101
|
Iacobini C, Vitale M, Pesce C, Pugliese G, Menini S. Diabetic Complications and Oxidative Stress: A 20-Year Voyage Back in Time and Back to the Future. Antioxidants (Basel) 2021; 10:727. [PMID: 34063078 PMCID: PMC8147954 DOI: 10.3390/antiox10050727] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Twenty years have passed since Brownlee and colleagues proposed a single unifying mechanism for diabetic complications, introducing a turning point in this field of research. For the first time, reactive oxygen species (ROS) were identified as the causal link between hyperglycemia and four seemingly independent pathways that are involved in the pathogenesis of diabetes-associated vascular disease. Before and after this milestone in diabetes research, hundreds of articles describe a role for ROS, but the failure of clinical trials to demonstrate antioxidant benefits and some recent experimental studies showing that ROS are dispensable for the pathogenesis of diabetic complications call for time to reflect. This twenty-year journey focuses on the most relevant literature regarding the main sources of ROS generation in diabetes and their role in the pathogenesis of cell dysfunction and diabetic complications. To identify future research directions, this review discusses the evidence in favor and against oxidative stress as an initial event in the cellular biochemical abnormalities induced by hyperglycemia. It also explores possible alternative mechanisms, including carbonyl stress and the Warburg effect, linking glucose and lipid excess, mitochondrial dysfunction, and the activation of alternative pathways of glucose metabolism leading to vascular cell injury and inflammation.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Carlo Pesce
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal Infantile Sciences (DINOGMI), Department of Excellence of MIUR, University of Genoa Medical School, 16132 Genoa, Italy;
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| |
Collapse
|
102
|
Sangweni NF, Mosa RA, Dludla PV, Kappo AP, Opoku AR, Muller CJF, Johnson R. The triterpene, methyl-3β-hydroxylanosta-9,24-dien-21-oate (RA3), attenuates high glucose-induced oxidative damage and apoptosis by improving energy metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153546. [PMID: 33799221 DOI: 10.1016/j.phymed.2021.153546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Hyperglycemia-induced cardiovascular dysfunction has been linked to oxidative stress and accelerated apoptosis in the diabetic myocardium. While there is currently no treatment for diabetic cardiomyopathy (DCM), studies suggest that the combinational use of anti-hyperglycemic agents and triterpenes could be effective in alleviating DCM. HYPOTHESIS To investigate the therapeutic effect of methyl-3β-hydroxylanosta-9,24-dien-21-oate (RA3), in the absence or presence of the anti-diabetic drug, metformin (MET), against hyperglycemia-induced cardiac injury using an in vitro H9c2 cell model. METHODS To mimic a hyperglycemic state, H9c2 cells were exposed to high glucose (HG, 33 mM) for 24 h. Thereafter, the cells were treated with RA3 (1 μM), MET (1 μM) and the combination of MET (1 μM) plus RA3 (1 μM) for 24 h, to assess the treatments therapeutic effect. RESULTS Biochemical analysis revealed that RA3, with or without MET, improves glucose uptake via insulin-dependent (IRS-1/PI3K/Akt signaling) and independent (AMPK) pathways whilst ameliorating the activity of antioxidant enzymes in the H9c2 cells. Mechanistically, RA3 was able to alleviate HG-stimulated oxidative stress through the inhibition of reactive oxygen species (ROS) and lipid peroxidation as well as the reduced expression of the PKC/NF-кB cascade through decreased intracellular lipid content. Subsequently, RA3 was able to mitigate HG-induced apoptosis by decreasing the activity of caspase 3/7 and DNA fragmentation in the cardiomyoblasts. CONCLUSION RA3, in the absence or presence of MET, demonstrated potent therapeutic properties against hyperglycemia-mediated cardiac damage and could be a suitable candidate in the prevention of DCM.
Collapse
Affiliation(s)
- Nonhlakanipho F Sangweni
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| | - Rebamang A Mosa
- Department of Biochemistry, Genetics and Microbiology (BGM), Division of Biochemistry, University of Pretoria, Hatfield 0028, South Africa
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy.
| | - Abidemi P Kappo
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa
| | - Andy R Opoku
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| |
Collapse
|
103
|
Regulation of Cardiac PKA Signaling by cAMP and Oxidants. Antioxidants (Basel) 2021; 10:antiox10050663. [PMID: 33923287 PMCID: PMC8146537 DOI: 10.3390/antiox10050663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Pathologies, such as cancer, inflammatory and cardiac diseases are commonly associated with long-term increased production and release of reactive oxygen species referred to as oxidative stress. Thereby, protein oxidation conveys protein dysfunction and contributes to disease progression. Importantly, trials to scavenge oxidants by systemic antioxidant therapy failed. This observation supports the notion that oxidants are indispensable physiological signaling molecules that induce oxidative post-translational modifications in target proteins. In cardiac myocytes, the main driver of cardiac contractility is the activation of the β-adrenoceptor-signaling cascade leading to increased cellular cAMP production and activation of its main effector, the cAMP-dependent protein kinase (PKA). PKA-mediated phosphorylation of substrate proteins that are involved in excitation-contraction coupling are responsible for the observed positive inotropic and lusitropic effects. PKA-actions are counteracted by cellular protein phosphatases (PP) that dephosphorylate substrate proteins and thus allow the termination of PKA-signaling. Both, kinase and phosphatase are redox-sensitive and susceptible to oxidation on critical cysteine residues. Thereby, oxidation of the regulatory PKA and PP subunits is considered to regulate subcellular kinase and phosphatase localization, while intradisulfide formation of the catalytic subunits negatively impacts on catalytic activity with direct consequences on substrate (de)phosphorylation and cardiac contractile function. This review article attempts to incorporate the current perception of the functionally relevant regulation of cardiac contractility by classical cAMP-dependent signaling with the contribution of oxidant modification.
Collapse
|
104
|
The protective effect of hydrogen-rich water on rats with type 2 diabetes mellitus. Mol Cell Biochem 2021; 476:3089-3097. [PMID: 33830396 DOI: 10.1007/s11010-021-04145-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/26/2021] [Indexed: 12/26/2022]
Abstract
The hydrogen-rich water (HW) has been reported to possess a beneficial role in patients with diabetes. However, a systemic evaluation with an appropriate animal model is necessary to reveal its mechanisms and efficacy. Herein, the protective effects of drinking HW on lipid and glucose metabolism, oxidative stress, and inflammation in type 2 diabetes mellitus (T2DM) rats were investigated. The well-modeled T2DM rats (induced by high-fat diet combined with low-dose streptozotocin (STZ) injection) were divided into two groups (n ≥ 15 of each): fed a high-fat diet and drinking distilled water or HW at a constant concentration above 1.0 ppm; normal rats were used as control group (n ≥ 10): fed a regular diet and drinking distilled water. Several biomarkers of lipid and glucose metabolism, oxidative stress ,and inflammation were evaluated after drinking distilled water or HW for 3 weeks. The effect of HW on liver, kidney, and spleen of T2DM rats was also analyzed by HE and Oil Red O staining. The results showed that drinking HW suppressed the increase in glucose, total cholesterol, oxidative stress, and inflammation. Moreover, HW also ameliorates hyperglycemia-induced liver, kidney, and spleen dysfunction. Overall, this study indicates that patients with T2DM may be able to improve their condition by supplementing HW as daily drinking water.
Collapse
|
105
|
Gliozzi M, Scarano F, Musolino V, Carresi C, Scarcella A, Nucera S, Scicchitano M, Ruga S, Bosco F, Maiuolo J, Macrì R, Zito MC, Oppedisano F, Guarnieri L, Mollace R, Palma E, Muscoli C, Mollace V. Paradoxical effect of fat diet in matrix metalloproteinases induced mitochondrial dysfunction in diabetic cardiomyopathy. J Cardiovasc Med (Hagerstown) 2021; 22:268-278. [PMID: 33633042 DOI: 10.2459/jcm.0000000000001046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIMS Diabetic cardiomyopathy represents the main cause of death among diabetic people. Despite this evidence, the molecular mechanisms triggered by impaired glucose and lipid metabolism inducing heart damage remain unclear. The aim of our study was to investigate the effect of altered metabolism on the early stages of cardiac injury in experimental diabetes. METHODS For this purpose, rats were fed a normocaloric diet (NPD) or a high fat diet (HFD) for up to 12 weeks. After the fourth week, streptozocin (35 mg/kg) was administered in a subgroup of both NPD and HFD rats to induce diabetes. Cardiac function was analysed by echocardiography. Matrix metalloproteinases (MMPs) activity and intracellular localization were assessed through zymography and immunofluorescence, whereas apoptotic and oxidative markers by immunohistochemistry and western blot. RESULTS Hyperglycaemia or hyperlipidaemia reduced ejection fraction and fractional shortening as compared with control. Unexpectedly, cardiac dysfunction was less marked in diabetic rats fed a hyperlipidaemic diet, suggesting an adaptive response of the myocardium to hyperglycaemia-induced injury. This response was characterized by the inhibition of N-terminal truncated-MMP-2 translocation from endoplasmic reticulum into mitochondria and by superoxide anion overproduction observed in cardiomyocytes under hyperglycaemia. CONCLUSION Overall, these findings suggest novel therapeutic targets aimed to counteract mitochondrial dysfunction in the onset of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Antonino Scarcella
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Saverio Nucera
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Stefano Ruga
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Francesca Oppedisano
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| |
Collapse
|
106
|
Ramachandra CJA, Cong S, Chan X, Yap EP, Yu F, Hausenloy DJ. Oxidative stress in cardiac hypertrophy: From molecular mechanisms to novel therapeutic targets. Free Radic Biol Med 2021; 166:297-312. [PMID: 33675957 DOI: 10.1016/j.freeradbiomed.2021.02.040] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
When faced with increased workload the heart undergoes remodelling, where it increases its muscle mass in an attempt to preserve normal function. This is referred to as cardiac hypertrophy and if sustained, can lead to impaired contractile function. Experimental evidence supports oxidative stress as a critical inducer of both genetic and acquired forms of cardiac hypertrophy, a finding which is reinforced by elevated levels of circulating oxidative stress markers in patients with cardiac hypertrophy. These observations formed the basis for using antioxidants as a therapeutic means to attenuate cardiac hypertrophy and improve clinical outcomes. However, the use of antioxidant therapies in the clinical setting has been associated with inconsistent results, despite antioxidants having been shown to exert protection in several animal models of cardiac hypertrophy. This has forced us to revaluate the mechanisms, both upstream and downstream of oxidative stress, where recent studies demonstrate that apart from conventional mediators of oxidative stress, metabolic disturbances, mitochondrial dysfunction and inflammation as well as dysregulated autophagy and protein homeostasis contribute to disease pathophysiology through mechanisms involving oxidative stress. Importantly, novel therapeutic targets have been identified to counteract oxidative stress and attenuate cardiac hypertrophy but more interestingly, the repurposing of drugs commonly used to treat metabolic disorders, hypertension, peripheral vascular disease, sleep disorders and arthritis have also been shown to improve cardiac function through suppression of oxidative stress. Here, we review the latest literature on these novel mechanisms and intervention strategies with the aim of better understanding the complexities of oxidative stress for more precise targeted therapeutic approaches to prevent cardiac hypertrophy.
Collapse
Affiliation(s)
- Chrishan J A Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore.
| | - Shuo Cong
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Xavier Chan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; Faculty of Science, National University of Singapore, Singapore
| | - En Ping Yap
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Fan Yu
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; The Hatter Cardiovascular Institute, University College London, London, UK; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan
| |
Collapse
|
107
|
Ngwenyama N, Kirabo A, Aronovitz M, Velázquez F, Carrillo-Salinas F, Salvador AM, Nevers T, Amarnath V, Tai A, Blanton RM, Harrison DG, Alcaide P. Isolevuglandin-Modified Cardiac Proteins Drive CD4+ T-Cell Activation in the Heart and Promote Cardiac Dysfunction. Circulation 2021; 143:1242-1255. [PMID: 33463362 PMCID: PMC7987774 DOI: 10.1161/circulationaha.120.051889] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite the well-established association between T-cell-mediated inflammation and nonischemic heart failure, the specific mechanisms triggering T-cell activation during the progression of heart failure and the antigens involved are poorly understood. We hypothesized that myocardial oxidative stress induces the formation of isolevuglandin (IsoLG)-modified proteins that function as cardiac neoantigens to elicit CD4+ T-cell receptor (TCR) activation and promote heart failure. METHODS We used transverse aortic constriction in mice to trigger myocardial oxidative stress and T-cell infiltration. We profiled the TCR repertoire by mRNA sequencing of intramyocardial activated CD4+ T cells in Nur77GFP reporter mice, which transiently express GFP on TCR engagement. We assessed the role of antigen presentation and TCR specificity in the development of cardiac dysfunction using antigen presentation-deficient MhcII-/- mice and TCR transgenic OTII mice that lack specificity for endogenous antigens. We detected IsoLG protein adducts in failing human hearts. We also evaluated the role of reactive oxygen species and IsoLGs in eliciting T-cell immune responses in vivo by treating mice with the antioxidant TEMPOL and the IsoLG scavenger 2-hydroxybenzylamine during transverse aortic constriction, and ex vivo in mechanistic studies of CD4+ T-cell proliferation in response to IsoLG-modified cardiac proteins. RESULTS We discovered that TCR antigen recognition increases in the left ventricle as cardiac dysfunction progresses and identified a limited repertoire of activated CD4+ T-cell clonotypes in the left ventricle. Antigen presentation of endogenous antigens was required to develop cardiac dysfunction because MhcII-/- mice reconstituted with CD4+ T cells and OTII mice immunized with their cognate antigen were protected from transverse aortic constriction-induced cardiac dysfunction despite the presence of left ventricle-infiltrated CD4+ T cells. Scavenging IsoLGs with 2-hydroxybenzylamine reduced TCR activation and prevented cardiac dysfunction. Mechanistically, cardiac pressure overload resulted in reactive oxygen species-dependent dendritic cell accumulation of IsoLG protein adducts, which induced robust CD4+ T-cell proliferation. CONCLUSIONS Our study demonstrates an important role of reactive oxygen species-induced formation of IsoLG-modified cardiac neoantigens that lead to TCR-dependent CD4+ T-cell activation within the heart.
Collapse
Affiliation(s)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Mark Aronovitz
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | | | | | | | - Tania Nevers
- Department of Immunology, Tufts University, Boston, MA
| | - Venkataraman Amarnath
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Albert Tai
- Department of Immunology, Tufts University, Boston, MA
| | - Robert M. Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Pilar Alcaide
- Department of Immunology, Tufts University, Boston, MA
| |
Collapse
|
108
|
Simsek B, Selte A, Egeli BH, Çakatay U. Effects of vitamin supplements on clinical cardiovascular outcomes: Time to move on! - A comprehensive review. Clin Nutr ESPEN 2021; 42:1-14. [PMID: 33745562 PMCID: PMC9587338 DOI: 10.1016/j.clnesp.2021.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Vitamin supplementations have increasingly been advertised on media and reported to be widely used by the general public to improve cardiovascular health. Due to the COVID-19 pandemic, people have become more interested in ways to improve and maintain their health. Increased awareness of people on healthy lifestyle is translating into inquisition regarding dietary supplements. AIM First, focus on the most commonly used vitamin supplements and comprehensively review the evidence for and against recommending them to patients to improve and/or maintain cardiovascular health. Second, illustrate how the interest in studies shifted over time from Vitamin A, E, C, and B to Vitamin D and observational studies led to randomized controlled trials. METHODS A thorough PubMed search with the phrase: "Vitamin supplements and cardiovascular health" was performed. In the present review, focus was maintained on the evidence for the use of vitamin supplements in the prevention of major cardiovascular events and/or the maintenance of cardiovascular health by comprehensively reviewing all previous studies indexed in PubMed. Studies with clinical 'hard' end-points were included only. RESULTS A total of 87 studies met the inclusion criteria and were reviewed in the present article. High-quality evidence suggesting benefits for the use of vitamin supplements to maintain or improve cardiovascular health in people is minimal to non-existent. CONCLUSIONS Vitamin supplementation does not improve clinical cardiovascular outcomes in general population. Counseling on the importance of maintaining a healthy lifestyle with adequate and nutritious food intake seems more appropriate to improve and maintain cardiovascular health.
Collapse
Affiliation(s)
- Bahadir Simsek
- Cerrahpasa Medical School, Istanbul University-Cerrahpasa, 34098, Fatih/Istanbul, Turkey.
| | - Atakan Selte
- Cerrahpasa Medical School, Istanbul University-Cerrahpasa, 34098, Fatih/Istanbul, Turkey.
| | - Bugra Han Egeli
- Graduate Medical Sciences, Boston University School of Medicine, 72 E Concord St L-317, 02118, Boston, MA, USA.
| | - Ufuk Çakatay
- Cerrahpasa Medical School, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, 34098, Fatih/Istanbul, Turkey.
| |
Collapse
|
109
|
Abstract
The stereotype of ROS produced by NADPH oxidases as cause of malignant diseases persists in a generalized manner. In fact, high levels of ROS formation could be harmful in the context of a disease process. This study demonstrates that loss of the NADPH oxidase Nox4, as a constitutive source of ROS, promotes cancerogen-induced formation of solid tumors. Accordingly, a certain tonic, constitutive low level of Nox4-derived hydrogen peroxide appears to reduce the risk of cancerogen-induced tumor formation. Reactive oxygen species (ROS) can cause cellular damage and promote cancer development. Besides such harmful consequences of overproduction of ROS, all cells utilize ROS for signaling purposes and stabilization of cell homeostasis. In particular, the latter is supported by the NADPH oxidase 4 (Nox4) that constitutively produces low amounts of H2O2. By that mechanism, Nox4 forces differentiation of cells and prevents inflammation. We hypothesize a constitutive low level of H2O2 maintains basal activity of cellular surveillance systems and is unlikely to be cancerogenic. Utilizing two different murine models of cancerogen-induced solid tumors, we found that deletion of Nox4 promotes tumor formation and lowers recognition of DNA damage. Nox4 supports phosphorylation of H2AX (γH2AX), a prerequisite of DNA damage recognition, by retaining a sufficiently low abundance of the phosphatase PP2A in the nucleus. The underlying mechanism is continuous oxidation of AKT by Nox4. Interaction of oxidized AKT and PP2A captures the phosphatase in the cytosol. Absence of Nox4 facilitates nuclear PP2A translocation and dephosphorylation of γH2AX. Simultaneously AKT is left phosphorylated. Thus, in the absence of Nox4, DNA damage is not recognized and the increased activity of AKT supports proliferation. The combination of both events results in genomic instability and promotes tumor formation. By identifying Nox4 as a protective source of ROS in cancerogen-induced cancer, we provide a piece of knowledge for understanding the role of moderate production of ROS in preventing the initiation of malignancies.
Collapse
|
110
|
Liu Y, Wang M, Liang Y, Wang C, Naruse K, Takahashi K. Treatment of Oxidative Stress with Exosomes in Myocardial Ischemia. Int J Mol Sci 2021; 22:ijms22041729. [PMID: 33572188 PMCID: PMC7915208 DOI: 10.3390/ijms22041729] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
A thrombus in a coronary artery causes ischemia, which eventually leads to myocardial infarction (MI) if not removed. However, removal generates reactive oxygen species (ROS), which causes ischemia–reperfusion (I/R) injury that damages the tissue and exacerbates the resulting MI. The mechanism of I/R injury is currently extensively understood. However, supplementation of exogenous antioxidants is ineffective against oxidative stress (OS). Enhancing the ability of endogenous antioxidants may be a more effective way to treat OS, and exosomes may play a role as targeted carriers. Exosomes are nanosized vesicles wrapped in biofilms which contain various complex RNAs and proteins. They are important intermediate carriers of intercellular communication and material exchange. In recent years, diagnosis and treatment with exosomes in cardiovascular diseases have gained considerable attention. Herein, we review the new findings of exosomes in the regulation of OS in coronary heart disease, discuss the possibility of exosomes as carriers for the targeted regulation of endogenous ROS generation, and compare the advantages of exosome therapy with those of stem-cell therapy. Finally, we explore several miRNAs found in exosomes against OS.
Collapse
|
111
|
Costa TJ, Barros PR, Arce C, Santos JD, da Silva-Neto J, Egea G, Dantas AP, Tostes RC, Jiménez-Altayó F. The homeostatic role of hydrogen peroxide, superoxide anion and nitric oxide in the vasculature. Free Radic Biol Med 2021; 162:615-635. [PMID: 33248264 DOI: 10.1016/j.freeradbiomed.2020.11.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Reactive oxygen and nitrogen species are produced in a wide range of physiological reactions that, at low concentrations, play essential roles in living organisms. There is a delicate equilibrium between formation and degradation of these mediators in a healthy vascular system, which contributes to maintaining these species under non-pathological levels to preserve normal vascular functions. Antioxidants scavenge reactive oxygen and nitrogen species to prevent or reduce damage caused by excessive oxidation. However, an excessive reductive environment induced by exogenous antioxidants may disrupt redox balance and lead to vascular pathology. This review summarizes the main aspects of free radical biochemistry (formation, sources and elimination) and the crucial actions of some of the most biologically relevant and well-characterized reactive oxygen and nitrogen species (hydrogen peroxide, superoxide anion and nitric oxide) in the physiological regulation of vascular function, structure and angiogenesis. Furthermore, current preclinical and clinical evidence is discussed on how excessive removal of these crucial responses by exogenous antioxidants (vitamins and related compounds, polyphenols) may perturb vascular homeostasis. The aim of this review is to provide information of the crucial physiological roles of oxidation in the endothelium, vascular smooth muscle cells and perivascular adipose tissue for developing safer and more effective vascular interventions with antioxidants.
Collapse
Affiliation(s)
- Tiago J Costa
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil.
| | | | - Cristina Arce
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Barcelona, Spain; Institut de Nanociencies i Nanotecnologia (IN2UB), University of Barcelona, Barcelona, Spain
| | | | - Júlio da Silva-Neto
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Gustavo Egea
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Barcelona, Spain; Institut de Nanociencies i Nanotecnologia (IN2UB), University of Barcelona, Barcelona, Spain
| | - Ana Paula Dantas
- Institut Clínic del Tòrax, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rita C Tostes
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, Neuroscience Institute, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
112
|
Unterschemmann K, Ehrmann A, Herzig I, Andreevski AL, Lustig K, Schmeck C, Eitner F, Grundmann M. Pharmacological inhibition of Vanin-1 is not protective in models of acute and chronic kidney disease. Am J Physiol Renal Physiol 2021; 320:F61-F73. [PMID: 33196323 DOI: 10.1152/ajprenal.00373.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/08/2020] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress is a key concept in basic, translational, and clinical research to understand the pathophysiology of various disorders, including cardiovascular and renal diseases. Although attempts to directly reduce oxidative stress with redox-active substances have until now largely failed to prove clinical benefit, indirect approaches to combat oxidative stress enzymatically have gained further attention as potential therapeutic strategies. The pantetheinase Vanin-1 is expressed on kidney proximal tubular cells, and its reaction product cysteamine is described to negatively affect redox homeostasis by inhibiting the replenishment of cellular antioxidative glutathione stores. Vanin-1-deficient mice were shown to be protected against oxidative stress damage. The aim of this study was to elucidate whether pharmacological inhibition of Vanin-1 protects mice from oxidative stress-related acute or chronic kidney injury as well. By studying renal ischemia-reperfusion injury in Col4α3-/- (Alport syndrome) mice and in vitro hypoxia-reoxygenation in human proximal tubular cells we found that treatment with a selective and potent Vanin-1 inhibitor resulted in ample inhibition of enzymatic activity in vitro and in vivo. However, surrogate parameters of metabolic and redox homeostasis were only partially and insufficiently affected. Consequently, apoptosis and reactive oxygen species level in tubular cells as well as overall kidney function and fibrotic processes were not improved by Vanin-1 inhibition. We thus conclude that Vanin-1 functionality in the context of cardiovascular diseases needs further investigation and the biological relevance of pharmacological Vanin-1 inhibition for the treatment of kidney diseases remains to be proven.
Collapse
MESH Headings
- Acute Kidney Injury/enzymology
- Acute Kidney Injury/genetics
- Acute Kidney Injury/pathology
- Acute Kidney Injury/prevention & control
- Amidohydrolases/antagonists & inhibitors
- Amidohydrolases/genetics
- Amidohydrolases/metabolism
- Animals
- Apoptosis/drug effects
- Autoantigens/genetics
- Autoantigens/metabolism
- Cell Line
- Collagen Type IV/genetics
- Collagen Type IV/metabolism
- Disease Models, Animal
- Enzyme Inhibitors/pharmacokinetics
- Enzyme Inhibitors/pharmacology
- Fibrosis
- GPI-Linked Proteins/antagonists & inhibitors
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Humans
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/enzymology
- Kidney Tubules, Proximal/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Nephritis, Hereditary/enzymology
- Nephritis, Hereditary/genetics
- Nephritis, Hereditary/pathology
- Nephritis, Hereditary/prevention & control
- Oxidative Stress/drug effects
- Renal Insufficiency, Chronic/enzymology
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/prevention & control
- Reperfusion Injury/enzymology
- Reperfusion Injury/genetics
- Reperfusion Injury/pathology
- Reperfusion Injury/prevention & control
- Mice
Collapse
Affiliation(s)
| | | | - Ina Herzig
- Drug Discovery Sciences, Bayer Pharmaceuticals, Wuppertal, Germany
| | | | - Klemens Lustig
- Research and Early Development, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Carsten Schmeck
- Drug Discovery Sciences, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Frank Eitner
- Research and Early Development, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Manuel Grundmann
- Research and Early Development, Bayer Pharmaceuticals, Wuppertal, Germany
| |
Collapse
|
113
|
Abstract
Table olives, a product of olive tree (Olea europaea L.), is an important fermented product of the Mediterranean Diet. Agronomical factors, particularly the cultivar, the ripening stage and the processing method employed are the main factors influencing the nutritional and non-nutritional composition of table olives and their organoleptic properties. The important nutritional value of this product is due to its richness in monounsaturated fat (MUFA), mainly oleic acid, fibre and vitamin E together with the presence of several phytochemicals. Among these, hydroxytyrosol (HT) is the major phenolic compound present in all types of table olives. There is a scarcity of in vitro, in vivo and human studies of table olives. This review focused comprehensively on the nutrients and bioactive compound content as well as the health benefits assigned to table olives. The possible health benefits associated with their consumption are thought to be primarily related to effects of MUFA on cardiovascular health, the antioxidant (AO) capacity of vitamin E and its role in protecting the body from oxidative damage and the anti-inflammatory and AO activities of HT. The influence of multiple factors on composition of the end product and the potential innovation in the production of table olives through the reduction of its final salt content was also discussed.
Collapse
Key Words
- ALS, amyotrophic lateral sclerosis
- AO, antioxidant
- Alpha-tocopherol
- BP, blood pressure
- CVD, cardiovascular disease
- DM-II, Diabetes Mellitus 2
- EFSA, European Food Safety Authority
- FM, fat mass
- GSH, glutathione
- HDL-c, high-density lipoprotein cholesterol
- HT, hydroxytyrosol
- LDL-c, low-density lipoprotein cholesterol
- MD, Mediterranean Diet
- MUFA, monounsaturated fat
- Mediterranean Diet
- Monounsaturated fat
- NO, nitric oxide
- NaCl, sodium chloride
- NaOH, sodium hydroxide
- Nrf2, nuclear factor erythroid 2-related factor 2
- OL, oleuropein
- OO, olive oil
- PKC, protein kinase C
- PUFA, polyunsaturated fat
- Phenolic compounds
- RDA, Recommended Dietary Allowance
- ROS, reactive oxygen species
- TC, total cholesterol
- TG, triacylglycerol
- TG, triglyceride
- Table olives
- Ty, tyrosol
- WHO, World Health Organization
- cv, cultivar
- e.p, edible portion
- α-TOH, alpha-tocopherol
Collapse
|
114
|
Vitamins and minerals intake adequacy in hematopoietic stem cell transplant: results of a randomized controlled trial. Bone Marrow Transplant 2020; 56:1106-1115. [PMID: 33257778 DOI: 10.1038/s41409-020-01154-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/14/2020] [Accepted: 11/11/2020] [Indexed: 01/04/2023]
Abstract
Micronutrient intake among hematopoietic stem cell transplant (HSCT) recipients is poorly studied. This randomized control trial (RCT) assessed the effect of nutritional counseling on micronutrient intake post HSCT. Patients with hematological malignancies receiving HSCT were randomized at hospital discharge into an intervention group (IG) and a control group (CG) between 2016 and 2017. IG received individualized nutritional counseling in the first 3 months post HSCT while CG received general qualitative education without reinforcement. At assessment points (hospital admission, discharge, 30, 60, and 100 days post HSCT termed T4), 24-h recalls were analyzed, and micronutrient intake was compared to patients' individual needs. Results were reported as percentages of dietary reference intake. Groups (IG, n = 22 and CG, n = 24) had similar characteristics pre HSCT. Copper and α-tocopherol intake at T4 were significantly better in IG. Many B vitamins, vitamin C, Manganese, Potassium, Zinc, and vitamin K improved in IG only at T4 compared to baseline intake. Median vitamin D intake remained low in both groups with <20% of patients meeting their individual needs post HSCT. In conclusion, counseling was associated with a trend of improved micronutrient intake. Vitamin D levels remained low irrespective of counseling.
Collapse
|
115
|
Uche UI, Suzuki S, Fulda KG, Zhou Z. Environment-wide association study on childhood obesity in the U.S. ENVIRONMENTAL RESEARCH 2020; 191:110109. [PMID: 32841636 DOI: 10.1016/j.envres.2020.110109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Childhood obesity is a national public health issue with increasing prevalence. It has been linked to diet, lack of physical activity, and genetic susceptibility, with more recent evidence that it could also result from environmental factors. Studies linking it to environmental factors are limited, unsystematic, incomprehensive, and inconclusive. OBJECTIVE To conduct an environment-wide association study (EWAS) to comprehensively investigate all the environmental factors available in a nationally representative sample of children to determine factors associated with childhood obesity. METHODS We utilized the 1999-2016 National Health and Nutrition Examination Survey (NHANES) datasets and included all children/adolescents (6-17 years). Obesity was measured using body mass index and waist to height ratio. A multinomial and binary logistic regression were used adjusting for age, sex, race/ethnicity, creatinine, calorie intake, physical activity, screen time, limitation to physical activities, and socioeconomic status. We then controlled for multiple hypothesis testing and validated our findings on a different cohort of children. RESULTS We found that metals such as beryllium (OR: 3.305 CI: 1.460-7.479) and platinum (OR: 1.346 CI: 1.107-1.636); vitamins such as gamma-tocopherol (OR: 8.297 CI: 5.683-12.114) and delta-tocopherol (OR: 1.841 CI:1.476-2.297); heterocyclic aromatic amines such as 2-Amino-9H-pyrido (2,3-b) indole (OR: 1.323 CI: 1.083-1.617) and 2-Amino-3-methyl-9H-pyriodo(2,3-b)indole (OR: 2.799 CI: 1.442-5.433); polycyclic aromatic amines such as 9- fluorene (OR: 1.509 CI: 1.230-1.851) and 4-phenanthrene (OR: 2.828 CI: 1.632-4.899); and caffeine metabolites such as 1,3,7-trimethyluric acid (OR: 1.22 CI: 1.029-1.414) and 1,3,7-trimethylxanthine (OR: 1.258 CI: 1.075-1.473) were positively and significantly associated with childhood obesity. CONCLUSION Following the unique concept of EWAS, certain environmental factors were associated with childhood obesity. Further studies are required to confirm these associations while investigating their mechanisms of action.
Collapse
Affiliation(s)
- Uloma Igara Uche
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - Sumihiro Suzuki
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kimberly G Fulda
- Department of Family Medicine and Osteopathic Manipulative Medicine; North Texas Primary Care Practice-Based Research Network (NorTex) University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Zhengyang Zhou
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
116
|
Gohel D, Singh R. Mitohormesis; Potential implications in neurodegenerative diseases. Mitochondrion 2020; 56:40-46. [PMID: 33220499 DOI: 10.1016/j.mito.2020.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction is known to be associated with neurodegenerative diseases (NDDs), which is a major burden on the society. Therefore, understanding the regulation of mitochondrial dysfunctions and its implication in neurodegeneration has been major goal for exploiting these mechanisms to rescue neuronal death. The crosstalk between mitochondria and nucleus is important for different neuronal functions including axonal branching, energy homeostasis, neuroinflammation and neuronal survival. The decreased mitochondria capacity during progressive neurodegeneration leads to the altered OXPHOS activity and generation of ROS. The ROS levels in narrow physiological range can reprogram nuclear gene expression to enhance the cellular survival by phenomenon called mitohormesis. Here, we have systematically reviewed the existing reports of mitochondrial dysfunctions causing altered ROS levels in NDDs. We further discussed the role of ROS in regulating mitohormesis and emphasized the importance of mitohormesis in neuronal homeostasis. The emerging role of mitohormesis highlights its importance in future studies on intracellular ROS mediated rescue of mitochondrial dysfunction along with other prevailing mechanisms to alleviate neurodegeneration.
Collapse
Affiliation(s)
- Dhruv Gohel
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
117
|
Chelluboina B, Vemuganti R. Therapeutic potential of nutraceuticals to protect brain after stroke. Neurochem Int 2020; 142:104908. [PMID: 33220386 DOI: 10.1016/j.neuint.2020.104908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Stroke leads to significant neuronal death and long-term neurological disability due to synergistic pathogenic mechanisms. Stroke induces a change in eating habits and in many cases, leads to undernutrition that aggravates the post-stroke pathology. Proper nutritional regimen remains a major strategy to control the modifiable risk factors for cardiovascular and cerebrovascular diseases including stroke. Studies indicate that nutraceuticals (isolated and concentrated form of high-potency natural bioactive substances present in dietary nutritional components) can act as prophylactic as well as adjuvant therapeutic agents to prevent stroke risk, to promote ischemic tolerance and to reduce post-stroke consequences. Nutraceuticals are also thought to regulate blood pressure, delay neurodegeneration and improve overall vascular health. Nutraceuticals potentially mediate these effects by their powerful antioxidant and anti-inflammatory properties. This review discusses the studies that have highlighted the translational potential of nutraceuticals as stroke therapies.
Collapse
Affiliation(s)
- Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton Veterans Administration Hospital, Madison, WI, USA.
| |
Collapse
|
118
|
Gliozzi M, Scarano F, Musolino V, Carresi C, Scicchitano M, Ruga S, Zito MC, Nucera S, Bosco F, Maiuolo J, Macrì R, Guarnieri L, Mollace R, Coppoletta AR, Nicita C, Tavernese A, Palma E, Muscoli C, Mollace V. Role of TSPO/VDAC1 Upregulation and Matrix Metalloproteinase-2 Localization in the Dysfunctional Myocardium of Hyperglycaemic Rats. Int J Mol Sci 2020; 21:ijms21207432. [PMID: 33050121 PMCID: PMC7587933 DOI: 10.3390/ijms21207432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/06/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Clinical management of diabetic cardiomyopathy represents an unmet need owing to insufficient knowledge about the molecular mechanisms underlying the dysfunctional heart. The aim of this work is to better clarify the role of matrix metalloproteinase 2 (MMP-2) isoforms and of translocator protein (TSPO)/voltage-dependent anion-selective channel 1 (VDAC1) modulation in the development of hyperglycaemia-induced myocardial injury. Hyperglycaemia was induced in Sprague-Dawley rats through a streptozocin injection (35 mg/Kg, i.p.). After 60 days, cardiac function was analysed by echocardiography. Nicotinamide Adenine Dinucleotide Phosphate NADPH oxidase and TSPO expression was assessed by immunohistochemistry. MMP-2 activity was detected by zymography. Superoxide anion production was estimated by MitoSOX™ staining. Voltage-dependent anion-selective channel 1 (VDAC-1), B-cell lymphoma 2 (Bcl-2), and cytochrome C expression was assessed by Western blot. Hyperglycaemic rats displayed cardiac dysfunction; this response was characterized by an overexpression of NADPH oxidase, accompanied by an increase of superoxide anion production. Under hyperglycaemia, increased expression of TSPO and VDAC1 was detected. MMP-2 downregulated activity occurred under hyperglycemia and this profile of activation was accompanied by the translocation of intracellular N-terminal truncated isoform of MMP-2 (NT-MMP-2) from mitochondria-associated membrane (MAM) into mitochondria. In the onset of diabetic cardiomyopathy, mitochondrial impairment in cardiomyocytes is characterized by the dysregulation of the different MMP-2 isoforms. This can imply the generation of a “frail” myocardial tissue unable to adapt itself to stress.
Collapse
Affiliation(s)
- Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
- Correspondence: ; Tel.: +39-0961-3694301
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Maria Caterina Zito
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Roberta Macrì
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Lorenza Guarnieri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Rocco Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Anna Rita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
| | - Caterina Nicita
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
| | - Annamaria Tavernese
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
- Division of Cardiology, University Hospital Policlinico Tor Vergata, 00133 Rome, Italy
| | - Ernesto Palma
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Carolina Muscoli
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
- IRCCS San Raffaele Pisana, Via di Valcannuta, 00163 Rome, Italy
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
- IRCCS San Raffaele Pisana, Via di Valcannuta, 00163 Rome, Italy
| |
Collapse
|
119
|
Dikalova A, Mayorov V, Xiao L, Panov A, Amarnath V, Zagol-Ikapitte I, Vergeade A, Ao M, Yermalitsky V, Nazarewicz RR, Boutaud O, Lopez MG, Billings FT, Davies S, Roberts LJ, Harrison DG, Dikalov S. Mitochondrial Isolevuglandins Contribute to Vascular Oxidative Stress and Mitochondria-Targeted Scavenger of Isolevuglandins Reduces Mitochondrial Dysfunction and Hypertension. Hypertension 2020; 76:1980-1991. [PMID: 33012204 DOI: 10.1161/hypertensionaha.120.15236] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypertension remains a major health problem in Western Societies, and blood pressure is poorly controlled in a third of patients despite use of multiple drugs. Mitochondrial dysfunction contributes to hypertension, and mitochondria-targeted agents can potentially improve treatment of hypertension. We have proposed that mitochondrial oxidative stress produces reactive dicarbonyl lipid peroxidation products, isolevuglandins, and that scavenging of mitochondrial isolevuglandins improves vascular function and reduces hypertension. To test this hypothesis, we have studied the accumulation of mitochondrial isolevuglandins-protein adducts in patients with essential hypertension and Ang II (angiotensin II) model of hypertension using mass spectrometry and Western blot analysis. The therapeutic potential of targeting mitochondrial isolevuglandins was tested by the novel mitochondria-targeted isolevuglandin scavenger, mito2HOBA. Mitochondrial isolevuglandins in arterioles from hypertensive patients were 250% greater than in arterioles from normotensive subjects, and ex vivo mito2HOBA treatment of arterioles from hypertensive subjects increased deacetylation of a key mitochondrial antioxidant, SOD2 (superoxide dismutase 2). In human aortic endothelial cells stimulated with Ang II plus TNF (tumor necrosis factor)-α, mito2HOBA reduced mitochondrial superoxide and cardiolipin oxidation, a specific marker of mitochondrial oxidative stress. In Ang II-infused mice, mito2HOBA diminished mitochondrial isolevuglandins-protein adducts, raised Sirt3 (sirtuin 3) mitochondrial deacetylase activity, reduced vascular superoxide, increased endothelial nitric oxide, improved endothelium-dependent relaxation, and attenuated hypertension. Mito2HOBA preserved mitochondrial respiration, protected ATP production, and reduced mitochondrial permeability pore opening in Ang II-infused mice. These data support the role of mitochondrial isolevuglandins in endothelial dysfunction and hypertension. We conclude that scavenging of mitochondrial isolevuglandins may have therapeutic potential in treatment of vascular dysfunction and hypertension.
Collapse
Affiliation(s)
- Anna Dikalova
- From the Vanderbilt University Medical Center, Nashville, TN (A.D., L.X., V.A., I.Z.-I., A.V., M.A., V.Y., R.R.N., O.B., M.G.L., F.T.B., S. Davies, L.J.R., D.G.H., S. Dikalov)
| | | | - Liang Xiao
- From the Vanderbilt University Medical Center, Nashville, TN (A.D., L.X., V.A., I.Z.-I., A.V., M.A., V.Y., R.R.N., O.B., M.G.L., F.T.B., S. Davies, L.J.R., D.G.H., S. Dikalov)
| | - Alexander Panov
- Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk, Russian Federation (A.P.)
| | - Venkataraman Amarnath
- From the Vanderbilt University Medical Center, Nashville, TN (A.D., L.X., V.A., I.Z.-I., A.V., M.A., V.Y., R.R.N., O.B., M.G.L., F.T.B., S. Davies, L.J.R., D.G.H., S. Dikalov)
| | - Irene Zagol-Ikapitte
- From the Vanderbilt University Medical Center, Nashville, TN (A.D., L.X., V.A., I.Z.-I., A.V., M.A., V.Y., R.R.N., O.B., M.G.L., F.T.B., S. Davies, L.J.R., D.G.H., S. Dikalov)
| | - Aurelia Vergeade
- From the Vanderbilt University Medical Center, Nashville, TN (A.D., L.X., V.A., I.Z.-I., A.V., M.A., V.Y., R.R.N., O.B., M.G.L., F.T.B., S. Davies, L.J.R., D.G.H., S. Dikalov)
| | - Mingfang Ao
- From the Vanderbilt University Medical Center, Nashville, TN (A.D., L.X., V.A., I.Z.-I., A.V., M.A., V.Y., R.R.N., O.B., M.G.L., F.T.B., S. Davies, L.J.R., D.G.H., S. Dikalov)
| | - Valery Yermalitsky
- From the Vanderbilt University Medical Center, Nashville, TN (A.D., L.X., V.A., I.Z.-I., A.V., M.A., V.Y., R.R.N., O.B., M.G.L., F.T.B., S. Davies, L.J.R., D.G.H., S. Dikalov)
| | - Rafal R Nazarewicz
- From the Vanderbilt University Medical Center, Nashville, TN (A.D., L.X., V.A., I.Z.-I., A.V., M.A., V.Y., R.R.N., O.B., M.G.L., F.T.B., S. Davies, L.J.R., D.G.H., S. Dikalov)
| | - Olivier Boutaud
- From the Vanderbilt University Medical Center, Nashville, TN (A.D., L.X., V.A., I.Z.-I., A.V., M.A., V.Y., R.R.N., O.B., M.G.L., F.T.B., S. Davies, L.J.R., D.G.H., S. Dikalov)
| | - Marcos G Lopez
- From the Vanderbilt University Medical Center, Nashville, TN (A.D., L.X., V.A., I.Z.-I., A.V., M.A., V.Y., R.R.N., O.B., M.G.L., F.T.B., S. Davies, L.J.R., D.G.H., S. Dikalov)
| | - Frederic T Billings
- From the Vanderbilt University Medical Center, Nashville, TN (A.D., L.X., V.A., I.Z.-I., A.V., M.A., V.Y., R.R.N., O.B., M.G.L., F.T.B., S. Davies, L.J.R., D.G.H., S. Dikalov)
| | - Sean Davies
- From the Vanderbilt University Medical Center, Nashville, TN (A.D., L.X., V.A., I.Z.-I., A.V., M.A., V.Y., R.R.N., O.B., M.G.L., F.T.B., S. Davies, L.J.R., D.G.H., S. Dikalov)
| | - L Jackson Roberts
- From the Vanderbilt University Medical Center, Nashville, TN (A.D., L.X., V.A., I.Z.-I., A.V., M.A., V.Y., R.R.N., O.B., M.G.L., F.T.B., S. Davies, L.J.R., D.G.H., S. Dikalov)
| | - David G Harrison
- From the Vanderbilt University Medical Center, Nashville, TN (A.D., L.X., V.A., I.Z.-I., A.V., M.A., V.Y., R.R.N., O.B., M.G.L., F.T.B., S. Davies, L.J.R., D.G.H., S. Dikalov)
| | - Sergey Dikalov
- From the Vanderbilt University Medical Center, Nashville, TN (A.D., L.X., V.A., I.Z.-I., A.V., M.A., V.Y., R.R.N., O.B., M.G.L., F.T.B., S. Davies, L.J.R., D.G.H., S. Dikalov)
| |
Collapse
|
120
|
Casas AI, Nogales C, Mucke HAM, Petraina A, Cuadrado A, Rojo AI, Ghezzi P, Jaquet V, Augsburger F, Dufrasne F, Soubhye J, Deshwal S, Di Sante M, Kaludercic N, Di Lisa F, Schmidt HHHW. On the Clinical Pharmacology of Reactive Oxygen Species. Pharmacol Rev 2020; 72:801-828. [PMID: 32859763 DOI: 10.1124/pr.120.019422] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Reactive oxygen species (ROS) have been correlated with almost every human disease. Yet clinical exploitation of these hypotheses by pharmacological modulation of ROS has been scarce to nonexistent. Are ROS, thus, irrelevant for disease? No. One key misconception in the ROS field has been its consideration as a rather detrimental metabolic by-product of cell metabolism, and thus, any approach eliminating ROS to a certain tolerable level would be beneficial. We now know, instead, that ROS at every concentration, low or high, can serve many essential signaling and metabolic functions. This likely explains why systemic, nonspecific antioxidants have failed in the clinic, often with neutral and sometimes even detrimental outcomes. Recently, drug development has focused, instead, on identifying and selectively modulating ROS enzymatic sources that in a given constellation cause disease while leaving ROS physiologic signaling and metabolic functions intact. As sources, the family of NADPH oxidases stands out as the only enzyme family solely dedicated to ROS formation. Selectively targeting disease-relevant ROS-related proteins is already quite advanced, as evidenced by several phase II/III clinical trials and the first drugs having passed registration. The ROS field is expanding by including target enzymes and maturing to resemble more and more modern, big data-enhanced drug discovery and development, including network pharmacology. By defining a disease based on a distinct mechanism, in this case ROS dysregulation, and not by a symptom or phenotype anymore, ROS pharmacology is leaping forward from a clinical underperformer to a proof of concept within the new era of mechanism-based precision medicine. SIGNIFICANCE STATEMENT: Despite being correlated to almost every human disease, nearly no ROS modulator has been translated to the clinics yet. Here, we move far beyond the old-fashioned misconception of ROS as detrimental metabolic by-products and suggest 1) novel pharmacological targeting focused on selective modulation of ROS enzymatic sources, 2) mechanism-based redefinition of diseases, and 3) network pharmacology within the ROS field, altogether toward the new era of ROS pharmacology in precision medicine.
Collapse
Affiliation(s)
- Ana I Casas
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Cristian Nogales
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Hermann A M Mucke
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Alexandra Petraina
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Antonio Cuadrado
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Ana I Rojo
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Pietro Ghezzi
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Vincent Jaquet
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Fiona Augsburger
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Francois Dufrasne
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Jalal Soubhye
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Soni Deshwal
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Moises Di Sante
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Nina Kaludercic
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Fabio Di Lisa
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| |
Collapse
|
121
|
Alboaklah HKM, Leake DS. Effect of vitamin E on low density lipoprotein oxidation at lysosomal pH. Free Radic Res 2020; 54:574-584. [PMID: 32938237 DOI: 10.1080/10715762.2020.1817912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many cholesterol-laden foam cells in atherosclerotic lesions are macrophages and much of their cholesterol is present in their lysosomes and derived from low density lipoprotein (LDL). LDL oxidation has been proposed to be involved in the pathogenesis of atherosclerosis. We have shown previously that LDL can be oxidised in the lysosomes of macrophages. α-Tocopherol has been shown to inhibit LDL oxidation in vitro, but did not protect against cardiovascular disease in large clinical trials. We have therefore investigated the effect of α-tocopherol on LDL oxidation at lysosomal pH (about pH 4.5). LDL was enriched with α-tocopherol by incubating human plasma with α-tocopherol followed by LDL isolation by ultracentrifugation. The α-tocopherol content of LDL was increased from 14.4 ± 0.2 to 24.3 ± 0.3 nmol/mg protein. LDL oxidation was assessed by measuring the formation of conjugated dienes at 234 nm and oxidised lipids (cholesteryl linoleate hydroperoxide and 7-ketocholesterol) by HPLC. As expected, LDL enriched with α-tocopherol was oxidised more slowly than control LDL by Cu2+ at pH 7.4, but was not protected against oxidation by Cu2+ or Fe3+ or a low concentration of Fe2+ at pH 4.5 (it was sometimes oxidised faster by α-tocopherol with Cu2+ or Fe3+ at pH 4.5). α-Tocopherol-enriched LDL reduced Cu2+ and Fe3+ into the more pro-oxidant Cu+ and Fe2+ faster than did control LDL at pH 4.5. These findings might help to explain why the large clinical trials of α-tocopherol did not protect against cardiovascular disease.
Collapse
Affiliation(s)
- Hadeel K M Alboaklah
- School of Biological Sciences and Institute of Cardiovascular and Metabolic Research, Hopkins Building, University of Reading, Reading, UK.,Pharmacy College, University of Karbala, Karbala, Iraq
| | - David S Leake
- School of Biological Sciences and Institute of Cardiovascular and Metabolic Research, Hopkins Building, University of Reading, Reading, UK
| |
Collapse
|
122
|
Oxidative Stress in Cardiovascular Diseases. Antioxidants (Basel) 2020; 9:antiox9090864. [PMID: 32937950 PMCID: PMC7554855 DOI: 10.3390/antiox9090864] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are subcellular messengers in signal transductions pathways with both beneficial and deleterious roles. ROS are generated as a by-product of mitochondrial respiration or metabolism or by specific enzymes such as superoxide dismutases, glutathione peroxidase, catalase, peroxiredoxins, and myeloperoxidases. Under physiological conditions, the low levels of ROS production are equivalent to their detoxification, playing a major role in cellular signaling and function. In pathological situations, particularly atherosclerosis or hypertension, the release of ROS exceeds endogenous antioxidant capacity, leading to cell death. At cardiovascular levels, oxidative stress is highly implicated in myocardial infarction, ischemia/reperfusion, or heart failure. Here, we will first detail the physiological role of low ROS production in the heart and the vessels. Indeed, ROS are able to regulate multiple cardiovascular functions, such as cell proliferation, migration, and death. Second, we will investigate the implication of oxidative stress in cardiovascular diseases. Then, we will focus on ROS produced by NAPDH oxidase or during endothelial or mitochondrial dysfunction. Given the importance of oxidative stress at the cardiovascular level, antioxidant therapies could be a real benefit. In the last part of this review, we will detail the new therapeutic strategies potentially involved in cardiovascular protection and currently under study.
Collapse
|
123
|
Daiber A, Chlopicki S. Revisiting pharmacology of oxidative stress and endothelial dysfunction in cardiovascular disease: Evidence for redox-based therapies. Free Radic Biol Med 2020; 157:15-37. [PMID: 32131026 DOI: 10.1016/j.freeradbiomed.2020.02.026] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
According to the latest Global Burden of Disease Study data, non-communicable diseases in general and cardiovascular disease (CVD) in particular are the leading cause of premature death and reduced quality of life. Demographic shifts, unhealthy lifestyles and a higher burden of adverse environmental factors provide an explanation for these findings. The expected growing prevalence of CVD requires enhanced research efforts for identification and characterisation of novel therapeutic targets and strategies. Cardiovascular risk factors including classical (e.g. hypertension, diabetes, hypercholesterolaemia) and non-classical (e.g. environmental stress) factors induce the development of endothelial dysfunction, which is closely associated with oxidant stress and vascular inflammation and results in CVD, particularly in older adults. Most classically successful therapies for CVD display vasoprotective, antioxidant and anti-inflammatory effects, but were originally designed with other therapeutic aims. So far, only a few 'redox drugs' are in clinical use and many antioxidant strategies have not met expectations. With the present review, we summarise the actual knowledge on CVD pathomechanisms, with special emphasis on endothelial dysfunction, adverse redox signalling and oxidative stress, highlighting the preclinical and clinical evidence. In addition, we provide a brief overview of established CVD therapies and their relation to endothelial dysfunction and oxidative stress. Finally, we discuss novel strategies for redox-based CVD therapies trying to explain why, despite a clear link between endothelial dysfunction and adverse redox signalling and oxidative stress, redox- and oxidative stress-based therapies have not yet provided a breakthrough in the treatment of endothelial dysfunction and CVD.
Collapse
Affiliation(s)
- Andreas Daiber
- The Center for Cardiology, Department of Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; The Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Stefan Chlopicki
- The Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland; Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Krakow, Poland.
| |
Collapse
|
124
|
Li Y, Wang Y, Chen Y, Wang Y, Zhang S, Liu P, Chen Z, Song P, Luo L, Luo Y, Dang Y, Zhao L. Corilagin Ameliorates Atherosclerosis in Peripheral Artery Disease via the Toll-Like Receptor-4 Signaling Pathway in vitro and in vivo. Front Immunol 2020; 11:1611. [PMID: 32849545 PMCID: PMC7424006 DOI: 10.3389/fimmu.2020.01611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022] Open
Abstract
We investigated if corilagin can ameliorate or reverse atherosclerotic development via the toll-like receptor 4 (TLR4) signaling pathway in vitro and in vivo. Ana-1 cells or mouse peritoneal macrophages (MPMs) were stimulated with oxidized low-density lipoprotein followed by corilagin treatment. TLR4 expression in Ana-1 cells was upregulated by lentiviral transduction and downregulated by small interfering RNA. Peripheral blood mononuclear cells (PBMCs), plasma samples, and femoral arteries were collected from rats exhibiting peripheral artery disease (PAD). mRNA and protein expression of TLR4 and downstream molecules were decreased significantly by corilagin treatment in Ana-1 cells, MPMs, and rat PBMCs, and the reduction remained irrespective of downregulation or upregulation of TLR4 expression in Ana-1 cells. Corilagin also exerted a prominent effect on changes in plasma levels of cytokines and the pathologic manifestation of atherosclerosis in femoral arteries. Corilagin could ameliorate the development of atherosclerotic plaques by inhibiting the TLR4 signaling pathway in monocyte/macrophages and reduce the release of proinflammatory cytokines. This study provides a new therapeutic target and new niche targeting drug to oppose atherosclerosis and reveals the enormous potential of corilagin for control of PAD in humans.
Collapse
Affiliation(s)
- Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujie Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunfei Chen
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaojun Zhang
- National & Local Joint Engineering Research Center for High-Throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Pan Liu
- Department of Pediatrics, Wuchang Hospital, Wuhan, China
| | - Zhilin Chen
- Department of Infectious Diseases, Dongxihu People's Hospital, Wuhan, China
| | - Peng Song
- Department of Breast and Thyroid Surgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Lei Luo
- Department of Gastroenterology, The Second People's Hospital of China Three Gorges University, Yichang, China
| | - Yingying Luo
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, China
| | - Yiping Dang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
125
|
De Paoli M, Werstuck GH. Role of Estrogen in Type 1 and Type 2 Diabetes Mellitus: A Review of Clinical and Preclinical Data. Can J Diabetes 2020; 44:448-452. [DOI: 10.1016/j.jcjd.2020.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/17/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
|
126
|
(-)-Epicatechin Modulates Mitochondrial Redox in Vascular Cell Models of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6392629. [PMID: 32587663 PMCID: PMC7301192 DOI: 10.1155/2020/6392629] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/20/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus affects 451 million people worldwide, and people with diabetes are 3-5 times more likely to develop cardiovascular disease. In vascular tissue, mitochondrial function is important for vasoreactivity. Diabetes-mediated generation of excess reactive oxygen species (ROS) may contribute to vascular dysfunction via damage to mitochondria and regulation of endothelial nitric oxide synthase (eNOS). We have identified (–)-epicatechin (EPICAT), a plant compound and known vasodilator, as a potential therapy. We hypothesized that mitochondrial ROS in cells treated with antimycin A (AA, a compound targeting mitochondrial complex III) or high glucose (HG, global perturbation) could be normalized by EPICAT, and correlate with improved mitochondrial dynamics and cellular signaling. Human umbilical vein endothelial cells (HUVEC) were treated with HG, AA, and/or 0.1 or 1.0 μM of EPICAT. Mitochondrial and cellular superoxide, mitochondrial respiration, and cellular signaling upstream of mitochondrial function were assessed. EPICAT at 1.0 μM significantly attenuated mitochondrial superoxide in HG-treated cells. At 0.1 μM, EPICAT nonsignificantly increased mitochondrial respiration, agreeing with previous reports. EPICAT significantly increased complex I expression in AA-treated cells, and 1.0 μM EPICAT significantly decreased mitochondrial complex V expression in HG-treated cells. No significant effects were seen on either AMPK or eNOS expression. Our study suggests that EPICAT is useful in mitigating moderate ROS concentrations from a global perturbation and may modulate mitochondrial complex activity. Our data illustrate that EPICAT acts in the cell in a dose-dependent manner, demonstrating hormesis.
Collapse
|
127
|
The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5732956. [PMID: 32509147 PMCID: PMC7244977 DOI: 10.1155/2020/5732956] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/11/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive chemical species containing oxygen, controlled by both enzymatic and nonenzymatic antioxidant defense systems. In the heart, ROS play an important role in cell homeostasis, by modulating cell proliferation, differentiation, and excitation-contraction coupling. Oxidative stress occurs when ROS production exceeds the buffering capacity of the antioxidant defense systems, leading to cellular and molecular abnormalities, ultimately resulting in cardiac dysfunction. In this review, we will discuss the physiological sources of ROS in the heart, the mechanisms of oxidative stress-related myocardial injury, and the implications of experimental studies and clinical trials with antioxidant therapies in cardiovascular diseases.
Collapse
|
128
|
Huang J, Hodis HN, Weinstein SJ, Mack WJ, Sampson JN, Mondul AM, Albanes D. Serum Metabolomic Response to Low- and High-Dose Vitamin E Supplementation in Two Randomized Controlled Trials. Cancer Epidemiol Biomarkers Prev 2020; 29:1329-1334. [PMID: 32312759 DOI: 10.1158/1055-9965.epi-20-0187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/22/2020] [Accepted: 04/15/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Vitamin E is an essential micronutrient and critical human antioxidant previously tested for cancer preventative effects with conflicting clinical trial results that have yet to be explained biologically. METHODS We examined baseline and on-trial serum samples for 154 men randomly assigned to receive 400 IU vitamin E (as alpha-tocopheryl acetate; ATA) or placebo daily in the Vitamin E Atherosclerosis Prevention Study (VEAPS), and for 100 men administered 50 IU ATA or placebo daily in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (ATBC). Over 970 metabolites were identified using ultrahigh-performance LC/MS-MS. Linear regression models estimated the change in serum metabolites of men supplemented with vitamin E versus those receiving placebo in VEAPS as compared with ATBC. RESULTS Serum alpha-carboxyethyl hydrochroman (CEHC) sulfate, alpha-tocopherol, and beta/gamma-tocopherol were significantly altered by ATA supplementation in both trials (all P values ≤5.1 × 10-5, the Bonferroni multiple comparisons corrected statistical threshold). Serum C22 lactone sulfate was significantly decreased in response to the high-dose vitamin E in VEAPS (β = -0.70, P = 8.1 × 10-6), but not altered by the low dose in ATBC (β = -0.17, P = 0.4). In addition, changes in androgenic steroid metabolites were strongly correlated with the vitamin E supplement-associated change in C22 lactone sulfate only in the VEAPS trial. CONCLUSIONS We found evidence of a dose-dependent vitamin E supplementation effect on a novel C22 lactone sulfate compound that was correlated with several androgenic steroids. IMPACT Our data add information on a differential hormonal response based on vitamin E dose that could have direct relevance to opposing prostate cancer incidence results from previous large controlled trials.
Collapse
Affiliation(s)
- Jiaqi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland.
| | - Howard N Hodis
- Atherosclerosis Research Unit, Department of Preventive Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Wendy J Mack
- Atherosclerosis Research Unit, Department of Preventive Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California
| | - Joshua N Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Alison M Mondul
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland.
| |
Collapse
|
129
|
Hu X, Go YM, Jones DP. Omics Integration for Mitochondria Systems Biology. Antioxid Redox Signal 2020; 32:853-872. [PMID: 31891667 PMCID: PMC7074923 DOI: 10.1089/ars.2019.8006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
Significance: Elucidation of the central importance of mitophagy in homeostasis of cells and organisms emphasizes that mitochondrial functions extend far beyond short-term needs for energy production. In mitochondria systems biology, the mitochondrial genome, proteome, and metabolome operate as a functional network in coordination of cell activities. Organization occurs through subnetworks that are interconnected by membrane potential, transport activities, allosteric and cooperative interactions, redox signaling mechanisms, rheostatic control by post-translational modifications, and metal ion homeostasis. These subnetworks enable use of varied energy precursors, defense against environmental stressors, and macromolecular rewiring to titrate energy production, biosynthesis, and detoxification according to cell-specific needs. Rewiring mechanisms, termed mitochondrial reprogramming, enhance fitness to respond to metabolic resources and challenges from the environment. Maladaptive responses can cause cell death. Maladaptive rewiring can cause disease. In cancer, adaptive rewiring can interfere with effective treatment. Recent Advances: Many recent advances have been facilitated by the development of new omics tools, which create opportunities to use data-driven analysis of omics data to address these complex adaptive and maladaptive mechanisms of mitochondrial reprogramming in human disease. Critical Issues: Application of omics integration to model systems reveals a critical role for metal ion homeostasis broadly impacting mitochondrial reprogramming. Importantly, data show that trans-omics associations are more robust and biologically relevant than single omics associations. Future Directions: Application of omics integration to mitophagy research creates new opportunities to link the complex, interactive functions of mitochondrial form and function in mitochondria systems biology.
Collapse
Affiliation(s)
- Xin Hu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Dean P. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
130
|
Elrashidy RA. Dysregulation of nuclear factor erythroid 2-related factor 2 signaling and activation of fibrogenic pathways in hearts of high fat diet-fed rats. Mol Biol Rep 2020; 47:2821-2834. [PMID: 32239469 DOI: 10.1007/s11033-020-05360-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
|
131
|
Hemilä H. Vitamin E and Mortality in Male Smokers of the ATBC Study: Implications for Nutritional Recommendations. Front Nutr 2020; 7:36. [PMID: 32296711 PMCID: PMC7136753 DOI: 10.3389/fnut.2020.00036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/09/2020] [Indexed: 12/30/2022] Open
Abstract
The Dietary Reference Intakes (DRI)-monograph (USA/Canada) states that the estimated average requirement (EAR) of vitamin E for men and women of any age is 12 mg/day. The EAR value is based on in vitro hemolysis in young males; a surrogate endpoint without any direct validity. The EAR is then extrapolated to females and older males. The validity of the EAR level is therefore questionable. Total mortality is an outcome of direct clinical relevance. Investigating the effect of long-term dietary vitamin E intake level on mortality in a randomized trial is, however, not feasible. Nevertheless, the effect of dietary vitamin E intake can be investigated indirectly from the effects of a fixed-level vitamin E supplement administered to participants on variable levels of dietary vitamin E intake. If vitamin E intake below the EAR is harmful, then vitamin E supplement should be beneficial to those people who have dietary vitamin E intake level below the EAR. The purpose of this study was to analyze the association between dietary vitamin E intake and the effect of 25 mg/day of vitamin E supplement on total mortality in Finnish male smokers aged 50-69 years in the Alpha-Tocopherol-Beta-Carotene (ATBC) Study. The effect of vitamin E supplement was estimated by Cox regression. Among participants who had dietary vitamin C intake of 90 mg/day and above, vitamin E supplement increased mortality by 19% (p = 0.006) in those aged 50-62 years, but decreased mortality by 41% (p = 0.0003) in those aged 66-69 years. No association between vitamin E supplement effect and dietary vitamin E intake was found in these two groups, nor in participants who had dietary vitamin C intake less than 90 mg/day. There is no evidence in any of the analyzed subgroups that there is a difference in the effect of the 25 mg/day vitamin E supplement on males on dietary vitamin E intakes below vs. above the EAR of 12 mg/day. This analysis of the ATBC Study found no support for the 'estimated average requirement' level of 12 mg/day of vitamin E for older males. Trial registration: ClinicalTrials.gov, identifier: NCT00342992.
Collapse
Affiliation(s)
- Harri Hemilä
- Department of Public Health, University of Helsinki, Helsinki, Finland
| |
Collapse
|
132
|
Oxidative Stress and Antioxidants in Atherosclerosis Development and Treatment. BIOLOGY 2020; 9:biology9030060. [PMID: 32245238 PMCID: PMC7150948 DOI: 10.3390/biology9030060] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
Atherosclerosis can be regarded as chronic inflammatory disease affecting the arterial wall. Despite the recent progress in studying the pathogenesis of atherosclerosis, some of the pathogenic mechanisms remain to be fully understood. Among these mechanisms is oxidative stress, which is closely linked to foam cells formation and other key events in atherosclerosis development. Two groups of enzymes are involved in the emergence of oxidative stress: Pro-oxidant (including NADPH oxidases, xanthine oxidases, and endothelial nitric oxide synthase) and antioxidant (such as superoxide dismutase, catalases, and thioredoxins). Pro-oxidant enzymes in normal conditions produce moderate concentrations of reactive oxidant species that play an important role in cell functioning and can be fully utilized by antioxidant enzymes. Under pathological conditions, activities of both pro-oxidant and antioxidant enzymes can be modified by numerous factors that can be relevant for developing novel therapies. Recent studies have explored potential therapeutic properties of antioxidant molecules that are capable to eliminate oxidative damage. However, the results of these studies remain controversial. Other perspective approach is to inhibit the activity of pro-oxidant enzymes and thus to slow down the progression of atherosclerosis. In this review we summarized the current knowledge on oxidative stress in atherosclerosis and potential antioxidant approaches. We discuss several important antioxidant molecules of plant origin that appear to be promising for treatment of atherosclerosis.
Collapse
|
133
|
Nutraceutical support in heart failure: a position paper of the International Lipid Expert Panel (ILEP). Nutr Res Rev 2020; 33:155-179. [PMID: 32172721 DOI: 10.1017/s0954422420000049] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heart failure (HF) is a complex clinical syndrome that represents a major cause of morbidity and mortality in Western countries. Several nutraceuticals have shown interesting clinical results in HF prevention as well as in the treatment of the early stages of the disease, alone or in combination with pharmacological therapy. The aim of the present expert opinion position paper is to summarise the available clinical evidence on the role of phytochemicals in HF prevention and/or treatment that might be considered in those patients not treated optimally as well as in those with low therapy adherence. The level of evidence and the strength of recommendation of particular HF treatment options were weighed up and graded according to predefined scales. A systematic search strategy was developed to identify trials in PubMed (January 1970 to June 2019). The terms 'nutraceuticals', 'dietary supplements', 'herbal drug' and 'heart failure' or 'left verntricular dysfunction' were used in the literature search. The experts discussed and agreed on the recommendation levels. Available clinical trials reported that the intake of some nutraceuticals (hawthorn, coenzyme Q10, l-carnitine, d-ribose, carnosine, vitamin D, probiotics, n-3 PUFA and beet nitrates) might be associated with improvements in self-perceived quality of life and/or functional parameters such as left ventricular ejection fraction, stroke volume and cardiac output in HF patients, with minimal or no side effects. Those benefits tended to be greater in earlier HF stages. Available clinical evidence supports the usefulness of supplementation with some nutraceuticals to improve HF management in addition to evidence-based pharmacological therapy.
Collapse
|
134
|
Ayas NT, Foster GE, Shah N, Floras J, Laher I. Could Adjunctive Pharmacology Mitigate Cardiovascular Consequences of Obstructive Sleep Apnea? Am J Respir Crit Care Med 2020; 200:551-555. [PMID: 30875238 DOI: 10.1164/rccm.201811-2097pp] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Najib T Ayas
- Sleep Disorders Program.,Division of Respiratory Medicine and.,Division of Critical Care Medicine, Department of Medicine, and.,Canadian Sleep and Circadian Network and
| | - Glen E Foster
- Canadian Sleep and Circadian Network and.,Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Neomi Shah
- Division of Pulmonary, Critical Care, and Sleep, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - John Floras
- Division of Cardiology, Department of Medicine, University Health Network and Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Canadian Sleep and Circadian Network and
| |
Collapse
|
135
|
Aimo A, Castiglione V, Borrelli C, Saccaro LF, Franzini M, Masi S, Emdin M, Giannoni A. Oxidative stress and inflammation in the evolution of heart failure: From pathophysiology to therapeutic strategies. Eur J Prev Cardiol 2020; 27:494-510. [DOI: 10.1177/2047487319870344] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Both oxidative stress and inflammation are enhanced in chronic heart failure. Dysfunction of cardiac mitochondria is a hallmark of heart failure and a leading cause of oxidative stress, which in turn exerts detrimental effects on cellular components, including mitochondria themselves, thus generating a vicious circle. Oxidative stress also causes myocardial tissue damage and inflammation, contributing to heart failure progression. Furthermore, a subclinical inflammatory state may be caused by heart failure comorbidities such as obesity, diabetes mellitus or sleep apnoeas. Some markers of both oxidative stress and inflammation are enhanced in chronic heart failure and hold prognostic significance. For all these reasons, antioxidants or anti-inflammatory drugs may represent interesting additional therapies for subjects either at high risk or with established heart failure. Nonetheless, only a few clinical trials on antioxidants have been carried out so far, with several disappointing results except for vitamin C, elamipretide and coenzyme Q10. With regard to anti-inflammatory drugs, only preliminary data on the interleukin-1 antagonist anakinra are currently available. Therefore, a comprehensive, deep understanding of our current knowledge on oxidative stress and inflammation in chronic heart failure is key to providing some suggestions for future research on this topic.
Collapse
Affiliation(s)
- Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Chiara Borrelli
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Luigi F Saccaro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Alberto Giannoni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
136
|
|
137
|
Goudarzi S, Memar Montazerin S, Najafi H, Shojaei F, Chi G. Effect of Vitamins and Dietary Supplements on Cardiovascular Health. Crit Pathw Cardiol 2020; 19:153-159. [PMID: 32053519 DOI: 10.1097/hpc.0000000000000212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease marks the leading cause of mortality and morbidity in the United States. Pharmacological therapies have been developed to reduce the burden of cardiovascular diseases in the setting of large-scale randomized controlled trials. In contrast, vitamins and minerals have not undergone an equal level of scrutiny, and the evidence of cardiovascular benefit remains elusive. Multivitamins are the most popular over-the-counter supplements in the United States, despite the lack of clear benefit as a means of primary or secondary cardiovascular prevention. Recent studies indicate a potential role of multivitamins in secondary prevention when concomitantly administered with chelation therapy. Additionally, preclinical and observational studies have shown preliminary evidence of cardiovascular protection with dietary supplements such as carnitine, arginine, and coenzyme Q10. This review summarizes the currently available data about the effect of vitamins and other dietary supplements on the cardiovascular system.
Collapse
Affiliation(s)
- Sogand Goudarzi
- From the Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | | | | | | |
Collapse
|
138
|
Stahl EP, Dhindsa DS, Lee SK, Sandesara PB, Chalasani NP, Sperling LS. Nonalcoholic Fatty Liver Disease and the Heart: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 73:948-963. [PMID: 30819364 DOI: 10.1016/j.jacc.2018.11.050] [Citation(s) in RCA: 266] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and cardiovascular disease (CVD) are both manifestations of end-organ damage of the metabolic syndrome. Through multiple pathophysiological mechanisms, CVD and NAFLD are associated with each other. Systemic inflammation, endothelial dysfunction, hepatic insulin resistance, oxidative stress, and altered lipid metabolism are some of the mechanisms by which NAFLD increases the risk of CVD. Patients with NAFLD develop increased atherosclerosis, cardiomyopathy, and arrhythmia, which clinically result in cardiovascular morbidity and mortality. Defining the mechanisms linking these 2 diseases offers the opportunity to further develop targeted therapies. The aim of this comprehensive review is to examine the association between CVD and NAFLD and discuss the overlapping management approaches.
Collapse
Affiliation(s)
- Eric P Stahl
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Devinder S Dhindsa
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Suegene K Lee
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Pratik B Sandesara
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Naga P Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Laurence S Sperling
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
139
|
Griffin DM, Bitner BR, Criss Ii Z, Marcano D, Berlin JM, Kent TA, Tour JM, Samson SL, Pautler RG. Use of a bioengineered antioxidant in mouse models of metabolic syndrome. Expert Opin Investig Drugs 2020; 29:209-219. [PMID: 31937152 DOI: 10.1080/13543784.2020.1716216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Oxidative stress has been implicated in metabolic syndrome (MetS); however, antioxidants such as vitamin E have had limited success in the clinic. This prompts the question of what effects amore potent antioxidant might produce. A prime candidate is the recently developed bioengineered antioxidant, poly(ethylene glycol)-functionalizedhydrophilic carbon clusters (PEG-HCCs), which are capable of neutralizing the reactive oxygen species (ROS) superoxide anion and hydroxyl radical at106/molecule of PEG-HCC. In this project, we tested the potential of PEG-HCCs as a possible therapeutic for MetS.Results: PEG-HCC treatment lessened lipid peroxidation, aspartate aminotransferase levels, non-fastingblood glucose levels, and JNK phosphorylation inob/ob mice. PEG-HCC-treated WT mice had an increased response to insulin by insulin tolerance tests and adecrease in blood glucose by glucose tolerance tests. These effects were not observed in HFD-fed mice, regardless of treatment. PEG-HCCs were observed in the interstitial space of liver, spleen, skeletal muscle, and adipose tissue. No significant difference was shown in gluconeogenesis or inflammatory gene expression between treatment and dietary groups.Expert Opinion: PEG-HCCs improved some parameters of disease possibly due to a resulting increase in peripheral insulin sensitivity. However, additional studies are needed to elucidate how PEG-HCCsare producing these effects.
Collapse
Affiliation(s)
- Deric M Griffin
- Interdepartmental Program in Translation Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Brittany R Bitner
- Interdepartmental Program in Translation Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Zachary Criss Ii
- Interdepartmental Program in Translation Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Daniela Marcano
- Department of Chemistry, Rice University, Houston, TX, USA.,Smalley-Curl Institute for and Nanocarbon Center, Rice University, Houston, TX, USA
| | - Jacob M Berlin
- Department of Chemistry, Rice University, Houston, TX, USA.,Smalley-Curl Institute for and Nanocarbon Center, Rice University, Houston, TX, USA.,Molecular Medicine, City of Hope, Duarte, CA, USA
| | - Thomas A Kent
- Interdepartmental Program in Translation Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Neurology, Baylor College of Medicine, Houston, TX, USA.,Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, USA.,Smalley-Curl Institute for and Nanocarbon Center, Rice University, Houston, TX, USA
| | - Susan L Samson
- Department of Chemistry, Rice University, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Robia G Pautler
- Interdepartmental Program in Translation Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
140
|
Inflammation and Oxidative Stress in Chronic Kidney Disease-Potential Therapeutic Role of Minerals, Vitamins and Plant-Derived Metabolites. Int J Mol Sci 2019; 21:ijms21010263. [PMID: 31906008 PMCID: PMC6981831 DOI: 10.3390/ijms21010263] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a debilitating pathology with various causal factors, culminating in end stage renal disease (ESRD) requiring dialysis or kidney transplantation. The progression of CKD is closely associated with systemic inflammation and oxidative stress, which are responsible for the manifestation of numerous complications such as malnutrition, atherosclerosis, coronary artery calcification, heart failure, anemia and mineral and bone disorders, as well as enhanced cardiovascular mortality. In addition to conventional therapy with anti-inflammatory and antioxidative agents, growing evidence has indicated that certain minerals, vitamins and plant-derived metabolites exhibit beneficial effects in these disturbances. In the current work, we review the anti-inflammatory and antioxidant properties of various agents which could be of potential benefit in CKD/ESRD. However, the related studies were limited due to small sample sizes and short-term follow-up in many trials. Therefore, studies of several anti-inflammatory and antioxidant agents with long-term follow-ups are necessary.
Collapse
|
141
|
Abstract
The microcirculation maintains tissue homeostasis through local regulation of blood flow and oxygen delivery. Perturbations in microvascular function are characteristic of several diseases and may be early indicators of pathological changes in the cardiovascular system and in parenchymal tissue function. These changes are often mediated by various reactive oxygen species and linked to disruptions in pathways such as vasodilation or angiogenesis. This overview compiles recent advances relating to redox regulation of the microcirculation by adopting both cellular and functional perspectives. Findings from a variety of vascular beds and models are integrated to describe common effects of different reactive species on microvascular function. Gaps in understanding and areas for further research are outlined. © 2020 American Physiological Society. Compr Physiol 10:229-260, 2020.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
142
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid β in the form of extracellular plaques and by intracellular neurofibrillary tangles, with eventual neurodegeneration and dementia. There is currently no disease-modifying treatment though several symptomatic medications exist with modest benefit on cognition. Acetylcholinesterase inhibitors have a consistent benefit across all stages of dementia; their benefit in mild cognitive impairment and prodromal AD is unproven. Memantine has a smaller benefit on cognition overall which is limited to the moderate to severe stages, and the combination of a cholinesterase inhibitor and memantine may have additional efficacy. Evidence for the efficacy of vitamin E supplementation and medical foods is weak but might be considered in the context of cost, availability, and safety in individual patients. Apparently promising disease-modifying interventions, mostly addressing the amyloid cascade hypothesis of AD, have recently failed to demonstrate efficacy so novel approaches must be considered.
Collapse
Affiliation(s)
- Elizabeth Joe
- Alzheimer Disease Research Center, Department of Neurology, Keck School of Medicine at USC, 1520 San Pablo Street Suite 3000, Los Angeles, CA 90033, USA
| | - John M Ringman
- Alzheimer Disease Research Center, Department of Neurology, Keck School of Medicine at USC, 1520 San Pablo Street Suite 3000, Los Angeles, CA 90033, USA
| |
Collapse
|
143
|
Cvetinovic N, Loncar G, Isakovic AM, von Haehling S, Doehner W, Lainscak M, Farkas J. Micronutrient Depletion in Heart Failure: Common, Clinically Relevant and Treatable. Int J Mol Sci 2019; 20:E5627. [PMID: 31717934 PMCID: PMC6888526 DOI: 10.3390/ijms20225627] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) is a chronic condition with many imbalances, including nutritional issues. Next to sarcopenia and cachexia which are clinically evident, micronutrient deficiency is also present in HF. It is involved in HF pathophysiology and has prognostic implications. In general, most widely known micronutrients are depleted in HF, which is associated with symptoms and adverse outcomes. Nutritional intake is important but is not the only factor reducing the micronutrient availability for bodily processes, because absorption, distribution, and patient comorbidity may play a major role. In this context, interventional studies with parenteral micronutrient supplementation provide evidence that normalization of micronutrients is associated with improvement in physical performance and quality of life. Outcome studies are underway and should be reported in the following years.
Collapse
Affiliation(s)
- Natasa Cvetinovic
- Department of Cardiology, University Clinical Hospital Center “Dr. Dragisa Misovic—Dedinje”, 11000 Belgrade, Serbia;
| | - Goran Loncar
- Institute for Cardiovascular Diseases Dedinje, 11000 Belgrade, Serbia;
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | | | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Goettingen Medical Center, DE-37075 Goettingen, Germany;
- German Center for Cardiovascular Research (DZHK), partner site Goettingen, DE-37099 Goettingen, Germany
| | - Wolfram Doehner
- Berlin Institute of Health Center for Regenerative Therapies (BCRT) and Department of Cardiology (Virchow Klinikum), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, DE-13353 Berlin, Germany;
| | - Mitja Lainscak
- Division of Cardiology, General Hospital Murska Sobota, SI-9000 Murska Sobota, Slovenia
- Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Jerneja Farkas
- Research Unit, General Hospital Murska Sobota, SI-9000 Murska Sobota, Slovenia
- National Institute of Public Health, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
144
|
Chakrabarti A, Eiden M, Morin-Rivron D, Christinat N, Monteiro JP, Kaput J, Masoodi M. Impact of multi-micronutrient supplementation on lipidemia of children and adolescents. Clin Nutr 2019; 39:2211-2219. [PMID: 31677804 DOI: 10.1016/j.clnu.2019.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Micronutrient supplementation has been extensively explored as a strategy to improve health and reduce risk of chronic diseases. Fat-soluble vitamins like A and E with their antioxidant properties and mechanistic interactions with lipoproteins, have potentially a key impact on lipid metabolism and lipidemia. OBJECTIVE The impact of micronutrients on lipid metabolism requires further investigation including characterization of plasma lipidome following supplementation and any cause-effect on circulating lipids. DESIGN In this study, we elucidate the effect and associations of a multi-micronutrient intervention in Brazilian children and teens with lipoprotein alterations and lipid metabolism. RESULTS Our analysis suggests a combination of short and long-term impact of supplementation on lipid metabolism, potentially mediated primarily by α-tocopherol (vitamin E) and retinol (vitamin A). Among the lipid classes, levels of phospholipids, lysophospholipids, and cholesterol esters were impacted the most along with differential incorporation of stearic, palmitic, oleic and arachidonic acids. Integrated analysis with proteomic data suggested potential links to supplementation-mediated alterations in protein levels of phospholipases and pyruvate dehydrogenase kinase 1 (PDK1). CONCLUSIONS Associations between the observed differences in lipidemia, total triglyceride, and VLDL-cholesterol levels suggest that micronutrients may play a role in reducing these risk factors for cardiovascular disease in children. This would require further investigation.
Collapse
Affiliation(s)
| | - Michael Eiden
- Lipid Metabolism, Nestlé Research, EPFL Innovation Park, 1015, Switzerland; Eidea Bioscience Ltd., Cambridge, United Kingdom
| | | | - Nicolas Christinat
- Lipid Metabolism, Nestlé Research, EPFL Innovation Park, 1015, Switzerland
| | - Jacqueline P Monteiro
- Department of Pediatrics and Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Jim Kaput
- Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Mojgan Masoodi
- Lipid Metabolism, Nestlé Research, EPFL Innovation Park, 1015, Switzerland; Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
145
|
Lee JH, Park A, Oh KJ, Lee SC, Kim WK, Bae KH. The Role of Adipose Tissue Mitochondria: Regulation of Mitochondrial Function for the Treatment of Metabolic Diseases. Int J Mol Sci 2019; 20:ijms20194924. [PMID: 31590292 PMCID: PMC6801758 DOI: 10.3390/ijms20194924] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
: Mitochondria play a key role in maintaining energy homeostasis in metabolic tissues, including adipose tissues. The two main types of adipose tissues are the white adipose tissue (WAT) and the brown adipose tissue (BAT). WAT primarily stores excess energy, whereas BAT is predominantly responsible for energy expenditure by non-shivering thermogenesis through the mitochondria. WAT in response to appropriate stimuli such as cold exposure and β-adrenergic agonist undergoes browning wherein it acts as BAT, which is characterized by the presence of a higher number of mitochondria. Mitochondrial dysfunction in adipocytes has been reported to have strong correlation with metabolic diseases, including obesity and type 2 diabetes. Dysfunction of mitochondria results in detrimental effects on adipocyte differentiation, lipid metabolism, insulin sensitivity, oxidative capacity, and thermogenesis, which consequently lead to metabolic diseases. Recent studies have shown that mitochondrial function can be improved by using thiazolidinedione, mitochondria-targeted antioxidants, and dietary natural compounds; by performing exercise; and by controlling caloric restriction, thereby maintaining the metabolic homeostasis by inducing adaptive thermogenesis of BAT and browning of WAT. In this review, we focus on and summarize the molecular regulation involved in the improvement of mitochondrial function in adipose tissues so that strategies can be developed to treat metabolic diseases.
Collapse
Affiliation(s)
- Jae Ho Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Anna Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Korea.
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Korea.
| |
Collapse
|
146
|
Firth J, Teasdale SB, Allott K, Siskind D, Marx W, Cotter J, Veronese N, Schuch F, Smith L, Solmi M, Carvalho AF, Vancampfort D, Berk M, Stubbs B, Sarris J. The efficacy and safety of nutrient supplements in the treatment of mental disorders: a meta-review of meta-analyses of randomized controlled trials. World Psychiatry 2019; 18:308-324. [PMID: 31496103 PMCID: PMC6732706 DOI: 10.1002/wps.20672] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of nutrition in mental health is becoming increasingly acknowledged. Along with dietary intake, nutrition can also be obtained from "nutrient supplements", such as polyunsaturated fatty acids (PUFAs), vitamins, minerals, antioxidants, amino acids and pre/probiotic supplements. Recently, a large number of meta-analyses have emerged examining nutrient supplements in the treatment of mental disorders. To produce a meta-review of this top-tier evidence, we identified, synthesized and appraised all meta-analyses of randomized controlled trials (RCTs) reporting on the efficacy and safety of nutrient supplements in common and severe mental disorders. Our systematic search identified 33 meta-analyses of placebo-controlled RCTs, with primary analyses including outcome data from 10,951 individuals. The strongest evidence was found for PUFAs (particularly as eicosapentaenoic acid) as an adjunctive treatment for depression. More nascent evidence suggested that PUFAs may also be beneficial for attention-deficit/hyperactivity disorder, whereas there was no evidence for schizophrenia. Folate-based supplements were widely researched as adjunctive treatments for depression and schizophrenia, with positive effects from RCTs of high-dose methylfolate in major depressive disorder. There was emergent evidence for N-acetylcysteine as a useful adjunctive treatment in mood disorders and schizophrenia. All nutrient supplements had good safety profiles, with no evidence of serious adverse effects or contraindications with psychiatric medications. In conclusion, clinicians should be informed of the nutrient supplements with established efficacy for certain conditions (such as eicosapentaenoic acid in depression), but also made aware of those currently lacking evidentiary support. Future research should aim to determine which individuals may benefit most from evidence-based supplements, to further elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Joseph Firth
- NICM Health Research InstituteWestern Sydney UniversityWestmeadAustralia,Division of Psychology and Mental Health, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK,Centre for Youth Mental HealthUniversity of MelbourneMelbourneAustralia
| | - Scott B. Teasdale
- School of Psychiatry, Faculty of MedicineUniversity of New South WalesSydneyAustralia,Keeping the Body in Mind ProgramSouth Eastern Sydney Local Health DistrictSydneyAustralia
| | - Kelly Allott
- Centre for Youth Mental HealthUniversity of MelbourneMelbourneAustralia,Orygen, The National Centre of Excellence in Youth Mental HealthParkvilleAustralia
| | - Dan Siskind
- Metro South Addiction and Mental Health ServiceBrisbaneAustralia,School of MedicineUniversity of QueenslandBrisbaneAustralia
| | - Wolfgang Marx
- IMPACT Strategic Research Centre, School of MedicineDeakin University, Barwon HealthAustralia
| | | | - Nicola Veronese
- Neuroscience InstituteNational Research CouncilPaduaItaly,Research Hospital, National Institute of GastroenterologyIRCCS De Bellis, Castellana GrotteBariItaly
| | - Felipe Schuch
- Department of Sports Methods and TechniquesFederal University of Santa MariaSanta MariaBrazil
| | - Lee Smith
- Cambridge Centre for Sport and Exercise SciencesAnglia Ruskin UniversityCambridgeUK
| | - Marco Solmi
- Department of NeurosciencesUniversity of PaduaPaduaItaly,Padua Neuroscience CenterUniversity of PaduaPaduaItaly
| | - André F. Carvalho
- Centre for Addiction and Mental HealthTorontoONCanada,Department of PsychiatryUniversity of TorontoTorontoONCanada
| | - Davy Vancampfort
- KU Leuven Department of Rehabilitation SciencesLeuvenBelgium,University Psychiatric Centre KU LeuvenKortenbergBelgium
| | - Michael Berk
- Orygen, The National Centre of Excellence in Youth Mental HealthParkvilleAustralia,IMPACT Strategic Research Centre, School of MedicineDeakin University, Barwon HealthAustralia
| | - Brendon Stubbs
- South London and Maudsley NHS Foundation TrustLondonUK,Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Jerome Sarris
- NICM Health Research InstituteWestern Sydney UniversityWestmeadAustralia,Professional Unit, The Melbourne Clinic, Department of PsychiatryUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
147
|
EL-Hak HN, ELaraby EE, Hassan AK, Abbas OA. Study of the toxic effect and safety of vitamin E supplement in male albino rats after 30 days of repeated treatment. Heliyon 2019; 5:e02645. [PMID: 31667433 PMCID: PMC6812462 DOI: 10.1016/j.heliyon.2019.e02645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
The aim of these investigations was to study vitamin E supplement effect in male albino rats after 30 days of repeated treatment. Four groups of six male rats were orally administered distilled water (control), 500, 1000 and 2000 mg/kg body weight vitamin E daily for 30 days. The impact of the treatment on percent body weight and mortality was determined and compared to the control group. Some hematological analysis, biochemical parameters and histological examination of different body organs were assessed. The rats treated with different doses of vitamin E supplement showed no deaths recorded in 30 days. The treatment with higher dose Vitamin E supplementation" caused significant alteration at the hematological, biochemical and histological level. Therefore, oral administration of vitamin E supplement in rats for 30 days was not safe for the liver and kidney and in the other hand, safe for the testes therefore that side effect on the liver and kidney should be considered when recommended vitamin E for therapeutic purpose. Care should be taken in taking high doses of vitamin E.
Collapse
Affiliation(s)
- Heba N.Gad EL-Hak
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Eman E. ELaraby
- Zoology Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Ahmed K. Hassan
- Zoology Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Osama A. Abbas
- Zoology Department, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
148
|
Shah R, Farmer LA, Zilka O, Van Kessel ATM, Pratt DA. Beyond DPPH: Use of Fluorescence-Enabled Inhibited Autoxidation to Predict Oxidative Cell Death Rescue. Cell Chem Biol 2019; 26:1594-1607.e7. [PMID: 31564533 DOI: 10.1016/j.chembiol.2019.09.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/21/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
"Antioxidant activity" is an often invoked, but generally poorly characterized, molecular property. Several assays are available to determine antioxidant activity, the most popular of which is based upon the ability of a putative antioxidant to reduce 2,2-diphenyl-1-picrylhydrazyl. Here, we show that the results of this assay do not correlate with the potency of putative antioxidants as inhibitors of ferroptosis, the oxidative cell death modality associated with (phospho)lipid peroxidation. We subsequently describe our efforts to develop an approach that quantifies the reactivity of putative antioxidants with the (phospho)lipid peroxyl radicals that propagate (phospho)lipid peroxidation (dubbed FENIX [fluorescence-enabled inhibited autoxidation]). The results obtained with FENIX afford an excellent correlation with anti-ferroptotic potency, which facilitates mechanistic characterization of ferroptosis inhibitors, and reveals the importance of H-bonding interactions between antioxidant and phospholipid that underlie both the lackluster antioxidant activity of phenols under physiologically relevant conditions and the emergence of arylamines as inhibitors of choice.
Collapse
Affiliation(s)
- Ron Shah
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Luke A Farmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Omkar Zilka
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Antonius T M Van Kessel
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
149
|
Mansukhani MP, Somers VK, Caples SM. COUNTERPOINT: Should All Patients With Atrial Fibrillation Who Are About to Undergo Pulmonary Vein Ablation Be Evaluated for OSA? No. Chest 2019; 154:1010-1012. [PMID: 30409357 DOI: 10.1016/j.chest.2018.06.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
| | - Virend K Somers
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Sean M Caples
- Center for Sleep Medicine, Mayo Clinic, Rochester, MN; Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
150
|
Ranard KM, Erdman JW. Effects of dietary RRR α-tocopherol vs all-racemic α-tocopherol on health outcomes. Nutr Rev 2019; 76:141-153. [PMID: 29301023 DOI: 10.1093/nutrit/nux067] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Of the 8 vitamin E analogues, RRR α-tocopherol likely has the greatest effect on health outcomes. Two sources of α-tocopherol, naturally sourced RRR α-tocopherol and synthetic all-racemic α-tocopherol, are commonly consumed from foods and dietary supplements in the United States. A 2016 US Food and Drug Administration ruling substantially changed the RRR to all-racemic α-tocopherol ratio of biopotency from 1.36:1 to 2:1 for food-labeling purposes, but the correct ratio is still under debate in the literature. Few studies have directly compared the 2 α-tocopherol sources, and existing studies do not compare the efficacy of either source for preventing or treating disease in humans. To help close this gap, this review evaluates studies that investigated the effects of either RRR α-tocopherol or all-racemic α-tocopherol on health outcomes, and compares the overall findings. α-Tocopherol has been used to prevent and/or treat cancer and diseases of the central nervous system, the immune system, and the cardiovascular system, so these diseases are the focus of the review. No firm conclusions about the relative effects of the α-tocopherol sources on health outcomes can be made. Changes to α-tocopherol-relevant policies have proceeded without adequate scientific support. Additional research is needed to assemble the pieces of the α-tocopherol puzzle and to determine the RRR to all-racemic α-tocopherol ratio of biopotency for health outcomes.
Collapse
Affiliation(s)
- Katherine M Ranard
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|