101
|
Cai F, Xu H, Song S, Wang G, Zhang Y, Qian J, Xu L. Knockdown of Ubiquitin-Conjugating Enzyme E2 T Abolishes the Progression of Head and Neck Squamous Cell Carcinoma by Inhibiting NF-Κb Signaling and inducing Ferroptosis. Curr Protein Pept Sci 2024; 25:577-585. [PMID: 38584528 DOI: 10.2174/0113892037287640240322084946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Ubiquitin-conjugating enzyme 2T (UBE2T) has been reported to be associated with uncontrolled cell growth and tumorigenesis in multiple cancer types. However, the understanding of its regulatory role in the carcinogenesis of Head And Neck Squamous Cell Carcinoma (HNSC) is limited. METHODS UBE2T expression in HNSC patient samples and the correlation between its expression and patients' survival rates were evaluated using The Cancer Genome Atlas (TCGA) database. Cell survival and proliferation were investigated in UM-SCC1 and UM-SCC15 cells infected with control and shUBE2T lentivirus. The xenograft mouse model was established using UM-SCC15 cells to examine HNSC tumorigenesis with or without UBE2T. Western blot, qRT-PCR, and ferroptosis assays were carried out to disclose the interaction between UBE2T and NF-κB signaling and ferroptosis. RESULTS The increased expression of UBE2T was noted in tumor tissues of patients with HNSC, correlating with a significantly reduced overall survival time in this patient cohort. Knockdown of UBE2T inhibited HNSC tumorigenesis and tumor growth. Mechanistically, inhibition of UBE2T suppressed NF-κB signaling and induced ferroptosis in HNSC. CONCLUSION Our study underscores the multifaceted role of UBE2T in HNSC, illuminating its potential as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Feng Cai
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College, Zhihuai Road, Bengbu, 233000, Anhui, China
| | - Hongbo Xu
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College, Zhihuai Road, Bengbu, 233000, Anhui, China
| | - Shilong Song
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College, Zhihuai Road, Bengbu, 233000, Anhui, China
| | - Gengming Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College, Zhihuai Road, Bengbu, 233000, Anhui, China
| | - Yajun Zhang
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College, Zhihuai Road, Bengbu, 233000, Anhui, China
| | - Jing Qian
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College, Zhihuai Road, Bengbu, 233000, Anhui, China
| | - Lu Xu
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College, Zhihuai Road, Bengbu, 233000, Anhui, China
| |
Collapse
|
102
|
Sharma S, Rana R, Prakash P, Ganguly NK. Drug target therapy and emerging clinical relevance of exosomes in meningeal tumors. Mol Cell Biochem 2024; 479:127-170. [PMID: 37016182 PMCID: PMC10072821 DOI: 10.1007/s11010-023-04715-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/17/2023] [Indexed: 04/06/2023]
Abstract
Meningioma is the most common central nervous system (CNS) tumor. In recent decades, several efforts have been made to eradicate this disease. Surgery and radiotherapy remain the standard treatment options for these tumors. Drug therapy comes to play its role when both surgery and radiotherapy fail to treat the tumor. This mostly happens when the tumors are close to vital brain structures and are nonbenign. Although a wide variety of chemotherapeutic drugs and molecular targeted drugs such as tyrosine kinase inhibitors, alkylating agents, endocrine drugs, interferon, and targeted molecular pathway inhibitors have been studied, the roles of numerous drugs remain unexplored. Recent interest is growing toward studying and engineering exosomes for the treatment of different types of cancer including meningioma. The latest studies have shown the involvement of exosomes in the theragnostic of various cancers such as the lung and pancreas in the form of biomarkers, drug delivery vehicles, and vaccines. Proper attention to this new emerging technology can be a boon in finding the consistent treatment of meningioma.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Prem Prakash
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062 India
| | | |
Collapse
|
103
|
Erbaş E, Celep NA, Tekiner D, Genç A, Gedikli S. Assessment of toxicological effects of favipiravir (T-705) on the lung tissue of rats: An experimental study. J Biochem Mol Toxicol 2024; 38:e23536. [PMID: 37942797 DOI: 10.1002/jbt.23536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/14/2023] [Accepted: 09/01/2023] [Indexed: 11/10/2023]
Abstract
This study aimed to present new data on the side effects of favipiravir on healthy lung tissue and the respiratory system. In the study, two different durations (5 and 10 days) were preferred to determine the effect of favipiravir treatment due to clinical improvement rates of approximately 5 and 10 days during the use of favipiravir in COVID-19 patients. In addition, after 10 days of favipiravir treatment, animals were kept for 5 days without any treatment to determine the regeneration of lung tissues. Favipiravir was administered to rats by oral gavage at a daily dose of 200 mg/kg for 5 and 10 days, as in previous studies. At the end of the experiment, the histopathological and biochemical effects of favipiravir in the lung tissue were investigated. The data obtained from the study showed that favipiravir increased oxidative stress parameters, expression of apoptotic markers, and pro-inflammatory markers in lung tissue. Since malondialdehydes is an oxidant parameter, it increased in favipiravir-administered groups; It was determined that the antioxidant parameters glutathione, superoxide dismutase, glutathione peroxidase, and catalase decreased. Other markers used in the analysis are Bcl-2, Bax, NF-κB, interleukin (IL)-6, Muc1, iNOS, P2X7R, IL-6 and caspase-3. The levels of Bax, caspase-3, NF-κB, IL-6, Muc1, and P2X7R were increased in the Fav-treated groups compared with the control. However, the levels of Bcl-2 decreased in the Fav-treated groups. The present study proves that favipiravir, widely used today, causes side effects in lung tissue.
Collapse
Affiliation(s)
- Elif Erbaş
- Department of Histology and Embryology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
| | - Nevra Aydemir Celep
- Department of Histology and Embryology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
- Department of Pharmacology, Atatürk University Faculty of Medicine, Erzurum, Turkey
| | - Deniz Tekiner
- Department of Histology and Embryology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
| | - Aydın Genç
- Department of Biochemistry, Bingöl University Faculty of Veterinary Medicine, Bingöl, Turkey
| | - Semin Gedikli
- Department of Histology and Embryology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
| |
Collapse
|
104
|
Abeesh P, Guruvayoorappan C. The Therapeutic Effects of Withaferin A against Cancer: Overview and Updates. Curr Mol Med 2024; 24:404-418. [PMID: 37076466 DOI: 10.2174/1566524023666230418094708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 04/21/2023]
Abstract
Cancer is a rapidly rising health problem among the global population, and this burden causes a significant challenge for public health. Current chemotherapeutic agents have different limitations, including drug resistance and severe side effects, and it demands a robust approach to accessing promising anti-cancer therapeutics. The natural compounds have been extensively studied to identify improved therapeutic agents for cancer therapy. Withaferin A (WA) is a steroidal lactone found in Withania somnifera and possesses anti-inflammatory, antioxidant, anti-angiogenesis, and anticancer properties. Multiple studies have shown that WA treatment attenuated various cancer hallmarks by inducing apoptosis and reducing angiogenesis and metastasis with reduced side effects. WA is a promising agent for the treatment of various cancer, and it targets various signaling pathways. With recent updates, the current review highlights the therapeutic implications of WA and its molecular targets in different cancer.
Collapse
Affiliation(s)
- Prathapan Abeesh
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, India
| | - Chandrasekaran Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, India
| |
Collapse
|
105
|
Newell S, van der Watt PJ, Leaner VD. Therapeutic targeting of nuclear export and import receptors in cancer and their potential in combination chemotherapy. IUBMB Life 2024; 76:4-25. [PMID: 37623925 PMCID: PMC10952567 DOI: 10.1002/iub.2773] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 08/26/2023]
Abstract
Systemic modalities are crucial in the management of disseminated malignancies and liquid tumours. However, patient responses and tolerability to treatment are generally poor and those that enter remission often return with refractory disease. Combination therapies provide a methodology to overcome chemoresistance mechanisms and address dose-limiting toxicities. A deeper understanding of tumorigenic processes at the molecular level has brought a targeted therapy approach to the forefront of cancer research, and novel cancer biomarkers are being identified at a rapid rate, with some showing potential therapeutic benefits. The Karyopherin superfamily of proteins is soluble receptors that mediate nucleocytoplasmic shuttling of proteins and RNAs, and recently, nuclear transport receptors have been recognized as novel anticancer targets. Inhibitors against nuclear export have been approved for clinical use against certain cancer types, whereas inhibitors against nuclear import are in preclinical stages of investigation. Mechanistically, targeting nucleocytoplasmic shuttling has shown to abrogate oncogenic signalling and restore tumour suppressor functions through nuclear sequestration of relevant proteins and mRNAs. Hence, nuclear transport inhibitors display broad spectrum anticancer activity and harbour potential to engage in synergistic interactions with a wide array of cytotoxic agents and other targeted agents. This review is focussed on the most researched nuclear transport receptors in the context of cancer, XPO1 and KPNB1, and highlights how inhibitors targeting these receptors can enhance the therapeutic efficacy of standard of care therapies and novel targeted agents in a combination therapy approach. Furthermore, an updated review on the therapeutic targeting of lesser characterized karyopherin proteins is provided and resistance to clinically approved nuclear export inhibitors is discussed.
Collapse
Affiliation(s)
- Stella Newell
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Pauline J. van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Diseases and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Virna D. Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- UCT/SAMRC Gynaecological Cancer Research CentreUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
106
|
Yu Z, Yue B, Gao R, Zhang B, Geng X, Lv C, Wang H, Wang Z, Wang Z, Dou W. Gastrodin Attenuates Colitis and Prevents Tumorigenesis in Mice by Interrupting TLR4/MD2/NF-κB Signaling Transduction. Anticancer Agents Med Chem 2024; 24:853-866. [PMID: 38584532 DOI: 10.2174/0118715206286233240328045215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Chronic inflammation is one of the causative factors for tumorigenesis. Gastrodin is a main active ingredient isolated from Gastrodia elata Blume, a famous medicinal herb with a long edible history. AIM This study aimed to explore the effects of gastrodin on colitis-associated carcinogenesis (CRC) in mice and to elucidate its potential molecular mechanisms. METHODS Balb/c mice were induced with azoxymethane (AOM) and dextran sulfate sodium (DSS) for 12 weeks. Gastrodin (50 mg/kg) was administered via oral gavage three times per week until the end of the experiment. Disease indexes, including body weight, bloody diarrhea, colon length, histopathological score, and tumor size, were measured. Tumor cell proliferation was evaluated by BrdU incorporation assay and tumor cell cytotoxicity was assessed by cell counting kit (CCK-8). The expression levels of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling molecules, NF-κB luciferase, and pro-inflammatory cytokines were determined by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), immunoblotting, immunohistochemistry (IHC), enzyme-linked immunosorbent assay (ELISA), or reporter gene assays. The binding affinity between gastrodin and myeloid differentiation protein-2 (MD2) was analyzed by molecular docking and cellular thermal shift assay (CETSA). RESULTS Gastrodin administration was demonstrated to mitigate various CRC-related symptoms in mice, including weight loss, diarrhea, and tissue abnormalities. Notably, gastrodin suppressed tumor cell growth during colitis- associated tumorigenesis, resulting in fewer and smaller adenomas in the colon. Unlike irinotecan, a broadspectrum antitumor drug, gastrodin did not exhibit apparent cytotoxicity in various colorectal adenocarcinoma cell lines. Additionally, gastrodin downregulated TLR4/NF-κB signaling molecules and pro-inflammatory mediators in mice and macrophages. Molecular docking and CETSA experiments suggested that gastrodin binds to the MD2 protein, potentially interfering with the recognition of lipopolysaccharide (LPS) by TLR4, leading to NF-κB pathway inhibition. CONCLUSION This study provides evidence for the first time that gastrodin attenuated colitis and prevented colitisrelated carcinogenesis in mice, at least partially, by diminishing tumor-promoting cytokines through the interruption of TLR4/MD2/NF-κB signaling transduction.
Collapse
Affiliation(s)
- Zhilun Yu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Bei Yue
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Ruiyang Gao
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Beibei Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Xiaolong Geng
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Cheng Lv
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Hao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Ziyi Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Wei Dou
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| |
Collapse
|
107
|
Schlein LJ, Thamm DH. Immunohistochemical evidence of NF-kB activation in canine lymphomas, histiocytic sarcomas, hemangiosarcomas, and mast cell tumors. Vet Pathol 2024; 61:20-31. [PMID: 37357953 DOI: 10.1177/03009858231180484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Increased or constitutive activation of nuclear factor kappa B (NF-kB) is a feature of many chronic disease processes, including cancer. While NF-kB overactivation has been documented extensively in human oncology, there is a relative paucity of data documenting the same phenomenon in veterinary medicine. To assess NF-kB activity, antibodies to p65 and p100/p52, which are components of NF-kB heterodimers, were first validated for specificity and canine cross-reactivity via Western blot and labeling of immortalized cell pellets. Then, nuclear labeling for these antibodies was assessed via QuPath software in over 200 tumor tissue samples (10 hemangiosarcomas, 94 histiocytic sarcomas, 71 lymphomas, and 28 mast cell tumors) and compared to immunolabeling in appropriate normal tissue counterparts. Greater than 70% of spontaneous canine tumors evaluated in this study had more nuclear p65 and p100/p52 immunoreactivity than was observed in comparable normal cell populations. Specifically, 144/204 (70.58%) of tumors evaluated had positive p65 nuclear labeling and 179/195 (91.79%) had positive p100/p52 nuclear labeling. Surprisingly, greater nuclear p100/p52 reactivity was associated with a longer progression-free survival (PFS) and overall survival (OS) in canine lymphomas. These results provide support and preliminary data to investigate the role of NF-kB signaling in different types of canine cancer.
Collapse
|
108
|
Samandari-Bahraseman MR, Ismaili A, Esmaeili-Mahani S, Ebrahimie E, Loit E. Bunium persicum Seeds Extract in Combination with Vincristine Mediates Apoptosis in MCF-7 Cells through Regulation of Involved Genes and Proteins Expression. Anticancer Agents Med Chem 2024; 24:213-223. [PMID: 38038013 DOI: 10.2174/0118715206277444231124051035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Bunium persicum seeds, a member of the Apiaceae family, have historically been consumed as part of the Iranian diet. OBJECTIVE While many of this herb's biological properties have been fully investigated, there is currently no reliable information about its anticancer/cytotoxic properties. METHODS Herein, we first determined the major bioactive compounds of B. persicum seed extract (BPSE) via GC-Mass analysis. We evaluated the cytotoxicity of the extract alone as well as in combination with vincristine (VCR), a commonly used chemotherapy drug, using MTT assays on two breast cancer cell lines, MCF-7 and MDA-MB-231, as well as a normal breast cancer cell line, MCF-10A. Moreover, these compounds were evaluated in vitro for their anticancer activity using ROS assays, Real-Time PCR, Western blots, flow cytometry, and cell cycle assays. RESULTS As a result of our investigation, it was determined that the extract significantly reduced the viability of cancerous cells while remaining harmless to normal cells. The combination of BPSE and VCR also resulted in synergistic effects. BPSE and/or BPSE-VCR treatment increased the intracellular ROS of MCF-7 cells by over twofold. Moreover, the IC30 of BPSE (100 μg/ml) significantly increased the BAX/BCL-2 and P53 gene expression while reducing the expression of the MYC gene. Moreover, treated cells were arrested in the G2 phase of the cell cycle. The BPSE-VCR combination synergistically reduced the NF-κB and increased the Caspase-7 proteins' expression. The percent of apoptosis in the cells treated with the extract, VCR, and their combination was 27, 11, and 50, respectively. CONCLUSIONS The present study demonstrated the anticancer activity of the BPSE and its potential for application in combination therapy with VCR.
Collapse
Affiliation(s)
| | - Ahmad Ismaili
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Esmaeil Ebrahimie
- La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC 3086, Australia
| | - Evelin Loit
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
109
|
Tong R, Li Y, Yu X, Zhang N, Liao Q, Pan L. The immunotoxicity mechanism of NH 4Cl exposure to Litopenaeus vannamei based on the cerebral ganglion-eyestalk-haemocytes axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166876. [PMID: 37709089 DOI: 10.1016/j.scitotenv.2023.166876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
Ammonia nitrogen, as a water environmental toxin, poses a potential threat to aquatic animals. Although NH4Cl stress is known to cause immunotoxicity, mechanistic pathways linking stress networks in the neuroendocrine system to immunotoxicity remain poorly understood. In this study, firstly, using transcriptome analysis of cerebral ganglion and eyestalk in shrimp, we identified significant changes in genes related to biogenic amines, acetylcholine, crustacean hyperglycemic hormones, and neuropeptide F. Additionally, expression patterns of neuroendocrine factors in different tissues of shrimp were evaluated to explore the sources of these factors. Here, we showed that NH4Cl exposure activates acetylcholine (ACh) neurons in cerebral ganglion of shrimp and dramatically upregulates high affinity choline transporter 1 (ChT1) gene expression. The knockdown of ChT1 gene enhanced the immunity of haemocytes in shrimp compared with saline and GFP dsRNA groups. And after eyestalk ablation, the levels of neuroendocrine factors in the cerebral ganglion and thoracic ganglion were disturbed, and haemocytes parameters induced by NH4Cl were significantly decreased. Combined with different doses of NH4Cl exposure experiments, we demonstrated that: (1) In a short period of NH4Cl exposure, the neuroendocrine factors CRH-ACTH-cortisol and 5-HT-DA in the cerebral ganglion-eyestalk axis of shrimp play a major role in regulating haemocytes immunity; (2) With the prolongation of exposure, the immunotoxicity induced by NH4Cl was mainly due to the release of more ACh in the cerebral ganglion, which promoted the release of NPF in the thoracic ganglion, and CHH and NPF in the eyestalk, as well as weakened the effect of biogenic amines. Subsequently, these neuroendocrine factors regulate immunity through intracellular signaling pathways. Collectively, these results established a new mechanism that NH4Cl might directly regulate haemocytes immunotoxicity through the cerebral ganglion and thoracic ganglion; or through the cerebral ganglion-eyestalk axis or cerebral ganglion-thoracic ganglion axis cause haemocytes immunotoxicity.
Collapse
Affiliation(s)
- Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xin Yu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qilong Liao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
110
|
Wang Y, Sun Y, Yang C, Han B, Wang S. Sodium salicylate ameliorates exercise-induced muscle damage in mice by inhibiting NF-kB signaling. J Orthop Surg Res 2023; 18:967. [PMID: 38098039 PMCID: PMC10722820 DOI: 10.1186/s13018-023-04433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Eccentric muscle contraction can cause muscle damage, which reduces the efficiency of exercise. Previous evidence suggested that Sodium salicylate (SS) could improve the repair of aged muscle. This study intends to investigate whether SS can impact skeletal muscle damage caused by eccentric exercise. METHODS Eccentric treadmill exercise was performed to induce muscle damage in mice. Plasma levels of muscle damage markers were estimated. RT-qPCR was employed for detecting mRNA levels of proinflammatory mediators in murine gastrocnemius muscle. Immunofluorescence staining of laminin/DAPI was utilized for quantifying centrally nucleated myofibers in the gastrocnemius muscle. Western blotting was implemented to examine protein levels of mitsugumin 53 (MG53), matrix metalloproteinase (MMP)-2/9, and NF-κB signaling-related markers. RESULTS SS administration reduced muscle damage marker production in the plasma and decreased the levels of proinflammatory mediators, MG53 and MMP-2/9 in mice after exercise. SS alleviated the severity of muscle damage in the gastrocnemius of mice after eccentric exercise. SS blocked NF-κB signaling pathway in the gastrocnemius muscle. CONCLUSION SS administration ameliorates skeletal muscle damage caused by eccentric exercise in the mouse model.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang City, 110819, China.
| | - Yuning Sun
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang City, 110819, China
| | - Chunhui Yang
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang City, 110819, China
| | - Bing Han
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang City, 110819, China
| | - Sining Wang
- Department of General, Huanggu District People's Government Office, Shenyang City, 110032, China
| |
Collapse
|
111
|
Jantawong C, Chamgramol Y, Intuyod K, Priprem A, Pairojkul C, Klungsaeng S, Dangtakot R, Pongking T, Sitthirach C, Pinlaor P, Waraasawapati S, Pinlaor S. Curcumin-loaded nanocomplexes alleviate the progression of fluke-related cholangiocarcinoma in hamsters. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Abstract
Background
Curcumin-loaded nanocomplexes (CNCs) previously demonstrated lower toxicity and extended release better than is the case for free curcumin. Here, we evaluated the efficacy of CNCs against opisthorchiasis-associated cholangiocarcinoma (CCA) in hamsters.
Method
Dose optimization (dose and frequency) was performed over a 1-month period using hamsters, a model that is widely used for study of opisthorchiasis-associated cholangiocarcinoma. In the main experimental study, CCA was induced by a combination of fluke, Opisthorchis viverrini (OV), infection and N-nitrosodimethylamine (NDMA) treatment. Either blank (empty) nanocomplexes (BNCs) or different concentrations of CNCs (equivalent to 10 and 20 mg cur/kg bw) were given to hamsters thrice a week for 5 months. The histopathological changes, biochemical parameters, and the expression of inflammatory/oncogenic transcription factors were investigated. In addition, the role of CNCs in attenuating CCA genesis, as seen in an animal model, was also confirmed in vitro using CCA cell lines.
Results
The optimization study revealed that treatment with CNCs at a dose equivalent to 10 mg cur/kg bw, thrice a week for 1 month, led to a greater reduction of inflammation and liver injury induced in hamsters by OV + NDMA than did treatments at other dose rates. Oral administration with CNCs (10 mg cur/kg bw), thrice a week for 5 months, significantly increased survival rate, reduced CCA incidence, extent of tumor development, cholangitis, bile duct injury and cholangiofibroma. In addition, this treatment decreased serum ALP and ALT activities and suppressed expression of NF-κB, FOXM1, HMGB1, PCNA and formation of 8-nitroguanine. Treatment of CCA cell lines with CNCs also reduced cell proliferation and colony formation, similar to those treated with NF-κB and/or FOXM1 inhibitors.
Conclusion
CNCs (10 mg cur/kg bw) attenuate the progression of fluke-related CCA in hamsters partly via a NF-κB and FOXM1-mediated pathway.
Collapse
|
112
|
Zhang Y, Hu L, Ren G, Zeng Y, Zhao X, Zhong C. Distinct regulatory machineries underlying divergent chromatin landscapes distinguish innate lymphoid cells from T helper cells. Front Immunol 2023; 14:1271879. [PMID: 38106414 PMCID: PMC10722145 DOI: 10.3389/fimmu.2023.1271879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Innate lymphoid cells (ILCs), as the innate counterpart of CD4+ T helper (Th) cells, play crucial roles in maintaining tissue homeostasis. While the ILC subsets and their corresponding Th subsets demonstrate significant similarities in core programming related to effector function and regulatory mechanisms, their principal distinctions, given their innate and adaptive lymphocyte nature, remain largely unknown. In this study, we have employed an integrative analysis of 294 bulk RNA-sequencing results across all ILC and Th subsets, using scRNA-seq algorithms. Consequently, we identify two genesets that predominantly differentiate ILCs from Th cells, as well as three genesets that distinguish various immune responses. Furthermore, through chromatin accessibility analysis, we find that the ILC geneset tends to rely on specific transcriptional regulation at promoter regions compared with the Th geneset. Additionally, we observe that ILCs and Th cells are under differential transcriptional regulation. For example, ILCs are under stronger regulation by multiple transcription factors, including RORα, GATA3, and NF-κB. Otherwise, Th cells are under stronger regulation by AP-1. Thus, our findings suggest that, despite the acknowledged similarities in effector functions between ILC subsets and corresponding Th subsets, the underlying regulatory machineries still exhibit substantial distinctions. These insights provide a comprehensive understanding of the unique roles played by each cell type during immune responses.
Collapse
Affiliation(s)
- Yime Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key National Health Commission Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Luni Hu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Guanqun Ren
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Yanyu Zeng
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key National Health Commission Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xingyu Zhao
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key National Health Commission Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Chao Zhong
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key National Health Commission Laboratory of Medical Immunology, Peking University, Beijing, China
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| |
Collapse
|
113
|
P V, Mohanan M, U K S, E Pa S, U C A J. Graph Attention Network based mapping of knowledge relations between chemical spaces of Nuclear factor kappa B and Centella asiatica. Comput Biol Chem 2023; 107:107955. [PMID: 37734134 DOI: 10.1016/j.compbiolchem.2023.107955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
The confounding nature of the innate immunity target Nuclear Factor kappa B (NF-κB) and its interaction with Centella asiatica (CA) molecules necessitate the intervention of advanced technologies, such as deep learning methods. The integration of chemical space concepts with deep learning technologies is a new way of knowledge mapping used to explore drug-target interactions, especially in molecular libraries derived from traditional medicine based molecular sources. The current constraint of virtual screening for mechanistic target hunting is the use of a binary classification model that includes active and inactive molecules from in vitro experiments to explore drug-target interaction. This study aims to explore the regulatory nature of the molecules from the inhibition and activation of the NF-κB bioassay data set and map this information for a knowledge-based analysis against the molecules of CA, a low-growing tropical plant. This finding has led to a new direction in the field, transitioning from the conventional active-inactive framework to a more comprehensive active-inactive-regulatory model. This approach can be thoroughly explored by leveraging a graph-based deep learning system. The study presents an innovative approach using a Graph Attention Network (GAT) to rank CA molecules in chemical space based on their similarity with NF-κB bioassay molecules, enabling the efficient analysis of complex relationships between molecules and their regulatory function. Graph Attention Network (GAT) overcomes the limitations of traditional deep learning models such as Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) in handling non-Euclidean graph data and allows for a more precise understanding of similarity ranking by utilizing molecular graphs and attention behavior. By measuring similarity and arranging a matrix of similarity ranking based on GAT, deep neural ranking-based algorithms confirmed the regulatory behaviour of an innate immunity target NF-κB with the support of underlying inverse mapping in the surjective chemical spaces of NF-κB bioassays and CA molecular spaces. Overall, the study introduces new techniques for exploring the regulatory behaviour of complex targets like NF-κB. We then used t-SNE for clustering in chemical space and scaffold hunting for scaffold property analysis and identified nine CA molecules that exhibit regulatory behavior of NF-κB target and are recommended for further investigation.
Collapse
Affiliation(s)
- Vivek P
- UL Research Center, UL Cyber Park Calicut, India
| | | | | | - Sandesh E Pa
- UL Research Center, UL Cyber Park Calicut, India
| | - Jaleel U C A
- OSPF-NIAS Drug DIscovery Lab, National Institute of Advanced Studies, Indian Institute of Science Campus, Bengaluru, India
| |
Collapse
|
114
|
Li C, Chen B, Zhang J, Yang J, Guo M, Ren Y, Zhou Z, Fung KM, Li M, Zhang L, Liu Z. SEM1 promotes tumor progression of glioblastoma via activating the akt signaling pathway. Cancer Lett 2023; 577:216368. [PMID: 37652287 DOI: 10.1016/j.canlet.2023.216368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION SEM1, a 26 S proteasome complex subunit, is an essential regulator of tumor growth. However, the underlying mechanism of SEM1 mediated glioma progression remains to be elucidated. METHODS Data from bulk-tumor, single-cell, and spatial sequencing were analyzed to reveal correlations between SEM1 and clinical traits, cell types, and functional enrichment in gliomas. Immunohistochemistry was used to assess SEM1 expression. MTT, flow cytometry, apoptosis signature, epithelial-mesenchymal transition signature, Transwell, and organoid assays were used to study SEM1's effect on the malignant behavior of glioma (U251 and LN229) cells. Weighted gene co-expression network analysis (WGCNA) was conducted to construct an SEM1-mediated malignant regulatory network. Accordingly, survival analysis, therapeutic response, drug prediction, and molecular docking analyses were performed. RESULTS High SEM1 expression was observed in gliomas and correlated with worse clinical features and prognosis. Moreover, SEM1 is mainly localized in malignant cells (glioma cells). SEM1 knockout inhibited the proliferation, invasion, and migration of glioma cells and promoted their apoptosis. We also constructed an SEM1 malignant regulatory network that was bridged by the PI3K-Akt pathway. The network had a high prognostic value. Finally, drugs potentially targeting SEM1 were screened and docked to SEM1. CONCLUSIONS SEM1 is critically involved in the proliferation, apoptosis, invasion, and migration of glioma cells. The SEM1 malignant regulatory network shows high significance for the prognosis and treatment of gliomas.
Collapse
Affiliation(s)
- Chuntao Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Department of Medicine, And Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Bo Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Junxia Zhang
- Department of Medicine, And Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Jingxuan Yang
- Department of Medicine, And Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Muzi Guo
- Department of Medicine, And Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yu Ren
- Department of Medicine, And Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zhijun Zhou
- Department of Medicine, And Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Min Li
- Department of Medicine, And Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Department of Medicine, And Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
115
|
Wang Y, Armendariz D, Wang L, Zhao H, Xie S, Hon GC. Enhancer regulatory networks globally connect non-coding breast cancer loci to cancer genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567880. [PMID: 38045327 PMCID: PMC10690208 DOI: 10.1101/2023.11.20.567880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Genetic studies have associated thousands of enhancers with breast cancer. However, the vast majority have not been functionally characterized. Thus, it remains unclear how variant-associated enhancers contribute to cancer. Here, we perform single-cell CRISPRi screens of 3,512 regulatory elements associated with breast cancer to measure the impact of these regions on transcriptional phenotypes. Analysis of >500,000 single-cell transcriptomes in two breast cancer cell lines shows that perturbation of variant-associated enhancers disrupts breast cancer gene programs. We observe variant-associated enhancers that directly or indirectly regulate the expression of cancer genes. We also find one-to-multiple and multiple-to-one network motifs where enhancers indirectly regulate cancer genes. Notably, multiple variant-associated enhancers indirectly regulate TP53. Comparative studies illustrate sub-type specific functions between enhancers in ER+ and ER- cells. Finally, we developed the pySpade package to facilitate analysis of single-cell enhancer screens. Overall, we demonstrate that enhancers form regulatory networks that link cancer genes in the genome, providing a more comprehensive understanding of the contribution of enhancers to breast cancer development.
Collapse
Affiliation(s)
- Yihan Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
| | | | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
| | - Huan Zhao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
| | - Shiqi Xie
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
- Current address: Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
- Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
116
|
Cotino-Nájera S, Herrera LA, Domínguez-Gómez G, Díaz-Chávez J. Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer. Front Pharmacol 2023; 14:1287505. [PMID: 38026933 PMCID: PMC10667487 DOI: 10.3389/fphar.2023.1287505] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
One of the primary diseases that cause death worldwide is cancer. Cancer cells can be intrinsically resistant or acquire resistance to therapies and drugs used for cancer treatment through multiple mechanisms of action that favor cell survival and proliferation, becoming one of the leading causes of treatment failure against cancer. A promising strategy to overcome chemoresistance and radioresistance is the co-administration of anticancer agents and natural compounds with anticancer properties, such as the polyphenolic compound resveratrol (RSV). RSV has been reported to be able to sensitize cancer cells to chemotherapeutic agents and radiotherapy, promoting cancer cell death. This review describes the reported molecular mechanisms by which RSV sensitizes tumor cells to radiotherapy and chemotherapy treatment.
Collapse
Affiliation(s)
- Sandra Cotino-Nájera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Luis A. Herrera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
- Escuela de Medicina y Ciencias de la Salud-Tecnológico de Monterrey, México City, Mexico
| | - Guadalupe Domínguez-Gómez
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCAN), Ciudad de México, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación en Cáncer, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| |
Collapse
|
117
|
Cao Y, Jiang J, Song X, Wang X, Huang F, Li Y, Tang L, Li M, Chen Z, Chen F, Wan H. Engrailed 2 triggers the activation of multiple phosphorylation-induced signaling pathways in both transcription-dependent and -independent manners. Biochem Biophys Res Commun 2023; 680:127-134. [PMID: 37738902 DOI: 10.1016/j.bbrc.2023.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Homeodomain (HD)-containing proteins are typically recognized as transcription factors. Engrailed 2 (EN2) is an HD-containing protein that is highly expressed in various types of cancers, however, the mechanism underlying the biological function of EN2 is not fully understood. Here, we report a transcription-independent function of EN2 in addition to its role as a transcription factor. EN2 expression leads to the activation of multiple signaling pathways mediated by phosphorylation cascades. A phosphoproteomic analysis revealed that the phosphorylation status of numerous protein sites was altered after EN2 is expressed. Notably, EN2 was shown to interact with a myriad of proteins implicated in phosphorylation signaling cascades, as determined by immunoprecipitation-mass spectrometry (IP-MS). We validated the interaction between EN2 and B55α, the regulatory subunit of the PP2A-B55α complex, and confirmed that the phosphatase activity of the complex was suppressed by EN2 binding. To target EN2-induced malignancy, two kinds of small molecules were utilized to inhibit the EN2-activated NF-κB and AKT signaling pathways. A clear synergistic effect was observed when the activation of the two pathways was simultaneously blocked. Collectively, the data show that EN2 functions in a transcription-independent manner in addition to its role as a transcription factor. This finding may have therapeutic implications in treating esophageal squamous cell carcinoma (ESCC).
Collapse
Affiliation(s)
- Yong Cao
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Molecular Cancer, Luzhou, 646000, Sichuan, China
| | - Jie Jiang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xueqin Song
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Molecular Cancer, Luzhou, 646000, Sichuan, China
| | - Xiaoyan Wang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Molecular Cancer, Luzhou, 646000, Sichuan, China
| | - Fang Huang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Molecular Cancer, Luzhou, 646000, Sichuan, China
| | - Yan Li
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Molecular Cancer, Luzhou, 646000, Sichuan, China
| | - Li Tang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Molecular Cancer, Luzhou, 646000, Sichuan, China
| | - Mingying Li
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Molecular Cancer, Luzhou, 646000, Sichuan, China
| | - Zhuang Chen
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Molecular Cancer, Luzhou, 646000, Sichuan, China
| | - Feng Chen
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Molecular Cancer, Luzhou, 646000, Sichuan, China
| | - Haisu Wan
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Molecular Cancer, Luzhou, 646000, Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
118
|
Pinheiro AV, Petrucci GN, Dourado A, Pires I. Anaesthesia in Veterinary Oncology: The Effects of Surgery, Volatile and Intravenous Anaesthetics on the Immune System and Tumour Spread. Animals (Basel) 2023; 13:3392. [PMID: 37958147 PMCID: PMC10648213 DOI: 10.3390/ani13213392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/11/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Throughout the course of oncological disease, the majority of patients require surgical, anaesthetic and analgesic intervention. However, during the perioperative period, anaesthetic agents and techniques, surgical tissue trauma, adjuvant drugs for local pain and inflammation and other non-pharmacological factors, such as blood transfusions, hydration, temperature and nutrition, may influence the prognosis of the disease. These factors significantly impact the oncologic patient's immune response, which is the primary barrier to tumour progress, promoting a window of vulnerability for its dissemination and recurrence. More research is required to ascertain which anaesthetics and techniques have immunoprotective and anti-tumour effects, which will contribute to developing novel anaesthetic strategies in veterinary medicine.
Collapse
Affiliation(s)
- Ana Vidal Pinheiro
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.D.); (I.P.)
| | - Gonçalo N. Petrucci
- Onevetgroup Hospital Veterinário do Porto (HVP), 4250-475 Porto, Portugal;
- Center for Investigation Vasco da Gama (CIVG), Department of Veterinary Sciences, Vasco da Gama University School (EUVG), 3020-210 Coimbra, Portugal
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Amândio Dourado
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.D.); (I.P.)
- Onevetgroup Hospital Veterinário do Porto (HVP), 4250-475 Porto, Portugal;
| | - Isabel Pires
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.D.); (I.P.)
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| |
Collapse
|
119
|
Wang K, Zhang Y, Ao M, Luo H, Mao W, Li B. Multi-omics analysis defines a cuproptosis-related prognostic model for ovarian cancer: Implication of WASF2 in cuproptosis resistance. Life Sci 2023; 332:122081. [PMID: 37717621 DOI: 10.1016/j.lfs.2023.122081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Ovarian cancer (OVC) is one of the deadliest and most aggressive tumors in women, with an increasing incidence in recent years. Cuproptosis, a newly discovered type of programmed cell death, is caused by intracellular copper-mediated lipoylated protein aggregation and proteotoxic stress. However, the role of cuproptosis-related features in OVC remains elusive. METHODS The single-cell sequencing data from GSE154600 and bulk transcriptome data of 378 OVC patients from TCGA database. The RNA-seq and clinical data of 379 OVC patients in GSE140082 and 173 OV patients in GSE53963. The PROGENy score was calculated to assess tumor-associated pathways. Based on gene set enrichment analysis (GSEA) of the cuproptosis pathway, the single cells were divided into the cuproptosishigh and cuproptosislow groups. The differentially expressed genes (DEGs) between the two groups were screened, and 47 prognosis-related genes were identified based on univariate cox regression analysis. Randomforest was used to construct a prognostic model. Immuno-infiltration analysis was performed using ssGSEA and xCell algorithms. In vitro and in vivo experiments were used for functional verification. RESULTS Six major cell populations was identified, including fibroblast, T cell, myeloid, epithelial cell, endothelial cell, and B cell populations. The PROGENy score which revealed significant activation of the PI3K pathway in T and B cells, and activation of the TGF-β pathway in endothelial cells and fibroblasts. TIMM8B, COX8A, SSR4, HIGD2A, WASF2, PRDX5 and CLDN4 were selected to construct a prognostic model from the identified 47 prognosis-related genes. Furthermore, the cuproptosishigh and cuproptosislow groups showed significant differences in the expression levels of the model genes, immune cell infiltration, and sensitivity to six potential drug candidates. The functional experiments showed that WASF2 is associated with cuproptotic resistance and promotes cancer cell proliferation and resistance to platinum, and its high expression is associated with poor prognosis of OVC patients. CONCLUSION A clinically significant cuproptosis-related prognostic model was identified which can accurately predict the prognosis and immune characteristics of OVC patients. WASF2, one of the cuproptosis-related gene in the risk model, promotes the proliferation and platinum resistance of OVC cells, and leads poor prognosis.
Collapse
Affiliation(s)
- Kunyu Wang
- Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yanan Zhang
- Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Miao Ao
- Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Haixia Luo
- Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wei Mao
- Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bin Li
- Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
120
|
Maino Vieytes CA, Rozek LS, Wolf GT, Arthur AE. Associations Between Diet Quality and Proinflammatory Cytokines in Newly Diagnosed Head and Neck Cancer Survivors. Curr Dev Nutr 2023; 7:102015. [PMID: 37964946 PMCID: PMC10641111 DOI: 10.1016/j.cdnut.2023.102015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/16/2023] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is a class of heterogenous cancers involving the upper aerodigestive tract. We previously demonstrated the utility of a priori diet quality indices for predicting survival after an HNSCC diagnosis. The aim of this analysis was to evaluate the role of those a priori diet quality indices and proinflammatory cytokines in newly diagnosed HNSCC survivors. Methods We analyzed cross-sectional data from a sample (n = 146; mean age 59.6 y; 79.3% male) from the University of Michigan Head and Neck Specialized Program of Research Excellence prospective longitudinal cohort study. Dietary intake was measured at pretreatment using a food frequency questionnaire. Serum samples were also collected at pretreatment. Covariate-adjusted proportional odds and logistic regression models were used to assess the relationship between 6 diet quality indices (Alternative Healthy Eating Index [AHEI]-2010, Alternate Mediterranean Diet, Dietary Approaches to Stop Hypertension [DASH], and 3 low-carbohydrate indices) and serum measures of a panel of 10 inflammatory cytokines and a cytokine summary composite score. Results Higher scores on the AHEI-2010 and DASH diet quality indices were associated with higher odds of lower cytokine value scores for several cytokines and for the cytokine summary composite score (AHEI-2010-odds ratio [OR]: 1.55; 95% confidence interval [CI]: 1.10, 2.20; DASH-OR: 1.65; 95% CI 1.15, 2.36). Conclusions Higher scores on the AHEI-2010 and DASH diet quality indices may be associated with lower proinflammatory cytokine levels in HNSCC survivors.
Collapse
Affiliation(s)
| | - Laura S. Rozek
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Gregory T. Wolf
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, United States
| | - Anna E. Arthur
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
121
|
Elmetwalli A, Hashish SM, Hassan MG, El-Magd MA, El-Naggar SA, Tolba AM, Salama AF. Modulation of the oxidative damage, inflammation, and apoptosis-related genes by dicinnamoyl-L-tartaric acid in liver cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3087-3099. [PMID: 37160480 PMCID: PMC10567854 DOI: 10.1007/s00210-023-02511-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Cancer cells can become resistant to existing treatments over time, so it is important to develop new treatments that target different pathways to stay ahead of this resistance. Many cancer treatments have severe side effects that can be debilitating and even life-threatening. Developing drugs that can effectively treat cancer while minimizing the risks of these side effects is essential for improving the quality of life of cancer patients. The study was designed to explore whether the combination of dicinnamoyl-L-tartaric (CLT) and sorafenib ((SOR), an anti-cancer drug)) could be used to treat hepatocellular carcinoma (HCC) in the animal model and to assess whether this combination would lead to changes in certain biomarkers associated with the tumour. In this study, 120 male mice were divided into 8 groups of 15 mice each. A number of biochemical parameters were measured, including liver functions, oxidative stress (malondialdehyde, (MDA); nitric oxide (NO)), and antioxidative activity (superoxide dismutase (SOD), and glutathione peroxidase (GPx)). Furthermore, the hepatic expressions of Bax, Beclin1, TNF-α, IL1β, and BCl-2 genes were evaluated by qRT-PCR. The combination of SOR and CLT was found to reduce the levels of liver enzymes, such as AST, ALT, ALP, and GGT, and reduce the pathological changes caused by DAB and PB. The upregulation of TNF-α, IL1β, and Bcl-2 genes suggests that the CLT was able to initiate an inflammatory response to combat the tumor, while the downregulation of the Bax and Beclin1 genes indicates that the CLT was able to reduce the risk of apoptosis in the liver. Furthermore, the combination therapy led to increased expression of cytokines, resulting in an enhanced anti-tumor effect.
Collapse
Affiliation(s)
- Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| | - Shimaa Mustafa Hashish
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mervat G Hassan
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, 33516, Egypt
| | - Mohammed Abu El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | | - Amina M Tolba
- Department of Anatomy, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Afrah Fatthi Salama
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
122
|
Zeng L, Liu L, Ni WJ, Xie F, Leng XM. Circular RNAs in osteosarcoma: An update of recent studies (Review). Int J Oncol 2023; 63:123. [PMID: 37681483 DOI: 10.3892/ijo.2023.5571] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/20/2023] [Indexed: 09/09/2023] Open
Abstract
Osteosarcoma (OS) prevailing in children and adolescents mainly occurs at the metaphysis of long bones. As it is associated with a high invasive and metastatic ability, resistance to chemotherapy, and a low 5‑year survival rate, the diagnosis and treatment of OS post a global healthy issue. Over the past decades, RNA biology has shed new light onto the pathogenesis of OS. As a type of non‑coding RNAs, circular RNAs (circRNAs) have been found to play crucial roles in cellular activities. Recently, a large number of circRNAs have been identified in OS and some of them have been validated to be functional in OS. In the present review, abnormally expressed and different types of circRNAs in OS are summarized. Functional studies on circRNAs have revealed that circRNAs can regulate gene expression at different levels, such as gene transcription, precursor mRNA splicing, miRNA sponges and translation into proteins/peptides. Mechanistic analyses on circRNAs show that circRNAs can regulate JAK‑STAT3, NF‑κB, PI3K‑AKT, Wnt/β‑catenin signaling pathways during the occurrence and development of OS. Furthermore, the potential clinical applications of circRNAs are also emphasized. The present review focus on the current knowledge on the functions and mechanisms of circRNAs in the pathogenesis of OS, aiming to provide new insight into the OS diagnosis and treatment of OS.
Collapse
Affiliation(s)
- Le Zeng
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Longzhou Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Wen-Juan Ni
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Fuhua Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Xiao-Min Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
123
|
Zhu W, Yu Y, Ye Y, Tu X, Zhang Y, Wu T, Ni L, Huang X, Wang Y, Cui R. MiR-196b-5p activates NF-κB signaling in non-small cell lung cancer by directly targeting NFKBIA. Transl Oncol 2023; 37:101755. [PMID: 37595393 PMCID: PMC10458993 DOI: 10.1016/j.tranon.2023.101755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/06/2023] [Accepted: 08/02/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Our recent study found that QKI-5 regulated miRNA, miR-196b-5p, promotes non-small cell lung cancer (NSCLC) progression by directly targeting GATA6, TSPAN12 and FAS. However, the biological functions of miR-196b-5p in NSCLC progression and metastasis still remain elusive. METHODS Cell proliferation, migration, colony formation, cell cycle assays were used to investigate cellular phenotypic changes. Quantitative real-time PCR (qRT-PCR) and western blot analyses were used to measure expressions of relative gene and protein. Interaction between QKI-5 and miR-196b-5p was determined by RNA immunoprecipitation (RIP) assay. Luciferase reporter assay was used to determine direct binding between miR-196b-5p and NFKBIA 3'-UTR. ELISA assay was used to measure secreted IL6 proteins. Mice xenograft model was used to assess the functions of NFKBIA on in vivo tumor growth. RESULTS We demonstrated that the miR-196b-5p facilitates lung cancer cell proliferation, migration, colony formation, and cell cycle by directly targeting NFKBIA, a negative regulator of NFκB signaling. Knocking down NFKBIA increases IL6 mediated phosphorylation of signal transducer and activator of transcription 3 (STAT3) to promote lung cancer cell growth by activating NFκB signaling. The expression of NFKBIA was significantly downregulated in NSCLC tissue samples, and was negatively correlated with the expression miR-196b-5p. In addition, we found that downregulated QKI-5 expression was associated with the elevated miR-224 expression in NSCLC. CONCLUSIONS Our findings indicated that the miR-224/QKI-5/miR-196b-5p/NFKBIA signaling pathway might play important functions in the progression of NSCLC, and suggested that targeting this pathway might be an effective therapeutic strategy in treating NSCLC.
Collapse
Affiliation(s)
- Wangyu Zhu
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang 316020, China; Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yun Yu
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang 316020, China; Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuxin Ye
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xinyue Tu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yan Zhang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Tao Wu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lianli Ni
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiangjie Huang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yumin Wang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Ri Cui
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang 316020, China; Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
124
|
Tian Q, Zhang P, Wang Y, Si Y, Yin D, Weber CR, Fishel ML, Pollok KE, Qiu B, Xiao F, Chong AS. A novel triptolide analog downregulates NF-κB and induces mitochondrial apoptosis pathways in human pancreatic cancer. eLife 2023; 12:e85862. [PMID: 37877568 PMCID: PMC10861173 DOI: 10.7554/elife.85862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 10/24/2023] [Indexed: 10/26/2023] Open
Abstract
Pancreatic cancer is the seventh leading cause of cancer-related death worldwide, and despite advancements in disease management, the 5 -year survival rate stands at only 12%. Triptolides have potent anti-tumor activity against different types of cancers, including pancreatic cancer, however poor solubility and toxicity limit their translation into clinical use. We synthesized a novel pro-drug of triptolide, (E)-19-[(1'-benzoyloxy-1'-phenyl)-methylidene]-Triptolide (CK21), which was formulated into an emulsion for in vitro and in vivo testing in rats and mice, and used human pancreatic cancer cell lines and patient-derived pancreatic tumor organoids. A time-course transcriptomic profiling of tumor organoids treated with CK21 in vitro was conducted to define its mechanism of action, as well as transcriptomic profiling at a single time point post-CK21 administration in vivo. Intravenous administration of emulsified CK21 resulted in the stable release of triptolide, and potent anti-proliferative effects on human pancreatic cancer cell lines and patient-derived pancreatic tumor organoids in vitro, and with minimal toxicity in vivo. Time course transcriptomic profiling of tumor organoids treated with CK21 in vitro revealed <10 differentially expressed genes (DEGs) at 3 hr and ~8,000 DEGs at 12 hr. Overall inhibition of general RNA transcription was observed, and Ingenuity pathway analysis together with functional cellular assays confirmed inhibition of the NF-κB pathway, increased oxidative phosphorylation and mitochondrial dysfunction, leading ultimately to increased reactive oxygen species (ROS) production, reduced B-cell-lymphoma protein 2 (BCL2) expression, and mitochondrial-mediated tumor cell apoptosis. Thus, CK21 is a novel pro-drug of triptolide that exerts potent anti-proliferative effects on human pancreatic tumors by inhibiting the NF-κB pathway, leading ultimately to mitochondrial-mediated tumor cell apoptosis.
Collapse
Affiliation(s)
- Qiaomu Tian
- Department of Surgery, The University of ChicagoChicagoUnited States
| | - Peng Zhang
- Cinkate Pharmaceutical Corp, ZhangJiang DistrictShanghaiChina
| | - Yihan Wang
- Department of Surgery, The University of ChicagoChicagoUnited States
| | - Youhui Si
- Department of Surgery, The University of ChicagoChicagoUnited States
| | - Dengping Yin
- Department of Surgery, The University of ChicagoChicagoUnited States
| | | | - Melissa L Fishel
- Department of Pediatrics, Indiana UniversityIndianapolisUnited States
| | - Karen E Pollok
- Department of Pediatrics, Indiana UniversityIndianapolisUnited States
| | - Bo Qiu
- Cinkate Pharmaceutical Corp, ZhangJiang DistrictShanghaiChina
| | - Fei Xiao
- Cinkate Pharmaceutical Corp, ZhangJiang DistrictShanghaiChina
| | - Anita S Chong
- Department of Surgery, The University of ChicagoChicagoUnited States
| |
Collapse
|
125
|
Despot A, Fureš R, Despot AM, Mikuš M, Zlopaša G, D’Amato A, Chiantera V, Serra P, Etrusco A, Laganà AS. Reactive oxygen species within the vaginal space: An additional promoter of cervical intraepithelial neoplasia and uterine cervical cancer development? Open Med (Wars) 2023; 18:20230826. [PMID: 37873540 PMCID: PMC10590607 DOI: 10.1515/med-2023-0826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023] Open
Abstract
Uterine cervical intraepithelial abnormalities and cancer development may also depend upon biological problems that arise as a result of complex molecular disturbances within the vaginal space, in addition to the widely known causative effect of human papillomavirus (HPV) infection. Chronic oxidative stress is a consequence of oxygen reduction in the vaginal space. Reactive oxygen species (ROS) and free radicals are yet unrecognizable causative agents and are probably very important factors for cervical intraepithelial neoplasia (CIN) and cancer development. The intermediate compounds of oxygen reduction on these metabolic pathways are superoxide anion (O 2 ˙ - ), hydrogen peroxide (H2O2), hydroxide ions (OH-), and hydroxyl radical (HO˙). Considering these points, the aim of this work was to summarize how these compounds can damage all molecules, including DNA, of vulnerable metaplastic cervical epithelium. Finally, in some women with a poor immune defense system, ROS alone or accompanied by a high-risk HPV type may promote all levels of CIN and cancer development.
Collapse
Affiliation(s)
- Albert Despot
- School of Medicine, University of Zagreb, 10000Zagreb, Croatia
| | - Rajko Fureš
- Department of Obstetrics and Gynecology, General Hospital Zabok, 49210Zabok, Croatia
| | - Ana-Marija Despot
- Faculty of Food Technology and Biotechnology, University of Zagreb, 1000Zagreb, Croatia
| | - Mislav Mikuš
- Department of Obstetrics and Gynecology, Clinical Hospital Center Zagreb, 1000Zagreb, Croatia
| | - Gordan Zlopaša
- Department of Obstetrics and Gynecology, Clinical Hospital Center Zagreb, 1000Zagreb, Croatia
| | - Antonio D’Amato
- Unit of Obstetrics and Gynecology, Department of Biomedical and Human Oncological Science, University of Bari, 70100Bari, Italy
| | - Vito Chiantera
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127Palermo, Italy
- Unit of Gynecologic Oncology, National Cancer Institute – IRCCS – Fondazione “G. Pascale”, 80131Naples, Italy
| | - Pietro Serra
- Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, 90127Palermo, Italy
| | - Andrea Etrusco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127Palermo, Italy
- Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, 90127Palermo, Italy
| | - Antonio Simone Laganà
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127Palermo, Italy
- Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, 90127Palermo, Italy
| |
Collapse
|
126
|
Dewdney B, Jenkins MR, Best SA, Freytag S, Prasad K, Holst J, Endersby R, Johns TG. From signalling pathways to targeted therapies: unravelling glioblastoma's secrets and harnessing two decades of progress. Signal Transduct Target Ther 2023; 8:400. [PMID: 37857607 PMCID: PMC10587102 DOI: 10.1038/s41392-023-01637-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Glioblastoma, a rare, and highly lethal form of brain cancer, poses significant challenges in terms of therapeutic resistance, and poor survival rates for both adult and paediatric patients alike. Despite advancements in brain cancer research driven by a technological revolution, translating our understanding of glioblastoma pathogenesis into improved clinical outcomes remains a critical unmet need. This review emphasises the intricate role of receptor tyrosine kinase signalling pathways, epigenetic mechanisms, and metabolic functions in glioblastoma tumourigenesis and therapeutic resistance. We also discuss the extensive efforts over the past two decades that have explored targeted therapies against these pathways. Emerging therapeutic approaches, such as antibody-toxin conjugates or CAR T cell therapies, offer potential by specifically targeting proteins on the glioblastoma cell surface. Combination strategies incorporating protein-targeted therapy and immune-based therapies demonstrate great promise for future clinical research. Moreover, gaining insights into the role of cell-of-origin in glioblastoma treatment response holds the potential to advance precision medicine approaches. Addressing these challenges is crucial to improving outcomes for glioblastoma patients and moving towards more effective precision therapies.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia.
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia.
| | - Misty R Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Sarah A Best
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Saskia Freytag
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Krishneel Prasad
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Jeff Holst
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Raelene Endersby
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| | - Terrance G Johns
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
127
|
Sun J, Chen F, Wu G. Role of NF-κB pathway in kidney renal clear cell carcinoma and its potential therapeutic implications. Aging (Albany NY) 2023; 15:11313-11330. [PMID: 37847185 PMCID: PMC10637793 DOI: 10.18632/aging.205129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
Kidney renal clear cell carcinoma (KIRC), a common malignant tumor of the urinary system, is the most aggressive renal tumor subtype. Since the discovery of nuclear factor kappa B (NF-κB) in 1986, many studies have demonstrated abnormal NF-κB signaling is associated with the development of various cancers, including kidney renal clear cell carcinoma. In this study, the relationship between NF-κB and kidney renal clear cell carcinoma was confirmed using bioinformatics analysis. First, we explored the differential expression of copy number variation (CNV), single nucleotide variant (SNV), and messenger RNA (mRNA) in NF-κB-related genes in different types of cancer, as well as the impact on cancer prognosis and sensitivity to common chemotherapy drugs. Then, we divided the mRNA expression levels of NF-κB-related genes in KIRC patients into three groups through GSVA cluster analysis and explored the correlation between the NF-κB pathway and clinical data of KIRC patients, classical cancer-related genes, common anticancer drug responsiveness, and immune cell infiltration. Finally, 11 tumor-related genes were screened using least absolute shrinkage and selection operator (LASSO) regression to construct a prognostic model. In addition, we used the UALCAN and HPA databases to verify the protein levels of three key NF-κB-related genes (CHUK, IKGGB, and IKBKG) in KIRC. In conclusion, our study established a prognostic survival model based on NF-κB-related genes, which can be used to predict the prognosis of patients with KIRC.
Collapse
Affiliation(s)
- Jiaao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Feng Chen
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
128
|
Huang K, Liu Z, Kim MO, Kim KR. Anticancer effects of gossypetin from Hibiscus sabdariffa in oral squamous cell carcinoma. J Appl Oral Sci 2023; 31:e20230243. [PMID: 37820185 PMCID: PMC10561964 DOI: 10.1590/1678-7757-2023-0243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVE Gossypetin, isolated from Hibiscus sabdariffa L, has been shown to have various pharmacological effects including anti-inflammatory and antibacterial activity against various diseases. However, since the effect of gossypetin in oral cancer remains to be reported, we aimed to investigate the anticancer activity and mechanisms of gossypetin in oral squamous cell carcinoma (OSCC). METHODOLOGY The proliferation of OSCC cells was evaluated by cell viability and soft agar colony assays. The effects of gossypetin on the migration and invasion of OSCC cells was investigated by wound healing and transwell invasion assays, respectively. Apoptosis and cell cycle arrest were measured by flow cytometry. Moreover, the anticancer mechanism of gossypetin in OSCC cells was analyzed by western blotting. RESULTS Gossypetin inhibited the proliferation, migration, and invasion of OSCC cells and induced apoptosis by upregulating the Bax/Bcl-2 ratio and cell cycle arrest at the G2/M phase. Furthermore, gossypetin regulated the activation of extracellular signal-regulated kinase and nuclear factor-kappa B. CONCLUSION Results showed that gossypetin inhibits the proliferation, migration, and invasion of OSCC cells and triggers apoptosis and cell cycle arrest in OSCC. Therefore, gossypetin has the potential for use as a chemopreventive agent in oral cancer.
Collapse
Affiliation(s)
- Ke Huang
- Kyungpook National University, Graduate School of Science and Technology, Department of Dental Hygiene, Sangju 37224, Republic of Korea
- Kyungpook National University, Research Center for Horse Industry, Department of Animal Science and Biotechnology, Sangju 37224, Republic of Korea
| | - Zhibin Liu
- Kyungpook National University, Graduate School of Science and Technology, Department of Dental Hygiene, Sangju 37224, Republic of Korea
- Kyungpook National University, Research Center for Horse Industry, Department of Animal Science and Biotechnology, Sangju 37224, Republic of Korea
| | - Myoung-Ok Kim
- Kyungpook National University, Research Center for Horse Industry, Department of Animal Science and Biotechnology, Sangju 37224, Republic of Korea
| | - Ki-Rim Kim
- Kyungpook National University, Graduate School of Science and Technology, Department of Dental Hygiene, Sangju 37224, Republic of Korea
| |
Collapse
|
129
|
Zhao C, Zhou X, Cao Z, Ye L, Cao Y, Pan J. Curcumin and analogues against head and neck cancer: From drug delivery to molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154986. [PMID: 37506572 DOI: 10.1016/j.phymed.2023.154986] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is one of the most life-threatening diseases which also causes economic burden worldwide. To overcome the limitations of traditional therapies, investigation into alternative adjuvant treatments is crucial. PURPOSE Curcumin, a turmeric-derived compound, demonstrates significant therapeutic potential in diverse diseases, including cancer. Furthermore, research focuses on curcumin analogues and novel drug delivery systems, offering approaches for improved efficacy. This review aims to provide a comprehensive overview of curcumin's current findings, emphasizing its mechanisms of anti-HNSCC effects and potential for clinical application. METHOD An electronic search of Web of Science, MEDLINE, and Embase was conducted to identify literature about the application of curcumin or analogues in HNSCC. Titles and abstracts were screened to identify potentially eligible studies. Full-text articles will be obtained and independently evaluated by two authors to make the decision of inclusion in the review. RESULTS Curcumin's clinical application is hindered by poor bioavailability, prompting the exploration of methods to enhance it, such as curcumin analogues and novel drug delivery systems. Curcumin could exhibit anti-cancer effects by targeting cancer cells and modulating the tumor microenvironment in HNSCC. Mechanisms of action include cell cycle arrest, apoptosis promotion, reactive oxygen species induction, endoplasmic reticulum stress, inhibition of epithelial-mesenchymal transition, attenuation of extracellular matrix degradation, and modulation of tumor metabolism in HNSCC cells. Curcumin also targets various components of the tumor microenvironment, including cancer-associated fibroblasts, innate and adaptive immunity, and lymphovascular niches. Furthermore, curcumin enhances the anti-cancer effects of other drugs as adjunctive therapy. Two clinical trials report its potential clinical applications in treating HNSCC. CONCLUSION Curcumin has demonstrated therapeutic potential in HNSCC through in vitro and in vivo studies. Its effectiveness is attributed to its ability to modulate cancer cells and interact with the intricate tumor microenvironment. The development of curcumin analogues and novel drug delivery systems has shown promise in improving its bioavailability, thereby expanding its clinical applications. Further research and exploration in this area hold great potential for harnessing the full therapeutic benefits of curcumin in HNSCC treatment.
Collapse
Affiliation(s)
- Chengzhi Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China
| | - Xueer Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China
| | - Zhiwei Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China
| | - Li Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China.
| | - Jian Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China.
| |
Collapse
|
130
|
Tao JY, Li J, Wan L, Dong BZ, Yu YJ, Liu YM, Yi ML, Wan LP. Orientin regulates the proliferation and migration of hepatocellular carcinoma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2519-2528. [PMID: 37178274 DOI: 10.1007/s00210-023-02472-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/21/2023] [Indexed: 05/15/2023]
Abstract
Orientin is a flavone isolated from medicinal plants used in traditional Chinese medicine (TCM) that suppresses the growth of cancer cells in vitro. The effects of orientin in hepatoma carcinoma cells remain unknown. The aim of this paper is to investigate the effects of orientin on the viability, proliferation, and migration of hepatocellular carcinoma cells in vitro. In this study, we found that orientin could inhibit the proliferation, migration, and the activation of NF-κB signaling pathway in hepatocellular carcinoma cells. An activator of NF-κB signaling pathway, PMA, could abolish the inhibitory effect of orientin on NF-κB signaling pathway and proliferation and migration of Huh7 cells. These findings raise the possibility that orientin can be used in the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jia-Yi Tao
- Department of Urology, Huanggang Central Hospital, Huanggang, China
| | - Jing Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu Wan
- Department of Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Bi-Zhen Dong
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Yong-Jie Yu
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Ye-Mao Liu
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Mao-Lin Yi
- Surgery of Mammary Gland and Thyroid Gland, Huanggang Central Hospital, Huanggang, China.
| | - Li-Peng Wan
- Department of Emergency Medicine, Huanggang Central Hospital, Huanggang, China.
| |
Collapse
|
131
|
Chandel S, Bhattacharya A, Gautam A, Zeng W, Alka O, Sachsenberg T, Gupta GD, Narang RK, Ravichandiran V, Singh R. Investigation of the anti-cancer potential of epoxyazadiradione in neuroblastoma: experimental assays and molecular analysis. J Biomol Struct Dyn 2023; 42:11377-11395. [PMID: 37753734 DOI: 10.1080/07391102.2023.2262593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
Neuroblastoma, the most common childhood solid tumor, originates from primitive sympathetic nervous system cells. Epoxyazadiradione (EAD) is a limonoid derived from Azadirachta indica, belonging to the family Meliaceae. In this study, we isolated the EAD from Azadirachta indica seed and studied the anti-cancer potential against neuroblastoma. Herein, EAD demonstrated significant efficacy against neuroblastoma by suppressing cell proliferation, enhancing the rate of apoptosis and cycle arrest at the SubG0 and G2/M phases. EAD enhanced the pro-apoptotic Caspase 3 and Caspase 9 and inhibited the NF-kβ translocation in a dose-dependent manner. In order to identify the specific EAD target, a gel-free quantitative proteomics study on SH-SY5Y cells using Liquid Chromatography with tandem mass spectrometry was done in a dose-dependent manner, followed by detailed bioinformatics analysis to identify effects on protein. Proteomics data identified that Enolase1 and HSP90 were up-regulated in neuroblastoma. EAD inhibited the expression of Enolase1 and HSP90, validated by mRNA expression, immunoblotting, Enolase1 and HSP90 kit and flow-cytometry based bioassay. Molecular docking study, Molecular dynamic simulation, and along with molecular mechanics/Poisson-Boltzmann surface area analysis also suggested that EAD binds at the active site of the proteins and were stable throughout the 100 ns Molecular dynamic simulation study. Overall, this study suggested EAD exhibited anti-cancer activity against neuroblastoma by targeting Enolase1 and HSP90 pathways.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Arka Bhattacharya
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| | - Wenhuan Zeng
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Oliver Alka
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Timo Sachsenberg
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen, Germany
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - V Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
132
|
Király J, Szabó E, Fodor P, Fejes Z, Nagy B, Juhász É, Vass A, Choudhury M, Kónya G, Halmos G, Szabó Z. Shikonin Causes an Apoptotic Effect on Human Kidney Cancer Cells through Ras/MAPK and PI3K/AKT Pathways. Molecules 2023; 28:6725. [PMID: 37764501 PMCID: PMC10534756 DOI: 10.3390/molecules28186725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Shikonin, the main ingredient in Chinese herbal medicine, is described as a novel angiogenesis inhibitor, and its anticancer effects have already been studied. Shikonin and its derivatives induce apoptosis and suppress metastasis, which further enhance the effectiveness of chemotherapy. However, their mechanism of function has not been completely elucidated on human renal cancer cells. (2) Methods: In our study, CAKI-2 and A-498 cells were treated with increasing concentrations (2.5-40 µM) of shikonin, when colony formation ability and cytotoxic activity were tested. The changes in the expression of the main targets of apoptotic pathways were measured by RT-qPCR and Western blot. The intracellular levels of miR-21 and miR-155 were quantified by RT-qPCR. (3) Results: Shikonin exerted a dose-dependent effect on the proliferation of the cell lines examined. In 5 µM concentration of shikonin in vitro elevated caspase-3 and -7 levels, the proteins of the Ras/MAPK and PI3K/AKT pathways were activated. However, no significant changes were detected in the miR-21 and miR-155 expressions. (4) Conclusions: Our findings indicated that shikonin causes apoptosis of renal cancer cells by activating the Ras/MAPK and PI3K/AKT pathways. These effects of shikonin on renal cancer cells may bear important potential therapeutic implications for the treatment of renal cancer.
Collapse
Affiliation(s)
- József Király
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (G.K.); (G.H.)
| | - Erzsébet Szabó
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
- HUN-RE-DE Pharmamodul Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Petra Fodor
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (G.K.); (G.H.)
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.F.); (B.N.J.)
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.F.); (B.N.J.)
| | - Éva Juhász
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Anna Vass
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (G.K.); (G.H.)
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, College Station, TX 77845, USA;
| | - Gábor Kónya
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (G.K.); (G.H.)
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (G.K.); (G.H.)
| | - Zsuzsanna Szabó
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (G.K.); (G.H.)
| |
Collapse
|
133
|
Lin X, Yang S, Zhou C, Ao C, Sun D. The NEDD8-activating enzyme E1 UBA3 orchestrates the immunosuppressive microenvironment in lung adenocarcinoma via the NF-кB pathway. Med Oncol 2023; 40:286. [PMID: 37656220 PMCID: PMC10474176 DOI: 10.1007/s12032-023-02162-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Immunosuppressive cells play important roles in generating an immunosuppressive tumor microenvironment and facilitating tumor immune escape. However, the molecular mechanisms underlying their immunosuppressive effects remain unclear. UBA3, the sole catalytic subunit of the neural precursor cell expressed developmentally down-regulated protein 8 (NEDD8)-activating enzyme E1, is highly expressed in various human malignancies, along with an activated neddylation pathway. In this study, we investigated the relationships between the UBA3-dependent neddylation pathway and the infiltration of several immunosuppressive cell populations in lung adenocarcinoma (LUAD). We explored the regulatory mechanisms of UBA3 in LUAD cells by using mRNA sequencing and functional enrichment analyses. Correlations between neddylation and immune infiltrates were assessed by Western blotting, real-time PCR, and analyses of public databases. We found elevated levels of UBA3 expression in LUAD tissues compared to adjacent normal tissues. Blocking UBA3 and the neddylation pathway promoted the accumulation of the phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (p-IκBα), inhibiting the gene expression of tumor cell-derived cytokines such as C-C motif chemokine ligand (CCL) 2, C-X-C motif ligand (CXCL)1, CXCL2, colony-stimulating factor (CSF) 1, CSF2 interleukin (IL)-6, and IL-1B. Moreover, the overexpression of UBA3 in LUAD cells was associated with the secretion of these cytokines, and the recruitment and infiltration of immunosuppressive cells including tumor-associated macrophages (TAMs), plasmacytoid dendritic cells (pDCs), Th2 cells and T-regulatory cells (Tregs). This could facilitate the tumor immune escape and malignant progression of LUAD. Our findings provide new insights into the role of UBA3 in establishing an immunosuppressive tumor microenvironment by modulating nuclear factor kappa B (NF-кB) signaling and the neddylation pathway.
Collapse
Affiliation(s)
- Xiongzhi Lin
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
- Graduate School of Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Shuhan Yang
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
- Medical School, Taizhou University, Taizhou, Zhejiang, China
| | - Caichuan Zhou
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
- Medical School, Taizhou University, Taizhou, Zhejiang, China
| | - Chengcheng Ao
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
- Medical School, Taizhou University, Taizhou, Zhejiang, China
| | - Dongsheng Sun
- Medical School, Taizhou University, Taizhou, Zhejiang, China.
| |
Collapse
|
134
|
Zhou R, Jin C, Jiao L, Zhang S, Tian M, Liu J, Yang S, Yao W, Zhou F. Geranylgeranylacetone, an inducer of heat shock protein 70, attenuates pulmonary fibrosis via inhibiting NF-κB/NOX4/ROS signalling pathway in vitro and in vivo. Chem Biol Interact 2023; 382:110603. [PMID: 37307957 DOI: 10.1016/j.cbi.2023.110603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/21/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating and progressive pulmonary disease which is characterized by epithelial cell damage and extracellular collagen deposition. To date, the therapeutic options for IPF are still very limited, so the relevant mechanisms need to be explored. Heat shock protein 70 (HSP70), which has protective versus antitumor effects on cells under stress, is a member of the heat shock protein family. In the current study, qRT-PCR, western blotting, immunofluorescence staining, and migration assays were used to explore the Epithelial-mesenchymal transition (EMT) process in BEAS-2B cells. Moreover, the role of GGA in the process of pulmonary fibrosis was detected by HE, Masson staining, pulmonary function test and immunohistochemistry in C57BL/6 mice. Our results indicated that GGA, as an inducer of HSP70, enhanced the transformation of BEAS-2B cells from epithelial to mesenchymal cells through the NF-κB/NOX4/ROS (reactive oxygen species) signalling pathway and could significantly reduce apoptosis of BEAS-2B cells induced by TGF-β1(Transforming growth factor β1) in vitro. In vivo studies demonstrated that HSP70-inducing drugs, such as GGA, attenuated pulmonary fibrosis progression induced by bleomycin (BLM). Collectively, these results suggested that overexpression of HSP70 attenuated pulmonary fibrosis induced by BLM in C57BL/6 mice and EMT process induced by TGF-β1 through NF-κB/NOX4/ROS pathway in vitro. Thus, HSP70 might be a potential therapeutic strategy for human lung fibrosis.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Chaomei Jin
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Linlin Jiao
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Siyu Zhang
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Mei Tian
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Jiamin Liu
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Songtai Yang
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Wu Yao
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Fang Zhou
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| |
Collapse
|
135
|
Chien TL, Wu YC, Lee HL, Sung WW, Yu CY, Chang YC, Lin CC, Wang CC, Tsai MC. PNU-74654 Induces Cell Cycle Arrest and Inhibits EMT Progression in Pancreatic Cancer. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1531. [PMID: 37763649 PMCID: PMC10532988 DOI: 10.3390/medicina59091531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: PNU-74654, a Wnt/β-catenin pathway inhibitor, has an antiproliferative effect on many cancer types; however, its therapeutic role in pancreatic cancer (PC) has not yet been demonstrated. Here, the effects of PNU-74654 on proliferation and cell cycle phase distribution were studied in PC cell lines. Materials and Methods: The cancer-related molecular pathways regulated by PNU-74654 were determined by a proteome profiling oncology array and confirmed by western blotting. Results: The cell viability and proliferative ability of PC cells were decreased by PNU-74654 treatment. G1 arrest was observed, as indicated by the downregulation of cyclin E and cyclin-dependent kinase 2 (CDK2) and the upregulation of p27. PNU-74654 inhibited the epithelial-mesenchymal transition (EMT), as determined by an increase in E-cadherin and decreases in N-cadherin, ZEB1, and hypoxia-inducible factor-1 alpha (HIF-1α). PNU-74654 also suppressed cytoplasmic and nuclear β-catenin and impaired the NF-κB pathway. Conclusions: These results demonstrate that PNU-74654 modulates G1/S regulatory proteins and inhibits the EMT, thereby suppressing PC cell proliferation, migration, and invasion. The synergistic effect of PNU-74654 and chemotherapy or the exclusive use of PNU-74654 may be therapeutic options for PC and require further investigation.
Collapse
Affiliation(s)
- Tai-Long Chien
- Department of Gastroenterology, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung 928, Taiwan
| | - Yao-Cheng Wu
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Hsiang-Lin Lee
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Wen-Wei Sung
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chia-Ying Yu
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Ya-Chuan Chang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chun-Che Lin
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chi-Chih Wang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Ming-Chang Tsai
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
136
|
Yang R, Han Y, Guan X, Hong Y, Meng J, Ding S, Long Q, Yi W. Regulation and clinical potential of telomerase reverse transcriptase (TERT/hTERT) in breast cancer. Cell Commun Signal 2023; 21:218. [PMID: 37612721 PMCID: PMC10463831 DOI: 10.1186/s12964-023-01244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023] Open
Abstract
Telomerase reverse transcriptase (TERT/hTERT) serves as the pivotal catalytic subunit of telomerase, a crucial enzyme responsible for telomere maintenance and human genome stability. The high activation of hTERT, observed in over 90% of tumors, plays a significant role in tumor initiation and progression. An in-depth exploration of hTERT activation mechanisms in cancer holds promise for advancing our understanding of the disease and developing more effective treatment strategies. In breast cancer, the expression of hTERT is regulated by epigenetic, transcriptional, post-translational modification mechanisms and DNA variation. Besides its canonical function in telomere maintenance, hTERT exerts non-canonical roles that contribute to disease progression through telomerase-independent mechanisms. This comprehensive review summarizes the regulatory mechanisms governing hTERT in breast cancer and elucidates the functional implications of its activation. Given the overexpression of hTERT in most breast cancer cells, the detection of hTERT and its associated molecules are potential for enhancing early screening and prognostic evaluation of breast cancer. Although still in its early stages, therapeutic approaches targeting hTERT and its regulatory molecules show promise as viable strategies for breast cancer treatment. These methods are also discussed in this paper. Video Abstract.
Collapse
Affiliation(s)
- Ruozhu Yang
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Yi Han
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Xinyu Guan
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Yue Hong
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Jiahao Meng
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Shirong Ding
- Department of Oncology, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| | - Qian Long
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| | - Wenjun Yi
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| |
Collapse
|
137
|
Wei J, Yin J, Cui Y, Wang K, Hong M, Cui J. FERM domain containing kindlin 1 knockdown attenuates inflammation induced by intracerebral hemorrhage in rats via NLR family pyrin domain containing 3/nuclear factor kappa B pathway. Exp Anim 2023; 72:324-335. [PMID: 36740252 PMCID: PMC10435358 DOI: 10.1538/expanim.22-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is an incurable neurological disease. Microglia activation and its related inflammation contribute to ICH-associated brain damage. FERM domain containing kindlin 1 (FERMT1) is an integrin-binding protein that participates in microglia-associated inflammation, but its role in ICH is unclear. An ICH model was constructed by injecting 50 µl of autologous blood into the bregma of rats. FERMT1 siRNA was injected into the right ventricle of the rat for knockdown of FERMT1. A significant striatal hematoma was observed in ICH rats. FERMT1 knockdown reduced the water content of brain tissue, alleviated brain hematoma and improved behavioral function in ICH rats. FERMT1 knockdown reduced microglia activity, inhibited NLR family pyrin domain containing 3 (NLRP3) inflammasome activity and decreased the expression of inflammatory factors including IL-1β and IL-18 in the peri-hematoma tissues. BV2 microglial cells were transfected with FERMT1 siRNA and incubated with 60 µM Hemin for 24 h. Activation of NLRP3 inflammasome induced by hemin were reduced in microglia when FERMT1 was knocked down, leading to decreased production of inflammatory factors IL-1β and IL-18. In addition, knockdown of FERMT1 prevented the activation of nuclear factor kappa B (NF-κB) signaling pathway in vivo and in vitro. Our findings suggested that down-regulation of FERMT1 attenuated microglial inflammation and brain damage induced by ICH via NLRP3/NF-κB pathway. FERMT1 is a key regulator of inflammatory damage in rats after ICH.
Collapse
Affiliation(s)
- Jianqiang Wei
- Department of Surgery, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, Hebei, P.R. China
- Department of Neurosurgery, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Jing Yin
- Department of Neurosurgery, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Ying Cui
- Department of Neurosurgery, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Kaijie Wang
- Department of Neurosurgery, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Mingyan Hong
- Department of Neurosurgery, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Jianzhong Cui
- Department of Surgery, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, Hebei, P.R. China
- Department of Neurosurgery, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| |
Collapse
|
138
|
Wang L, Jiang C, Hu D. PARP10 is highly expressed and associated with inferior outcomes in acute myeloid leukemia. Aging (Albany NY) 2023; 15:6757-6773. [PMID: 37506247 PMCID: PMC10415541 DOI: 10.18632/aging.204832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/09/2023] [Indexed: 07/30/2023]
Abstract
Acute myeloid leukemia is a heterogeneous disease of the hematopoietic system, which possesses a poor prognosis; thus, the identification of novel molecular markers is urgently needed to better define the risk stratification and optimize treatment therapies for this disease. Here, we investigated the roles of the PARP family genes in AML by analyzing their mRNA expression profiles and their association with clinical features using data from TCGA and GSE. Our results showed that PARP10 was significantly more highly expressed in AML samples than in normal controls, and high expression of PARP10 was associated with older age (≥60 years, P = 0.012), more frequent TP53 mutations (P = 0.024), high-risk stratification (P < 0.05), and poorer outcomes (P < 0.05). Patients with high expression of PARP10 exhibited significantly poorer overall survival (OS) and event-free survival (EFS) than those with low PARP10 expressions (OS: median: 0.88 vs. 2.19 years; P = 0.001; EFS: median: 0.65 vs. 1.12 years; P = 0.041). Multivariate analysis indicated that high expression of PARP10 was an independent risk factor for poorer OS and EFS in AML patients. Moreover, we found that allo-SCT improved OS for AML patients with high PARP10 expression but not for patients with low PARP10 expression, while allo-SCT decreased EFS for patients with low PARP10 expression. Finally, we confirmed that PARP10 knockout impaired AML cell proliferation in vitro. In summary, our data suggested that PARP10 is aberrantly expressed in AML, and high expression of PARP10 might be a biomarker for poor prognosis and also a potential indicator for allo-SCT therapy, which might provide precise treatment indications for physicians.
Collapse
Affiliation(s)
- Ling Wang
- Department of Child Healthcare, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Child Neurodevelopment, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chuang Jiang
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Dandan Hu
- Department of Child Healthcare, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Child Neurodevelopment, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
139
|
Guldenpfennig C, Teixeiro E, Daniels M. NF-kB's contribution to B cell fate decisions. Front Immunol 2023; 14:1214095. [PMID: 37533858 PMCID: PMC10391175 DOI: 10.3389/fimmu.2023.1214095] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
NF-κB signaling is essential to an effective innate and adaptive immune response. Many immune-specific functional and developmental outcomes depend in large on NF-κB. The formidable task of sorting out the mechanisms behind the regulation and outcome of NF-κB signaling remains an important area of immunology research. Here we briefly discuss the role of NF-κB in regulating cell fate decisions at various times in the path of B cell development, activation, and the generation of long-term humoral immunity.
Collapse
Affiliation(s)
- Caitlyn Guldenpfennig
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Emma Teixeiro
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Mark Daniels
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| |
Collapse
|
140
|
Li L, Liu J, Wang W, Fu Y, Deng Y, Li X, Liu Z, Pang Y, Xu Y, Yan M, Li Z. Cancer stem cells promote lymph nodes metastasis of breast cancer by reprogramming tumor microenvironment. Transl Oncol 2023; 35:101733. [PMID: 37421907 DOI: 10.1016/j.tranon.2023.101733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
Breast cancer progression and metastasis are governed by a complex interplay within the tumor immune microenvironment (TIME), involving numerous cell types. Lymph node metastasis (LNM) is a key prognostic marker associated with distant organ metastasis and reduced patient survival, but the mechanisms underlying its promotion by breast cancer stem cells (CSCs) remain unclear. Our study sought to unravel how CSCs reprogram TIME to facilitate LNM. Utilizing single-cell RNA sequencing, we profiled TIME in primary cancer and corresponding metastatic lymph node samples from patients at our institution. To verify the derived data, we cultured CSCs and performed validation assays employing flow cytometry and CyTOF. Our analysis revealed distinct differences in cellular infiltration patterns between tumor and LNM samples. Importantly, RAC2 and PTTG1 double-positive CSCs, which exhibit the highest stem-like attributes, were markedly enriched in metastatic lymph nodes. These CSCs are hypothesized to foster metastasis via activation of specific metastasis-related transcription factors and signaling pathways. Additionally, our data suggest that CSCs might modulate adaptive and innate immune cell evolution, thereby further contributing to metastasis. In summary, this study illuminates a critical role of CSCs in modifying TIME to facilitate LNM. The enrichment of highly stem-like CSCs in metastatic lymph nodes offers novel therapeutic targeting opportunities and deepens our understanding of breast cancer metastasis.
Collapse
Affiliation(s)
- Lin Li
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Jianyu Liu
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Wenzheng Wang
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Yingqiang Fu
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Yuhan Deng
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Xin Li
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Zhuolin Liu
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Yuheng Pang
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Yangyang Xu
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Meisi Yan
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Zhigao Li
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China.
| |
Collapse
|
141
|
Feng Y, Li T, Li Y, Lin Z, Han X, Pei X, Zhang Y, Li F, Yang J, Shao D, Li C. Glutaredoxin-1 promotes lymphangioleiomyomatosis progression through inhibiting Bim-mediated apoptosis via COX2/PGE2/ERK pathway. Clin Transl Med 2023; 13:e1333. [PMID: 37478294 PMCID: PMC10361546 DOI: 10.1002/ctm2.1333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Lymphangioleiomyomatosis (LAM) is a female-predominant interstitial lung disease, characterized by progressive cyst formation and respiratory failure. Clinical treatment with the mTORC1 inhibitor rapamycin could relieve partially the respiratory symptoms, but not curative. It is urgent to illustrate the fundamental mechanisms of TSC2 deficiency to the development of LAM, especially mTORC1-independent mechanisms. Glutaredoxin-1 (Glrx), an essential glutathione (GSH)-dependent thiol-oxidoreductase, maintains redox homeostasis and participates in various processes via controlling protein GSH adducts. Redox signalling through protein GSH adducts in LAM remains largely elusive. Here, we demonstrate the underlying mechanism of Glrx in the pathogenesis of LAM. METHODS 1. Abnormal Glrx expression in various kinds of human malignancies was identified by the GEPIA tumour database, and the expression of Glrx in LAM-derived cells was detected by real-time quantitative reverse transcription (RT-qPCR) and immunoblot. 2. Stable Glrx knockdown cell line was established to evaluate cellular impact. 3. Cell viability was determined by CCK8 assay. 4. Apoptotic cell number and intracellular reactive oxygen species (ROS) level were quantified by flow cytometry. 5. Cox2 expression and PGE2 production were detected to clarify the mechanism of Bim expression modulated by Glrx. 6. S-glutathionylated p65 was enriched and detected by immunoprecipitation and the direct regulation of Glrx on p65 was determined. 7. The xenograft animal model was established and photon flux was analyzed using IVIS Spectrum. RESULTS In LAM, TSC2 negatively regulated abnormal Glrx expression and activation in a mTORC1-independent manner. Knockdown of Glrx increased the expression of Bim and the accumulation of ROS, together with elevated S-glutathionylated proteins, contributing to the induction of apoptotic cell death and inhibited cell proliferation. Knockdown of Glrx in TSC2-deficient LAM cells increased GSH adducts on nuclear factor-kappa B p65, which contributed to a decrease in the expression of Cox2 and the biosynthesis of PGE2. Inhibition of PGE2 metabolism attenuated phosphorylation of ERK, which led to the accumulation of Bim, due to the imbalance of its phosphorylation and proteasome degradation. In xenograft tumour models, knockdown of Glrx in TSC2-deficient LAM cells inhibited tumour growth and increased tumour cell apoptosis. CONCLUSIONS Collectively, we provide a novel redox-dependent mechanism in the pathogenesis of LAM and propose that Glrx may be a beneficial strategy for the treatment of LAM or other TSC-related diseases.
Collapse
Affiliation(s)
- Ya Feng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, P. R. China
| | - Tianjiao Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, P. R. China
| | - Yin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, P. R. China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, P. R. China
| | - Xiao Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, P. R. China
| | - Xiaolin Pei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, P. R. China
| | - Yupeng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, P. R. China
| | - Fei Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, P. R. China
| | - Juan Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, P. R. China
| | - Di Shao
- Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, P. R. China
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, P. R. China
| |
Collapse
|
142
|
Chen D, Shi L, Zhong D, Nie Y, Yang Y, Liu D. Hsa_circ_0002019 promotes cell proliferation, migration, and invasion by regulating TNFAIP6/NF-κB signaling in gastric cancer. Genomics 2023; 115:110641. [PMID: 37201873 DOI: 10.1016/j.ygeno.2023.110641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/25/2023] [Accepted: 05/14/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Gastric cancer (GC) is a common cancer with a high incidence and mortality rate. Herein, the role of hsa_circ_0002019 (circ_0002019) in GC was investigated. METHODS The molecular structure and stability of circ_0002019 were identified by RNase R, and Actinomycin D treatment. Molecular associations were verified by RIP. Proliferation, migration, and invasion were detected by CCK-8, EdU, and Transwell, respectively. The effect of circ_0002019 on tumor growth was analyzed in vivo. RESULTS Circ_0002019 was elevated in GC tissues and cells. Circ_0002019 knockdown inhibited the proliferation, migration, and invasion. Mechanically, circ_0002019 activated NF-κB signaling by increasing TNFAIP6 mRNA stability by PTBP1. Activation of NF-κB signaling limited the antitumor effect of circ_0002019 silencing in GC. Circ_0002019 knockdown inhibited tumor growth in vivo by reducing TNFAIP6 expression. CONCLUSIONS Circ_0002019 accelerated the proliferation, migration, and invasion by regulating TNFAIP6/NF-κB pathway, suggesting circ_0002019 could be a key regulatory factor in GC progression.
Collapse
Affiliation(s)
- Dan Chen
- Department of Gastroenterology, Jinhua People's Hospital, Jinhua 321000, Zhejiang Province, China
| | - Li Shi
- Department of Gastroenterology, Jinhua People's Hospital, Jinhua 321000, Zhejiang Province, China
| | - Dingfu Zhong
- Department of Gastroenterology, Jinhua People's Hospital, Jinhua 321000, Zhejiang Province, China
| | - Ying Nie
- Department of Gastroenterology, Jinhua People's Hospital, Jinhua 321000, Zhejiang Province, China
| | - Yi Yang
- Department of Gastroenterology, Jinhua People's Hospital, Jinhua 321000, Zhejiang Province, China
| | - Dong Liu
- Department of Hepatobiliary and Pancreatic Gastroenterology, Jinhua People's Hospital, Jinhua 321000, Zhejiang Province, China.
| |
Collapse
|
143
|
Gupta R, Kadhim MM, Turki Jalil A, Obayes AM, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Tayyib NA, Luo X. Multifaceted role of NF-κB in hepatocellular carcinoma therapy: Molecular landscape, therapeutic compounds and nanomaterial approaches. ENVIRONMENTAL RESEARCH 2023; 228:115767. [PMID: 36966991 DOI: 10.1016/j.envres.2023.115767] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
The predominant kind of liver cancer is hepatocellular carcinoma (HCC) that its treatment have been troublesome difficulties for physicians due to aggressive behavior of tumor cells in proliferation and metastasis. Moreover, stemness of HCC cells can result in tumor recurrence and angiogenesis occurs. Another problem is development of resistance to chemotherapy and radiotherapy in HCC cells. Genomic mutations participate in malignant behavior of HCC and nuclear factor-kappaB (NF-κB) has been one of the oncogenic factors in different human cancers that after nuclear translocation, it binds to promoter of genes in regulating their expression. Overexpression of NF-κB has been well-documented in increasing proliferation and invasion of tumor cells and notably, when its expression enhances, it induces chemoresistance and radio-resistance. Highlighting function of NF-κB in HCC can shed some light on the pathways regulating progression of tumor cells. The first aspect is proliferation acceleration and apoptosis inhibition in HCC cells mediated by enhancement in expression level of NF-κB. Moreover, NF-κB is able to enhance invasion of HCC cells via upregulation of MMPs and EMT, and it triggers angiogenesis as another step for increasing spread of tumor cells in tissues and organs. When NF-κB expression enhances, it stimulates chemoresistance and radio-resistance in HCC cells and by increasing stemness and population of cancer-stem cells, it can provide the way for recurrence of tumor. Overexpression of NF-κB mediates therapy resistance in HCC cells and it can be regulated by non-coding RNAs in HCC. Moreover, inhibition of NF-κB by anti-cancer and epigenetic drugs suppresses HCC tumorigenesis. More importantly, nanoparticles are considered for suppressing NF-κB axis in cancer and their prospectives and results can also be utilized for treatment of HCC. Nanomaterials are promising factors in treatment of HCC and by delivery of genes and drugs, they suppress HCC progression. Furthermore, nanomaterials provide phototherapy in HCC ablation.
Collapse
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, District-Mathura, U. P., India
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | | | - Nahla A Tayyib
- Faculty of Nursing, Umm al- Qura University, Makkah, Saudi Arabia
| | - Xuanming Luo
- Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
144
|
Alsayed RKME, Sheikhan KSAM, Alam MA, Buddenkotte J, Steinhoff M, Uddin S, Ahmad A. Epigenetic programing of cancer stemness by transcription factors-non-coding RNAs interactions. Semin Cancer Biol 2023; 92:74-83. [PMID: 37054905 DOI: 10.1016/j.semcancer.2023.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
Cancer 'stemness' is fundamental to cancer existence. It defines the ability of cancer cells to indefinitely perpetuate as well as differentiate. Cancer stem cell populations within a growing tumor also help evade the inhibitory effects of chemo- as well as radiation-therapies, in addition to playing an important role in cancer metastases. NF-κB and STAT-3 are representative transcription factors (TFs) that have long been associated with cancer stemness, thus presenting as attractive targets for cancer therapy. The growing interest in non-coding RNAs (ncRNAs) in the recent years has provided further insight into the mechanisms by which TFs influence cancer stem cell characteristics. There is evidence for a direct regulation of TFs by ncRNAs, such as, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) as well as circular RNAs (circRNAs), and vice versa. Additionally, the TF-ncRNAs regulations are often indirect, involving ncRNA-target genes or the sponging of other ncRNA species by individual ncRNAs. The information is rapidly evolving and this review provides a comprehensive review of TF-ncRNAs interactions with implications on cancer stemness and in response to therapies. Such knowledge will help uncover the many levels of tight regulations that control cancer stemness, providing novel opportunities and targets for therapy in the process.
Collapse
Affiliation(s)
- Reem Khaled M E Alsayed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | | | - Majid Ali Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Jorg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine, New York 10065, NY, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar.
| |
Collapse
|
145
|
Li Y, Drappatz J. Advances in the systemic therapy for recurrent meningiomas and the challenges ahead. Expert Rev Neurother 2023; 23:995-1004. [PMID: 37695700 DOI: 10.1080/14737175.2023.2254498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
INTRODUCTION Meningiomas represent the most common primary neoplasms of the central nervous system (CNS). 20% present with atypical (WHO grade II) or malignant (grade III) meningiomas, which show aggressive biologic behavior and high recurrence. Although surgical resection and radiation therapy are the primary treatment options for these tumors, there is a subgroup of patients who do not respond well to or are poor candidates for these approaches, leading to the exploration of systemic therapies as an alternative. AREAS COVERED The literature on different therapeutic groups of systemic drugs for recurrent meningiomas is reviewed, with a focus on the different molecular targets. Past and current ongoing clinical trials are also discussed. EXPERT OPINION To date, there is no recognized treatment that has demonstrated a substantial increase in progression-free or overall survival rates. Nonetheless, therapies targeting anti-VEGF have exhibited more encouraging results in general. The examination of genomic and epigenomic traits of meningiomas, along with the integration of molecular markers into the latest WHO tumor grading system, has provided valuable insights. This has opened avenues for exploring numerous intracellular and extracellular pathways, as well as mutations, that have been targeted in ongoing clinical trials.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurology and Medicine, Division of Hematology and Oncology, Center for Neuro-Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jan Drappatz
- Department of Neurology and Medicine, Division of Hematology and Oncology, Center for Neuro-Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
146
|
Moghaddam SJK, Roushandeh AM, Roudkenar MH, Nemati S, Najafi-Ghalehlou N, Pakzad T, Hamidi M. Study of Three Potential Diagnostic Biomarkers in Nasopharyngeal Carcinoma Samples from Guilan, North of Iran. Int Arch Otorhinolaryngol 2023; 27:e461-e470. [PMID: 37564471 PMCID: PMC10411240 DOI: 10.1055/s-0042-1749371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/17/2022] [Indexed: 10/17/2022] Open
Abstract
Introduction Finding biomarkers for highly lethal cancers is a priority. Objective The current study was designed to understand the clinical significance of vascular endothelial growth factor (VEGF), latent membrane protein 1 (LMP1), and tumor necrosis factor-α (TNF-α) expression as the biomarkers, and evaluate their correlation with each other, in nasopharyngeal carcinoma (NPC) in the province of Guilan, North of Iran. Methods Gene expression was evaluated in 25 formalin-fixed paraffin-embedded (FFPE) blocks from cases of confirmed NPC and 20 FFPE samples of non-NPC by quantifying messenger ribonucleic acid (mRNA) and protein levels, using real-time polymerase chain reaction (PCR) and immunohistochemistry (IHC) methods, respectively. Furthermore, the correlations among the protein levels of different genes, along with the patients' demographic characteristics were assessed. Results Our findings on mRNA and protein levels demonstrated that the expression of the LMP1 gene in the NPC group was significantly elevated compared with that of the non-NPC group. In addition, the protein levels in the NPC group indicated a positive and significant correlation between LMP1 and VEGF expression. It was noted that both protein and mRNA levels showed no significant differences in the expression of TNF-α and VEGF genes between the NPC and control groups. Furthermore, there was no significant relationship between the expression of these proteins and the demographic characteristics of NPC patients. Conclusion Overall, a significant increase in LMP1 expression was observed in NPC patients, which may serve as a diagnostic biomarker for NPC. Also, LMP1 might be involved in NPC progression by inducing VEGF gene expression.
Collapse
Affiliation(s)
- Saghi Jani Kargar Moghaddam
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Shadman Nemati
- Otorhinolaryngology Research Center, Faculty of Medicine, Amiralmomenin Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Nima Najafi-Ghalehlou
- Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Toofan Pakzad
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
147
|
Wang R, Wang Y, Liu X, Liu M, Sun L, Pan X, Hu H, Jiang B, Zou Y, Liu Q, Gong Y, Wang M, Sun G. Anastasis enhances metastasis and chemoresistance of colorectal cancer cells through upregulating cIAP2/NFκB signaling. Cell Death Dis 2023; 14:388. [PMID: 37391410 PMCID: PMC10313691 DOI: 10.1038/s41419-023-05916-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Chemotherapy is a common strategy to treat cancer. However, acquired resistance and metastasis are the major obstacles to successful treatment. Anastasis is a process by which cells survive executioner caspase activation when facing apoptotic stress. Here we demonstrate that colorectal cancer cells can undergo anastasis after transient exposure to chemotherapeutic drugs. Using a lineage tracing system to label and isolate cells that have experienced executioner caspase activation in response to drug treatment, we show that anastasis grants colorectal cancer cells enhanced migration, metastasis, and chemoresistance. Mechanistically, treatment with chemotherapeutic drugs induces upregulated expression of cIAP2 and activation of NFκB, which are required for cells to survive executioner caspase activation. The elevated cIAP2/NFκB signaling persists in anastatic cancer cells to promote migration and chemoresistance. Our study unveils that cIAP2/NFκB-dependent anastasis promotes acquired resistance and metastasis after chemotherapy.
Collapse
Affiliation(s)
- Ru Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yuxing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaohe Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Menghao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lili Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaohua Pan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Huili Hu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Department of Systems Biomedicine and Research Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongxin Zou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
148
|
Elgohary S, El Tayebi HM. Inflammasomes in breast cancer: the ignition spark of progression and resistance? Expert Rev Mol Med 2023; 25:e22. [PMID: 37337426 DOI: 10.1017/erm.2023.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Inflammation and immune evasion are major key players in breast cancer (BC) progression. Recently, the FDA approved the use of anti-programmed death-ligand 1 antibody (anti-PD-L1) and phosphoinositide 3-kinase (PI3K) inhibitors against aggressive BC. Despite the paradigm shift in BC treatments, patients still suffer from resistance, recurrence and serious immune-related adverse events. These obstacles require unravelling of the hidden molecular contributors for such therapy failure hence yielding therapeutics that are at least as efficient yet safer. Inflammasome pathway is activated when the pattern recognition receptor senses danger signals (danger-associated molecular patterns) from damagedRdying cells or pathogen-associated molecular patterns found in microbes, leading to secretion of the active pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18). It has been shown throughout numerous studies that inflammasome pathway enhanced invasion, metastasis, provoked BC progression and therapy resistance. Additionally, inflammasomes upregulated the proliferative index ki67 and enhanced PD-L1 expression leading to immunotherapy resistance. IL-1β contributed to significant decrease in oestrogen receptor levels and promoted BC chemo-resistance. High levels of IL-18 in sera of BC patients were associated with worst prognosis. Stimulation of purinergic receptors and modulation of adipokines in obese subjects activated inflammasomes that evoked radiotherapy resistance and BC progression. The micro RNA miR-223-3p attenuated the inflammasome over-expression leading to lowered tumour volume and lessened angiogenesis in BC. This review sheds the light on the molecular pathways of inflammasomes and their impacts in distinct BC subtypes. In addition, it highlights novel strategies in treatment and prevention of BC.
Collapse
Affiliation(s)
- Sawsan Elgohary
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Hend M El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
149
|
Chen Y, Wang X, Ye D, Yang Z, Shen Q, Liu X, Chen C, Chen X. Research progress of sophoridine's pharmacological activities and its molecular mechanism: an updated review. Front Pharmacol 2023; 14:1126636. [PMID: 37397472 PMCID: PMC10311568 DOI: 10.3389/fphar.2023.1126636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Background: Sophoridine, the major active constituent of Sophora alopecuroides and its roots, is a bioactive alkaloid with a wide range of pharmacological effects, including antitumor, anti-inflammatory, antiviral, antibacterial, analgesic, cardioprotective, and immunoprotective activities. Sophora flavescens Aiton is a traditional Chinese medicine that is bitter and cold. Additionally, it also exhibits the effects of clearing heat, eliminating dampness, and expelling insects. Aims of the study: To summarize the pharmacological research and associated mechanisms of sophoridine, we compiled this review by combining a huge body of relevant literature. Materials and methods: The information related to this article was systematically collected from the scientific literature databases including PubMed, Google Scholar, Web of Science, Science Direct, Springer, China National Knowledge Infrastructure, published books, PhD and MS dissertations. Results: Its antitumor activity is particularly remarkable, as it can inhibit cancer cell proliferation, invasion, and metastasis while inducing cell cycle arrest and apoptosis. Additionally, sophoridine also holds therapeutic potential for myocardial ischemia, osteoporosis, arrhythmias, and neurological disorders, primarily through the suppression of related inflammatory factors and cell apoptosis. However, sophoridine has also exhibited adverse effects such as hepatotoxicity and neurotoxicity. The antidisease effect and mechanism of sophoridine are diverse, so it has high research value. Conclusion: As an important traditional Chinese medicine alkaloid, modern pharmacological studies have demonstrated that sophoridine has prominent bioactivities, especially on anti-tumor anti-inflammation activities, and cardiovascular system protection. These activities provide prospects for novel drug development for cancer and some chronic diseases. Nevertheless, the understanding of the multitarget network pharmacology, long-term in vivo toxicity, and clinical efficacy of sophoridine require further detailed research.
Collapse
Affiliation(s)
- Yiwei Chen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Xiang Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dongmei Ye
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Zhousheng Yang
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Qingrong Shen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Xiaoxia Liu
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Chunxia Chen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Xiaoyu Chen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| |
Collapse
|
150
|
Surien O, Masre SF, Basri DF, Ghazali AR. Potential Chemopreventive Role of Pterostilbene in Its Modulation of the Apoptosis Pathway. Int J Mol Sci 2023; 24:ijms24119707. [PMID: 37298657 DOI: 10.3390/ijms24119707] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/08/2023] [Accepted: 04/21/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer incidence keeps increasing every year around the world and is one of the leading causes of death worldwide. Cancer has imposed a major burden on the human population, including the deterioration of physical and mental health as well as economic or financial loss among cancer patients. Conventional cancer treatments including chemotherapy, surgery, and radiotherapy have improved the mortality rate. However, conventional treatments have many challenges; for example, drug resistance, side effects, and cancer recurrence. Chemoprevention is one of the promising interventions to reduce the burden of cancer together with cancer treatments and early detection. Pterostilbene is a natural chemopreventive compound with various pharmacological properties such as anti-oxidant, anti-proliferative, and anti-inflammatory properties. Moreover, pterostilbene, due to its potential chemopreventive effect on inducing apoptosis in eliminating the mutated cells or preventing the progression of premalignant cells to cancerous cells, should be explored as a chemopreventive agent. Hence, in the review, we discuss the role of pterostilbene as a chemopreventive agent against various types of cancer via its modulation of the apoptosis pathway at the molecular levels.
Collapse
Affiliation(s)
- Omchit Surien
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| | - Siti Fathiah Masre
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| | - Dayang Fredalina Basri
- Center for Diagnostic, Therapeutic & Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| | - Ahmad Rohi Ghazali
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| |
Collapse
|