1101
|
Elliott C, Zhou F, Spielmeyer W, Panstruga R, Schulze-Lefert P. Functional conservation of wheat and rice Mlo orthologs in defense modulation to the powdery mildew fungus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:1069-1077. [PMID: 12437305 DOI: 10.1094/mpmi.2002.15.10.1069] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Homologs of barley Mlo are found in syntenic positions in all three genomes of hexaploid bread wheat, Triticum aestivum, and in rice, Oryza sativa. Candidate wheat orthologs, designated TaMlo-A1, TaMlo-B1, and TaMlo-D1, encode three distinct but highly related proteins that are 88% identical to barley MLO and appear to originate from the three diploid ancestral genomes of wheat. TaMlo-B1 and the rice ortholog, OsMlo2, are able to complement powdery mildew-resistant barley mlo mutants at the single-cell level. Overexpression of TaMlo-B1 or barley Mlo leads to super-susceptibility to the appropriate powdery mildew formae speciales in both wild-type barley and wheat. Surprisingly, overexpression of either Mlo or TaMlo-B1 also mediates enhanced fungal development to tested inappropriate formae speciales. These results underline a regulatory role for MLO and its wheat and rice orthologs in a basal defense mechanism that can interfere with forma specialis resistance to powdery mildews.
Collapse
Affiliation(s)
- Candace Elliott
- The Sainsbury Laboratory, John Innes Centre, Norwich, United Kingdom
| | | | | | | | | |
Collapse
|
1102
|
Abstract
Plant architecture is species specific, indicating that it is under strict genetic control. Although it is also influenced by environmental conditions such as light, temperature, humidity and nutrient status, here we wish to focus only on the endogenous regulatory principles that control plant architecture. We summarise recent progress in the understanding of the basic patterning mechanisms involved in the regulation of leaf arrangement, the genetic regulation of meristem determinacy, i.e. the decision to stop or continue growth, and the control of branching during vegetative and generative development. Finally, we discuss the basis of leaf architecture and the role of cell division and cell growth in morphogenesis.
Collapse
|
1103
|
Ikeda A, Sonoda Y, Vernieri P, Perata P, Hirochika H, Yamaguchi J. The slender rice mutant, with constitutively activated gibberellin signal transduction, has enhanced capacity for abscisic acid level. PLANT & CELL PHYSIOLOGY 2002; 43:974-979. [PMID: 12354914 DOI: 10.1093/pcp/pcf115] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The slender rice (slr1-1) mutant, carrying a lethal and recessive single mutation, has a constitutive gibberellin (GA)-response phenotype and behaves as if it were saturated with GAs [Ikeda et al. (2001) Plant Cell 13, 999]. The SLR1 gene, with sequence homology to members of the plant-specific GRAS gene family, is a mediator of the GA signal transduction process. In the slender rice, GA-inducible alpha-amylase was produced from the aleurone layer without applying GA. GA-independent alpha-amylase production in the mutant was inhibited by applying abscisic acid (ABA). Shoot elongation in the mutant was also suppressed by ABA, indicating that the slender rice responds normally to ABA. Interestingly, shoot ABA content was 10-fold higher in the mutant than in the wild type, while there was no difference in root ABA content. Expression of the Rab16A gene, which is known to be ABA inducible, was about 10-fold higher in shoots of the mutant than in those of the wild type. These results indicate that constitutive activation of the GA signal transduction pathway by the slr1-1 mutation promotes the endogenous ABA level.
Collapse
Affiliation(s)
- Akira Ikeda
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Kita-ku N10-W8, Sapporo, 060-0810 Japan
| | | | | | | | | | | |
Collapse
|
1104
|
Remington DL, Purugganan MD. GAI homologues in the Hawaiian silversword alliance (Asteraceae-Madiinae): molecular evolution of growth regulators in a rapidly diversifying plant lineage. Mol Biol Evol 2002; 19:1563-74. [PMID: 12200483 DOI: 10.1093/oxfordjournals.molbev.a004218] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Accelerated evolution of regulatory genes has been proposed as an explanation for decoupled rates of morphological and molecular evolution. The Hawaiian silversword alliance (Asteraceae-Madiinae) has evolved drastic differences in growth form, including rosette plants, cushion plants, shrubs, and trees, since its origin approximately 6 MYA. We have isolated genes in the DELLA subfamily of putative growth regulators from 13 taxa of Hawaiian and North American Madiinae. The Hawaiian taxa contain two copies of DaGAI that form separate clades within the Madiinae, consistent with an allotetraploid origin for the silversword alliance. DaGAI retains conserved features that have previously been identified in DELLA genes. Selective constraint in the Hawaiian DaGAI copies remains strong in spite of rapid growth form divergence in the silversword alliance, although the constraint was somewhat relaxed in the Hawaiian copies relative to the North American lineages. We failed to detect evidence for positive selection on individual codons. Notably, selective constraint remained especially strong in the gibberellin-responsive DELLA region for which the gene subfamily is named, which is truncated or deleted in all identified dwarf mutants in GAI homologues in different angiosperm species. In contrast with the coding region, however, approximately 900 bp of the upstream flanking region shows variable rates and patterns of evolution, which might reflect positive selection on regulatory regions.
Collapse
|
1105
|
Spielmeyer W, Ellis MH, Chandler PM. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci U S A 2002; 99:9043-8. [PMID: 12077303 PMCID: PMC124420 DOI: 10.1073/pnas.132266399] [Citation(s) in RCA: 529] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The introduction of semidwarf rice (Oryza sativa L.) led to record yield increases throughout Asia in the 1960s. The major semidwarfing allele, sd-1, is still extensively used in modern rice cultivars. The phenotype of sd-1 is consistent with dwarfism that results from a deficiency in gibberellin (GA) plant growth hormones. We propose that the semidwarf (sd-1) phenotype is the result of a deficiency of active GAs in the elongating stem arising from a defective 20-oxidase GA biosynthetic enzyme. Sequence data from the rice genome was combined with previous mapping studies to locate a putative GA 20-oxidase gene (Os20ox2) at the predicted map location of sd-1 on chromosome 1. Two independent sd-1 alleles contained alterations within Os20ox2: a deletion of 280 bp within the coding region of Os20ox2 was predicted to encode a nonfunctional protein in an indica type semidwarf (Doongara), whereas a substitution in an amino acid residue (Leu-266) that is highly conserved among dioxygenases could explain loss of function of Os20ox2 in a japonica semidwarf (Calrose76). The quantification of GAs in elongating stems by GC-MS showed that the initial substrate of GA 20-oxidase activity (GA53) accumulated, whereas the content of the major product (GA20) and of bioactive GA1 was lower in semidwarf compared with tall lines. We propose that the Os20ox2 gene corresponds to the sd-1 locus.
Collapse
Affiliation(s)
- Wolfgang Spielmeyer
- Division of Plant Industry, Commonwealth Scientific and Industrial Research Organization, GPO Box 1600, Canberra ACT 2601, Australia.
| | | | | |
Collapse
|
1106
|
Dunford RP, Yano M, Kurata N, Sasaki T, Huestis G, Rocheford T, Laurie DA. Comparative mapping of the barley Ppd-H1 photoperiod response gene region, which lies close to a junction between two rice linkage segments. Genetics 2002; 161:825-34. [PMID: 12072477 PMCID: PMC1462131 DOI: 10.1093/genetics/161.2.825] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Comparative mapping of cereals has shown that chromosomes of barley, wheat, and maize can be described in terms of rice "linkage segments." However, little is known about marker order in the junctions between linkage blocks or whether this will impair comparative analysis of major genes that lie in such regions. We used genetic and physical mapping to investigate the relationship between the distal part of rice chromosome 7L, which contains the Hd2 heading date gene, and the region of barley chromosome 2HS containing the Ppd-H1 photoperiod response gene, which lies near the junction between rice 7 and rice 4 linkage segments. RFLP markers were mapped in maize to identify regions that might contain Hd2 or Ppd-H1 orthologs. Rice provided useful markers for the Ppd-H1 region but comparative mapping was complicated by loss of colinearity and sequence duplications that predated the divergence of rice, maize, and barley. The sequences of cDNA markers were used to search for homologs in the Arabidopsis genome. Homologous sequences were found for 13 out of 16 markers but they were dispersed in Arabidopsis and did not identify any candidate equivalent region. The implications of the results for comparative trait mapping in junction regions are discussed.
Collapse
Affiliation(s)
- Roy P Dunford
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
1107
|
Swain SM, Tseng TS, Thornton TM, Gopalraj M, Olszewski NE. SPINDLY is a nuclear-localized repressor of gibberellin signal transduction expressed throughout the plant. PLANT PHYSIOLOGY 2002; 129:605-15. [PMID: 12068105 PMCID: PMC161687 DOI: 10.1104/pp.020002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2002] [Revised: 02/08/2002] [Accepted: 02/26/2002] [Indexed: 05/18/2023]
Abstract
SPY (SPINDLY) encodes a putative O-linked N-acetyl-glucosamine transferase that is genetically defined as a negatively acting component of the gibberellin (GA) signal transduction pathway. Analysis of Arabidopsis plants containing a SPY::GUS reporter gene reveals that SPY is expressed throughout the life of the plant and in most plant organs examined. In addition to being expressed in all organs where phenotypes due to spy mutations have been reported, SPY::GUS is expressed in the root. Examination of the roots of wild-type, spy, and gai plants revealed phenotypes indicating that SPY and GAI play a role in root development. A second SPY::GUS reporter gene lacking part of the SPY promoter was inactive, suggesting that sequences in the first exon and/or intron are required for detectable expression. Using both subcellular fractionation and visualization of a SPY-green fluorescent protein fusion protein that is able to rescue the spy mutant phenotype, the majority of SPY protein was shown to be present in the nucleus. This result is consistent with the nuclear localization of other components of the GA response pathway and suggests that SPY's role as a negative regulator of GA signaling involves interaction with other nuclear proteins and/or O-N-acetyl-glucosamine modification of these proteins.
Collapse
Affiliation(s)
- Stephen M Swain
- Department of Plant Biology and Plant Molecular Genetics Institute, University of Minnesota, St. Paul, MN 55108, USA.
| | | | | | | | | |
Collapse
|
1108
|
Abstract
The potential of genetically modified (GM) crops to transfer foreign genes through pollen to related plant species has been cited as an environmental concern. Until more is known concerning the environmental impact of novel genes on indigenous crops and weeds, practical and regulatory considerations will likely require the adoption of gene-containment approaches for future generations of GM crops. Most molecular approaches with potential for controlling gene flow among crops and weeds have thus far focused on maternal inheritance, male sterility, and seed sterility. Several other containment strategies may also prove useful in restricting gene flow, including apomixis (vegetative propagation and asexual seed formation), cleistogamy (self-fertilization without opening of the flower), genome incompatibility, chemical induction/deletion of transgenes, fruit-specific excision of transgenes, and transgenic mitigation (transgenes that compromise fitness in the hybrid). As yet, however, no strategy has proved broadly applicable to all crop species, and a combination of approaches may prove most effective for engineering the next generation of GM crops.
Collapse
Affiliation(s)
- Henry Daniell
- University of Central Florida, Department of Molecular Biology and Microbiology, 12722 Research Parkway, Orlando FL 32826-3227, USA.
| |
Collapse
|
1109
|
Gubler F, Chandler PM, White RG, Llewellyn DJ, Jacobsen JV. Gibberellin signaling in barley aleurone cells. Control of SLN1 and GAMYB expression. PLANT PHYSIOLOGY 2002; 129:191-200. [PMID: 12011350 PMCID: PMC155883 DOI: 10.1104/pp.010918] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2001] [Revised: 11/15/2001] [Accepted: 01/20/2002] [Indexed: 05/18/2023]
Abstract
We have previously identified GAMYB, a gibberellin (GA)-regulated transcriptional activator of alpha-amylase gene expression, in aleurone cells of barley (Hordeum vulgare). To examine the regulation of GAMYB expression, we describe the use of nuclear run-on experiments to show that GA causes a 2-fold increase in the rate of GAMYB transcription and that the effect of GA can be blocked by abscisic acid (ABA). To identify GA-signaling components that regulate GAMYB expression, we examined the role of SLN1, a negative regulator of GA signaling in barley. SLN1, which is the product of the Sln1 (Slender1) locus, is necessary for repression of GAMYB in barley aleurone cells. The activity of SLN1 in aleurone cells is regulated posttranslationally. SLN1 protein levels decline rapidly in response to GA before any increase in GAMYB levels. Green fluorescent protein-SLN1 fusion protein was targeted to the nucleus of aleurone protoplasts and disappeared in response to GA. Evidence from a dominant dwarf mutant at Sln1, and from the gse1 mutant (that affects GA "sensitivity"), indicates that GA acts by regulating SLN1 degradation and not translation. Mutation of the DELLA region of SLN1 results in increased protein stability in GA-treated layers, indicating that the DELLA region plays an important role in GA-induced degradation of SLN1. Unlike GA, ABA had no effect on SLN1 stability, confirming that ABA acts downstream of SLN1 to block GA signaling.
Collapse
Affiliation(s)
- Frank Gubler
- Commonwealth Scientific and Industrial Research Organization, Plant Industry, G.P.O. Box 1600, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | | | |
Collapse
|
1110
|
Chandler PM, Marion-Poll A, Ellis M, Gubler F. Mutants at the Slender1 locus of barley cv Himalaya. Molecular and physiological characterization. PLANT PHYSIOLOGY 2002; 129:181-90. [PMID: 12011349 PMCID: PMC155882 DOI: 10.1104/pp.010917] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2001] [Revised: 11/15/2001] [Accepted: 01/20/2002] [Indexed: 05/18/2023]
Abstract
A dominant dwarf mutant of barley (Hordeum vulgare) that resembles dominant gibberellin (GA) "-insensitive" or "-nonresponsive" mutants in other species is described. alpha-Amylase production by endosperm half-grains of the mutant required GA3 at concentrations about 100 times that of the WT. The mutant showed only a slight growth response to GA3, even at very high concentrations. However, when additionally dwarfed, growth rate responded to GA3 over the normal concentration range, although only back to the original (dwarf) elongation rate. Genetic studies indicated that the dominant dwarf locus was either closely linked or identical to the Sln1 (Slender1) locus. A barley sequence related to Arabidopsis GAI/RGA was isolated, and shown to represent the Sln1 locus by the analysis of sln1 mutants. The dominant dwarf mutant was also altered in this sequence, indicating that it too is an allele at Sln1. Thus, mutations at Sln1 generate plants of radically different phenotypes; either dwarfs that are largely dominant and GA "-insensitive/-nonresponsive," or the recessive slender types in which GA responses appear to be constitutive. Immunoblotting studies showed that in growing leaves, SLN1 protein localized almost exclusively to the leaf elongation zone. In mutants at the Sln1 locus, there were differences in both the abundance and distribution of SLN1 protein, and large changes in the amounts of bioactive GAs, and of their metabolic precursors and catabolites. These results suggest that there are dynamic interactions between SLN1 protein and GA content in determining leaf elongation rate.
Collapse
Affiliation(s)
- Peter Michael Chandler
- Commonwealth Scientific and Industrial Research Organization, Plant Industry, G.P.O. Box 1600, Canberra, Australian Capitol Territory 2601, Australia.
| | | | | | | |
Collapse
|
1111
|
Ellis RP, Forster BP, Gordon DC, Handley LL, Keith RP, Lawrence P, Meyer R, Powell W, Robinson D, Scrimgeour CM, Young G, Thomas WTB. Phenotype/genotype associations for yield and salt tolerance in a barley mapping population segregating for two dwarfing genes. JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:1163-76. [PMID: 11971927 DOI: 10.1093/jexbot/53.371.1163] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Barley traits related to salt tolerance are mapped in a population segregating for a dwarfing gene associated with salt tolerance. Twelve quantitative trait loci (QTLs) were detected for seven seedling traits in doubled haploids from the spring barley cross Derkado x B83-12/21/5 when given saline treatment in hydroponics. The location of QTLs for seedling growth stage (leaf appearance rate), stem weight prior to elongation, and tiller number are reported for the first time. In addition, four QTLs were found for the mature plant traits grain nitrogen and plot yield. In total, seven QTLs are co-located with the dwarfing genes sdw1, on chromosome 3H, and ari-e.GP, on chromosome 5H, including seedling leaf response (SGa) to gibberellic acid (GA(3)). QTLs controlling the growth of leaves (GS2) on chromosomes 2H and 3H and emergence of tillers (TN2) and grain yield were independent of the dwarfing genes. Field trials were grown in eastern Scotland and England to estimate yield and grain composition. A genetic map was used to compare the positions of QTLs for seedling traits with the location of QTLs for the mature plant traits. The results are discussed in relation to the study of barley physiology and the location of genes for dwarf habit and responses to GA.
Collapse
Affiliation(s)
- R P Ellis
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1112
|
Boss PK, Thomas MR. Association of dwarfism and floral induction with a grape 'green revolution' mutation. Nature 2002; 416:847-50. [PMID: 11976683 DOI: 10.1038/416847a] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The transition from vegetative to reproductive growth is an essential process in the life cycle of plants. Plant floral induction pathways respond to both environmental and endogenous cues and much has been learnt about these genetic pathways by studying mutants of Arabidopsis. Gibberellins (GAs) are plant growth regulators important in many aspects of plant growth and in Arabidopsis they promote flowering. Here we provide genetic evidence that GAs inhibit flowering in grapevine. A grapevine dwarf mutant derived from the L1 cell layer of the champagne cultivar Pinot Meunier produces inflorescences along the length of the shoot where tendrils are normally formed. The mutated gene associated with the phenotype is a homologue of the wheat 'green revolution' gene Reduced height-1 (ref. 6) and the Arabidopsis gene GA insensitive (GAI). The conversion of tendrils to inflorescences in the mutant demonstrates that the grapevine tendril is a modified inflorescence inhibited from completing floral development by GAs.
Collapse
Affiliation(s)
- Paul K Boss
- CSIRO Plant Industry and Cooperative Rsearch Centre for Viticulture, Glen Osmond, Australia
| | | |
Collapse
|
1113
|
Abstract
Genetic mapping and determination of the organization of the wheat genome are changing the wheat-breeding process. New initiatives to analyze the expressed portion of the wheat genome and structural analysis of the genomes of Arabidopsis and rice are increasing our knowledge of the genes that are linked to key agronomically important traits.
Collapse
Affiliation(s)
- Michael Francki
- Department of Agriculture, Crop Improvement Institute, Locked Bag No 4,Bentley WA 6983, Australia.
| | | |
Collapse
|
1114
|
Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 2002; 416:701-2. [PMID: 11961544 DOI: 10.1038/416701a] [Citation(s) in RCA: 753] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The chronic food shortage that was feared after the rapid expansion of the world population in the 1960s was averted largely by the development of a high-yielding semi-dwarf variety of rice known as IR8, the so-called rice 'green revolution'. The short stature of IR8 is due to a mutation in the plant's sd1 gene, and here we identify this gene as encoding an oxidase enzyme involved in the biosynthesis of gibberellin, a plant growth hormone. Gibberellin is also implicated in green-revolution varieties of wheat, but the reduced height of those crops is conferred by defects in the hormone's signalling pathway.
Collapse
Affiliation(s)
- A Sasaki
- Bioscience Center, Nagoya University, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1115
|
Abstract
With rapid world population growth and declining availability of fresh water and arable land, a new technology is urgently needed to enhance agricultural productivity. Recent discoveries in the field of crop transgenics clearly demonstrate the great potential of this technology for increasing food production and improving food quality while preserving the environment for future generations. In this review, we briefly discuss some of the recent achievements in crop improvement that have been made using gene transfer technology.
Collapse
Affiliation(s)
- Y Li
- Department of Plant Science, University of Connecticut, Storrs, CT 06269, USA.
| | | | | | | |
Collapse
|
1116
|
Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 2002; 296:92-100. [PMID: 11935018 DOI: 10.1126/science.1068275] [Citation(s) in RCA: 1859] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The genome of the japonica subspecies of rice, an important cereal and model monocot, was sequenced and assembled by whole-genome shotgun sequencing. The assembled sequence covers 93% of the 420-megabase genome. Gene predictions on the assembled sequence suggest that the genome contains 32,000 to 50,000 genes. Homologs of 98% of the known maize, wheat, and barley proteins are found in rice. Synteny and gene homology between rice and the other cereal genomes are extensive, whereas synteny with Arabidopsis is limited. Assignment of candidate rice orthologs to Arabidopsis genes is possible in many cases. The rice genome sequence provides a foundation for the improvement of cereals, our most important crops.
Collapse
Affiliation(s)
- Stephen A Goff
- Torrey Mesa Research Institute, Syngenta, 3115 Merryfield Row, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1117
|
Riechmann JL. Transcriptional regulation: a genomic overview. THE ARABIDOPSIS BOOK 2002; 1:e0085. [PMID: 22303220 PMCID: PMC3243377 DOI: 10.1199/tab.0085] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The availability of the Arabidopsis thaliana genome sequence allows a comprehensive analysis of transcriptional regulation in plants using novel genomic approaches and methodologies. Such a genomic view of transcription first necessitates the compilation of lists of elements. Transcription factors are the most numerous of the different types of proteins involved in transcription in eukaryotes, and the Arabidopsis genome codes for more than 1,500 of them, or approximately 6% of its total number of genes. A genome-wide comparison of transcription factors across the three eukaryotic kingdoms reveals the evolutionary generation of diversity in the components of the regulatory machinery of transcription. However, as illustrated by Arabidopsis, transcription in plants follows similar basic principles and logic to those in animals and fungi. A global view and understanding of transcription at a cellular and organismal level requires the characterization of the Arabidopsis transcriptome and promoterome, as well as of the interactome, the localizome, and the phenome of the proteins involved in transcription.
Collapse
Affiliation(s)
- José Luis Riechmann
- Mendel Biotechnology, 21375 Cabot Blvd., Hayward, CA 94545, USA
- California Institute of Technology, Division of Biology 156-29, Pasadena, CA 91125
| |
Collapse
|
1118
|
Lee S, Cheng H, King KE, Wang W, He Y, Hussain A, Lo J, Harberd NP, Peng J. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev 2002; 16:646-58. [PMID: 11877383 PMCID: PMC155355 DOI: 10.1101/gad.969002] [Citation(s) in RCA: 419] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The germination of Arabidopsis seeds is promoted by gibberellin (GA). Arabidopsis GAI, and RGA are genes encoding key GA signal-transduction components (GAI and RGA) that mediate GA regulation of stem elongation. The Arabidopsis genome contains two further genes, RGL1 and RGL2, that encode proteins (RGL1 and RGL2) that are closely related to GAI and RGA. Here, we show that RGL2 regulates seed germination in response to GA, and that RGL1, GAI, and RGA do not. In addition, we show that RGL2 transcript levels rise rapidly following seed imbibition, and then decline rapidly as germination proceeds. In situ GUS staining revealed that RGL2 expression in imbibed seeds is restricted to elongating regions of pre-emergent and recently emerged radicles. These observations indicate that RGL2 is a negative regulator of GA responses that acts specifically to control seed germination rather than stem elongation. Furthermore, as RGL2 expression is imbibition inducible, RGL2 may function as an integrator of environmental and endogenous cues to control seed germination.
Collapse
Affiliation(s)
- Sorcheng Lee
- Institute of Molecular Agrobiology, National University of Singapore, Singapore 117604
| | | | | | | | | | | | | | | | | |
Collapse
|
1119
|
Roberts JA, Elliott KA, Gonzalez-Carranza ZH. Abscission, dehiscence, and other cell separation processes. ANNUAL REVIEW OF PLANT BIOLOGY 2002; 53:131-58. [PMID: 12221970 DOI: 10.1146/annurev.arplant.53.092701.180236] [Citation(s) in RCA: 268] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cell separation is a critical process that takes place throughout the life cycle of a plant. It enables roots to emerge from germinating seeds, cotyledons, and leaves to expand, anthers to dehisce, fruit to ripen, and organs to be shed. The focus of this review is to examine how processes such as abscission and dehiscence are regulated and the ways new research strategies are helping us to understand the mechanisms involved in bringing about a reduction in cell-to-cell adhesion. The opportunities for using this information to manipulate cell separation for the benefit of agriculture and horticulture are evaluated.
Collapse
Affiliation(s)
- Jeremy A Roberts
- Division of Plant Science, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leics LE12 5RD, United Kingdom.
| | | | | |
Collapse
|
1120
|
Theißen G. Key Genes of Crop Domestication and Breeding: Molecular Analyses. PROGRESS IN BOTANY 2002. [DOI: 10.1007/978-3-642-56276-1_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
1121
|
Abstract
Naturally occurring variation among wild relatives of cultivated crops is an under-exploited resource in plant breeding. Here, I argue that exotic libraries, which consist of marker-defined genomic regions taken from wild species and introgressed onto the background of elite crop lines, provide plant breeders with an important opportunity to improve the agricultural performance of modern crop varieties. These libraries can also act as reagents for the discovery and characterization of genes that underlie traits of agricultural value.
Collapse
Affiliation(s)
- D Zamir
- Otto Warburg Center for Agricultural Biotechnology, Faculty of Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel.
| |
Collapse
|
1122
|
Dill A, Jung HS, Sun TP. The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci U S A 2001; 98:14162-7. [PMID: 11717468 PMCID: PMC61185 DOI: 10.1073/pnas.251534098] [Citation(s) in RCA: 318] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RGA and GAI are homologous genes that encode putative transcriptional regulators that repress gibberellin (GA) signaling in Arabidopsis. Previously we showed that the green fluorescent protein (GFP)-RGA fusion protein is localized to the nucleus in transgenic Arabidopsis, and expression of this fusion protein rescues the rga null mutation. The GA signal seems to derepress the GA response pathway by degrading the repressor protein RGA. The GA-insensitive, semidominant, semidwarf gai-1 mutant encodes a mutant protein with a 17-amino acid deletion within the DELLA domain of GAI. It was hypothesized that this mutation turns the gai protein into a constitutive repressor of GA signaling. Because the sequences missing in gai-1 are identical between GAI and RGA, we tested whether an identical mutation (rga-Delta 17) in the RGA gene would confer a phenotype similar to gai-1. We demonstrated that expression of rga-Delta 17 or GFP-(rga-Delta 17) under the control of the RGA promoter caused a GA-unresponsive severe dwarf phenotype in transgenic Arabidopsis. Analysis of the mRNA levels of a GA biosynthetic gene, GA4, showed that the feedback control of GA biosynthesis in these transgenic plants was less responsive to GA than that in wild type. Immunoblot and confocal microscopy analyses indicated that rga-Delta17 and GFP-(rga-Delta 17) proteins were resistant to degradation after GA application. Our results illustrate that the DELLA domain in RGA plays a regulatory role in GA-induced degradation of RGA. Deletion of this region stabilizes the rga-Delta 17 mutant protein, and regardless of the endogenous GA status rga-Delta 17 becomes a constitutively active repressor of GA signaling.
Collapse
Affiliation(s)
- A Dill
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
1123
|
Fridborg I, Kuusk S, Robertson M, Sundberg E. The Arabidopsis protein SHI represses gibberellin responses in Arabidopsis and barley. PLANT PHYSIOLOGY 2001. [PMID: 11706176 DOI: 10.1104/pp.010388] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The current model of gibberellin (GA) signal transduction is based on a derepressible system and a number of candidate negative regulators have been identified in Arabidopsis. We previously have reported the identification of the Arabidopsis gene SHORT INTERNODES (SHI) that causes suppression of GA responses when constitutively activated. In this paper, we show by using reporter gene analysis that the SHI gene is expressed in young organs, e.g. shoot apices and root tips. The model predicts a suppressor of GA responses to be active in these tissues to prevent premature growth or development. To study the effect of SHI on GA signaling, we used a functional assay that measures effects of signaling components on a well-defined GA response; the up-regulation of alpha-amylase in barley (Hordeum vulgare) aleurones in response to GA treatment. We found that SHI was able to specifically block the activity of a high-isoelectric point alpha-amylase promoter following GA(3) treatment, which further supports that SHI is a suppressor of GA responses. We have identified two putative loss-of-function insertion alleles of SHI and lines homozygous for either of the new alleles show no phenotypic deviations from wild type. Because SHI belongs to a gene family consisting of nine members, we suggest that SHI and the SHI-related genes are functionally redundant. We also show that a functional ERECTA allele is able to partly suppress the dwarfing effect of the shi gain-of-function mutation, suggesting that the erecta mutation harbored by the Landsberg erecta ecotype is an enhancer of the shi dwarf phenotype.
Collapse
Affiliation(s)
- I Fridborg
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, Villavägen 6, S-752 36 Uppsala, Sweden
| | | | | | | |
Collapse
|
1124
|
King KE, Moritz T, Harberd NP. Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics 2001; 159:767-76. [PMID: 11606551 PMCID: PMC1461813 DOI: 10.1093/genetics/159.2.767] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The growth of Arabidopsis thaliana is quantitatively regulated by the phytohormone gibberellin (GA) via two closely related nuclear GA-signaling components, GAI and RGA. Here we test the hypothesis that GAI and RGA function as "GA-derepressible repressors" of plant growth. One prediction of this hypothesis is that plants lacking GAI and RGA do not require GA for normal stem growth. Analysis of GA-deficient mutants lacking GAI and RGA confirms this prediction and suggests that in the absence of GAI and RGA, "growth" rather than "no growth" is the default state of plant stems. The function of the GA-signaling system is thus to act as a control system regulating the amount of this growth. We also demonstrate that the GA dose dependency of hypocotyl elongation is altered in mutants lacking GAI and RGA and propose that increments in GAI/RGA repressor function can explain the quantitative nature of GA responses.
Collapse
Affiliation(s)
- K E King
- Department of Molecular Genetics, John Innes Centre, Colney Lane, Norwich, Norfolk NR47UJ, United Kingdom
| | | | | |
Collapse
|
1125
|
Dill A, Sun T. Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 2001; 159:777-85. [PMID: 11606552 PMCID: PMC1461816 DOI: 10.1093/genetics/159.2.777] [Citation(s) in RCA: 316] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RGA and GAI are negative regulators of the gibberellin (GA) signal transduction pathway in Arabidopsis thaliana. These genes may have partially redundant functions because they are highly homologous, and plants containing single null mutations at these loci are phenotypically similar to wild type. Previously, rga loss-of-function mutations were shown to partially suppress defects of the GA-deficient ga1-3 mutant. Phenotypes rescued include abaxial trichome initiation, rosette radius, flowering time, stem elongation, and apical dominance. Here we present work showing that the rga-24 and gai-t6 null mutations have a synergistic effect on plant growth. Although gai-t6 alone has little effect, when combined with rga-24, they completely rescued the above defects of ga1-3 to wild-type or GA-overdose phenotype. However, seed germination and flower development defects were not restored. Additionally, rga-24 and rga-24/gai-t6 but not gai-t6 alone caused increased feedback inhibition of expression of a GA biosynthetic gene in both the ga1-3 and wild-type backgrounds. These results demonstrate that RGA and GAI have partially redundant functions in maintaining the repressive state of the GA-signaling pathway, but RGA plays a more dominant role than GAI. Removing both RGA and GAI function allows for complete derepression of many aspects of GA signaling.
Collapse
Affiliation(s)
- A Dill
- Developmental, Cell and Molecular Biology Group, Department of Biology, Duke University, Durham, North Carolina 27708-1000, USA
| | | |
Collapse
|
1126
|
Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 2001; 28:286-9. [PMID: 11431702 DOI: 10.1038/90135] [Citation(s) in RCA: 571] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Historically, association tests have been used extensively in medical genetics, but have had virtually no application in plant genetics. One obstacle to their application is the structured populations often found in crop plants, which may lead to nonfunctional, spurious associations. In this study, statistical methods to account for population structure were extended for use with quantitative variation and applied to our evaluation of maize flowering time. Mutagenesis and quantitative trait locus (QTL) studies suggested that the maize gene Dwarf8 might affect the quantitative variation of maize flowering time and plant height. The wheat orthologs of this gene contributed to the increased yields seen in the 'Green Revolution' varieties. We used association approaches to evaluate Dwarf8 sequence polymorphisms from 92 maize inbred lines. Population structure was estimated using a Bayesian analysis of 141 simple sequence repeat (SSR) loci. Our results indicate that a suite of polymorphisms associate with differences in flowering time, which include a deletion that may alter a key domain in the coding region. The distribution of nonsynonymous polymorphisms suggests that Dwarf8 has been a target of selection.
Collapse
Affiliation(s)
- J M Thornsberry
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | |
Collapse
|
1127
|
Swain SM, Tseng TS, Olszewski NE. Altered expression of SPINDLY affects gibberellin response and plant development. PLANT PHYSIOLOGY 2001; 126:1174-85. [PMID: 11457967 PMCID: PMC116473 DOI: 10.1104/pp.126.3.1174] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2000] [Revised: 01/24/2001] [Accepted: 03/12/2001] [Indexed: 05/19/2023]
Abstract
Gibberellins (GAs) are plant hormones with diverse roles in plant growth and development. SPINDLY (SPY) is one of several genes identified in Arabidopsis that are involved in GA response and it is thought to encode an O-GlcNAc transferase. Genetic analysis suggests that SPY negatively regulates GA response. To test the hypothesis that SPY acts specifically as a negatively acting component of GA signal transduction, spy mutants and plants containing a 35S:SPY construct have been examined. A detailed investigation of the spy mutant phenotype suggests that SPY may play a role in plant development beyond its role in GA signaling. Consistent with this suggestion, the analysis of spy er plants suggests that the ERECTA (ER) gene, which has not been implicated as having a role in GA signaling, appears to enhance the non-GA spy mutant phenotypes. Arabidopsis plants containing a 35S:SPY construct possess reduced GA response at seed germination, but also possess phenotypes consistent with increased GA response, although not identical to spy mutants, during later vegetative and reproductive development. Based on these results, the hypothesis that SPY is specific for GA signaling is rejected. Instead, it is proposed that SPY is a negative regulator of GA response that has additional roles in plant development.
Collapse
Affiliation(s)
- S M Swain
- Department of Plant Biology and Plant Molecular Genetics Institute, University of Minnesota, St. Paul, Minnesota 55108, USA.
| | | | | |
Collapse
|
1128
|
Vivian-Smith A, Luo M, Chaudhury A, Koltunow A. Fruit development is actively restricted in the absence of fertilization in Arabidopsis. Development 2001; 128:2321-31. [PMID: 11493551 DOI: 10.1242/dev.128.12.2321] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Flowering plants usually require fertilization to form fruit and seed and to initiate floral organ abscission in structures that do not contribute to the fruit. An Arabidopsis mutant that initiates seedless fruit without fertilization (fwf) or parthenocarpy was isolated and characterized to understand the factors regulating the transition between the mature flower and the initiation of seed and fruit development. The fwf mutant is fertile and has normal plant growth and stature. It sets fertile seed following self-pollination and fertilization needs to be prevented to observe parthenocarpy. The initiation of parthenocarpic siliques (fruit) was found to be dependent upon carpel valve identity conferred by FRUITFULL but was independent of the perception of gibberellic acid, shown to stimulate parthenocarpy in Arabidopsis following exogenous application. The recessive nature of fwf is consistent with the involvement of FWF in processes that inhibit fruit growth and differentiation in the absence of fertilization. The enhanced cell division and expansion in the silique mesocarp layer, and increased lateral vascular bundle development imply FWF has roles also in modulating silique growth post-fertilization. Parthenocarpy was inhibited by the presence of other floral organs suggesting that both functional FWF activity and inter-organ communication act in concert to prevent fruit initiation in the absence of fertilization.
Collapse
Affiliation(s)
- A Vivian-Smith
- Department of Plant Science, Waite Campus, University of Adelaide, P.M.B., 1 Glen Osmond, South Australia 5064, Australia
| | | | | | | |
Collapse
|
1129
|
Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA. Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 26:573-82. [PMID: 11489171 DOI: 10.1046/j.1365-313x.2001.01055.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants unable to synthesize or perceive brassinosteroids (BRs) are dwarfs. Arabidopsis dwf4 was shown to be defective in a steroid 22alpha hydroxylase (CYP90B1) step that is the putative rate-limiting step in the BR biosynthetic pathway. To better understand the role of DWF4 in BR biosynthesis, transgenic Arabidopsis plants ectopically overexpressing DWF4 (AOD4) were generated, using the cauliflower mosaic virus 35S promoter, and their phenotypes were characterized. The hypocotyl length of both light- and dark-grown AOD4 seedlings was increased dramatically as compared to wild type. At maturity, inflorescence height increased >35% in AOD4 lines and >14% in tobacco DWF4 overexpressing lines (TOD4), relative to controls. The total number of branches and siliques increased more than twofold in AOD4 plants, leading to a 59% increase in the number of seeds produced. Analysis of endogenous BR levels in dwf4, Ws-2 and AOD4 revealed that dwf4 accumulated the precursors of the 22alpha-hydroxylation steps, whereas overexpression of DWF4 resulted in increased levels of downstream compounds relative to Ws-2, indicative of facilitated metabolic flow through the step. Both the levels of DWF4 transcripts and BR phenotypic effects were progressively increased in dwf4, wild-type and AOD4 plants, respectively. This suggests that it will be possible to control plant growth by engineering DWF4 transcription in plants.
Collapse
Affiliation(s)
- S Choe
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
1130
|
Richards DE, King KE, Ait-Ali T, Harberd NP. HOW GIBBERELLIN REGULATES PLANT GROWTH AND DEVELOPMENT: A Molecular Genetic Analysis of Gibberellin Signaling. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:67-88. [PMID: 11337392 DOI: 10.1146/annurev.arplant.52.1.67] [Citation(s) in RCA: 271] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gibberellins are hormones that control growth and a wide variety of other plant developmental processes. In recent years, significant progress has been made on the biochemistry of gibberellin biosynthesis and on the mechanisms by which gibberellin levels are regulated in plants. There have also been major advances in the understanding of gibberellin signaling, with several key genes being cloned. This review discusses our current understanding of gibberellin signaling, as seen from the perspective of molecular genetic analysis, and relates these observations to previous biochemical studies. In particular, we highlight an important conclusion of recent years: that GAI/RGA and orthologs play major roles in gibberellin signaling in diverse plant species, and that gibberellin probably stimulates growth by derepression of GAI/RGA.
Collapse
Affiliation(s)
- Donald E Richards
- Department of Molecular Genetics, John Innes Centre, Colney Lane, Norwich NR4 7UJ, United Kingdom; e-mail:
| | | | | | | |
Collapse
|
1131
|
Smilde WD, Halukova J, Sasaki T, Graner A. New evidence for the synteny of rice chromosome 1 and barley chromosome 3H from rice expressed sequence tags. Genome 2001. [DOI: 10.1139/g01-009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To provide improved access to the wealth of resources and genomic information that is presently being developed for rice a set of 88 rice expressed sequence tags (ESTs) previously mapped on rice chromosome 1 in the cross 'Nipponbare' × 'Kasalath' was used for comparative mapping in a cross of the barley cultivars 'Igri' and 'Franka'. As expected, most (89%) of the clones gave distinct banding patterns in barley of which about one-third was polymorphic between 'Igri' and 'Franka'. These polymorphisms were mapped, and most of these (56%) confirmed that rice chromosome 1 and barley chromosome 3H are syntenous. All single-copy markers identified conserved collinear positions, while markers with multiple copies did so in a few cases only. The markers that were not fitting in the collinear order were distributed randomly across the barley genome. The comparative maps of barley chromosome 3H and rice chromosome 1 comprise in total 26 common markers covering more than 95% of the genetic length of both chromosomes. A 30-fold reduction of recombination is seen around the barley centromere, and synteny may be interrupted in this region. However, the good overall synteny on a mesoscale (110 cM) justifies the use of rice as a platform for map-based cloning in barley.Key words: Oryza sativa, Hordeum vulgare, RFLP, synteny, comparative mapping.
Collapse
|
1132
|
Ballvora A, Pierre M, van den Ackerveken G, Schornack S, Rossier O, Ganal M, Lahaye T, Bonas U. Genetic mapping and functional analysis of the tomato Bs4 locus governing recognition of the Xanthomonas campestris pv. vesicatoria AvrBs4 protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:629-638. [PMID: 11332727 DOI: 10.1094/mpmi.2001.14.5.629] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Xanthomonas campestris pv. vesicatoria is the causal agent of bacterial spot disease on pepper (Capsicum spp.) and tomato (Lycopersicon spp.). Analysis of 17 different Lycopersicon accessions with avrBs4-expressing X. campestris pv. vesicatoria strains identified 15 resistant and two susceptible tomato genotypes. Genetic analysis revealed that AvrBs4 recognition in tomato is governed by a single locus, designated Bs4 (bacterial spot resistance locus no. 4). Amplified fragment length polymorphism and bulked DNA templates from resistant and susceptible plants were used to define a 2.6-cM interval containing the Bs4 locus. A standard tomato mapping population was employed to localize Bs4-linked markers on the short arm of chromosome 5. Investigation of X. campestris pv. vesicatoria hrp mutant strains revealed that AvrBs4 secretion and avirulence activity are hrp dependent. Agrobacterium-based delivery of the avrBs4 gene into tomato triggered a plant response that phenotypically resembled the hypersensitive response induced by avrBs4-expressing X. campestris pv. vesicatoria strains, suggesting symplastic perception of the avirulence protein. Mutations in the avrBs4 C-terminal nuclear localization signals (NLSs) showed that NLSs are dispensable for Bs4-mediated recognition. Our data suggest that tomato Bs4 and pepper Bs3 employ different recognition modes for detection of the highly homologous X. campestris pv. vesicatoria avirulence proteins AvrBs4 and AvrBs3.
Collapse
Affiliation(s)
- A Ballvora
- Centre National de la Recherche Scientifique, Institut des Sciences Végétales, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
1133
|
Abstract
Transgenic crops are very much in the news due to the increasing public debate on their acceptance. In the scientific community though, transgenic plants are proving to be powerful tools to study various aspects of plant sciences. The emerging scientific revolution sparked by genomics based technologies is producing enormous amounts of DNA sequence information that, together with plant transformation methodology, is opening up new experimental opportunities for functional genomics analysis. An overview is provided here on the use of transgenic technology for the functional analysis of plant genes in model plants and a link made to their utilization in transgenic crops. In transgenic plants, insertional mutagenesis using heterologous maize transposons or Agrobacterium mediated T-DNA insertions, have been valuable tools for the identification and isolation of genes that display a mutant phenotype. To discover functions of genes that do not display phenotypes when mutated, insertion sequences have been engineered to monitor or change the expression pattern of adjacent genes. These gene detector insertions can detect adjacent promoters, enhancers or gene exons and precisely reflect the expression pattern of the tagged gene. Activation tag insertions can mis-express the adjacent gene and confer dominant phenotypes that help bridge the phenotype gap. Employment of various forms of gene silencing technology broadens the scope of recovering knockout phenotypes for genes with redundant function. All these transgenic strategies describing gene-phenotype relationships can be addressed by high throughput reverse genetics methods that will help provide functions to the genes discovered by genome sequencing. The gene functions discovered by insertional mutagenesis and silencing strategies along with expression pattern analysis will provide an integrated functional genomics perspective and offer unique applications in transgenic crops.
Collapse
Affiliation(s)
- A Pereira
- Plant Research International, Wageningen, The Netherlands.
| |
Collapse
|
1134
|
Abstract
The vast commercial effort to utilize chemical and molecular tools to solve weed control problems has had a major impact on the basic biological sciences as well as benefits to agriculture, and the first generation of transgenic products has been successful, while somewhat crude. More sophisticated products are envisaged and expected. Biotechnologically-derived herbicide-resistant crops have been a considerable benefit, yet in some cases there is a risk that the same useful transgenes may introgress into related weeds, specifically the weeds that are hardest to control without such transgenic crops. Biotechnology can also be used to mitigate the risks. Molecular tools should be considered for weed control without the use of, or with less chemicals, whether by enhancing crop competitiveness with weeds for light, nutrients and water, or via allelochemicals. Biocontrol agents may become more effective as well as more safe when rendered hypervirulent yet non-spreading by biotechnology. There might be ways to disperse deleterious transposons throughout weed populations, obviating the need to modify the crops.
Collapse
Affiliation(s)
- J Gressel
- Plant Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
1135
|
Meier C, Bouquin T, Nielsen ME, Raventos D, Mattsson O, Rocher A, Schomburg F, Amasino RM, Mundy J. Gibberellin response mutants identified by luciferase imaging. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 25:509-19. [PMID: 11309141 DOI: 10.1046/j.1365-313x.2001.00980.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The gibberellin (GA) 20-oxidase encoded by Arabidopsis GA5 catalyzes the synthesis of active GAs. GA5 is a regulatory step in GA biosynthesis as GA5 mRNA levels are negatively regulated by its bioactive GA products. A fusion between the GA5 promoter and the firefly luciferase reporter (GA5-LUC) was shown to be similarly regulated, indicating GA feedback of GA5 occurs at the transcriptional level. The fidelity of the GA5-LUC reporter permitted a fusion genetic screen to identify mutants altered in transgene expression. This bioimaging screen identified two types of recessive mutants with increased LUC activity and apparent GA-related growth phenotypes, a dwarf (lue1) and two late flowering mutants (fpa1-3 and fpa1-4). Mutant progeny exhibited altered levels of LUC and of endogenous GA5 and other GA-regulated mRNAs. SSLP-based mapping localized lue1 to chromosome I near the ga2 locus, although complementation analyzes showed that lue1 is not allelic to ga2. Mapping and complementation analyzes showed that the late flowering mutants are allelic to fpa1. This provides genetic evidence for crosstalk between the autonomous and gibberellin-dependent flowering pathways.
Collapse
Affiliation(s)
- C Meier
- Department of Plant Physiology, Molecular Biology Institute, Copenhagen University, Oster Farimagsgade 2A, 1353 Copenhagen K, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
1136
|
Affiliation(s)
- M Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
1137
|
Gaut BS. Patterns of chromosomal duplication in maize and their implications for comparative maps of the grasses. Genome Res 2001; 11:55-66. [PMID: 11156615 PMCID: PMC311014 DOI: 10.1101/gr.160601] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The maize genome contains extensive chromosomal duplications that probably were produced by an ancient tetraploid event. Comparative cereal maps have identified at least 10 duplicated, or homologous, chromosomal regions within maize. However, the methods used to document chromosomal homologies from comparative maps are not statistical, and their criteria are often unclear. This paper describes the development of a simulation method to test for the statistical significance of marker colinearity between chromosomes, and the application of the method to a molecular map of maize. The method documents colinearity among 24 pairs of maize chromosomes, suggesting homology in maize is more complex than represented by comparative cereal maps. The results also reveal that 60%-82% of the genome has been retained in colinear regions and that as much as a third of the genome could be present in multiple copies. Altogether, the complex pattern of colinearity among maize chromosomes suggests that current comparative cereal maps do not adequately represent the evolution and organization of the maize genome.
Collapse
Affiliation(s)
- B S Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697-2525, USA.
| |
Collapse
|
1138
|
Affiliation(s)
- Mark Tester
- Department of Plant Sciences, University of Cambridge, Downing St, Cambridge CB2 3EA, UK (tel +44 1223333918; fax +44 1223333953; )
| |
Collapse
|
1139
|
Riechmann JL, Ratcliffe OJ. A genomic perspective on plant transcription factors. CURRENT OPINION IN PLANT BIOLOGY 2000; 3:423-34. [PMID: 11019812 DOI: 10.1016/s1369-5266(00)00107-2] [Citation(s) in RCA: 258] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Data from the Arabidopsis genome project suggest that more than 5% of the genes of this plant encode transcription factors. The necessity for the use of genomic analytical approaches becomes clear when it is considered that less than 10% of these factors have been genetically characterized. A variety of tools for functional genomic analyses in plants have been developed over the past few years. The availability of the full complement of Arabidopsis transcription factors, together with the results of recent studies that illustrate some of the challenges to their functional characterization, now provides the basic framework for future analyses of transcriptional regulation in plants.
Collapse
Affiliation(s)
- J L Riechmann
- Mendel Biotechnology, Hayward, California 94545, USA.
| | | |
Collapse
|
1140
|
Abstract
Recent studies using biochemical and genetic approaches have identified a number of components, including several negative regulators, of the gibberellin (GA) signal transduction pathway in higher plants. The basal state of GA signaling is likely to be repressive, and the GA signal seems to activate the pathway by de-repression to allow GA-stimulated growth and development.
Collapse
Affiliation(s)
- T Sun
- Department of Biology, Duke University, Durham, North Carolina 27708-1000, USA.
| |
Collapse
|
1141
|
Abstract
Recent advances in STAT signalling research include a better understanding of the roles of mammalian STAT proteins in cell proliferation and apoptosis, and of non-mammalian STAT proteins in morphogenesis. Two different ways in which STAT signalling pathways can interface with Smad signalling pathways significantly increasing combinatorial signalling possibilities, have also been described.
Collapse
Affiliation(s)
- J G Williams
- Department of Anatomy and Physiology, University of Dundee, Wellcome Trust Building Complex, Dow Street, DD1 5EH, Dundee, UK.
| |
Collapse
|
1142
|
Liu YG, Nagaki K, Fujita M, Kawaura K, Uozumi M, Ogihara Y. Development of an efficient maintenance and screening system for large-insert genomic DNA libraries of hexaploid wheat in a transformation-competent artificial chromosome (TAC) vector. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:687-695. [PMID: 10972894 DOI: 10.1046/j.1365-313x.2000.00827.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Three large-insert genomic DNA libraries of common wheat, Triticum aestivum cv. Chinese Spring, were constructed in a newly developed transformation-competent artificial chromosome (TAC) vector, pYLTAC17, which accepts and maintains large genomic DNA fragments stably in both Escherichia coli and Agrobacterium tumefaciens. The vector contains the cis sequence required for Agrobacterium-mediated gene transfer into grasses. The average insert sizes of the three genomic libraries were approximately 46, 65 and 120 kbp, covering three haploid genome equivalents. Genomic libraries were stored as frozen cultures in a 96-well format, each well containing approximately 300-600 colonies (12 plates for small library, four for medium-size library and four for large library). In each of the libraries, approximately 80% of the colonies harbored genomic DNA inserts of >50 kbp. TAC clones containing gene(s) of interest were identified by the pooled PCR technique. Once the target TAC clones were isolated, they could be immediately transferred into grass genomes with the Agrobacterium system. Five clones containing the thionin type I genes (single copy per genome), corresponding to each of the three genomes (A, B and D), were successfully selected by the pooled PCR method, in addition to an STS marker (aWG464; single copy per genome) and CAB (a multigene family). TAC libraries constructed as described here can be used to isolate genomic clones containing target genes, and to carry out genome walking for positional cloning.
Collapse
Affiliation(s)
- Y G Liu
- Genetic Engineering Laboratory, Biotechnology Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | | | | | | | | | | |
Collapse
|
1143
|
Abstract
GRAS is a recently discovered family of plant-specific proteins that play important regulatory roles in diverse aspects of plant development. Several of the motifs present in the GRAS proteins suggest that they function as transcription factors, although homology-searching programs have revealed no significant similarity to any non-plant proteins. Here we propose that the GRAS proteins are related to the Signal Transducers and Activators of Transcription (STAT) family of proteins. STATs are known in many non-plant species, and act as intracellular intermediaries between extracellular ligands and the transcription and activation of genes. Our hypothesis is that the GRAS proteins perform this function in plants, with mechanisms similar to those of the animal STATs. If true, this hypothesis has important implications for the evolution of phosphotyrosine based signal transduction systems in eukaryotic organisms. BioEssays 22:573-577, 2000.
Collapse
|
1144
|
Raventos D, Meier C, Mattsson O, Jensen AB, Mundy J. Fusion genetic analysis of gibberellin signaling mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 22:427-438. [PMID: 10849358 DOI: 10.1046/j.1365-313x.2000.00759.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A fusion genetic strategy was used to identify gibberellin (GA) signaling mutants in transgenic Arabidopsis expressing the beta-glucuronidase (GUS) and firefly luciferase (LUC) reporter genes under control of the GA-responsive GASA1 promoter. Initial analyses determined the spatial and temporal patterns of reporter expression, and showed that reporter induction by GA was antagonized by ABA. gamma-Irradiated M2 progeny with altered reporter activities were identified by LUC bioimaging followed by GUS assays and northern hybridization of the endogenous GASA1 mRNA. Genetic analysis showed that three mutants, which overexpressed both reporters and endogenous GASA1, were caused by recessive (goe1 and goe2, for GASA over-expressed) and semi-dominant (goe3) mutations at different loci. These mutants are altered in their sensitivity to GA and the GA biosynthetic inhibitor paclobutrazol, and in the expression of several GA signaling related genes.
Collapse
Affiliation(s)
- D Raventos
- Institute of Molecular Biology, Oester Farimagsgade 2A, 1353 Copenhagen K, Denmark
| | | | | | | | | |
Collapse
|
1145
|
Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 2000; 101:555-67. [PMID: 10850497 DOI: 10.1016/s0092-8674(00)80865-x] [Citation(s) in RCA: 746] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Asymmetric cell divisions play an important role in the establishment and propagation of the cellular pattern of plant tissues. The SHORT-ROOT (SHR) gene is required for the asymmetric cell division responsible for formation of ground tissue (endodermis and cortex) as well as specification of endodermis in the Arabidopsis root. We show that SHR encodes a putative transcription factor with homology to SCARECROW (SCR). From analyses of gene expression and cell identity in genetically stable and unstable alleles of shr, we conclude that SHR functions upstream of SCR and participates in a radial signaling pathway. Consistent with a regulatory role in radial patterning, ectopic expression of SHR results in supernumerary cell divisions and abnormal cell specification in the root meristem.
Collapse
Affiliation(s)
- Y Helariutta
- Department of Biology, New York University, New York 10003, USA
| | | | | | | | | | | | | | | |
Collapse
|
1146
|
Bolle C, Koncz C, Chua NH. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes Dev 2000. [DOI: 10.1101/gad.14.10.1269] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Light signaling via the phytochrome A (phyA) photoreceptor controls basic plant developmental processes including de-etiolation and hypocotyl elongation. We have identified a new Arabidopsismutant, pat (phytochrome Asignal transduction)1-1, which shows strongly reduced responses in continuous far-red light. Physiological and molecular data indicate that this mutant is disrupted at an early step of phyA signal transduction. The PAT1 gene encodes a cytoplasmic protein of 490 amino acids with sequence homologies to the plant-specific GRAS regulatory protein family. In the pat1-1mutant, a T-DNA insertion introduces a premature stop codon, which likely results in the production of a truncated PAT1 protein of 341 amino acids. The semidominant phenotype of this mutant can be recapitulated by overexpression of an appropriately truncatedPAT1 gene in the wild type. The results indicate that the truncated PAT1 protein acts in a dominant-negative fashion to inhibit phyA signaling.
Collapse
|
1147
|
Abstract
Their small sizes have meant that the Arabidopsis and rice genomes are the best-studied of all plant genomes. Although even closely related plant species can show large variations in genome size, extensive genome colinearity has been established at the genetic level and recently also at the gene level. This allows the transfer of information and resources assembled for rice and Arabidopsis to be used in the genome analysis of many other plants.
Collapse
Affiliation(s)
- R Schmidt
- Max-Delbrück-Laboratorium in der Max-Planck-Gesellschaft, Köln, D-50829, Germany.
| |
Collapse
|
1148
|
|
1149
|
Ogawa M, Kusano T, Katsumi M, Sano H. Rice gibberellin-insensitive gene homolog, OsGAI, encodes a nuclear-localized protein capable of gene activation at transcriptional level. Gene 2000; 245:21-9. [PMID: 10713441 DOI: 10.1016/s0378-1119(00)00018-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper reports isolation and properties of a rice gene, OsGAI, a putative homolog of the GAI of Arabidopsis thaliana. OsGAI encodes a polypeptide of 625 amino acids, which shows 53-55% identity to GAI and RGA from A. thaliana, and 85% identity to wheat rht-D1a and maize d8. Genomic DNA blot analysis indicated the OsGAI to be a single-copy gene in the rice genome. RNA blot hybridization showed that OsGAI transcripts increased within 6h upon GA(3) but not ABA application. This GA-induced increment in OsGAI transcripts did not require de novo protein synthesis. High levels of OsGAI transcripts were detected in nodes, internodes, leaf sheaths and ears of adult plants and leaf sheaths of young seedlings, where GA enhances cell elongation and division. Transiently expressed OsGAI-GFP fusion protein located to the nucleus in onion epidermal cells. Transactivation assays clearly indicated that OsGAI protein is a transcriptional activator or a coactivator.
Collapse
Affiliation(s)
- M Ogawa
- Nara Institute of Science and Technology, Nara, Japan
| | | | | | | |
Collapse
|
1150
|
Lovegrove A, Hooley R. Gibberellin and abscisic acid signalling in aleurone. TRENDS IN PLANT SCIENCE 2000; 5:102-110. [PMID: 10707075 DOI: 10.1016/s1360-1385(00)01571-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The plant hormones gibberellin and abscisic acid regulate gene expression, secretion and cell death in aleurone. The emerging picture is of gibberellin perception at the plasma membrane whereas abscisic acid acts at both the plasma membrane and in the cytoplasm - although gibberellin and abscisic acid receptors have yet to be identified. A range of downstream-signalling components and events has been implicated in gibberellin and abscisic acid signalling in aleurone. These include the Galpha subunit of a heterotrimeric G protein, a transient elevation in cGMP, Ca2+-dependent and Ca2+-independent events in the cytoplasm, reversible protein phosphory-lation, and several promoter cis-elements and transcription factors, including GAMYB. In parallel, molecular genetic studies on mutants of Arabidopsis that show defects in responses to these hormones have identified components of gibberellin and abscisic acid signalling. These two approaches are yielding results that raise the possibility that specific gibberellin and abscisic acid signalling components perform similar functions in aleurone and other tissues.
Collapse
Affiliation(s)
- A Lovegrove
- IACR-Long Ashton Research Station, Dept of Agricultural Sciences, University of Bristol, Long Ashton, Bristol, UK BS41 9AF
| | | |
Collapse
|