101
|
Sampath C, Wilus D, Tabatabai M, Freeman ML, Gangula PR. Mechanistic role of antioxidants in rescuing delayed gastric emptying in high fat diet induced diabetic female mice. Biomed Pharmacother 2021; 137:111370. [PMID: 33761597 PMCID: PMC7994545 DOI: 10.1016/j.biopha.2021.111370] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/29/2022] Open
Abstract
Diabetic gastroparesis (DG) exhibits delayed gastric emptying (GE) due to impaired gastric non-adrenergic, non-cholinergic (NANC) relaxation. These defects are due to loss or reduction of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) that causes reduced expression and/or dimerization of neuronal nitric oxide synthase alpha (nNOSα) gene expression and function. We investigated the effect of potent Nrf2 activators (cinnamaldehyde [CNM] & curcumin [CUR]) on GE in obesity-induced diabetic female mice. We fed adult female homozygous Nfe2l2-/- (Nrf2 KO) and wild-type (WT) female mice with either a high-fat diet (HFD) or a normal diet (ND) for a period of 16 weeks. Groups of HFD mice were fed with CUR or CNM either at 6th or 10th week respectively. Our results demonstrate that supplementation of CNM or CUR restored impaired nitrergic relaxation and attenuated delayed GE in HFD fed mice. Supplementation of CNM or CUR normalized altered gastric antrum protein expression of (1) p-ERK/p-JNK/MAPK/p-GSK-3β, (2) BH4 (Cofactor of nNOS) biosynthesis enzyme GCH-1 and the GSH/GSSG ratio, (3) nNOSα protein & dimerization and soluble guanylate cyclase (sGC), (4) AhR and ER expression, (5) inflammatory cytokines (TNF α, IL-1β, IL-6), (6)TLR-4, as well as (7) reduced oxidative stress markers in WT but not in Nrf2 KO obesity-induced chronic diabetic female mice. Immunoprecipitation experiments revealed an interaction between nNOS and Nrf2 proteins. Our results conclude that Nrf2 activation restores nitrergic-mediated gastric motility and GE by normalizing inflammation and oxidative stress induced by obesity-induced chronic diabetes.
Collapse
Affiliation(s)
- Chethan Sampath
- Department of ODS & Research, School of Dentistry, Meharry Medical College, Nashville, TN, USA
| | - Derek Wilus
- Biostatistics, School of Graduate Studies & Research, Meharry Medical College, Nashville, TN, USA
| | - Mohammad Tabatabai
- Biostatistics, School of Graduate Studies & Research, Meharry Medical College, Nashville, TN, USA
| | - Michael L Freeman
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pandu R Gangula
- Department of ODS & Research, School of Dentistry, Meharry Medical College, Nashville, TN, USA.
| |
Collapse
|
102
|
Wang M, Wei J, Ji T, Zang K. miRNA-770-5p expression is upregulated in patients with type 2 diabetes and miRNA-770-5p knockdown protects pancreatic β-cell function via targeting BAG5 expression. Exp Ther Med 2021; 22:664. [PMID: 33986829 PMCID: PMC8112148 DOI: 10.3892/etm.2021.10096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/26/2020] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miR)-770-5p expression is increased in patients with type 2 diabetes mellitus (T2DM) compared with healthy controls; however, the roles and molecular mechanism underlying miR-770-5p in T2DM are not completely understood. In the present study, the reverse transcription-quantitative PCR (RT-qPCR) results indicated that miR-770-5p expression was significantly increased and Bcl-2 associated athanogene 5 (BAG5) expression was significantly decreased in the serum of patients with T2DM compared with healthy volunteers. TargetScan and a dual luciferase reporter gene system were used to predict and verify BAG5 as a target gene of miR-770-5p. Additionally, the RT-qPCR results demonstrated that miR-770-5p expression was significantly increased and BAG5 expression was significantly decreased in uric acid (UA)-treated Min6 cells compared with control cells. Min6 cells were transfected with miR-770-5p inhibitor and BAG5-small interfering (si)RNA to alter expression levels. The results indicated that miR-770-5p negatively regulated BAG5. The effect of miR-770-5p knockdown on UA-induced pancreatic β-cell damage and dysfunction was subsequently assessed. Min6 cells were transfected with miR-770-5p inhibitor or miR-770-5p inhibitor + BAG5-siRNA for 48 h, followed by treatment with or without 5 mg/dl UA for 24 h. Cell viability, apoptosis, apoptosis-related factor expression levels and insulin secretion were assessed. The results demonstrated that UA treatment significantly reduced cell viability, increased cell apoptosis and reduced insulin secretion in Min6 cells compared with the control group. miR-770-5p inhibitor significantly attenuated UA-induced injury and dysfunction of Min6 cells, whereas BAG5 knockdown abolished the protective effects of miR-770-5p inhibitor on UA-damaged Min6 cells. In conclusion, miR-770-5p was highly expressed in the serum of patients with T2DM compared with healthy volunteers. In UA-treated pancreatic β-cells, compared with the inhibitor control group, miR-770-5p knockdown regulated the expression of apoptosis-related genes, increased cell viability, inhibited cell apoptosis and increased insulin secretion by targeting BAG5. Therefore, the present study suggested that miR-770-5p inhibitor may serve a protective role in T2DM.
Collapse
Affiliation(s)
- Min Wang
- Department of Critical Care Medicine, The First Affiliated Huai'an People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Jilou Wei
- Department of Critical Care Medicine, The First Affiliated Huai'an People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Ting Ji
- Department of Critical Care Medicine, The First Affiliated Huai'an People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Kui Zang
- Department of Critical Care Medicine, The First Affiliated Huai'an People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
103
|
Vig S, Lambooij JM, Zaldumbide A, Guigas B. Endoplasmic Reticulum-Mitochondria Crosstalk and Beta-Cell Destruction in Type 1 Diabetes. Front Immunol 2021; 12:669492. [PMID: 33936111 PMCID: PMC8085402 DOI: 10.3389/fimmu.2021.669492] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Beta-cell destruction in type 1 diabetes (T1D) results from the combined effect of inflammation and recurrent autoimmunity. In response to inflammatory signals, beta-cells engage adaptive mechanisms where the endoplasmic reticulum (ER) and mitochondria act in concert to restore cellular homeostasis. In the recent years it has become clear that this adaptive phase may trigger the development of autoimmunity by the generation of autoantigens recognized by autoreactive CD8 T cells. The participation of the ER stress and the unfolded protein response to the increased visibility of beta-cells to the immune system has been largely described. However, the role of the other cellular organelles, and in particular the mitochondria that are central mediator for beta-cell survival and function, remains poorly investigated. In this review we will dissect the crosstalk between the ER and mitochondria in the context of T1D, highlighting the key role played by this interaction in beta-cell dysfunctions and immune activation, especially through regulation of calcium homeostasis, oxidative stress and generation of mitochondrial-derived factors.
Collapse
Affiliation(s)
- Saurabh Vig
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Joost M. Lambooij
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
104
|
Krüger C, Waldeck-Weiermair M, Kaynert J, Pokrant T, Komaragiri Y, Otto O, Michel T, Elsner M. AQP8 is a crucial H 2O 2 transporter in insulin-producing RINm5F cells. Redox Biol 2021; 43:101962. [PMID: 33892285 PMCID: PMC8082690 DOI: 10.1016/j.redox.2021.101962] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 02/08/2023] Open
Abstract
Peroxiporins are distinct aquaporins (AQP) which, beside water, also facilitate the bidirectional transport of hydrogen peroxide (H2O2) across cellular membranes. H2O2 serves as the major reactive oxygen species that mediates essential cell signaling events. In pancreatic β-cells, H2O2 has been associated with the regulation of cell growth but in excess it leads to failure of insulin secretion, making it important for diabetes mellitus (DM) pathogenesis. In the present study, the role of aquaporin-8 (AQP8) as a peroxiporin was investigated in RINm5F cells. The role of AQP8 was studied in an insulin-producing cell model, on the basis of stable AQP8 overexpression (AQP8↑) and CRISPR/Cas9-mediated AQP8 knockdown (KD). A complete AQP8 knock-out was found to result in cell death, however we demonstrate that mild lentiviral re-expression through a Tet-On-regulated genetically modified AQP8 leads to cell survival, enabling functional characterization. Proliferation and insulin content were found to be increased in AQP8↑ cells underlining the importance of AQP8 in the regulation of H2O2 homeostasis in pancreatic β-cells. Colocalization analyses of V5-tagged AQP8 proteins based on confocal microscopic imaging revealed its membrane targeting to both the mitochondria and the plasma membrane, but not to the ER, the Golgi apparatus, insulin vesicles, or peroxisomes. By using the fluorescence H2O2 specific biosensor HyPer together with endogenous generation of H2O2 using d-amino acid oxidase, live cell imaging revealed enhanced H2O2 flux to the same subcellular regions in AQP8 overexpressing cells pointing to its importance in the development of type-1 DM. Moreover, the novel ultrasensitive H2O2 sensor HyPer7.2 clearly unveiled AQP8 as a H2O2 transporter in RINm5F cells. In summary, these studies establish that AQP8 is an important H2O2 pore in insulin-producing RINm5F cells involved in the transport of H2O2 through the mitochondria and cell membrane and may help to explain the H2O2 transport and toxicity in pancreatic β-cells. AQP8 KO is lethal for insulin-producing RINm5F cells. The peroxiporin AQP8 is localized in the plasma and mitochondrial membrane channeling H2O2 in RINm5F cells. Tet-On regulated low AQP8 re-expression and APQ8 overexpression are feasible models to study H2O2 transport in β-cells. Overexpression of AQP8 increases cell proliferation and cellular insulin content.
Collapse
Affiliation(s)
- Christina Krüger
- Institute of Clinical Biochemistry, Hannover Medical School, 30623, Hannover, Germany
| | - Markus Waldeck-Weiermair
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jonas Kaynert
- Institute of Clinical Biochemistry, Hannover Medical School, 30623, Hannover, Germany
| | - Thomas Pokrant
- Institute of Clinical Biochemistry, Hannover Medical School, 30623, Hannover, Germany
| | - Yesaswini Komaragiri
- Zentrum für Innovationskompetenz: Humorale Immunreaktion bei Kardiovaskulären Erkrankungen, Universität Greifswald, 17489, Greifswald, Germany; Deutsches Zentrum für Herz-Kreislauf-Forschung e. V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
| | - Oliver Otto
- Zentrum für Innovationskompetenz: Humorale Immunreaktion bei Kardiovaskulären Erkrankungen, Universität Greifswald, 17489, Greifswald, Germany; Deutsches Zentrum für Herz-Kreislauf-Forschung e. V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
| | - Thomas Michel
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthias Elsner
- Institute of Clinical Biochemistry, Hannover Medical School, 30623, Hannover, Germany.
| |
Collapse
|
105
|
Benáková Š, Holendová B, Plecitá-Hlavatá L. Redox Homeostasis in Pancreatic β-Cells: From Development to Failure. Antioxidants (Basel) 2021; 10:antiox10040526. [PMID: 33801681 PMCID: PMC8065646 DOI: 10.3390/antiox10040526] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Redox status is a key determinant in the fate of β-cell. These cells are not primarily detoxifying and thus do not possess extensive antioxidant defense machinery. However, they show a wide range of redox regulating proteins, such as peroxiredoxins, thioredoxins or thioredoxin reductases, etc., being functionally compartmentalized within the cells. They keep fragile redox homeostasis and serve as messengers and amplifiers of redox signaling. β-cells require proper redox signaling already in cell ontogenesis during the development of mature β-cells from their progenitors. We bring details about redox-regulated signaling pathways and transcription factors being essential for proper differentiation and maturation of functional β-cells and their proliferation and insulin expression/maturation. We briefly highlight the targets of redox signaling in the insulin secretory pathway and focus more on possible targets of extracellular redox signaling through secreted thioredoxin1 and thioredoxin reductase1. Tuned redox homeostasis can switch upon chronic pathological insults towards the dysfunction of β-cells and to glucose intolerance. These are characteristics of type 2 diabetes, which is often linked to chronic nutritional overload being nowadays a pandemic feature of lifestyle. Overcharged β-cell metabolism causes pressure on proteostasis in the endoplasmic reticulum, mainly due to increased demand on insulin synthesis, which establishes unfolded protein response and insulin misfolding along with excessive hydrogen peroxide production. This together with redox dysbalance in cytoplasm and mitochondria due to enhanced nutritional pressure impact β-cell redox homeostasis and establish prooxidative metabolism. This can further affect β-cell communication in pancreatic islets through gap junctions. In parallel, peripheral tissues losing insulin sensitivity and overall impairment of glucose tolerance and gut microbiota establish local proinflammatory signaling and later systemic metainflammation, i.e., low chronic inflammation prooxidative properties, which target β-cells leading to their dedifferentiation, dysfunction and eventually cell death.
Collapse
Affiliation(s)
- Štěpánka Benáková
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
- First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
- Department of Mitochondrial Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
- Correspondence: ; Tel.: +420-296-442-285
| |
Collapse
|
106
|
Brykczynska U, Geigges M, Wiedemann SJ, Dror E, Böni-Schnetzler M, Hess C, Donath MY, Paro R. Distinct Transcriptional Responses across Tissue-Resident Macrophages to Short-Term and Long-Term Metabolic Challenge. Cell Rep 2021; 30:1627-1643.e7. [PMID: 32023474 DOI: 10.1016/j.celrep.2020.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/06/2019] [Accepted: 12/31/2019] [Indexed: 01/16/2023] Open
Abstract
The innate immune system safeguards the organism from both pathogenic and environmental stressors. Also, physiologic levels of nutrients affect organismal and intra-cellular metabolism and challenge the immune system. In the long term, over-nutrition leads to low-grade systemic inflammation. Here, we investigate tissue-resident components of the innate immune system (macrophages) and their response to short- and long-term nutritional challenges. We analyze the transcriptomes of six tissue-resident macrophage populations upon acute feeding and identify adipose tissue macrophages and the IL-1 pathway as early sensors of metabolic changes. Furthermore, by comparing functional responses between macrophage subtypes, we propose a regulatory, anti-inflammatory role of heat shock proteins of the HSP70 family in response to long- and short-term metabolic challenges. Our data provide a resource for assessing the impact of nutrition and over-nutrition on the spectrum of macrophages across tissues with a potential for identification of systemic responses.
Collapse
Affiliation(s)
- Urszula Brykczynska
- Epigenomics Group, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Marco Geigges
- Epigenomics Group, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Sophia J Wiedemann
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Erez Dror
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marianne Böni-Schnetzler
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Renato Paro
- Epigenomics Group, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland; Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
107
|
Chatterjee Bhowmick D, Ahn M, Oh E, Veluthakal R, Thurmond DC. Conventional and Unconventional Mechanisms by which Exocytosis Proteins Oversee β-cell Function and Protection. Int J Mol Sci 2021; 22:1833. [PMID: 33673206 PMCID: PMC7918544 DOI: 10.3390/ijms22041833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes (T2D) is one of the prominent causes of morbidity and mortality in the United States and beyond, reaching global pandemic proportions. One hallmark of T2D is dysfunctional glucose-stimulated insulin secretion from the pancreatic β-cell. Insulin is secreted via the recruitment of insulin secretory granules to the plasma membrane, where the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and SNARE regulators work together to dock the secretory granules and release insulin into the circulation. SNARE proteins and their regulators include the Syntaxins, SNAPs, Sec1/Munc18, VAMPs, and double C2-domain proteins. Recent studies using genomics, proteomics, and biochemical approaches have linked deficiencies of exocytosis proteins with the onset and progression of T2D. Promising results are also emerging wherein restoration or enhancement of certain exocytosis proteins to β-cells improves whole-body glucose homeostasis, enhances β-cell function, and surprisingly, protection of β-cell mass. Intriguingly, overexpression and knockout studies have revealed novel functions of certain exocytosis proteins, like Syntaxin 4, suggesting that exocytosis proteins can impact a variety of pathways, including inflammatory signaling and aging. In this review, we present the conventional and unconventional functions of β-cell exocytosis proteins in normal physiology and T2D and describe how these insights might improve clinical care for T2D.
Collapse
Affiliation(s)
| | | | | | | | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (D.C.B.); (M.A.); (E.O.); (R.V.)
| |
Collapse
|
108
|
Fluorescence-based techniques for the detection of the oligomeric status of proteins: implication in amyloidogenic diseases. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:671-685. [PMID: 33564930 DOI: 10.1007/s00249-021-01505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/10/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
Intrinsically disordered proteins (IDPs) have captured attention in the last couple of decades due to their functional roles despite a lack of specific structure. Moreover, these proteins are found to be highly aggregation prone depending on the mutational and environmental changes to which they are subjected. The aggregation of such proteins either in the intracellular context or extracellular matrix is associated with several adverse pathophysiological conditions such as Alzheimer's, Parkinson's, and Huntington's diseases, Spinocerebellar ataxia, and Type-II diabetes. Interestingly, it has been noted that the smaller oligomers formed by IDPs are more toxic to cells than their larger aggregates. This necessitates the development of techniques that can detect the smaller oligomers formed by IDPs for diagnosis of such diseases during their early onset. Fluorescence-based spectroscopic and microscopic techniques are highly effective as compared to other techniques for the evaluation of protein oligomerization, organization, and dynamics. In this review, we discuss several fluorescence-based techniques including fluorescence/Förster resonance energy transfer (FRET), homo-FRET, fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), fluorescence lifetime imaging (FLIM), and photobleaching image correlation spectroscopy (pbICS) that are routinely used to identify protein oligomers in extracellular and intracellular matrices.
Collapse
|
109
|
Wang S, Shen T, Xi B, Shen Z, Zhang X. Vitamin D affects the neutrophil-to-lymphocyte ratio in patients with type 2 diabetes mellitus. J Diabetes Investig 2021; 12:254-265. [PMID: 32593190 PMCID: PMC7858138 DOI: 10.1111/jdi.13338] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
AIMS/INTRODUCTION Chronic inflammation is an underlying feature of type 2 diabetes mellitus. Hypovitaminosis D is associated with type 2 diabetes mellitus, but whether it contributes to chronic inflammation is unclear. We examined the effects of vitamin D on various immune markers to evaluate its contribution to systemic inflammation in type 2 diabetes mellitus. MATERIALS AND METHODS We retrospectively analyzed data from type 2 diabetes mellitus patients, people with prediabetes and control patients without diabetes (n = 9,746). Demographic and clinical variables were evaluated using descriptive statistics and generalized linear regression. A stratified analysis based on total serum vitamin D was also carried out. RESULTS Neutrophil count was a significant predictor of 1,5-anhydroglucitol and glycated hemoglobin (HbA1c) in patients with prediabetes (1,5-anhydroglucitol: β = -0.719, P < 0.001 and HbA1c: β = -0.006, P = 0.002) and patients with diabetes (1,5-anhydroglucitol: β = 0.207, P = 0.004 and HbA1c: β = -0.067, P = 0.010). Lymphocyte count was a significant predictor of HbA1c in patients without diabetes (β = 0.056, P < 0.001) and patients with prediabetes (β = 0.038, P < 0.001). The neutrophil-to-lymphocyte ratio (NLR) was a significant predictor of HbA1c in patients without diabetes (β = -0.001, P = 0.032). No immune markers differed significantly based on vitamin D level among patients without diabetes (P> 0.05 for all). Among patients with prediabetes, those who were vitamin D-deficient had the highest NLR (P = 0.040). Among patients with diabetes, those who were vitamin D-deficient had the highest neutrophil count (P = 0.001), lowest lymphocyte count (P = 0.016) and highest NLR (P < 0.001). CONCLUSIONS The NLR is strongly influenced by serum vitamin D level. Given the high prevalence of hypovitaminosis D and elevated NLR among chronic disease patients and the elderly, our results suggest that clinical interpretation of NLR as a predictive marker of type 2 diabetes mellitus-related inflammation should consider vitamin D level, age and pre-existing morbidity.
Collapse
Affiliation(s)
- Si‐Yang Wang
- Department of GeriatricsShanghai Xuhui Central HospitalShanghaiChina
| | - Ting‐Ting Shen
- Department of GeriatricsZhongshan‐Xuhui Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Bei‐Li Xi
- Department of GeriatricsShanghai Xuhui Central HospitalShanghaiChina
| | - Zhan Shen
- Department of GeriatricsShanghai Xuhui Central HospitalShanghaiChina
| | - Xian Zhang
- Department of GeriatricsShanghai Xuhui Central HospitalShanghaiChina
| |
Collapse
|
110
|
SÖZEN M, ÇETİNASLAN B, CANTÜRK Z, SELEK A, GEZER E, DEMİRHAN Y, CETIN Y. İnflamasyonla İlişkili Hemogram Parametreleri Diyabetes Mellitusun Bir Göstergesi Olabilir Mi? KOCAELI ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2021. [DOI: 10.30934/kusbed.757832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
111
|
Brunner JS, Vogel A, Lercher A, Caldera M, Korosec A, Pühringer M, Hofmann M, Hajto A, Kieler M, Garrido LQ, Kerndl M, Kuttke M, Mesteri I, Górna MW, Kulik M, Dominiak PM, Brandon AE, Estevez E, Egan CL, Gruber F, Schweiger M, Menche J, Bergthaler A, Weichhart T, Klavins K, Febbraio MA, Sharif O, Schabbauer G. The PI3K pathway preserves metabolic health through MARCO-dependent lipid uptake by adipose tissue macrophages. Nat Metab 2020; 2:1427-1442. [PMID: 33199895 DOI: 10.1038/s42255-020-00311-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022]
Abstract
Adipose tissue macrophages (ATMs) display tremendous heterogeneity depending on signals in their local microenvironment and contribute to the pathogenesis of obesity. The phosphoinositide 3-kinase (PI3K) signalling pathway, antagonized by the phosphatase and tensin homologue (PTEN), is important for metabolic responses to obesity. We hypothesized that fluctuations in macrophage-intrinsic PI3K activity via PTEN could alter the trajectory of metabolic disease by driving distinct ATM populations. Using mice harbouring macrophage-specific PTEN deletion or bone marrow chimeras carrying additional PTEN copies, we demonstrate that sustained PI3K activity in macrophages preserves metabolic health in obesity by preventing lipotoxicity. Myeloid PI3K signalling promotes a beneficial ATM population characterized by lipid uptake, catabolism and high expression of the scavenger macrophage receptor with collagenous structure (MARCO). Dual MARCO and myeloid PTEN deficiencies prevent the generation of lipid-buffering ATMs, reversing the beneficial actions of elevated myeloid PI3K activity in metabolic disease. Thus, macrophage-intrinsic PI3K signalling boosts metabolic health by driving ATM programmes associated with MARCO-dependent lipid uptake.
Collapse
Affiliation(s)
- Julia S Brunner
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Andrea Vogel
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Michael Caldera
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Max Perutz Laboratories, Vienna, Austria
| | - Ana Korosec
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Marlene Pühringer
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Melanie Hofmann
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Alexander Hajto
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Markus Kieler
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Lucia Quemada Garrido
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Martina Kerndl
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Mario Kuttke
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | | | - Maria W Górna
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Marta Kulik
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Paulina M Dominiak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Amanda E Brandon
- Insulin Action and Energy Metabolism Laboratory, Division of Diabetes & Metabolism, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Emma Estevez
- Cellular & Molecular Metabolism Laboratory, Division of Diabetes & Metabolism, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Casey L Egan
- Cellular & Molecular Metabolism Laboratory, Division of Diabetes & Metabolism, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Florian Gruber
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Max Perutz Laboratories, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Kristaps Klavins
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre, Riga Technical University, Riga, Latvia
| | - Mark A Febbraio
- Cellular & Molecular Metabolism Laboratory, Division of Diabetes & Metabolism, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Omar Sharif
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria.
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria.
| | - Gernot Schabbauer
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria.
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria.
| |
Collapse
|
112
|
Kloc M, Ghobrial RM, Lewicki S, Kubiak JZ. Macrophages in diabetes mellitus (DM) and COVID-19: do they trigger DM? J Diabetes Metab Disord 2020; 19:2045-2048. [PMID: 33102261 PMCID: PMC7568660 DOI: 10.1007/s40200-020-00665-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 08/28/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023]
Abstract
Diabetes mellitus (DM) augments the risk of hospitalization and mortality resulting from viral, bacterial, or fungal pathogen infection. This has been also true for the past SARS and MERS, and current SARS-CoV-2 coronavirus epidemics. Clinical data indicate that SARS-CoV-2 infection triggers a severe course of COVID-19 more frequently in diabetic than non-diabetic patients. Here we overview the cellular and molecular mechanisms associated with this phenomenon. We focus on alterations in the immune cells, especially monocytes and macrophages, involved in innate immune response and inflammatory processes, which differ in type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). We also describe the DM-related changes in the monocyte/macrophages functions, how they could lead to the severe outcome of SARS-CoV-2 infection, and importantly, if and how they could initiate DM in DM-susceptible patients.
Collapse
Affiliation(s)
- Małgorzata Kloc
- The Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030 USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX USA
- Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX USA
| | - Rafik M. Ghobrial
- The Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030 USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX USA
| | - Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
| | - Jacek Z. Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
- UnivRennes, UMR 6290, CNRS, Institute of Genetics and Development of Rennes, Cell Cycle Group, Faculty of Medicine, 2 Ave. du Prof. Leon Bernard, 35043 Rennes Cedex, France
| |
Collapse
|
113
|
Atanes P, Lee V, Huang GC, Persaud SJ. The role of the CCL25-CCR9 axis in beta-cell function: potential for therapeutic intervention in type 2 diabetes. Metabolism 2020; 113:154394. [PMID: 33058852 DOI: 10.1016/j.metabol.2020.154394] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/15/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Chemokines are known to play essential roles mediating immunity and inflammation in many physiological and pathophysiological processes, with reports linking their action to the development of obesity, insulin resistance and type 2 diabetes (T2D). Given our findings of highly upregulated mRNA expression of the chemokine receptor CCR9 in islets from obese human donors, we have determined the effects of CCR9 activation by CCL25 on islet function and viability. BASIC PROCEDURES RT-qPCR was used to measure expression of 384 GPCR mRNAs in human islets from organ donors with normal and elevated BMI. mRNA encoding CCR9, a receptor that was highly upregulated in islets from obese donors, was also quantified in islets from lean and high-fat diet (HFD) mice. The effects of CCR9 activation by exogenous CCL25 in human and mouse islets and its inhibition by the CCR9 antagonist vercirnon on insulin secretion, apoptosis and cAMP accumulation were examined using standard techniques. MAIN FINDINGS The qPCR analysis showed altered expression of several GPCRs in islets isolated from lean and obese donors. CCR9 displayed over 90-fold upregulation in islets from obese individuals, and it was also significantly upregulated in islets from obese mice. In isolated human and mouse islets exogenous CCL25 inhibited glucose-induced insulin secretion in a concentration-dependent manner, enhanced cytokine-induced apoptosis and significantly reduced forskolin-induced elevation in cAMP levels. These detrimental effects of CCL25 in islets were blocked by vercirnon, which had no effect on its own. PRINCIPAL CONCLUSIONS We have shown that CCL25 acts via the Gαi-coupled receptor CCR9 to impair beta-cell function by inhibiting insulin secretion and promoting cytokine-induced apoptosis. Upregulation of CCR9 in islets in obesity, possibly secondary to accumulation of passenger immune cells, may predispose to metabolic dysfunction and our data suggest that CCL25 downregulation or CCR9 inhibition could be explored to treat T2D.
Collapse
Affiliation(s)
- Patricio Atanes
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, United Kingdom.
| | - Vivian Lee
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, United Kingdom.
| | - Guo Cai Huang
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, United Kingdom.
| | - Shanta J Persaud
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, United Kingdom.
| |
Collapse
|
114
|
Avrahami D, Wang YJ, Schug J, Feleke E, Gao L, Liu C, Naji A, Glaser B, Kaestner KH. Single-cell transcriptomics of human islet ontogeny defines the molecular basis of β-cell dedifferentiation in T2D. Mol Metab 2020; 42:101057. [PMID: 32739450 PMCID: PMC7471622 DOI: 10.1016/j.molmet.2020.101057] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Dedifferentiation of pancreatic β-cells may reduce islet function in type 2 diabetes (T2D). However, the prevalence, plasticity and functional consequences of this cellular state remain unknown. METHODS We employed single-cell RNAseq to detail the maturation program of α- and β-cells during human ontogeny. We also compared islets from non-diabetic and T2D individuals. RESULTS Both α- and β-cells mature in part by repressing non-endocrine genes; however, α-cells retain hallmarks of an immature state, while β-cells attain a full β-cell specific gene expression program. In islets from T2D donors, both α- and β-cells have a less mature expression profile, de-repressing the juvenile genetic program and exocrine genes and increasing expression of exocytosis, inflammation and stress response signalling pathways. These changes are consistent with the increased proportion of β-cells displaying suboptimal function observed in T2D islets. CONCLUSIONS These findings provide new insights into the molecular program underlying islet cell maturation during human ontogeny and the loss of transcriptomic maturity that occurs in islets of type 2 diabetics.
Collapse
Affiliation(s)
- Dana Avrahami
- Endocrinology and Metabolism Department, Hadassah-Hebrew University Medical Centre, Jerusalem, Israel
| | - Yue J Wang
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jonathan Schug
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Eseye Feleke
- Endocrinology and Metabolism Department, Hadassah-Hebrew University Medical Centre, Jerusalem, Israel
| | - Long Gao
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chengyang Liu
- Department of Surgery and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Naji
- Department of Surgery and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin Glaser
- Endocrinology and Metabolism Department, Hadassah-Hebrew University Medical Centre, Jerusalem, Israel.
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
115
|
Hayden MR. An Immediate and Long-Term Complication of COVID-19 May Be Type 2 Diabetes Mellitus: The Central Role of β-Cell Dysfunction, Apoptosis and Exploration of Possible Mechanisms. Cells 2020; 9:E2475. [PMID: 33202960 PMCID: PMC7697826 DOI: 10.3390/cells9112475] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was declared a pandemic by the WHO on 19 March 2020. This pandemic is associated with markedly elevated blood glucose levels and a remarkable degree of insulin resistance, which suggests pancreatic islet β-cell dysfunction or apoptosis and insulin's inability to dispose of glucose into cellular tissues. Diabetes is known to be one of the top pre-existing co-morbidities associated with the severity of COVID-19 along with hypertension, cardiocerebrovascular disease, advanced age, male gender, and recently obesity. This review focuses on how COVID-19 may be responsible for the accelerated development of type 2 diabetes mellitus (T2DM) as one of its acute and suspected long-term complications. These observations implicate an active role of metabolic syndrome, systemic and tissue islet renin-angiotensin-aldosterone system, redox stress, inflammation, islet fibrosis, amyloid deposition along with β-cell dysfunction and apoptosis in those who develop T2DM. Utilizing light and electron microscopy in preclinical rodent models and human islets may help to better understand how COVID-19 accelerates islet and β-cell injury and remodeling to result in the long-term complications of T2DM.
Collapse
Affiliation(s)
- Melvin R Hayden
- Departments of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
116
|
Beta Cell Physiological Dynamics and Dysfunctional Transitions in Response to Islet Inflammation in Obesity and Diabetes. Metabolites 2020; 10:metabo10110452. [PMID: 33182622 PMCID: PMC7697558 DOI: 10.3390/metabo10110452] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/02/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023] Open
Abstract
Beta cells adapt their function to respond to fluctuating glucose concentrations and variable insulin demand. The highly specialized beta cells have well-established endoplasmic reticulum to handle their high metabolic load for insulin biosynthesis and secretion. Beta cell endoplasmic reticulum therefore recognize and remove misfolded proteins thereby limiting their accumulation. Beta cells function optimally when they sense glucose and, in response, biosynthesize and secrete sufficient insulin. Overnutrition drives the pathogenesis of obesity and diabetes, with adverse effects on beta cells. The interleukin signaling system maintains beta cell physiology and plays a role in beta cell inflammation. In pre-diabetes and compromised metabolic states such as obesity, insulin resistance, and glucose intolerance, beta cells biosynthesize and secrete more insulin, i.e., hyperfunction. Obesity is entwined with inflammation, characterized by compensatory hyperinsulinemia, for a defined period, to normalize glycemia. However, with chronic hyperglycemia and diabetes, there is a perpetual high demand for insulin, and beta cells become exhausted resulting in insufficient insulin biosynthesis and secretion, i.e., they hypofunction in response to elevated glycemia. Therefore, beta cell hyperfunction progresses to hypofunction, and may progressively worsen towards failure. Preserving beta cell physiology, through healthy nutrition and lifestyles, and therapies that are aligned with beta cell functional transitions, is key for diabetes prevention and management.
Collapse
|
117
|
Developmental Programming and Glucolipotoxicity: Insights on Beta Cell Inflammation and Diabetes. Metabolites 2020; 10:metabo10110444. [PMID: 33158303 PMCID: PMC7694373 DOI: 10.3390/metabo10110444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Stimuli or insults during critical developmental transitions induce alterations in progeny anatomy, physiology, and metabolism that may be transient, sometimes reversible, but often durable, which defines programming. Glucolipotoxicity is the combined, synergistic, deleterious effect of simultaneously elevated glucose (chronic hyperglycemia) and saturated fatty acids (derived from high-fat diet overconsumption and subsequent metabolism) that are harmful to organs, micro-organs, and cells. Glucolipotoxicity induces beta cell death, dysfunction, and failure through endoplasmic reticulum and oxidative stress and inflammation. In beta cells, the misfolding of pro/insulin proteins beyond the cellular threshold triggers the unfolded protein response and endoplasmic reticulum stress. Consequentially there is incomplete and inadequate pro/insulin biosynthesis and impaired insulin secretion. Cellular stress triggers cellular inflammation, where immune cells migrate to, infiltrate, and amplify in beta cells, leading to beta cell inflammation. Endoplasmic reticulum stress reciprocally induces beta cell inflammation, whereas beta cell inflammation can self-activate and further exacerbate its inflammation. These metabolic sequelae reflect the vicious cycle of beta cell stress and inflammation in the pathophysiology of diabetes.
Collapse
|
118
|
Novelli M, Masiello P, Beffy P, Menegazzi M. Protective Role of St. John's Wort and Its Components Hyperforin and Hypericin against Diabetes through Inhibition of Inflammatory Signaling: Evidence from In Vitro and In Vivo Studies. Int J Mol Sci 2020; 21:E8108. [PMID: 33143088 PMCID: PMC7662691 DOI: 10.3390/ijms21218108] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a very common chronic disease with progressively increasing prevalence. Besides the well-known autoimmune and inflammatory pathogenesis of type 1 diabetes, in many people, metabolic changes and inappropriate lifestyle favor a subtle chronic inflammatory state that contributes to development of insulin resistance and progressive loss of β-cell function and mass, eventually resulting in metabolic syndrome or overt type 2 diabetes. In this paper, we review the anti-inflammatory effects of the extract of Hypericum perforatum L. (St. John's wort, SJW) and its main active ingredients firstly in representative pathological situations on inflammatory basis and then in pancreatic β cells and in obese or diabetic animal models. The simultaneous and long-lasting inhibition of signal transducer and activator of transcription (STAT)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinases (MAPKs)/c-jun N-terminal kinase (JNK) signaling pathways involved in pro-inflammatory cytokine-induced β-cell dysfunction/death and insulin resistance make SJW particularly suitable for both preventive and therapeutic use in metabolic diseases. Hindrance of inflammatory cytokine signaling is likely dependent on the hyperforin content of SJW extract, but recent data reveal that hypericin can also exert relevant protective effects, mediated by activation of the cyclic adenosine monophosphate (cAMP)/protein kinase cAMP-dependent (PKA)/adenosine monophosphate activated protein kinase (AMPK) pathway, against high-fat-diet-induced metabolic abnormalities. Actually, the mechanisms of action of the two main components of SJW appear complementary, strengthening the efficacy of the plant extract. Careful quantitative analysis of SJW components and suitable dosage, with monitoring of possible drug-drug interaction in a context of remarkable tolerability, are easily achievable pre-requisites for forthcoming clinical applications.
Collapse
Affiliation(s)
- Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pascale Beffy
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy;
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
119
|
Mokarizadeh N, Karimi P, Kazemzadeh H, Fathi Maroufi N, Sadigh-Eteghad S, Nikanfar S, Rashtchizadeh N. An evaluation on potential anti-inflammatory effects of β-lapachone. Int Immunopharmacol 2020; 87:106810. [DOI: 10.1016/j.intimp.2020.106810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 12/21/2022]
|
120
|
Guo J, Fu W. Immune regulation of islet homeostasis and adaptation. J Mol Cell Biol 2020; 12:764-774. [PMID: 32236479 PMCID: PMC7816675 DOI: 10.1093/jmcb/mjaa009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
The islet of Langerhans produces endocrine hormones to regulate glucose homeostasis. The normal function of the islet relies on the homeostatic regulations of cellular composition and cell–cell interactions within the islet microenvironment. Immune cells populate the islet during embryonic development and participate in islet organogenesis and function. In obesity, a low-grade inflammation manifests in multiple organs, including pancreatic islets. Obesity-associated islet inflammation is evident in both animal models and humans, characterized by the accumulation of immune cells and elevated production of inflammatory cytokines/chemokines and metabolic mediators. Myeloid lineage cells (monocytes and macrophages) are the dominant types of immune cells in islet inflammation during the development of obesity and type 2 diabetes mellitus (T2DM). In this review, we will discuss the role of the immune system in islet homeostasis and inflammation and summarize recent findings of the cellular and molecular factors that alter islet microenvironment and β cell function in obesity and T2DM.
Collapse
Affiliation(s)
- Jinglong Guo
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wenxian Fu
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
121
|
Infante M, Ricordi C, Fabbri A. Antihyperglycemic properties of hydroxychloroquine in patients with diabetes: Risks and benefits at the time of COVID-19 pandemic. J Diabetes 2020; 12:659-667. [PMID: 32401405 PMCID: PMC7272905 DOI: 10.1111/1753-0407.13053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022] Open
Abstract
The antimalarial drug hydroxychloroquine (HCQ) has long been used as a disease-modifying antirheumatic drug for the treatment of several inflammatory rheumatic diseases. Over the last three decades, various studies have shown that HCQ also plays a role in the regulation of glucose homeostasis. Although the mechanisms of action underlying the glucose-lowering properties of HCQ are still not entirely clear, evidence suggests that this drug may exert multifaceted effects on glucose regulation, including improvement of insulin sensitivity, increase of insulin secretion, reduction of hepatic insulin clearance, and reduction of systemic inflammation. Preliminary studies have shown the safety and efficacy of HCQ (at a dose ranging from 400 to 600 mg/day) in patients with type 2 diabetes over a short-term period. In 2014, HCQ has been approved in India as an add-on hypoglycemic agent for patients with uncontrolled type 2 diabetes. However, large randomized controlled trials are needed to establish the safety and efficacy profile of HCQ in patients with type 2 diabetes over a long-term period. With regard to the COVID-19 pandemic, several medications (including HCQ) have been used as off-label drugs because of the lack of proven effective therapies. However, emerging evidence shows limited benefit from HCQ use in COVID-19 in general. The aim of this manuscript is to comprehensively summarize the current knowledge on the antihyperglycemic properties of HCQ and to critically evaluate the potential risks and benefits related to HCQ use in patients with diabetes, even in light of the current pandemic scenario.
Collapse
Affiliation(s)
- Marco Infante
- Endocrine Unit, CTO Hospital ‐ ASL Roma 2, Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
- Diabetes Research Institute (DRI), University of Miami Miller School of MedicineMiamiFlorida
- Diabetes Research Institute Federation, DRIF (Rome, Miami)MiamiFlorida
| | - Camillo Ricordi
- Diabetes Research Institute (DRI), University of Miami Miller School of MedicineMiamiFlorida
- Diabetes Research Institute Federation, DRIF (Rome, Miami)MiamiFlorida
| | - Andrea Fabbri
- Endocrine Unit, CTO Hospital ‐ ASL Roma 2, Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
- Diabetes Research Institute Federation, DRIF (Rome, Miami)MiamiFlorida
| |
Collapse
|
122
|
Osipovich AB, Stancill JS, Cartailler JP, Dudek KD, Magnuson MA. Excitotoxicity and Overnutrition Additively Impair Metabolic Function and Identity of Pancreatic β-Cells. Diabetes 2020; 69:1476-1491. [PMID: 32332159 PMCID: PMC7809715 DOI: 10.2337/db19-1145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/20/2020] [Indexed: 12/14/2022]
Abstract
A sustained increase in intracellular Ca2+ concentration (referred to hereafter as excitotoxicity), brought on by chronic metabolic stress, may contribute to pancreatic β-cell failure. To determine the additive effects of excitotoxicity and overnutrition on β-cell function and gene expression, we analyzed the impact of a high-fat diet (HFD) on Abcc8 knockout mice. Excitotoxicity caused β-cells to be more susceptible to HFD-induced impairment of glucose homeostasis, and these effects were mitigated by verapamil, a Ca2+ channel blocker. Excitotoxicity, overnutrition, and the combination of both stresses caused similar but distinct alterations in the β-cell transcriptome, including additive increases in genes associated with mitochondrial energy metabolism, fatty acid β-oxidation, and mitochondrial biogenesis and their key regulator Ppargc1a Overnutrition worsened excitotoxicity-induced mitochondrial dysfunction, increasing metabolic inflexibility and mitochondrial damage. In addition, excitotoxicity and overnutrition, individually and together, impaired both β-cell function and identity by reducing expression of genes important for insulin secretion, cell polarity, cell junction, cilia, cytoskeleton, vesicular trafficking, and regulation of β-cell epigenetic and transcriptional program. Sex had an impact on all β-cell responses, with male animals exhibiting greater metabolic stress-induced impairments than females. Together, these findings indicate that a sustained increase in intracellular Ca2+, by altering mitochondrial function and impairing β-cell identity, augments overnutrition-induced β-cell failure.
Collapse
Affiliation(s)
- Anna B Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | - Jennifer S Stancill
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | | | - Karrie D Dudek
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| |
Collapse
|
123
|
Apaya MK, Kuo TF, Yang MT, Yang G, Hsiao CL, Chang SB, Lin Y, Yang WC. Phytochemicals as modulators of β-cells and immunity for the therapy of type 1 diabetes: Recent discoveries in pharmacological mechanisms and clinical potential. Pharmacol Res 2020; 156:104754. [DOI: 10.1016/j.phrs.2020.104754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
|
124
|
Hypomethylation of IL1RN and NFKB1 genes is linked to the dysbalance in IL1β/IL-1Ra axis in female patients with type 2 diabetes mellitus. PLoS One 2020; 15:e0233737. [PMID: 32470060 PMCID: PMC7259508 DOI: 10.1371/journal.pone.0233737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation has received considerable attention in the pathogenesis of type 2 diabetes mellitus (T2DM). Supporting this concept, enhanced expression of interleukin (IL)-1β and increased infiltration of macrophages are observed in pancreatic islets of patients with T2DM. Although IL-1 receptor antagonist (IL-1Ra) plays a major role in controlling of IL-1β-mediated inflammation, its counteraction effects and epigenetic alterations in T2DM are less studied. Thus, we aimed to analyze the DNA methylation status in IL1RN, RELA (p65) and NFKB1 (p50) genes in peripheral blood mononuclear cells (PBMCs) from treated T2DM patients (n = 35) and age-/sex- matched healthy controls (n = 31). Production of IL-1β and IL-1Ra was analyzed in plasma and supernatants from LPS-induced PBMCs. Immunomodulatory effects of IL-1β and IL-1Ra were studied on THP-1 cells. Average DNA methylation level of IL1RN and NFKB1 gene promoters was significantly decreased in T2DM patients in comparison with healthy controls (P< 0.05), which was associated with the increased IL-1Ra (P< 0.001) and IL-1β (P = 0.039) plasma levels in T2DM patients. Negative association between average methylation of IL1RN gene and IL-1Ra plasma levels were observed in female T2DM patients. Methylation of NFKB1 gene was negatively correlated with IL-1Ra levels in the patients and positively with IL-1β levels in female patients. LPS-stimulated PBMCs from female patients failed to raise IL-1β production, while the cells from healthy females increased IL-1β production in comparison with unstimulated cells (P< 0.001). Taken together, the findings suggest that hypomethylation of IL1RN and NFKB1 gene promoters may promote the increased IL-1β/IL-1Ra production and regulate chronic inflammation in T2DM. Further studies are necessary to elucidate the causal direction of these associations and potential role of IL-1Ra in anti-inflammatory processes in treated patients with T2DM.
Collapse
|
125
|
Anti-Inflammatory Strategies Targeting Metaflammation in Type 2 Diabetes. Molecules 2020; 25:molecules25092224. [PMID: 32397353 PMCID: PMC7249034 DOI: 10.3390/molecules25092224] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023] Open
Abstract
One of the concepts explaining the coincidence of obesity and type 2 diabetes (T2D) is the metaflammation theory. This chronic, low-grade inflammatory state originating from metabolic cells in response to excess nutrients, contributes to the development of T2D by increasing insulin resistance in peripheral tissues (mainly in the liver, muscles, and adipose tissue) and by targeting pancreatic islets and in this way impairing insulin secretion. Given the role of this not related to infection inflammation in the development of both: insulin resistance and insulitis, anti-inflammatory strategies could be helpful not only to control T2D symptoms but also to treat its causes. This review presents current concepts regarding the role of metaflammation in the development of T2D in obese individuals as well as data concerning possible application of different anti-inflammatory strategies (including lifestyle interventions, the extra-glycemic potential of classical antidiabetic compounds, nonsteroidal anti-inflammatory drugs, immunomodulatory therapies, and bariatric surgery) in the management of T2D.
Collapse
|
126
|
Rajamanickam A, Munisankar S, Dolla C, Menon PA, Thiruvengadam K, Nutman TB, Babu S. Helminth infection modulates systemic pro-inflammatory cytokines and chemokines implicated in type 2 diabetes mellitus pathogenesis. PLoS Negl Trop Dis 2020; 14:e0008101. [PMID: 32126084 PMCID: PMC7069638 DOI: 10.1371/journal.pntd.0008101] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/13/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The prevalence of helminth infections exhibits an inverse association with the prevalence of Type 2 diabetes mellitus (T2DM), and helminths are postulated to mediate a protective effect against T2DM. However, the biological mechanism behind this effect is not known. AIMS/METHODS We postulated that helminth infections act by modulating the pro-inflammatory cytokine and chemokine milieu that is characteristic of T2DM. To examine the association of cytokines and chemokines in helminth-diabetes co-morbidity, we measured the plasma levels of a panel of pro-inflammatory cytokines and chemokines in individuals with Strongyloides stercoralis infection (Ss+) and T2DM at the time of Ss diagnosis and then 6 months after definitive anthelmintic treatment along with uninfected control individuals with T2DM alone (Ss-). PRINCIPAL FINDINGS Ss+ individuals exhibited significantly diminished levels of the pro-inflammatory cytokines-IL-1α, IL-1β, IL-6, IL-12, IL-18, IL-23, IL-27, G-CSF and GM-CSF and chemokines-CCL1, CCL2, CCL3, CCL11, CXCL1, CXCL2, CXCL8, CXCL9, CXCL10 and CXCL11. In contrast, Ss+ individuals exhibited significantly elevated levels of IL-1Ra. Anthelmintic treatment resulted in increased levels of all of the cytokines and chemokines. CONCLUSIONS Thus, helminth infections alleviate and anthelmintic therapy partially restores the plasma cytokine and chemokine levels in helminth-diabetes co-morbidity. Our data therefore offer a plausible biological mechanism for the protective effect of helminth infections against T2DM.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- National Institute of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | - Saravanan Munisankar
- National Institute of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | | | | | | | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Subash Babu
- National Institute of Health-NIRT-International Center for Excellence in Research, Chennai, India
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, United States of America
| |
Collapse
|
127
|
Ying W, Fu W, Lee YS, Olefsky JM. The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities. Nat Rev Endocrinol 2020; 16:81-90. [PMID: 31836875 PMCID: PMC8315273 DOI: 10.1038/s41574-019-0286-3] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
Abstract
Chronic, unresolved tissue inflammation is a well-described feature of obesity, type 2 diabetes mellitus (T2DM) and other insulin-resistant states. In this context, adipose tissue and liver inflammation have been particularly well studied; however, abundant evidence demonstrates that inflammatory processes are also activated in pancreatic islets from obese animals and humans with obesity and/or T2DM. In this Review, we focus on the characteristics of immune cell-mediated inflammation in islets and the consequences of this with respect to β-cell function. In contrast to type 1 diabetes mellitus, the dominant immune cell type causing inflammation in obese and T2DM islets is the macrophage. The increased macrophage accumulation in T2DM islets primarily arises through local proliferation of resident macrophages, which then provide signals (such as platelet-derived growth factor) that drive β-cell hyperplasia (a classic feature of obesity). In addition, islet macrophages also impair the insulin secretory capacity of β-cells. Through these mechanisms, islet-resident macrophages underlie the inflammatory response in obesity and mechanistically participate in the β-cell hyperplasia and dysfunction that characterizes this insulin-resistant state. These findings point to the possibility of therapeutics that target islet inflammation to elicit beneficial effects on β-cell function and glycaemia.
Collapse
Affiliation(s)
- Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Wenxian Fu
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Yun Sok Lee
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jerrold M Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
128
|
Furman BL, Candasamy M, Bhattamisra SK, Veettil SK. Reduction of blood glucose by plant extracts and their use in the treatment of diabetes mellitus; discrepancies in effectiveness between animal and human studies. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112264. [PMID: 31600561 DOI: 10.1016/j.jep.2019.112264] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/03/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The global problem of diabetes, together with the limited access of large numbers of patients to conventional antidiabetic medicines, continues to drive the search for new agents. Ancient Asian systems such as traditional Chinese medicine, Japanese Kampo medicine, and Indian Ayurvedic medicine, as well as African traditional medicine and many others have identified numerous plants reported anecdotally to treat diabetes; there are probably more than 800 such plants for which there is scientific evidence for their activity, mostly from studies using various models of diabetes in experimental animals. AIM OF THE REVIEW Rather than a comprehensive coverage of the literature, this article aims to identify discrepancies between findings in animal and human studies, and to highlight some of the problems in developing plant extract-based medicines that lower blood glucose in patients with diabetes, as well as to suggest potential ways forward. METHODS In addition to searching the 2018 PubMed literature using the terms 'extract AND blood glucose, a search of the whole literature was conducted using the terms 'plant extracts' AND 'blood glucose' AND 'diabetes' AND 'double blind' with 'clinical trials' as a filter. A third search using PubMed and Medline was undertaken for systematic reviews and meta-analyses investigating the effects of plant extracts on blood glucose/glycosylated haemoglobin in patients with relevant metabolic pathologies. FINDINGS Despite numerous animal studies demonstrating the effects of plant extracts on blood glucose, few randomised, double-blind, placebo-controlled trials have been conducted to confirm efficacy in treating humans with diabetes; there have been only a small number of systematic reviews with meta-analyses of clinical studies. Qualitative and quantitative discrepancies between animal and human clinical studies in some cases were marked; the factors contributing to this included variations in the products among different studies, the doses used, differences between animal models and the human disease, and the impact of concomitant therapy in patients, as well as differences in the duration of treatment, and the fact that treatment in animals may begin before or very soon after the induction of diabetes. CONCLUSION The potential afforded by natural products has not yet been realised in the context of treating diabetes mellitus. A systematic, coordinated, international effort is required to achieve the goal of providing anti-diabetic treatments derived from medicinal plants.
Collapse
Affiliation(s)
- Brian L Furman
- Strathclyde Institute of Pharmacy & Biomedical Sciences, 161, Cathedral Street Glasgow, G4 ORE, Scotland, UK.
| | - Mayuren Candasamy
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Subrat Kumar Bhattamisra
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Sajesh K Veettil
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
129
|
Pirzada RH, Javaid N, Choi S. The Roles of the NLRP3 Inflammasome in Neurodegenerative and Metabolic Diseases and in Relevant Advanced Therapeutic Interventions. Genes (Basel) 2020; 11:E131. [PMID: 32012695 PMCID: PMC7074480 DOI: 10.3390/genes11020131] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammasomes are intracellular multiprotein complexes in the cytoplasm that regulate inflammation activation in the innate immune system in response to pathogens and to host self-derived molecules. Recent advances greatly improved our understanding of the activation of nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasomes at the molecular level. The NLRP3 belongs to the subfamily of NLRP which activates caspase 1, thus causing the production of proinflammatory cytokines (interleukin 1β and interleukin 18) and pyroptosis. This inflammasome is involved in multiple neurodegenerative and metabolic disorders including Alzheimer's disease, multiple sclerosis, type 2 diabetes mellitus, and gout. Therefore, therapeutic targeting to the NLRP3 inflammasome complex is a promising way to treat these diseases. Recent research advances paved the way toward drug research and development using a variety of machine learning-based and artificial intelligence-based approaches. These state-of-the-art approaches will lead to the discovery of better drugs after the training of such a system.
Collapse
Affiliation(s)
| | | | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (R.H.P.); (N.J.)
| |
Collapse
|
130
|
Molecular Modelling of Islet β-Cell Adaptation to Inflammation in Pregnancy and Gestational Diabetes Mellitus. Int J Mol Sci 2019; 20:ijms20246171. [PMID: 31817798 PMCID: PMC6941051 DOI: 10.3390/ijms20246171] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM), a metabolic disease that develops with the increase in insulin resistance during late pregnancy, is currently one of the most common complications affecting pregnancy. The polygenic nature of GDM, together with the interplay between different genetic variants with nutritional and environmental factors has hindered the full understanding of the etiology of this disease. However, an important genetic overlap has been found with type 2 diabetes mellitus (T2DM) and, as in the case of T2DM, most of the identified loci are associated with β-cell function. Early detection of GDM and adequate interventions to control the maternal glycemia are necessary to avoid the adverse outcomes for both the mother and the offspring. The in utero exposure to the diabetic milieu predispose these children for future diseases, among them T2DM, originating a vicious circle implicated in the increased prevalence of both GDM and T2DM. The involvement of inflammatory processes in the development of GDM highlights the importance of pancreatic β-cell factors able to favor the adaptation processes required during gestation, concomitantly with the protection of the islets from an inflammatory milieu. In this regard, two members of the Pax family of transcription factors, PAX4 and PAX8, together with the chromatin remodeler factor HMG20A, have gained great relevance due to their involvement in β-cell mass adaptation together with their anti-inflammatory properties. Mutations in these factors have been associated with GDM, highlighting these as novel candidates for genetic screening analysis in the identification of women at risk of developing GDM.
Collapse
|
131
|
Inflammation and type 2 diabetes: from basic science to treatment. Semin Immunopathol 2019; 41:411-412. [PMID: 31240442 DOI: 10.1007/s00281-019-00749-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/17/2019] [Indexed: 12/19/2022]
|