells. Cannabinoid receptors are G protein-coupled receptors, and they have been linked to signaling pathways and gene activities in common with this receptor family. In addition, cannabinoids have been shown to modulate a variety of immune cell functions in humans and animals and more recently, have been shown to modulate T helper cell development, chemotaxis, and tumor development. Many of these drug effects occur through cannabinoid receptor signaling mechanisms and the modulation of cytokines and other gene products. It appears the immunocannabinoid system is involved in regulating the brain-immune axis and might be exploited in future therapies for chronic diseases and immune deficiency.
Collapse
Affiliation(s)
- Thomas W Klein
- University of South Florida, College of Medicine, Department of Medical Microbiology and Immunology, Tampa 33612, USA.
| | | | | | | | | | | | | |
Collapse
|
11112
|
Abstract
Target discovery, which involves the identification and early validation of disease-modifying targets, is an essential first step in the drug discovery pipeline. Indeed, the drive to determine protein function has been stimulated, both in industry and academia, by the completion of the human genome project. In this article, we critically examine the strategies and methodologies used for both the identification and validation of disease-relevant proteins. In particular, we will examine the likely impact of recent technological advances, including genomics, proteomics, small interfering RNA and mouse knockout models, and conclude by speculating on future trends.
Collapse
Affiliation(s)
- Mark A Lindsay
- AstraZeneca Pharmaceuticals, 19F19 Alderley Park, Macclesfield, Cheshire SK10 4TG, UK.
| |
Collapse
|
11113
|
Balbín M, Fueyo A, Tester AM, Pendás AM, Pitiot AS, Astudillo A, Overall CM, Shapiro SD, López-Otín C. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 2003; 35:252-7. [PMID: 14517555 DOI: 10.1038/ng1249] [Citation(s) in RCA: 346] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Accepted: 09/11/2003] [Indexed: 01/06/2023]
Abstract
Matrix metalloproteinases (MMPs) have fundamental roles in tumor progression, but most clinical trials with MMP inhibitors have not shown improvements in individuals with cancer. This may be partly because broad-range inhibitors also reduce host-protective antitumor properties of individual MMPs. We generated mice deficient in collagenase-2 (Mmp8), an MMP mainly produced by neutrophils in inflammatory reactions and detected in some malignant tumors. Loss of Mmp8 did not cause abnormalities during embryonic development or in adult mice. Contrary to previous studies with MMP-deficient mice, however, the absence of Mmp8 strongly increased the incidence of skin tumors in male Mmp8(-/-)mice. Female Mmp8(-/-)mice whose ovaries were removed or were treated with tamoxifen were also more susceptible to tumors compared with wild-type mice. Bone marrow transplantation experiments confirmed that Mmp8 supplied by neutrophils was sufficient to restore the natural protection against tumor development mediated by this protease in male mice. Histopathological analysis showed that mutant mice had abnormalities in the inflammatory response induced by carcinogens. Our study identifies a paradoxical protective role for Mmp8 in cancer and provides a genetic model to evaluate the molecular basis of gender differences in cancer susceptibility.
Collapse
Affiliation(s)
- Milagros Balbín
- Departamentos de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
11114
|
Pinlaor S, Yongvanit P, Hiraku Y, Ma N, Semba R, Oikawa S, Murata M, Sripa B, Sithithaworn P, Kawanishi S. 8-nitroguanine formation in the liver of hamsters infected with Opisthorchis viverrini. Biochem Biophys Res Commun 2003; 309:567-71. [PMID: 12963027 DOI: 10.1016/j.bbrc.2003.08.039] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nucleic acid damage by reactive nitrogen and oxygen species may contribute to the carcinogenesis associated with chronic infection and inflammation. We examined 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation and nitric oxide (NO) production in hamsters infected with Opisthorchis viverrini (OV). Formation of 8-nitroguanine was assessed immunohistochemically with an antibody specific for 8-nitroguanine. 8-nitroguanine formation was found mainly in the cytoplasm and slightly in the nucleus of inflammatory cells and epithelial lining of bile duct at inflammatory areas in the liver. 8-nitroguanine immunoreactivity reached the highest intensity on day 30. A time profile of 8-nitroguanine formation was closely associated with that of plasma nitrate/nitrite. HPLC with an electrochemical detector revealed that the amount of 8-oxodG in the liver reached the maximal level on day 21. The mechanisms of 8-oxodG and 8-nitroguanine formation via O2*- and NO production triggered by OV infection were discussed in relation to cholangiocarcinoma development.
Collapse
Affiliation(s)
- Somchai Pinlaor
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11115
|
Ishii G, Sangai T, Oda T, Aoyagi Y, Hasebe T, Kanomata N, Endoh Y, Okumura C, Okuhara Y, Magae J, Emura M, Ochiya T, Ochiai A. Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem Biophys Res Commun 2003; 309:232-40. [PMID: 12943687 DOI: 10.1016/s0006-291x(03)01544-4] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To confirm whether human cancer-induced stromal cells are derived from bone marrow, bone marrow (BM) cells obtained from beta-galactosidase transgenic and recombination activating gene 1 (RAG-1) deficient double-mutant mice (H-2b) were transplanted into sublethally irradiated severe combined immunodeficient (SCID) mice (H-2d). The human pancreatic cancer cell line Capan-1 was subcutaneously xenotransplanted into SCID recipients and stromal formation was analyzed on day 14 and on day 28. Immunohistochemical and immunofluorescence studies revealed that BM-derived endothelial cells (X-gal/CD31 or H-2b/CD31 double-positive cells) and myofibroblasts (X-gal/alpha-smooth muscle actin or H-2b/alpha-smooth muscle actin double-positive cells) were present within and around the cancer nests. On day 14, the frequencies of BM-derived endothelial cells and BM-derived myofibroblasts were 25.3+/-4.4% and 12.7+/-9.6%, respectively. On day 28, the frequency of BM-derived endothelial cells was 26.7+/-9.7%, which was similar to the value on day 14. However, the frequency of BM-derived myofibroblasts was significantly higher (39.8+/-17.1%) on day 28 than on day 14 (P<0.05). The topoisomerase IIalpha-positive ratio was 2.2+/-1.2% for the H-2b-positive myofibroblasts, as opposed to only 0.3+/-0.4% for the H-2b-negative myofibroblasts, significant proliferative activity was observed in the BM-derived myofibroblasts (P<0.05). Our results indicate that BM-derived myofibroblasts become a major component of cancer-induced stromal cells in the later stage of tumor development.
Collapse
Affiliation(s)
- Genichiro Ishii
- Pathology Division, National Cancer Center Research Institute East, 6-5-1, Kashiwanoha, Kashiwa-City, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11116
|
Arbeit JM. Quiescent hypervascularity mediated by gain of HIF-1 alpha function. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 67:133-42. [PMID: 12858534 DOI: 10.1101/sqb.2002.67.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- J M Arbeit
- UCSF Comprehensive Cancer Center, Department of Surgery, University of California, San Francisco, California 94143-0808, USA
| |
Collapse
|
11117
|
Demant P. Cancer susceptibility in the mouse: genetics, biology and implications for human cancer. Nat Rev Genet 2003; 4:721-34. [PMID: 12951573 DOI: 10.1038/nrg1157] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Growing evidence that a large proportion of apparently non-hereditary sporadic cancers occur in genetically predisposed individuals has emphasized the need to identify the underlying susceptibility genes. Increasingly, it seems that the best approach to define the numerous genes that have small but cumulative effects is to first identify and map them in mice, and subsequently to study the role of their homologues in humans. Development of new gene-mapping resources and strategies in mice has, for the first time, allowed some of these genes to be identified. In future, this unique approach is likely to provide important insights into the pathways of tumour development and might ultimately lead to more effective individually targeted cancer-prevention strategies.
Collapse
Affiliation(s)
- Peter Demant
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| |
Collapse
|
11118
|
Kanduc D, Capuano F, Capurso SA, Geliebter J, Guercia D, Lucchese A, Mittelman A, Simone SM, Sinha AA, Tiwari R, Farber E. Cancer prevention and therapy: strategies and problems. JOURNAL OF EXPERIMENTAL THERAPEUTICS AND ONCOLOGY 2003; 3:108-14. [PMID: 14641817 DOI: 10.1046/j.1359-4117.2003.01086.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
During the next years, molecular diagnostic science and the pharmaceutical industry will face increasing demand for personalized medicine. Therapeutic treatments should be tailored to the needs of individual patient. Patients will inquire for information about potential tumor detection at an early stage when disease can be more likely to be arrested or cured with specific regimens of drug therapy. To respond to this demand, science and industry need to modulate therapeutic approaches to the continuous development of cancer. Now more than ever, it is necessary to fill the knowledge hiatus between the "beginning" and the "end" of cancer development, i.e we need to critically analyze the extensive multi-step process of cancer development that still remains poorly understood.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biochemistry and Molecular Biology, University of Bari, Via Orabona 4, 70126, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11119
|
Maarten Egeler R, Laman JD, Leenen PJ, Annels NE, Hogendoorn PC. Response to Fadeel and Henter: Langerhans cell histiocytosis: a combination of carcinogenesis and inflammation. Trends Immunol 2003. [DOI: 10.1016/s1471-4906(03)00172-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11120
|
Abstract
A greater understanding of the processes of tumor invasion and metastasis, the principal cause of death in cancer patients, is essential to determine newer therapeutic targets. Metastasis suppressor genes, by definition, suppress metastasis without affecting tumorigenicity and, hence, present attractive targets as prognostic or therapeutic markers. This short review focuses on those twelve metastasis suppressor genes for which functional data exist. We also outline newly identified genes that bear promising traits of having metastasis suppressor activity, but for which functional data have not been completed. We also summarize the biochemical mechanism(s) of action (where known), and present a working model assembling potential metastasis suppression pathways.
Collapse
Affiliation(s)
- Lalita A Shevde
- Department of Pathology, 1670 University Boulevard, Volker Hall-G-038, The University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | |
Collapse
|
11121
|
Russell JP, Shinohara S, Melillo RM, Castellone MD, Santoro M, Rothstein JL. Tyrosine kinase oncoprotein, RET/PTC3, induces the secretion of myeloid growth and chemotactic factors. Oncogene 2003; 22:4569-77. [PMID: 12881713 DOI: 10.1038/sj.onc.1206759] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Differentiated thyroid carcinomas are the most frequent endocrine neoplasms, but account for few cancer-related deaths. Although the indolent growth of these cancers correlates well with longevity, the biological basis for this good prognosis is not known. In contrast, two of the most frequent autoimmune diseases involve the thyroid suggesting a high propensity for this organ to invoke destructive immunity. Unfortunately, the mechanism linking malignancy and autoimmunity is not clear, although the expression of the oncogenic fusion protein RET/PTC3 (RP3) in both of these disorders may provide a clue. Interestingly, the signaling caused by activated RET kinase involves overlapping pathways and some common to the inflammatory response. Accordingly, we analyzed the function of RP3 and a mutant RP3 molecule to induce proinflammatory pathways in thyroid epithelial cells. Indeed, we find that RP3 alone causes increases in nuclear NF-kappaB activity and secretion of MCP-1 and GM-CSF. Finally, transfer of RP3-expressing thyrocytes into mice in vivo attracted dense macrophage infiltrates, which lead to rapid thyroid cell death. Further, cytokine synthesis and inflammation was largely abrogated by mutation of RP3 Tyr588; an important protein-binding site for downstream signaling. Together, these studies implicate oncogene-induced cytokine-signaling pathways in a new mechanism linking inflammation with cancer.
Collapse
Affiliation(s)
- John P Russell
- Department of Microbiology/Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
11122
|
|
11123
|
Redmond HP. Systemic inflammatory response predicts survival following curative resection of colorectal cancer (Br J Surg 2003; 90: 215-219). Br J Surg 2003; 90:889; author reply 889. [PMID: 12854120 DOI: 10.1002/bjs.4333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11124
|
Affiliation(s)
- Pipsa Saharinen
- Molecular/Cancer Biology Laboratory, Haartman Institute, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
11125
|
Abstract
The maturation of nascent vasculature, formed by vasculogenesis or angiogenesis, requires recruitment of mural cells, generation of an extracellular matrix and specialization of the vessel wall for structural support and regulation of vessel function. In addition, the vascular network must be organized so that all the parenchymal cells receive adequate nutrients. All of these processes are orchestrated by physical forces as well as by a constellation of ligands and receptors whose spatio-temporal patterns of expression and concentration are tightly regulated. Inappropriate levels of these physical forces or molecules produce an abnormal vasculature--a hallmark of various pathologies. Normalization of the abnormal vasculature can facilitate drug delivery to tumors and formation of a mature vasculature can help realize the promise of therapeutic angiogenesis and tissue engineering.
Collapse
Affiliation(s)
- Rakesh K Jain
- E.L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, Massachusetts 02114, USA.
| |
Collapse
|
11126
|
De Palma M, Venneri MA, Roca C, Naldini L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med 2003; 9:789-95. [PMID: 12740570 DOI: 10.1038/nm871] [Citation(s) in RCA: 438] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2002] [Accepted: 04/04/2003] [Indexed: 12/24/2022]
Abstract
Angiogenic tumor vessels are promising targets for the activity and the selective delivery of cancer therapeutics. The bone marrow contributes different cell types to the tumor stroma, including hematopoietic cells and, as recently suggested, vascular endothelial cells (ECs). Thus, transplantation of genetically modified bone marrow progenitors may represent a vehicle for the transport of gene therapy to tumors. We transduced bone marrow progenitors with lentiviral vectors expressing genes from transcription-regulatory elements of Tie2/Tek gene. When tumors were grown in the transplanted mice, the new vector marked a distinct hematopoietic population that 'homed' to the tumor and closely interacted with vascular ECs at the tumor periphery. These Tie2-expressing mononuclear (TEM) cells had a distinguishable phenotype and were present selectively at angiogenic sites. Unexpectedly, we did not find bone marrow-derived ECs in tumor vessels when we transplanted bone marrow progenitors constitutively expressing a marker gene from the Tie2 or ubiquitously active promoters. By delivering a 'suicide' gene, we selectively eliminated the TEM cells and achieved substantial inhibition of angiogenesis and slower tumor growth without systemic toxicity. Thus, TEM cells may account for the proangiogenic activity of bone marrow-derived cells in tumors, may represent a new target for drug development and may provide the means for selective gene delivery and targeted inhibition of tumor angiogenesis.
Collapse
Affiliation(s)
- Michele De Palma
- Laboratory for Gene Transfer and Therapy, IRCC, Institute for Cancer Research and Treatment, University of Torino Medical School, Strada Provinciale 142, 10060 Candiolo, Torino, Italy
| | | | | | | |
Collapse
|
11127
|
Abstract
In recent years, the basement membrane (BM)--a specialized form of extracellular matrix (ECM)--has been recognized as an important regulator of cell behaviour, rather than just a structural feature of tissues. The BM mediates tissue compartmentalization and sends signals to epithelial cells about the external microenvironment. The BM is also an important structural and functional component of blood vessels, constituting an extracellular microenvironment sensor for endothelial cells and pericytes. Vascular BM components have recently been found to be involved in the regulation of tumour angiogenesis, making them attractive candidate targets for potential cancer therapies.
Collapse
Affiliation(s)
- Raghu Kalluri
- Center for Matrix Biology, Department of Medicine, Dana 514, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA.
| |
Collapse
|
11128
|
Dazard JE, Gal H, Amariglio N, Rechavi G, Domany E, Givol D. Genome-wide comparison of human keratinocyte and squamous cell carcinoma responses to UVB irradiation: implications for skin and epithelial cancer. Oncogene 2003; 22:2993-3006. [PMID: 12771951 DOI: 10.1038/sj.onc.1206537] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To gain insight into the transformation of epidermal cells into squamous carcinoma cells (SCC), we compared the response to ultraviolet B radiation (UVB) of normal human epidermal keratinocytes (NHEK) versus their transformed counterpart, SCC, using biological and molecular profiling. DNA microarray analyses (Affymetrix), approximately 12000 genes) indicated that the major group of upregulated genes in keratinocytes fall into three categories: (i). antiapoptotic and cell survival factors, including chemokines of the CXC/CC subfamilies (e.g. IL-8, GRO-1, -2, -3, SCYA20), growth factors (e.g. HB-EGF, CTGF, INSL-4), and proinflammatory mediators (e.g. COX-2, S100A9), (ii). DNA repair-related genes (e.g. GADD45, ERCC, BTG-1, Histones), and (iii). ECM proteases (MMP-1, -10). The major downregulated genes are DeltaNp63 and PUMILIO, two potential markers for the maintenance of keratinocyte stem cells. NHEK were found to be more resistant than SCC to UVB-induced apoptosis and this resistance was mainly because of the protection from cell death by secreted survival factors, since it can be transferred from NHEK to SCC cultures by the conditioned medium. Whereas the response of keratinocytes to UVB involved regulation of key checkpoint genes (p53, MDM2, p21(Cip1), DeltaNp63), as well as antiapoptotic and DNA repair-related genes - no or little regulation of these genes was observed in SCC. The effect of UVB on NHEK and SCC resulted in upregulation of 251 and 127 genes, respectively, and downregulation of 322 genes in NHEK and 117 genes in SCC. To further analyse these changes, we used a novel unsupervised coupled two-way clustering method that allowed the identification of groups of genes that clearly partitioned keratinocytes from SCC, including a group of genes whose constitutive expression levels were similar before UVB. This allowed the identification of discriminating genes not otherwise revealed by simple static comparison in the absence of UVB irradiation. The implication of the changes in gene profile in keratinocytes for epithelial cancer is discussed.
Collapse
Affiliation(s)
- Jean-Eudes Dazard
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
11129
|
Saharinen P, Alitalo K. Double target for tumor mass destruction. J Clin Invest 2003; 111:1277-80. [PMID: 12727916 PMCID: PMC154456 DOI: 10.1172/jci18539] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Pipsa Saharinen
- Molecular/Cancer Biology Laboratory, Haartman Institute, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
11130
|
Affiliation(s)
- Glenn Dranoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Dana 510E, 44 Binney Street, Boston, MA 02115, USA.
| |
Collapse
|
11131
|
|
11132
|
Abstract
Free radicals are ubiquitous in our body and are generated by normal physiological processes, including aerobic metabolism and inflammatory responses, to eliminate invading pathogenic microorganisms. Because free radicals can also inflict cellular damage, several defences have evolved both to protect our cells from radicals--such as antioxidant scavengers and enzymes--and to repair DNA damage. Understanding the association between chronic inflammation and cancer provides insights into the molecular mechanisms involved. In particular, we highlight the interaction between nitric oxide and p53 as a crucial pathway in inflammatory-mediated carcinogenesis.
Collapse
Affiliation(s)
- S Perwez Hussain
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892-4255, USA
| | | | | |
Collapse
|
11133
|
Blankenstein T, Qin Z. Chemical carcinogens as foreign bodies and some pitfalls regarding cancer immune surveillance. Adv Cancer Res 2003; 90:179-207. [PMID: 14710951 DOI: 10.1016/s0065-230x(03)90006-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Interferon-gamma-receptor (IFN-gammaR)-deficient mice are more susceptible to tumor induction by methylcholanthrene (MCA) in comparison to control littermates. The cellular source of IFNgamma is not known, but the absence of T cells does not significantly increase the incidence of MCA-induced tumors. However, it appears that the presence of T cells in combination with unknown, perhaps environmental, factors can decrease MCA-induced tumor incidence, indicating that IFN-gamma of unknown origin contributes to the protective response. The current knowledge of cancer biology, immune regulation, and tumor-promoting effects of inflammation are difficult to reconcile with the concept of immune surveillance against non-virus-associated cancer. Analysis of the primary MCA-treated mouse indicates, as one protective mechanism, a tissue repair response against MCA-induced damage, in the course of which MCA is encapsulated and persists for long time in tumor-free mice, termed foreign-body reaction. The protection from DNA damage could simultaneously diminish tissue injury and malignant transformation. We argue that inhibition of MCA-induced carcinogenesis is mechanistically different from tumor transplantation immunity and that a longer latency in MCA-treated mice is unlikely due to T cell-mediated tumor recognition and selection of less immunogenic variants. We discuss that the IFNgammaR-dependent mechanism against MCA is unrelated to the original concept of T cell-mediated immune surveillance and that the increased spontaneous tumor incidence observed in some immune-deficient mice is likely to be explained by opportunistic infection and tumor-promoting chronic inflammation.
Collapse
|
11134
|
Rook AH, Suchin KR, Kao DM, Yoo EK, Macey WH, DeNardo BJ, Bromely PG, Geng Y, Junkins-Hopkins JM, Lessin SR. Photopheresis: clinical applications and mechanism of action. J Investig Dermatol Symp Proc 1999; 4:85-90. [PMID: 10537015 DOI: 10.1038/sj.jidsp.5640188] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Photopheresis is a leukapheresis-based therapy that utilizes 8-methoxypsoralen and ultraviolet A irradiation. Photopheresis is currently available at approximately 150 medical centers worldwide. Recent evidence suggests that this therapy used as a single agent may significantly prolong life, as well as induce a 50%-75% response rate among individuals with advanced cutaneous T cell lymphoma (CTCL). Furthermore, a 20%-25% complete response rate with photopheresis alone, or in combination with other biologic response modifiers, has been obtained at our institution among patients with Sezary syndrome. These complete responses have been characterized by the complete disappearance of morphologically atypical cells from the skin and blood. The use of sensitive molecular techniques has also confirmed the sustained disappearance of the malignant T cell clone from the blood of patients with complete responses. In addition to the treatment of CTCL, numerous reports indicate that photopheresis is a potent agent in the therapy of acute allograft rejection among cardiac, lung, and renal transplant recipients. Chronic graft versus host disease also appears to be quite responsive to photopheresis therapy. Likewise, there may also be a potential role for photopheresis in the therapy of certain autoimmune diseases that are poorly responsive to conventional therapy. The immunologic basis for the responses of patients with these conditions is likely due to the induction of anticlonotypic immunity directed against pathogenic clones of T lymphocytes. Treatment-induced apoptotic death of pathogenic T cells and activation of antigen presenting cells are postulated to have important effects in this therapeutic process.
Collapse
Affiliation(s)
- A H Rook
- Department of Dermatology, The University of Pennsylvania, Philadelphia, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11135
|
Recurrence of renal disease after kidney transplantation in children: 24 years of experience in a single center. Clin Nephrol 1998; 250:268-72. [PMID: 9524777 DOI: 10.1097/sla.0b013e3181b16e24] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to assess the frequency and clinical implications of a recurrence of the original renal disease in children after kidney transplantation. Thus, the records of patients with immunological and metabolic diseases transplanted between 1970 and 1994 were retrospectively analyzed. There were 113 renal transplantations in 99 patients, who had the following original diseases: focal segmental glomerulosclerosis (FSGS), membrano-proliferative glomerulonephritis type I and type II (MPGN I, II), Henoch-Schoenlein nephritis, IgA-nephropathy, hemolytic uremic syndrome (HUS) and hyperoxaluria type I (PH I) and other rare diseases. Recurrences were observed in FSGS, MPGN II, HUS and PH I but not in the other diseases. In FSGS, the recurrence rate was 20% with graft failure in 5 of 6 grafts. No specific risk factors for recurrent FSGS could be determined. In MPGN II, the recurrence was 60% but the loss of grafts occurred at the same rate as in the non-recurrence group. In HUS, recurrence was seen in 4 out of 24 renal grafts (16.6%) with subsequent graft loss in all cases. All cases had suffered from an atypical HUS. PH I recurred in 4 of 5 allografts with graft loss in all patients. The remaining graft was transplanted after a liver transplantation and graft function was well preserved for 4 years. We confirm that the risk of recurrence with loss of the graft is high in a certain group of renal diseases. In these the indication for transplantation, particularly with living related donor kidneys, needs special evaluation. A better understanding of the pathomechanism of the diseases should lead to prevention of recurrence, as in PH I in which a liver transplant is now the primary option.
Collapse
|
11136
|
Kundu JK, Surh YJ. [A rare cause of neonatal exudative enteropathy: congenital Langerhans cell histiocytosis (histiocytosis X)]. Mutat Res 1992; 591:123-46. [PMID: 16102784 DOI: 10.1016/j.mrfmmm.2005.04.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 04/12/2005] [Accepted: 04/13/2005] [Indexed: 01/09/2023]
Abstract
A case of Langerhans cell histiocytosis is reported in a neonate. Intestinal involvement was especially diffuse and severe, presenting as a protein-losing enteropathy secondary to massive mucosal infiltration by histiocytic cells. The infant died at the age of 3 1/2 months despite therapy with corticosteroids and vinblastine then etoposide and interferon. Such an outcome confirmed the severity of forms with neonatal onset and digestive involvement.
Collapse
Affiliation(s)
- Joydeb Kumar Kundu
- National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, Shinlim-dong, Kwanak-gu, Seoul 151-742, South Korea
| | | |
Collapse
|