101
|
Riddle MR, Aspiras A, Damen F, Hutchinson JN, Chinnapen D, Tabin J, Tabin CJ. Genetic architecture underlying changes in carotenoid accumulation during the evolution of the blind Mexican cavefish, Astyanax mexicanus. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:405-422. [PMID: 32488995 PMCID: PMC7708440 DOI: 10.1002/jez.b.22954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/25/2020] [Accepted: 05/02/2020] [Indexed: 12/16/2022]
Abstract
Carotenoids are lipid-soluble yellow to orange pigments produced by plants, bacteria, and fungi. They are consumed by animals and metabolized to produce molecules essential for gene regulation, vision, and pigmentation. Cave animals represent an interesting opportunity to understand how carotenoid utilization evolves. Caves are devoid of light, eliminating primary production of energy through photosynthesis and, therefore, limiting carotenoid availability. Moreover, the selective pressures that favor carotenoid-based traits, like pigmentation and vision, are relaxed. Astyanax mexicanus is a species of fish with multiple river-adapted (surface) and cave-adapted populations (i.e., Tinaja, Pachón, Molino). Cavefish exhibit regressive features, such as loss of eyes and melanin pigment, and constructive traits, like increased sensory neuromasts and starvation resistance. Here, we show that, unlike surface fish, Tinaja and Pachón cavefish accumulate carotenoids in the visceral adipose tissue. Carotenoid accumulation is not observed in Molino cavefish, indicating that it is not an obligatory consequence of eye loss. We used quantitative trait loci mapping and RNA sequencing to investigate genetic changes associated with carotenoid accumulation. Our findings suggest that multiple stages of carotenoid processing may be altered in cavefish, including absorption and transport of lipids, cleavage of carotenoids into unpigmented molecules, and differential development of intestinal cell types involved in carotenoid assimilation. Our study establishes A. mexicanus as a model to study the genetic basis of natural variation in carotenoid accumulation and how it impacts physiology.
Collapse
Affiliation(s)
- Misty R. Riddle
- Genetics Department, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Ariel Aspiras
- Genetics Department, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
- Current affiliation: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Fleur Damen
- Genetics Department, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - John N. Hutchinson
- Department of Biostatistics, The Harvard Chan School of Public Health, Boston, MA 02115
| | - Daniel Chinnapen
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Julius Tabin
- Genetics Department, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Clifford J. Tabin
- Genetics Department, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
102
|
Vats S, Bansal R, Rana N, Kumawat S, Bhatt V, Jadhav P, Kale V, Sathe A, Sonah H, Jugdaohsingh R, Sharma TR, Deshmukh R. Unexplored nutritive potential of tomato to combat global malnutrition. Crit Rev Food Sci Nutr 2020; 62:1003-1034. [PMID: 33086895 DOI: 10.1080/10408398.2020.1832954] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tomato, a widely consumed vegetable crop, offers a real potential to combat human nutritional deficiencies. Tomatoes are rich in micronutrients and other bioactive compounds (including vitamins, carotenoids, and minerals) that are known to be essential or beneficial for human health. This review highlights the current state of the art in the molecular understanding of the nutritional aspects, conventional and molecular breeding efforts, and biofortification studies undertaken to improve the nutritional content and quality of tomato. Transcriptomics and metabolomics studies, which offer a deeper understanding of the molecular regulation of the tomato's nutrients, are discussed. The potential uses of the wastes from the tomato processing industry (i.e., the peels and seed extracts) that are particularly rich in oils and proteins are also discussed. Recent advancements with CRISPR/Cas mediated gene-editing technology provide enormous opportunities to enhance the nutritional content of agricultural produces, including tomatoes. In this regard, genome editing efforts with respect to biofortification in the tomato plant are also discussed. The recent technological advancements and knowledge gaps described herein aim to help explore the unexplored nutritional potential of the tomato.
Collapse
Affiliation(s)
- Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ruchi Bansal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Nitika Rana
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Vacha Bhatt
- Department of Botany, Savitribai Phule Pune University, Pune, MS, India
| | - Pravin Jadhav
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS, India
| | - Vijay Kale
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS, India
| | - Atul Sathe
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ravin Jugdaohsingh
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
103
|
Li N, Wu X, Zhuang W, Xia L, Chen Y, Wu C, Rao Z, Du L, Zhao R, Yi M, Wan Q, Zhou Y. Tomato and lycopene and multiple health outcomes: Umbrella review. Food Chem 2020; 343:128396. [PMID: 33131949 DOI: 10.1016/j.foodchem.2020.128396] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/27/2020] [Accepted: 10/11/2020] [Indexed: 02/08/2023]
Abstract
Lycopene is a potent lipophilic antioxidant in tomato. We aim to clarify the evidence for associations between tomato and lycopene and multiple health outcomes. Umbrella review of meta-analyses and systematic reviews was performed in humans. A total of 174 articles were searched, 17 articles with 20 health outcomes were identified by eligibility criteria. Tomato intake was inversely associated with all-cause mortality, coronary heart disease mortality, cerebrovascular disease mortality, prostate cancer, and gastric cancer. Dietary lycopene intake or serum lycopene was inversely associated with all-cause mortality, prostate cancer, stroke, cardiovascular disease, metabolic syndrome, and male infertility. Caution was warranted for potential allergy and pollution. The quality of the vast majority of evidence by GRADE was low or very low with the remaining six as moderate. The intake of tomato or lycopene was generally safe and beneficial for multiple health outcomes in humans. But the quality of the evidence was not high.
Collapse
Affiliation(s)
- Ni Li
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoting Wu
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Zhuang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Xia
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chuncheng Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyong Rao
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang Du
- Chinese Evidence-based Medicine/Cochrane Center, Chengdu 610041, China
| | - Rui Zhao
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengshi Yi
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qianyi Wan
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
104
|
Marhuenda-Muñoz M, Hurtado-Barroso S, Tresserra-Rimbau A, Lamuela-Raventós RM. A review of factors that affect carotenoid concentrations in human plasma: differences between Mediterranean and Northern diets. Eur J Clin Nutr 2020; 72:18-25. [PMID: 30487559 DOI: 10.1038/s41430-018-0305-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carotenoids are naturally occurring pigments of autotroph organisms that have been related to many health benefits and this is not only because some of them are precursors of vitamin A. Individual or whole carotenoid consumption has been associated with a lower risk of developing cancer, cardiovascular and metabolic diseases among others. However, the blood levels of carotenoids vary largely from person to person due to different factors. Diet is the most important one because of the dietary patterns that different populations follow, the time of the year of consumption or the personal preferences. Nevertheless, the intrinsic host factors such as the absorption, distribution, metabolism and excretion genetic polymorphisms, the volume of distribution and the person's microbiota and others such as carotenoid interactions are also inducing this so called inter-individual variability. Besides, culinary methods and processing produce changes in the foods that directly affect carotenoid content and hence their blood profile. Different types of studies have been performed to understand the between-subject variation of the carotenoid profile in human plasma. This research is focused on this matter as levels of carotenoids in human plasma could be useful for the prediction of some diseases. The Mediterranean diet is probably the most carotenoid rich diet stemming from its high proportion of fruits and vegetables. Its differences with other diets and the effect on the carotenoid blood profile of the consumers are currently a very interesting topic of study.
Collapse
Affiliation(s)
- María Marhuenda-Muñoz
- Department of Nutrition, Food Sciences, and Gastronomy, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centres in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Sara Hurtado-Barroso
- Department of Nutrition, Food Sciences, and Gastronomy, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centres in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Anna Tresserra-Rimbau
- Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Barcelona, Spain.,Human Nutrition Unit, Faculty of Medicine and Health Sciences, Department of Biochemistry and Biotechnology, Pere Virgili Health Research Center, University Hospital of Sant Joan de Reus, Universitat Rovira i Virgili, Reus, Spain
| | - Rosa Maria Lamuela-Raventós
- Department of Nutrition, Food Sciences, and Gastronomy, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain. .,Biomedical Research Networking Centres in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain. .,Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
105
|
Thomas LD, Bandara S, Parmar VM, Srinivasagan R, Khadka N, Golczak M, Kiser PD, von Lintig J. The human mitochondrial enzyme BCO2 exhibits catalytic activity toward carotenoids and apocarotenoids. J Biol Chem 2020; 295:15553-15565. [PMID: 32873706 DOI: 10.1074/jbc.ra120.015515] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
The enzyme β-carotene oxygenase 2 (BCO2) converts carotenoids into more polar metabolites. Studies in mammals, fish, and birds revealed that BCO2 controls carotenoid homeostasis and is involved in the pathway for vitamin A production. However, it is controversial whether BCO2 function is conserved in humans, because of a 4-amino acid long insertion caused by a splice acceptor site polymorphism. We here show that human BCO2 splice variants, BCO2a and BCO2b, are expressed as pre-proteins with mitochondrial targeting sequence (MTS). The MTS of BCO2a directed a green fluorescent reporter protein to the mitochondria when expressed in ARPE-19 cells. Removal of the MTS increased solubility of BCO2a when expressed in Escherichia coli and rendered the recombinant protein enzymatically active. The expression of the enzymatically active recombinant human BCO2a was further improved by codon optimization and its fusion with maltose-binding protein. Introduction of the 4-amino acid insertion into mouse Bco2 did not impede the chimeric enzyme's catalytic proficiency. We further showed that the chimeric BCO2 displayed broad substrate specificity and converted carotenoids into two ionones and a central C14-apocarotendial by oxidative cleavage reactions at C9,C10 and C9',C10'. Thus, our study demonstrates that human BCO2 is a catalytically competent enzyme. Consequently, information on BCO2 becomes broadly applicable in human biology with important implications for the physiology of the eyes and other tissues.
Collapse
Affiliation(s)
- Linda D Thomas
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sepalika Bandara
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vipulkumar M Parmar
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ramkumar Srinivasagan
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nimesh Khadka
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Marcin Golczak
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Philip D Kiser
- Department of Physiology and Biophysics, University of California, Irvine, California, USA; Research Service, Veterans Affairs Long Beach Healthcare System, Long Beach, California, USA
| | - Johannes von Lintig
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
106
|
Tun S, Spainhower CJ, Cottrill CL, Lakhani HV, Pillai SS, Dilip A, Chaudhry H, Shapiro JI, Sodhi K. Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities. Front Pharmacol 2020; 11:1234. [PMID: 32903449 PMCID: PMC7438597 DOI: 10.3389/fphar.2020.01234] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been a worldwide epidemic for decades. Despite the abundant increase in knowledge regarding the etiology and pathogenesis of obesity, the prevalence continues to rise with estimates predicting considerably higher numbers by the year 2030. Obesity is characterized by an abnormal lipid accumulation, however, the physiological consequences of obesity are far more concerning. The development of the obesity phenotype constitutes dramatic alterations in adipocytes, along with several other cellular mechanisms which causes substantial increase in systemic oxidative stress mediated by reactive oxygen species (ROS). These alterations promote a chronic state of inflammation in the body caused by the redox imbalance. Together, the systemic oxidative stress and chronic inflammation plays a vital role in maintaining the obese state and exacerbating onset of cardiovascular complications, Type II diabetes mellitus, dyslipidemia, non-alcoholic steatohepatitis, and other conditions where obesity has been linked as a significant risk factor. Because of the apparent role of oxidative stress in the pathogenesis of obesity, there has been a growing interest in attenuating the pro-oxidant state in obesity. Hence, this review aims to highlight the therapeutic role of antioxidants, agents that negate pro-oxidant state of cells, in ameliorating obesity and associated comorbidities. More specifically, this review will explore how various antioxidants target unique and diverse pathways to exhibit an antioxidant defense mechanism.
Collapse
Affiliation(s)
- Steven Tun
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Caleb James Spainhower
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Cameron Lee Cottrill
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Sneha S Pillai
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Anum Dilip
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hibba Chaudhry
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Joseph I Shapiro
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Komal Sodhi
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| |
Collapse
|
107
|
Maurya VK, Singh J, Ranjan V, Gothandam KM, Bohn T, Pareek S. Factors affecting the fate of β-carotene in the human gastrointestinal tract: A narrative review. INT J VITAM NUTR RES 2020; 92:385-405. [PMID: 32781911 DOI: 10.1024/0300-9831/a000674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Carotenoids and their metabolites play crucial roles in human health such as in immunity, cell differentiation, embryonic development, maintenance of plasma membrane integrity, and gastrointestinal functions, in addition to counteracting night blindness and other eye-related diseases. However, carotenoid bioavailability is highly variable and often low. The bioavailability of β-carotene, among the most frequently consumed carotenoid from the diet, is determined by food matrix related factors such as carotenoid dose, its location in food the matrix, the physical state in food, the presence of other food compounds in the matrix such as dietary fiber, dietary lipids, other micronutrients present such as minerals, and food processing, influencing also the size of food particles, and the presence of absorption inhibitors (fat replacers and anti-obesity drugs) or enhancers (nano-/micro-formulations). However, also host-related factors such as physiochemical interactions by gastrointestinal secretions (enzyme and salts) and other host-related factors such as surgery, age, disease, obesity, and genetic variations have shown to play a role. This review contributes to the knowledge regarding factors affecting the bioavailability of β-carotene (food and host-relegated), as well as highlights in vitro models employed to evaluate β-carotene bioavailability aspects.
Collapse
Affiliation(s)
- Vaibhav Kumar Maurya
- Department of Basic and Applied Science, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India
| | - Jagmeet Singh
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India
| | - Vijay Ranjan
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India
| | | | - Torsten Bohn
- Luxembourg Institute of Health (LIH), Department of Population Health, Nutrition and Health Group, L-1445 Strassen, Luxembourg
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India
| |
Collapse
|
108
|
Samouda H, De Beaufort C, Gilson G, Schritz A, Vaillant M, Ghaddhab C, Ruiz-Castell M, Huiart L, Dohet F, Weber B, Bohn T. Relationship of oxidative stress to visceral adiposity in youth and role played by vitamin D. Pediatr Diabetes 2020; 21:758-765. [PMID: 32418334 DOI: 10.1111/pedi.13055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/22/2020] [Accepted: 05/08/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Visceral adipose tissue (VAT) accumulation is a major cardiometabolic risk factor, associated with increased inflammation. Oxidative stress (OS) is also associated with inflammation and cardiometabolic issues, yet mainly through general obesity. Both OS and obesity were linked to vitamin D deficiency. OBJECTIVES To investigate whether OS increase is associated with VAT accumulation in youth, and whether in the presence of VAT accumulation, a higher vitamin D status is associated with lower OS. METHODS One hundred and fifty-eight youth with overweight/obesity, 7 to 17 years old, were recruited (Pediatric Clinic, Luxembourg). We assessed visceral and subcutaneous abdominal adipose tissues by magnetic resonance imaging, OS by DNA/RNA oxidative damage with ELISA and vitamin D by high-performance liquid chromatography. RESULTS VAT was the body fat compartment the most strongly associated with OS (RPearson : 0.298; P < 10-4 ). The general linear (GLM) models assessing the relationship between OS, VAT and vitamin D concentrations showed that "Log10 OS = (0.003 × VAT) + 3.911 (R2adjusted : 0.083; P-value < 10-4 )"; "Log10 OS = (0.003 × VAT) - (0.156 × log10 vitamin D) + 4.110 (R2adjusted : 0.101; P-value < 10-4 )". After back-transformation of the log-values into normal values, the GLM showed that, for a person with an average value of VAT (40.7 cm2 ), a 10 cm2 increase in VAT would increase OS by approx. 771.833 pg/mL, after age, gender, Tanner stage and physical activity adjustment. An approximate increase of 9 ng/mL of vitamin D would counterbalance this negative effect of increased VAT. CONCLUSION Dietary strategies improving vitamin D status should be investigated to tackle VAT and OS increase.
Collapse
Affiliation(s)
- Hanen Samouda
- Department of Population Health, Nutrition and Health Research Group, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Carine De Beaufort
- Diabetes & Endocrinology Care Clinique Pédiatrique, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Georges Gilson
- Department of Clinical Biology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Anna Schritz
- Competence Center for Methodology and Statistics, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Michel Vaillant
- Competence Center for Methodology and Statistics, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Chiraz Ghaddhab
- Diabetes & Endocrinology Care Clinique Pédiatrique, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Maria Ruiz-Castell
- Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Laetitia Huiart
- Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | | | | | - Torsten Bohn
- Department of Population Health, Nutrition and Health Research Group, Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
109
|
Pintea A, Dulf FV, Bunea A, Socaci SA, Pop EA, Opriță VA, Giuffrida D, Cacciola F, Bartolomeo G, Mondello L. Carotenoids, Fatty Acids, and Volatile Compounds in Apricot Cultivars from Romania-A Chemometric Approach. Antioxidants (Basel) 2020; 9:antiox9070562. [PMID: 32605017 PMCID: PMC7402126 DOI: 10.3390/antiox9070562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022] Open
Abstract
Lipophilic constituents are important for the color and aroma of apricots, but also for their health benefits. In the present study, carotenoids, fatty acids, and volatiles were analyzed in 11 apricot cultivars, from which nine were obtained in Romania. High performance liquid chromatography coupled to a diode array detector with atmospheric pressure chemical ionization and mass spectrometry (HPLC-DAD-APCI-MS methodology applied on unsaponified carotenoid extracts allowed the identification and quantification of 19 compounds. The predominant carotenoids in all cultivars were all-trans-β-carotene and its cis isomers. Lutein was present exclusively in non-esterified form, while β-cryptoxanthin was predominantly esterified, mainly with oleic, palmitic, lauric, and stearic acid. Moreover, β-cryptoxanthin linoleate, linolenate, and stearate were detected for the first time in Harogem cultivar. Variation in carotenoid content and composition was observed, with the highest carotenoid content being recorded in Tudor, Harogem, and Mamaia cultivars. The predominant fatty acids determined by gas chromatography–mass spectrometry (GC-MS) were linoleic (up to 47%), palmitic (up to 32.7%), and linolenic (up to 17.16%), with small variations among cultivars. In-tube extraction technique (ITEX)/GC-MS was applied for profiling the volatiles in apricot fruits and 120 compounds were identified, with terpenoids and esters as the most abundant classes. Principal component analysis (PCA) revealed that the carotenoids and the fatty acids profile can be used for variety authentication and discrimination in apricots.
Collapse
Affiliation(s)
- Adela Pintea
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.P.); (F.V.D.); (A.B.); (S.A.S.); (E.A.P.)
| | - Francisc Vasile Dulf
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.P.); (F.V.D.); (A.B.); (S.A.S.); (E.A.P.)
| | - Andrea Bunea
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.P.); (F.V.D.); (A.B.); (S.A.S.); (E.A.P.)
| | - Sonia Ancuța Socaci
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.P.); (F.V.D.); (A.B.); (S.A.S.); (E.A.P.)
| | - Elena Andreea Pop
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.P.); (F.V.D.); (A.B.); (S.A.S.); (E.A.P.)
| | | | - Daniele Giuffrida
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98168 Messina, Italy; (D.G.); (G.B.)
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98168 Messina, Italy; (D.G.); (G.B.)
- Correspondence:
| | - Giovanni Bartolomeo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98168 Messina, Italy; (D.G.); (G.B.)
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
- Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, 00125 Rome, Italy
- BeSep s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
110
|
Graßmann S, Pivovarova-Ramich O, Henze A, Raila J, Ampem Amoako Y, King Nyamekye R, Bedu-Addo G, Mockenhaupt FP, Schulze MB, Danquah I. SNP rs6564851 in the BCO1 Gene Is Associated with Varying Provitamin a Plasma Concentrations but Not with Retinol Concentrations among Adolescents from Rural Ghana. Nutrients 2020; 12:E1786. [PMID: 32560166 PMCID: PMC7353293 DOI: 10.3390/nu12061786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022] Open
Abstract
In sub-Saharan Africa, vitamin A deficiency constitutes a severe health problem despite various supplementation and food fortification programs. Given that the intake of preformed vitamin A from animal products remains low in these countries, an efficient metabolization of plant-based provitamin A carotenoids is essential. Previously, adolescents in rural Ghana have shown high total plasma carotenoid concentrations, while 36% had a vitamin A deficiency (defined as plasma retinol < 0.7 µmol/L). Hence, the aim of this cross-sectional study was to identify the relationships between variants in the β-carotene 15,15'-oxygenase (BCO1) gene and plasma carotenoid concentrations among 189 15-year-old girls and boys in rural Ghana. BCO1 rs6564851, rs7500996, rs10048138 and PKD1L2 rs6420424, and rs8044334 were typed, and carotenoid concentrations were compared among the different genotypes. G allele carriers of rs6564851 (53%) showed higher plasma carotenoid concentrations than T allele carriers (median (interquartile range): 3.07 (2.17-4.02) vs. 2.59 (2.21-3.50) µmol/L, p-value = 0.0424). This was not explained by differences in socio-demographic or dietary factors. In contrast, no differences in plasma retinol concentrations were observed between these genotypes. Pending verification in independent populations, the low conversion efficiency of provitamin A carotenoids among rs6564851 G allele carriers may undermine existing fortification and supplementation programs to improve the vitamin A status in sub-Saharan Africa.
Collapse
Affiliation(s)
- Sophie Graßmann
- Department Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (S.G.); (M.B.S.)
| | - Olga Pivovarova-Ramich
- Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany;
- Department of Endocrinology, Diabetes and Nutrition, Charité—Universitaetsmedizin Berlin, 13125 Berlin, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Andrea Henze
- Junior Research Group ProAID, Institute of Nutritional Science, Potsdam University, 14558 Nuthetal, Germany;
| | - Jens Raila
- Physiology and Pathophysiology of Nutrition, Institute of Nutrition Science, Potsdam University, 14558 Nuthetal, Germany;
| | - Yaw Ampem Amoako
- Komfo Anokye Teaching Hospital, Kwame Nkrumah University of Science and Technology (KNUST), P.O. Box 1934 Kumasi, Ghana; (Y.A.A.); (G.B.-A.)
| | | | - George Bedu-Addo
- Komfo Anokye Teaching Hospital, Kwame Nkrumah University of Science and Technology (KNUST), P.O. Box 1934 Kumasi, Ghana; (Y.A.A.); (G.B.-A.)
| | - Frank P. Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité—Universitaetsmedizin Berlin, 13353 Berlin, Germany;
| | - Matthias B. Schulze
- Department Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (S.G.); (M.B.S.)
| | - Ina Danquah
- Department Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (S.G.); (M.B.S.)
- Heidelberg Institute of Global Health (HIGH), Universitaetsklinikum Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
111
|
Kelly JM, Matuszek G, van den Broek TJ, Huggins GS, Smith CE, Ordovas JM, Wopereis S, Booth SL. Associations between Circulating Lipids and Fat-Soluble Vitamins and Carotenoids in Healthy Overweight and Obese Men. Curr Dev Nutr 2020; 4:nzaa089. [PMID: 32550273 PMCID: PMC7290122 DOI: 10.1093/cdn/nzaa089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 11/30/2022] Open
Abstract
Inconsistent associations between lipids and circulating markers of fat-soluble vitamin and carotenoid status have been reported. The aim of this hypothesis-generating study was to examine the contribution of the LC-MS-based lipidome, characterized by lipid class, carbon count, and the number of unsaturated bonds, to the interindividual variability in circulating concentrations of retinol, carotenoids, 25-hydroxyvitamin D3, α-tocopherol, γ-tocopherol, and phylloquinone in 35 overweight and obese, but healthy men. A sparse partial least-squares method was used to accomplish this aim. Highly abundant phospholipids and triglycerides (TGs) contributed to the interindividual variability in phylloquinone, α-tocopherol, and γ-tocopherol. Interindividual variability in lycopene concentrations was driven by concentrations of low-abundant TG. 25-Hydroxyvitamin D3, retinol, and the other carotenoids were not influenced by lipids. Except for lycopene, evaluation of lipids beyond class does not appear to further explain the interindividual variability in circulating concentrations of fat-soluble vitamins and carotenoids.
Collapse
Affiliation(s)
- Jennifer M Kelly
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Gregory Matuszek
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Tim J van den Broek
- Research Group Microbiology & Systems Biology, Netherlands Institute for Applied Science (TNO), Zeist, Netherlands
| | - Gordon S Huggins
- Center for Translational Genomics, Molecular Cardiology Research Institute, Tufts Medical Center and Tufts University, Boston, MA, USA
| | - Caren E Smith
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Jose M Ordovas
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Suzan Wopereis
- Research Group Microbiology & Systems Biology, Netherlands Institute for Applied Science (TNO), Zeist, Netherlands
| | - Sarah L Booth
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| |
Collapse
|
112
|
Mapelli-Brahm P, Barba FJ, Remize F, Garcia C, Fessard A, Mousavi Khaneghah A, Sant'Ana AS, Lorenzo JM, Montesano D, Meléndez-Martínez AJ. The impact of fermentation processes on the production, retention and bioavailability of carotenoids: An overview. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
113
|
von Lintig J, Moon J, Babino D. Molecular components affecting ocular carotenoid and retinoid homeostasis. Prog Retin Eye Res 2020; 80:100864. [PMID: 32339666 DOI: 10.1016/j.preteyeres.2020.100864] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
The photochemistry of vision employs opsins and geometric isomerization of their covalently bound retinylidine chromophores. In different animal classes, these light receptors associate with distinct G proteins that either hyperpolarize or depolarize photoreceptor membranes. Vertebrates also use the acidic form of chromophore, retinoic acid, as the ligand of nuclear hormone receptors that orchestrate eye development. To establish and sustain these processes, animals must acquire carotenoids from the diet, transport them, and metabolize them to chromophore and retinoic acid. The understanding of carotenoid metabolism, however, lagged behind our knowledge about the biology of their receptor molecules. In the past decades, much progress has been made in identifying the genes encoding proteins that mediate the transport and enzymatic transformations of carotenoids and their retinoid metabolites. Comparative analysis in different animal classes revealed how evolutionary tinkering with a limited number of genes evolved different biochemical strategies to supply photoreceptors with chromophore. Mutations in these genes impair carotenoid metabolism and induce various ocular pathologies. This review summarizes this advancement and introduces the involved proteins, including the homeostatic regulation of their activities.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Darwin Babino
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
114
|
Goupy P, Genot C, Hammaz F, Halimi C, Caris‐Veyrat C, Borel P. Mechanisms Governing the Transfer of Pure and Plant Matrix Carotenoids Toward Emulsified Triglycerides. Mol Nutr Food Res 2020; 64:e1900911. [DOI: 10.1002/mnfr.201900911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/09/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Pascale Goupy
- UMR408 SQPOV « Sécurité et Qualité des Produits d'Origine Végétale » INRAEAvignon Université F‐84000 Avignon France
| | - Claude Genot
- UR1268 BIA « Biopolymères Interactions Assemblages »INRAE F‐44316 Nantes France
| | - Faiza Hammaz
- C2VNINRAEINSERMAix Marseille Univ F‐13005 Marseille France
| | | | - Catherine Caris‐Veyrat
- UMR408 SQPOV « Sécurité et Qualité des Produits d'Origine Végétale » INRAEAvignon Université F‐84000 Avignon France
| | - Patrick Borel
- C2VNINRAEINSERMAix Marseille Univ F‐13005 Marseille France
| |
Collapse
|
115
|
Beydoun MA, Chen X, Jha K, Beydoun HA, Zonderman AB, Canas JA. Carotenoids, vitamin A, and their association with the metabolic syndrome: a systematic review and meta-analysis. Nutr Rev 2020; 77:32-45. [PMID: 30202882 DOI: 10.1093/nutrit/nuy044] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Context Modifiable factors that reduce the burden of the metabolic syndrome (MetS), particularly plant-derived biomarkers, have been a recent focus of rising interest. Objective This systematic review and meta-analysis, which follows PRISMA guidelines, evaluates evidence from a period of 20 years that links vitamin A and carotenoids with the occurrence of MetS and following the PRISMA guidelines. Data Sources PubMed and Cochrane databases (January 1997 through March 2017) were systematically assessed for studies, including case-control, cross-sectional, and cohort studies, that evaluated the associations of MetS with carotenoids and retinyl esters and retinol (vitamin A). Data Extraction Key measures of associations were harmonized into odds ratios (ORs) and 95% confidence intervals (95%CI) of MetS per 1 standard deviation (SD) of exposure using forest plots and random effects models that pooled data points from 11 cross-sectional studies. Begg's funnel and harvest plots were constructed. Results An inverse association between total carotenoids and MetS was found [ORpooled, 0.66; 95%CI, 0.56-0.78; 1 SD ∼ 0.82 µmol/L; n = 5 studies]. This association was the strongest for β-carotene, followed by α-carotene and β-crypotoxanthin. No association was detected between retinol and MetS (ORpooled, 1.00; 95%CI, 0.88-1.13; 1 SD ∼ 2.14 µmol/L; n = 6 studies). Publication bias was absent, and harvest plots indicated consistency upon replication for β-carotene and total carotenoid exposures. Conclusions This review and meta-analysis suggests that, unlike retinol, total and individual carotenoids were inversely related to MetS.
Collapse
Affiliation(s)
- May A Beydoun
- National Institute on Aging, National Institutes of Health, Intramural Research Program, Baltimore, Maryland, USA
| | - Xiaoli Chen
- Massachusetts Department of Public Health, Boston, Massachusetts, USA
| | - Kanishk Jha
- Nemours Children's Clinic, Jacksonville, Florida, USA
| | - Hind A Beydoun
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Alan B Zonderman
- National Institute on Aging, National Institutes of Health, Intramural Research Program, Baltimore, Maryland, USA
| | - Jose A Canas
- Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| |
Collapse
|
116
|
Saini RK, Rengasamy KRR, Mahomoodally FM, Keum YS. Protective effects of lycopene in cancer, cardiovascular, and neurodegenerative diseases: An update on epidemiological and mechanistic perspectives. Pharmacol Res 2020; 155:104730. [PMID: 32126272 DOI: 10.1016/j.phrs.2020.104730] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022]
Abstract
Recent mechanistic and epidemiological studies have provided insights into health benefits of dietary lycopene to decrease the risk and complications associated with several chronic diseases such as cardiovascular diseases (CVD), obesity, type 2 diabetes, cancer, and neurodegenerative disorders. These chronic diseases are primarily associated with oxidative stress-induced systemic and low-grade chronic inflammation. Owing to its potent antioxidant properties, lycopene can potentially alleviate enhanced levels of proinflammatory mediators (e.g., proinflammatory cytokines IL-8, -6, and -1, and oxidized phospholipids) and prevent NF-κB activation by modulating oxidative stress. Moreover, lycopene serves as a precursor for various oxidative cleavage products and metabolites including Apo-8'-, apo-10'-, and apo-12'-lycopenals that can interact with multiple transcription factors (e.g., Nrf2, RARs, RXRs, and PPARs) to overexpress antioxidant and cytoprotective Phase II enzymes and other growth-stimulating proteins (e.g., brain-derived neurotrophic factor (BDNF) for enhanced neuroprotection. These events altogether can protect the body from chronic inflammatory disorders. In the present review, the latest mechanistic development from cell and animal models and results of case-control, cohort, and randomized trials are discussed to support the protective part of lycopene in cancer, CVD, and neurodegenerative disorders. This review focuses on cellular and molecular events involved in protective effects of lycopene. Although molecular and cellular mechanisms involved in health-promoting activities of lycopene have been reported, no detailed mechanistic studies have been published. Hence, future studies should be conducted to elucidate the mechanistic role(s) of lycopene-derived oxidation products in modulating cellular signaling.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Bioresources and Food Science, Konkuk University, Seoul 143-701, Republic of Korea; Institute of Natural Science and Agriculture, Konkuk University, Seoul 143-701, Republic of Korea; Department of Crop Science, Konkuk University, Seoul 143-701, Republic of Korea
| | - Kannan R R Rengasamy
- Department of Bioresources and Food Science, Konkuk University, Seoul 143-701, Republic of Korea.
| | - Fawzi M Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
117
|
Effects of Lutein and Astaxanthin Intake on the Improvement of Cognitive Functions among Healthy Adults: A Systematic Review of Randomized Controlled Trials. Nutrients 2020; 12:nu12030617. [PMID: 32120794 PMCID: PMC7146131 DOI: 10.3390/nu12030617] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Fruits and vegetables are generally rich in antioxidants such as carotenoids. Consumption of carotenoids is expected to have benefits on cognitive functions in humans. However, previous randomized controlled trials (RCT) using carotenoids have reported inconsistent results. Therefore, this systematic review (SR) aimed to summarize the effect of carotenoid intake on cognitive functions in humans. Method: PubMed, Cochrane Library, Web of Science, and PsychoINFO were searched for research papers on carotenoid intake with the criteria that 1) oral carotenoid intake was evaluated using RCTs, 2) participants were healthy young, middle-aged, or older, and 3) cognitive functions were measured using RCTs. Results: Five studies using lutein and two studies using astaxanthin met the inclusion criteria. Consumption of lutein and its isomer showed consistent results in selective improvement of visual episodic memory in young and middle-aged adults while inhibition was observed in middle-aged and older adults. One of the two included astaxanthin studies reported a significant improvement of verbal episodic memory performance in middle-aged adults. Conclusion: This SR showed that the 10 mg lutein per day for twelve months can lead to improvement of cognitive functions. Due to the small number of studies, it is difficult to conclude whether astaxanthin would have a positive effect on cognitive functions.
Collapse
|
118
|
Guo B, Oliviero T, Fogliano V, Ma Y, Chen F, Capuano E. Gastrointestinal Bioaccessibility and Colonic Fermentation of Fucoxanthin from the Extract of the Microalga Nitzschia laevis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1844-1850. [PMID: 31081326 PMCID: PMC7034079 DOI: 10.1021/acs.jafc.9b02496] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Affiliation(s)
- Bingbing Guo
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, People’s Republic of China
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Teresa Oliviero
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Yuwei Ma
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Feng Chen
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, People’s Republic of China
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, Guangdong 518060, People’s Republic of China
| | - Edoardo Capuano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| |
Collapse
|
119
|
Why interindividual variation in response to consumption of plant food bioactives matters for future personalised nutrition. Proc Nutr Soc 2020; 79:225-235. [PMID: 32014077 DOI: 10.1017/s0029665120000014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Food phytochemicals are increasingly considered to play a key role in the cardiometabolic health effects of plant foods. However, the heterogeneity in responsiveness to their intake frequently observed in clinical trials can hinder the beneficial effects of these compounds in specific subpopulations. A range of factors, including genetic background, gut microbiota, age, sex and health status, could be involved in these interindividual variations; however, the current knowledge is limited and fragmented. The European network, European Cooperation in Science and Technology (COST)-POSITIVe, has analysed, in a systematic way, existing knowledge with the aim to better understand the factors responsible for the interindividual variation in response to the consumption of the major families of plant food bioactives, regarding their bioavailability and bioefficacy. If differences in bioavailability, likely reflecting differences in human subjects' genetics or in gut microbiota composition and functionality, are believed to underpin much of the interindividual variability, the key molecular determinants or microbial species remain to be identified. The systematic analysis of published studies conducted to assess the interindividual variation in biomarkers of cardiometabolic risk suggested some factors (such as adiposity and health status) as involved in between-subject variation. However, the contribution of these factors is not demonstrated consistently across the different compounds and biological outcomes and would deserve further investigations. The findings of the network clearly highlight that the human subjects' intervention studies published so far are not adequate to investigate the relevant determinants of the absorption/metabolism and biological responsiveness. They also emphasise the need for a new generation of intervention studies designed to capture this interindividual variation.
Collapse
|
120
|
Saini RK, A Bekhit AED, Roohinejad S, Rengasamy KRR, Keum YS. Chemical Stability of Lycopene in Processed Products: A Review of the Effects of Processing Methods and Modern Preservation Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:712-726. [PMID: 31891495 DOI: 10.1021/acs.jafc.9b06669] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lycopene, one of the most dominant carotenoids in a person's diet, is a well-known natural compound that has protective effects against chronic diseases. Industrial and domestic processing and storage conditions significantly influence retention and isomerization of lycopene; thus, in recent years, great attention has been given for their preservative effects of lycopene. This review highlights recent strategies that have been developed to preserve lycopene in processed products, especially in tomato pulp, puree, paste, and juice. The key factors influencing lycopene degradation and isomerization, such as ingredients and intensity of thermal treatments, are also discussed. Special attention was paid to the crystalline structures of lycopene which facilitate its resistance to degradation and isomerization. Emerging non-thermal processing methods, such as ultrasound and high-pressure processing (HPP), are critically evaluated for their preservation of thermo-labile compounds. Novel trends to improve lycopene stability by micro- and nanoencapsulation and addition of antioxidants are also included to examine their efficacy to protect against light, heat, oxygen, and other oxidative processes. Finally, recommended processing and storage conditions are discussed to provide strategies to retain the highest possible amount of bioactive lycopene until consumption.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Bioresources and Food Science , Konkuk University , Seoul 143-701 , Republic of Korea
- Institute of Natural Science and Agriculture , Konkuk University , Seoul 143-701 , Republic of Korea
- Department of Crop Science , Konkuk University , Seoul 143-701 , Republic of Korea
| | | | - Shahin Roohinejad
- Burn and Wound Healing Research Center, Division of Food and Nutrition , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Kannan R R Rengasamy
- Department of Bioresources and Food Science , Konkuk University , Seoul 143-701 , Republic of Korea
| | - Young-Soo Keum
- Department of Crop Science , Konkuk University , Seoul 143-701 , Republic of Korea
| |
Collapse
|
121
|
Carotenoids in human skin. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158588. [PMID: 31838152 DOI: 10.1016/j.bbalip.2019.158588] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022]
Abstract
The skin is shielding our organism from exogenous threats including solar radiation. Carotenoids which are ingested with the diet accumulate in the skin with the highest levels occurring in skin of the forehead and in the palms of the hands. Blood and skin levels of carotenoids increase during supplementation and due to their antioxidant properties and UV-absorbing effects carotenoids are used as photoprotective agents. Systemic photoprotection with carotenoids after supplementation or ingestion of a carotenoid rich diet has been demonstrated in several human intervention studies. Although protection is only moderate it may contribute to UV protection in combination with other measures. Beyond photoprotection, ingestion of carotenoids has been postulated to be of additional benefit for cutaneous tissue and influences moisture and texture or elasticity of the skin. However, only a limited number of studies is available yet to substantiate such a claim.
Collapse
|
122
|
Intake of β-cryptoxanthin with fat-containing food increases β-cryptoxanthin serum level and palmar yellowness in healthy adults. Nutr Res 2019; 71:65-71. [PMID: 31757627 DOI: 10.1016/j.nutres.2019.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/16/2019] [Accepted: 09/07/2019] [Indexed: 02/06/2023]
Abstract
Epidemiological and clinical studies have suggested that β-cryptoxanthin (β-CX) has health benefits in humans. To understand the health benefits of β-CX, it is important to examine its in vivo kinetics and identify a convenient noninvasive biomarker for serum β-CX level. However, to date, there have been few studies of β-CX kinetics in humans. We hypothesized that simultaneous consumption of fat-containing food would stimulate absorption of β-CX. We conducted 2 in vivo kinetics studies, one after a single intake and the other after daily intake of β-CX in healthy adults, to examine whether simultaneous consumption of fat-containing food stimulates absorption of β-CX and whether palmar b* value (yellowness) is a suitable biomarker. After a single intake of 1.1 or 2.2 mg of β-CX, the serum level increased dose-dependently and returned to the baseline level after 14 to 17 days. The simultaneous consumption of fat-containing food enhanced the absorption of β-CX by 1.8-fold. During daily intake of 2.0 mg/day β-CX with fat-containing food for 12 weeks, both serum β-CX level and palmar b* value measured with a colorimeter increased continuously. After intake was halted, both serum β-CX level and palmar b* value decreased. There was a positive correlation between serum β-CX level and palmar b* value during the trial (R = 0.55, P < .001). These results suggest that intake of β-CX with fat-containing food stimulates the absorption of β-CX and increases palmar yellowness.
Collapse
|
123
|
Jahns L, Johnson LK, Conrad Z, Bukowski M, Raatz SK, Jilcott Pitts S, Wang Y, Ermakov IV, Gellermann W. Concurrent validity of skin carotenoid status as a concentration biomarker of vegetable and fruit intake compared to multiple 24-h recalls and plasma carotenoid concentrations across one year: a cohort study. Nutr J 2019; 18:78. [PMID: 31752882 PMCID: PMC6873686 DOI: 10.1186/s12937-019-0500-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
Background Biological markers of vegetable and fruit (VF) intake are needed both for nutrition surveillance and for the evaluation of nutrition interventions. Optically assessed skin carotenoid status (SCS) has been proposed as a marker of intake but there are few published validity studies to date. Therefore, the objective of the study was to examine the concurrent validity of multiple methods of assessing VF intake cross-sectionally and seasonally over one year and to discuss the relative merits and limitations of each method. Methods Fifty-two 40–60 y old women completed a 1-year longitudinal study that included 1) SCS assessment using resonance Raman spectroscopy (RRS) and using pressure-mediated reflection spectroscopy (RS) at 12 timepoints, 2) thirty-six 24-h recalls using the Automated Self-Administered 24-Hour Dietary Assessment Tool (ASA24; total 1866 recalls), and 3) plasma carotenoid concentrations measured every 3 months. Pearson correlation coefficients and mixed linear models were used to estimate pairwise correlations between RRS, RS, ASA24, and plasma carotenoids. Results RS and RRS were strongly correlated at baseline and over the year (r = 0.86 and 0.76; respectively, P < 0.001). RS was strongly correlated with plasma carotenoids at baseline (r = 0.70) and moderately across the year (r = 0.65), as was RRS (r = 0.77 and 0.69, respectively, all P < 0.001). At baseline, self-reported VF was weakly correlated with RRS (r = 0.33; P = 0.016), but not with RS or plasma carotenoids. Across the year, self-reported VF intake was weakly correlated with both RS (r = 0.37; P = 0.008), RRS (r = 0.37; P = 0.007), and with plasma carotenoids (r = 0.36; P < 0.008). Conclusions SCS as measured by RS and RRS is moderately to strongly correlated with plasma carotenoid concentrations both cross-sectionally and longitudinally, indicating that it can be a powerful tool to assess carotenoid-rich VF intake in populations. Clinical trial registry This trial was registered at ClinicalTrials.gov as NCT01674296.
Collapse
Affiliation(s)
- Lisa Jahns
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, 2420 2nd Avenue North, Grand Forks, ND, 58203, USA.
| | - LuAnn K Johnson
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, 2420 2nd Avenue North, Grand Forks, ND, 58203, USA
| | - Zach Conrad
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, 2420 2nd Avenue North, Grand Forks, ND, 58203, USA.,Department of Health Sciences, William & Mary, 251 Ukrop Way, Williamsburg, VA, 23185, USA
| | - Michael Bukowski
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, 2420 2nd Avenue North, Grand Forks, ND, 58203, USA
| | - Susan K Raatz
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, 2420 2nd Avenue North, Grand Forks, ND, 58203, USA.,Department of Food Science and Nutrition, 225 Food Science and Nutrition, 1334 Eckles Ave, St. Paul, MN, 55108, USA
| | - Stephanie Jilcott Pitts
- Department of Public Health, Brody School of Medicine, East Carolina University, 115 Heart Drive MS 660, Greenville, NC, 27834, USA
| | - Youfa Wang
- Department of Nutrition and Health Sciences, College of Health, Ball State University, Muncie, IN, 47306, USA
| | - Igor V Ermakov
- Longevity Link Corporation, University of Utah Research Park, 391 Chipeta Way Suite E, Salt Lake City, UT, 84108, USA
| | - Werner Gellermann
- Longevity Link Corporation, University of Utah Research Park, 391 Chipeta Way Suite E, Salt Lake City, UT, 84108, USA
| |
Collapse
|
124
|
Walther B, Lett AM, Bordoni A, Tomás‐Cobos L, Nieto JA, Dupont D, Danesi F, Shahar DR, Echaniz A, Re R, Fernandez AS, Deglaire A, Gille D, Schmid A, Vergères G. GutSelf: Interindividual Variability in the Processing of Dietary Compounds by the Human Gastrointestinal Tract. Mol Nutr Food Res 2019; 63:e1900677. [PMID: 31483113 PMCID: PMC6900003 DOI: 10.1002/mnfr.201900677] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Indexed: 12/19/2022]
Abstract
Nutritional research is currently entering the field of personalized nutrition, to a large extent driven by major technological breakthroughs in analytical sciences and biocomputing. An efficient launching of the personalized approach depends on the ability of researchers to comprehensively monitor and characterize interindividual variability in the activity of the human gastrointestinal tract. This information is currently not available in such a form. This review therefore aims at identifying and discussing published data, providing evidence on interindividual variability in the processing of the major nutrients, i.e., protein, fat, carbohydrates, vitamins, and minerals, along the gastrointestinal tract, including oral processing, intestinal digestion, and absorption. Although interindividual variability is not a primary endpoint of most studies identified, a significant number of publications provides a wealth of information on this topic for each category of nutrients. This knowledge remains fragmented, however, and understanding the clinical relevance of most of the interindividual responses to food ingestion described in this review remains unclear. In that regard, this review has identified a gap and sets the base for future research addressing the issue of the interindividual variability in the response of the human organism to the ingestion of foods.
Collapse
Affiliation(s)
- Barbara Walther
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| | - Aaron M. Lett
- Section for Nutrition ResearchDepartment of MedicineImperial College LondonLondonUK
| | - Alessandra Bordoni
- Department of Agri‐Food Sciences and TechnologiesUniversity of Bologna47521CesenaItaly
| | | | | | - Didier Dupont
- UMR 1253Science et Technologie du Lait et de l'ŒufINRA35000RennesFrance
| | - Francesca Danesi
- Department of Agri‐Food Sciences and TechnologiesUniversity of Bologna47521CesenaItaly
| | - Danit R. Shahar
- Department of Public HealthThe S. Daniel Abraham International Center for Health and NutritionBen‐Gurion University of the Negev84105Beer‐ShevaIsrael
| | - Ana Echaniz
- Cambridge Food Science LtdCB23 5ABCambridgeUK
| | - Roberta Re
- Cambridge Food Science LtdCB23 5ABCambridgeUK
| | | | - Amélie Deglaire
- UMR 1253Science et Technologie du Lait et de l'ŒufINRA35000RennesFrance
| | - Doreen Gille
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| | - Alexandra Schmid
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| | - Guy Vergères
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| |
Collapse
|
125
|
Landberg R, Manach C, Kerckhof FM, Minihane AM, Saleh RNM, De Roos B, Tomas-Barberan F, Morand C, Van de Wiele T. Future prospects for dissecting inter-individual variability in the absorption, distribution and elimination of plant bioactives of relevance for cardiometabolic endpoints. Eur J Nutr 2019; 58:21-36. [PMID: 31642982 PMCID: PMC6851035 DOI: 10.1007/s00394-019-02095-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE The health-promoting potential of food-derived plant bioactive compounds is evident but not always consistent across studies. Large inter-individual variability may originate from differences in digestion, absorption, distribution, metabolism and excretion (ADME). ADME can be modulated by age, sex, dietary habits, microbiome composition, genetic variation, drug exposure and many other factors. Within the recent COST Action POSITIVe, large-scale literature surveys were undertaken to identify the reasons and extent of inter-individual variability in ADME of selected plant bioactive compounds of importance to cardiometabolic health. The aim of the present review is to summarize the findings and suggest a framework for future studies designed to investigate the etiology of inter-individual variability in plant bioactive ADME and bioefficacy. RESULTS Few studies have reported individual data on the ADME of bioactive compounds and on determinants such as age, diet, lifestyle, health status and medication, thereby limiting a mechanistic understanding of the main drivers of variation in ADME processes observed across individuals. Metabolomics represent crucial techniques to decipher inter-individual variability and to stratify individuals according to metabotypes reflecting the intrinsic capacity to absorb and metabolize bioactive compounds. CONCLUSION A methodological framework was developed to decipher how the contribution from genetic variants or microbiome variants to ADME of bioactive compounds can be predicted. Future study design should include (1) a larger number of study participants, (2) individual and full profiling of all possible determinants of internal exposure, (3) the presentation of individual ADME data and (4) incorporation of omics platforms, such as genomics, microbiomics and metabolomics in ADME and efficacy studies.
Collapse
Affiliation(s)
- Rikard Landberg
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| | - Claudine Manach
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| | - Frederiek-Maarten Kerckhof
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anne-Marie Minihane
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia (UEA), Norwich, UK
| | - Rasha Noureldin M Saleh
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia (UEA), Norwich, UK
| | - Baukje De Roos
- University of Aberdeen, the Rowett Institute, Aberdeen, UK
| | - Francisco Tomas-Barberan
- Food and Health Laboratory, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, Spain
| | - Christine Morand
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
126
|
de Roos B, Aura AM, Bronze M, Cassidy A, Conesa MTG, Gibney ER, Greyling A, Kaput J, Kerem Z, Knežević N, Kroon P, Landberg R, Manach C, Milenkovic D, Rodriguez-Mateos A, Tomás-Barberán FA, van de Wiele T, Morand C. Targeting the delivery of dietary plant bioactives to those who would benefit most: from science to practical applications. Eur J Nutr 2019; 58:65-73. [PMID: 31637468 PMCID: PMC6851046 DOI: 10.1007/s00394-019-02075-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/02/2019] [Indexed: 03/19/2023]
Abstract
Background A healthy diet and optimal lifestyle choices are amongst the most important actions for the prevention of cardiometabolic diseases. Despite this, it appears difficult to convince consumers to select more nutritious foods. Furthermore, the development and production of healthier foods do not always lead to economic profits for the agro-food sector. Most dietary recommendations for the general population represent a “one-size-fits-all approach” which does not necessarily ensure that everyone has adequate exposure to health-promoting constituents of foods. Indeed, we now know that individuals show a high variability in responses when exposed to specific nutrients, foods, or diets. Purpose This review aims to highlight our current understanding of inter-individual variability in response to dietary bioactives, based on the integration of findings of the COST Action POSITIVe. We also evaluate opportunities for translation of scientific knowledge on inter-individual variability in response to dietary bioactives, once it becomes available, into practical applications for stakeholders, such as the agro-food industry. The potential impact from such applications will form an important impetus for the food industry to develop and market new high quality and healthy foods for specific groups of consumers in the future. This may contribute to a decrease in the burden of diet-related chronic diseases. Individual differences in ADME (Absorption, Digestion, Metabolism and Excretion) is believed to underpin much of the inter-individual variation in responses. Recent developments in the area of food metabolome databases and fast improvements in innovative metabotyping technologies hold great promise for improved profiling of dietary intake, exposure to individual ingredients, foods and dietary patterns, as well as our ability to identify individual responsiveness. The food industry needs well-defined population clusters or targets in order to be able to design “personalized products”. There are indeed excellent industrial opportunities for foods that modulate gut microbiota, and thereby enable the delivery of food bioactive metabolites. It is currently not clear whether knowledge on individual nutrient needs, based on genetic or metagenomic data, would affect long-term dietary and health behaviours. Data to support the development of dietary recommendations may need to be generated by new n-of-1-based study designs in the future.
Collapse
Affiliation(s)
- Baukje de Roos
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Anna-Marja Aura
- VTT Technical Research Centre of Finland, PO Box 1000, Tietotie 2, Espoo, Finland
| | - Maria Bronze
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| | - Aedin Cassidy
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, UK
| | - María-Teresa Garcia Conesa
- Food and Health Laboratory. Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, Spain
| | - Eileen R Gibney
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Arno Greyling
- Unilever Research and Development Vlaardingen, Vlaardingen, The Netherlands
| | | | - Zohar Kerem
- R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Paul Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Claudine Manach
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Dragan Milenkovic
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK
| | - Francisco A Tomás-Barberán
- Food and Health Laboratory. Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, Spain
| | - Tom van de Wiele
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Christine Morand
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
127
|
Effects on plasma carotenoids and consumer acceptance of a functional carrot-based product to supplement vegetable intake: A randomized clinical trial. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
128
|
Guo B, Yang B, Pang X, Chen T, Chen F, Cheng KW. Fucoxanthin modulates cecal and fecal microbiota differently based on diet. Food Funct 2019; 10:5644-5655. [PMID: 31433413 DOI: 10.1039/c9fo01018a] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Obesity is a major health concern worldwide and is considered to be associated with disruption of host-microbial homeostasis, especially microbiota composition in the gastrointestinal tract. Use of microbiota-directed foods or nutraceuticals therefore represents a promising approach for the control of obesity. Fucoxanthin, a marine carotenoid, has been proven to be one of the most effective anti-obesity natural products. However, its action mechanism is yet to be unraveled, especially with respect to its role in the modulation of gut microbiota composition. In the present study, profiles of microbiota in both the cecal and fecal samples from BALB/c mice given respectively the following treatments were examined: normal chow diet (NCD), NCD + fucoxanthin (NCDF), high-fat-diet (HFD), and HFD + fucoxanthin (HFDF). The results showed that fucoxanthin supplementation for 4 weeks significantly changed the composition of both cecal and fecal microbiota. In addition, a differential effect was observed between the supplementation to NCD and to HFD. The changes in the Firmicutes/Bacteroidetes ratio and the abundance of S24-7 and Akkermansia were identified to be among the major gut microbiota modulating events associated with the anti-obesity bioactivity of fucoxanthin. Hence, our results suggested that fucoxanthin could be a promising microbiota-targeted functional-food ingredient.
Collapse
Affiliation(s)
- Bingbing Guo
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, Guangdong 518060, China. and College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China and Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Bo Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoyang Pang
- Institute of Agro-Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China
| | - Tianpeng Chen
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, Guangdong 518060, China. and Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Ka-Wing Cheng
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, Guangdong 518060, China.
| |
Collapse
|
129
|
Xi M, Dragsted LO. Biomarkers of seaweed intake. GENES & NUTRITION 2019; 14:24. [PMID: 31428206 PMCID: PMC6694598 DOI: 10.1186/s12263-019-0648-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/19/2019] [Indexed: 01/18/2023]
Abstract
Seaweeds are marine macroalgae, some of which are edible. They are rich in specific dietary fibers and also contain other characteristic biological constituents. Biological activities have been investigated mainly in animal studies, while very few results are available from human studies. Biomarkers of food intake (BFIs) specific to seaweed could play an important role as objective measurements in observational studies and dietary intervention studies. Thus, the health effects of seaweeds can be explored and understood by discovering and applying BFIs. This review summarizes studies to identify candidate BFIs of seaweed intake. These BFIs are evaluated by a structured validation scheme. Hydroxytrifuhalol A, 7-hydroxyeckol, C-O-C dimer of phloroglucinol, diphloroethol, fucophloroethol, dioxinodehydroeckol, and/or their glucuronides or sulfate esters which all belong to the phlorotannins are considered candidate biomarkers for brown seaweed. Fucoxanthinol, the main metabolite of fucoxanthin, is also regarded as a candidate biomarker for brown seaweed. Further validation will be needed due to the very limited number of human studies. Further studies are also needed to identify additional candidate biomarkers, relevant specifically for the red and green seaweeds, for which no candidate biomarkers emerged from the literature search. Reliable BFIs should also ideally be found for the whole seaweed food group.
Collapse
Affiliation(s)
- Muyao Xi
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lars O. Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
130
|
Elvira-Torales LI, García-Alonso J, Periago-Castón MJ. Nutritional Importance of Carotenoids and Their Effect on Liver Health: A Review. Antioxidants (Basel) 2019; 8:antiox8070229. [PMID: 31330977 PMCID: PMC6681007 DOI: 10.3390/antiox8070229] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022] Open
Abstract
The consumption of carotenoids has beneficial effects on health, reducing the risk of certain forms of cancer, cardiovascular diseases, and macular degeneration, among others. The mechanism of action of carotenoids has not been clearly identified; however, it has been associated with the antioxidant capacity of carotenoids, which acts against reactive oxygen species and inactivating free radicals, although it has also been shown that carotenoids modulate gene expression. Dietary carotenoids are absorbed and accumulated in the liver and other organs, where they exert their beneficial effects. In recent years, it has been described that the intake of carotenoids can significantly reduce the risk of suffering from liver diseases, such as non-alcoholic fatty liver disease (NAFLD). This disease is characterized by an imbalance in lipid metabolism producing the accumulation of fat in the hepatocyte, leading to lipoperoxidation, followed by oxidative stress and inflammation. In the first phases, the main treatment of NAFLD is to change the lifestyle, including dietary habits. In this sense, carotenoids have been shown to have a hepatoprotective effect due to their ability to reduce oxidative stress and regulate the lipid metabolism of hepatocytes by modulating certain genes. The objective of this review was to provide a description of the effects of dietary carotenoids from fruits and vegetables on liver health.
Collapse
Affiliation(s)
- Laura Inés Elvira-Torales
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Espinardo, 30071 Murcia, Spain.
- Department of Food Engineering, Tierra Blanca Superior Technological Institute, Tierra Blanca 95180, Mexico.
| | - Javier García-Alonso
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Espinardo, 30071 Murcia, Spain
| | - María Jesús Periago-Castón
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Espinardo, 30071 Murcia, Spain.
| |
Collapse
|
131
|
Borel P, Desmarchelier C. Bioavailability of Fat-Soluble Vitamins and Phytochemicals in Humans: Effects of Genetic Variation. Annu Rev Nutr 2019; 38:69-96. [PMID: 30130464 DOI: 10.1146/annurev-nutr-082117-051628] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent data have shown that interindividual variability in the bioavailability of vitamins A (β-carotene), D, and E, and carotenoids (lutein and lycopene), as well as that of phytosterols, is modulated by single nucleotide polymorphisms (SNPs). The identified SNPs are in or near genes involved in intestinal uptake or efflux of these compounds, as well as in genes involved in their metabolism and transport. The phenotypic effect of each SNP is usually low, but combinations of SNPs can explain a significant part of the variability. Nevertheless, results from these studies should be considered preliminary since they have not been validated in other cohorts. Guidelines for future studies are provided to ensure that sound associations are elucidated that can be used to build consolidated genetic scores that may allow recommended dietary allowances to be tailored to individuals or groups by taking into account the multiloci genotypic signature of people of different ethnic origin or even of individuals.
Collapse
Affiliation(s)
- Patrick Borel
- C2VN, INRA, INSERM, Aix Marseille Université, 13005 Marseille, France; ,
| | | |
Collapse
|
132
|
Krężel W, Rühl R, de Lera AR. Alternative retinoid X receptor (RXR) ligands. Mol Cell Endocrinol 2019; 491:110436. [PMID: 31026478 DOI: 10.1016/j.mce.2019.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022]
Abstract
Retinoid X receptors (RXRs) control a wide variety of functions by virtue of their dimerization with other nuclear hormone receptors (NRs), contributing thereby to activities of different signaling pathways. We review known RXR ligands as transcriptional modulators of specific RXR-dimers and the associated biological processes. We also discuss the physiological relevance of such ligands, which remains frequently a matter of debate and which at present is best met by member(s) of a novel family of retinoids, postulated as Vitamin A5. Through comparison with other natural, but also with synthetic ligands, we discuss high diversity in the modes of ligand binding to RXRs resulting in agonistic or antagonistic profiles and selectivity towards specific subtypes of permissive heterodimers. Despite such diversity, direct ligand binding to the ligand binding pocket resulting in agonistic activity was preferentially preserved in the course of animal evolution pointing to its functional relevance, and potential for existence of other, species-specific endogenous RXR ligands sharing the same mode of function.
Collapse
Affiliation(s)
- Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
133
|
Andersen V, Halekoh U, Bohn T, Tjønneland A, Vogel U, Kopp TI. No Interaction between Polymorphisms Related to Vitamin A Metabolism and Vitamin A Intake in Relation to Colorectal Cancer in a Prospective Danish Cohort. Nutrients 2019; 11:nu11061428. [PMID: 31242605 PMCID: PMC6627526 DOI: 10.3390/nu11061428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
Although vitamin A is essential for gut immune cell trafficking (paramount for the intestinal immune system), epidemiological studies on the role of vitamin A in colorectal cancer (CRC) aetiology are conflicting. By using functional polymorphisms, gene–environment (GxE) interaction analyses may identify the biological effects (or “mechanism of action”) of environmental factors on CRC aetiology. Potential interactions between dietary or supplemental vitamin A intake and genetic variation in the vitamin A metabolic pathway genes related to risk of CRC were studied. We used a nested case-cohort design within the Danish “Diet, Cancer and Health” cohort, with prospectively collected lifestyle information from 57,053 participants, and the Cox proportional hazard models and likelihood ratio test. No statistically significant associations between the selected polymorphisms and CRC, and no statistically significant interactions between vitamin A intake and the polymorphisms were found. In conclusion, no support of an involvement of vitamin A in CRC aetiology was found.
Collapse
Affiliation(s)
- Vibeke Andersen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, Institute of Regional Health Research-Center Sønderjylland, Hospital of Southern Jutland, 6200 Aabenraa, Denmark.
- Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark.
- Institute of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark.
| | - Ulrich Halekoh
- Institute of Public Health, Unit of Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, 5000 Odense, Denmark.
| | - Torsten Bohn
- Luxembourg Institute of Health, Department of Population Health, 1445 Strassen, Luxembourg.
| | - Anne Tjønneland
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Ulla Vogel
- National Research Centre for the Working Environment, 2100 Copenhagen, Denmark.
| | - Tine Iskov Kopp
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.
- The Danish Multiple Sclerosis Registry, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
| |
Collapse
|
134
|
Network Analysis of the Potential Role of DNA Methylation in the Relationship between Plasma Carotenoids and Lipid Profile. Nutrients 2019; 11:nu11061265. [PMID: 31167428 PMCID: PMC6628241 DOI: 10.3390/nu11061265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Variability in plasma carotenoids may be attributable to several factors including genetic variants and lipid profile. Until now, the impact of DNA methylation on this variability has not been widely studied. Weighted gene correlation network analysis (WGCNA) is a systems biology method used for finding gene clusters (modules) with highly correlated methylation levels and for relating them to phenotypic traits. The objective of the present study was to examine the role of DNA methylation in the relationship between plasma total carotenoid concentrations and lipid profile using WGCNA in 48 healthy subjects. Genome-wide DNA methylation levels of 20,687 out of 472,245 CpG sites in blood leukocytes were associated with total carotenoid concentrations. Using WGCNA, nine co-methylation modules were identified. A total of 2734 hub genes (17 unique top hub genes) were potentially related to lipid profile. This study provides evidence for the potential implications of gene co-methylation in the relationship between plasma carotenoids and lipid profile. Further studies and validation of the hub genes are needed.
Collapse
|
135
|
Jalali-Jivan M, Abbasi S, Scanlon MG. Microemulsion as nanoreactor for lutein extraction: Optimization for ultrasound pretreatment. J Food Biochem 2019; 43:e12929. [PMID: 31368559 DOI: 10.1111/jfbc.12929] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/06/2019] [Accepted: 05/12/2019] [Indexed: 12/19/2022]
Abstract
In the present study, the capability of microemulsion technique, as a novel technique for synchronous extraction and solubilization of lipophilic compounds, on lutein extraction from marigold petals was investigated. Under the optimized sonication (amplitude 100%, 120 s, 25°C), the extraction efficiency increased (85%) using SDS:ethanol (1:2)-based ME. Moreover, sonication led to smaller droplets (12-163 nm) with favorable thermodynamic stability. In addition, the developed MEs showed higher thermal and especially UV stability in comparison to organic solvent extracts which were fainted with first-order kinetics. It was also found that co-surfactant could be eliminated from formulation on the expense of the optimized sonication, was valuable output form industrial point of view. These findings revealed the high potential of ultrasound technique on the extraction and solubilization of lutein by ME technique which can be directly utilized in lutein-enriched functional foods and beverages. PRACTICAL APPLICATIONS: From applicability point of view, the solvent extracted compounds cannot be easily dissolved in food or pharmaceutical systems that are mostly hydrophilic. Therefore, microemulsions (MEs), as green and environmentally friendly food-grade systems, due to their potential capability for simultaneous extraction and solubilization of carotenoids are of great interest. Therefore, the present study confirmed the practical ability of MEs in lutein extraction and protection. All in all, the developed lutein MEs with high lutein extraction capacity and superior lutein chemical stability against thermal treatment and especially UV radiation is an original finding which allows design of new functional foods and could be potentially useful for enriching foods, pharmaceuticals, nutraceuticals, and supplement formulation.
Collapse
Affiliation(s)
- Mehdi Jalali-Jivan
- Food Colloids and Rheology Lab., Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Soleiman Abbasi
- Food Colloids and Rheology Lab., Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Martin G Scanlon
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
136
|
Meléndez-Martínez AJ, Stinco CM, Mapelli-Brahm P. Skin Carotenoids in Public Health and Nutricosmetics: The Emerging Roles and Applications of the UV Radiation-Absorbing Colourless Carotenoids Phytoene and Phytofluene. Nutrients 2019; 11:nu11051093. [PMID: 31100970 PMCID: PMC6566388 DOI: 10.3390/nu11051093] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/01/2023] Open
Abstract
In this work, the importance of dietary carotenoids in skin health and appearance is comprehensively reviewed and discussed. References are made to their applications in health-promoting and nutricosmetic products and the important public health implications that can be derived. Attention is focused on the colourless UV radiation (UVR)-absorbing dietary carotenoids phytoene and phytofluene, which are attracting increased interest in food science and technology, nutrition, health and cosmetics. These compounds are major dietary carotenoids, readily bioavailable, and have been shown to be involved in several health-promoting actions, as pinpointed in recent reviews. The growing evidence that these unique UVR-absorbing carotenoids with distinctive structures, properties (light absorption, susceptibility to oxidation, rigidity, tendency to aggregation, or even fluorescence, in the case of phytofluene) and activities can be beneficial in these contexts is highlighted. Additionally, the recommendation that the levels of these carotenoids are considered in properly assessing skin carotenoid status is made.
Collapse
Affiliation(s)
- Antonio J Meléndez-Martínez
- Food Colour & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012 Seville, Spain.
| | - Carla M Stinco
- Food Colour & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012 Seville, Spain.
| | - Paula Mapelli-Brahm
- Food Colour & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
137
|
Tremblay BL, Guénard F, Lamarche B, Pérusse L, Vohl MC. Weighted gene co-expression network analysis to explain the relationship between plasma total carotenoids and lipid profile. GENES AND NUTRITION 2019; 14:16. [PMID: 31086608 PMCID: PMC6505263 DOI: 10.1186/s12263-019-0639-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/15/2019] [Indexed: 12/27/2022]
Abstract
Background Variability in circulating carotenoids may be attributable to several factors including, among others, genetic variants and lipid profile. However, relatively few studies have considered the impact of gene expression in the inter-individual variability in circulating carotenoids. Most studies considered expression of genes individually and ignored their high degree of interconnection. Weighted gene co-expression network analysis (WGCNA) is a systems biology method used for finding gene clusters with highly correlated expression levels and for relating them to phenotypic traits. The objective of the present observational study is to examine the relationship between plasma total carotenoid concentrations and lipid profile using WGCNA. Results Whole blood expression levels of 533 probes were associated with plasma total carotenoids. Among the four WGCNA distinct modules identified, turquoise, blue, and brown modules correlated with plasma high-density lipoprotein cholesterol (HDL-C) and total cholesterol. Probes showing a strong association with HDL-C and total cholesterol were also the most important elements of the brown and blue modules. A total of four and 29 hub genes associated with total carotenoids were potentially related to HDL-C and total cholesterol, respectively. Conclusions Expression levels of 533 probes were associated with plasma total carotenoid concentrations. Using WGCNA, four modules and several hub genes related to lipid and carotenoid metabolism were identified. This integrative analysis provides evidence for the potential role of gene co-expression in the relationship between carotenoids and lipid concentrations. Further studies and validation of the hub genes are needed. Electronic supplementary material The online version of this article (10.1186/s12263-019-0639-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bénédicte L Tremblay
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| | - Frédéric Guénard
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| | - Benoît Lamarche
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| | - Louis Pérusse
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,3Department of Kinesiology, Laval University, 2300 rue de la Terrasse, Quebec City, QC G1V 0A6 Canada
| | - Marie-Claude Vohl
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| |
Collapse
|
138
|
Iddir M, Degerli C, Dingeo G, Desmarchelier C, Schleeh T, Borel P, Larondelle Y, Bohn T. Whey protein isolate modulates beta-carotene bioaccessibility depending on gastro-intestinal digestion conditions. Food Chem 2019; 291:157-166. [PMID: 31006454 DOI: 10.1016/j.foodchem.2019.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 12/25/2022]
Abstract
Carotenoids are lipophilic phytochemicals; their intake has been associated with reduced chronic diseases. However, their absorption depends on emulsification during digestion and incorporation into mixed micelles, requiring digestive enzymes, gastric peristalsis, bile, and dietary lipids. In this study, we investigated whether whey-protein-isolate (WPI), a commonly consumed protein source, can modulate β-carotene bioaccessibility in vitro, especially under incomplete digestive conditions, i.e. under low digestive enzyme concentrations. Thus, amounts of pepsin, pancreatin, bile, co-digested lipids and kinetic energy and gastric digestion time were modified, and WPI at concentrations equivalent to 0/25/50% of the protein recommended dietary allowance (approx. 60 g/d) were added to β-carotene dissolved in oil. WPI enhanced bioaccessibility by up to 20% (p < 0.001), especially under higher simulated peristalsis or reduced amount of dietary lipids. Conversely, they impaired bioaccessibility to one third (p < 0.001) under incomplete digestive conditions. WPI modulated β-carotene bioaccessibility depending on digestive conditions.
Collapse
Affiliation(s)
- Mohammed Iddir
- Luxembourg Institute of Health, Department of Population Health, Strassen, Luxembourg; Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Celal Degerli
- Luxembourg Institute of Health, Department of Population Health, Strassen, Luxembourg; Ege University, Engineering Faculty, Food Engineering Department, Izmir, Turkey
| | - Giulia Dingeo
- Luxembourg Institute of Health, Department of Population Health, Strassen, Luxembourg
| | | | - Thomas Schleeh
- Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Patrick Borel
- C2VN, INRA, INSERM, Aix-Marseille Univ, Marseille, France
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Torsten Bohn
- Luxembourg Institute of Health, Department of Population Health, Strassen, Luxembourg.
| |
Collapse
|
139
|
McLean S, Davies NW, Nichols DS. Scent Chemicals of the Tail Gland of the Red Fox,Vulpes vulpes. Chem Senses 2019; 44:215-224. [DOI: 10.1093/chemse/bjz009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Stuart McLean
- Division of Pharmacy, School of Medicine, University of Tasmania, Hobart, Australia
| | - Noel W Davies
- Central Science Laboratory, University of Tasmania, Hobart, Australia
| | - David S Nichols
- Central Science Laboratory, University of Tasmania, Hobart, Australia
| |
Collapse
|
140
|
Pilleron S, Weber D, Pèrés K, Colpo M, Gomez-Cabrero D, Stuetz W, Dartigues JF, Ferrucci L, Bandinelli S, Garcia-Garcia FJ, Grune T, Féart C. Patterns of circulating fat-soluble vitamins and carotenoids and risk of frailty in four European cohorts of older adults. Eur J Nutr 2019; 58:379-389. [PMID: 29380043 PMCID: PMC9933998 DOI: 10.1007/s00394-017-1602-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE To investigate the cross-sectional and prospective associations between patterns of serum fat-soluble micronutrients and frailty in four European cohorts of older adults 65 years of age and older. METHODS Participants from the Three-City (Bordeaux, France), AMI (Gironde, France), TSHA (Toledo, Spain) and InCHIANTI (Tuscany, Italy) cohorts with available data on serum α-carotene, β-carotene, lycopene, cryptoxanthin, lutein + zeaxanthin, retinol, α-tocopherol, γ-tocopherol and 25-hydroxyvitamin D3 (25(OH)D) were included. A principal component (PC) analysis was used to derive micronutrient patterns. Frailty was defined using Fried's criteria. Multivariate logistic regression models adjusted for socio-demographic and health-related covariates were performed to assess the association between micronutrient patterns and prevalent frailty in 1324 participants, and the risk of frailty in 915 initially non-frail participants. RESULTS Three different patterns were identified: the first pattern was characterized by higher serum carotenoids and α-tocopherol levels; the second was characterized by high loadings for serum vitamins A and E levels and low loadings for carotenes level; the third one had the highest loading for serum 25(OH)D and cryptoxanthin level and the lowest loading for vitamin A and E. A significant cross-sectional association was only observed between the seconnd PC and prevalent frailty (p = 0.02). Compared to the highest quartile, participants in the lowest quartile-i.e., high carotenes and low vitamins E and A levels-had higher odds of frailty (Odds ratio = 2.2; 95% confidence interval 1.3-3.8). No association with the risk of frailty was observed. CONCLUSIONS These findings suggest that some specific micronutrient patterns are markers but not predictors of frailty in these European cohorts of older adults.
Collapse
Affiliation(s)
- Sophie Pilleron
- Inserm, Bordeaux Population Health Research Center, UMR 1219, University Bordeaux, 33000, Bordeaux, France.
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany,NutriAct-Competence Cluster Nutrition Research, Berlin-Potsdam, Nuthetal, Germany
| | - Karine Pèrés
- Inserm, Bordeaux Population Health Research Center, UMR 1219, University Bordeaux, 33000 Bordeaux, France
| | - Marco Colpo
- Department of Statistics, University of Florence, Florence, Italy
| | | | - Wolfgang Stuetz
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany
| | - Jean-François Dartigues
- Inserm, Bordeaux Population Health Research Center, UMR 1219, University Bordeaux, 33000 Bordeaux, France
| | | | | | | | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany,NutriAct-Competence Cluster Nutrition Research, Berlin-Potsdam, Nuthetal, Germany,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany,German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Catherine Féart
- Inserm, Bordeaux Population Health Research Center, UMR 1219, University Bordeaux, 33000, Bordeaux, France.
| | | |
Collapse
|
141
|
Baenas N, Belović M, Ilic N, Moreno D, García-Viguera C. Industrial use of pepper (Capsicum annum L.) derived products: Technological benefits and biological advantages. Food Chem 2019; 274:872-885. [DOI: 10.1016/j.foodchem.2018.09.047] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 01/15/2023]
|
142
|
Bohn T, Desmarchelier C, El SN, Keijer J, van Schothorst E, Rühl R, Borel P. β-Carotene in the human body: metabolic bioactivation pathways - from digestion to tissue distribution and excretion. Proc Nutr Soc 2019; 78:68-87. [PMID: 30747092 DOI: 10.1017/s0029665118002641] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
β-Carotene intake and tissue/blood concentrations have been associated with reduced incidence of several chronic diseases. Further bioactive carotenoid-metabolites can modulate the expression of specific genes mainly via the nuclear hormone receptors: retinoic acid receptor- and retinoid X receptor-mediated signalling. To better understand the metabolic conversion of β-carotene, inter-individual differences regarding β-carotene bioavailability and bioactivity are key steps that determine its further metabolism and bioactivation and mediated signalling. Major carotenoid metabolites, the retinoids, can be stored as esters or further oxidised and excreted via phase 2 metabolism pathways. In this review, we aim to highlight the major critical control points that determine the fate of β-carotene in the human body, with a special emphasis on β-carotene oxygenase 1. The hypothesis that higher dietary β-carotene intake and serum level results in higher β-carotene-mediated signalling is partly questioned. Alternative autoregulatory mechanisms in β-carotene / retinoid-mediated signalling are highlighted to better predict and optimise nutritional strategies involving β-carotene-related health beneficial mediated effects.
Collapse
Affiliation(s)
- Torsten Bohn
- Luxembourg Institute of Health, rue 1 A-B Thomas Edison, L-1445 Strassen, Luxembourg
| | | | - Sedef N El
- Engineering Faculty, Food Engineering Department, Ege University, Izmir, Turkey
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | | | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Patrick Borel
- C2VN, Aix-Marseille Univ., INRA, INSERM, Marseille, France
| |
Collapse
|
143
|
Metabolomics and Microbiomes as Potential Tools to Evaluate the Effects of the Mediterranean Diet. Nutrients 2019; 11:nu11010207. [PMID: 30669673 PMCID: PMC6356665 DOI: 10.3390/nu11010207] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
The approach to studying diet–health relationships has progressively shifted from individual dietary components to overall dietary patterns that affect the interaction and balance of low-molecular-weight metabolites (metabolome) and host-enteric microbial ecology (microbiome). Even though the Mediterranean diet (MedDiet) has been recognized as a powerful strategy to improve health, the accurate assessment of exposure to the MedDiet has been a major challenge in epidemiological and clinical studies. Interestingly, while the effects of individual dietary components on the metabolome have been described, studies investigating metabolomic profiles in response to overall dietary patterns (including the MedDiet), although limited, have been gaining attention. Similarly, the beneficial effects of the MedDiet on cardiometabolic outcomes may be mediated through gut microbial changes. Accumulating evidence linking food ingestion and enteric microbiome alterations merits the evaluation of the microbiome-mediated effects of the MedDiet on metabolic pathways implicated in disease. In this narrative review, we aimed to summarize the current evidence from observational and clinical trials involving the MedDiet by (1) assessing changes in the metabolome and microbiome for the measurement of diet pattern adherence and (2) assessing health outcomes related to the MedDiet through alterations to human metabolomics and/or the microbiome.
Collapse
|
144
|
Mayer C, Brachhold K. Molecular Nutrition-From Gut Microbiota to Metabolomics and Inter-Individual Nutrition. Mol Nutr Food Res 2019; 63:e1970005. [PMID: 30664336 DOI: 10.1002/mnfr.201970005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
145
|
Zielinska MA, Hamulka J, Wesolowska A. Carotenoid Content in Breastmilk in the 3rd and 6th Month of Lactation and Its Associations with Maternal Dietary Intake and Anthropometric Characteristics. Nutrients 2019; 11:E193. [PMID: 30669320 PMCID: PMC6356523 DOI: 10.3390/nu11010193] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/18/2022] Open
Abstract
Carotenoids are diet-dependent milk components that are important for the visual and cognitive development of an infant. This study determined β-carotene, lycopene and lutein + zeaxanthin in breastmilk and its associations with dietary intake from healthy Polish mothers in the first six months of lactation. Concentrations of carotenoids in breastmilk were measured by HPLC (high-performance liquid chromatography) (first, third, sixth month of lactation) and dietary intake was assessed based on a three-day dietary record (third and sixth month of lactation). The average age of participants (n = 53) was 31.4 ± 3.8 years. The breastmilk concentrations of carotenoids were not changed over the progress of lactation. Lycopene was a carotenoid with the highest content in breastmilk (first month 112.2 (95% CI 106.1⁻118.3)-sixth month 110.1 (103.9⁻116.3) nmol/L) and maternal diet (third month 7897.3 (5465.2⁻10329.5) and sixth month 7255.8 (5037.5⁻9474.1) µg/day). There was a positive correlation between carotenoids in breastmilk and dietary intake (lycopene r = 0.374, r = 0.338; lutein + zeaxanthin r = 0.711, r = 0.726, 3rd and 6th month, respectively) and an inverse correlation with maternal BMI in the third month of lactation (β-carotene: r = -0.248, lycopene: r = -0.286, lutein + zeaxanthin: r = -0.355). Adjusted multivariate regression models confirmed an association between lutein + zeaxanthin intake and its concentration in breastmilk (third month: β = 0.730 (0.516⁻0.943); 6th: β = 0.644 (0.448⁻0.840)). Due to the positive associations between dietary intake and breastmilk concentrations, breastfeeding mothers should have a diet that is abundant in carotenoids.
Collapse
Affiliation(s)
- Monika A Zielinska
- Department of Human Nutrition, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland.
| | - Jadwiga Hamulka
- Department of Human Nutrition, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland.
| | - Aleksandra Wesolowska
- Laboratory of Human Milk and Lactation Research at Regional Human Milk Bank in Holy Family Hospital, Department of Neonatology, Faculty of Health Sciences, Medical University of Warsaw, 63A Zwirki i Wigury St., 02-091 Warsaw, Poland.
| |
Collapse
|
146
|
Curcio CA. Antecedents of Soft Drusen, the Specific Deposits of Age-Related Macular Degeneration, in the Biology of Human Macula. Invest Ophthalmol Vis Sci 2018; 59:AMD182-AMD194. [PMID: 30357337 PMCID: PMC6733529 DOI: 10.1167/iovs.18-24883] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AMD pathobiology was irreversibly changed by the recent discovery of extracellular cholesterol-containing deposits in the subretinal space, between the photoreceptors and retinal pigment epithelium (RPE), called subretinal drusenoid deposits (SDDs). SDDs strikingly mirror the topography of rod photoreceptors in human macula, raising the question of whether an equivalent process results in a deposition related to foveal cones. Herein we propose that AMD's pathognomonic lesion-soft drusen and basal linear deposit (BLinD, same material, diffusely distributed)-is the leading candidate. Epidemiologic, clinical, and histologic data suggest that these deposits are most abundant in the central macula, under the fovea. Strong evidence presented in a companion article supports the idea that the dominant ultrastructural component is large apolipoprotein B,E-containing lipoproteins, constitutively secreted by RPE. Lipoprotein fatty acids are dominated by linoleate (implicating diet) rather than docosahexaenoate (implicating photoreceptors); we seek within the retina cellular relationships and dietary drivers to explain soft druse topography. The delivery of xanthophyll pigments to highly evolved and numerous Müller cells in the human fovea, through RPE, is one strong candidate, because Müller cells are the main reservoir of these pigments, which replenish from diet. We propose that the evolution of neuroglial relations and xanthophyll delivery that underlie exquisite human foveal vision came with a price, that is, soft drusen and sequela, long after our reproductive years.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
147
|
Bohn T, Planchon S, Leclercq CC, Renaut J, Mihaly J, Beke G, Rühl R. Proteomic responses of carotenoid and retinol administration to Mongolian gerbils. Food Funct 2018; 9:3835-3844. [PMID: 29951678 DOI: 10.1039/c8fo00278a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Various health benefits of carotenoids have been described. However, while human observational studies generally suggest positive health effects, supplementation with relatively high doses of individual carotenoids (supplements) have partly produced adverse effects. In the present study, we investigated the effect of several carotenoids on the proteomic response of male Mongolian gerbils (aged 6 weeks). Five groups of gerbils (n = 6 per group) received either retinol (vitamin A/53 mg per kg bw), all-trans β-carotene (pro-vitamin A/100 mg kg-1), the non-pro vitamin A carotenoid lutein (100 mg kg-1), the acyclic carotenoid lycopene (100 mg kg-1) or vehicle (Cremophor EL), via oral single gavage. Gerbils were 12 h post-prandially sacrificed and blood plasma, liver, and white adipose tissue were collected. For liver and adipose tissue, a 2D-DIGE (difference gel electrophoresis) approach was conducted; for plasma, proteomic analyses were achieved by liquid chromatography-mass spectrometry. Compared to controls (vehicle), various proteins were showing significant abundance variations in plasma (66), liver (29) and adipose tissue (19), especially regarding structure (22), protein metabolism (15) and immune system/inflammation (19) functions, while proteins related to antioxidant effects were generally less abundant, suggesting no in vivo relevance. Surprisingly, a large overlap in protein regulation was found between lycopene and retinol exposure, while other carotenoids, including all-trans β-carotene, did not show this overlap. Mainly retinoid acid receptor co-regulated proteins may mechanistically explain this overlapping regulation. This overlapping regulation may be related to common nuclear hormone receptor mediated signalling, though further studies using synthetic ligands of retinoid receptors targeting protein regulation are needed for confirmation.
Collapse
Affiliation(s)
- Torsten Bohn
- Luxembourg Institute of Health, Population Health Department, 1 A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg.
| | | | | | | | | | | | | |
Collapse
|
148
|
Bayram B, González-Sarrías A, Istas G, Garcia-Aloy M, Morand C, Tuohy K, García-Villalba R, Mena P. Breakthroughs in the Health Effects of Plant Food Bioactives: A Perspective on Microbiomics, Nutri(epi)genomics, and Metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10686-10692. [PMID: 30208704 DOI: 10.1021/acs.jafc.8b03385] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant bioactive compounds consumed as part of our diet are able to influence human health. They include secondary metabolites like (poly)phenols, carotenoids, glucosinolates, alkaloids, and terpenes. Although much knowledge has been gained, there is still need for studies unravelling the effects of plant bioactives on cardiometabolic health at the individual level, using cutting-edge high-resolution and data-rich holistic approaches. The aim of this Perspective is to review the prospects of microbiomics, nutrigenomics and nutriepigenomics, and metabolomics to assess the response to plant bioactive consumption while considering interindividual variability. Insights for future research in the field toward personalized nutrition are discussed.
Collapse
Affiliation(s)
- Banu Bayram
- Department of Nutrition and Dietetics , University of Health Sciences , Tibbiye Cad. No: 38 , 34668 Uskudar, Istanbul , Turkey
| | - Antonio González-Sarrías
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC , Campus de Espinardo , Murcia E-30100, Spain
| | - Geoffrey Istas
- Department of Nutritional Sciences, Faculty of Life Sciences and Medicine , King's College London , London WC2R 2LS , U.K
| | - Mar Garcia-Aloy
- Biomarkers & Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciences , University of Barcelona , Barcelona 08007 , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES) , Instituto de Salud Carlos III , Barcelona 28029 , Spain
| | - Christine Morand
- Université Clermont Auvergne, INRA, UNH, CRNH Auvergne , F-63000 Clermont-Ferrand , France
| | - Kieran Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre , Fondazione Edmund Mach , Via E. Mach, 1 , San Michele all'Adige, 38010 Trento , Italy
| | - Rocío García-Villalba
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC , Campus de Espinardo , Murcia E-30100, Spain
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drugs , University of Parma , Via Volturno 39 , 43125 Parma , Italy
| |
Collapse
|
149
|
Antioxidant and pro-oxidant activities of carotenoids and their oxidation products. Food Chem Toxicol 2018; 120:681-699. [DOI: 10.1016/j.fct.2018.07.060] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/28/2018] [Accepted: 07/31/2018] [Indexed: 11/20/2022]
|
150
|
Lucas R, Mihály J, Lowe GM, Graham DL, Szklenar M, Szegedi A, Töröcsik D, Rühl R. Reduced Carotenoid and Retinoid Concentrations and Altered Lycopene Isomer Ratio in Plasma of Atopic Dermatitis Patients. Nutrients 2018; 10:E1390. [PMID: 30275368 PMCID: PMC6213761 DOI: 10.3390/nu10101390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/11/2018] [Accepted: 09/22/2018] [Indexed: 01/04/2023] Open
Abstract
Carotenoids and retinoids are known to alter the allergic response with important physiological roles in the skin and the immune system. In the human organism various carotenoids are present, some of which are retinoid precursors. The bioactive derivatives of these retinoids are the retinoic acids, which can potently activate nuclear hormone receptors such as the retinoic acid receptor and the retinoid X receptor. In this study, we aimed to assess how plasma carotenoid and retinoid concentrations along with the ratio of their isomers are altered in atopic dermatitis (AD) patients (n = 20) compared to healthy volunteers (HV, n = 20). The study indicated that plasma levels of the carotenoids lutein (HV 198 ± 14 ng/mL, AD 158 ± 12 ng/mL, p = 0.02; all values in mean ± SEM), zeaxanthin (HV 349 ± 30 ng/mL, AD 236 ± 18 ng/mL, p ≤ 0.01), as well as the retinoids retinol (HV 216 ± 20 ng/mL, AD 167 ± 17 ng/mL, p = 0.04) and all-trans-retinoic acid (HV 1.1 ± 0.1 ng/mL, AD 0.7 ± 0.1 ng/mL, p = 0.04) were significantly lower in the AD-patients, while lycopene isomers, α-carotene, and β-carotene levels were comparable to that determined in the healthy volunteers. In addition, the ratios of 13-cis- vs. all-trans-lycopene (HV 0.31 ± 0.01, AD 0.45 ± 0.07, p = 0.03) as well as 13-cis- vs. all-trans-retinoic acid (HV 1.4 ± 0.2, AD 2.6 ± 0.6, p = 0.03) were increased in the plasma of AD-patients indicating an AD-specific 13-cis-isomerisation. A positive correlation with SCORAD was calculated with 13-cis- vs. all-trans-lycopene ratio (r = 0.40, p = 0.01), while a negative correlation was observed with zeaxanthin plasma levels (r = -0.42, p = 0.01). Based on our results, we conclude that in the plasma of AD-patients various carotenoids and retinoids are present at lower concentrations, while the ratio of selected lycopene isomers also differed in the AD-patient group. An increase in plasma isomers of both lycopene and retinoic acid may cause an altered activation of nuclear hormone receptor signaling pathways and thus may be partly responsible for the AD-phenotype.
Collapse
Affiliation(s)
- Renata Lucas
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Johanna Mihály
- Department of Biochemistry and Molecular Biology, University of Debrecen, 4032 Debrecen, Hungary.
| | - Gordon M Lowe
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK.
| | - Daniel L Graham
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK.
- Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK.
| | | | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Daniel Töröcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Ralph Rühl
- Department of Biochemistry and Molecular Biology, University of Debrecen, 4032 Debrecen, Hungary.
- Paprika Bioanalytics BT, 4002 Debrecen, Hungary.
| |
Collapse
|