101
|
Delahaye A, Pipiras E, Kanafani S, Touboul C, Vergnaud A, Encha-Razavi F, Sinico M, Benkhalifa M, Kasakyan S, Serero S, Wolf JP, Gérard-Blanluet M, Benzacken B. De novo Subtelomeric Deletion Additional to an Inherited Apparently Balanced Reciprocal Translocation. Fetal Diagn Ther 2007; 22:306-12. [PMID: 17361086 DOI: 10.1159/000100797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 07/12/2006] [Indexed: 11/19/2022]
Abstract
OBJECTIVE We describe the analysis of an apparently balanced inherited reciprocal translocation in a fetus presenting with multiple congenital abnormalities, characterize the structural chromosome rearrangement, and report an unexpected additional imbalance to the inherited rearrangement. METHODS DNA microarray was used to screen for genomic imbalance in subtelomeric and interstitial critical regions. High-resolution comparative genomic hybridization was used to screen for genomic imbalance at a genome-wide level. Fluorescence in situ hybridization using whole-chromosome painting and specific probes was used to characterize the inherited translocation, and the size of the de novoadditional deletion. RESULTS An unexpected additional deletion was found in 7qter on derivative 10 of the inherited maternal reciprocal translocation t(7;10)(q11.23; p14). CONCLUSIONS We show the usefulness of genome-wide and specific molecular cytogenetic techniques to explore apparently balanced rearrangements.
Collapse
MESH Headings
- Abnormalities, Multiple/diagnosis
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/pathology
- Abortion, Induced
- Adult
- Allelic Imbalance
- Brain/abnormalities
- Brain/pathology
- Chromosome Painting
- Cranial Fossa, Posterior/abnormalities
- Cranial Fossa, Posterior/pathology
- Cytogenetic Analysis
- Female
- Gene Deletion
- Heart Defects, Congenital/diagnosis
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/pathology
- Humans
- Karyotyping
- Oligonucleotide Array Sequence Analysis
- Pregnancy
- Prenatal Diagnosis/methods
- Telomere
- Translocation, Genetic
- Ultrasonography, Prenatal
Collapse
Affiliation(s)
- A Delahaye
- Service d'Histologie Embryologie Cytogénétique BDR, Hôpital Jean Verdier, AP-HP, Bondy, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Abstract
The neuronal circuits of the cerebellar cortex are essential for motor and sensory learning, associative memory formation, and the vestibular ocular reflex. In children and young adults, tumors of the granule cell, the medulloblastomas, represent 40% of brain tumors. We report the differentiation of E14 ES cells into mature granule neurons by sequential treatment with secreted factors (WNT1, FGF8, and RA) that initiate patterning in the cerebellar region of the neural tube, bone morphogenic proteins (BMP6/7 and GDF7) that induce early granule cell progenitor markers (MATH1, MEIS1, ZIC1), mitogens (SHH, JAG1) that control proliferation and induce additional granule cell markers (Cyclin D2, PAX2/6), and culture in glial-conditioned medium to induce markers of mature granule neurons (GABAalpha(6)r), including ZIC2, a unique marker for granule neurons. Differentiated ES cells formed classic "T-shaped" granule cell axons in vitro, and implantation of differentiated Pde1c-Egfp-BAC transgenic ES cells into the external granule cell layer of neonatal mice resulted in the extension of parallel fibers, migration across the molecular layer, incorporation into the internal granule cell layer, and extension of short dendrites, typical of young granule cells forming synaptic connections with afferent mossy fibers. These results underscore the utility of treating ES cells with local, inductive signals that regulate CNS neuronal development in vivo as a strategy for cell replacement therapy of defined neuronal populations.
Collapse
Affiliation(s)
- Enrique Salero
- Laboratory of Developmental Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10021-6399
| | - Mary E. Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10021-6399
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
103
|
Guo C, Qiu HY, Huang Y, Chen H, Yang RQ, Chen SD, Johnson RL, Chen ZF, Ding YQ. Lmx1bis essential forFgf8andWnt1expression in the isthmic organizer during tectum and cerebellum development in mice. Development 2007; 134:317-25. [PMID: 17166916 DOI: 10.1242/dev.02745] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Secreted factors FGF8 and WNT1 are essential either for the inductive activity of the isthmus organizer or for the regionalization of the midbrain-hindbrain boundary (MHB). However, transcriptional regulation of these secreted factors during development remains to be elucidated. Here we show that the LIM homeobox gene Lmx1b is expressed in the anterior embryo as early as E7.5 and its expression becomes progressively restricted to the isthmus at E9.0. Analysis of gene expression in the MHB of the mutant embryos showed that many genes were lost by E9.5. In the MHB of Lmx1b-/- embryos, the expression of Fgf8, which normally occurs at the 4-somite stage, was completely absent, whereas Wnt1 was downregulated before the 4-somite stage. Moreover,transcription factors En1 and Pax2 were also downregulated prior to the 4-somite stage, whereas Gbx2 downregulation occurred at the 4-somite stage. By contrast, Otx2 and Pax6 expression was not affected in Lmx1b-/- embryos. The requirement of specific Lmx1b expression in the MHB was further confirmed by Wnt1-Cre-mediated region-specific conditional knockout of Lmx1b. As a result of these molecular defects, the development of the tectum and cerebellum was severely impaired in Lmx1b-/-mice. Taken together, our results indicate that Lmx1b plays an essential role in the development of the tectum and cerebellum by regulating expression of Fgf8, Wnt1 and several isthmus-related transcription factors in the MHB, and is a crucial component of a cross-regulatory network required for the induction activity of the isthmic organizer in the MHB.
Collapse
Affiliation(s)
- Chao Guo
- Institute of Neuroscience and Key Laboratory of Neurobiology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Disorders of segmentation of the neural tube: agenesis of selective neuromeres. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0072-9752(07)87007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
105
|
Abstract
The cerebellum, like the cerebrum, includes a nuclear structure and an overlying cortical structure. Experiments in the past decade have expanded knowledge beyond the traditional function of the cerebellum to include critical roles in motor learning and memory and sensory discrimination. The initial steps in cerebellar development depend on inductive signaling involving FGF and Wnt proteins produced at the mesencephalic/metencephalic boundary. To address the issue of how individual cerebellar cell fates within the cerebellar territory are specified, we examined the expression of transcription factors, including mammalian homologues of LIM homeodomain-containing proteins, basic helix-loop-helix proteins, and three amino acid loop-containing proteins. The results of these studies show that combinatorial codes of transcription factors define precursors of the cerebellar nuclei, and both Purkinje cells and granule neurons of the cerebellar cortex. Examination of gene expression patterns in several hundred lines of Egfp-BAC (bacterial artificial chromosome) transgenic mice in the GENSAT Project revealed numerous genes with restricted expression in cerebellar progenitor populations, including genes specific for cerebellar nuclear precursors and Purkinje cell precursors. In addition, we identified patterns of gene expression that link granule and Purkinje cells to their precerebellar nuclei. These results identify molecular pathways that offer new insights on the development of the nuclear and cortical structures of the cerebellum, as well as components of the cerebellar circuitry.
Collapse
Affiliation(s)
- Daniver Morales
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10021-6399
| | - Mary E. Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10021-6399
| |
Collapse
|
106
|
Duparc RH, Boutemmine D, Champagne MP, Tétreault N, Bernier G. Pax6 is required for delta-catenin/neurojugin expression during retinal, cerebellar and cortical development in mice. Dev Biol 2006; 300:647-55. [PMID: 16973151 DOI: 10.1016/j.ydbio.2006.07.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 07/27/2006] [Accepted: 07/31/2006] [Indexed: 11/26/2022]
Abstract
The transcription factor Pax6 regulates multiple aspects of central nervous system (CNS) development. At the cellular level, the Pax6 mutation was reported to affect homophilic and heterophilic cellular adhesion, neuron polarity and neurite outgrowth. These abnormalities were observed in multiple regions of Pax6-mutant CNS, suggesting a common function for Pax6 in regulating cytoskeletal dynamics. However, target genes mediating Pax6 function in cytoskeletal dynamics remain largely unknown. Using DNA microarrays, we identified delta-catenin (delta-catenin /neurojugin) as a potential direct target of Pax6 in the CNS. delta-catenin encodes a large cytoskeletal protein that localizes at adherens junction in the CNS and that can modulate neurite outgrowth and N-cadherin turnover. delta-catenin was found to be co-expressed with Pax6 in several regions of the developing CNS. In Pax6 mutant embryos, delta-catenin expression was severely reduced in the optic vesicle neural ectoderm, in the ventricular zone of the neocortex and in the external granule layer of the cerebellum. We identified a Pax6 binding site in delta-catenin promoter that is conserved between mice and humans and which is effectively bound by Pax6 in vitro. Our results suggest that Pax6 regulates delta-catenin expression during CNS development in mice.
Collapse
Affiliation(s)
- Robert-Hugues Duparc
- Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montreal, Canada, H1T 2M4
| | | | | | | | | |
Collapse
|
107
|
Blak AA, Naserke T, Saarimäki-Vire J, Peltopuro P, Giraldo-Velasquez M, Vogt Weisenhorn DM, Prakash N, Sendtner M, Partanen J, Wurst W. Fgfr2 and Fgfr3 are not required for patterning and maintenance of the midbrain and anterior hindbrain. Dev Biol 2006; 303:231-43. [PMID: 17150206 DOI: 10.1016/j.ydbio.2006.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 10/12/2006] [Accepted: 11/06/2006] [Indexed: 11/16/2022]
Abstract
The mid-/hindbrain organizer (MHO) is characterized by the expression of a network of genes, which controls the patterning and development of the prospective midbrain and anterior hindbrain. One key molecule acting at the MHO is the fibroblast growth factor (Fgf) 8. Ectopic expression of Fgf8 induces genes that are normally expressed at the mid-/hindbrain boundary followed by the induction of midbrain and anterior hindbrain structures. Inactivation of the Fgf receptor (Fgfr) 1 gene, which was thought to be the primary transducer of the Fgf8 signal at the MHO, in the mid-/hindbrain region, leads to a deletion of dorsal structures of the mid-/hindbrain region, whereas ventral tissues are less severely affected. This suggests that other Fgfrs might be responsible for ventral mid-/hindbrain region development. Here we report the analysis of Fgfr2 conditional knockout mice, lacking the Fgfr2 in the mid-/hindbrain region and of Fgfr3 knockout mice with respect to the mid-/hindbrain region. In both homozygous mouse mutants, patterning of the mid-/hindbrain region is not altered, neuronal populations develop normal and are maintained into adulthood. This analysis shows that the Fgfr2 and the Fgfr3 on their own are dispensable for the development of the mid-/hindbrain region. We suggest functional redundancy of Fgf receptors in the mid-/hindbrain region.
Collapse
Affiliation(s)
- Alexandra A Blak
- GSF-National Research Center for Environment and Health, Institute of Developmental Genetics, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Ribes V, Otto DME, Dickmann L, Schmidt K, Schuhbaur B, Henderson C, Blomhoff R, Wolf CR, Tickle C, Dollé P. Rescue of cytochrome P450 oxidoreductase (Por) mouse mutants reveals functions in vasculogenesis, brain and limb patterning linked to retinoic acid homeostasis. Dev Biol 2006; 303:66-81. [PMID: 17126317 DOI: 10.1016/j.ydbio.2006.10.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 09/26/2006] [Accepted: 10/23/2006] [Indexed: 12/14/2022]
Abstract
Cytochrome P450 oxidoreductase (POR) acts as an electron donor for all cytochrome P450 enzymes. Knockout mouse Por(-/-) mutants, which are early embryonic (E9.5) lethal, have been found to have overall elevated retinoic acid (RA) levels, leading to the idea that POR early developmental function is mainly linked to the activity of the CYP26 RA-metabolizing enzymes (Otto et al., Mol. Cell. Biol. 23, 6103-6116). By crossing Por mutants with a RA-reporter lacZ transgene, we show that Por(-/-) embryos exhibit both elevated and ectopic RA signaling activity e.g. in cephalic and caudal tissues. Two strategies were used to functionally demonstrate that decreasing retinoid levels can reverse Por(-/-) phenotypic defects, (i) by culturing Por(-/-) embryos in defined serum-free medium, and (ii) by generating compound mutants defective in RA synthesis due to haploinsufficiency of the retinaldehyde dehydrogenase 2 (Raldh2) gene. Both approaches clearly improved the Por(-/-) early phenotype, the latter allowing mutants to be recovered up until E13.5. Abnormal brain patterning, with posteriorization of hindbrain cell fates and defective mid- and forebrain development and vascular defects were rescued in E9.5 Por(-/-) embryos. E13.5 Por(-/-); Raldh2(+/-) embryos exhibited abdominal/caudal and limb defects that strikingly phenocopy those of Cyp26a1(-/-) and Cyp26b1(-/-) mutants, respectively. Por(-/-); Raldh2(+/-) limb buds were truncated and proximalized and the anterior-posterior patterning system was not established. Thus, POR function is indispensable for the proper regulation of RA levels and tissue distribution not only during early embryonic development but also in later morphogenesis and molecular patterning of the brain, abdominal/caudal region and limbs.
Collapse
Affiliation(s)
- Vanessa Ribes
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 du CNRS, U. 596 de l'INSERM, Université Louis Pasteur, BP 10142, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Köster RW, Fraser SE. FGF signaling mediates regeneration of the differentiating cerebellum through repatterning of the anterior hindbrain and reinitiation of neuronal migration. J Neurosci 2006; 26:7293-304. [PMID: 16822987 PMCID: PMC6673949 DOI: 10.1523/jneurosci.0095-06.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
To address the regenerative capability of the differentiating hindbrain, we ablated the cerebellum in wild-type and transgenic zebrafish embryos. These larvae showed no obvious locomotive malfunction several days after the ablation. Expression analysis and in vivo time-lapse recording in GFP (green fluorescent protein)-transgenic embryos indicate that cerebellar neuronal cells can regenerate from the remaining anterior hindbrain. The onset of regeneration is accompanied by repatterning within the anterior hindbrain. Inhibition of FGF signaling immediately after cerebellar ablation results in the lack of regenerating cerebellar neuronal cells and the absence of cerebellar structures several days later. Moreover, impaired FGF signaling inhibits the repatterning of the anterior hindbrain and the reexpression of rhombic lip marker genes soon after cerebellar ablation. This demonstrates that the hindbrain is highly plastic in recapitulating early embryonic differentiation mechanisms during regeneration. Moreover, the regenerating system offers a means to uncouple cerebellar differentiation from complex morphogenetic tissue rearrangements.
Collapse
Affiliation(s)
- Reinhard W Köster
- Gesellschaft für Strahlenforschung-National Research Center for Environment and Health, Institute of Developmental Genetics, 85764 Neuherberg-Munich, Germany.
| | | |
Collapse
|
110
|
Blondheim NR, Levy YS, Ben-Zur T, Burshtein A, Cherlow T, Kan I, Barzilai R, Bahat-Stromza M, Barhum Y, Bulvik S, Melamed E, Offen D. Human Mesenchymal Stem Cells Express Neural Genes, Suggesting a Neural Predisposition. Stem Cells Dev 2006; 15:141-64. [PMID: 16646662 DOI: 10.1089/scd.2006.15.141] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Because of their unique attributes of plasticity and accessibility, bone marrow-derived mesenchymal stem cells (MSCs) may find use for therapy of neurodegenerative disorders. Our previous studies of adult human MSCs demonstrated that these cells express an extensive assortment of neural genes at a low but clearly detectable level. Here, we report expression of 12 neural genes, 8 genes related to the neuro-dopaminergic system, and 11 transcription factors with neural significance by human MSCs. Our results suggest that, as opposed to cells that do not express neural genes, human MSCs are predisposed to differentiate to neuronal and glial lineages, given the proper conditions. Our findings add a new dimension in which to view adult stem cell plasticity, and may explain the relative ease with which MSCs, transplanted into the central nervous system (CNS) differentiate to a variety of functional neural cell types. Our results further promote the possibility that adult human MSCs are promising candidates for cell-based therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Netta R Blondheim
- Laboratory of Neurosciences, Felsenstein Medical Research Center and Department of Neurology, Rabin Medical Center, Beilinson Campus Tel Aviv University, Sackler School of Medicine, Petah-Tikva 49100, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Chung ACK, Xu X, Niederreither KA, Cooney AJ. Loss of orphan nuclear receptor GCNF function disrupts forebrain development and the establishment of the isthmic organizer. Dev Biol 2006; 293:13-24. [PMID: 16530751 DOI: 10.1016/j.ydbio.2005.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 11/17/2005] [Accepted: 12/06/2005] [Indexed: 02/06/2023]
Abstract
The isthmic organizer, which is located at the midbrain-hindbrain boundary, is important for midbrain development. The mechanism by which the development of the organizer is initiated and maintained is not well understood. Inactivation of the gene encoding the orphan nuclear receptor, GCNF, diminishes the expression of secreted signaling molecules, Fgf8 and Wnt1, the paired box genes Pax2/5, En1/2, and homeodomain transcription factor Gbx2; all of which are essential for isthmic organizer function. In addition, full neuronal differentiation is not observed in the midbrain region of GCNF-/- embryos. Increased cell death may contribute to the loss of midbrain structure in GCNF-/- embryos. These results indicate that GCNF is required for establishment of the isthmic organizer, thereby regulating the midbrain development.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Apoptosis/physiology
- Cell Differentiation/physiology
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Down-Regulation
- Ectoderm/metabolism
- Fibroblast Growth Factor 8/biosynthesis
- Fibroblast Growth Factor 8/genetics
- Homeodomain Proteins/biosynthesis
- Homeodomain Proteins/genetics
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Mesencephalon/abnormalities
- Mesencephalon/embryology
- Mesencephalon/metabolism
- Mice
- Mice, Knockout
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Neurons/cytology
- Nuclear Receptor Subfamily 6, Group A, Member 1
- Organizers, Embryonic/abnormalities
- Organizers, Embryonic/embryology
- Organizers, Embryonic/metabolism
- Otx Transcription Factors/biosynthesis
- Otx Transcription Factors/genetics
- Phosphoproteins/biosynthesis
- Phosphoproteins/genetics
- Prosencephalon/abnormalities
- Prosencephalon/embryology
- Prosencephalon/metabolism
- Receptors, Cytoplasmic and Nuclear/deficiency
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Somites/metabolism
Collapse
Affiliation(s)
- Arthur C-K Chung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
112
|
Byrne M, Cisternas P, Elia L, Relf B. Engrailed is expressed in larval development and in the radial nervous system of Patiriella sea stars. Dev Genes Evol 2005; 215:608-17. [PMID: 16163500 DOI: 10.1007/s00427-005-0018-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 08/09/2005] [Indexed: 11/25/2022]
Abstract
We documented expression of the pan-metazoan neurogenic gene engrailed in larval and juvenile Patiriella sea stars to determine if this gene patterns bilateral and radial echinoderm nervous systems. Engrailed homologues, containing conserved En protein domains, were cloned from the radial nerve cord. During development, engrailed was expressed in ectodermal (nervous system) and mesodermal (coeloms) derivatives. In larvae, engrailed was expressed in cells lining the larval and future adult coeloms. Engrailed was not expressed in the larval nervous system. As adult-specific developmental programs were switched on during metamorphosis, engrailed was expressed in the central nervous system and peripheral nervous system (PNS), paralleling the pattern of neuropeptide immunolocalisation. Engrailed was first seen in the developing nerve ring and appeared to be up-regulated as the nervous system developed. Expression of engrailed in the nerve plexus of the tube feet, the lobes of the hydrocoel along the adult arm axis, is similar to the reiterated pattern of expression seen in other animals. Engrailed expression in developing nervous tissue reflects its conserved role in neurogenesis, but its broad expression in the adult nervous system of Patiriella differs from the localised expression seen in other bilaterians. The role of engrailed in patterning repeated PNS structures indicates that it may be important in patterning the fivefold organisation of the ambulacrae, a defining feature of the Echinodermata.
Collapse
Affiliation(s)
- Maria Byrne
- Department of Anatomy and Histology, University of Sydney, New South Wales, Australia.
| | | | | | | |
Collapse
|
113
|
Aroca P, Puelles L. Postulated boundaries and differential fate in the developing rostral hindbrain. ACTA ACUST UNITED AC 2005; 49:179-90. [PMID: 16111548 DOI: 10.1016/j.brainresrev.2004.12.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Revised: 11/11/2004] [Accepted: 12/10/2004] [Indexed: 11/24/2022]
Abstract
The vertebrate brain is progressively regionalized during development in a process whereby a precise spatio-temporal arrangement of gene expression patterns and resulting intercellular and intracellular signals drive patterning, growth, morphogenesis, and final fates, thus producing ordered species-specific differentiation of each territory within a shared morphotype. Before genetic and molecular biology tools started to be used to uncover the underlying mechanisms that control morphogenesis, knowledge on brain development largely depended on descriptive analysis and experimental embryology. The first approach allowed us to know how the brain develops but not why. The second provided insights into inductive and field histogenetic phenomena, requiring causal explanation. In this review, we focused on the regionalization of the rostral hindbrain, defined as isthmus plus rhombomere 1, which is the least understood part of the hindbrain. We addressed what is known about the formation of boundaries in this area and the fate of diverse neuroepithelial portions. We introduced to this end some fate-mapping data recently obtained in our laboratory. Starting from the background of pioneering morphological studies and available fate mapping data, we establish correlation with current knowledge about how morphogens, transcription factors, or other signaling molecules map onto particular territories, from where they may drive morphogenetic interactions that generate final fates step by step.
Collapse
Affiliation(s)
- Pilar Aroca
- Department of Human Anatomy, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain.
| | | |
Collapse
|
114
|
Vieira C, Garcia-Lopez R, Martínez S. Positional regulation of Pax2 expression pattern in mesencephalic and diencephalic alar plate. Neuroscience 2005; 137:7-11. [PMID: 16289837 DOI: 10.1016/j.neuroscience.2005.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/18/2005] [Accepted: 09/14/2005] [Indexed: 10/25/2022]
Abstract
Regionalization of the neural tube is a fundamental event in the development of the CNS. The isthmic organizer controls the development of the mesencephalic-rhombencephalic junction by means of fibroblast growth factor 8 (Fgf8) expression. The transcription factor paired box 2 (Pax2) is expressed early in the midbrain and is later progressively restricted to the mid-hindbrain region, playing an important role in the development of the mesencephalon and the cerebellum. In this study, by implanting Fgf8-beads in the chick neural tube, we show that Fgf8 induces a heterogeneous pattern of Pax2 expression in the diencephalon. To explore the mechanisms controlling this asymmetric induction and the down-regulation of Pax2 in the anterior mesencephalon we performed antero-posterior inversions of diencephalic and/or mesencephalic neuroepithelium, with or without Fgf8-bead implantation. We show that anterior factors do not play a role in Pax2 regionalization, while posterior factors could explain these expression patterns. We conclude that the anterior mesencephalon and the diencephalon are able to retain or activate Pax2 expression under caudal influences, and to develop as a tectal structure at later developmental stages.
Collapse
Affiliation(s)
- C Vieira
- Neuroscience Institute of Alicante, UMH-CSIC, Miguel Hernandez University, Campus de San Juan, N-332, Km 87, E-03550 San Juan de Alicante, Spain
| | | | | |
Collapse
|
115
|
Abstract
Thanks to their transparent and rapidly developing mosaic embryos, ascidians (or sea squirts) have been a model system for embryological studies for over a century. Recently, ascidians have entered the postgenomic era, with the sequencing of the Ciona intestinalis genome and the accumulation of molecular resources that rival those available for fruit flies and mice. One strength of ascidians as a model system is their close similarity to vertebrates. Literature reporting molecular homologies between vertebrate and ascidian tissues has flourished over the past 15 years, since the first ascidian genes were cloned. However, it should not be forgotten that ascidians diverged from the lineage leading to vertebrates over 500 million years ago. Here, we review the main similarities and differences so far identified, at the molecular level, between ascidian and vertebrate tissues and discuss the evolution of the compact ascidian genome.
Collapse
Affiliation(s)
- Yale J Passamaneck
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
116
|
Moreno N, Bachy I, Rétaux S, González A. LIM-homeodomain genes as territory markers in the brainstem of adult and developing Xenopus laevis. J Comp Neurol 2005; 485:240-54. [PMID: 15791640 DOI: 10.1002/cne.20498] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated expression patterns of the LIM-homeodomain (LIM-hd) genes x-Lhx1, x-Lhx2, x-Lhx5, and x-Lhx9 in the brainstem of Xenopus laevis during larval development and in the adult. The two groups of paralogous genes, x-Lhx1/x-Lhx5 and x-Lhx2/x-Lhx9, showed fundamentally different expression patterns, being expressed in ventral versus dorsal territories of the midbrain and hindbrain, respectively. Indeed, prominent expression of x-Lhx1/5 was found in the mesencephalic tegmentum and the hindbrain reticular formation, whereas conspicuous x-Lhx2/9 expression was observed in the torus semicircularis and isthmic nucleus. A few shared expression domains for the two pairs of paralogs included the optic tectum and the anterodorsal and pedunculopontine nuclei. In each structure, expression of the two paralogs was almost identical, indicating that the regulation of their expression in this part of the brain has evolved slightly since gene duplication occurred. Notable exceptions included the expression of x-Lhx1 but not x-Lhx5 in the Purkinje cells and the expression of x-Lhx9 but not x-Lhx2 in the lateral line nucleus. The analysis of LIM-hd expression patterns throughout development allowed the origin of given structures in early embryos to be traced back. x-Lhx1 and x-Lhx5 were relevant to locate the cerebellar anlage and to follow morphogenesis of the cerebellar plate and cerebellar nuclei. They also highlighted the rhombomeric organization of the hindbrain. On the other hand, x-Lhx2 and x-Lhx9 showed a dynamic spatiotemporal pattern relative to tectal development and layering, and x-Lhx9 was useful to trace back the origin of the isthmus in early development.
Collapse
Affiliation(s)
- Nerea Moreno
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
117
|
O'Hara FP, Beck E, Barr LK, Wong LL, Kessler DS, Riddle RD. Zebrafish Lmx1b.1 and Lmx1b.2 are required for maintenance of the isthmic organizer. Development 2005; 132:3163-73. [PMID: 15944182 PMCID: PMC1361118 DOI: 10.1242/dev.01898] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mesencephalic and metencephalic region (MMR) of the vertebrate central nervous system develops in response to signals produced by the isthmic organizer (IsO). We have previously reported that the LIM homeobox transcription factor Lmx1b is expressed within the chick IsO, where it is sufficient to maintain expression of the secreted factor wnt1. In this paper, we show that zebrafish express two Lmx1b orthologs, lmx1b.1 and lmx1b.2, in the rostral IsO, and demonstrate that these genes are necessary for key aspects of MMR development. Simultaneous knockdown of Lmx1b.1 and Lmx1b.2 using morpholino antisense oligos results in a loss of wnt1, wnt3a, wnt10b, pax8 and fgf8 expression at the IsO, leading ultimately to programmed cell death and the loss of the isthmic constriction and cerebellum. Single morpholino knockdown of either Lmx1b.1 or Lmx1b.2 has no discernible effect on MMR development. Maintenance of lmx1b.1 and lmx1b.2 expression at the isthmus requires the function of no isthmus/pax2.1, as well as Fgf signaling. Transient misexpression of Lmx1b.1 or Lmx1b.2 during early MMR development induces ectopic wnt1 and fgf8 expression in the MMR, as well as throughout much of the embryo. We propose that Lmx1b.1- and Lmx1b.2-mediated regulation of wnt1, wnt3a, wnt10b, pax8 and fgf8 maintains cell survival in the isthmocerebellar region.
Collapse
Affiliation(s)
- F Patrick O'Hara
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
118
|
Sato T, Joyner AL, Nakamura H. How does Fgf signaling from the isthmic organizer induce midbrain and cerebellum development? Dev Growth Differ 2005; 46:487-94. [PMID: 15610138 DOI: 10.1111/j.1440-169x.2004.00769.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mesencephalic/rhombomere 1 border (isthmus) is an organizing center for early development of midbrain and cerebellum. In this review, we summarize recent progress in studies of Fgf signaling in the isthmus and discuss how the isthmus instructs the differentiation of the midbrain versus cerebellum. Fgf8 is shown to play a pivotal role in isthmic organizer activity. Only a strong Fgf signal mediated by Fgf8b activates the Ras-extracellular signal-regulated kinase (ERK) pathway, and this is sufficient to induce cerebellar development. A lower level of signaling transduced by Fgf8a, Fgf17 and Fgf18 induce midbrain development. Numerous feedback loops then maintain appropriate mesencephalon/rhombomere1 and organizer gene expression.
Collapse
Affiliation(s)
- Tatsuya Sato
- Howard Hughes Medical Institute and Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
119
|
Melloy PG, Kusnierczyk MK, Meyer RA, Lo CW, Desmond ME. Overexpression of connexin43 alters the mutant phenotype of midgestational wnt-1 null mice resulting in recovery of the midbrain and cerebellum. ACTA ACUST UNITED AC 2005; 283:224-38. [PMID: 15678491 DOI: 10.1002/ar.a.20158] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The midbrain-hindbrain (MHB) junction plays a key role in the patterning of the embryonic neural tube and the formation of brain structures such as the cerebellum. The mitogen wnt-1 is critical for cerebellar development, as evidenced by the lack of MHB region and cerebellar formation in the wnt-1 null embryo. We have generated wnt-1 null embryos overexpressing the gap junction gene connexin43 by crossing wnt-1 null heterozygotes into the CMV43 mouse line. We have confirmed that these mice show an increase in gap junctional communication by dye coupling analysis. Two-thirds of wnt-1 null CMV43(+) mouse embryos at E18.5 have a cerebellum. In addition, changes in the wnt-1 null phenotype in mouse embryos overexpressing connexin43 are observed as early as E9.5. At this stage, one-quarter of wnt-1 null CMV43(+) embryos display extra or expanded tissue present at the MHB boundary (a wnt-1 null enlarged phenotype). In situ hybridization studies conducted on these embryos have indicated no changes in the expression of embryonic brain positional markers in this region. We conclude from these studies that overexpression of the connexin43 gap junction restores cerebellar formation by compensating for the loss of wnt-1.
Collapse
|
120
|
Simon HH, Scholz C, O'Leary DDM. Engrailed genes control developmental fate of serotonergic and noradrenergic neurons in mid- and hindbrain in a gene dose-dependent manner. Mol Cell Neurosci 2005; 28:96-105. [PMID: 15607945 DOI: 10.1016/j.mcn.2004.08.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 08/17/2004] [Accepted: 08/30/2004] [Indexed: 11/15/2022] Open
Abstract
In vertebrates and insects, the homeobox transcription factors of the engrailed family have a dual function. They take part in regionalization during early embryogenesis and later in neuronal specification. In mammals, two engrailed homologues exist, engrailed-1 and engrailed-2, which are expressed in a broad band around the isthmus at an age when the serotonergic and noradrenergic neurons in mid/hindbrain are generated. The analysis of engrailed-1 and -2 double mutant mice revealed a specific, redundant, and gene dose-dependent requirement of the two transcription factors for the development of the serotonergic dorsal raphe nucleus and the noradrenergic locus caeruleus. Both nuclei are lost in engrailed double mutant mice; however, directly adjacent nuclei of the same neurotransmitter phenotype are not affected. An almost identical phenotype is found in mutant mice null for Wnt1, indicating that the engrailed genes provide essential positional information for the development of the two nuclei during early embryogenesis.
Collapse
Affiliation(s)
- Horst H Simon
- Interdisciplinary Center for Neuroscience, Department of Neuroanatomy, University of Heidelberg, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
121
|
Rogers JM, Brannen KC, Barbee BD, Zucker RM, Degitz SJ. Methanol exposure during gastrulation causes holoprosencephaly, facial dysgenesis, and cervical vertebral malformations in C57BL/6J mice. ACTA ACUST UNITED AC 2004; 71:80-8. [PMID: 15098201 DOI: 10.1002/bdrb.20003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Exposure of pregnant outbred CD-1 mice to methanol during the period of gastrulation results in exencephaly, cleft palate, and cervical vertebra malformations [Rogers and Mole, Teratology 55: 364, 1997], while inbred C57BL/6J mice are sensitive to the teratogenicity of ethanol. C57BL/6J fetuses exhibit the holoprosencephaly spectrum of malformations after maternal exposure to ethanol during gastrulation, but the sensitivity of C57BL/6J mice to methanol-induced teratogenesis has not been previously described. METHODS Pregnant C57BL/6J mice were administered two i.p. injections totaling 3.4 or 4.9 g/kg methanol or distilled water four hrs apart on gestation day 'GD' 7. On GD 17, litters were examined for numbers of live, dead and resorbed conceptuses, fetuses were weighed as a litter and examined externally, and all fetuses were double stained for skeletal analysis. RESULTS No maternal intoxication was apparent, but the high dosage level caused a transient deficit in maternal weight gain. The number of live fetuses per litter was reduced at both dosages of methanol, and fetal weight was lower in the high dosage group. Craniofacial defects were observed in 55.8% of fetuses in the low dosage group and 91.0% of fetuses in the high dosage group, including micro/anophthalmia, holoprosencephaly, facial clefts and gross facial angenesis. Skeletal malformations, particularly of the cervical vertebrae, were observed at both dosages of methanol, and were similar to those previously reported in the CD-1 mouse following methanol exposure. CONCLUSIONS The types of craniofacial malformations induced in the C57BL/6J mouse by methanol indicate that methanol and ethanol have common targets and may have common modes of action.
Collapse
Affiliation(s)
- John M Rogers
- Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | |
Collapse
|
122
|
Murcia CL, Gulden F, Herrup K. A question of balance: a proposal for new mouse models of autism. Int J Dev Neurosci 2004; 23:265-75. [PMID: 15749251 DOI: 10.1016/j.ijdevneu.2004.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 07/01/2004] [Accepted: 07/02/2004] [Indexed: 11/24/2022] Open
Abstract
Autism spectrum disorder (ASD) represents a major mental health problem with estimates of prevalence ranging from 1/500 to 1/2000. While generally recognized as developmental in origin, little to nothing is certain about its etiology. Currently, diagnosis is made on the basis of a variety of early developmental delays and/or regressions in behavior. There are no universally agreed upon changes in brain structure or cell composition. No biomarkers of any type are available to aid or confirm the clinical diagnosis. In addition, while estimates of the heritability of the condition range from 60 to 90%, as of this writing no disease gene has been unequivocally identified. The prevalence of autism is three- to four-fold higher in males than in females, but the reason for this sexual dimorphism is unknown. In light of all of these ambiguities, a proposal to discuss potential animal models may seem the heart of madness. However, parsing autism into its individual genetic, behavioral, and neurobiological components has already facilitated a 'conversation' between the human disease and the neuropathology and biochemistry underlying the disorder. Building on these results, it should be possible to not just replicate one aspect of autism but to connect the developmental abnormalities underlying the ultimate behavioral phenotype. A reciprocal conversation such as this, wherein the human disease informs on how to make a better animal model and the animal model teaches of the biology causal to autism, would be highly beneficial.
Collapse
Affiliation(s)
- Crystal L Murcia
- Department of Neurosciences, School of Medicine, Case Western Reserve University, E504 2109 Adelbert Road, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
123
|
Rios I, Alvarez-Rodríguez R, Martí E, Pons S. Bmp2 antagonizes sonic hedgehog-mediated proliferation of cerebellar granule neurones through Smad5 signalling. Development 2004; 131:3159-68. [PMID: 15197161 DOI: 10.1242/dev.01188] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During development of the cerebellum, sonic hedgehog (Shh) is directly responsible for the proliferation of granule cell precursors in the external germinal layer. We have looked for signals able to regulate a switch from the Shh-mediated proliferative response to one that directs differentiation of granule neurones. Bone morphogenetic proteins (BMPs) are expressed in distinct neuronal populations within the developing cerebellar cortex. Bmp2 and Bmp4 are expressed in the proliferating precursors and subsequently in differentiated granule neurones of the internal granular layer, whereas Bmp7 is expressed by Purkinje neurones. In primary cultures, Bmp2 and Bmp4, but not Bmp7, are able to prevent Shh-induced proliferation, thereby allowing granule neuron differentiation. Furthermore, Bmp2 treatment downregulates components of the Shh pathway in proliferating granule cell precursors. Smad proteins, the only known BMP receptor substrates capable of transducing the signal, are also differentially expressed in the developing cerebellum: Smad1 in the external germinal layer and Smad5 in newly differentiated granule neurones. Among them, only Smad5 is phosphorylated in vivo and in primary cultures treated with Bmp2, and overexpression of Smad5 is sufficient to induce granule cell differentiation in the presence of Shh. We propose a model in which Bmp2-mediated Smad5 signalling suppresses the proliferative response to Shh by downregulation of the pathway, and allows granule cell precursor to enter their differentiation programme.
Collapse
Affiliation(s)
- Iria Rios
- Instituto de Biología Molecular de Barcelona (CSIC) Barcelona, C/Josep Samitier 1-5, Barcelona 08028, Spain
| | | | | | | |
Collapse
|
124
|
Segmental identity and cerebellar granule cell induction in rhombomere 1. BMC Biol 2004; 2:14. [PMID: 15198802 PMCID: PMC446226 DOI: 10.1186/1741-7007-2-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 06/15/2004] [Indexed: 01/09/2023] Open
Abstract
Background Cerebellar granule cell precursors are specifically generated within the hindbrain segment, rhombomere 1, which is bounded rostrally by the midbrain/hindbrain isthmus and caudally by the boundary of the Hoxa2 expression domain. While graded signals from the isthmus have a demonstrable patterning role within this region, the significance of segmental identity for neuronal specification within rhombomere 1 is unexplored. We examined the response of granule cell precursors to the overexpression of Hoxa2, which normally determines patterns of development specific to the hindbrain. How much does the development of the cerebellum, a midbrain/hindbrain structure, reflect its neuromeric origin as a hindbrain segment? Results We show that a Gbx2-positive, Otx2-/Hoxa2-negative territory corresponding to rhombomere 1 forms prior to an identifiable isthmic organiser. Early global overexpression of Hoxa2 at embryonic day 0 has no effect on the expression of isthmic signalling molecules or the allocation of rhombomere 1 territory, but selectively results in the loss of granule cell markers at embryonic day 6 and the depletion of cell bodies from the external granule cell layer. By comparison the trochlear nucleus and locus coeruleus form normally in ventral rhombomere 1 under these conditions. Microsurgery, coupled with electroporation, to target Hoxa2 overexpression to rhombic lip precursors, reveals a profound, autonomous respecification of migration. Rhombic lip derivatives, normally destined to occupy the external granule cell layer, violate the cerebellar boundary to form a ventrolateral nucleus in a position comparable to that occupied by rhombic lip derived neurons in rhombomere 2. Conclusions Different overexpression strategies reveal that the recognition of migration cues by granule cell precursors is dependent on their identity as rhombomere 1 derivatives. Segmental patterning cues operate autonomously within the rhombic lip precursor pool. By contrast, a subset of coextensive nuclei is refractory to ectopic Hoxa2 and is presumably induced solely by isthmic organiser activity. Thus, graded (isthmic) and segmental mechanisms may operate exclusively of one another in the specification of different neuronal populations within rhombomere 1. The early designation of an Otx2-negative, Hoxa2-negative region, prior to the appearance of the isthmic organiser, is a key initial step in the specification of the cerebellum.
Collapse
|
125
|
Albéri L, Sgadò P, Simon HH. Engrailed genes are cell-autonomously required to prevent apoptosis in mesencephalic dopaminergic neurons. Development 2004; 131:3229-36. [PMID: 15175251 DOI: 10.1242/dev.01128] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neuropathological hallmark of Parkinson's disease is the loss of dopaminergic neurons in the substantia nigra pars compacta, presumably mediated by apoptosis. The homeobox transcription factors engrailed 1 and engrailed 2 are expressed by this neuronal population from early in development to adulthood. Despite a large mid-hindbrain deletion in double mutants null for both genes, mesencephalic dopaminergic (mDA) neurons are induced, become postmitotic and acquire their neurotransmitter phenotype. However, at birth, no mDA neurons are left. We show that the entire population of these neurons is lost by E14 in the mutant animals, earlier than in any other described genetic model system for Parkinson's disease. This disappearance is caused by apoptosis revealed by the presence of activated caspase 3 in the dying tyrosine hydroxylase-positive mutant cells. Furthermore, using in vitro cell mixing experiments and RNA interference on primary cell culture of ventral midbrain we were able to show that the demise of mDA neurons in the mutant mice is due to a cell-autonomously requirement of the engrailed genes and not a result of the missing mid-hindbrain tissue. Gene silencing in the postmitotic neurons by RNA interference activates caspase 3 and induces apoptosis in less than 24 hours. This rapid induction of cell death in mDA neurons suggests that the engrailed genes participate directly in the regulation of apoptosis, a proposed mechanism for Parkinson's disease.
Collapse
Affiliation(s)
- Lavinia Albéri
- Department of Neuroanatomy, Interdisciplinary Center of Neuroscience, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
126
|
Gourion D, Leroy S, Bourdel MC, Goldberger C, Poirier MF, Olié JP, Krebs MO. Cerebellum development and schizophrenia: an association study of the human homeogene Engrailed 2. Psychiatry Res 2004; 126:93-8. [PMID: 15123388 DOI: 10.1016/j.psychres.2004.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Revised: 01/15/2004] [Accepted: 02/19/2004] [Indexed: 10/26/2022]
Abstract
Epidemiological data and family studies in schizophrenia show that genetic factors contribute to the vulnerability to this disorder. The homeogene Engrailed 2 (EN2) is specifically involved in patterning the region that gives rise to the cerebellum and controls the plasticity of midbrain dopaminergic neurons. We carried out an association study for a CA repeat polymorphism located in the 3' region of the homeogene EN2. The subjects consisted of 165 patients with schizophrenia and 97 controls matched for age and ethnicity from a French Caucasian population. We found no significant association of schizophrenia with this bi-nucleotide repeat polymorphism of the EN2 gene.
Collapse
Affiliation(s)
- David Gourion
- INSERM E117, SHU Sainte-Anne, 7 rue Cabanis, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
127
|
Wang CC. Development of the Rhombencephalon: Molecular Evolution and Genetic Regulation. Neuroembryology Aging 2004. [DOI: 10.1159/000088208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
128
|
Sarnat HB, Flores-Sarnat L. Integrative classification of morphology and molecular genetics in central nervous system malformations. ACTA ACUST UNITED AC 2004; 126A:386-92. [PMID: 15098236 DOI: 10.1002/ajmg.a.20663] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We propose a scheme to classify central nervous system (CNS) malformations that integrates morphology and genetics by using patterns of genetic expression as its basis. The precise genetic mutations are not necessary to know in all cases. The premises of this classification are (1) genetic expression in the neural tube follows gradients in the axes that are established at the time of gastrulation: vertical (dorsoventral and ventrodorsal); rostrocaudal; mediolateral. (2) Overexpression in one of these gradients generally results in duplication or hyperplasia of structures, or ectopic segmental (i.e., neuromeric) expression. (3) Underexpression in a gradient generally results in hypoplasia, noncleavage in the midline of paired structures or segmental deletion of neuromeres. These gradients may also affect the formation and migration of neural crest tissue, affecting non-neural structures such as the face in the case of the mesencephalic neural crest, or induction of paraxial mesodermal in the posterior fossa. Additional criteria of the new classification allow for other genetic influences on developmental processes, such as cellular lineage, exemplified by tuberous sclerosis, and hemimegalencephaly. It is essential that the CNS be considered as a whole and classification not be regionalized, as to the cerebral cortex, because the limit of the rostrocaudal gradient may account for variability in clinical manifestations.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Department of Pediatrics (Neurology), Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048, USA.
| | | |
Collapse
|
129
|
Riddle R, Pollock JD. Making connections: the development of mesencephalic dopaminergic neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 147:3-21. [PMID: 14741747 DOI: 10.1016/j.devbrainres.2003.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The disorders of two adjacent sets of mesencephalic dopaminergic (MDNs) are associated with two significant health problems: Parkinson's disease and drug addiction. Because of this, a great deal of research has focused on understanding the growth, development and maintenance of MDNs. Many transcription factors and signaling pathways are known to be required for normal MDNs formation, but a unified model of MDN development is still unclear. The long-term goal is to design therapeutic strategies to: (i) nurture and/or heal endogenous MDNs, (ii) replace the affected tissue with exogenous MDNs from in vitro cultivated stem cells and (iii) restore normal connectivity. Recent developmental biology studies show great promise in understanding how MDNs develop both in vivo and in vitro. This information has great therapeutic value and may provide insight into how environmental and genetic factors increase vulnerability to addiction.
Collapse
Affiliation(s)
- Robert Riddle
- Genetics and Molecular Neurobiology Research Branch, Division of Neuroscience and Behavioral Research, National Institute on Drug Abuse, 6001 Executive Blvd., Bethesda, MD 20892-9555, USA.
| | | |
Collapse
|
130
|
Liguori GL, Echevarría D, Improta R, Signore M, Adamson E, Martínez S, Persico MG. Anterior neural plate regionalization in cripto null mutant mouse embryos in the absence of node and primitive streak. Dev Biol 2003; 264:537-49. [PMID: 14651936 DOI: 10.1016/j.ydbio.2003.08.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The relation between the role of the organizer at the gastrula stage and the activity of earlier signals in the specification, maintenance, and regionalization of the developing brain anlage is still controversial. Mouse embryos homozygous for null mutation in the cripto gene die at about 9.0 days postcoitum (d.p.c.) and fail to gastrulate and to form the node (the primary organizer). Here, we study the presence and the distribution of anterior neural plate molecular domains in cripto null mutants. We demonstrate that, in cripto(-/-) embryos, the main prosencephalic and mesencephalic regions are present and that they assume the correct topological organization. The identity of the anterior neural domains is maintained in mutant embryos at 8.5 d.p.c., as well as in mutant explants dissected at 8.5 d.p.c. and cultured in vitro for 24 h. Our data imply the existence of a stable neural regionalization of anterior character inside the cripto(-/-) embryos, despite the failure in both the gastrulation process and node formation. These results suggest that, in mouse embryos, the specification of the anterior neural identities can be maintained without an absolute requirement for the embryonic mesoderm and the node.
Collapse
Affiliation(s)
- Giovanna L Liguori
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Via Guglielmo Marconi 12, 80125 Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
131
|
Baizabal JM, Furlan-Magaril M, Santa-Olalla J, Covarrubias L. Neural stem cells in development and regenerative medicine. Arch Med Res 2003; 34:572-88. [PMID: 14734098 DOI: 10.1016/j.arcmed.2003.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the last 10 years, enormous interest in neural stem cells has arisen from both basic and medical points of view. The discovery of neurogenesis in the adult brain has opened our imagination to consider novel strategies for the treatment of neurodegenerative diseases. Characterization of neurogenesis during development plays a fundamental role for the rational design of therapeutic procedures. In the present review, we describe recent progress in the characterization of embryo and adult neural stem cells (NSCs). We emphasize studies directed to determine the in vivo and in vitro differentiation potential of different NSC populations and the influence of the surrounding environment on NSC-specific differentiation. From a different perspective, the fact that NSCs and progenitors continuously proliferate and differentiate in some areas of the adult brain force us to ask how this process can be affected in neurodegenerative diseases. We propose that both abnormal cell death activation and decreased natural neuronal regeneration can contribute to the neuronal loss associated with aging, and perhaps even with that occurring in some neurodegenerative diseases. Furthermore, although NSC activation can be useful to treat neurodegenerative diseases, uncontrolled NSC proliferation, survival, and/or differentiation could cause tumorigenesis in the brain. NSC-mediated therapeutic procedures must take into account this latter possibility.
Collapse
Affiliation(s)
- José-Manuel Baizabal
- Departamento de Genética de Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | | | |
Collapse
|
132
|
Kikuta H, Kanai M, Ito Y, Yamasu K. gbx2 Homeobox gene is required for the maintenance of the isthmic region in the zebrafish embryonic brain. Dev Dyn 2003; 228:433-50. [PMID: 14579382 DOI: 10.1002/dvdy.10409] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We isolated cDNA clones for the zebrafish gbx2 gene, which is implicated in the establishment of the midbrain-hindbrain boundary (MHB) in other vertebrates. Spatially localized expression of gbx2 was observed at the MHB from 90% epiboly through to the hatching stage. Comparisons with the expression of otx2, wnt1, and krox20 showed that gbx2 is expressed in the anterior hindbrain. Ectopic expression of gbx2 by mRNA injection caused cyclopia or truncation of the fore- and midbrain and severely affected isthmic and cerebellar structures, while hindbrain formation was not significantly affected. At the molecular level, gbx2 suppressed the expression of otx2 in the fore/midbrain, six3 in the anterior forebrain, and MHB-specific genes such as eng2 and wnt1. In contrast, gbx2 did not down-regulate the expression of the hindbrain marker genes. Therefore, gbx2 specifically suppressed the formation of the entire fore/midbrain. Meanwhile, misexpression of otx2 suppressed the expression of gbx2 in the embryonic brain. Abrogation of gbx2 expression with an antisense morpholino oligonucleotide disrupted the midbrain/anterior hindbrain region, and these loss-of-function effects were rescued by activating the Gbx2 protein immediately after the end of gastrulation. Taken together, these results suggest that the zebrafish gbx2 gene is essential for the maintenance of MHB and/or the formation of the isthmic structure during somitogenesis, rather than for the MHB establishment during gastrulation. We also suggest that other factors, including gbx1, is required for the establishment of the MHB during gastrulation.
Collapse
Affiliation(s)
- Hiroshi Kikuta
- Department of Regulation Biology, Faculty of Science, Saitama University, Saitama, Japan
| | | | | | | |
Collapse
|
133
|
Yang J, Wu J, Tan C, Klein PS. PP2A:B56epsilon is required for Wnt/beta-catenin signaling during embryonic development. Development 2003; 130:5569-78. [PMID: 14522869 DOI: 10.1242/dev.00762] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Wnt/beta-catenin pathway plays important roles during embryonic development and growth control. The B56 regulatory subunit of protein phosphatase 2A (PP2A) has been implicated as a regulator of this pathway. However, this has not been investigated by loss-of-function analyses. Here we report loss-of-function analysis of PP2A:B56epsilon during early Xenopus embryogenesis. We provide direct evidence that PP2A:B56epsilon is required for Wnt/beta-catenin signaling upstream of Dishevelled and downstream of the Wnt ligand. We show that maternal PP2A:B56epsilon function is required for dorsal development, and PP2A:B56epsilon function is required later for the expression of the Wnt target gene engrailed, for subsequent midbrain-hindbrain boundary formation, and for closure of the neural tube. These data demonstrate a positive role for PP2A:B56epsilon in the Wnt pathway.
Collapse
Affiliation(s)
- Jing Yang
- Department of Medicine (Hematology-Oncology) Institute, University of Pennsylvania School of Medicine, 364 Clinical Research Building, 415 Curie Blvd, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
134
|
Echevarría D, Vieira C, Gimeno L, Martínez S. Neuroepithelial secondary organizers and cell fate specification in the developing brain. ACTA ACUST UNITED AC 2003; 43:179-91. [PMID: 14572913 DOI: 10.1016/j.brainresrev.2003.08.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In vertebrates, elaborate cellular interactions regulate the establishment of the complex structural pattern of the developing central nervous system. Distinct neural and glial identities are acquired by neuroepithelial cells, through progressive restriction of histogenetic potential under the influence of local environmental signals. The localization of the sources of such morphogenetic signals in discrete domains of the developing neural primordium has led to the concept of secondary organizers which refine the identity and polarity of neighboring neuroepithelial regions. Thus, these organizers, secondary to those that operate throughout the embryo during gastrulation, act to pattern the anterior neural plate and tube giving rise to the forebrain, midbrain and hindbrain vesicles. Important progress has recently been made in understanding their genesis and function.
Collapse
Affiliation(s)
- Diego Echevarría
- Fac. de Medicina, Instituto de Neurociencias UMH-CSIC, University Miguel Hernandez, Carretera de Valencia, N-332, Km 87, E-03550, San Juan Alicante, Spain.
| | | | | | | |
Collapse
|
135
|
Lowe CJ, Wu M, Salic A, Evans L, Lander E, Stange-Thomann N, Gruber CE, Gerhart J, Kirschner M. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 2003; 113:853-65. [PMID: 12837244 DOI: 10.1016/s0092-8674(03)00469-0] [Citation(s) in RCA: 346] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The chordate central nervous system has been hypothesized to originate from either a dorsal centralized, or a ventral centralized, or a noncentralized nervous system of a deuterostome ancestor. In an effort to resolve these issues, we examined the hemichordate Saccoglossus kowalevskii and studied the expression of orthologs of genes that are involved in patterning the chordate central nervous system. All 22 orthologs studied are expressed in the ectoderm in an anteroposterior arrangement nearly identical to that found in chordates. Domain topography is conserved between hemichordates and chordates despite the fact that hemichordates have a diffuse nerve net, whereas chordates have a centralized system. We propose that the deuterostome ancestor may have had a diffuse nervous system, which was later centralized during the evolution of the chordate lineage.
Collapse
Affiliation(s)
- Christopher J Lowe
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Chi CL, Martinez S, Wurst W, Martin GR. The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development 2003; 130:2633-44. [PMID: 12736208 DOI: 10.1242/dev.00487] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Numerous studies have demonstrated that the midbrain and cerebellum develop from a region of the early neural tube comprising two distinct territories known as the mesencephalon (mes) and rostral metencephalon (met; rhombomere 1), respectively. Development of the mes and met is thought to be regulated by molecules produced by a signaling center, termed the isthmic organizer (IsO), which is localized at the boundary between them. FGF8 and WNT1 have been implicated as key components of IsO signaling activity, and previous studies have shown that in Wnt1(-/-) embryos, the mes/met is deleted by the 30 somite stage ( approximately E10) (McMahon, A. P. and Bradley, A. (1990) Cell 62, 1073-1085). We have studied the function of FGF8 in mouse mes/met development using a conditional gene inactivation approach. In our mutant embryos, Fgf8 expression was transiently detected, but then was eliminated in the mes/met by the 10 somite stage ( approximately E8.75). This resulted in a failure to maintain expression of Wnt1 as well as Fgf17, Fgf18, and Gbx2 in the mes/met at early somite stages, and in the absence of the midbrain and cerebellum at E17.5. We show that a major cause of the deletion of these structures is ectopic cell death in the mes/met between the 7 and 30 somite stages. Interestingly, we found that the prospective midbrain was deleted at an earlier stage than the prospective cerebellum. We observed a remarkably similar pattern of cell death in Wnt1 null homozygotes, and also detected ectopic mes/met cell death in En1 null homozygotes. Our data show that Fgf8 is part of a complex gene regulatory network that is essential for cell survival in the mes/met.
Collapse
Affiliation(s)
- Candace L Chi
- Department of Anatomy and Program in Developmental Biology, School of Medicine, University of California at San Francisco, San Francisco, CA 94143-0452, USA
| | | | | | | |
Collapse
|
137
|
Hirth F, Kammermeier L, Frei E, Walldorf U, Noll M, Reichert H. An urbilaterian origin of the tripartite brain: developmental genetic insights from Drosophila. Development 2003; 130:2365-73. [PMID: 12702651 DOI: 10.1242/dev.00438] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Studies on expression and function of key developmental control genes suggest that the embryonic vertebrate brain has a tripartite ground plan that consists of a forebrain/midbrain, a hindbrain and an intervening midbrain/hindbrain boundary region, which are characterized by the specific expression of the Otx, Hox and Pax2/5/8 genes, respectively. We show that the embryonic brain of the fruitfly Drosophila melanogaster expresses all three sets of homologous genes in a similar tripartite pattern. Thus, a Pax2/5/8 expression domain is located at the interface of brain-specific otd/Otx2 and unpg/Gbx2 expression domains anterior to Hox expression regions. We identify this territory as the deutocerebral/tritocerebral boundary region in the embryonic Drosophila brain. Mutational inactivation of otd/Otx2 and unpg/Gbx2 result in the loss or misplacement of the brain-specific expression domains of Pax2/5/8 and Hox genes. In addition, otd/Otx2 and unpg/Gbx2 appear to negatively regulate each other at the interface of their brain-specific expression domains. Our studies demonstrate that the deutocerebral/tritocerebral boundary region in the embryonic Drosophila brain displays developmental genetic features similar to those observed for the midbrain/hindbrain boundary region in vertebrate brain development. This suggests that a tripartite organization of the embryonic brain was already established in the last common urbilaterian ancestor of protostomes and deuterostomes.
Collapse
Affiliation(s)
- Frank Hirth
- Institute of Zoology, Biozentrum/Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
138
|
Abstract
Recent studies have identified several factors that influence the development of midbrain dopamine (DA) neurons. The identity of early proliferating DA progenitor cells are specified by the secreted factors sonic hedgehog and fibroblast growth factor 8, derived from the floor plate of the ventral midline and the mid/hindbrain border, respectively. While transcription factors specifically expressed in the proliferating DA progenitor cells remain to be identified, several transcription factors important for postmitotic DA cell development have been characterized. These include Nurr1, Lmx1b, Pitx3, and En1/En2. The studies of these transcription factors have not only increased the understanding of how DA neurons are generated in vivo, but also allowed the development of new strategies using stem cells for engineering DA neurons in vitro, results that may have significance in future therapies of patients with Parkinson's disease.
Collapse
Affiliation(s)
- Asa Wallén
- The Ludwig Institute for Cancer Research, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | |
Collapse
|
139
|
Abstract
The development of midbrain dopamine (DA) neurons follows a number of stages marked by distinct events. After preparation of the region by signals that provide induction and patterning, at least two cascades of transcription factors contribute to the fully matured midbrain DA systems. One cascade involving the nuclear receptor Nurr1 is required to synthesize the neurotransmitter DA; the enzyme tyrosine hydroxylase (TH) depends on it. The other cascade involves homeobox genes. Lmx1b and engrailed genes are expressed before the genesis of DA neurons and maintain their expression in these neurons. Lmx1b drives Ptx3, which is the latest transcription factor known to be induced. Its induction coincides with that of TH. Disruption of the function of Ptx3 affects the formation of the substantia nigra (SN) and alters the anatomical organization of the midbrain DA systems. While each cascade contributes to a specific aspect of DA neurons, both cascades are required for survival during development, indicating that the maintenance of DA neurons is delicately dependent on the appropriate activity of multiple transcriptional cascades.
Collapse
Affiliation(s)
- J Peter H Burbach
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
140
|
Oda-Ishii I, Saiga H. Genomic organization and promoter and transcription regulatory regions for the expression in the anterior brain (sensory vesicle) of Hroth, the otx homologue of the ascidian, Halocynthia roretzi. Dev Dyn 2003; 227:104-13. [PMID: 12701103 DOI: 10.1002/dvdy.10295] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Otx (otd in Drosophila) is a well-conserved homeobox gene throughout animal phylogeny and commonly expressed in the anterior part of the embryo. In embryos of the ascidian Halocynthia roretzi, Hroth, the otx homologue in this species, is expressed in the endoderm and the sensory vesicle, the anterior part of the larval ascidian central nervous system (CNS), which has been thought to be homologous to vertebrate forebrain and midbrain. The developmental expression pattern of Hroth is very similar to that of vertebrate counterparts, which leads to a possibility that a similar mechanism may exist in the patterning of the CNS between ascidians and vertebrates. To better understand the mechanism, we decided to undertake analysis of the transcriptional regulatory regions of Hroth. We isolated and determined the nucleotide sequence of the 11.4-kbp region upstream of the translation start site of Hroth. We found that Hroth transcripts are modified likely with spliced leader RNA; therefore, we could not determine the transcription start site. However, first, we identified three introns that are unknown with vertebrate otx genes. Second, we found two regions that are capable of functioning as a promoter through deletion analysis, one of which appeared to be an endogenous promoter of Hroth. We analyzed the 5' upstream region 5402-1473bp, the region between 1473 and 5402 base pairs upstream from the translation start site of Hroth, including the putative endogenous promoter. This region was capable of driving Hroth expression in the sensory vesicle lineage cells as well as some other lineages at the early tail bud stage. Deletion analysis of this region suggested that three regions, 1659-1650bp, 1628-1613bp, and 1542-1473bp are responsible for regulating Hroth expression in the sensory vesicle cells at the tail bud stage. Among these regions, no apparent sequence conservation was observed. The present study has revealed a complex organization of transcription regulatory regions for the ascidian otx.
Collapse
Affiliation(s)
- Izumi Oda-Ishii
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachiohji, Tokyo, Japan
| | | |
Collapse
|
141
|
Chen CP, Chern SR, Chang TY, Tzen CY, Lee CC, Chen WL, Lee MS, Wang W. Prenatal diagnosis of de novo terminal deletion of chromosome 7q. Prenat Diagn 2003; 23:375-9. [PMID: 12749033 DOI: 10.1002/pd.602] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVES To present the prenatal diagnosis and perinatal findings of a de novo terminal deletion of chromosome 7q. CASE Amniocentesis was performed at 21-weeks gestation owing to a positive result of maternal serum multiple-marker screening. The 30-year-old woman, gravida 2, para 1, had a maternal serum multiple-marker screening test at 18-weeks gestation. The risk of Down syndrome was 1/11 calculated from the gestational age, maternal age, a maternal serum alpha-fetoprotein level of 1.026 multiples of the median (MOM), and a maternal serum free beta-human chorionic gonadotrophin (hCG) level of 8.678 MoM. Cytogenetic analysis of the cultured amniotic fluid cells revealed a de novo terminal deletion of 7q, 46,XX,del(7)(q35). Ultrasonography showed intrauterine growth restriction, microcephaly, and tetralogy of Fallot. The pregnancy was terminated subsequently. Grossly, the placenta was normal. On autopsy, the proband additionally manifested a prominent forehead, hypertelorism, epicanthus, upslanting palpebral fissures, a flat and broad nasal bridge, micrognathia, large low-set ears, overriding toes, and a normal brain. Radiography demonstrated a normal spine. Fluorescence in situ hybridization analysis demonstrated a 7q terminal deletion. Genetic marker analysis showed a maternally derived terminal deletion of chromosome 7(q35-qter). CONCLUSION Fetuses with a de novo 7q terminal deletion may be associated with a markedly elevated maternal serum hCG level and abnormal sonographic findings of intrauterine growth restriction, microcephaly, and congenital heart defects in the second trimester.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Kobayashi M, Fujioka M, Tolkunova EN, Deka D, Abu-Shaar M, Mann RS, Jaynes JB. Engrailed cooperates with extradenticle and homothorax to repress target genes in Drosophila. Development 2003; 130:741-51. [PMID: 12506004 PMCID: PMC2692026 DOI: 10.1242/dev.00289] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Engrailed is a key transcriptional regulator in the nervous system and in the maintenance of developmental boundaries in Drosophila, and its vertebrate homologs regulate brain and limb development. Here, we show that the functions of both of the Hox cofactors Extradenticle and Homothorax play essential roles in repression by Engrailed. Mutations that remove either of them abrogate the ability of Engrailed to repress its target genes in embryos, both cofactors interact directly with Engrailed, and both stimulate repression by Engrailed in cultured cells. We suggest a model in which Engrailed, Extradenticle and Homothorax function as a complex to repress Engrailed target genes. These studies expand the functional requirements for extradenticle and homothorax beyond the Hox proteins to a larger family of non-Hox homeodomain proteins.
Collapse
Affiliation(s)
- Masatomo Kobayashi
- Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
143
|
Sarnat HB, Flores-Sarnat L. Molecular genetic and morphologic integration in malformations of the nervous system for etiologic classification. Semin Pediatr Neurol 2002; 9:335-44. [PMID: 12523557 DOI: 10.1053/spen.2002.32509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Molecular genetics has brought new insight into the etiology and pathogenesis of nervous system malformations, and provided a means of precise genetic diagnosis including the prenatal detection of many cerebral dysgeneses. Many cerebral malformations previously thought to be a single disorder are now known to be common end results of many independent genetic mutations. Examples are holoprosencephaly and lissencephaly. Gradients of genetic expression along the axes of the neural tube established at the time of gastrulation may explain many varieties and clinical expressions of cerebral malformations, including the involvement of non-neural tissues, such as midfacial hypoplasia from defective neural crest migration. A new classification of CNS malformations is proposed that integrates, but does not discard traditional morphologic criteria, but integrates them with new molecular genetic criteria.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Department of Pediatrics (Neurology), Cedars-Sinai Medical Center and University of California School of Medicine at Los Angeles (UCLA), Los Angeles, CA 90048, USA
| | | |
Collapse
|
144
|
Abstract
Posterior fossa malformations are a special group of central nervous system anomalies that present during infancy with hypotonia, developmental delay, microcephaly, or hydrocephalus. Recent discoveries of the genetic and epigenetic factors that control hindbrain ontogenesis explain some of these disturbances in cerebellar development. A comprehensive classification of posterior fossa malformations is proposed with particular attention to Dandy-Walker malformation, Joubert syndrome, and other cerebellar hypoplasias. A rare form of cerebellar hypertrophy which caused repeated obstruction at the foramen magnum is recognized. The importance of the cerebellum in language, cognition, and brain growth is stressed.
Collapse
Affiliation(s)
- Charles E Niesen
- Division of Pediatric Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
145
|
Yokota N, Nishizawa S, Ohta S, Date H, Sugimura H, Namba H, Maekawa M. Role of Wnt pathway in medulloblastoma oncogenesis. Int J Cancer 2002; 101:198-201. [PMID: 12209999 DOI: 10.1002/ijc.10559] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To clarify the roles of Wnt pathway in medulloblastoma oncogenesis, immunohistochemical staining of beta-catenin and Wnt-1 and genomic analyses of CTNNB1 (beta-catenin) and AXIN1 (axin 1) were examined in 23 sporadic cases. Accumulation of beta-catenin in tumor cells was immunohistochemically proven in 5 cases; 2 cases showed positive immunoreactivity for Wnt-1 and another 2 showed mutation of either CTNNB1 or AXIN1. AXIN1 mutation was in exon 3, corresponding to GSK-3beta binding site and CTNNB1 mutation was in exon 3, corresponding to its phosphorylation site. Disruption of these proteins could result in upregulation of the Wnt signaling and accumulation of beta-catenin, followed by cell proliferation and medulloblastoma oncogenesis.
Collapse
Affiliation(s)
- Naoki Yokota
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
146
|
Torrão AS, Britto LRG. Neurotransmitter regulation of neural development: acetylcholine and nicotinic receptors. AN ACAD BRAS CIENC 2002; 74:453-61. [PMID: 12378313 DOI: 10.1590/s0001-37652002000300008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Several neurotransmitter systems have been related to developmental processes during the past decade. In this review, we discuss the evidence that the nicotinic acetylcholine receptors could have an additional function during development that may be unrelated to their role in cholinergic neurotransmission in the vertebrate brain. Both temporal expression data and in vitro and in vivo studies with nicotinic agonists and antagonists have provided direct support for a role of nicotinic receptors in neural developmental processes such as neurite outgrowth and differentiation. A similar picture has emerged for other neurotransmitter and receptor systems as well, which generates a new view of neural processes during both development and mature life.
Collapse
Affiliation(s)
- Andréa S Torrão
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | | |
Collapse
|
147
|
Lacbawan FL, Muenke M. Central nervous system embryogenesis and its failures. Pediatr Dev Pathol 2002; 5:425-47. [PMID: 12202995 DOI: 10.1007/s10024-002-0003-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2001] [Accepted: 12/01/2001] [Indexed: 11/29/2022]
Abstract
The well-orchestrated development of the central nervous system (CNS) requires highly integrated regulatory processes to ensure its precise spatial organization that provides the foundation for proper function. As emphasized in this review, the type, timing, and location of regulatory molecules influence the different stages of development from neuronal induction, regional specification, neuronal specification, and neuronal migration to axonal growth and guidance, neuronal survival, and synapse formation. The known molecular mechanisms are summarized from studies of invertebrates and lower vertebrates, in which we have learned more about the different ligands, receptors, transcription factors, and the intracellular signaling pathways that play specific roles in the different stages of development. Despite known molecular mechanisms of some disturbances, most of the clinical entities that arise from failures of CNS embryogenesis remain unexplained. As more novel genes and their functions are discovered, existing mechanisms will be refined and tenable explanations will be made. With these limitations, two specific clinical entities that have been relatively well studied, holoprosencephaly and neuronal migration defects, are discussed in more detail to illustrate the complexity of regulatory mechanisms that govern well-defined stages of CNS development.
Collapse
Affiliation(s)
- Felicitas L Lacbawan
- Department of Medical Genetics, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | | |
Collapse
|
148
|
Pelc K, Vincent S, Ruchoux MM, Kiss R, Pochet R, Sariban E, Decaestecker C, Heizmann CW. Calbindin-d(28k): a marker of recurrence for medulloblastomas. Cancer 2002; 95:410-9. [PMID: 12124842 DOI: 10.1002/cncr.10666] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The expression of the Ca(2+)-binding protein calbindin-D(28k) was analyzed in medulloblastomas in relation to clinical features and other biologic markers related to cell proliferation, differentiation, p53, and cerebellar developmental regulated gene expression. METHODS Immunohistochemistry was carried out on histologic slides from a first retrospective series of 29 nonmetastatic and 10 metastatic medulloblastoma formalin-fixed, paraffin-embedded tissues, using specific antibodies against calbindin-D(28k), calretinin, alpha-parvalbumin and beta-parvalbumin, and S100 proteins. Informed consent was obtained from the subjects and/or guardians. Other biologic markers for differentiation, cell proliferation, the expression of the p53 tumor suppressor gene protein, and cerebellar developmental regulated genes were similarly investigated. A second series of 16 medulloblastomas from young patients (younger than 15 years) was added in order to validate the results obtained in the first series. RESULTS Of all the markers investigated, only calbindin-D(28k) was significantly associated with prognosis. Survival and remission (i.e. recurrence free) time analysis performed on all the cases (n = 55) confirmed a high risk of death (P = 0.004) and recurrence (P = 0.003) associated with calbindin-positivity. As calbindin-positivity was predominantly observed in tumors from young patients, the authors confirmed its prognostic value in the subgroup of patients younger than 15 years (n = 37). Cox regression analysis showed a significant and independent prognostic value for calbindin expression and, to a lesser extent, the type of surgery (total or subtotal). Three risk groups were thus identified, distinguishing among the cases characterized by a total resection and calbindin-negativity (good prognosis), by a subtotal resection and calbindin-negativity (intermediary), and by calbindin-positivity (bad prognosis). CONCLUSIONS The current study suggests that calbindin-positive medulloblastomas represent a subclass of aggressive tumors more frequently seen in younger patients.
Collapse
Affiliation(s)
- Karine Pelc
- Department of Pediatrics, Hôpital des Enfants, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Nederbragt AJ, van Loon AE, Dictus WJAG. Expression of Patella vulgata orthologs of engrailed and dpp-BMP2/4 in adjacent domains during molluscan shell development suggests a conserved compartment boundary mechanism. Dev Biol 2002; 246:341-55. [PMID: 12051820 DOI: 10.1006/dbio.2002.0653] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The engrailed gene is well known from its role in segmentation and central nervous system development in a variety of species. In molluscs, however, engrailed is involved in shell formation. So far, it seemed that engrailed had been co-opted uniquely for this particular process in molluscs. Here, we show that, in the gastropod mollusc Patella vulgata, an engrailed ortholog is expressed in the edge of the embryonic shell and in the anlage of the apical sensory organ. Surprisingly, a dpp-BMP2/4 ortholog is expressed in cells of the ectoderm surrounding, but not overlapping, the engrailed-expressing shell-forming cells. It is also expressed in the anlage of the eyes. Earlier it was shown that a compartment boundary exists between the cells of the embryonic shell and the adjacent ectoderm. We conclude that engrailed and dpp are most likely involved in setting up a compartment boundary between these cells, very similar to the situation in, for example, the developing wing imaginal disc in Drosophila. We suggest that engrailed became involved in shell formation because of its ancestral role, which is to set up compartment boundaries between embryonic domains.
Collapse
Affiliation(s)
- Alexander J Nederbragt
- Department of Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | |
Collapse
|
150
|
Faisst AM, Alvarez-Bolado G, Treichel D, Gruss P. Rotatin is a novel gene required for axial rotation and left-right specification in mouse embryos. Mech Dev 2002; 113:15-28. [PMID: 11900971 DOI: 10.1016/s0925-4773(02)00003-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The genetic cascade that governs left-right (L-R) specification is starting to be elucidated. In the mouse, the lateral asymmetry of the body axis is revealed first by the asymmetric expression of nodal, lefty2 and pitx2 in the left lateral plate mesoderm of the neurulating embryo. Here we describe a novel gene, rotatin, essential for the correct expression of the key L-R specification genes nodal, lefty and Pitx2. Embryos deficient in rotatin show also randomized heart looping and delayed neural tube closure, and fail to undergo the critical morphogenetic step of axial rotation. The amino acid sequence deduced from the cDNA is predicted to contain at least three transmembrane domains. Our results show a novel key player in the genetic cascade that determines L-R specification, and suggest a causal link between this process and axial rotation.
Collapse
Affiliation(s)
- Anja M Faisst
- Department of Molecular Cell Biology, Max-Planck Institute of Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | | | | | | |
Collapse
|