101
|
Sarkar B, Dhiman M, Mittal S, Mantha AK. Curcumin revitalizes Amyloid beta (25-35)-induced and organophosphate pesticides pestered neurotoxicity in SH-SY5Y and IMR-32 cells via activation of APE1 and Nrf2. Metab Brain Dis 2017; 32:2045-2061. [PMID: 28861684 DOI: 10.1007/s11011-017-0093-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/11/2017] [Indexed: 12/15/2022]
Abstract
Amyloid beta (Aβ) peptide deposition is the primary cause of neurodegeneration in Alzheimer's disease (AD) pathogenesis. Several reports point towards the role of pesticides in the AD pathogenesis, especially organophosphate pesticides (OPPs). Monocrotophos (MCP) and Chlorpyrifos (CP) are the most widely used OPPs. In this study, the role of MCP and CP in augmenting the Aβ-induced oxidative stress associated with the neurodegeneration in AD has been assessed in human neuroblastoma IMR-32 and SH-SY5Y cell lines. From the cell survival assay, it was observed that MCP and CP reduced cell survival both dose- and time-dependently. Nitro blue tetrazolium (NBT) based assay for determination of intracellular reactive oxygen species (ROS) demonstrated that Aβ(25-35), MCP or CP produce significant oxidative stress alone or synergistically in IMR-32 and SH-SY5Y cells, while pretreatment of curcumin reduced ROS levels significantly in all treatment combinations. In this study, we also demonstrate that treatment of Aβ(25-35) and MCP upregulated inducible nitric oxide synthase (iNOS/NOS2) whereas, no change was observed in neuronal nitric oxide synthase (nNOS/NOS1), but down-regulation of the nuclear factor erythroid 2-related factor 2 (Nrf2) level was observed. While curcumin pretreatment resulted in upregulation of iNOS and Nrf2 proteins. Also, the expression of key DNA repair enzymes APE1, DNA polymerase beta (Pol β), and PARP1 were found to be downregulated upon treatment with MCP, Aβ(25-35) and their combinations at 24 h and 48 h time points. In this study, pretreatment of curcumin to the SH-SY5Y cells enhanced the expression of DNA repair enzymes APE1, pol β, and PARP1 enzymes to counter the oxidative DNA base damage via base excision repair (BER) pathway, and also activated the antioxidant element (ARE) via Nrf2 upregulation. Furthermore, the immunofluorescent confocal imaging studies in SH-SY5Y and IMR-32 cells treated with Aβ(25-35) and MCP-mediated oxidative stress and their combinations at different time periods suggesting for cross-talk between the two proteins APE1 and Nrf2. The APE1's association with Nrf2 might be associated with the redox function of APE1 that might be directly regulating the ARE-mediated neuronal survival mechanisms.
Collapse
Affiliation(s)
- Bibekananda Sarkar
- Center for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, 151 001, India
| | - Monisha Dhiman
- Center for Biochemistry and Microbial Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Sunil Mittal
- Center for Environmental Science & Technology, School of Earth Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anil K Mantha
- Center for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, 151 001, India.
| |
Collapse
|
102
|
Behavioral impairments following repeated intranasal glyphosate-based herbicide administration in mice. Neurotoxicol Teratol 2017; 64:63-72. [DOI: 10.1016/j.ntt.2017.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/12/2017] [Accepted: 10/18/2017] [Indexed: 12/31/2022]
|
103
|
Vazquez Boucard C, Lee-Cruz L, Mercier L, Ramírez Orozco M, Serrano Pinto V, Anguiano G, Cazares L, Díaz D. A study of DNA damage in buccal cells of consumers of well- and/or tap-water using the comet assay: Assessment of occupational exposure to genotoxicants. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:619-627. [PMID: 28714172 DOI: 10.1002/em.22111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Because of concerns that natural aquifers in the region of Todos Santos (Baja California Sur, Mexico) might be contaminated by organochlorine pesticides and heavy metals, a case-control study was conducted among consumers and non-consumers of well- and/or tap-water to determine risks to human health. This study was based on a genotoxic evaluation of buccal cells using the Comet assay technique. Levels of DNA damage in the consumers group were significantly higher than those of the control group. However, occupational exposure to genotoxicants showed to be the critical factor rather than water consumption. Taking into account the professions of well- and/or tap-water consumers, agricultural workers exposed directly (those who fumigated) or indirectly (those not involved in fumigating) to agrochemicals showed greater genetic damage than controls. This difference persisted even when age, and whether the person smoked or consumed alcoholic drinks were considered. These factors were not associated with the level of genetic damage observed. Chemical analyses of organochlorine pesticides and heavy metals were carried out to evaluate the water quality of wells, faucets, and surface water of canals consumed by the population and/or used for irrigation. High concentrations of α and β endosulfan were detected in water of surface canals. Although our inventory of agrochemicals employed in the region showed the use of products considered carcinogenic and/or mutagenic, they were not detected by the analytical techniques used. Heavy metals (arsenic, mercury, and lead) were detected in water of some wells used for irrigation and human consumption. Environ. Mol. Mutagen. 58:619-627, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Celia Vazquez Boucard
- Department of Environmental Management and Conservation, Laboratory of Proteomic and Genetic Toxicology, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, BCS, Mexico
| | - Larisa Lee-Cruz
- Department of Environmental Management and Conservation, Laboratory of Proteomic and Genetic Toxicology, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, BCS, Mexico
| | - Laurence Mercier
- Department of Environmental Management and Conservation, Laboratory of Proteomic and Genetic Toxicology, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, BCS, Mexico
| | - Martín Ramírez Orozco
- Department of Environmental Management and Conservation, Laboratory of Proteomic and Genetic Toxicology, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, BCS, Mexico
| | - Vania Serrano Pinto
- Department of Environmental Management and Conservation, Laboratory of Proteomic and Genetic Toxicology, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, BCS, Mexico
| | - Gerardo Anguiano
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, DGO, Mexico
| | - Linette Cazares
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, DGO, Mexico
| | - Daniel Díaz
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, DGO, Mexico
| |
Collapse
|
104
|
Carter CJ. Genetic, Transcriptome, Proteomic, and Epidemiological Evidence for Blood-Brain Barrier Disruption and Polymicrobial Brain Invasion as Determinant Factors in Alzheimer's Disease. J Alzheimers Dis Rep 2017; 1:125-157. [PMID: 30480234 PMCID: PMC6159731 DOI: 10.3233/adr-170017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diverse pathogens are detected in Alzheimer's disease (AD) brains. A bioinformatics survey showed that AD genome-wide association study (GWAS) genes (localized in bone marrow, immune locations and microglia) relate to multiple host/pathogen interactomes (Candida albicans, Cryptococcus neoformans, Bornavirus, Borrelia burgdorferri, cytomegalovirus, Ebola virus, HSV-1, HERV-W, HIV-1, Epstein-Barr, hepatitis C, influenza, Chlamydia pneumoniae, Porphyrymonas gingivalis, Helicobacter pylori, Toxoplasma gondii, Trypanosoma cruzi). These interactomes also relate to the AD hippocampal transcriptome and to plaque or tangle proteins. Upregulated AD hippocampal genes match those upregulated by multiple bacteria, viruses, fungi, or protozoa in immunocompetent cells. AD genes are enriched in GWAS datasets reflecting pathogen diversity, suggesting selection for pathogen resistance, as supported by the old age of AD patients, implying resistance to earlier infections. APOE4 is concentrated in regions of high parasitic burden and protects against childhood tropical infections and hepatitis C. Immune/inflammatory gain of function applies to APOE4, CR1, and TREM2 variants. AD genes are also expressed in the blood-brain barrier (BBB), which is disrupted by AD risk factors (age, alcohol, aluminum, concussion, cerebral hypoperfusion, diabetes, homocysteine, hypercholesterolemia, hypertension, obesity, pesticides, pollution, physical inactivity, sleep disruption, smoking) and by pathogens, directly or via olfactory routes to basal-forebrain BBB control centers. The BBB benefits from statins, NSAIDs, estrogen, melatonin, memantine, and the Mediterranean diet. Polymicrobial involvement is supported by upregulation of bacterial, viral, and fungal sensors/defenders in the AD brain, blood, or cerebrospinal fluid. AD serum amyloid-β autoantibodies may attenuate its antimicrobial effects favoring microbial survival and cerebral invasion leading to activation of neurodestructive immune/inflammatory processes, which may also be augmented by age-related immunosenescence. AD may thus respond to antibiotic, antifungal, or antiviral therapy.
Collapse
|
105
|
Van Maele-Fabry G, Gamet-Payrastre L, Lison D. Residential exposure to pesticides as risk factor for childhood and young adult brain tumors: A systematic review and meta-analysis. ENVIRONMENT INTERNATIONAL 2017. [PMID: 28623811 DOI: 10.1016/j.envint.2017.05.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Accumulating evidence suggests a positive association between exposure to non-agricultural pesticides and childhood brain tumors (CBT). OBJECTIVE (1) To conduct a systematic review and meta-analysis of published studies on the association between residential/household/domestic exposure to pesticides and childhood brain tumors. (2) To clarify variables that could impact the results. METHODS Publications in English were identified from a MEDLINE search through 28 February 2017 and from the reference list of identified publications. Risk estimates were extracted from 18 case-control studies published between 1979 and 2016 and study quality assessments were performed. Summary odds ratios (mOR) were calculated according to fixed and random-effect meta-analysis models. Separate analyses were conducted after stratification for study quality, critical exposure period, exposure location, specific exposures, pesticide category, application methods, type of pest treated, type of CBT, child's age at diagnosis and geographic location. RESULTS Statistically significant associations were observed with CBT after combining all studies (mOR: 1.26; 95% CI: 1.13-1.40) without evidence of inconsistency between study results or publication bias. Specifically, increased risks were observed for several groupings and more particularly for gliomas and exposure involving insecticides. Statistical significance was also reached for high quality studies, for all exposure periods, for indoor exposure and, more particularly, during the prenatal period for all stratifications involving insecticides (except for outdoor use), for pet treatments, for flea/tick treatment, for studies from USA/Canada and studies from Europe (borderline) as well as for data from studies including children of up to 10years at diagnosis and of up to 15years. CONCLUSIONS Our findings support an association between residential exposure to pesticides and childhood brain tumors. Although causality cannot be established, these results add to the evidence leading to recommend limiting residential use of pesticides and to support public health policies serving this objective.
Collapse
Affiliation(s)
- Geneviève Van Maele-Fabry
- Université catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Avenue E. Mounier 53.02, B-1200 Brussels, Belgium.
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS 180 chemin de Tournefeuille, BP 93173 Toulouse, France
| | - Dominique Lison
- Université catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Avenue E. Mounier 53.02, B-1200 Brussels, Belgium
| |
Collapse
|
106
|
The biological foundation of the genetic association of TOMM40 with late-onset Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2973-2986. [PMID: 28768149 DOI: 10.1016/j.bbadis.2017.07.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/13/2017] [Accepted: 07/28/2017] [Indexed: 02/06/2023]
Abstract
A variable-length poly-T variant in intron 6 of the TOMM40 gene, rs10524523, is associated with risk and age-of-onset of sporadic (late-onset) Alzheimer's disease. In Caucasians, the three predominant alleles at this locus are Short (S), Long (L) or Very long (VL). On an APOE ε3/3 background, the S/VL and VL/VL genotypes are more protective than S/S. The '523 poly-T has regulatory properties, in that the VL poly-T results in higher expression than the S poly-T in luciferase expression systems. The aim of the current work was to identify effects on cellular bioenergetics of increased TOM40 protein expression. MitoTracker Green fluorescence and autophagic vesicle staining was the same in control and over-expressing cells, but TOM40 over-expression was associated with increased expression of TOM20, a preprotein receptor of the TOM complex, the mitochondrial chaperone HSPA9, and PDHE1a, and increased activities of the oxidative phosphorylation complexes I and IV and of the TCA member α-ketoglutaric acid dehydrogenase. Consistent with the complex I findings, respiration was more sensitive to inhibition by rotenone in control cells than in the TOM40 over-expressing cells. In the absence of inhibitors, total cellular ATP, the mitochondrial membrane potential, and respiration were elevated in the over-expressing cells. Spare respiratory capacity was greater in the TOM40 over-expressing cells than in the controls. TOM40 over-expression blocked Ab-elicited decreases in the mitochondrial membrane potential, cellular ATP levels, and cellular viability in the control cells. These data suggest elevated expression of TOM40 may be protective of mitochondrial function.
Collapse
|
107
|
Clinical effects of chemical exposures on mitochondrial function. Toxicology 2017; 391:90-99. [PMID: 28757096 DOI: 10.1016/j.tox.2017.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/07/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022]
Abstract
Mitochondria are critical for the provision of ATP for cellular energy requirements. Tissue and organ functions are dependent on adequate ATP production, especially when energy demand is high. Mitochondria also play a role in a vast array of important biochemical pathways including apoptosis, generation and detoxification of reactive oxygen species, intracellular calcium regulation, steroid hormone and heme synthesis, and lipid metabolism. The complexity of mitochondrial structure and function facilitates its diverse roles but also enhances its vulnerability. Primary disorders of mitochondrial bioenergetics, or Primary Mitochondrial Diseases (PMD) are due to inherited genetic defects in the nuclear or mitochondrial genomes that result in defective oxidative phosphorylation capacity and cellular energy production. Secondary mitochondrial dysfunction is observed in a wide range of diseases such as Alzheimer's and Parkinson's disease. Several lines of evidence suggest that environmental exposures cause substantial mitochondrial dysfunction. Whereby literature from experimental and human studies on exposures associated with Alzheimer's and Parkinson's diseases exist, the significance of exposures as potential triggers in Primary Mitochondrial Disease (PMD) is an emerging clinical question that has not been systematically studied.
Collapse
|
108
|
Doty RL. Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate? Lancet Neurol 2017; 16:478-488. [DOI: 10.1016/s1474-4422(17)30123-0] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 02/25/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022]
|
109
|
Ash PEA, Stanford EA, Al Abdulatif A, Ramirez-Cardenas A, Ballance HI, Boudeau S, Jeh A, Murithi JM, Tripodis Y, Murphy GJ, Sherr DH, Wolozin B. Dioxins and related environmental contaminants increase TDP-43 levels. Mol Neurodegener 2017; 12:35. [PMID: 28476168 PMCID: PMC5420162 DOI: 10.1186/s13024-017-0177-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/26/2017] [Indexed: 12/12/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative condition that is characterized by progressive loss of motor neurons and the accumulation of aggregated TAR DNA Binding Protein-43 (TDP-43, gene: TARDBP). Increasing evidence indicates that environmental factors contribute to the risk of ALS. Dioxins, related planar polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) are environmental contaminants that activate the aryl hydrocarbon receptor (AHR), a ligand-activated, PAS family transcription factor. Recently, exposure to these toxicants was identified as a risk factor for ALS. Methods We examined levels of TDP-43 reporter activity, transcript and protein. Quantification was done using cell lines, induced pluripotent stem cells (iPSCs) and mouse brain. The target samples were treated with AHR agonists, including 6-Formylindolo[3,2-b]carbazole (FICZ, a potential endogenous ligand, 2,3,7,8-tetrachlorodibenzo(p)dioxin, and benzo(a)pyrene, an abundant carcinogen in cigarette smoke). The action of the agonists was inhibited by concomitant addition of AHR antagonists or by AHR-specific shRNA. Results We now report that AHR agonists induce up to a 3-fold increase in TDP-43 protein in human neuronal cell lines (BE-M17 cells), motor neuron differentiated iPSCs, and in murine brain. Chronic treatment with AHR agonists elicits over 2-fold accumulation of soluble and insoluble TDP-43, primarily because of reduced TDP-43 catabolism. AHR antagonists or AHR knockdown inhibits agonist-induced increases in TDP-43 protein and TARDBP transcription demonstrating that the ligands act through the AHR. Conclusions These results provide the first evidence that environmental AHR ligands increase TDP-43, which is the principle pathological protein associated with ALS. These results suggest novel molecular mechanisms through which a variety of prevalent environmental factors might directly contribute to ALS. The widespread distribution of dioxins, PCBs and PAHs is considered to be a risk factor for cancer and autoimmune diseases, but could also be a significant public health concern for ALS. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0177-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter E A Ash
- Department of Pharmacology, Boston University School of Medicine, 72 East Concord St., R614, Boston, MA, 02118-2526, USA
| | - Elizabeth A Stanford
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Ali Al Abdulatif
- Department of Pharmacology, Boston University School of Medicine, 72 East Concord St., R614, Boston, MA, 02118-2526, USA
| | | | - Heather I Ballance
- Department of Pharmacology, Boston University School of Medicine, 72 East Concord St., R614, Boston, MA, 02118-2526, USA
| | - Samantha Boudeau
- Department of Pharmacology, Boston University School of Medicine, 72 East Concord St., R614, Boston, MA, 02118-2526, USA
| | - Amanda Jeh
- Department of Pharmacology, Boston University School of Medicine, 72 East Concord St., R614, Boston, MA, 02118-2526, USA
| | - James M Murithi
- Center for Regenerative Medicine, Boston University, Boston, MA, 02118, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - George J Murphy
- Center for Regenerative Medicine, Boston University, Boston, MA, 02118, USA
| | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Benjamin Wolozin
- Department of Pharmacology, Boston University School of Medicine, 72 East Concord St., R614, Boston, MA, 02118-2526, USA. .,Department of Neurology, Boston University School of Medicine, 72 East Concord St., R614, Boston, MA, 02118-2526, USA.
| |
Collapse
|
110
|
Vinceti M, Violi F, Tzatzarakis M, Mandrioli J, Malagoli C, Hatch EE, Fini N, Fasano A, Rakitskii VN, Kalantzi OI, Tsatsakis A. Pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in cerebrospinal fluid of amyotrophic lateral sclerosis patients: a case-control study. ENVIRONMENTAL RESEARCH 2017; 155:261-267. [PMID: 28242563 DOI: 10.1016/j.envres.2017.02.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 06/06/2023]
Abstract
Neurotoxic chemicals including several pesticides have been suggested to play a role in the etiology of amyotrophic lateral sclerosis (ALS). We investigated the relation between organochlorine pesticides and their metabolites (OCPs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in the etiology of sporadic ALS, determining for the first time their levels in cerebrospinal fluid as indicator of antecedent exposure. We recruited 38 ALS patients and 38 controls referred to an Italian clinical center for ALS care, who underwent a lumbar puncture for diagnostic purposes between 1994-2013, and had 1mL of cerebrospinal fluid available for the determination of OCPs, PCBs and PAHs. Many chemicals were undetectable in both case and control CSF samples, and we found little evidence of any increased disease risk according to higher levels of exposure. Among males >60 years, we found a slight but statistically very unstable increased ALS risk with higher levels of the congener PCB 28 and the OCP metabolite p,p'-DDE. Overall, these results do not suggest an involvement of the neurotoxic chemicals investigated in this study in disease etiology, although small numbers limited the precision of our results.
Collapse
Affiliation(s)
- Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia; via Campi 287, Modena (MO) 41125, Italy; Department of Epidemiology, Boston University School of Public Health, 715 Albany St., Boston, 02118 MA, United States.
| | - Federica Violi
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia; via Campi 287, Modena (MO) 41125, Italy
| | - Manolis Tzatzarakis
- Department of Forensic Sciences and Toxicology, University of Crete, 71409 Heraklion, Greece
| | - Jessica Mandrioli
- Department of Neurology, Sant'Agostino-Estense Hospital, Local Health Unit of Modena, Via P. Giardini 1355, 41126 Baggiovara, Modena MO, Italy
| | - Carlotta Malagoli
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia; via Campi 287, Modena (MO) 41125, Italy
| | - Elizabeth E Hatch
- Department of Epidemiology, Boston University School of Public Health, 715 Albany St., Boston, 02118 MA, United States
| | - Nicola Fini
- Department of Neurology, Sant'Agostino-Estense Hospital, Local Health Unit of Modena, Via P. Giardini 1355, 41126 Baggiovara, Modena MO, Italy
| | - Antonio Fasano
- Department of Neurology, Sant'Agostino-Estense Hospital, Local Health Unit of Modena, Via P. Giardini 1355, 41126 Baggiovara, Modena MO, Italy
| | - Valerii N Rakitskii
- Federal Scientific Center of Hygiene, F.F. Erisman, 2, Semashko street, Mytishchi, Moscow region 141014 Russia
| | - Olga-Ioanna Kalantzi
- Department of the Environment, University of the Aegean, University Hill, Mytilene 8110 Greece
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, 71409 Heraklion, Greece
| |
Collapse
|
111
|
Kim KS, Lee YM, Lee DH. Letter to the Editor. J Gerontol A Biol Sci Med Sci 2017; 72:452-453. [PMID: 27927760 DOI: 10.1093/gerona/glw232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/07/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ki-Su Kim
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yu-Mi Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
112
|
Lee YM, Kim KS, Jacobs DR, Lee DH. Persistent organic pollutants in adipose tissue should be considered in obesity research. Obes Rev 2017; 18:129-139. [PMID: 27911986 DOI: 10.1111/obr.12481] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022]
Abstract
Although low doses of persistent organic pollutants (POPs), strong lipophilic chemicals with long half-lives, have been linked to various endocrine, immune, nervous and reproductive system diseases, few obesity studies have considered adipose tissue as an important POPs exposure source. Because the toxicodynamics of POPs relate directly to the dynamics of adiposity, POPs might explain puzzling findings in obesity research. In two people exposed to the same amounts of environmental POPs, the one having more adipose tissue may be advantaged because POPs storage in adipose tissue can reduce burden on other critical organs. Therefore, adipose tissue can play a protective role against the POPs effects. However, two situations increase the POPs release from adipose tissue into the circulation, thereby increasing the risk that they will reach critical organs: (i) weight loss and (ii) insulin resistance. In contrast, weight gain reduces this possibility. Therefore, avoiding harmful health effects of POPs may mostly contradict conventional judgments about obesity and weight change. These contradictory situations can explain the obesity paradox, the adverse effects of intensive intentional weight loss and the protective effects of obesity against dementia. Future studies should consider that adipose tissue is widely contaminated with POPs in modern society.
Collapse
Affiliation(s)
- Y-M Lee
- Department of Preventative Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - K-S Kim
- Department of Preventative Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - D R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - D-H Lee
- Department of Preventative Medicine, School of Medicine, Kyungpook National University, Daegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Korea
| |
Collapse
|
113
|
Mostafalou S, Abdollahi M. Pesticides: an update of human exposure and toxicity. Arch Toxicol 2017; 91:549-599. [PMID: 27722929 DOI: 10.1007/s00204-016-1849-x] [Citation(s) in RCA: 407] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/08/2016] [Indexed: 12/12/2022]
Abstract
Pesticides are a family of compounds which have brought many benefits to mankind in the agricultural, industrial, and health areas, but their toxicities in both humans and animals have always been a concern. Regardless of acute poisonings which are common for some classes of pesticides like organophosphoruses, the association of chronic and sub-lethal exposure to pesticides with a prevalence of some persistent diseases is going to be a phenomenon to which global attention has been attracted. In this review, incidence of various malignant, neurodegenerative, respiratory, reproductive, developmental, and metabolic diseases in relation to different routes of human exposure to pesticides such as occupational, environmental, residential, parental, maternal, and paternal has been systematically criticized in different categories of pesticide toxicities like carcinogenicity, neurotoxicity, pulmonotoxicity, reproductive toxicity, developmental toxicity, and metabolic toxicity. A huge body of evidence exists on the possible role of pesticide exposures in the elevated incidence of human diseases such as cancers, Alzheimer, Parkinson, amyotrophic lateral sclerosis, asthma, bronchitis, infertility, birth defects, attention deficit hyperactivity disorder, autism, diabetes, and obesity. Most of the disorders are induced by insecticides and herbicides most notably organophosphorus, organochlorines, phenoxyacetic acids, and triazine compounds.
Collapse
Affiliation(s)
- Sara Mostafalou
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Toxicology Interest Group, Universal Scientific Education and Research Network, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
114
|
Suwanjang W, Khongniam B, Srisung S, Prachayasittikul S, Prachayasittikul V. Neuroprotective effect of Spilanthes acmella Murr. on pesticide-induced neuronal cells death. ASIAN PAC J TROP MED 2017; 10:35-41. [DOI: 10.1016/j.apjtm.2016.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/10/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022] Open
|
115
|
Goldman SM, Musgrove RE, Jewell SA, Di Monte DA. Pesticides and Parkinson's Disease: Current Experimental and Epidemiological Evidence. ADVANCES IN NEUROTOXICOLOGY 2017. [DOI: 10.1016/bs.ant.2017.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
116
|
Falzone L, Marconi A, Loreto C, Franco S, Spandidos DA, Libra M. Occupational exposure to carcinogens: Benzene, pesticides and fibers (Review). Mol Med Rep 2016; 14:4467-4474. [PMID: 27748850 PMCID: PMC5101963 DOI: 10.3892/mmr.2016.5791] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023] Open
Abstract
It is well known that the occupational exposure to contaminants and carcinogens leads to the development of cancer in exposed workers. In the 18th century, Percivall Pott was the first to hypothesize that chronic exposure to dust in the London chimney sweeps was associated with an increased risk of developing cancer. Subsequently a growing body of evidence indicated that other physical factors were also responsible for oncogenic mutations. Over the past decades, many carcinogens have been found in the occupational environment and their presence is often associated with an increased incidence of cancer. Occupational exposure involves several factors and the association between carcinogens, occupational exposure and cancer is still unclear. Only a fraction of factors is recognized as occupational carcinogens and for each factor, there is an increased risk of cancer development associated with a specific work activity. According to the International Agency for Research on Cancer (IARC), the majority of carcinogens are classified as 'probable' and 'possible' human carcinogens, while, direct evidence of carcinogenicity is provided in epidemiological and experimental studies. In the present review, exposures to benzene, pesticides and mineral fibers are discussed as the most important cancer risk factors during work activities.
Collapse
Affiliation(s)
- Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
| | - Andrea Marconi
- Section of Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, I-95124 Catania, Italy
| | - Carla Loreto
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, I-95124 Catania, Italy
| | - Sabrina Franco
- Department of Medical, Surgical and Advanced Technology Sciences ‘G.F. Ingrassia’, University of Catania, I-95124 Catania, Italy
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
| |
Collapse
|
117
|
Peng X, Xing P, Li X, Qian Y, Song F, Bai Z, Han G, Lei H. Towards Personalized Intervention for Alzheimer's Disease. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:289-297. [PMID: 27693548 PMCID: PMC5093853 DOI: 10.1016/j.gpb.2016.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/14/2016] [Accepted: 01/31/2016] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) remains to be a grand challenge for the international community despite over a century of exploration. A key factor likely accounting for such a situation is the vast heterogeneity in the disease etiology, which involves very complex and divergent pathways. Therefore, intervention strategies shall be tailored for subgroups of AD patients. Both demographic and in-depth information is needed for patient stratification. The demographic information includes primarily APOE genotype, age, gender, education, environmental exposure, life style, and medical history, whereas in-depth information stems from genome sequencing, brain imaging, peripheral biomarkers, and even functional assays on neurons derived from patient-specific induced pluripotent cells (iPSCs). Comprehensive information collection, better understanding of the disease mechanisms, and diversified strategies of drug development would help with more effective intervention in the foreseeable future.
Collapse
Affiliation(s)
- Xing Peng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiqi Xing
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuhui Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Qian
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuhai Song
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhouxian Bai
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangchun Han
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongxing Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100053, China.
| |
Collapse
|
118
|
Gangemi S, Gofita E, Costa C, Teodoro M, Briguglio G, Nikitovic D, Tzanakakis G, Tsatsakis AM, Wilks MF, Spandidos DA, Fenga C. Occupational and environmental exposure to pesticides and cytokine pathways in chronic diseases (Review). Int J Mol Med 2016; 38:1012-20. [PMID: 27600395 PMCID: PMC5029960 DOI: 10.3892/ijmm.2016.2728] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/23/2016] [Indexed: 01/04/2023] Open
Abstract
Pesticides can exert numerous effects on human health as a consequence of both environmental and occupational exposures. The available knowledge base suggests that exposure to pesticides may result in detrimental reproductive changes, neurological dysfunction and several chronic disorders, which are defined by slow evolution and long-term duration. Moreover, an ever increasing amount of data have identified an association between exposure to pesticides and the harmful effects on the immune system. The real impact of alterations in humoral cytokine levels on human health, in particular in the case of chronic diseases, is still unclear. To date, studies have suggested that although exposure to pesticides can affect the immune system functionally, the development of immune disorders depends on the dose and duration of exposure to pesticides. However, many of the respective studies exhibit limitations, such as a lack of information on exposure levels, differences in the pesticide administration procedures, difficulty in characterizing a prognostic significance to the weak modifications often observed and the interpretation of obtained results. The main challenge is not just to understand the role of individual pesticides and their combinations, but also to determine the manner and the duration of exposure, as the toxic effects on the immune system cannot be separated from these considerations. There is a clear need for more well-designed and standardized epidemiological and experimental studies to recognize the exact association between exposure levels and toxic effects and to identify useful biomarkers of exposure. This review focuses on and critically discusses the immunotoxicity of pesticides and the impact of cytokine levels on health, focusing on the development of several chronic diseases.
Collapse
Affiliation(s)
- Silvia Gangemi
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| | - Eliza Gofita
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Chiara Costa
- Department of Clinical and Experimental Medicine, University of Messina, I‑98125 Messina, Italy
| | - Michele Teodoro
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| | - Giusi Briguglio
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| | - Dragana Nikitovic
- Laboratory of Anatomy‑Histology‑Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - George Tzanakakis
- Laboratory of Anatomy‑Histology‑Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece
| | - Martin F Wilks
- Swiss Centre for Applied Human Toxicology, University of Basel, CH‑4055 Basel, Switzerland
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Concettina Fenga
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| |
Collapse
|
119
|
Yan D, Zhang Y, Liu L, Yan H. Pesticide exposure and risk of Alzheimer's disease: a systematic review and meta-analysis. Sci Rep 2016; 6:32222. [PMID: 27581992 PMCID: PMC5007474 DOI: 10.1038/srep32222] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 08/04/2016] [Indexed: 01/11/2023] Open
Abstract
Evidence suggests that lifelong cumulative exposure to pesticides may generate lasting toxic effects on the central nervous system and contribute to the development of Alzheimer's disease (AD). A number of reports indicate a potential association between long-term/low-dose pesticide exposure and AD, but the results are inconsistent. Therefore, we conducted a meta-analysis to clarify this association. Relevant studies were identified according to inclusion criteria. Summary odds ratios (ORs) were calculated using fixed-effects models. A total of seven studies were included in our meta-analysis. A positive association was observed between pesticide exposure and AD (OR = 1.34; 95% confidence interval [CI] = 1.08, 1.67; n = 7). The summary ORs with 95% CIs from the crude and adjusted effect size studies were 1.14 (95% CI = 0.94, 1.38; n = 7) and 1.37 (95% CI = 1.09, 1.71; n = 5), respectively. The sensitivity analyses of the present meta-analysis did not substantially modify the association between pesticide exposure and AD. Subgroup analyses revealed that high-quality studies tended to show significant relationships. The present meta-analysis suggested a positive association between pesticide exposure and AD, confirming the hypothesis that pesticide exposure is a risk factor for AD. Further high-quality cohort and case-control studies are required to validate a causal relationship.
Collapse
Affiliation(s)
- Dandan Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, PR China
| | - Yunjian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, PR China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, PR China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, PR China
| |
Collapse
|
120
|
Vester A, Caudle WM. The Synapse as a Central Target for Neurodevelopmental Susceptibility to Pesticides. TOXICS 2016; 4:toxics4030018. [PMID: 29051423 PMCID: PMC5606656 DOI: 10.3390/toxics4030018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/07/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Abstract
The developmental period of the nervous system is carefully orchestrated and highly vulnerable to alterations. One crucial factor of a properly-functioning nervous system is the synapse, as synaptic signaling is critical for the formation and maturation of neural circuits. Studies show that genetic and environmental impacts can affect diverse components of synaptic function. Importantly, synaptic dysfunction is known to be associated with neurologic and psychiatric disorders, as well as more subtle cognitive, psychomotor, and sensory defects. Given the importance of the synapse in numerous domains, we wanted to delineate the effects of pesticide exposure on synaptic function. In this review, we summarize current epidemiologic and molecular studies that demonstrate organochlorine, organophosphate, and pyrethroid pesticide exposures target the developing synapse. We postulate that the synapse plays a central role in synaptic vulnerability to pesticide exposure during neurodevelopment, and the synapse is a worthy candidate for investigating more subtle effects of chronic pesticide exposure in future studies.
Collapse
Affiliation(s)
- Aimee Vester
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| | - W Michael Caudle
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
- Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
121
|
Su FC, Goutman SA, Chernyak S, Mukherjee B, Callaghan BC, Batterman S, Feldman EL. Association of Environmental Toxins With Amyotrophic Lateral Sclerosis. JAMA Neurol 2016; 73:803-11. [PMID: 27159543 PMCID: PMC5032145 DOI: 10.1001/jamaneurol.2016.0594] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IMPORTANCE Persistent environmental pollutants may represent a modifiable risk factor involved in the gene-time-environment hypothesis in amyotrophic lateral sclerosis (ALS). OBJECTIVE To evaluate the association of occupational exposures and environmental toxins on the odds of developing ALS in Michigan. DESIGN, SETTING, AND PARTICIPANTS Case-control study conducted between 2011 and 2014 at a tertiary referral center for ALS. Cases were patients diagnosed as having definitive, probable, probable with laboratory support, or possible ALS by revised El Escorial criteria; controls were excluded if they were diagnosed as having ALS or another neurodegenerative condition or if they had a family history of ALS in a first- or second-degree blood relative. Participants completed a survey assessing occupational and residential exposures. Blood concentrations of 122 persistent environmental pollutants, including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and brominated flame retardants (BFRs), were measured using gas chromatography-mass spectrometry. Multivariable models with self-reported occupational exposures in various exposure time windows and environmental toxin blood concentrations were separately fit by logistic regression models. Concordance between the survey data and pollutant measurements was assessed using the nonparametric Kendall τ correlation coefficient. MAIN OUTCOMES AND MEASURES Occupational and residential exposures to environmental toxins, and blood concentrations of 122 persistent environmental pollutants, including OCPs, PCBs, and BFRs. RESULTS Participants included 156 cases (mean [SD] age, 60.5 [11.1] years; 61.5% male) and 128 controls (mean [SD] age, 60.4 [9.4] years; 57.8% male); among them, 101 cases and 110 controls had complete demographic and pollutant data. Survey data revealed that reported pesticide exposure in the cumulative exposure windows was significantly associated with ALS (odds ratio [OR] = 5.09; 95% CI, 1.85-13.99; P = .002). Military service was also associated with ALS in 2 time windows (exposure ever happened in entire occupational history: OR = 2.31; 95% CI, 1.02-5.25; P = .046; exposure ever happened 10-30 years ago: OR = 2.18; 95% CI, 1.01-4.73; P = .049). A multivariable model of measured persistent environmental pollutants in the blood, representing cumulative occupational and residential exposure, showed increased odds of ALS for 2 OCPs (pentachlorobenzene: OR = 2.21; 95% CI, 1.06-4.60; P = .04; and cis-chlordane: OR = 5.74; 95% CI, 1.80-18.20; P = .005), 2 PCBs (PCB 175: OR = 1.81; 95% CI, 1.20-2.72; P = .005; and PCB 202: OR = 2.11; 95% CI, 1.36-3.27; P = .001), and 1 BFR (polybrominated diphenyl ether 47: OR = 2.69; 95% CI, 1.49-4.85; P = .001). There was modest concordance between survey data and the measurements of persistent environmental pollutants in blood; significant Kendall τ correlation coefficients ranged from -0.18 (Dacthal and "use pesticides to treat home or yard") to 0.24 (trans-nonachlor and "store lawn care products in garage"). CONCLUSIONS AND RELEVANCE In this study, persistent environmental pollutants measured in blood were significantly associated with ALS and may represent modifiable ALS disease risk factors.
Collapse
Affiliation(s)
- Feng-Chiao Su
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor
| | | | - Sergey Chernyak
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor
| | | | | | - Stuart Batterman
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor4A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor
| |
Collapse
|
122
|
Koureas M, Karagkouni F, Rakitskii V, Hadjichristodoulou C, Tsatsakis A, Tsakalof A. Serum levels of organochlorine pesticides in the general population of Thessaly, Greece, determined by HS-SPME GC-MS method. ENVIRONMENTAL RESEARCH 2016; 148:318-321. [PMID: 27107243 DOI: 10.1016/j.envres.2016.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/09/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
In this study, exposure levels of organochlorine pesticides (OCs) were determined in general population residing in Larissa, central Greece. Serum samples from 103 volunteers were analyzed by optimized headspace solid-phase microextraction gas chromatography-mass spectrometry, to detect and quantify OC levels. The most frequently detected analytes were p,p'-DDE (frequency 99%, median:1.25ng/ml) and Hexachlorobenzene (HCB) (frequency 69%, median: 0.13ng/ml). Statistical analysis revealed a significant relationship of p,p'-DDE and HCB levels with age.
Collapse
Affiliation(s)
- Michalis Koureas
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, Larissa 41222, Greece
| | - Foteini Karagkouni
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, Larissa 41222, Greece
| | - Valerii Rakitskii
- Federal Scientific Center of Hygiene named after F.F. Erisman, Mitischy, Russia
| | - Christos Hadjichristodoulou
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, Larissa 41222, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, University of Crete, Medical School, Crete 71409, Greece
| | - Andreas Tsakalof
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, Larissa 41222, Greece.
| |
Collapse
|
123
|
Li G, Kim C, Kim J, Yoon H, Zhou H, Kim J. Common Pesticide, Dichlorodiphenyltrichloroethane (DDT), Increases Amyloid-β Levels by Impairing the Function of ABCA1 and IDE: Implication for Alzheimer's Disease. J Alzheimers Dis 2016; 46:109-22. [PMID: 25720399 DOI: 10.3233/jad-150024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While early-onset familial Alzheimer's disease (AD) is caused by a genetic mutation, the vast majority of late-onset AD is likely caused by the combination of genetic and environmental factors. Unlike genetic studies, potential environmental factors affecting AD pathogenesis have not yet been thoroughly investigated. Among environmental factors, pesticides seem to be one of critical environmental contributors to late-onset AD. Recent studies reported that the serum and brains of AD patients have dramatically higher levels of a metabolite of dichlorodiphenyltrichloroethane (DDT). While these epidemiological studies provided initial clues to the environmental risks potentially contributing to disease pathogenesis, a functional approach is required to determine whether they actually have a causal role in disease development. In our study, we addressed this critical knowledge gap by investigating possible mechanisms by which DDT affects amyloid-β (Aβ) levels. We treated H4-AβPPswe or H4 cells with DDT to analyze its effect on Aβ metabolism using Aβ production, clearance, and degradation assays. We found that DDT significantly increased the levels of amyloid-β protein precursor (AβPP) and β-site AβPP-cleaving enzyme1 (BACE1), affecting Aβ synthesis pathway in H4-AβPPswe cells. Additionally, DDT impaired the clearance and extracellular degradation of Aβ peptides. Most importantly, we identified for the first time that ATP-binding cassette transporter A1 (ABCA1) and insulin-degrading enzyme (IDE) are the downstream target genes adversely affected by DDT. Our findings provide insight into the molecular mechanisms by which DDT exposure may increase the risk of AD, and it further supports that ABCA1 and IDE may be potential therapeutic targets.
Collapse
Affiliation(s)
- Gongbo Li
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China.,Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Chaeyoung Kim
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Jaekwang Kim
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Hyejin Yoon
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, USA.,Neurobiology of Disease Graduate Program, Mayo Graduate School, Jacksonville, FL, USA
| | - Huadong Zhou
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jungsu Kim
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, USA.,Neurobiology of Disease Graduate Program, Mayo Graduate School, Jacksonville, FL, USA
| |
Collapse
|
124
|
Abstract
OBJECTIVE Migrant tobacco farmworkers experience regular occupational exposure to pesticides and nicotine. The present study was designed to determine whether there are differences in brain anatomy between Latino farmworkers and non-farmworkers. METHODS Magnetic resonance brain images were compared between farmworkers and non-farmworkers. In addition, blood cholinesterase activity and urinary cotinine levels were also used to identify associations with pesticide and nicotine exposure. RESULTS Farmworkers had greater gray matter signal in putamen and cerebellum, and lower gray matter signal in frontal and temporal lobes. Urinary cotinine was associated with the observed differences in brain anatomy, but blood cholinesterase activity was not. CONCLUSIONS Nicotine exposure was associated with neuroanatomical differences between Latino farmworkers and non-farmworkers. Future studies are needed to differentiate iron deposition from brain atrophy and to further assess the potential role of nicotine and pesticide exposure.
Collapse
|
125
|
Lee DH, Lind PM, Jacobs DR, Salihovic S, van Bavel B, Lind L. Association between background exposure to organochlorine pesticides and the risk of cognitive impairment: A prospective study that accounts for weight change. ENVIRONMENT INTERNATIONAL 2016; 89-90:179-84. [PMID: 26878283 DOI: 10.1016/j.envint.2016.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/05/2016] [Accepted: 02/01/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Background exposure to organochlorine (OC) pesticides was recently linked to cognitive impairment and dementia in cross-sectional and case-control studies. This prospective study was performed to evaluate if OC pesticides at baseline are associated with the future risk of cognitive impairment in elderly, with particular focus on weight change. METHODS Plasma concentrations of 3 OC pesticides (p,p'-DDE, trans-nonachlor, and hexachlorobenzene) were measured among 989 men and women aged 70years in the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS). Cognitive impairment was validated by reviewing medical records. During the ten year follow-up, cognitive impairment was developed in 75 subjects. When weight change from age 70 to 75 was considered in analyses, elderly with incident cases before age 75 were excluded to keep the prospective perspective, leaving 795 study subjects and 44 incident cases. RESULTS The summary measure of 3 OC pesticides predicted the development of cognitive impairment after adjusting for covariates, including weight change. Compared to subjects with OC pesticides <25th percentile, adjusted hazard ratios (HRs) in those with 25th-<75th and ≥75th percentiles were 3.5 (95% confidence interval: 1.5-8.5) and 3.2 (1.1-7.6), respectively (Ptrend=0.04). Among 506 subjects who maintained or gained body weight, adjusted HRs were 6.9 and 11.6 (1.4-92.6) among the elderly in the 25th-<75th and ≥75th percentiles compared to <25th percentile (Ptrend<0.01). CONCLUSIONS This prospective study demonstrates that background exposure to OC pesticides are linked to the risk of developing cognitive impairment in elderly. The role of the chronic exposure to low dose OC pesticides in the development of dementia should be further evaluated in other populations.
Collapse
Affiliation(s)
- Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Samira Salihovic
- MTM Research Center, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Bert van Bavel
- MTM Research Center, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
126
|
Gallegos CE, Bartos M, Bras C, Gumilar F, Antonelli MC, Minetti A. Exposure to a glyphosate-based herbicide during pregnancy and lactation induces neurobehavioral alterations in rat offspring. Neurotoxicology 2016; 53:20-28. [PMID: 26632987 DOI: 10.1016/j.neuro.2015.11.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 02/02/2023]
Abstract
The impact of sub-lethal doses of herbicides on human health and the environment is a matter of controversy. Due to the fact that evidence particularly of the effects of glyphosate on the central nervous system of rat offspring by in utero exposure is scarce, the purpose of the present study was to assess the neurobehavioral effects of chronic exposure to a glyphosate-containing herbicide during pregnancy and lactation. To this end, pregnant Wistar rats were exposed through drinking water to 0.2% or 0.4% of a commercial formulation of glyphosate (corresponding to a concentration of 0.65 or 1.30g/L of glyphosate, respectively) during pregnancy and lactation and neurobehavioral alterations in offspring were analyzed. The postnatal day on which each pup acquired neonatal reflexes (righting, cliff aversion and negative geotaxis) and that on which eyes and auditory canals were fully opened were recorded for the assessment of sensorimotor development. Locomotor activity and anxiety levels were monitored via open field test and plus maze test, respectively, in 45- and 90-day-old offspring. Pups exposed to a glyphosate-based herbicide showed early onset of cliff aversion reflex and early auditory canal opening. A decrease in locomotor activity and in anxiety levels was also observed in the groups exposed to a glyphosate-containing herbicide. Findings from the present study reveal that early exposure to a glyphosate-based herbicide affects the central nervous system in rat offspring probably by altering mechanisms or neurotransmitter systems that regulate locomotor activity and anxiety.
Collapse
Affiliation(s)
- Cristina E Gallegos
- Laboratorio de Toxicología, INBIOSUR-CONICET, Universidad Nacional del Sur, San Juan 670, Bahía Blanca, Buenos Aires 8000, Argentina.
| | - Mariana Bartos
- Laboratorio de Toxicología, INBIOSUR-CONICET, Universidad Nacional del Sur, San Juan 670, Bahía Blanca, Buenos Aires 8000, Argentina
| | - Cristina Bras
- Laboratorio de Toxicología, INBIOSUR-CONICET, Universidad Nacional del Sur, San Juan 670, Bahía Blanca, Buenos Aires 8000, Argentina
| | - Fernanda Gumilar
- Laboratorio de Toxicología, INBIOSUR-CONICET, Universidad Nacional del Sur, San Juan 670, Bahía Blanca, Buenos Aires 8000, Argentina
| | - Marta C Antonelli
- Instituto de Biología Celular y Neurociencias "Prof. Eduardo De Robertis", Universidad de Buenos Aires, Paraguay 2155, piso 3, Buenos Aires C1121ABG, Argentina
| | - Alejandra Minetti
- Laboratorio de Toxicología, INBIOSUR-CONICET, Universidad Nacional del Sur, San Juan 670, Bahía Blanca, Buenos Aires 8000, Argentina
| |
Collapse
|
127
|
Saeedi Saravi SS, Dehpour AR. Potential role of organochlorine pesticides in the pathogenesis of neurodevelopmental, neurodegenerative, and neurobehavioral disorders: A review. Life Sci 2016; 145:255-264. [PMID: 26549647 DOI: 10.1016/j.lfs.2015.11.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/01/2015] [Accepted: 11/04/2015] [Indexed: 12/27/2022]
Abstract
Organochlorine pesticides (OCPs) are persistent and bioaccumulative environmental contaminants with potential neurotoxic effects. The growing body of evidence has demonstrated that prenatal exposure to organochlorines (OCs) is associated with impairment of neuropsychological development. The hypothesis is consistent with recent studies emphasizing the correlation of environmental as well as genetic factors to the pathophysiology of neurodevelopmental and neurobehavioral defects. It has been suggested that maternal exposure to OCPs results in impaired motor and cognitive development in newborns and infants. Moreover, in utero exposure to these compounds contributes to the etiology of autism. Although impaired neurodevelopment occurs through prenatal exposure to OCs, breastfeeding causes postnatal toxicity in the infants. Parkinson's disease (PD) is another neurological disorder, which has been associated with exposure to OCs, leading to α-synuclein accumulation and depletion of dopaminergic neurons. The study aimed to review the potential association between pre- and post-natal exposure to OCs and impaired neurodevelopmental processes during pregnancy and neuropsychological diseases such as PD, behavioral alterations, seizures and autism.
Collapse
Affiliation(s)
- Seyed Soheil Saeedi Saravi
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology-Pharmacology, Faculty of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
128
|
Kim SA, Lee YM, Lee HW, Jacobs DR, Lee DH. Can Inconsistent Association between Hypertension and Cognition in Elders be Explained by Levels of Organochlorine Pesticides? PLoS One 2015; 10:e0144205. [PMID: 26630154 PMCID: PMC4668046 DOI: 10.1371/journal.pone.0144205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/13/2015] [Indexed: 12/20/2022] Open
Abstract
The relation between hypertension and cognition in elders remains unclear, and studies on the effect of antihypertensive drugs on cognition have demonstrated conflicting results. This study was performed to evaluate if the association between hypertension and cognition in elders differed depending on serum concentrations of organochlorine (OC) pesticides, common neurotoxic chemicals. Participants were 644 elders aged 60–85 years who participated in the National Health and Nutrition Examination Survey 1999–2002 and were able to complete a cognitive test. We selected 6 OC pesticides that were commonly detected in the elderly. Cognition was assessed by the Digit Symbol Substitution Test (DSST), a relevant tool for evaluating hypertension-related cognitive function, and low cognition was defined by the DSST score < 25th percentile. When OC pesticides were not considered in the analyses, elders with hypertension had about 1.7 times higher risk of low cognition than those without hypertension. However, in analyses stratified by serum concentrations of OC pesticides, the associations between hypertension and low cognition were stronger the higher the serum concentrations of p,p’-DDT, p,p’-DDE, β-hexachlorocyclohexane, and trans-nonachlor increased. Among elders in the 3rd tertile of these pesticides, adjusted odds ratios were from 2.5 to 3.5. In contrast, hypertension was not clearly associated with the risk of low cognition in elders in the 1st tertile of these pesticides. Similar patterns were observed for the continuous DSST score dependent variable. The difference in the association between hypertension and DSST scores according to the levels of OC pesticides suggest a key role of OC pesticides in the development of hypertension-related cognitive impairment and may help to identify hypertensive elders who are at a high risk of cognitive impairment.
Collapse
Affiliation(s)
- Se-A Kim
- Department of Biomedical Science, Kyungpook National University, Daegu, Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Korea
| | - Yu-Mi Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Ho-Won Lee
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu, Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Korea
| | - David R. Jacobs
- Division of Epidemiology, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Duk-Hee Lee
- Department of Biomedical Science, Kyungpook National University, Daegu, Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Korea
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
- * E-mail:
| |
Collapse
|
129
|
Occupation and the risk of chronic toxic leukoencephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2015; 131:73-91. [PMID: 26563784 DOI: 10.1016/b978-0-444-62627-1.00006-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Among the hundreds of environmental insults capable of inducing nervous system injury, a small number can produce clinically significant damage to the brain white matter. The use of magnetic resonance imaging (MRI) in affected individuals has greatly illuminated this previously obscure area of neurotoxicology. Toxic leukoencephalopathy has acute and chronic forms, in both of which cognitive dysfunction is the major clinical manifestation. Chronic toxic leukoencephalopathy (CTL) has been most thoroughly described in individuals with intense and prolonged exposure to leukotoxins, but the consequences of lesser degrees of exposure are not well understood. Rare cases of CTL have been reported in workers exposed to culpable leukotoxins, but study of this syndrome is hindered by many confounds such as uncertain level of toxin exposure, the presence of multiple toxins, vague dose-response relationship, comorbid medical or neurologic disorders, psychiatric illness, and legal issues. The risk of CTL in workers is low, although it is not possible to determine quantitative risk estimates. More knowledge can be expected with the application of advanced MRI techniques to the assessment of workers who may have been exposed to known or potential leukotoxins. Preventive measures for avoiding workplace CTL will be informed by clinical assessment involving the use of advanced neuroimaging and neuropsychologic evaluation in combination with accurate measurement of leukotoxin exposure.
Collapse
|
130
|
The Crucial Involvement of Retinoid X Receptors in DDE Neurotoxicity. Neurotox Res 2015; 29:155-72. [PMID: 26563996 PMCID: PMC4701765 DOI: 10.1007/s12640-015-9572-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 11/25/2022]
Abstract
Dichlorodiphenyldichloroethylene (DDE) is a primary environmental and metabolic degradation product of the pesticide dichlorodiphenyltrichloroethane (DDT). It is one of the most toxic compounds belonging to organochlorines. DDE has never been commercially produced; however, the parent pesticide DDT is still used in some developing countries for disease-vector control of malaria. DDT and DDE remain in the environment because these chemicals are resistant to degradation and bioaccumulate in the food chain. Little is known, however, about DDE toxicity during the early stages of neural development. The results of the present study demonstrate that DDE induced a caspase-3-dependent apoptosis and caused the global DNA hypomethylation in mouse embryonic neuronal cells. This study also provided evidence for DDE-isomer-non-specific alterations of retinoid X receptor α (RXRα)- and retinoid X receptor β (RXRβ)-mediated intracellular signaling, including changes in the levels of the receptor mRNAs and changes in the protein levels of the receptors. DDE-induced stimulation of RXRα and RXRβ was verified using selective antagonist and specific siRNAs. Co-localization of RXRα and RXRβ was demonstrated using confocal microscopy. The apoptotic action of DDE was supported at the cellular level through Hoechst 33342 and calcein AM staining experiments. In conclusion, the results of the present study demonstrated that the stimulation of RXRα- and RXRβ-mediated intracellular signaling plays an important role in the propagation of DDE-induced apoptosis during early stages of neural development.
Collapse
|
131
|
Elnar AA, Allouche A, Desor F, Yen FT, Soulimani R, Oster T. Lactational exposure of mice to low levels of non-dioxin-like polychlorinated biphenyls increases susceptibility to neuronal stress at a mature age. Neurotoxicology 2015; 53:314-320. [PMID: 26480858 DOI: 10.1016/j.neuro.2015.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 11/27/2022]
Abstract
Lactational exposure to low levels of the sum of the six indicator polychlorinated biphenyls (Σ6 NDL-PCBs, 10ng/kg/day) is known to lead to persistent anxious behavior in young and adult offspring mice at postnatal days 40 and 160, respectively. At more advanced life stages, we evaluated the effects on the mouse brain of neuronal stress induced by the synaptotoxic amyloid-beta (Aβ) peptide. Perinatal exposure of lactating mice to Σ6 NDL-PCBs did not affect short-term memory performances of their offspring male mice aged 14 months as compared to control PCB-naive mice. However, following intracerebroventricular injection of soluble Aβ oligomers, significant impairments in long-term memory were detected in the mice that had been lactationally treated with Σ6 NDL-PCBs. In addition, immunoblot analyses of the synaptosomal fraction of hippocampal tissues from treated mice revealed a lower expression of the synaptic proteins synaptophysin and PSD-95. Though preliminary, our findings suggest for the first time that early exposure to low levels of NDL-PCBs induce late neuronal vulnerability to amyloid stress. Additional experiments are needed to confirm whether early environmental influences are involved in the etiology of brain aging and cognitive decline.
Collapse
Affiliation(s)
- Arpiné Ardzivian Elnar
- Neurotoxicologie Alimentaire et Bioactivité, MRCA, BP 4102, 57040 Metz, France; Université de Lorraine, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), EA3998, INRA USC 0340, France.
| | - Ahmad Allouche
- Biodisponibilité et Fonctionnalités des Lipides Alimentaires, BFLA, ENSAIA, Avenue de la forêt de Haye, 54500 Vandœuvre-lès-Nancy, France; Université de Lorraine, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), EA3998, INRA USC 0340, France
| | - Frédéric Desor
- Neurotoxicologie Alimentaire et Bioactivité, MRCA, BP 4102, 57040 Metz, France; Université de Lorraine, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), EA3998, INRA USC 0340, France
| | - Frances T Yen
- Biodisponibilité et Fonctionnalités des Lipides Alimentaires, BFLA, ENSAIA, Avenue de la forêt de Haye, 54500 Vandœuvre-lès-Nancy, France; Université de Lorraine, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), EA3998, INRA USC 0340, France
| | - Rachid Soulimani
- Neurotoxicologie Alimentaire et Bioactivité, MRCA, BP 4102, 57040 Metz, France; Université de Lorraine, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), EA3998, INRA USC 0340, France
| | - Thierry Oster
- Biodisponibilité et Fonctionnalités des Lipides Alimentaires, BFLA, ENSAIA, Avenue de la forêt de Haye, 54500 Vandœuvre-lès-Nancy, France; Université de Lorraine, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), EA3998, INRA USC 0340, France
| |
Collapse
|
132
|
Mudawal A, Singh A, Yadav S, Mishra M, Singh PK, Chandravanshi LP, Mishra J, Khanna VK, Bandyopadhyay S, Parmar D. Similarities in lindane induced alterations in protein expression profiling in different brain regions with neurodegenerative diseases. Proteomics 2015; 15:3875-82. [DOI: 10.1002/pmic.201400407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 08/10/2015] [Accepted: 09/04/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Anubha Mudawal
- Developmental Toxicology Laboratory; Systems Toxicology and Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (CSIR-IITR); Lucknow India
- Academy of Scientific & Innovative Research; CSIR-IITR Campus; Lucknow India
| | - Anshuman Singh
- Developmental Toxicology Laboratory; Systems Toxicology and Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (CSIR-IITR); Lucknow India
| | - Sanjay Yadav
- Developmental Toxicology Laboratory; Systems Toxicology and Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (CSIR-IITR); Lucknow India
- Academy of Scientific & Innovative Research; CSIR-IITR Campus; Lucknow India
| | - Manisha Mishra
- Plant Molecular Biology Laboratory; CSIR-National Botanical Research Institute (CSIR-NBRI); Lucknow India
| | - Pradhyumna Kumar Singh
- Plant Molecular Biology Laboratory; CSIR-National Botanical Research Institute (CSIR-NBRI); Lucknow India
| | - Lalit Pratap Chandravanshi
- Developmental Toxicology Laboratory; Systems Toxicology and Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (CSIR-IITR); Lucknow India
| | - Juhi Mishra
- Developmental Toxicology Laboratory; Systems Toxicology and Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (CSIR-IITR); Lucknow India
| | - Vinay K. Khanna
- Developmental Toxicology Laboratory; Systems Toxicology and Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (CSIR-IITR); Lucknow India
- Academy of Scientific & Innovative Research; CSIR-IITR Campus; Lucknow India
| | - Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory; Systems Toxicology and Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (CSIR-IITR); Lucknow India
- Academy of Scientific & Innovative Research; CSIR-IITR Campus; Lucknow India
| | - Devendra Parmar
- Developmental Toxicology Laboratory; Systems Toxicology and Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (CSIR-IITR); Lucknow India
- Academy of Scientific & Innovative Research; CSIR-IITR Campus; Lucknow India
| |
Collapse
|
133
|
Michael Caudle W. This can't be stressed enough: The contribution of select environmental toxicants to disruption of the stress circuitry and response. Physiol Behav 2015; 166:65-75. [PMID: 26409212 DOI: 10.1016/j.physbeh.2015.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023]
Abstract
Integration of the hypothalamic-pituitary-adrenal (HPA) axis and the limbic system through glucocorticoid signaling is imperative in initiating and regulating a suitable stress response following real or perceived threats. Dysfunction of these circuits that results in a persistent or inhibited glucocorticoid secretion can severely affect processing of stressful experiences and lead to risk for developing further psychiatric pathology. Exposure to toxic chemicals found in our environment, including pesticides, metals, and industrial compounds, have been shown to have significant impact on neurological health and disease. Indeed, studies have begun to identify the HPA axis and limbic system as potential targets of many of these environmental chemicals, suggesting a possible environmental risk for damage to the stress circuit and response to stressful stimuli. This review will focus on our current understanding of the impact exposure to environmental toxicants, including bisphenol A and lead, has on the synaptic physiology of the HPA axis and limbic system and how this contributes to an alteration in behavior output. Further, this discussion will provide a starting point to continue to couple novel toxicological and neurological approaches to elaborate our understanding of the influence of environmental chemicals on the stress response and pathology.
Collapse
Affiliation(s)
- W Michael Caudle
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA; Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322-3090, USA.
| |
Collapse
|
134
|
Hubin E, Vanschoenwinkel B, Broersen K, De Deyn PP, Koedam N, van Nuland NA, Pauwels K. Could ecosystem management provide a new framework for Alzheimer's disease? Alzheimers Dement 2015; 12:65-74.e1. [PMID: 26341147 DOI: 10.1016/j.jalz.2015.07.491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/20/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder that involves a plethora of molecular pathways. In the context of therapeutic treatment and biomarker profiling, the amyloid-beta (Aβ) peptide constitutes an interesting research avenue that involves interactions within a complex mixture of Aβ alloforms and other disease-modifying factors. Here, we explore the potential of an ecosystem paradigm as a novel way to consider AD and Aβ dynamics in particular. We discuss the example that the complexity of the Aβ network not only exhibits interesting parallels with the functioning of complex systems such as ecosystems but that this analogy can also provide novel insights into the neurobiological phenomena in AD and serve as a communication tool. We propose that combining network medicine with general ecosystem management principles could be a new and holistic approach to understand AD pathology and design novel therapies.
Collapse
Affiliation(s)
- Ellen Hubin
- Nanobiophysics Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Structural Biology Research Center, VIB, Brussels, Belgium
| | - Bram Vanschoenwinkel
- Plant Biology and Nature Management (APNA), Department of Biology (DBIO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Kerensa Broersen
- Nanobiophysics Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Peter P De Deyn
- Department of Physiotherapy (REVAKI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Middelheim General Hospital (Ziekenhuis Netwerk Antwerpen), University of Antwerp, Antwerp, Belgium; Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Nico Koedam
- Plant Biology and Nature Management (APNA), Department of Biology (DBIO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Nico A van Nuland
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Structural Biology Research Center, VIB, Brussels, Belgium
| | - Kris Pauwels
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Structural Biology Research Center, VIB, Brussels, Belgium.
| |
Collapse
|
135
|
Grashow R, Sparrow D, Hu H, Weisskopf MG. Cumulative lead exposure is associated with reduced olfactory recognition performance in elderly men: The Normative Aging Study. Neurotoxicology 2015; 49:158-64. [PMID: 26121922 DOI: 10.1016/j.neuro.2015.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/05/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Olfactory dysfunction has been identified as an early warning sign for Alzheimer's disease, Parkinson's disease, dementia and more. A few occupational and environmental exposures have also been associated with reduced olfactory function, although the effects of long term environmental exposure to lead on olfactory dysfunction have not been explored. Here we performed olfactory recognition testing in elderly men in a community-dwelling cohort and examined the association with cumulative lead exposure, as assessed by lead in tibial and patellar bone. METHODS Olfactory recognition was measured in 165 men from the Normative Aging Study (NAS) who had previously taken part in bone lead measurements using K-X-ray fluorescence (KXRF). Olfactory recognition was measured using the University of Pennsylvania Smell Identification Test (UPSIT). Associations between olfactory recognition, global cognition and cumulative lead exposure were estimated using linear regression, with additional adjustment for age, smoking, and functional polymorphism status for hemochromatosis (HFE), transferrin (TfC2), glutathione-s-transferase Pi1 (GSTP1) and apolipoprotein E (APOE) genotypes. Sensitivity analyses explored olfactory recognition in men with high global cognitive function as measured using the Mini-Mental Status Exam (MMSE). RESULTS The average age of the NAS participants at the time of olfactory recognition testing was 80.3 (standard deviation or SD=5.7) years. Mean tibia lead was 16.3 (SD=12.0) μg/g bone, mean patella lead was 22.4 (SD=14.4)μg/g bone, and mean UPSIT score was 26.9 out of 40 (SD=7.0). Consistent with previous findings, age at olfaction testing was negatively associated with UPSIT score. Tibia (but not patella) bone lead was negatively associated with olfaction recognition (per 15 μg/g tibia lead: β=-1.57; 95% CI: -2.93, -0.22; p=0.02) in models adjusted for smoking and age. Additional adjustment for education did not significantly change results. Of all the genes explored, only the presence of one or more HFE variant alleles was significantly associated with olfaction recognition (HFE β=2.26; 95% CI: 0.09, 4.43; p=0.04). In a model containing the HFE term and a lead term, the tibia lead parameter estimate dropped by 21% (per 15 μg/g tibia lead: β=-1.25; 95% CI: -2.64, 0.14; p=0.08) while the HFE term dropped 15% (β=1.91; 95% CI: -0.28, 4.10; p=0.09). None of the other gene terms were associated with olfactory recognition in this cohort, nor were any gene-lead interaction terms significant. Additional sensitivity analysis in men with MMSE scores of 25 or higher (n=149) showed a similar but slightly attenuated association between lead and olfactory recognition (per 15 μg/g tibia lead β=-1.39; 95% CI: -3.00, 0.22; p=0.09). CONCLUSION Cumulative exposure to lead is associated with reduced olfactory recognition in a cohort of elderly men. The association was similar but not significant in men with better cognitive function as measured by the MMSE. Iron metabolism gene status may also affect olfactory function.
Collapse
Affiliation(s)
- Rachel Grashow
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| | - David Sparrow
- VA Boston Healthcare System, Boston University Schools of Public Health and Medicine, Boston, MA, USA; Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Howard Hu
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
136
|
Kim SA, Lee YM, Lee HW, Jacobs DR, Lee DH. Greater cognitive decline with aging among elders with high serum concentrations of organochlorine pesticides. PLoS One 2015; 10:e0130623. [PMID: 26107947 PMCID: PMC4480979 DOI: 10.1371/journal.pone.0130623] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/21/2015] [Indexed: 11/18/2022] Open
Abstract
Although cognitive decline is very common in elders, age-related cognitive decline substantially differs among elders and the determinants of the differences in age-related cognitive decline are unclear. We investigated our hypothesis that the association between age and cognition was stronger in those with higher serum concentrations of organochlorine (OC) pesticides, common persistent and strongly lipophilic neurotoxic chemicals. Participants were 644 elders aged 60-85, participating in the National Health and Nutrition Examination Survey 1999-2002. Six OC pesticides (p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodipenyldichloroethylene (DDE), β-hexachlorocyclohexane, trans-nonachlor, oxychlordane, and heptachlor epoxide) were evaluated. “Lower cognitive function” was defined as having a low Digit-Symbol Substitution Test (DSST) score (<25th percentile of DSST score, cutpoint 28 symbols substituted). Higher levels of β-hexachlorocyclohexane, trans-nonachlor, oxychlordane, and heptachlor epoxide modified the associations between age and lower cognitive function (Pinteraction<0.01, 0.03, <0.01, and 0.02, respectively). Elders in the 3rd tertile of these chemicals demonstrated a greater risk of lower cognitive function with aging, compared to those in the combined 1st and 2nd tertiles. Among those with highest OC pesticides (3rd tertile), the odds ratio for the risk of lower cognitive function was about 6 to 11 for the highest quintile of age (80-85 years) vs. the first quintile of age (60-63 years), while the association between age and lower cognitive function became flatter in those with lower OC pesticides (combined 1st and 2nd tertiles). Both DDT and DDE showed no interaction, with lower DSST scores for higher age irrespective of serum concentrations of DDT or DDE. Even though DSST score measures only one aspect of cognition, several OC pesticides modified aging-related prevalence of low cognitive score, a finding which should be evaluated in prospective studies.
Collapse
Affiliation(s)
- Se-A Kim
- Department of Biomedical Science, Kyungpook National University, Daegu, Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Korea
| | - Yu-Mi Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Ho-Won Lee
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu, Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Korea
| | - David R Jacobs
- Division of Epidemiology, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Duk-Hee Lee
- Department of Biomedical Science, Kyungpook National University, Daegu, Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Korea
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
- * E-mail:
| |
Collapse
|
137
|
Ulusu NN. Glucose-6-phosphate dehydrogenase deficiency and Alzheimer's disease: Partners in crime? The hypothesis. Med Hypotheses 2015; 85:219-23. [PMID: 26004559 DOI: 10.1016/j.mehy.2015.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/06/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease is a multifaceted brain disorder which involves various coupled irreversible, progressive biochemical reactions that significantly reduce quality of life as well as the actual life expectancy. Aging, genetic predispositions, head trauma, diabetes, cardiovascular disease, deficiencies in insulin signaling, dysfunction of mitochondria-associated membranes, cerebrovascular changes, high cholesterol level, increased oxidative stress and free radical formation, DNA damage, disturbed energy metabolism, and synaptic dysfunction, high blood pressure, obesity, dietary habits, exercise, social engagement, and mental stress are noted among the risk factors of this disease. In this hypothesis review I would like to draw the attention on glucose-6-phosphate dehydrogenase deficiency and its relationship with Alzheimer's disease. This enzymopathy is the most common human congenital defect of metabolism and defined by decrease in NADPH+H(+) and reduced form of glutathione concentration and that might in turn, amplify oxidative stress due to essentiality of the enzyme. This most common enzymopathy may manifest itself in severe forms, however most of the individuals with this deficiency are not essentially symptomatic. To understand the sporadic Alzheimer's disease, the writer of this paper thinks that, looking into a crystal ball might not yield much of a benefit but glucose-6-phosphate dehydrogenase deficiency could effortlessly give some clues.
Collapse
Affiliation(s)
- N Nuray Ulusu
- Koç University, School of Medicine, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkey.
| |
Collapse
|
138
|
Stępkowski D, Woźniak G, Studnicki M. Correlation of Alzheimer's disease death rates with historical per capita personal income in the USA. PLoS One 2015; 10:e0126139. [PMID: 25961738 PMCID: PMC4427436 DOI: 10.1371/journal.pone.0126139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/29/2015] [Indexed: 11/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive degenerating disease of complex etiology. A variety of risk factors contribute to the chance of developing AD. Lifestyle factors, such as physical, mental and social activity, education, and diet all affect the susceptibility to developing AD. These factors are in turn related to the level of personal income. Lower income usually coincides with lower level of education, lesser mental, leisure—social and physical activity, and poorer diet. In the present paper, we have analyzed the correlation of historical (1929–2011) per capita personal income (PCPI) for all states of the USA with corresponding age-adjusted AD death rates (AADR) for years 2000, 2005 and 2008. We found negative correlations in all cases, the highest one (R ≈ -0.65) for the PCPIs in the year 1970 correlated against the AADRs in 2005. From 1929 to 2005 the R value varies in an oscillatory manner, with the strongest correlations in 1929, 1970, 1990 and the weakest in 1950, 1980, 1998. Further analysis indicated that this oscillatory behavior of R is not artificially related to the economic factors but rather to delayed biological consequences associated with personal income. We conclude that the influence of the income level on the AD mortality in 2005 was the highest in the early years of life of the AD victims. Overall, the income had a significant, lifelong, albeit constantly decreasing, influence on the risk of developing AD. We postulate that the susceptibility of a population to late-onset AD (LOAD) is determined to a large extent by the history of income-related modifiable lifestyle risk factors. Among these risk factors, inappropriate diet has a significant contribution.
Collapse
Affiliation(s)
- Dariusz Stępkowski
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Grażyna Woźniak
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Marcin Studnicki
- Department of Experimental Design and Bioinformatics, Warsaw University of Life Sciences-SGGW, Warszawa, Poland
| |
Collapse
|
139
|
Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 2015; 9:124. [PMID: 25914621 PMCID: PMC4392704 DOI: 10.3389/fncel.2015.00124] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases including Alzheimer (AD) and Parkinson (PD) have attracted attention in last decades due to their high incidence worldwide. The etiology of these diseases is still unclear; however the role of the environment as a putative risk factor has gained importance. More worryingly is the evidence that pre- and post-natal exposures to environmental factors predispose to the onset of neurodegenerative diseases in later life. Neurotoxic metals such as lead, mercury, aluminum, cadmium and arsenic, as well as some pesticides and metal-based nanoparticles have been involved in AD due to their ability to increase beta-amyloid (Aβ) peptide and the phosphorylation of Tau protein (P-Tau), causing senile/amyloid plaques and neurofibrillary tangles (NFTs) characteristic of AD. The exposure to lead, manganese, solvents and some pesticides has been related to hallmarks of PD such as mitochondrial dysfunction, alterations in metal homeostasis and aggregation of proteins such as α-synuclein (α-syn), which is a key constituent of Lewy bodies (LB), a crucial factor in PD pathogenesis. Common mechanisms of environmental pollutants to increase Aβ, P-Tau, α-syn and neuronal death have been reported, including the oxidative stress mainly involved in the increase of Aβ and α-syn, and the reduced activity/protein levels of Aβ degrading enzyme (IDE)s such as neprilysin or insulin IDE. In addition, epigenetic mechanisms by maternal nutrient supplementation and exposure to heavy metals and pesticides have been proposed to lead phenotypic diversity and susceptibility to neurodegenerative diseases. This review discusses data from epidemiological and experimental studies about the role of environmental factors in the development of idiopathic AD and PD, and their mechanisms of action.
Collapse
|
140
|
Kim KS, Lee YM, Lee HW, Jacobs DR, Lee DH. Associations between organochlorine pesticides and cognition in U.S. elders: National Health and Nutrition Examination Survey 1999-2002. ENVIRONMENT INTERNATIONAL 2015; 75:87-92. [PMID: 25461417 DOI: 10.1016/j.envint.2014.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/03/2014] [Accepted: 11/11/2014] [Indexed: 05/06/2023]
Abstract
There is limited evidence about whether background exposure to organochlorine pesticides is related to impairment of cognitive function in general populations. This study was performed to investigate cross-sectional associations between serum concentrations of organochlorine pesticides and cognitive function, a predictor of dementia, among U.S. elders without overt dementia. Study subjects were 644 elders aged 60-85, participating in the National Health and Nutrition Examination Survey 1999-2002. We selected 6 organochlorine pesticides (p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodiphenyldichloroethylene (DDE), trans-nonachlor, oxychlordane, heptachlor epoxide, and β-hexachlorocyclohexane) which were commonly detected in current general population. Cognitive function was assessed with the Digit-Symbol Substitution Test. All 6 compounds showed statistically significant or marginally significant inverse associations with cognitive score after adjusting for covariates including education levels. The strongest association was observed with p,p'-DDT. With the outcome of low cognitive score defined as <25th percentile, elders in the highest quartile of p,p'-DDT, p,p'-DDE, and β-hexachlorocyclohexane had 2 to 3 times higher risks than those in the lowest quartile. In particular, when their concentrations were further divided with the cutoff points of 90th and 95th percentiles, p,p'-DDT in the highest 5th percentile showed 6.5 (95% confidence interval: 2.6-16.3) times higher risk of low cognitive score. On the other hand, non-persistent pesticides like organophosphates or pyrethroid showed little association with this cognitive score. The potential role of background exposure to organochlorine pesticides in the development of dementia should be explored in future prospective studies and in-vitro/in-vivo experimental studies.
Collapse
Affiliation(s)
- Ki-Su Kim
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yu-Mi Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ho-Won Lee
- Dept. of Neurology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - David R Jacobs
- Division of Epidemiology, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
141
|
Yegambaram M, Manivannan B, Beach TG, Halden RU. Role of environmental contaminants in the etiology of Alzheimer's disease: a review. Curr Alzheimer Res 2015; 12:116-46. [PMID: 25654508 PMCID: PMC4428475 DOI: 10.2174/1567205012666150204121719] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/10/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022]
Abstract
Alzheimer's dis ease (AD) is a leading cause of mortality in the developed world with 70% risk attributable to genetics. The remaining 30% of AD risk is hypothesized to include environmental factors and human lifestyle patterns. Environmental factors possibly include inorganic and organic hazards, exposure to toxic metals (aluminium, copper), pesticides (organochlorine and organophosphate insecticides), industrial chemicals (flame retardants) and air pollutants (particulate matter). Long term exposures to these environmental contaminants together with bioaccumulation over an individual's life-time are speculated to induce neuroinflammation and neuropathology paving the way for developing AD. Epidemiologic associations between environmental contaminant exposures and AD are still limited. However, many in vitro and animal studies have identified toxic effects of environmental contaminants at the cellular level, revealing alterations of pathways and metabolisms associated with AD that warrant further investigations. This review provides an overview of in vitro, animal and epidemiological studies on the etiology of AD, highlighting available data supportive of the long hypothesized link between toxic environmental exposures and development of AD pathology.
Collapse
Affiliation(s)
| | | | | | - Rolf U Halden
- Center for Environmental Security, The Biodesign Institute, Arizona State University, PO Box 875904 Tempe, AZ 85287, USA.
| |
Collapse
|
142
|
Lin Q, Cao Y, Gao J. Serum calreticulin is a negative biomarker in patients with Alzheimer's disease. Int J Mol Sci 2014; 15:21740-53. [PMID: 25429433 PMCID: PMC4284675 DOI: 10.3390/ijms151221740] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/03/2014] [Accepted: 11/10/2014] [Indexed: 11/16/2022] Open
Abstract
Calreticulin is down-regulated in the cortical neurons of patients with Alzheimer's disease (AD) and may be a potential biomarker for the diagnosis of AD. A total of 128 AD patients were randomly recruited from May 2012 to July 2013. The mRNA levels of calreticulin were measured from the serum of tested subjects using real-time quantitative reverse transcriptase-PCR (real-time qRT-PCR). Serum levels of calreticulin were determined by ELISA and Western Blot. Serum levels of calreticulin in AD patients were significantly lower than those from a healthy group (p < 0.01). The baseline characters indicated that sample size, gender, mean age, diabetes and BMI (body mass index) were not major sources of heterogeneity. The serum levels of mRNA and protein of calreticulin were lower in AD patients than those from a healthy group, and negatively associated with the progression of AD according to CDR scores (p < 0.01). Thus, there is a trend toward decreased serum levels of calreticulin in the patients with progression of AD. Serum levels of calreticulin can be a negative biomarker for the diagnosis of AD patients.
Collapse
Affiliation(s)
- Qiao Lin
- Department of Internal Medicine, the Fourth Affiliated Hospital of China Medical University, Shenyang 110005, China.
| | - Yunpeng Cao
- Neural Department of Internal Medicine, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Jie Gao
- Department of Anatomy, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
143
|
Steenland K, Mora AM, Barr DB, Juncos J, Roman N, Wesseling C. Organochlorine chemicals and neurodegeneration among elderly subjects in Costa Rica. ENVIRONMENTAL RESEARCH 2014; 134:205-209. [PMID: 25173053 PMCID: PMC4739784 DOI: 10.1016/j.envres.2014.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/13/2014] [Accepted: 07/30/2014] [Indexed: 05/30/2023]
Abstract
BACKGROUND We previously screened 400 elderly Costa Ricans for neurodegenerative disease. Those reporting occupational pesticide exposure (18%) had an increased Parkinson׳s disease (PD) risk (OR 2.57, 95% CI 0.91-7.26), and worse cognition (Mini-Mental States Exam (MMSE) 24.5 versus 25.9 points, p=0.01). We subsequently measured long-lasting organochlorine pesticides (β-HCH, DDE, DDT, and dieldrin) in a sub-sample (n=89). Dieldrin and β-HCH have been linked to PD, and DDE to Alzheimer׳s disease. METHODS We ran regression models for MMSE and tremor-at-rest to assess associations with pesticides in 89 subjects. RESULTS The percent of β-HCH, DDE, DDT (parent compound for DDE), and dieldrin above their limit of detection (LOD) were 100%, 93%, 75%, and 57%, respectively. Tremor-at-rest was found in 21 subjects, and the mean MMSE was 25. Those who reported occupational pesticide exposure (n=36) had more detectable dieldrin samples (p=0.005), and higher mean levels of dieldrin (p=0.01), than those not reporting exposure. Other pesticides did not differ between those with and without self-reported occupational exposure. There was a positive but non-significant trend of higher risk for tremor-at-rest with higher dieldrin (p=0.10 for linear trend). Neither DDE nor DDT showed a relationship with MMSE. However, after excluding two outliers with the lowest MMSE scores, higher DDT levels showed some modest association with lower MMSE (p=0.09 for linear trend). CONCLUSIONS Our data are limited by small sample size. However, dieldrin was high in our population, has been previously linked to PD, and could be partly responsible for the excess PD risk seen in our population.
Collapse
Affiliation(s)
- K Steenland
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - A M Mora
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica; School of Public Health, University of California at Berkeley, CA, United States
| | - D B Barr
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - J Juncos
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - N Roman
- Social Security System of Costa Rica, San José, Costa Rica
| | - C Wesseling
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
144
|
Song X, Mitnitski A, Rockwood K. Age-related deficit accumulation and the risk of late-life dementia. ALZHEIMERS RESEARCH & THERAPY 2014; 6:54. [PMID: 25356088 PMCID: PMC4212514 DOI: 10.1186/s13195-014-0054-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 07/25/2014] [Indexed: 11/10/2022]
Abstract
Introduction Many age-related health problems have been associated with dementia, leading to the hypothesis that late-life dementia may be determined less by specific risk factors, and more by the operation of multiple health deficits in the aggregate. Our study addressed (a) how the predictive value of dementia risk varies by the number of deficits considered and (b) how traditional (for example. vascular risks) and nontraditional risk factors (for example, foot problems, nasal congestion) compare in their predictive effects. Methods Older adults in the Canadian Study of Health and Aging who were cognitively healthy at baseline were analyzed (men, 2,902; women, 4,337). Over a 10-year period, 44.8% of men and 33.4% of women died; 7.4% of men and 9.1% of women without baseline cognitive impairment developed dementia. Self-rated health problems, including, but not restricted to, dementia risk factors, were coded as deficit present/absent. Different numbers of randomly selected variables were used to calculate various iterations of the index (that is, the proportion of deficits present in an individual. Risks for 10-year mortality and dementia outcomes were evaluated separately for men and women by using logistic regression, adjusted for age. The prediction accuracy was evaluated by using C-statistics. Results Age-adjusted odds ratios per additional deficit were 1.22 (95% confidence interval (CI), 1.18 to 1.26) in men and 1.14 (1.11 to 1.16) in women in relation to death, and 1.18 (1.12 to 1.25) in men and 1.08 (1.04 to 1.11) in women in relation to dementia. The predictive value increased with the number (n) of deficits considered, regardless of whether they were known dementia risks, and stabilized at n > 25. The all-factor index best predicted dementia (C-statistics, 0.67 ± 0.03). Conclusions The variety of items associated with dementias suggests that some part of the risk might relate more to aberrant repair processes, than to specifically toxic results. The epidemiology of late-life illness might best consider overall health status.
Collapse
Affiliation(s)
- Xiaowei Song
- Department of Medicine, Dalhousie University, Halifax, NS, Canada ; Centre for Health Care of Elderly, Division of Geriatric Medicine QEII Health Sciences Centre, Capital District Health Authority, Halifax, Canada
| | - Arnold Mitnitski
- Department of Medicine, Dalhousie University, Halifax, NS, Canada ; Departments of Mathematics and Computer Science, Dalhousie University, Halifax, Canada
| | - Kenneth Rockwood
- Department of Medicine, Dalhousie University, Halifax, NS, Canada ; Centre for Health Care of Elderly, Division of Geriatric Medicine QEII Health Sciences Centre, Capital District Health Authority, Halifax, Canada
| |
Collapse
|
145
|
Medehouenou TCM, Ayotte P, Carmichael PH, Kröger E, Verreault R, Lindsay J, Dewailly É, Tyas SL, Bureau A, Laurin D. Plasma polychlorinated biphenyl and organochlorine pesticide concentrations in dementia: the Canadian Study of Health and Aging. ENVIRONMENT INTERNATIONAL 2014; 69:141-147. [PMID: 24846810 DOI: 10.1016/j.envint.2014.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/16/2014] [Accepted: 04/22/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Even though polychlorinated biphenyls (PCBs) and organochlorine (OC) pesticides are recognized as neurotoxicants, few studies have investigated their associations with dementia. Here, we assess associations of plasma PCB and OC pesticide concentrations with all-cause dementia and Alzheimer's disease (AD). METHODS Analyses are based on data from the Canadian Study of Health and Aging, a population-based study of men and women aged 65+ years at baseline. PCB and OC pesticide concentrations were measured in 2023 participants who had complete clinical evaluations and blood samples; 574 had dementia, including 399 cases of AD. Concentrations were log-transformed and used as continuous variables in logistic regression models to assess their individual associations with dementia and AD. RESULTS After adjustment for blood collection period, total plasma lipids, age, sex, education, apolipoprotein E e4 allele (ApoE4), tobacco and alcohol use, rural/urban residence, and comorbidities, elevated plasma PCB concentrations were not associated with increased prevalence of dementia and AD. Elevated concentrations of some OC pesticides and metabolites such as hexachlorobenzene, cis-nonachlor and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane were significantly associated with a reduced prevalence of dementia. A significant reduced prevalence of AD was also observed with elevated hexachlorobenzene concentrations. Other OC pesticides and metabolites were not associated with the prevalence of dementia or AD. No effect modification by sex and ApoE4 was observed for either dementia or AD. CONCLUSIONS Elevated plasma PCB and OC pesticide concentrations were not associated with higher prevalence of all-cause dementia and AD. The possibility of modest reductions in prevalence with specific OC pesticides remains to be further investigated given the cross-sectional design of this study.
Collapse
Affiliation(s)
- Thierry Comlan Marc Medehouenou
- Faculté de pharmacie, Université Laval, Quebec City, Québec, Canada; Centre d'excellence sur le vieillissement de Québec, Santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Quebec City, Québec, Canada
| | - Pierre Ayotte
- Faculté de médecine, Département de médecine sociale et préventive, Université Laval, Quebec City, Québec, Canada; Axe Santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Quebec City, Québec, Canada; Laboratoire de toxicologie, Institut national de santé publique du Québec, Quebec City, Québec, Canada
| | - Pierre-Hugues Carmichael
- Centre d'excellence sur le vieillissement de Québec, Santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Quebec City, Québec, Canada
| | - Edeltraut Kröger
- Faculté de pharmacie, Université Laval, Quebec City, Québec, Canada; Centre d'excellence sur le vieillissement de Québec, Santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Quebec City, Québec, Canada
| | - René Verreault
- Centre d'excellence sur le vieillissement de Québec, Santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Quebec City, Québec, Canada; Faculté de médecine, Département de médecine sociale et préventive, Université Laval, Quebec City, Québec, Canada
| | - Joan Lindsay
- Faculté de médecine, Département de médecine sociale et préventive, Université Laval, Quebec City, Québec, Canada; Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Éric Dewailly
- Faculté de médecine, Département de médecine sociale et préventive, Université Laval, Quebec City, Québec, Canada; Axe Santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Quebec City, Québec, Canada; Laboratoire de toxicologie, Institut national de santé publique du Québec, Quebec City, Québec, Canada
| | - Suzanne L Tyas
- School of Public Health and Health Systems, University of Waterloo, Waterloo, Ontario, Canada; Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada
| | - Alexandre Bureau
- Faculté de médecine, Département de médecine sociale et préventive, Université Laval, Quebec City, Québec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Québec, Quebec City, Québec, Canada
| | - Danielle Laurin
- Faculté de pharmacie, Université Laval, Quebec City, Québec, Canada; Centre d'excellence sur le vieillissement de Québec, Santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Quebec City, Québec, Canada.
| |
Collapse
|
146
|
Dekosky ST, Gandy S. Environmental exposures and the risk for Alzheimer disease: can we identify the smoking guns? JAMA Neurol 2014; 71:273-5. [PMID: 24473699 DOI: 10.1001/jamaneurol.2013.6031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Steven T Dekosky
- Department of Medical Ethics and Health Policy, University of Pennsylvania Perelman School of Medicine, Philadelphia2Department of Neurology, University of Virginia School of Medicine, Charlottesville3Department of Psychiatry and Neurobehavioral Sciences
| | - Sam Gandy
- Department of Neurology and Psychiatry (Dual Primaries), Center for Cognitive Health and NFL Neurological Care, Mount Sinai Alzheimer's Disease Research Center, New York, New York
| |
Collapse
|
147
|
Bible E. Alzheimer disease: High serum levels of the pesticide metabolite DDE--a potential environmental risk factor for Alzheimer disease. Nat Rev Neurol 2014; 10:125. [PMID: 24535461 DOI: 10.1038/nrneurol.2014.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|