101
|
Asoudeh M, Nguyen N, Raith M, Denman DS, Anozie UC, Mokhtarnejad M, Khomami B, Skotty KM, Isaac S, Gebhart T, Vaigneur L, Gelgie A, Dego OK, Freeman T, Beever J, Dalhaimer P. PEGylated nanoparticles interact with macrophages independently of immune response factors and trigger a non-phagocytic, low-inflammatory response. J Control Release 2024; 366:282-296. [PMID: 38123071 PMCID: PMC10922886 DOI: 10.1016/j.jconrel.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Poly-ethylene-glycol (PEG)-based nanoparticles (NPs) - including cylindrical micelles (CNPs), spherical micelles (SNPs), and PEGylated liposomes (PLs) - are hypothesized to be cleared in vivo by opsonization followed by liver macrophage phagocytosis. This hypothesis has been used to explain the rapid and significant localization of NPs to the liver after administration into the mammalian vasculature. Here, we show that the opsonization-phagocytosis nexus is not the major factor driving PEG-NP - macrophage interactions. First, mouse and human blood proteins had insignificant affinity for PEG-NPs. Second, PEG-NPs bound macrophages in the absence of serum proteins. Third, lipoproteins blocked PEG-NP binding to macrophages. Because of these findings, we tested the postulate that PEG-NPs bind (apo)lipoprotein receptors. Indeed, PEG-NPs triggered an in vitro macrophage transcription program that was similar to that triggered by lipoproteins and different from that triggered by lipopolysaccharide (LPS) and group A Streptococcus. Unlike LPS and pathogens, PLs did not increase transcripts involved in phagocytosis or inflammation. High-density lipoprotein (HDL) and SNPs triggered remarkably similar mouse bone-marrow-derived macrophage transcription programs. Unlike opsonized pathogens, CNPs, SNPs, and PLs lowered macrophage autophagosome levels and either reduced or did not increase the secretion of key macrophage pro-inflammatory cytokines and chemokines. Thus, the sequential opsonization and phagocytosis process is likely a minor aspect of PEG-NP - macrophage interactions. Instead, PEG-NP interactions with (apo)lipoprotein and scavenger receptors appear to be a strong driving force for PEG-NP - macrophage binding, entry, and downstream effects. We hypothesize that the high presence of these receptors on liver macrophages and on liver sinusoidal endothelial cells is the reason PEG-NPs localize rapidly and strongly to the liver.
Collapse
Affiliation(s)
- Monireh Asoudeh
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Nicole Nguyen
- School of Medical Laboratory Science, University of Tennessee Medical Center, Knoxville, TN 37996, USA
| | - Mitch Raith
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Desiree S Denman
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Uche C Anozie
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Mahshid Mokhtarnejad
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Bamin Khomami
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Kaitlyn M Skotty
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Sami Isaac
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | - Aga Gelgie
- Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Trevor Freeman
- Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Jon Beever
- Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Paul Dalhaimer
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
102
|
Yu L, Zeng X, Hu X, Wen Q, Chen P. Advances and challenges in clinical applications of tumor cell-derived extracellular vesicles. Colloids Surf B Biointerfaces 2024; 234:113704. [PMID: 38113751 DOI: 10.1016/j.colsurfb.2023.113704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Extracellular vesicles (EVs) are a class of substances that feature vesicle-like structures. Initially deemed to be "biological waste", recent studies have highlighted the crucial role of EVs in mediating information communication between cells by transporting bioactive components. Specifically, tumor cell-derived extracellular vesicles (TEVs) contain components that can be utilized for disease diagnosis and as vaccines to activate the immune system. Moreover, since TEVs have a phospholipid bilayer shell and can transport exogenous substances, they are being increasingly explored as drug delivery vehicles in anti-tumor therapy. TEVs have proven highly compatible with their corresponding tumor cells, allowing for efficient drug delivery and exerting killing effects on tumor cells through various mechanisms such as domino effects, lysosomal pathways, and inhibition of drug efflux from tumor tissues. Despite these promising developments, challenges remain in the clinical applications of EVs derived from tumor cells. This paper outlines the current advances and limitations in this field, highlighting the potential of TEVs as a powerful tool for combating cancer.
Collapse
Affiliation(s)
- Li Yu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, China
| | - Xiaonan Zeng
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiao Hu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ping Chen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
103
|
Weaver E, Macartney RA, Irwin R, Uddin S, Hooker A, Burke GA, Wylie MP, Lamprou DA. Liposomal encapsulation of amoxicillin via microfluidics with subsequent investigation of the significance of PEGylated therapeutics. Int J Pharm 2024; 650:123710. [PMID: 38097147 DOI: 10.1016/j.ijpharm.2023.123710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
With an increasing concern of global antimicrobial resistance, the efforts to improve the formulation of a narrowing library of therapeutic antibiotics must be confronted. The liposomal encapsulation of antibiotics using a novel and sustainable microfluidic method has been employed in this study to address this pressing issue, via a targeted, lower-dose medical approach. The study focusses upon microfluidic parameter optimisation, formulation stability, cytotoxicity, and future applications. Particle sizes of circa. 130 nm, with viable short-term (28-day) physical stability were obtained, using two different non-cytotoxic liposomal formulations, both of which displayed suitable antibacterial efficacy. The microfluidic method allowed for high encapsulation efficiencies (≈77 %) and the subsequent in vitro release profile suggested high limits of antibiotic dissociation from the nanovessels, achieving 90% release within 72 h. In addition to the experimental data, the growing use of poly(ethylene) glycol (PEG) within lipid-based formulations is discussed in relation to anti-PEG antibodies, highlighting the key pharmacological differences between PEGylated and non-PEGylated formulations and their respective advantages and drawbacks. It's surmised that in the case of the formulations used in this study, the addition of PEG upon the liposomal membrane would still be a beneficial feature to possess owing to beneficial features such as stability, antibiotic efficacy and the capacity to further modify the liposomal membrane.
Collapse
Affiliation(s)
- Edward Weaver
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Robyn A Macartney
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Nanotechnology & Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, York Street, Belfast BT15 1ED, UK
| | - Robyn Irwin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Shahid Uddin
- Immunocore Ltd, 92 Park Dr, Milton, Abingdon OX14 4RY, UK
| | - Andrew Hooker
- Immunocore Ltd, 92 Park Dr, Milton, Abingdon OX14 4RY, UK
| | - George A Burke
- Nanotechnology & Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, York Street, Belfast BT15 1ED, UK
| | - Matthew P Wylie
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
104
|
Yang M, Zhang Z, Jin P, Jiang K, Xu Y, Pan F, Tian K, Yuan Z, Liu XE, Fu J, Wang B, Yan H, Zhan C, Zhang Z. Effects of PEG antibodies on in vivo performance of LNP-mRNA vaccines. Int J Pharm 2024; 650:123695. [PMID: 38081560 DOI: 10.1016/j.ijpharm.2023.123695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/22/2023]
Abstract
Polyethylene glycol (PEG) plays important roles in stabilizing and lengthening circulation time of lipid nanoparticle (LNP) vaccines. Nowadays various levels of PEG antibodies have been detected in human blood, but the impact and mechanism of PEG antibodies on the in vivo performance of LNP vaccines has not been clarified thoroughly. By illustrating the distribution characteristics of PEG antibodies in human, the present study focused on the influence of PEG antibodies on the safety and efficacy of LNP-mRNA vaccine against COVID-19 in animal models. It was found that PEG antibodies led to shortened blood circulation duration, elevated accumulation and mRNA expression in liver and spleen, enhanced expression in macrophage and dendritic cells, while without affecting the production of anti-Spike protein antibodies of COVID-19 LNP vaccine. Noteworthily, PEG antibodies binding on the LNP vaccine increased probability of complement activation in animal as well as in human serum and led to lethal side effect in large dosage via intravenous injection of mice. Our data suggested that PEG antibodies in human was a risky factor of LNP-based vaccines for biosafety concerns but not efficacy.
Collapse
Affiliation(s)
- Min Yang
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai 200032, PR China
| | - Zengyu Zhang
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai 200032, PR China
| | - Pengpeng Jin
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai 200032, PR China; Department of Chronic Disease Management, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, PR China
| | - Kuan Jiang
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai 200032, PR China; Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200031, PR China
| | - Yifei Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 PR China
| | - Feng Pan
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, PR China
| | - Kaisong Tian
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai 200032, PR China
| | - Zhou Yuan
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai 200032, PR China
| | | | - Jiaru Fu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200032, PR China
| | - Bin Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200032, PR China
| | - Huafang Yan
- Department of Health Management, Pudong Hospital, Fudan University, Shanghai 201399, PR China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai 200032, PR China; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 PR China; Shanghai Engineering Research Center for Synthetic Immunology, Fudan University, Shanghai 200032, PR China.
| | - Zui Zhang
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
105
|
Sugiura K, Sawada T, Hata Y, Tanaka H, Serizawa T. Distinguishing anti-PEG antibodies by specificity for the PEG terminus using nanoarchitectonics-based antibiofouling cello-oligosaccharide platforms. J Mater Chem B 2024; 12:650-657. [PMID: 38088066 DOI: 10.1039/d3tb01723k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The conjugation of poly(ethylene glycol) (PEG) to therapeutic proteins or nanoparticles is a widely used pharmaceutical strategy to improve their therapeutic efficacy. However, conjugation can make PEG immunogenic and induce the production of anti-PEG antibodies, which decreases both the therapeutic efficacy after repeated dosing and clinical safety. To address these concerns, it is essential to analyze the binding characteristics of anti-PEG antibodies to PEG. However, distinguishing anti-PEG antibodies is still a difficult task. Herein, we demonstrate the use of antibiofouling cello-oligosaccharide assemblies tethering one-terminal methoxy oligo(ethylene glycol) (OEG) ligands for distinguishing anti-PEG antibodies in a simple manner. The OEG ligand-tethering two-dimensional crystalline cello-oligosaccharide assemblies were stably dispersed in a buffer solution and had antibiofouling properties against nonspecific protein adsorption. These characteristics allowed enzyme-linked immunosorbent assays (ELISAs) to be simply performed by cycles of centrifugation/redispersion of aqueous dispersions of the assemblies. The simple assays revealed that the specific OEG ligand-tethering assemblies could distinguish anti-PEG antibodies to detect a specific antibody that preferentially binds to the methoxy terminus of the PEG chain with 3 repeating ethylene glycol units. Furthermore, quantitative detection of the antibodies was successfully performed with high sensitivity even in the presence of serum. The detectable and quantifiable range of antibody concentrations covered those required clinically. Our findings open a new avenue for analyzing the binding characteristics of anti-PEG antibodies in biological samples.
Collapse
Affiliation(s)
- Kai Sugiura
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
106
|
Surman F, Asadikorayem M, Weber P, Weber D, Zenobi-Wong M. Ionically annealed zwitterionic microgels for bioprinting of cartilaginous constructs. Biofabrication 2024; 16:025004. [PMID: 38176081 DOI: 10.1088/1758-5090/ad1b1f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Foreign body response (FBR) is a pervasive problem for biomaterials used in tissue engineering. Zwitterionic hydrogels have emerged as an effective solution to this problem, due to their ultra-low fouling properties, which enable them to effectively inhibit FBRin vivo. However, no versatile zwitterionic bioink that allows for high resolution extrusion bioprinting of tissue implants has thus far been reported. In this work, we introduce a simple, novel method for producing zwitterionic microgel bioink, using alginate methacrylate (AlgMA) as crosslinker and mechanical fragmentation as a microgel fabrication method. Photocrosslinked hydrogels made of zwitterionic carboxybetaine acrylamide (CBAA) and sulfobetaine methacrylate (SBMA) are mechanically fragmented through meshes with aperture diameters of 50 and 90µm to produce microgel bioink. The bioinks made with both microgel sizes showed excellent rheological properties and were used for high-resolution printing of objects with overhanging features without requiring a support structure or support bath. The AlgMA crosslinker has a dual role, allowing for both primary photocrosslinking of the bulk hydrogel as well as secondary ionic crosslinking of produced microgels, to quickly stabilize the printed construct in a calcium bath and to produce a microporous scaffold. Scaffolds showed ∼20% porosity, and they supported viability and chondrogenesis of encapsulated human primary chondrocytes. Finally, a meniscus model was bioprinted, to demonstrate the bioink's versatility at printing large, cell-laden constructs which are stable for furtherin vitroculture to promote cartilaginous tissue production. This easy and scalable strategy of producing zwitterionic microgel bioink for high resolution extrusion bioprinting allows for direct cell encapsulation in a microporous scaffold and has potential forin vivobiocompatibility due to the zwitterionic nature of the bioink.
Collapse
Affiliation(s)
- František Surman
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Maryam Asadikorayem
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Patrick Weber
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Daniel Weber
- Division of Hand Surgery, University Children's Hospital, 8032 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
107
|
Chan WJ, Li H. Recent advances in nano/micro systems for improved circulation stability, enhanced tumor targeting, penetration, and intracellular drug delivery: a review. Biomed Phys Eng Express 2024; 10:022001. [PMID: 38086099 DOI: 10.1088/2057-1976/ad14f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
In recent years, nanoparticles (NPs) have been extensively developed as drug carriers to overcome the limitations of cancer therapeutics. However, there are several biological barriers to nanomedicines, which include the lack of stability in circulation, limited target specificity, low penetration into tumors and insufficient cellular uptake, restricting the active targeting toward tumors of nanomedicines. To address these challenges, a variety of promising strategies were developed recently, as they can be designed to improve NP accumulation and penetration in tumor tissues, circulation stability, tumor targeting, and intracellular uptake. In this Review, we summarized nanomaterials developed in recent three years that could be utilized to improve drug delivery for cancer treatments.
Collapse
Affiliation(s)
- Wei-Jen Chan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Huatian Li
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| |
Collapse
|
108
|
Glaspy J, Bondarenko I, Krasnozhon D, Rutty D, Chen J, Fu Y, Wang S, Hou Q, Li S. Efbemalenograstim alfa not inferior to pegfilgrastim in providing neutrophil support in women with breast cancer undergoing myelotoxic chemotherapy: results of a phase 2 randomized, multicenter, open-label trial. Support Care Cancer 2024; 32:91. [PMID: 38194162 PMCID: PMC10776461 DOI: 10.1007/s00520-023-08260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE Evaluate the safety and efficacy of efbemalenograstim alfa for neutrophil support in breast cancer patients undergoing myelosuppressive chemotherapy in a phase 2, dose-finding, open-label study (NCT01648322, ClinicalTrials.gov, 2012-07-19). METHODS 232 patients received up to 4 cycles of chemotherapy, 141 patients with docetaxel + cyclophosphamide (TC) and 91 patients with docetaxel + doxorubicin + cyclophosphamide (TAC). Patients were randomized to efbemalenograstim alfa (80, 240, or 320 µg/kg [TC]; 240 or 320 µg/kg [TAC]) or pegfilgrastim (6 mg) on Day 2 of each cycle. RESULTS Efbemalenograstim alfa was non-inferior to pegfilgrastim in duration of moderate and severe neutropenia (absolute neutrophil count [ANC] < 1.0 × 109/L) in TAC Cycle 1 (mean [SD] of 2.1 [1.58] and 2.1 [1.46] days for 240 µg/kg and 320 µg/kg efbemalenograstim alfa, respectively, and 1.8 [1.28] days for pegfilgrastim), with a difference (95% CI) of 0.3 (-0.4, 1.1) days. ANC nadir occurred between Days 7-8 of TAC Cycle 1, with mean [SD] of 0.68 [1.064], 0.86 [1.407] and 0.78[1.283] × 109/L for 240 µg/kg, 320 µg/kg efbemalenograstim alfa and pegfilgrastim, respectively. Time to ANC recovery post nadir (defined as an ANC > 2.0 × 109/L after the expected ANC nadir) was 2.0-2.4 and 1.9 days for TAC patients treated with efbemalenograstim alfa and pegfilgrastim, respectively. No significant difference was found between any dose of efbemalenograstim alfa and pegfilgrastim in TAC Cycle 1 for incidence of moderate to severe neutropenia (76%-77% of patients) or incidence of severe neutropenia (ANC < 0.5 × 109/L; 63%-72%). Efbemalenograstim alfa exhibited similar safety profile to pegfilgrastim. Febrile neutropenia occurred in 4 (1.8%) patients, 2 patients each for 320 µg/kg efbemalenograstim alfa and pegfilgrastim, with no event considered related to study drug. CONCLUSION Efbemalenograstim alfa was comparable to pegfilgrastim in efficacy and safety. CLINICALTRIALS GOV IDENTIFIER NCT01648322.
Collapse
Affiliation(s)
- John Glaspy
- UCLA School of Medicine, 100 UCLA Medical Plaza, Suite 550, Los Angeles, CA, 90095-6956, USA.
| | | | - Dmitrii Krasnozhon
- GBUZ LOOD Surgery Department, Leningrad Regional Oncology Center, Saint Petersburg, Russia
| | - Dean Rutty
- Everest Clinical Research, Markham, Ontario, Canada
| | - Jianmin Chen
- Evive Biotechnology (Shanghai) Ltd, Shanghai, China
| | - Yanyan Fu
- Evive Biotechnology (Shanghai) Ltd, Shanghai, China
| | - Shufang Wang
- Evive Biotechnology (Shanghai) Ltd, Shanghai, China
| | - Qingsong Hou
- Evive Biotechnology (Shanghai) Ltd, Shanghai, China
| | - Simon Li
- Evive Biotechnology (Shanghai) Ltd, Shanghai, China
| |
Collapse
|
109
|
Kehrein J, Sotriffer C. Molecular Dynamics Simulations for Rationalizing Polymer Bioconjugation Strategies: Challenges, Recent Developments, and Future Opportunities. ACS Biomater Sci Eng 2024; 10:51-74. [PMID: 37466304 DOI: 10.1021/acsbiomaterials.3c00636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The covalent modification of proteins with polymers is a well-established method for improving the pharmacokinetic properties of therapeutically valuable biologics. The conjugated polymer chains of the resulting hybrid represent highly flexible macromolecular structures. As the dynamics of such systems remain rather elusive for established experimental techniques from the field of protein structure elucidation, molecular dynamics simulations have proven as a valuable tool for studying such conjugates at an atomistic level, thereby complementing experimental studies. With a focus on new developments, this review aims to provide researchers from the polymer bioconjugation field with a concise and up to date overview of such approaches. After introducing basic principles of molecular dynamics simulations, as well as methods for and potential pitfalls in modeling bioconjugates, the review illustrates how these computational techniques have contributed to the understanding of bioconjugates and bioconjugation strategies in the recent past and how they may lead to a more rational design of novel bioconjugates in the future.
Collapse
Affiliation(s)
- Josef Kehrein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
110
|
Chen H, Zhang Q. Polypeptides as alternatives to PEGylation of therapeutic agents. Expert Opin Drug Deliv 2024; 21:1-12. [PMID: 38116624 DOI: 10.1080/17425247.2023.2297937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Due to the concerns raised by the extensive application of PEGylation, polypeptides have stood out as excellent candidates with adequate biocompatibility and biodegradability with tunable hydrophilicity. AREAS COVERED In this review, polypeptides with the potential to replace PEGylation have been summarized and their application has been reviewed, including XTEN, PASylation, polysarcosine, zwitterion polypeptides, ELPylation, etc. Besides their strengths, the remaining challenges have also been discussed and the future perspectives have been provided. EXPERT OPINION Polypeptides have been applied in the designing of peptide/protein drugs as well as nanomedicines, and some of the pharmaceutics have made it into the clinical trials and got approved. These polypeptides showed similar hydrophilic properties to PEGylation, which increased the hydrodynamic volumes of protein drugs, reduced kidney elimination, decreased protein-polymer interaction and potentially improved the drug delivery efficiency due to the extended circulation time in the system. Moreover, they demonstrated superior biodegradability and biocompatibility, compensating for the deficiencies for polymers such as PEG.
Collapse
Affiliation(s)
- Huali Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qianyu Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
111
|
Mir S, Mir M. The mRNA vaccine, a swift warhead against a moving infectious disease target. Expert Rev Vaccines 2024; 23:336-348. [PMID: 38369742 DOI: 10.1080/14760584.2024.2320327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION The rapid development of mRNA vaccines against SARS-CoV-2 has revolutionized vaccinology, offering hope for swift responses to emerging infectious diseases. Initially met with skepticism, mRNA vaccines have proven effective and safe, reducing vaccine hesitancy amid the evolving COVID-19 pandemic. The COVID-19 pandemic has demonstrated that the time required to modify mRNA vaccines to counter new mutant strains is significantly shorter than the time it takes for pathogens to mutate and generate new variants that can thrive in vaccinated populations. This highlights the notion that mRNA vaccine technology appears to be outpacing viruses in the ongoing evolutionary race. AREAS COVERED This review article offers valuable insights into several crucial aspects of mRNA vaccine development and deployment, including the fundamentals of mRNA vaccine design and synthesis, the utilization of delivery systems, considerations regarding vaccine safety, the longevity of the immune response, strategies for modifying the original mRNA vaccine to address emerging mutant strains, as well as addressing vaccine hesitancy and potential approaches to mitigate reluctance. EXPERT OPINION Challenges such as stability, storage, manufacturing complexities, production capacity, allergic reactions, long-term effects, accessibility, and misinformation must be addressed. Despite these hurdles, mRNA vaccine technology holds promise for revolutionizing future vaccination strategies.
Collapse
Affiliation(s)
- Sheema Mir
- College of Veterinary Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Mohammad Mir
- College of Veterinary Sciences, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
112
|
Cai J, Zang L, Wu X, Liang Z, Zheng K, Zhao L, Li H. The construction of long-acting exendin-4 analog and its hypoglycemic effect in diabetic mice. Protein Expr Purif 2024; 213:106373. [PMID: 37730142 DOI: 10.1016/j.pep.2023.106373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Exendin-4 is a glucagon-like polypeptide-1 (GLP-1) analog derived from lizard venom, but its short half-life affects drug administration compliance. An anti-HSA nanobody with a smaller size to guide the peptide coupling to Human Serum Albumin(HSA) in vivo may be a feasible strategy for constructing inexpensive, long-acting exendin-4 analogs. For this purpose, a fusion protein (exendin-4-(G4S)3-sdAbHSA), in which a humanized anti-HSA nanobody to the C-terminal of exendin-4 through the (Gly4Ser)3 flexible joint, was constructed. The target gene was designed according to the preferred codons and cloned into expression vector pET21b of Escherichia coli. The fusion protein could be efficiently expressed as a soluble protein, and purified to a purity over 98% by two steps of chromatography columns. In the streptozotocin-induced mouse diabetes model, the purified product had similar hypoglycemic activity as exendin-4, but dropped to the lowest value from 1 to 2 h to more than 8-10 h. The results show that this construction form does not interfere with the binding of exendin-4 to GLP-1 receptor, and can significantly prolong its half-life in vivo. This study has important reference value for constructing long-acting exendin-4 analogs and establishing efficient and green production process.
Collapse
Affiliation(s)
- Jingmin Cai
- Guangdong Provincial Key Laboratory for Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Linquan Zang
- Department of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xueman Wu
- Guangdong Provincial Key Laboratory for Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhiwen Liang
- Guangdong Provincial Key Laboratory for Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ke Zheng
- Guangdong Provincial Key Laboratory for Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lin Zhao
- Guangdong Provincial Key Laboratory for Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Huangjin Li
- Guangdong Provincial Key Laboratory for Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
113
|
Williams L, Larsen J. Nanoparticle-mediated delivery of non-viral gene editing technology to the brain. Prog Neurobiol 2024; 232:102547. [PMID: 38042249 PMCID: PMC10872436 DOI: 10.1016/j.pneurobio.2023.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Neurological disorders pose a significant burden on individuals and society, affecting millions worldwide. These disorders, including but not limited to Alzheimer's disease, Parkinson's disease, and Huntington's disease, often have limited treatment options and can lead to progressive degeneration and disability. Gene editing technologies, including Zinc Finger Nucleases (ZFN), Transcription Activator-Like Effector Nucleases (TALEN), and Clustered Regularly Interspaced Short Palindromic Repeats-associated Protein 9 (CRISPR-Cas9), offer a promising avenue for potential cures by targeting and correcting the underlying genetic mutations responsible for neurologic disorders. However, efficient delivery methods are crucial for the successful application of gene editing technologies in the context of neurological disorders. The central nervous system presents unique challenges to treatment development due to the blood-brain barrier, which restricts the entry of large molecules. While viral vectors are traditionally used for gene delivery, nonviral delivery methods, such as nanoparticle-mediated delivery, offer safer alternatives that can efficiently transport gene editing components. Herein we aim to introduce the three main gene editing nucleases as nonviral treatments for neurologic disorders, the delivery barriers associated with brain targeting, and the current nonviral techniques used for brain-specific delivery. We highlight the challenges and opportunities for future research in this exciting and growing field that could lead to blood-brain barrier bypassing therapeutic gene editing.
Collapse
Affiliation(s)
- Lucian Williams
- Department of Bioengineering, Clemson University, Clemson, SC 29631, USA
| | - Jessica Larsen
- Department of Bioengineering, Clemson University, Clemson, SC 29631, USA; Department of Chemical Engineering, Clemson University, Clemson, SC 29631, USA.
| |
Collapse
|
114
|
Ilinskaya A, Shah A, Van Dusen A, Dobrovolskaia MA. Detection of Intracellular Complement Activation by Nanoparticles in Human T Lymphocytes. Methods Mol Biol 2024; 2789:109-120. [PMID: 38506996 DOI: 10.1007/978-1-0716-3786-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The complement system is complex and includes two main components: the systemic or plasma complement and the so-called intracellular complement or complosome. The complement proteins expressed by the liver and secreted into blood plasma compose the plasma complement system, whereas complement proteins expressed by and functioning inside the cell represent the intracellular complement. The complement system plays an essential role in host defense; however, complement activation may lead to pathologies when uncontrolled. When such undesirable activation of the plasma complement occurs in response to a drug product, it leads to immediate-type hypersensitivity reactions independent of immunoglobulin E. These reactions are often called complement activation-related pseudoallergy (CARPA). In addition to the blood plasma, the complement protein C3 is found in many cells, including lymphocytes, monocytes, endothelial, and even cancer cells. The activation of the intracellular complement generates split products, which are exported from the cell onto the membrane. Since the activation of the intracellular complement in T lymphocytes was found to correlate with autoimmune disorders, and growing evidence is available for the involvement of T lymphocytes in the development of drug-induced hypersensitivity reactions, understanding the ability of nanomaterials to activate intracellular complement may aid in establishing a long-term safety profile for these materials. This chapter describes a flow cytometry-based protocol for detecting intracellular complement activation by engineered nanomaterials.
Collapse
Affiliation(s)
- Anna Ilinskaya
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ankit Shah
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
115
|
Zorin IM, Fetin PA, Mikusheva NG, Lezov AA, Perevyazko I, Gubarev AS, Podsevalnikova AN, Polushin SG, Tsvetkov NV. Pullulan-Graft-Polyoxazoline: Approaches from Chemistry and Physics. Molecules 2023; 29:26. [PMID: 38202609 PMCID: PMC10780122 DOI: 10.3390/molecules29010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
An approach to the preparation of pullulan-graft-poly(2-methyl-2-oxazoline)s based on Cu-catalyzed azide-alkyne cycloaddition with polyoxazoline-azide was applied. All of the obtained polymers were characterized through classical molecular hydrodynamic methods and NMR. The formation of graft copolymers was accomplished by oxidative degradation of pullulan chains. Nevertheless, graft copolymers were obtained as uniform products with varied side chain lengths and degrees of substitution.
Collapse
Affiliation(s)
- Ivan M. Zorin
- Institute of Chemistry, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia;
| | - Petr A. Fetin
- Institute of Chemistry, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia;
| | - Nina G. Mikusheva
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Alexey A. Lezov
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Igor Perevyazko
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Alexander S. Gubarev
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Anna N. Podsevalnikova
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Sergey G. Polushin
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Nikolai V. Tsvetkov
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| |
Collapse
|
116
|
Yu X, Li H, Dong C, Qi S, Yang K, Bai B, Peng K, Buljan M, Lin X, Liu Z, Yu G. Poly(ethyl ethylene phosphate): Overcoming the "Polyethylene Glycol Dilemma" for Cancer Immunotherapy and mRNA Vaccination. ACS NANO 2023; 17:23814-23828. [PMID: 38038679 DOI: 10.1021/acsnano.3c07932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Polyethylene glycol conjugation (PEGylation) is the most successful strategy to promote the stability, pharmacokinetics, and efficacy of therapeutics; however, anti-PEG antibodies induced by repeated treatments raise serious concerns about the future of PEGylated therapeutics. In order to solve the "PEG dilemma", polymers with excellent water solubility and biocompatibility are urgently desired to attenuate the generation of anti-PEG antibodies. Here, poly(ethyl ethylene phosphate) (PEEP) with excellent degradability and stealth effects is used as an alternative to PEG to overcome the "PEG dilemma". PEEPylated liposomes exhibit lower immunogenicity and generate negligible anti-PEEP antibodies (IgM and IgG) after repeated treatments. In vivo studies confirm that PEEPylated liposomes loaded with oxaliplatin (PEEPlipo@OxPt) show better pharmacokinetics compared to PEGlipo@OxPt, and they exhibit potent antitumor performances, which can be further promoted with checkpoint blockade immunotherapy. In addition, PEEPylated lipid nanoparticle is also used to develop an mRNA vaccine with the ability to evoke a potent antigen-specific T cell response and achieve excellent antitumor efficacy. PEEP shows promising potentials in the development of next-generation nanomedicines and vaccines with higher safety and efficacy.
Collapse
Affiliation(s)
- Xinyang Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hongjian Li
- School of Medicine, Tsinghua University, Beijing 100084, P. R. China
| | - Chunbo Dong
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, P. R. China
| | - Shaolong Qi
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Kai Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Bing Bai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Kun Peng
- School of Medicine, Tsinghua University, Beijing 100084, P. R. China
| | - Marija Buljan
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Xin Lin
- School of Medicine, Tsinghua University, Beijing 100084, P. R. China
| | - Zhida Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- School of Medicine, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
117
|
Miroshnichenko S, Pykhtina M, Kotliarova A, Chepurnov A, Beklemishev A. Engineering a New IFN-ApoA-I Fusion Protein with Low Toxicity and Prolonged Action. Molecules 2023; 28:8014. [PMID: 38138504 PMCID: PMC10745500 DOI: 10.3390/molecules28248014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Recombinant human interferon alpha-2b (rIFN) is widely used in antiviral and anticancer immunotherapy. However, the high efficiency of interferon therapy is accompanied by a number of side effects; this problem requires the design of a new class of interferon molecules with reduced cytotoxicity. In this work, IFN was modified via genetic engineering methods by merging it with the blood plasma protein apolipoprotein A-I in order to reduce acute toxicity and improve the pharmacokinetics of IFN. The chimeric protein was obtained via biosynthesis in the yeast P. pastoris. The yield of ryIFN-ApoA-I protein when cultivated on a shaker in flasks was 30 mg/L; protein purification was carried out using reverse-phase chromatography to a purity of 95-97%. The chimeric protein demonstrated complete preservation of the biological activity of IFN in the model of vesicular stomatitis virus and SARS-CoV-2. In addition, the chimeric form had reduced cytotoxicity towards Vero cells and increased cell viability under viral load conditions compared with commercial IFN-a2b preparations. Analysis of the pharmacokinetic profile of ryIFN-ApoA-I after a single subcutaneous injection in mice showed a 1.8-fold increased half-life of the chimeric protein compared with ryIFN.
Collapse
Affiliation(s)
- Svetlana Miroshnichenko
- Federal Research Center of Fundamental and Translational Medicine (FRC FTM), Timakova str., 2, 630117 Novosibirsk, Russia; (S.M.); (A.C.); (A.B.)
| | - Mariya Pykhtina
- Federal Research Center of Fundamental and Translational Medicine (FRC FTM), Timakova str., 2, 630117 Novosibirsk, Russia; (S.M.); (A.C.); (A.B.)
| | - Anastasiia Kotliarova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia;
| | - Alexander Chepurnov
- Federal Research Center of Fundamental and Translational Medicine (FRC FTM), Timakova str., 2, 630117 Novosibirsk, Russia; (S.M.); (A.C.); (A.B.)
| | - Anatoly Beklemishev
- Federal Research Center of Fundamental and Translational Medicine (FRC FTM), Timakova str., 2, 630117 Novosibirsk, Russia; (S.M.); (A.C.); (A.B.)
| |
Collapse
|
118
|
Zhang X, Pan J, Ye X, Chen Y, Wang L, Meng X, Chen W, Wang F. Activation of CYP3A by Accelerated Blood Clearance Phenomenon Potentiates the Hepatocellular Carcinoma-Targeting Therapeutic Effects of PEGylated Anticancer Prodrug Liposomes. Drug Metab Dispos 2023; 51:1651-1662. [PMID: 37775330 DOI: 10.1124/dmd.123.001496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Reduced enzyme activity in hepatocellular carcinoma (HCC) and poor targeting limit the application of enzyme-activating prodrugs, which is also detrimental to the effective treatment of HCC. Here, we investigated whether accelerated blood clearance (ABC) phenomenon occurs in HCC models following repeated injections of PEGylated liposomes (PEG-L), thus inducing prodrug accumulation and activation in the liver and exerting highly effective and low-toxicity therapeutic effects on HCC. First, PEGylated liposomal cyclophosphamide was prepared by solvent injection and characterized. Importantly, preinjection of PEG-L induced the ABC phenomenon and activation of CYP3A in both HCC rats and HCC mice by studying the effects of repeated injections of PEG-L on pharmacokinetics and tissue distribution. Next, the efficacy and toxicity of repeated injections of PEG-L in HCC mice were examined, and our data indicate that repeated injections are administered in a manner that significantly enhances the antitumor effect compared with controls, with little or no toxicity to other organs. To further reveal the pharmacokinetic mechanism of PEG-L repeated administration for the treatment of HCC, the protein expression of hepatic CYP3A and the concentration of cyclophosphamide in the liver and spleen of HCC mice by inhibiting CYP3A were analyzed. These results revealed that inducing CYP3A to accelerate the rapid conversion of prodrugs that accumulate significantly in the liver is a key mechanism for the treatment of HCC with repeated injections of PEG-L. Collectively, this work taps into the application potential of the ABC phenomenon and provides new insights into the clinical application of PEGylated nanoformulations. SIGNIFICANCE STATEMENT: This study revealed that repeated injections of PEGylated liposomes could induce the accelerated blood clearance (ABC) phenomenon characterized by hepatic accumulation and CYP3A activation based on hepatocellular carcinoma (HCC) rats and HCC mice. Furthermore, it was verified that induction of the ABC phenomenon dependent on hepatic accumulation and CYP3A activation could enhance the antihepatocellular carcinoma effects of PEGylated anticancer prodrugs in HCC mice. This elucidated the relevant pharmacokinetic mechanisms and unearthed new clues for solving the clinical application of PEGylated nanoparticles.
Collapse
Affiliation(s)
- Xue Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China (X.Z., J.P., L.W., W.C., F.W.); Hefei Hospital Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, China (X.Y., X.M., F.W.); School of Pharmacy, Anhui Medical University, Hefei, China (F.W.); The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, China (F.W.); and Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China (Y.C.)
| | - Jianquan Pan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China (X.Z., J.P., L.W., W.C., F.W.); Hefei Hospital Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, China (X.Y., X.M., F.W.); School of Pharmacy, Anhui Medical University, Hefei, China (F.W.); The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, China (F.W.); and Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China (Y.C.)
| | - Xi Ye
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China (X.Z., J.P., L.W., W.C., F.W.); Hefei Hospital Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, China (X.Y., X.M., F.W.); School of Pharmacy, Anhui Medical University, Hefei, China (F.W.); The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, China (F.W.); and Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China (Y.C.)
| | - Yunna Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China (X.Z., J.P., L.W., W.C., F.W.); Hefei Hospital Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, China (X.Y., X.M., F.W.); School of Pharmacy, Anhui Medical University, Hefei, China (F.W.); The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, China (F.W.); and Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China (Y.C.)
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China (X.Z., J.P., L.W., W.C., F.W.); Hefei Hospital Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, China (X.Y., X.M., F.W.); School of Pharmacy, Anhui Medical University, Hefei, China (F.W.); The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, China (F.W.); and Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China (Y.C.)
| | - Xiangyun Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China (X.Z., J.P., L.W., W.C., F.W.); Hefei Hospital Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, China (X.Y., X.M., F.W.); School of Pharmacy, Anhui Medical University, Hefei, China (F.W.); The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, China (F.W.); and Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China (Y.C.)
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China (X.Z., J.P., L.W., W.C., F.W.); Hefei Hospital Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, China (X.Y., X.M., F.W.); School of Pharmacy, Anhui Medical University, Hefei, China (F.W.); The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, China (F.W.); and Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China (Y.C.).
| | - Fengling Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China (X.Z., J.P., L.W., W.C., F.W.); Hefei Hospital Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, China (X.Y., X.M., F.W.); School of Pharmacy, Anhui Medical University, Hefei, China (F.W.); The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, China (F.W.); and Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China (Y.C.).
| |
Collapse
|
119
|
Nakipoglu M, Tezcaner A, Contag CH, Annabi N, Ashammakhi N. Bioadhesives with Antimicrobial Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300840. [PMID: 37269168 DOI: 10.1002/adma.202300840] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Indexed: 06/04/2023]
Abstract
Bioadhesives with antimicrobial properties enable easier and safer treatment of wounds as compared to the traditional methods such as suturing and stapling. Composed of natural or synthetic polymers, these bioadhesives seal wounds and facilitate healing while preventing infections through the activity of locally released antimicrobial drugs, nanocomponents, or inherently antimicrobial polers. Although many different materials and strategies are employed to develop antimicrobial bioadhesives, the design of these biomaterials necessitates a prudent approach as achieving all the required properties including optimal adhesive and cohesive properties, biocompatibility, and antimicrobial activity can be challenging. Designing antimicrobial bioadhesives with tunable physical, chemical, and biological properties will shed light on the path for future advancement of bioadhesives with antimicrobial properties. In this review, the requirements and commonly used strategies for developing bioadhesives with antimicrobial properties are discussed. In particular, different methods for their synthesis and their experimental and clinical applications on a variety of organs are reviewed. Advances in the design of bioadhesives with antimicrobial properties will pave the way for a better management of wounds to increase positive clinical outcomes.
Collapse
Affiliation(s)
- Mustafa Nakipoglu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Engineering Sciences, School of Natural and Applied Sciences, Middle East Technical University, Ankara, 06800, Turkey
- Department of Molecular Biology and Genetics, Faculty of Sciences, Bartin University, Bartin, 74000, Turkey
| | - Ayşen Tezcaner
- Department of Engineering Sciences, School of Natural and Applied Sciences, Middle East Technical University, Ankara, 06800, Turkey
- BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
120
|
Chen YL, Bao CJ, Duan JL, Xie Y, Lu WL. Overcoming biological barriers by virus-like drug particles for drug delivery. Adv Drug Deliv Rev 2023; 203:115134. [PMID: 37926218 DOI: 10.1016/j.addr.2023.115134] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Virus-like particles (VLPs) have natural structural antigens similar to those found in viruses, making them valuable in vaccine immunization. Furthermore, VLPs have demonstrated significant potential in drug delivery, and emerged as promising vectors for transporting chemical drug, genetic drug, peptide/protein, and even nanoparticle drug. With virus-like permeability and strong retention, they can effectively target specific organs, tissues or cells, facilitating efficient intracellular drug release. Further modifications allow VLPs to transfer across various physiological barriers, thus acting the purpose of efficient drug delivery and accurate therapy. This article provides an overview of VLPs, covering their structural classifications, deliverable drugs, potential physiological barriers in drug delivery, strategies for overcoming these barriers, and future prospects.
Collapse
Affiliation(s)
- Yu-Ling Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chun-Jie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia-Lun Duan
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Xie
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Wan-Liang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
121
|
Sato H, Yamada K, Miyake M, Onoue S. Recent Advancements in the Development of Nanocarriers for Mucosal Drug Delivery Systems to Control Oral Absorption. Pharmaceutics 2023; 15:2708. [PMID: 38140049 PMCID: PMC10747340 DOI: 10.3390/pharmaceutics15122708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Oral administration of active pharmaceutical ingredients is desirable because it is easy, safe, painless, and can be performed by patients, resulting in good medication adherence. The mucus layer in the gastrointestinal (GI) tract generally acts as a barrier to protect the epithelial membrane from foreign substances; however, in the absorption process after oral administration, it can also disturb effective drug absorption by trapping it in the biological sieve structured by mucin, a major component of mucus, and eliminating it by mucus turnover. Recently, functional nanocarriers (NCs) have attracted much attention due to their immense potential and effectiveness in the field of oral drug delivery. Among them, NCs with mucopenetrating and mucoadhesive properties are promising dosage options for controlling drug absorption from the GI tracts. Mucopenetrating and mucoadhesive NCs can rapidly deliver encapsulated drugs to the absorption site and/or prolong the residence time of NCs close to the absorption membrane, providing better medications than conventional approaches. The surface characteristics of NCs are important factors that determine their functionality, owing to the formation of various kinds of interactions between the particle surface and mucosal components. Thus, a deeper understanding of surface modifications on the biopharmaceutical characteristics of NCs is necessary to develop the appropriate mucosal drug delivery systems (mDDS) for the treatment of target diseases. This review summarizes the basic information and functions of the mucosal layer, highlights the recent progress in designing functional NCs for mDDS, and discusses their performance in the GI tract.
Collapse
Affiliation(s)
- Hideyuki Sato
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (H.S.); (K.Y.)
| | - Kohei Yamada
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (H.S.); (K.Y.)
| | - Masateru Miyake
- Business Integrity and External Affairs, Otsuka Pharmaceutical Co., Ltd., 2-16-4 Konan, Minato-ku, Tokyo 108-8242, Japan;
| | - Satomi Onoue
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (H.S.); (K.Y.)
| |
Collapse
|
122
|
Adler A, Fritsch M, Fromell K, Leneweit G, Ekdahl KN, Nilsson B, Teramura Y. Regulation of the innate immune system by fragmented heparin-conjugated lipids on lipid bilayered membranes in vitro. J Mater Chem B 2023; 11:11121-11134. [PMID: 37953734 DOI: 10.1039/d3tb01721d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Surface modification with heparin is a powerful biomaterial coating strategy that protects against innate immunity activation since heparin is a part of the proteoglycan heparan sulfate on cell surfaces in the body. We studied the heparinization of cellular and material surfaces via lipid conjugation to a heparin-binding peptide. In the present study, we synthesized fragmented heparin (fHep)-conjugated phospholipids and studied their regulation of the innate immune system on a lipid bilayered surface using liposomes. Liposomes have versatile applications, such as drug-delivery systems, due to their ability to carry a wide range of molecules. Owing to their morphological similarity to cell membranes, they can also be used to mimic a simple cell-membrane to study protein-lipid interactions. We investigated the interaction of complement-regulators, factor H and C4b-binding protein (C4BP), as well as the coagulation inhibitor antithrombin (AT), with fHep-lipids on the liposomal surface. Herein, we studied the ability of fHep-lipids to recruit factor H, C4BP, and AT using a quartz crystal microbalance with dissipation monitoring. With dynamic light scattering, we demonstrated that liposomes could be modified with fHep-lipids and were stable up to 60 days at 4 °C. Using a capillary western blot-based method (Wes), we showed that fHep-liposomes could recruit factor H in a model system using purified proteins and assist in the degradation of the active complement protein C3b to iC3b. Furthermore, we found that fHep-liposomes could recruit factor H and AT from human plasma. Therefore, the use of fHep-lipids could be a potential coating for liposomes and cell surfaces to regulate the immune system on the lipid surface.
Collapse
Affiliation(s)
- Anna Adler
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Marlene Fritsch
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Gero Leneweit
- ABNOBA GmbH, Pforzheim, Germany
- Carl Gustav Carus-Institute, Association for the Promotion of Cancer Therapy, Niefern-Öschelbronn, Germany
| | - Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Yuji Teramura
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central Fifth, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
- Master's/Doctoral Program in Life Science Innovation (T-LSI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
123
|
Dixon S, Kang X, Quan D. Practical Guidance for the Use of Patisiran in the Management of Polyneuropathy in Hereditary Transthyretin-Mediated Amyloidosis. Ther Clin Risk Manag 2023; 19:973-981. [PMID: 38047038 PMCID: PMC10691373 DOI: 10.2147/tcrm.s361706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
Variant transthyretin amyloidosis (ATTRv) is an autosomal dominant inherited genetic disorder that affects 5000-10,000 people worldwide. It is caused by mutations in the transthyretin (TTR) gene and results in amyloid deposition in a variety of organs due to abnormal accumulation of TTR protein fibrils. Although this is a multisystem disorder, the heart and peripheral nerves are the preferentially affected organs. Over 150 TTR gene mutations have been associated with this disease and the clinical phenotype can vary significantly. Severe forms of the disorder can be fatal. Fortunately, the oligonucleotide-based therapy era has resulted in the development of several novel treatment options. Patisiran is a small interfering RNA (siRNA) encapsulated in a lipid nanoparticle that targets both mutant and wild-type TTR and results in significant reductions of the TTR protein in the serum and in tissue deposits. Patisiran has been approved for treatment of adults with polyneuropathy due to hereditary TTR-mediated amyloidosis in both the United States (US) and European Union (EU). In this review, we will discuss the development of patisiran, the clinical trials that lead to treatment approval, and provide guideline parameters for use in clinical practice. .
Collapse
Affiliation(s)
- Stacy Dixon
- Department of Neurology, University of Colorado, Aurora, CO, USA
| | - Xuan Kang
- Department of Neurology, University of Colorado, Aurora, CO, USA
| | - Dianna Quan
- Department of Neurology, University of Colorado, Aurora, CO, USA
| |
Collapse
|
124
|
Pozzi D, Caracciolo G. Looking Back, Moving Forward: Lipid Nanoparticles as a Promising Frontier in Gene Delivery. ACS Pharmacol Transl Sci 2023; 6:1561-1573. [PMID: 37974625 PMCID: PMC10644400 DOI: 10.1021/acsptsci.3c00185] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Indexed: 11/19/2023]
Abstract
Lipid nanoparticles (LNPs) have shown remarkable success in delivering genetic materials like COVID-19 LNP vaccines, such as mRNA-1273/SpikeVax by Moderna and BNT162b2/Comirnaty by BioNTech/Pfizer, as well as siRNA for rare inherited diseases, such as Onpattro from Alnylam Pharmaceuticals. These LNPs are advantageous since they minimize side effects, target specific cells, and regulate payload delivery. There has been a surge of interest in these particles due to their success stories; however, we still do not know much about how they work. This perspective will recapitulate the evolution of lipid-based gene delivery, starting with Felgner's pioneering 1987 PNAS paper, which introduced the initial DNA-transfection method utilizing a synthetic cationic lipid. Our journey takes us to the early 2020s, a time when advancements in bionano interactions enabled us to create biomimetic lipoplexes characterized by a remarkable ability to evade capture by immune cells in vivo. Through this overview, we propose leveraging previous achievements to assist us in formulating improved research goals when optimizing LNPs for medical conditions such as infectious diseases, cancer, and heritable disorders.
Collapse
Affiliation(s)
- Daniela Pozzi
- NanoDelivery Lab, Department
of Molecular Medicine, Sapienza University
of Rome, Viale Regina
Elena 291, 00161 Rome, Italy
| | - Giulio Caracciolo
- NanoDelivery Lab, Department
of Molecular Medicine, Sapienza University
of Rome, Viale Regina
Elena 291, 00161 Rome, Italy
| |
Collapse
|
125
|
Kon E, Ad-El N, Hazan-Halevy I, Stotsky-Oterin L, Peer D. Targeting cancer with mRNA-lipid nanoparticles: key considerations and future prospects. Nat Rev Clin Oncol 2023; 20:739-754. [PMID: 37587254 DOI: 10.1038/s41571-023-00811-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Harnessing mRNA-lipid nanoparticles (LNPs) to treat patients with cancer has been an ongoing research area that started before these versatile nanoparticles were successfully used as COVID-19 vaccines. Currently, efforts are underway to harness this platform for oncology therapeutics, mainly focusing on cancer vaccines targeting multiple neoantigens or direct intratumoural injections of mRNA-LNPs encoding pro-inflammatory cytokines. In this Review, we describe the opportunities of using mRNA-LNPs in oncology applications and discuss the challenges for successfully translating the findings of preclinical studies of these nanoparticles into the clinic. We critically appraise the potential of various mRNA-LNP targeting and delivery strategies, considering physiological, technological and manufacturing challenges. We explore these approaches in the context of the potential clinical applications best suited to each approach and highlight the obstacles that currently need to be addressed to achieve these applications. Finally, we provide insights from preclinical and clinical studies that are leading to this powerful platform being considered the next frontier in oncology treatment.
Collapse
Affiliation(s)
- Edo Kon
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Nitay Ad-El
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Hazan-Halevy
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Lior Stotsky-Oterin
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
126
|
Miao G, He Y, Lai K, Zhao Y, He P, Tan G, Wang X. Accelerated blood clearance of PEGylated nanoparticles induced by PEG-based pharmaceutical excipients. J Control Release 2023; 363:12-26. [PMID: 37717659 DOI: 10.1016/j.jconrel.2023.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
PEGylated nanomedicines have been extensively developed and applied to cancer therapy. However, the antitumor efficacy of these nanoparticles is hampered by the accelerated blood clearance (ABC) effect caused by anti-PEG antibodies in vivo. There is still limited understanding about the cause of pre-existing anti-PEG antibodies in the human body. Herein, we discovered that PEG-based pharmaceutical excipients, commonly used in clinical and daily settings, could induce anti-PEG antibodies in vivo and lead to considerable potential clinical impacts on pharmacokinetics and pharmacodynamics of PEGylated nanoparticles. Specifically, we investigated the ability of poloxamer 188 (F68) and poloxamer 407 (F127), the two most frequently used PEG-based pharmaceutical excipients, to elicit the production of anti-PEG antibodies and influence the pharmacokinetics of PEGylated nanoparticles, with PEGylated liposome nanoparticles (L-NPs) as a model. Anti-PEG IgG and IgM levels were significantly boosted 3.8- and 32.2-fold, respectively, after pre-injection with F68, leading to rapid clearance of subsequently injected L-NPs from circulation due to the capture by neutrophils and monocytes. However, pre-injection of F127 did not induce the production of anti-PEG IgG, although there was a 7.7-fold increase in IgM level, which resulted in minimal effect on circulation time of L-NPs. Furthermore, the potential clinical impacts of F68 and F127 were further inspected for PEGylated liposomal doxorubicin (PLD). It was found that administering F68 prior to treatment led to over a one-third decrease in the antitumor effectiveness of PLD, while F127 had a negligible impact. Our study elucidates the mechanism by which PEG-based pharmaceutical excipients influence the effectiveness of PEGylated nanomedicines. It also highlights the significance of considering the potential for an ABC effect induced by PEG-based pharmaceutical excipients in patients.
Collapse
Affiliation(s)
- Guifeng Miao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Yuejian He
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Keren Lai
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Yan Zhao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Peiyi He
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Guozhu Tan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Xiaorui Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China.
| |
Collapse
|
127
|
Jiang K, Yu Y, Qiu W, Tian K, Guo Z, Qian J, Lu H, Zhan C. Protein corona on brain targeted nanocarriers: Challenges and prospects. Adv Drug Deliv Rev 2023; 202:115114. [PMID: 37827336 DOI: 10.1016/j.addr.2023.115114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Safe and efficient medical therapy for brain diseases is still an unmet clinical need due to various barriers represented by the blood-brain barrier. Well-designed brain targeted nanocarriers are potential solutions for enhanced brain drug delivery; however, the complicated in vivo process attenuates performance of nanocarriers, which severely hampers clinical translation. The formation of protein corona (PC) is inevitable for nanocarriers circulation and transport in biofluids, acting as an important factor to regulate in vivo performance of nanocarriers. In this review, the reported strategies have been retrospected for better understanding current situation in developing brain targeted nanocarriers. The interplay between brain targeted nanocarriers and plasma proteins is emphasized to comprehend how the nanocarriers adsorb proteins by certain synthetic identity, and following regulations on in vivo performance of nanocarriers. More importantly, the mainstream methods to promote efficiency of nanocarriers by regulating PC, defined as in vitro functionalization and in vivo functionalization strategies, are also discussed. Finally, viewpoints about future development of brain targeted nanocarriers according to the understanding on nanocarriers-PC interaction are proposed.
Collapse
Affiliation(s)
- Kuan Jiang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, PR China
| | - Yifei Yu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, PR China
| | - Wei Qiu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, PR China
| | - Kaisong Tian
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, PR China
| | - Zhiwei Guo
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, PR China
| | - Jun Qian
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201399, PR China
| | - Huiping Lu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201399, PR China.
| | - Changyou Zhan
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, PR China; Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201399, PR China.
| |
Collapse
|
128
|
Zerigui H, Labied R, Chebout R, Bachari K, Meghaber R, Zeggai FZ. Green synthesis of new and natural diester based on gallic acid and polyethylene glycol. F1000Res 2023; 12:1384. [PMID: 39296352 PMCID: PMC11408915 DOI: 10.12688/f1000research.139861.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 09/21/2024] Open
Abstract
Background Antioxidant polyphenols like gallic acid (GA) and its esters called "gallates", which have health advantages for humans, have grown in significance in maintaining a healthy lifestyle and eating a significant amount of secondary plant phytochemicals. Here, for the first time, we suggest a green synthesis of a brand-new, all-natural diester based on gallic acid and polyethylene glycol. Methods This di-gallate is created in a single step without the use of a solvent (solid-solid reaction). This reaction has a potential yield of up to 90%. The bathochromic shift of the absorption bands from 277 nm to 295 nm in the UV-VIS spectra was caused by the addition of PEG to gallic acid. To confirm the structure of this di-gallate; Fourier-transform infrared (FTIR) spectroscopy, proton and carbon nuclear magnetic resonance ( 1H and 13C NMR), the thermal stability identified by thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were all used to thoroughly analyze the manufactured product. Results and conclusions The acquired results, when compared to the literature spectrums, supported the establishment of the di-ester structure and created new opportunities for a large number of applications.
Collapse
Affiliation(s)
- Hafida Zerigui
- Laboratoire de chimie des polymères, Université Oran1 Ahmed Benbella, BP 1524, El'Menouer, Oran, 31000, Algeria
| | - Radia Labied
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP, Tipaza, Algeria, 42004, Algeria
| | - Redouane Chebout
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP, Tipaza, Algeria, 42004, Algeria
| | - Khaldoun Bachari
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP, Tipaza, Algeria, 42004, Algeria
| | - Rachid Meghaber
- Laboratoire de chimie des polymères, Université Oran1 Ahmed Benbella, BP 1524, El'Menouer, Oran, 31000, Algeria
| | - Fatima Zohra Zeggai
- Laboratoire de chimie des polymères, Université Oran1 Ahmed Benbella, BP 1524, El'Menouer, Oran, 31000, Algeria
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP, Tipaza, Algeria, 42004, Algeria
| |
Collapse
|
129
|
Phatale V, Famta P, Srinivasarao DA, Vambhurkar G, Jain N, Pandey G, Kolipaka T, Khairnar P, Shah S, Singh SB, Raghuvanshi RS, Srivastava S. Neutrophil membrane-based nanotherapeutics: Propitious paradigm shift in the management of cancer. Life Sci 2023; 331:122021. [PMID: 37582468 DOI: 10.1016/j.lfs.2023.122021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
Cancer is the leading cause of death across the globe, with 19.3 million new cancer cases and 10 million deaths in the year 2020. Conventional treatment modalities have numerous pitfalls, such as off-site cytotoxicity and poor bioavailability. Nanocarriers (NCs) have been explored to deliver various therapeutic moieties such as chemotherapeutic agents and photothermal agents, etc. However, several limitations, such as rapid clearance by the reticuloendothelial system, poor extravasation into the tumor microenvironment, and low systemic half-life are roadblocks to successful clinical translation. To circumvent the pitfalls of currently available treatment modalities, neutrophil membrane (NM)-based nanotherapeutics have emerged as a promising platform for cancer management. Their versatile features such as natural tumor tropism, tumor-specific accumulation, and prevention from rapid clearance owing to their autologous nature make them an effective anticancer NCs. In this manuscript, we have discussed various methods for isolation, coating and characterization of NM. We have discussed the role of NM-coated nanotherapeutics as neoadjuvant and adjuvant in different treatment modalities, such as chemotherapy, photothermal and photodynamic therapies with rationales behind their inclusion. Clinical hurdles faced during the bench-to-bedside translation with possible solutions have been discussed. We believe that in the upcoming years, NM-coated nanotherapeutics will open a new horizon in cancer management.
Collapse
Affiliation(s)
- Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Central Drugs Standard Control Organization (CDSCO), Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
130
|
Berking BB, Poulladofonou G, Karagrigoriou D, Wilson DA, Neumann K. Zwitterionic Polymeric Sulfur Ylides with Minimal Charge Separation Open a New Generation of Antifouling and Bactericidal Materials. Angew Chem Int Ed Engl 2023; 62:e202308971. [PMID: 37597250 DOI: 10.1002/anie.202308971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Zwitterionic polymers are widely employed hydrophilic building blocks for antifouling coatings with numerous applications across a wide range of fields, including but not limited to biomedical science, drug delivery and nanotechnology. Zwitterionic polymers are considered as an attractive alternative to polyethylene glycol because of their biocompatibility and effectiveness to prevent formation of biofilms. To this end, zwitterionic polymers are classified in two categories, namely polybetaines and polyampholytes. Yet, despite a fundamental interest to drive the development of new antifouling materials, the chemical composition of zwitterionic polymer remains severely limited. Here, we show that poly(sulfur ylides) that belong to the largely overlooked class of poly(ylides), effectively prevent the formation of biofilms from pathogenic bacteria. While surface energy analysis reveals strong hydrogen-bond acceptor capabilities of poly(sulfur ylide), membrane damage of pathogenic bacteria induced by poly(sulfur ylides) indicates toxicity towards bacteria while not affecting eucaryotic cells. Such synergistic effect of poly(sulfur ylides) offers distinct advantages over polyethylene glycol when designing new antifouling materials. We expect that our findings will pave the way for the development of a range of ylide-based materials with antifouling properties that have yet to be explored, opening up new directions at the interface of chemistry, biology, and material science.
Collapse
Affiliation(s)
- Bela B Berking
- Systems Chemistry Department, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Georgia Poulladofonou
- Systems Chemistry Department, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Dimitrios Karagrigoriou
- Systems Chemistry Department, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Daniela A Wilson
- Systems Chemistry Department, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Kevin Neumann
- Systems Chemistry Department, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
131
|
McCrudden CM, Bennie L, Chambers P, Wilson J, Kerr M, Ziminska M, Douglas H, Kuhn S, Carroll E, O'Brien G, Buckley N, Dunne NJ, McCarthy HO. Peptide delivery of a multivalent mRNA SARS-CoV-2 vaccine. J Control Release 2023; 362:536-547. [PMID: 37648082 DOI: 10.1016/j.jconrel.2023.08.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/06/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Lipid nanoparticles (LNP) have been instrumental in the success of mRNA vaccines and have opened up the field to a new wave of therapeutics. However, what is ahead beyond the LNP? The approach herein used a nanoparticle containing a blend of Spike, Membrane and Envelope antigens complexed for the first time with the RALA peptide (RALA-SME). The physicochemical characteristics and functionality of RALA-SME were assessed. With >99% encapsulation, RALA-SME was administered via intradermal injection in vivo, and all three antigen-specific IgG antibodies were highly significant. The IgG2a:IgG1 ratio were all >1.2, indicating a robust TH1 response, and this was further confirmed with the T-Cell response in mice. A complete safety panel of markers from mice were all within normal range, supported by safety data in hamsters. Vaccination of Syrian Golden hamsters with RALA-SME derivatives produced functional antibodies capable of neutralising SARS-CoV-2 from both Wuhan-Hu-1 and Omicron BA.1 lineages after two doses. Antibody levels increased over the study period and provided protection from disease-specific weight loss, with inhibition of viral migration down the respiratory tract. This peptide technology enables the flexibility to interchange and add antigens as required, which is essential for the next generation of adaptable mRNA vaccines.
Collapse
Affiliation(s)
- Cian M McCrudden
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK
| | - Lindsey Bennie
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK
| | - Philip Chambers
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK
| | - Jordan Wilson
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK
| | - Megan Kerr
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK
| | - Monika Ziminska
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK
| | - Hayley Douglas
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK
| | - Sarah Kuhn
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK
| | - Emma Carroll
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK
| | - Garrett O'Brien
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK
| | - Niamh Buckley
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Nicholas J Dunne
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK; School of Chemical Sciences, Dublin City University, Collins Avenue, Dublin 9, Ireland; School of Mechanical & Manufacturing Engineering, Dublin City University, Collins Avenue, Dublin 9, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland; Biodesign Europe, Dublin City University, Dublin 9, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK; School of Chemical Sciences, Dublin City University, Collins Avenue, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
132
|
Zhang Q, Li S, Tong R, Zhu Y. Sialylation: An alternative to designing long-acting and targeted drug delivery system. Biomed Pharmacother 2023; 166:115353. [PMID: 37611437 DOI: 10.1016/j.biopha.2023.115353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
Long-acting and specific targeting are two important properties of excellent drug delivery systems. Currently, the long-acting strategies based on polyethylene glycol (PEG) are controversial, and PEGylation is incapable of simultaneously possessing targeting ability. Thus, it is crucial to identify and develop approaches to produce long-acting and targeted drug delivery systems. Sialic acid (SA) is an endogenous, negatively charged, nine-carbon monosaccharide. SA not only mediates immune escape in the body but also binds to numerous disease related targets. This suggests a potential strategy, namely "sialylation," for preparing long-acting and targeted drug delivery systems. This review focuses on the application status of SA-based long-acting and targeted agents as a reference for subsequent research.
Collapse
Affiliation(s)
- Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Rongsheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuxuan Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
133
|
Vicente-Ruiz S, Armiñán A, Maso K, Gallon E, Zagorodko O, Movellan J, Rodríguez-Otormín F, Baues M, May JN, De Lorenzi F, Lammers T, Vicent MJ. Poly-l-glutamic acid modification modulates the bio-nano interface of a therapeutic anti-IGF-1R antibody in prostate cancer. Biomaterials 2023; 301:122280. [PMID: 37598440 DOI: 10.1016/j.biomaterials.2023.122280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023]
Abstract
Modifying biological agents with polymers such as polyethylene glycol (PEG) has demonstrated clinical benefits; however, post-market surveillance of PEGylated derivatives has revealed PEG-associated toxicity issues, prompting the search for alternatives. We explore how conjugating a poly-l-glutamic acid (PGA) to an anti-insulin growth factor 1 receptor antibody (AVE1642) modulates the bio-nano interface and anti-tumor activity in preclinical prostate cancer models. Native and PGA-modified AVE1642 display similar anti-tumor activity in vitro; however, AVE1642 prompts IGF-1R internalization while PGA conjugation prompts higher affinity IGF-1R binding, thereby inhibiting IGF-1R internalization and altering cell trafficking. AVE1642 attenuates phosphoinositide 3-kinase signaling, while PGA-AVE1642 inhibits phosphoinositide 3-kinase and mitogen-activated protein kinase signaling. PGA conjugation also enhances AVE1642's anti-tumor activity in an orthotopic prostate cancer mouse model, while PGA-AVE1642 induces more significant suppression of cancer cell proliferation/angiogenesis than AVE1642. These findings demonstrate that PGA conjugation modulates an antibody's bio-nano interface, mechanism of action, and therapeutic activity.
Collapse
Affiliation(s)
- Sonia Vicente-Ruiz
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), 46012, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Katia Maso
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Elena Gallon
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Oleksandr Zagorodko
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Julie Movellan
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), 46012, Valencia, Spain; Current address: CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | | | - Maike Baues
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, Aachen, 52074, Germany
| | - Jan-Niklas May
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, Aachen, 52074, Germany
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, Aachen, 52074, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, Aachen, 52074, Germany
| | - María J Vicent
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), 46012, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
134
|
Ieven T, Coorevits L, Vandebotermet M, Tuyls S, Vanneste H, Santy L, Wets D, Proost P, Frans G, Devolder D, Breynaert C, Bullens DMA, Schrijvers R. Endotyping of IgE-Mediated Polyethylene Glycol and/or Polysorbate 80 Allergy. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3146-3160. [PMID: 37380070 PMCID: PMC10291891 DOI: 10.1016/j.jaip.2023.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Polyethylene glycol (PEG) and polysorbate 80 (PS80) allergy preclude from SARS-CoV-2 vaccination. The mechanism(s) governing cross-reactivity and PEG molecular weight dependence remain unclear. OBJECTIVES To evaluate PEGylated lipid nanoparticle (LNP) vaccine (BNT162b2) tolerance and explore the mechanism of reactivity in PEG and/or PS80 allergic patients. METHODS PEG/PS80 dual- (n = 3), PEG mono- (n = 7), and PS80 mono-allergic patients (n = 2) were included. Tolerability of graded vaccine challenges was assessed. Basophil activation testing on whole blood (wb-BAT) or passively sensitized donor basophils (allo-BAT) was performed using PEG, PS80, BNT162b2, and PEGylated lipids (ALC-0159). Serum PEG-specific IgE was measured in patients (n = 10) and controls (n = 15). RESULTS Graded BNT162b2 challenge in dual- and PEG mono-allergic patients (n = 3/group) was well tolerated and induced anti-spike IgG seroconversion. PS80 mono-allergic patients (n = 2/2) tolerated single-dose BNT162b2 vaccination. Wb-BAT reactivity to PEG-containing antigens was observed in dual- (n = 3/3) and PEG mono- (n = 2/3), but absent in PS80 mono-allergic patients (n = 0/2). BNT162b2 elicited the highest in vitro reactivity. BNT162b2 reactivity was IgE mediated, complement independent, and inhibited in allo-BAT by preincubation with short PEG motifs, or detergent-induced LNP degradation. PEG-specific IgE was only detectable in dual-allergic (n = 3/3) and PEG mono-allergic (n = 1/6) serum. CONCLUSION PEG and PS80 cross-reactivity is determined by IgE recognizing short PEG motifs, whereas PS80 mono-allergy is PEG-independent. PS80 skin test positivity in PEG allergics was associated with a severe and persistent phenotype, higher serum PEG-specific IgE levels, and enhanced BAT reactivity. Spherical PEG exposure via LNP enhances BAT sensitivity through increased avidity. All PEG and/or PS80 excipient allergic patients can safely receive SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Toon Ieven
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Lieve Coorevits
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Martijn Vandebotermet
- Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium; Department of Pulmonology, AZ Groeninge Hospital, Kortrijk, Belgium
| | - Sebastiaan Tuyls
- Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium; Department of Pulmonology, GZA St-Augustinus Hospital, Wilrijk, Belgium
| | - Hélène Vanneste
- Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium; Department of Pulmonology, AZ Vesalius, Tongeren, Belgium
| | - Lisa Santy
- Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium; Department of Internal Medicine, Division of Pulmonology, St-Jozefskliniek, Izegem, Belgium
| | - Dries Wets
- Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Paul Proost
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Glynis Frans
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - David Devolder
- Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Christine Breynaert
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Dominique M A Bullens
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Rik Schrijvers
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
135
|
Harun-Ur-Rashid M, Jahan I, Foyez T, Imran AB. Bio-Inspired Nanomaterials for Micro/Nanodevices: A New Era in Biomedical Applications. MICROMACHINES 2023; 14:1786. [PMID: 37763949 PMCID: PMC10536921 DOI: 10.3390/mi14091786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Exploring bio-inspired nanomaterials (BINMs) and incorporating them into micro/nanodevices represent a significant development in biomedical applications. Nanomaterials, engineered to imitate biological structures and processes, exhibit distinctive attributes such as exceptional biocompatibility, multifunctionality, and unparalleled versatility. The utilization of BINMs demonstrates significant potential in diverse domains of biomedical micro/nanodevices, encompassing biosensors, targeted drug delivery systems, and advanced tissue engineering constructs. This article thoroughly examines the development and distinctive attributes of various BINMs, including those originating from proteins, DNA, and biomimetic polymers. Significant attention is directed toward incorporating these entities into micro/nanodevices and the subsequent biomedical ramifications that arise. This review explores biomimicry's structure-function correlations. Synthesis mosaics include bioprocesses, biomolecules, and natural structures. These nanomaterials' interfaces use biomimetic functionalization and geometric adaptations, transforming drug delivery, nanobiosensing, bio-inspired organ-on-chip systems, cancer-on-chip models, wound healing dressing mats, and antimicrobial surfaces. It provides an in-depth analysis of the existing challenges and proposes prospective strategies to improve the efficiency, performance, and reliability of these devices. Furthermore, this study offers a forward-thinking viewpoint highlighting potential avenues for future exploration and advancement. The objective is to effectively utilize and maximize the application of BINMs in the progression of biomedical micro/nanodevices, thereby propelling this rapidly developing field toward its promising future.
Collapse
Affiliation(s)
- Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh;
| | - Israt Jahan
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan;
| | - Tahmina Foyez
- Department of Pharmacy, United International University, Dhaka 1212, Bangladesh;
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
136
|
Maurizi A, Patrizii P, Teti A, Sutera FM, Baran-Rachwalska P, Burns C, Nandi U, Welsh M, Torabi-Pour N, Dehsorkhi A, Saffie-Siebert S. Novel hybrid silicon-lipid nanoparticles deliver a siRNA to cure autosomal dominant osteopetrosis in mice. Implications for gene therapy in humans. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:925-937. [PMID: 37680985 PMCID: PMC10480457 DOI: 10.1016/j.omtn.2023.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023]
Abstract
Rare skeletal diseases are still in need of proper clinically available transfection agents as the major challenge for first-in-human translation relates to intrinsic difficulty in targeting bone without exacerbating any inherent toxicity due to used vector. SiSaf's silicon stabilized hybrid lipid nanoparticles (sshLNPs) constitute next-generation non-viral vectors able to retain the integrity and stability of constructs and to accommodate considerable payloads of biologicals, without requiring cold-chain storage. sshLNP was complexed with a small interfering RNA (siRNA) specifically designed against the human CLCN7G215R mRNA. When tested via single intraperitoneal injection in pre-puberal autosomal dominant osteopetrosis type 2 (ADO2) mice, carrying a heterozygous mutation of the Clcn7 gene (Clcn7G213R), sshLNP, this significantly downregulated the Clcn7G213R related mRNA levels in femurs at 48 h. Confirmatory results were observed at 2 weeks and 4 weeks after treatments (3 intraperitoneal injections/week), with rescue of the bone phenotype and demonstrating safety. The pre-clinical results will enable advanced preclinical development of RNA-based therapy for orphan and genetic skeletal disorders by safely and effectively delivering biologicals of interest to cure human systemic conditions.
Collapse
Affiliation(s)
- Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L'Aquila, Italy
| | - Piergiorgio Patrizii
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L'Aquila, Italy
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Perrotta C, Fenizia C, Carnovale C, Pozzi M, Trabattoni D, Cervia D, Clementi E. Updated Considerations for the Immunopharmacological Aspects of the "Talented mRNA Vaccines". Vaccines (Basel) 2023; 11:1481. [PMID: 37766157 PMCID: PMC10534931 DOI: 10.3390/vaccines11091481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Messenger RNA (mRNA) vaccines belong to a new class of medications, RNA therapeutics, including both coding and non-coding RNAs. The use of mRNA as a therapy is based on the biological role of mRNA itself, namely its translation into a functional protein. The goal of mRNA vaccines is to produce a specific antigen in cells to elicit an immune response that might be prophylactic or therapeutic. The potential of mRNA as vaccine has been envisaged for years but its efficacy has been clearly demonstrated with the approval of COVID-19 vaccines in 2021. Since then, mRNA vaccines have been in the pipeline for diseases that are still untreatable. There are many advantages of mRNA vaccines over traditional vaccines, including easy and cost-effective production, high safety, and high-level antigen expression. However, the nature of mRNA itself and some technical issues pose challenges associated with the vaccines' development and use. Here we review the immunological and pharmacological features of mRNA vaccines by discussing their pharmacokinetics, mechanisms of action, and safety, with a particular attention on the advantages and challenges related to their administration. Furthermore, we present an overview of the areas of application and the clinical trials that utilize a mRNA vaccine as a treatment.
Collapse
Affiliation(s)
- Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milano, Italy;
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy;
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy;
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy;
| |
Collapse
|
138
|
Andrianov AK. Noncovalent PEGylation of protein and peptide therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1897. [PMID: 37138514 DOI: 10.1002/wnan.1897] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023]
Abstract
Clinical applications of protein therapeutics-an advanced generation of drugs characterized by high biological specificity-are rapidly expanding. However, their development is often impeded by unfavorable pharmacokinetic profiles and largely relies on the use of drug delivery systems to prolong their in vivo half-life and suppress undesirable immunogenicity. Although a commercially established PEGylation technology based on protein conjugation with poly(ethylene glycol) (PEG)-protective steric shield resolves some of the challenges, the search for alternatives continues. Noncovalent PEGylation, which mainly relies on multivalent (cooperative) interactions and high affinity (host-guest) complexes formed between protein and PEG offers a number of potential advantages. Among them are dynamic or reversible protection of the protein with minimal loss of biological activity, drastically lower manufacturing costs, "mix-and-match" formulations approaches, and expanded scope of PEGylation targets. While a great number of innovative chemical approaches have been proposed in recent years, the ability to effectively control the stability of noncovalently assembled protein-PEG complexes under physiological conditions presents a serious challenge for the commercial development of the technology. In an attempt to identify critical factors affecting pharmacological behavior of noncovalently linked complexes, this Review follows a hierarchical analysis of various experimental techniques and resulting supramolecular architectures. The importance of in vivo administration routes, degradation patterns of PEGylating agents, and a multitude of potential exchange reactions with constituents of physiological compartments are highlighted. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Alexander K Andrianov
- Institute of Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| |
Collapse
|
139
|
Guo C, Yuan H, Wang Y, Feng Y, Zhang Y, Yin T, He H, Gou J, Tang X. The interplay between PEGylated nanoparticles and blood immune system. Adv Drug Deliv Rev 2023; 200:115044. [PMID: 37541623 DOI: 10.1016/j.addr.2023.115044] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
During the last two decades, an increasing number of reports have pointed out that the immunogenicity of polyethylene glycol (PEG) may trigger accelerated blood clearance (ABC) and hypersensitivity reaction (HSR) to PEGylated nanoparticles, which could make PEG modification counterproductive. These phenomena would be detrimental to the efficacy of the load and even life-threatening to patients. Consequently, further elucidation of the interplay between PEGylated nanoparticles and the blood immune system will be beneficial to developing and applying related formulations. Many groups have worked to unveil the relevance of structural factors, dosing schedule, and other factors to the ABC phenomenon and hypersensitivity reaction. Interestingly, the results of some reports seem to be difficult to interpret or contradict with other reports. In this review, we summarize the physiological mechanisms of PEG-specific immune response. Moreover, we speculate on the potential relationship between the induction phase and the effectuation phase to explain the divergent results in published reports. In addition, the role of nanoparticle-associated factors is discussed based on the classification of the action phase. This review may help researchers to develop PEGylated nanoparticles to avoid unfavorable immune responses based on the underlying mechanism.
Collapse
Affiliation(s)
- Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yuxiu Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yupeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
140
|
Krajcer A, Grzywna E, Lewandowska-Łańcucka J. Strategies increasing the effectiveness of temozolomide at various levels of anti-GBL therapy. Biomed Pharmacother 2023; 165:115174. [PMID: 37459661 DOI: 10.1016/j.biopha.2023.115174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Glioblastoma (GBL) is the most common (60-70% of primary brain tumours) and the most malignant of the glial tumours. Although current therapies remain palliative, they have been proven to prolong overall survival. Within an optimal treatment regimen (incl. surgical resection, radiation therapy, and chemotherapy) temozolomide as the current anti-GBL first-line chemotherapeutic has increased the median overall survival to 14-15 months, and the percentage of patients alive at two years has been reported to rise from 10.4% to 26.5%. Though, the effectiveness of temozolomide chemotherapy is limited by the serious systemic, dose-related side effects. Therefore, the ponderation regarding novel treatment methods along with innovative formulations is crucial to emerging the therapeutic potential of the widely used drug simultaneously reducing the drawbacks of its use. Herein the complex temozolomide application restrictions present at different levels of therapy as well as, the currently proposed strategies aimed at reducing those limitations are demonstrated. Approaches increasing the efficacy of anti-GBL treatment are addressed. Our paper is focused on the most recent developments in the field of nano/biomaterials-based systems for temozolomide delivery and their functionalization towards more effective blood-brain-barrier crossing and/or tumour targeting. Appropriate designing accounting for the physical and chemical features of formulations along with distinct routes of administration is also discussed. In addition, considering the multiple resistance mechanisms, the molecular heterogeneity and the evolution of tumour the purposely selected delivery methods, the combined therapeutic approaches and specifically focused on GBL cells therapies are reviewed.
Collapse
Affiliation(s)
- Aleksandra Krajcer
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Ewelina Grzywna
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Św. Anny 12, 31-008 Kraków, Poland
| | | |
Collapse
|
141
|
Berger M, Toussaint F, Djemaa SB, Laloy J, Pendeville H, Evrard B, Jerôme C, Lechanteur A, Mottet D, Debuigne A, Piel G. Poly(vinyl pyrrolidone) derivatives as PEG alternatives for stealth, non-toxic and less immunogenic siRNA-containing lipoplex delivery. J Control Release 2023; 361:87-101. [PMID: 37482343 DOI: 10.1016/j.jconrel.2023.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The recent approval of Onpattro® and COVID-19 vaccines has highlighted the value of lipid nanoparticles (LNPs) for the delivery of genetic material. If it is known that PEGylation is crucial to confer stealth properties to LNPs, it is also known that PEGylation is responsible for the decrease of the cellular uptake and endosomal escape and for the production of anti-PEG antibodies inducing accelerated blood clearance (ABC) and hypersensitivity reactions. Today, the development of PEG alternatives is crucial. Poly(N-vinyl pyrrolidone) (PNVP) has shown promising results for liposome decoration but has never been tested for the delivery of nucleic acids. Our aim is to develop a series of amphiphilic PNVP compounds to replace lipids-PEG for the post-insertion of lipoplexes dedicated to siRNA delivery. PNVP compounds with different degrees of polymerization and hydrophobic segments, such as octadecyl, dioctadecyl and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), were generated. Based on the physicochemical properties and the efficiency to reduce protein corona formation, we showed that the DSPE segment is essential for the integration into the lipoplexes. Lipoplexes post-grafted with 15% DSPE-PNVP30 resulted in gene silencing efficiency close to that of lipoplexes grafted with 15% DSPE-PEG. Finally, an in vivo study in mice confirmed the stealth properties of DSPE-PNVP30 lipoplexes as well as a lower immune response ABC effect compared to DSPE-PEG lipoplexes. Furthermore, we showed a lower immune response after the second injection with DSPE-PNVP30 lipoplexes compared to DSPE-PEG lipoplexes. All these observations suggest that DSPE-PNVP30 appears to be a promising alternative to PEG, with no toxicity, good stealth properties and lower immunological response.
Collapse
Affiliation(s)
- Manon Berger
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Belgium
| | - François Toussaint
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Belgium
| | - Sanaa Ben Djemaa
- Gene Expression and Cancer Laboratory (GEC), GIGA-Molecular Biology of Diseases, University of Liège, Belgium
| | - Julie Laloy
- NNC Laboratory (NARILIS), Department of Pharmacy, University of Namur, Belgium
| | - Hélène Pendeville
- Platform Zebrafish Facility and Transgenics, GIGA, University of Liège, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Belgium
| | - Christine Jerôme
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Belgium
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Belgium
| | - Denis Mottet
- Gene Expression and Cancer Laboratory (GEC), GIGA-Molecular Biology of Diseases, University of Liège, Belgium.
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Belgium.
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Belgium.
| |
Collapse
|
142
|
Cheng A, Liu Y, Song HQ. Elevating nucleic acid delivery via a stable anionic peptide-dextran ternary system. Biointerphases 2023; 18:051001. [PMID: 37791728 DOI: 10.1116/6.0003084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Nucleic acid-based therapies hold promise for treating previously intractable diseases but require effective delivery vectors to protect the therapeutic agents and ensure efficient transfection. Cationic polymeric vectors are particularly notable for their adaptability, high transfection efficiency, and low cost, but their positive charge often attracts blood proteins, causing aggregation and reduced transfection efficiency. Addressing this, we designed an anionic peptide-grafted dextran (Dex-LipE5H) to serve as a cross-linkable coating to bolster the stability of cationic polymer/nucleic acid complexes. The Dex-LipE5H was synthesized through a Michael addition reaction, combining an anionic peptide (LipE5H) with dextran modified by divinyl sulfone. We demonstrated Dex-lipE5H utility in a novel ternary nucleic acid delivery system, CDex-LipE5H/PEI/nucleic acid. CDex-LipE5H/PEI/nucleic acid demonstrated lower cytotoxicity and superior anti-protein absorption ability compared to PEI/pDNA and Dex-LipE5H/PEI/pDNA. Most notably, the crosslinked CDex-LipE5H/PEI/pDNA demonstrated remarkable transfection performance in HepG2 cells, which poses significant transfection challenges, even in a medium with 20% serum. This system's effective siRNA interference performance was further validated through a PCSK9 gene knockdown assay. This investigation provides novel insights and contributes to the design of cost-effective, next-generation nucleic acid delivery systems with enhanced blood stability and transfection efficiency.
Collapse
Affiliation(s)
- Alex Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Ying Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Hai-Qing Song
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607
- Engineering Research Center of Clinical Functional Materials and Diagnosis and Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
143
|
Toyama K, Eto T, Takazawa K, Shimizu S, Nakayama T, Furihata K, Sogawa Y, Kumazaki M, Jonai N, Matsunaga S, Takeshita F, Yoshihara K, Ishizuka H. DS-5670a, a novel mRNA-encapsulated lipid nanoparticle vaccine against severe acute respiratory syndrome coronavirus 2: Results from a phase 2 clinical study. Vaccine 2023; 41:5525-5534. [PMID: 37586958 DOI: 10.1016/j.vaccine.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND DS-5670a is a vaccine candidate for coronavirus disease 2019 (COVID-19) harnessing a novel modality composed of messenger ribonucleic acid (mRNA) encoding the receptor-binding domain (RBD) from the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encapsulated in lipid nanoparticles. Here, we report the safety, immunogenicity, and pharmacokinetic profile of DS-5670a from a phase 2 clinical trial in healthy adults who were immunologically naïve to SARS-CoV-2. METHODS The study consisted of an open-label, uncontrolled, dose-escalation part and a double-blind, randomized, uncontrolled, 2-arm, parallel-group part. A total of 80 Japanese participants were assigned to receive intramuscular DS-5670a, containing either 30 or 60 µg of mRNA, as two injections administered 4 weeks apart. Safety was assessed by characterization of treatment-emergent adverse events (TEAEs). Immunogenicity was assessed by neutralization titers against SARS-CoV-2, anti-RBD immunoglobulin (Ig)G levels, and SARS-CoV-2 spike-specific T cell responses. Plasma pharmacokinetic parameters of DS-5670a were also evaluated. RESULTS Most solicited TEAEs were mild or moderate with both the 30 and 60 µg mRNA doses. Four participants (10 %) in the 60 µg mRNA group developed severe redness at the injection site, but all cases resolved without treatment. There were no serious TEAEs and no TEAEs leading to discontinuation. Humoral immune responses in both dose groups were greater than those observed in human convalescent serum; the 60 µg mRNA dose produced better responses. Neutralization titers were found to be correlated with anti-RBD IgG levels (specifically IgG1). DS-5670a elicited antigen-specific T helper 1-polarized cellular immune responses. CONCLUSIONS The novel mRNA-based vaccine candidate DS-5670a provided favorable immune responses against SARS-CoV-2 with a clinically acceptable safety profile. Confirmatory trials are currently ongoing to evaluate the safety and immunogenicity of DS-5670a as the primary vaccine and to assess the immunogenicity when administered as a heterologous or homologous booster. TRIAL REGISTRY https://jrct.niph.go.jp/latest-detail/jRCT2071210086.
Collapse
Affiliation(s)
- Kaoru Toyama
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takashi Eto
- Souseikai Hakata Clinic, Random Square 5F, 6-18, Tenyamachi, Hakata-ku, Fukuoka 812-0025, Japan
| | - Kenji Takazawa
- Shinanozaka Clinic, Medical Corporation Shinanokai, Yotsuya Medical Building 3F, 20 Samon-cho, Shinjyu-ku, Tokyo 160-0017, Japan
| | - Shinji Shimizu
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tetsuo Nakayama
- Kitasato University Ömura Satoshi Memorial Institute, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kei Furihata
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yoshitaka Sogawa
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Masafumi Kumazaki
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Nao Jonai
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Satoko Matsunaga
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Fumihiko Takeshita
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kazutaka Yoshihara
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hitoshi Ishizuka
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| |
Collapse
|
144
|
Liu H, Liu M, Zhao Y, Mo R. Nanomedicine strategies to counteract cancer stemness and chemoresistance. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:630-656. [PMID: 37720349 PMCID: PMC10501898 DOI: 10.37349/etat.2023.00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/07/2023] [Indexed: 09/19/2023] Open
Abstract
Cancer stem-like cells (CSCs) identified by self-renewal ability and tumor-initiating potential are responsible for tumor recurrence and metastasis in many cancers. Conventional chemotherapy fails to eradicate CSCs that hold a state of dormancy and possess multi-drug resistance. Spurred by the progress of nanotechnology for drug delivery and biomedical applications, nanomedicine has been increasingly developed to tackle stemness-associated chemotherapeutic resistance for cancer therapy. This review focuses on advances in nanomedicine-mediated therapeutic strategies to overcome chemoresistance by specifically targeting CSCs, the combination of chemotherapeutics with chemopotentiators, and programmable controlled drug release. Perspectives from materials and formulations at the nano-scales are specifically surveyed. Future opportunities and challenges are also discussed.
Collapse
Affiliation(s)
- Huayu Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Mingqi Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Yanan Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Ran Mo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
145
|
Ji W, Zhang Y, Deng Y, Li C, Kankala RK, Chen A. Nature-inspired nanocarriers for improving drug therapy of atherosclerosis. Regen Biomater 2023; 10:rbad069. [PMID: 37641591 PMCID: PMC10460486 DOI: 10.1093/rb/rbad069] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Atherosclerosis (AS) has emerged as one of the prevalent arterial vascular diseases characterized by plaque and inflammation, primarily causing disability and mortality globally. Drug therapy remains the main treatment for AS. However, a series of obstacles hinder effective drug delivery. Nature, from natural micro-/nano-structural biological particles like natural cells and extracellular vesicles to the distinctions between the normal and pathological microenvironment, offers compelling solutions for efficient drug delivery. Nature-inspired nanocarriers of synthetic stimulus-responsive materials and natural components, such as lipids, proteins and membrane structures, have emerged as promising candidates for fulfilling drug delivery needs. These nanocarriers offer several advantages, including prolonged blood circulation, targeted plaque delivery, targeted specific cells delivery and controlled drug release at the action site. In this review, we discuss the nature-inspired nanocarriers which leverage the natural properties of cells or the microenvironment to improve atherosclerotic drug therapy. Finally, we provide an overview of the challenges and opportunities of applying these innovative nature-inspired nanocarriers.
Collapse
Affiliation(s)
- Weihong Ji
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Yuanxing Zhang
- The Institute of Forensic Science, Xiamen Public Security Bureau, Xiamen, Fujian 361104, PR China
| | - Yuanru Deng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Changyong Li
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| |
Collapse
|
146
|
Xu R, Fang Y, Zhang Z, Cao Y, Yan Y, Gan L, Xu J, Zhou G. Recent Advances in Biodegradable and Biocompatible Synthetic Polymers Used in Skin Wound Healing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5459. [PMID: 37570163 PMCID: PMC10419642 DOI: 10.3390/ma16155459] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
The treatment of skin wounds caused by trauma and pathophysiological disorders has been a growing healthcare challenge, posing a great economic burden worldwide. The use of appropriate wound dressings can help to facilitate the repair and healing rate of defective skin. Natural polymer biomaterials such as collagen and hyaluronic acid with excellent biocompatibility have been shown to promote wound healing and the restoration of skin. However, the low mechanical properties and fast degradation rate have limited their applications. Skin wound dressings based on biodegradable and biocompatible synthetic polymers can not only overcome the shortcomings of natural polymer biomaterials but also possess favorable properties for applications in the treatment of skin wounds. Herein, we listed several biodegradable and biocompatible synthetic polymers used as wound dressing materials, such as PVA, PCL, PLA, PLGA, PU, and PEO/PEG, focusing on their composition, fabrication techniques, and functions promoting wound healing. Additionally, the future development prospects of synthetic biodegradable polymer-based wound dressings are put forward. Our review aims to provide new insights for the further development of wound dressings using synthetic biodegradable polymers.
Collapse
Affiliation(s)
- Ruojiao Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Yifeng Fang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Zhao Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Yajie Cao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Yujia Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Li Gan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Jinbao Xu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510030, China
| | - Guoying Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| |
Collapse
|
147
|
Pastorin G, Benetti C, Wacker MG. From in vitro to in vivo: A comprehensive guide to IVIVC development for long-acting therapeutics. Adv Drug Deliv Rev 2023; 199:114906. [PMID: 37286087 DOI: 10.1016/j.addr.2023.114906] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Affiliation(s)
- Giorgia Pastorin
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | - Camillo Benetti
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
148
|
Takata H, Shimizu T, Yamade R, Elsadek NE, Emam SE, Ando H, Ishima Y, Ishida T. Anti-PEG IgM production induced by PEGylated liposomes as a function of administration route. J Control Release 2023; 360:285-292. [PMID: 37355210 DOI: 10.1016/j.jconrel.2023.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/04/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Modifying the surface of nanoparticles with polyethylene glycol (PEG) is a commonly used approach for improving the in vitro stability of nanoparticles such as liposomes and increasing their circulation half-lives. We have demonstrated that, in certain conditions, an intravenous (i.v.) injection of PEGylated liposomes (PEG-Lip) induced anti-PEG IgM antibodies, which led to rapid clearance of second doses in mice. SARS-CoV-2 vaccines, composed of mRNA-containing PEGylated lipid nanoparticles, have been widely administered as intramuscular (i.m.) injections, so it is important to determine if PEGylated formulations can induce anti-PEG antibodies. If the favorable properties that PEGylation imparts to therapeutic nanoparticles are to be widely applicable this should apply to various routes of administration. However, there are few reports on the effect of different administration routes on the in vivo production of anti-PEG IgM. In this study, we investigated anti-PEG IgM production in mice following i.m., intraperitoneal (i.p.) and subcutaneous (s.c.) administration of PEG-Lip. PEG-Lip appeared to induce anti-PEG IgM by all the tested routes of administration, although the lipid dose causing maximum responses varied. Splenectomy attenuated the anti-PEG IgM production for all routes of administration, suggesting that splenic immune cells may have contributed to anti-PEG IgM production. Interestingly, in vitro experiments indicated that not only splenic cells but also cells in the peritoneal cavity induced anti-PEG IgM following incubation with PEG-Lip. These observations confirm previous experiments that have shown that measurable amounts of PEG-Lip administered i.p., i.m. or s.c. are absorbed to some extent into the blood circulation, where they can be distributed to the spleen and/or peritoneal cavity, and are recognized by B cells, triggering anti-PEG IgM production. The results obtained in this study have important implications for developing efficient PEGylated nanoparticular delivery system.
Collapse
Affiliation(s)
- Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Rina Yamade
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Nehal E Elsadek
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Sherif E Emam
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
149
|
Okada N, Taro S, Ando H, Nakamura S, Goda M, Abe M, Kitahara T, Ishida T, Ishizawa K. Clinical Impact of Antipolyethylene Glycol (PEG) Antibody in Hematological Patients Administered PEGylated-Granulocyte Colony-Stimulating Factor. Clin Pharmacol Drug Dev 2023; 12:826-831. [PMID: 36708147 DOI: 10.1002/cpdd.1225] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/02/2023] [Indexed: 01/29/2023]
Abstract
Polyethylene glycol (PEG) is a polymer covalently attached to proteins to improve their half-life and efficacy. We previously reported that the PEGylated granulocyte colony-stimulating factor (PEG-G-CSF) is immunogenic, which could adversely impact drug efficacy and safety in animal models. Here, we analyzed the relationship between anti-PEG antibody titers and the clinical impact of PEG-G-CSF in 19 hematological patients. A gradual decrease of anti-PEG antibody titers from baseline was observed after PEG-G-CSF administration. Of the 19 participants, 10 were assessed for noninfectious fever after the first administration of PEG-G-CSF and three experienced this reaction. The receiver operating characteristic curve revealed that the cut-off values of pretreated anti-PEG IgM and IgG titers for noninfectious fever were set at 5.0 and 96.6 U/mL, respectively. All patients who experienced noninfectious fever had anti-PEG antibody titers above this cut-off value (P = .033). An enzyme-linked immunosorbent assay revealed that some anti-PEG antibodies in patients with anti-PEG antibody titers above the cut-off value reacted with the PEGylated liposome. These results indicate the reactivity of the anti-PEG antibodies to PEGylated therapeutics observed in hematologic patients and the possibility of the relationship between high titers of anti-PEG antibodies and the development of adverse events after PEG-G-CSF administration.
Collapse
Affiliation(s)
- Naoto Okada
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
- Pharmacy Department, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Shimizu Taro
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shingen Nakamura
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mitsuhiro Goda
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiro Abe
- Department of Haematology, Endocrinology, and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takashi Kitahara
- Pharmacy Department, Yamaguchi University Hospital, Yamaguchi, Japan
- Clinical Pharmacology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| |
Collapse
|
150
|
Wilhelmy C, Keil IS, Uebbing L, Schroer MA, Franke D, Nawroth T, Barz M, Sahin U, Haas H, Diken M, Langguth P. Polysarcosine-Functionalized mRNA Lipid Nanoparticles Tailored for Immunotherapy. Pharmaceutics 2023; 15:2068. [PMID: 37631282 PMCID: PMC10458461 DOI: 10.3390/pharmaceutics15082068] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Lipid nanoparticles (LNPs) have gained great attention as carriers for mRNA-based therapeutics, finding applications in various indications, extending beyond their recent use in vaccines for infectious diseases. However, many aspects of LNP structure and their effects on efficacy are not well characterized. To further exploit the potential of mRNA therapeutics, better control of the relationship between LNP formulation composition with internal structure and transfection efficiency in vitro is necessary. We compared two well-established ionizable lipids, namely DODMA and MC3, in combination with two helper lipids, DOPE and DOPC, and two polymer-grafted lipids, either with polysarcosine (pSar) or polyethylene glycol (PEG). In addition to standard physicochemical characterization (size, zeta potential, RNA accessibility), small-angle X-ray scattering (SAXS) was used to analyze the structure of the LNPs. To assess biological activity, we performed transfection and cell-binding assays in human peripheral blood mononuclear cells (hPBMCs) using Thy1.1 reporter mRNA and Cy5-labeled mRNA, respectively. With the SAXS measurements, we were able to clearly reveal the effects of substituting the ionizable and helper lipid on the internal structure of the LNPs. In contrast, pSar as stealth moieties affected the LNPs in a different manner, by changing the surface morphology towards higher roughness. pSar LNPs were generally more active, where the highest transfection efficiency was achieved with the LNP formulation composition of MC3/DOPE/pSar. Our study highlights the utility of pSar for improved mRNA LNP products and the importance of pSar as a novel stealth moiety enhancing efficiency in future LNP formulation development. SAXS can provide valuable information for the rational development of such novel formulations by elucidating structural features in different LNP compositions.
Collapse
Affiliation(s)
- Christoph Wilhelmy
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (C.W.)
| | - Isabell Sofia Keil
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, 55131 Mainz, Germany;
| | - Lukas Uebbing
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (C.W.)
| | - Martin A. Schroer
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o DESY, 22607 Hamburg, Germany
- Nanoparticle Process Technology (NPPT), Faculty of Engineering, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Daniel Franke
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o DESY, 22607 Hamburg, Germany
- BIOSAXS GmbH, 22607 Hamburg, Germany
| | - Thomas Nawroth
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (C.W.)
| | - Matthias Barz
- LACDR—Leiden Academic Centre for Drug Research, Leiden University, 2333 Leiden, The Netherlands
- Department of Dermatology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Ugur Sahin
- Department of Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Heinrich Haas
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (C.W.)
- BioNTech SE, 55131 Mainz, Germany
| | - Mustafa Diken
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, 55131 Mainz, Germany;
| | - Peter Langguth
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (C.W.)
| |
Collapse
|