101
|
Abstract
In 1959, E. G. Gray described two different types of synapses in the brain for the first time: symmetric and asymmetric. Later on, symmetric synapses were associated with inhibitory terminals, and asymmetric synapses to excitatory signaling. The balance between these two systems is critical to maintain a correct brain function. Likewise, the modulation of both types of synapses is also important to maintain a healthy equilibrium. Cerebral circuitry responds differently depending on the type of damage and the timeline of the injury. For example, promoting symmetric signaling following ischemic damage is beneficial only during the acute phase; afterwards, it further increases the initial damage. Synapses can be also altered by players not directly related to them; the chronic and long-term neurodegeneration mediated by tau proteins primarily targets asymmetric synapses by decreasing neuronal plasticity and functionality. Dopamine represents the main modulating system within the central nervous system. Indeed, the death of midbrain dopaminergic neurons impairs locomotion, underlying the devastating Parkinson’s disease. Herein, we will review studies on symmetric and asymmetric synapses plasticity after three different stressors: symmetric signaling under acute damage—ischemic stroke; asymmetric signaling under chronic and long-term neurodegeneration—Alzheimer’s disease; symmetric and asymmetric synapses without modulation—Parkinson’s disease.
Collapse
|
102
|
Petrozziello T, Amaral AC, Dujardin S, Farhan SMK, Chan J, Trombetta BA, Kivisäkk P, Mills AN, Bordt EA, Kim SE, Dooley PM, Commins C, Connors TR, Oakley DH, Ghosal A, Gomez-Isla T, Hyman BT, Arnold SE, Spires-Jones T, Cudkowicz ME, Berry JD, Sadri-Vakili G. Novel genetic variants in MAPT and alterations in tau phosphorylation in amyotrophic lateral sclerosis post-mortem motor cortex and cerebrospinal fluid. Brain Pathol 2021; 32:e13035. [PMID: 34779076 PMCID: PMC8877756 DOI: 10.1111/bpa.13035] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/22/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Although the molecular mechanisms underlying amyotrophic lateral sclerosis (ALS) are not yet fully understood, several studies report alterations in tau phosphorylation in both sporadic and familial ALS. Recently, we have demonstrated that phosphorylated tau at S396 (pTau‐S396) is mislocalized to synapses in ALS motor cortex (mCTX) and contributes to mitochondrial dysfunction. Here, we demonstrate that while there was no overall increase in total tau, pTau‐S396, and pTau‐S404 in ALS post‐mortem mCTX, total tau and pTau‐S396 were increased in C9ORF72‐ALS. Additionally, there was a significant decrease in pTau‐T181 in ALS mCTX compared controls. Furthermore, we leveraged the ALS Knowledge Portal and Project MinE data sets and identified ALS‐specific genetic variants across MAPT, the gene encoding tau. Lastly, assessment of cerebrospinal fluid (CSF) samples revealed a significant increase in total tau levels in bulbar‐onset ALS together with a decrease in CSF pTau‐T181:tau ratio in all ALS samples, as reported previously. While increases in CSF tau levels correlated with a faster disease progression as measured by the revised ALS functional rating scale (ALSFRS‐R), decreases in CSF pTau‐T181:tau ratio correlated with a slower disease progression, suggesting that CSF total tau and pTau‐T181 ratio may serve as biomarkers of disease in ALS. Our findings highlight the potential role of pTau‐T181 in ALS, as decreases in CSF pTau‐T181:tau ratio may reflect the significant decrease in pTau‐T181 in post‐mortem mCTX. Taken together, these results indicate that tau phosphorylation is altered in ALS post‐mortem mCTX as well as in CSF and, importantly, the newly described pathogenic or likely pathogenic variants identified in MAPT in this study are adjacent to T181 and S396 phosphorylation sites further highlighting the potential role of these tau functional domains in ALS. Although the molecular mechanisms underlying amyotrophic lateral sclerosis (ALS) are not yet fully understood, recent studies report alterations in tau phosphorylation in ALS. Our study builds on these findings and demonstrates that tau phosphorylation is altered in post‐mortem ALS motor cortex and highlights new and ALS‐specific variants in MAPT, the gene encoding tau. Lastly, we report alterations in phosphorylated tau in ALS cerebrospinal fluid that may function as a predictive biomarker for ALS.![]()
Collapse
Affiliation(s)
- Tiziana Petrozziello
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ana C Amaral
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon Dujardin
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sali M K Farhan
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - James Chan
- Biostatistics Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bianca A Trombetta
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pia Kivisäkk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandra N Mills
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Evan A Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Spencer E Kim
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patrick M Dooley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Caitlin Commins
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Theresa R Connors
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Derek H Oakley
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anubrata Ghosal
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Teresa Gomez-Isla
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven E Arnold
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tara Spires-Jones
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, University of Edinburgh, UK
| | - Merit E Cudkowicz
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - James D Berry
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ghazaleh Sadri-Vakili
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
103
|
With or without You: Co-Chaperones Mediate Health and Disease by Modifying Chaperone Function and Protein Triage. Cells 2021; 10:cells10113121. [PMID: 34831344 PMCID: PMC8619055 DOI: 10.3390/cells10113121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Heat shock proteins (HSPs) are a family of molecular chaperones that regulate essential protein refolding and triage decisions to maintain protein homeostasis. Numerous co-chaperone proteins directly interact and modify the function of HSPs, and these interactions impact the outcome of protein triage, impacting everything from structural proteins to cell signaling mediators. The chaperone/co-chaperone machinery protects against various stressors to ensure cellular function in the face of stress. However, coding mutations, expression changes, and post-translational modifications of the chaperone/co-chaperone machinery can alter the cellular stress response. Importantly, these dysfunctions appear to contribute to numerous human diseases. Therapeutic targeting of chaperones is an attractive but challenging approach due to the vast functions of HSPs, likely contributing to the off-target effects of these therapies. Current efforts focus on targeting co-chaperones to develop precise treatments for numerous diseases caused by defects in protein quality control. This review focuses on the recent developments regarding selected HSP70/HSP90 co-chaperones, with a concentration on cardioprotection, neuroprotection, cancer, and autoimmune diseases. We also discuss therapeutic approaches that highlight both the utility and challenges of targeting co-chaperones.
Collapse
|
104
|
Petrozziello T, Bordt EA, Mills AN, Kim SE, Sapp E, Devlin BA, Obeng-Marnu AA, Farhan SMK, Amaral AC, Dujardin S, Dooley PM, Henstridge C, Oakley DH, Neueder A, Hyman BT, Spires-Jones TL, Bilbo SD, Vakili K, Cudkowicz ME, Berry JD, DiFiglia M, Silva MC, Haggarty SJ, Sadri-Vakili G. Targeting Tau Mitigates Mitochondrial Fragmentation and Oxidative Stress in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2021; 59:683-702. [PMID: 34757590 DOI: 10.1007/s12035-021-02557-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022]
Abstract
Understanding the mechanisms underlying amyotrophic lateral sclerosis (ALS) is crucial for the development of new therapies. Previous studies have demonstrated that mitochondrial dysfunction is a key pathogenetic event in ALS. Interestingly, studies in Alzheimer's disease (AD) post-mortem brain and animal models link alterations in mitochondrial function to interactions between hyperphosphorylated tau and dynamin-related protein 1 (DRP1), the GTPase involved in mitochondrial fission. Recent evidence suggest that tau may be involved in ALS pathogenesis, therefore, we sought to determine whether hyperphosphorylated tau may lead to mitochondrial fragmentation and dysfunction in ALS and whether reducing tau may provide a novel therapeutic approach. Our findings demonstrated that pTau-S396 is mis-localized to synapses in post-mortem motor cortex (mCTX) across ALS subtypes. Additionally, the treatment with ALS synaptoneurosomes (SNs), enriched in pTau-S396, increased oxidative stress, induced mitochondrial fragmentation, and altered mitochondrial connectivity without affecting cell survival in vitro. Furthermore, pTau-S396 interacted with DRP1, and similar to pTau-S396, DRP1 accumulated in SNs across ALS subtypes, suggesting increases in mitochondrial fragmentation in ALS. As previously reported, electron microscopy revealed a significant decrease in mitochondria density and length in ALS mCTX. Lastly, reducing tau levels with QC-01-175, a selective tau degrader, prevented ALS SNs-induced mitochondrial fragmentation and oxidative stress in vitro. Collectively, our findings suggest that increases in pTau-S396 may lead to mitochondrial fragmentation and oxidative stress in ALS and decreasing tau may provide a novel strategy to mitigate mitochondrial dysfunction in ALS. pTau-S396 mis-localizes to synapses in ALS. ALS synaptoneurosomes (SNs), enriched in pTau-S396, increase oxidative stress and induce mitochondrial fragmentation in vitro. pTau-S396 interacts with the pro-fission GTPase DRP1 in ALS. Reducing tau with a selective degrader, QC-01-175, mitigates ALS SNs-induced mitochondrial fragmentation and increases in oxidative stress in vitro.
Collapse
Affiliation(s)
- Tiziana Petrozziello
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Evan A Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Alexandra N Mills
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Spencer E Kim
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Benjamin A Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Abigail A Obeng-Marnu
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Sali M K Farhan
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA, 02142, USA
| | - Ana C Amaral
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Simon Dujardin
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Patrick M Dooley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Christopher Henstridge
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.,Division of Systems Medicine, Neuroscience, Ninewells hospital & Medical School, University of Dundee, Dundee, UK
| | - Derek H Oakley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Andreas Neueder
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Staci D Bilbo
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.,Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Khashayar Vakili
- Department of Surgery, Boston Children's Hospital, Boston, MA, 02125, USA
| | - Merit E Cudkowicz
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - James D Berry
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - M Catarina Silva
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.,Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Stephen J Haggarty
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.,Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02114, USA
| | - Ghazaleh Sadri-Vakili
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA, 02129, USA. .,MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Bldg 114 16th Street, R2200, Charlestown, MA, 02129, USA.
| |
Collapse
|
105
|
Wu M, Zhang M, Yin X, Chen K, Hu Z, Zhou Q, Cao X, Chen Z, Liu D. The role of pathological tau in synaptic dysfunction in Alzheimer's diseases. Transl Neurodegener 2021; 10:45. [PMID: 34753506 PMCID: PMC8579533 DOI: 10.1186/s40035-021-00270-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive cognitive decline, accompanied by amyloid-β (Aβ) overload and hyperphosphorylated tau accumulation in the brain. Synaptic dysfunction, an important pathological hallmark in AD, is recognized as the main cause of the cognitive impairments. Accumulating evidence suggests that synaptic dysfunction could be an early pathological event in AD. Pathological tau, which is detached from axonal microtubules and mislocalized into pre- and postsynaptic neuronal compartments, is suggested to induce synaptic dysfunction in several ways, including reducing mobility and release of presynaptic vesicles, decreasing glutamatergic receptors, impairing the maturation of dendritic spines at postsynaptic terminals, disrupting mitochondrial transport and function in synapses, and promoting the phagocytosis of synapses by microglia. Here, we review the current understanding of how pathological tau mediates synaptic dysfunction and contributes to cognitive decline in AD. We propose that elucidating the mechanism by which pathological tau impairs synaptic function is essential for exploring novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Moxin Wu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China.,Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Manqing Zhang
- Medical College of Jiujiang University, Jiujiang, 332000, China
| | - Xiaoping Yin
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China.,Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Kai Chen
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhijian Hu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Qin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Xianming Cao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China.,Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China. .,Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China.
| | - Dan Liu
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
106
|
Chen X, Muñoz-Arellano AJ, Petranovic D. UBB +1 reduces amyloid-β cytotoxicity by activation of autophagy in yeast. Aging (Albany NY) 2021; 13:23953-23980. [PMID: 34751669 PMCID: PMC8610117 DOI: 10.18632/aging.203681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/02/2021] [Indexed: 04/20/2023]
Abstract
UBB+1 is a mutated version of ubiquitin B peptide caused by a transcriptional frameshift due to the RNA polymerase II "slippage". The accumulation of UBB+1 has been linked to ubiquitin-proteasome system (UPS) dysfunction and neurodegeneration. Alzheimer's disease (AD) is defined as a progressive neurodegeneration and aggregation of amyloid-β peptides (Aβ) is a prominent neuropathological feature of AD. In our previous study, we found that yeast cells expressing UBB+1 at lower level display an increased resistance to cellular stresses under conditions of chronological aging. In order to examine the molecular mechanisms behind, here we performed genome-wide transcriptional analyses and molecular/cellular biology assays. We found that low UBB+1 expression activated the autophagy pathway, increased vacuolar activity, and promoted transport of autophagic marker ATG8p into vacuole. Furthermore, we introduced low UBB+1 expression to our humanized yeast AD models, that constitutively express Aβ42 and Aβ40 peptide, respectively. The co-expression of UBB+1 with Aβ42 or Aβ40 peptide led to reduced intracellular Aβ levels, ameliorated viability, and increased chronological life span. In an autophagy deficient background strain (atg1Δ), intracellular Aβ levels were not affected by UBB+1 expression. Our findings offer insights for reducing intracellular Aβ toxicity via autophagy-dependent cellular pathways under low level of UBB+1 expression.
Collapse
Affiliation(s)
- Xin Chen
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Ana Joyce Muñoz-Arellano
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Dina Petranovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
107
|
Zhang ZH, Chen C, Jia SZ, Cao XC, Liu M, Tian J, Hoffmann PR, Xu HX, Ni JZ, Song GL. Selenium Restores Synaptic Deficits by Modulating NMDA Receptors and Selenoprotein K in an Alzheimer's Disease Model. Antioxid Redox Signal 2021; 35:863-884. [PMID: 32475153 DOI: 10.1089/ars.2019.7990] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aims: Strong evidence has implicated synaptic failure as a direct contributor to cognitive decline in Alzheimer's disease (AD), and selenium (Se) supplementation has demonstrated potential for AD treatment. However, the exact roles of Se and related selenoproteins in mitigating synaptic deficits remain unclear. Results: Our data show that selenomethionine (Se-Met), as the major organic form of Se in vivo, structurally restored synapses, dendrites, and spines, leading to improved synaptic plasticity and cognitive function in triple transgenic AD (3 × Tg-AD) mice. Furthermore, we found that Se-Met ameliorated synaptic deficits by inhibiting extrasynaptic N-methyl-d-aspartate acid receptors (NMDARs) and stimulating synaptic NMDARs, thereby modulating calcium ion (Ca2+) influx. We observed that a decrease in selenoprotein K (SELENOK) levels was closely related to AD, and a similar disequilibrium was found between synaptic and extrasynaptic NMDARs in SELENOK knockout mice and AD mice. Se-Met treatment upregulated SELENOK levels and restored the balance between synaptic and extrasynaptic NMDAR expression in AD mice. Innovation: These findings establish a key signaling pathway linking SELENOK and NMDARs with synaptic plasticity regulated by Se-Met, and thereby provide insight into mechanisms by which Se compounds mediate synaptic deficits in AD. Conclusion: Our study demonstrates that Se-Met restores synaptic deficits through modulating Ca2+ influx mediated by synaptic and extrasynaptic NMDARs in 3 × Tg-AD mice, and suggests a potentially functional interaction between SELENOK and NMDARs. Antioxid. Redox Signal. 35, 863-884.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Shi-Zheng Jia
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xian-Chun Cao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Min Liu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Hua-Xi Xu
- Neuroscience Initiative, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jia-Zuan Ni
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
108
|
Monteiro-Fernandes D, Silva JM, Soares-Cunha C, Dalla C, Kokras N, Arnaud F, Billiras R, Zhuravleva V, Waites C, Bretin S, Sousa N, Sotiropoulos I. Allosteric modulation of AMPA receptors counteracts Tau-related excitotoxic synaptic signaling and memory deficits in stress- and Aβ-evoked hippocampal pathology. Mol Psychiatry 2021; 26:5899-5911. [PMID: 32467647 DOI: 10.1038/s41380-020-0794-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Despite considerable progress in the understanding of its neuropathology, Alzheimer's disease (AD) remains a complex disorder with no effective treatment that counteracts the memory deficits and the underlying synaptic malfunction triggered by the accumulation of amyloid beta (Aβ) and Tau protein. Mounting evidence supports a precipitating role for chronic environmental stress and glutamatergic excitotoxicity in AD, suggesting that targeting of glutamate receptor signaling may be a promising approach against both stress and AD pathologies. In light of the limited cognitive benefit of the direct antagonism of NMDA receptors in AD, we here focus on an alternative way to modify glutamatergic signaling through positive allosteric modulation of AMPA receptors, by the use of a PAM-AMPA compound. Using non-transgenic animal model of Aβ oligomer injection as well as the combined stress and Aβ i.c.v. infusion, we demonstrate that positive allosteric modulation of AMPA receptors by PAM-AMPA treatment reverted memory, but not mood, deficits. Furthermore, PAM-AMPA treatment reverted stress/Aβ-driven synaptic missorting of Tau and associated Fyn/GluN2B-driven excitotoxic synaptic signaling accompanied by recovery of neurotransmitter levels in the hippocampus. Our findings suggest that positive allosteric modulation of AMPA receptors restores synaptic integrity and cognitive performance in stress- and Aβ-evoked hippocampal pathology. As the prevalence of AD is increasing at an alarming rate, novel therapeutic targeting of glutamatergic signaling should be further explored against the early stages of AD synaptic malfunction with the goal of attenuating further synaptic damage before it becomes irreversible.
Collapse
Affiliation(s)
- Daniela Monteiro-Fernandes
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Campus Gualtar, Minho, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Margarida Silva
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Campus Gualtar, Minho, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Campus Gualtar, Minho, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - François Arnaud
- Pôle Innovation Thérapeutique Neuropsychiatrie, Institut de Recherches Internationales Servier, Suresnes, France
| | - Rodolphe Billiras
- Pôle Innovation Thérapeutique Neuropsychiatrie, Institut de Recherches Internationales Servier, Suresnes, France
| | - Viktoriya Zhuravleva
- Neurobiology and Behavior Graduate Program, Columbia University, New York, NY, USA
| | - Clarissa Waites
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Sylvie Bretin
- Pôle Innovation Thérapeutique Neuropsychiatrie, Institut de Recherches Internationales Servier, Suresnes, France
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Campus Gualtar, Minho, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Campus Gualtar, Minho, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
109
|
Bhattacharya U, Jhou JF, Zou YF, Abrigo G, Lin SW, Chen YH, Chien FC, Tai HC. Surface charge manipulation and electrostatic immobilization of synaptosomes for super-resolution imaging: a study on tau compartmentalization. Sci Rep 2021; 11:18583. [PMID: 34545174 PMCID: PMC8452691 DOI: 10.1038/s41598-021-98142-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/30/2021] [Indexed: 12/31/2022] Open
Abstract
Synaptosomes are subcellular fractions prepared from brain tissues that are enriched in synaptic terminals, widely used for the study of neural transmission and synaptic dysfunction. Immunofluorescence imaging is increasingly applied to synaptosomes to investigate protein localization. However, conventional methods for imaging synaptosomes over glass coverslips suffer from formaldehyde-induced aggregation. Here, we developed a facile strategy to capture and image synaptosomes without aggregation artefacts. First, ethylene glycol bis(succinimidyl succinate) (EGS) is chosen as the chemical fixative to replace formaldehyde. EGS/glycine treatment makes the zeta potential of synaptosomes more negative. Second, we modified glass coverslips with 3-aminopropyltriethoxysilane (APTES) to impart positive charges. EGS-fixed synaptosomes spontaneously attach to modified glasses via electrostatic attraction while maintaining good dispersion. Individual synaptic terminals are imaged by conventional fluorescence microscopy or by super-resolution techniques such as direct stochastic optical reconstruction microscopy (dSTORM). We examined tau protein by two-color and three-color dSTORM to understand its spatial distribution within mouse cortical synapses, observing tau colocalization with synaptic vesicles as well postsynaptic densities.
Collapse
Affiliation(s)
| | - Jia-Fong Jhou
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yi-Fong Zou
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Gerald Abrigo
- Department of Optics and Photonics, National Central University, Taoyuan, Taiwan
| | - Shu-Wei Lin
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yun-Hsuan Chen
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Fan-Ching Chien
- Department of Optics and Photonics, National Central University, Taoyuan, Taiwan
| | - Hwan-Ching Tai
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
110
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
111
|
Keillor JW, Johnson GVW. Transglutaminase 2 as a therapeutic target for neurological conditions. Expert Opin Ther Targets 2021; 25:721-731. [PMID: 34607527 DOI: 10.1080/14728222.2021.1989410] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Transglutaminase 2 (TG2) has been implicated in numerous neurological conditions, including neurodegenerative diseases, multiple sclerosis, and CNS injury. Early studies on the role of TG2 in neurodegenerative conditions focused on its ability to 'crosslink' proteins into insoluble aggregates. However, more recent studies have suggested that this is unlikely to be the primary mechanism by which TG2 contributes to the pathogenic processes. Although the specific mechanisms by which TG2 is involved in neurological conditions have not been clearly defined, TG2 regulates numerous cellular processes through which it could contribute to a specific disease. Given the fact that TG2 is a stress-induced gene and elevated in disease or injury conditions, TG2 inhibitors may be useful neurotherapeutics. AREAS COVERED Overview of TG2 and different TG2 inhibitors. A brief review of TG2 in neurodegenerative diseases, multiple sclerosis and CNS injury and inhibitors that have been tested in different models. Database search: https://pubmed.ncbi.nlm.nih.gov prior to 1 July 2021. EXPERT OPINION Currently, it appears unlikely that inhibiting TG2 in the context of neurodegenerative diseases would be therapeutically advantageous. However, for multiple sclerosis and CNS injuries, TG2 inhibitors may have the potential to be therapeutically useful and thus there is rationale for their further development.
Collapse
Affiliation(s)
- Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Gail V W Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
112
|
Chen X, Xu B, Nie L, He K, Zhou L, Huang X, Spencer P, Yang X, Liu J. Flavanol-rich lychee fruit extract substantially reduces progressive cognitive and molecular deficits in a triple-transgenic animal model of Alzheimer disease. Nutr Neurosci 2021; 24:720-734. [PMID: 31603034 DOI: 10.1080/1028415x.2019.1673527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Effective treatment to prevent or arrest the advance of Alzheimer disease (AD) has yet to be discovered. We investigated whether OligonolR, an FDA-approved flavanol-rich extract prepared from lychee fruit and green tea, exerted beneficial effects relevant to AD in a triple transgenic male mouse model of AD (3×Tg-AD). At 9 months of age, untreated 3×Tg-AD mice vs. wild-type (WT) controls displayed cognitive deficits in behavioral assays and, at 12 months, elevated levels of hippocampal amyloid beta-protein (Aβ), amyloid precursor protein (APP), tau phosphorylation, and pro-inflammatory cytokines. 3×Tg-AD mice given Oligonol showed fewer cognitive deficits and attenuated pathological indices at 12 months. Oligonol treatment of 3×Tg-AD mice modulated expression of some critical brain proteins that involve multiple pathways relevant to mitochondrial dysfunction, proteasomal failure, endoplasmic reticulum (ER) stress and synaptic impairment. Together, these results demonstrate that continuous Oligonol treatment attenuates AD-like pathology and cognitive impairment of 3×Tg-AD mice and set the stage for clinical trials of this flavanol-rich plant extract in patients with early AD.
Collapse
Affiliation(s)
- Xiao Chen
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China
| | - Benhong Xu
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China
| | - Luling Nie
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China
| | - Kaiwu He
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China
| | - Li Zhou
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China
| | - Xinfeng Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China
| | - Peter Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, USA
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China
| |
Collapse
|
113
|
Sinsky J, Pichlerova K, Hanes J. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2021; 22:9207. [PMID: 34502116 PMCID: PMC8431036 DOI: 10.3390/ijms22179207] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer's disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven't been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer's disease and tauopathies.
Collapse
Affiliation(s)
| | | | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (J.S.); (K.P.)
| |
Collapse
|
114
|
Giong HK, Subramanian M, Yu K, Lee JS. Non-Rodent Genetic Animal Models for Studying Tauopathy: Review of Drosophila, Zebrafish, and C. elegans Models. Int J Mol Sci 2021; 22:8465. [PMID: 34445171 PMCID: PMC8395099 DOI: 10.3390/ijms22168465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Tauopathy refers to a group of progressive neurodegenerative diseases, including frontotemporal lobar degeneration and Alzheimer's disease, which correlate with the malfunction of microtubule-associated protein Tau (MAPT) due to abnormal hyperphosphorylation, leading to the formation of intracellular aggregates in the brain. Despite extensive efforts to understand tauopathy and develop an efficient therapy, our knowledge is still far from complete. To find a solution for this group of devastating diseases, several animal models that mimic diverse disease phenotypes of tauopathy have been developed. Rodents are the dominating tauopathy models because of their similarity to humans and established disease lines, as well as experimental approaches. However, powerful genetic animal models using Drosophila, zebrafish, and C. elegans have also been developed for modeling tauopathy and have contributed to understanding the pathophysiology of tauopathy. The success of these models stems from the short lifespans, versatile genetic tools, real-time in-vivo imaging, low maintenance costs, and the capability for high-throughput screening. In this review, we summarize the main findings on mechanisms of tauopathy and discuss the current tauopathy models of these non-rodent genetic animals, highlighting their key advantages and limitations in tauopathy research.
Collapse
Affiliation(s)
- Hoi-Khoanh Giong
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Manivannan Subramanian
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Kweon Yu
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Jeong-Soo Lee
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| |
Collapse
|
115
|
Oliveira WH, Braga CF, Lós DB, Araújo SMR, França MR, Duarte-Silva E, Rodrigues GB, Rocha SWS, Peixoto CA. Metformin prevents p-tau and amyloid plaque deposition and memory impairment in diabetic mice. Exp Brain Res 2021; 239:2821-2839. [PMID: 34283253 DOI: 10.1007/s00221-021-06176-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/12/2021] [Indexed: 01/24/2023]
Abstract
Insulin deficiency or resistance can promote dementia and hallmarks of Alzheimer's disease (AD). The formation of neurofibrillary tangles of p-TAU protein, extracellular Aβ plaques, and neuronal loss is related to the switching off insulin signaling in cognition brain areas. Metformin is a biguanide antihyperglycemic drug used worldwide for the treatment of type 2 diabetes. Some studies have demonstrated that metformin exerts neuroprotective, anti-inflammatory, anti-oxidant, and nootropic effects. This study aimed to evaluate metformin's effects on long-term memory and p-Tau and amyloid β modulation, which are hallmarks of AD in diabetic mice. Swiss Webster mice were distributed in the following experimental groups: control; treated with streptozotocin (STZ) that is an agent toxic to the insulin-producing beta cells; STZ + metformin 200 mg/kg (M200). STZ mice showed significant augmentation of time spent to reach the target box in the Barnes maze, while M200 mice showed a significant time reduction. Moreover, the M200 group showed reduced GFAP immunoreactivity in hippocampal dentate gyrus and CA1 compared with the STZ group. STZ mice showed high p-Tau levels, reduced p-CREB, and accumulation of β-amyloid (Aβ) plaque in hippocampal areas and corpus callosum. In contrast, all these changes were reversed in the M200 group. Protein expressions of p-Tau, p-ERK, pGSK3, iNOS, nNOS, PARP, Cytochrome c, caspase 3, and GluN2A were increased in the parietal cortex of STZ mice and significantly counteracted in M200 mice. Moreover, M200 mice also showed significantly high levels of eNOS, AMPK, and p-AKT expression. In conclusion, metformin improved spatial memory in diabetic mice, which can be associated with reducing p-Tau and β-amyloid (Aβ) plaque load and inhibition of neuronal death.
Collapse
Affiliation(s)
- Wilma Helena Oliveira
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, CEP 50670-420, Brazil.,Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, Brazil
| | - Clarissa Figueiredo Braga
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, Brazil
| | - Deniele Bezerra Lós
- Postgraduate Program in Biotechnology/Northeast Network in Biotechnology (RENORBIO), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Shyrlene Meiry Rocha Araújo
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, CEP 50670-420, Brazil
| | - MariaEduarda Rocha França
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, CEP 50670-420, Brazil.,Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, Brazil.,Postgraduate Program in Biotechnology/Northeast Network in Biotechnology (RENORBIO), Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, PE, Brazil.,Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, Brazil.,Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, PE, Brazil
| | - Gabriel Barros Rodrigues
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, CEP 50670-420, Brazil.,Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, Brazil
| | - Sura Wanessa Santos Rocha
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, CEP 50670-420, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, Brazil. .,Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil.
| |
Collapse
|
116
|
Schaler AW, Runyan AM, Clelland CL, Sydney EJ, Fowler SL, Figueroa HY, Shioda S, Santa-Maria I, Duff KE, Myeku N. PAC1 receptor-mediated clearance of tau in postsynaptic compartments attenuates tau pathology in mouse brain. Sci Transl Med 2021; 13:13/595/eaba7394. [PMID: 34039738 DOI: 10.1126/scitranslmed.aba7394] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 09/22/2020] [Accepted: 01/09/2021] [Indexed: 12/30/2022]
Abstract
Accumulation of pathological tau in synapses has been identified as an early event in Alzheimer's disease (AD) and correlates with cognitive decline in patients with AD. Tau is a cytosolic axonal protein, but under disease conditions, tau accumulates in postsynaptic compartments and presynaptic terminals, due to missorting within neurons, transsynaptic transfer between neurons, or a failure of clearance pathways. Using subcellular fractionation of brain tissue from rTg4510 tau transgenic mice with tauopathy and human postmortem brain tissue from patients with AD, we found accumulation of seed-competent tau predominantly in postsynaptic compartments. Tau-mediated toxicity in postsynaptic compartments was exacerbated by impaired proteasome activity detected by measuring lysine-48 polyubiquitination of proteins targeted for proteasomal degradation. To combat the accumulation of tau and proteasome impairment in the postsynaptic compartments of rTg4510 mouse brain, we stimulated the pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor (PAC1R) with its ligand PACAP administered intracerebroventricularly to rTg4510 mice. We observed enhanced synaptic proteasome activity and reduced total tau in postsynaptic compartments in mouse brain after PACAP treatment. The clearance of tau from postsynaptic compartments correlated with attenuated tauopathy and improved cognitive performance of rTg4510 transgenic mice on two behavioral tests. These results suggest that activating PAC1R could prevent accumulation of aggregate-prone tau and indicate a potential therapeutic approach for AD and other tauopathies.
Collapse
Affiliation(s)
- Ari W Schaler
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Avery M Runyan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Catherine L Clelland
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eric J Sydney
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Stephanie L Fowler
- U.K. Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Helen Y Figueroa
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Seiji Shioda
- Innovative Drug Discovery, Global Research Center for Innovative Life Science, Hoshi University, Tokyo 142-8501, Japan
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Karen E Duff
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.,U.K. Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Natura Myeku
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA. .,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
117
|
Xu Y, Propson NE, Du S, Xiong W, Zheng H. Autophagy deficiency modulates microglial lipid homeostasis and aggravates tau pathology and spreading. Proc Natl Acad Sci U S A 2021; 118:e2023418118. [PMID: 34187889 PMCID: PMC8271658 DOI: 10.1073/pnas.2023418118] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The autophagy-lysosomal pathway plays a critical role in intracellular clearance and metabolic homeostasis. While neuronal autophagy is known to participate in the degradation of neurofibrillary tangles composed of hyperphosphorylated and misfolded tau protein in Alzheimer's disease and other tauopathies, how microglial-specific autophagy regulates microglial intrinsic properties and neuronal tau pathology is not well understood. We report here that Atg7, a key mediator of autophagosome biogenesis, plays an essential role in the regulation of microglial lipid metabolism and neuroinflammation. Microglia-specific deletion of Atg7 leads to the transition of microglia to a proinflammatory status in vivo and to inflammasome activation in vitro. Activation of ApoE and lipid efflux attenuates the lipid droplets accumulation and inhibits cytokine production in microglial cells with Atg7 deficiency. Functionally, we show that the absence of microglial Atg7 enhances intraneuronal tau pathology and its spreading. Our results reveal an essential role for microglial autophagy in regulating lipid homeostasis, neuroinflammation, and tau pathology.
Collapse
Affiliation(s)
- Yin Xu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030;
| | - Nicholas E Propson
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Shuqi Du
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Wen Xiong
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030;
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
118
|
Dong Z, Gu H, Guo Q, Liang S, Xue J, Yao F, Liu X, Li F, Liu H, Sun L, Zhao K. Profiling of Serum Exosome MiRNA Reveals the Potential of a MiRNA Panel as Diagnostic Biomarker for Alzheimer's Disease. Mol Neurobiol 2021; 58:3084-3094. [PMID: 33629272 DOI: 10.1007/s12035-021-02323-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/05/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the older adults. Although much effort has been made in the analyses of diagnostic biomarkers, such as amyloid-β, tau, and neurofilament light chain, identifying peripheral blood-based biomarkers is in extremely urgent need for their minimal invasiveness and more convenience. Here we characterized the miRNA profile by RNA sequencing in human serum exosomes from AD patients and healthy controls (HC) to investigate its potential for AD diagnosis. Subsequently, Gene Ontology analysis and pathway analysis were performed for the targeted genes from the differentially expressed miRNAs. These basic functions were differentially enriched, including cell adhesion, regulation of transcription, and the ubiquitin system. Functional network analysis highlighted the pathways of proteoglycans in cancer, viral carcinogenesis, signaling pathways regulating pluripotency of stem cells, and cellular senescence in AD. A total of 24 miRNAs showed significantly differential expression between AD and HC with more than ± 2.0-fold change at p value < 0.05 and at least 50 reads for each sample. Logistic regression analysis established a model for AD prediction by serum exosomal miR-30b-5p, miR-22-3p, and miR-378a-3p. Sequencing results were validated using quantitative reverse transcription PCR. The data showed that miR-30b-5p, miR-22-3p, and miR-378a-3p were significantly deregulated in AD, with area under the curve (AUC) of 0.668, 0.637, and 0.718, respectively. The combination of the three miRs gained a better diagnostic capability with AUC of 0.880. This finding revealed a miR panel as potential biomarker in the peripheral blood to distinguish AD from HC.
Collapse
Affiliation(s)
- Zhiwu Dong
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China.
| | - Hongjun Gu
- Shanghai Jinshan Zhongren Aged Care Hospital, Shanghai, 201501, China
| | - Qiang Guo
- Department of Ultrasound Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 201599, China
| | - Shuang Liang
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Jian Xue
- Shanghai Jinshan Zhongren Aged Care Hospital, Shanghai, 201501, China
| | - Feng Yao
- Shanghai Jinshan Zhongren Aged Care Hospital, Shanghai, 201501, China
| | - Xianglu Liu
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Feifei Li
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Huiling Liu
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Li Sun
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Kewen Zhao
- Department of Pathophysiology, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China
| |
Collapse
|
119
|
Yin X, Zhao C, Qiu Y, Zhou Z, Bao J, Qian W. Dendritic/Post-synaptic Tau and Early Pathology of Alzheimer's Disease. Front Mol Neurosci 2021; 14:671779. [PMID: 34248498 PMCID: PMC8270001 DOI: 10.3389/fnmol.2021.671779] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/27/2021] [Indexed: 01/21/2023] Open
Abstract
Microtubule-associated protein tau forms insoluble neurofibrillary tangles (NFTs), which is one of the major histopathological hallmarks of Alzheimer's disease (AD). Many studies have demonstrated that tau causes early functional deficits prior to the formation of neurofibrillary aggregates. The redistribution of tau from axons to the somatodendritic compartment of neurons and dendritic spines causes synaptic impairment, and then leads to the loss of synaptic contacts that correlates better with cognitive deficits than amyloid-β (Aβ) aggregates do in AD patients. In this review, we discuss the underlying mechanisms by which tau is mislocalized to dendritic spines and contributes to synaptic dysfunction in AD. We also discuss the synergistic effects of tau and oligomeric forms of Aβ on promoting synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Xiaomin Yin
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, China.,Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Chenhao Zhao
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, China
| | - Yanyan Qiu
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, China
| | - Zheng Zhou
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, China
| | - Junze Bao
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, China
| | - Wei Qian
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, China.,Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
120
|
Islam MS, Quispe C, Hossain R, Islam MT, Al-Harrasi A, Al-Rawahi A, Martorell M, Mamurova A, Seilkhan A, Altybaeva N, Abdullayeva B, Docea AO, Calina D, Sharifi-Rad J. Neuropharmacological Effects of Quercetin: A Literature-Based Review. Front Pharmacol 2021; 12:665031. [PMID: 34220504 PMCID: PMC8248808 DOI: 10.3389/fphar.2021.665031] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Quercetin (QUR) is a natural bioactive flavonoid that has been lately very studied for its beneficial properties in many pathologies. Its neuroprotective effects have been demonstrated in many in vitro studies, as well as in vivo animal experiments and human trials. QUR protects the organism against neurotoxic chemicals and also can prevent the evolution and development of neuronal injury and neurodegeneration. The present work aimed to summarize the literature about the neuroprotective effect of QUR using known database sources. Besides, this review focuses on the assessment of the potential utilization of QUR as a complementary or alternative medicine for preventing and treating neurodegenerative diseases. An up-to-date search was conducted in PubMed, Science Direct and Google Scholar for published work dealing with the neuroprotective effects of QUR against neurotoxic chemicals or in neuronal injury, and in the treatment of neurodegenerative diseases. Findings suggest that QUR possess neuropharmacological protective effects in neurodegenerative brain disorders such as Alzheimer’s disease, Amyloid β peptide, Parkinson’s disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis. In summary, this review emphasizes the neuroprotective effects of QUR and its advantages in being used in complementary medicine for the prevention and treatment o of different neurodegenerative diseases.
Collapse
Affiliation(s)
- Md Shahazul Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Iquique, Chile
| | - Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepción, Concepción, Chile
| | - Assem Mamurova
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ainur Seilkhan
- Educational program, Geography, Environment and Service sector, Abai Kazakh National Pedagogical University, Kazakhstan, Almaty, Kazakhstan.,Biomedical Research Centre, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Nazgul Altybaeva
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Bagila Abdullayeva
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
121
|
Candelise N, Scaricamazza S, Salvatori I, Ferri A, Valle C, Manganelli V, Garofalo T, Sorice M, Misasi R. Protein Aggregation Landscape in Neurodegenerative Diseases: Clinical Relevance and Future Applications. Int J Mol Sci 2021; 22:ijms22116016. [PMID: 34199513 PMCID: PMC8199687 DOI: 10.3390/ijms22116016] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/13/2022] Open
Abstract
Intrinsic disorder is a natural feature of polypeptide chains, resulting in the lack of a defined three-dimensional structure. Conformational changes in intrinsically disordered regions of a protein lead to unstable β-sheet enriched intermediates, which are stabilized by intermolecular interactions with other β-sheet enriched molecules, producing stable proteinaceous aggregates. Upon misfolding, several pathways may be undertaken depending on the composition of the amino acidic string and the surrounding environment, leading to different structures. Accumulating evidence is suggesting that the conformational state of a protein may initiate signalling pathways involved both in pathology and physiology. In this review, we will summarize the heterogeneity of structures that are produced from intrinsically disordered protein domains and highlight the routes that lead to the formation of physiological liquid droplets as well as pathogenic aggregates. The most common proteins found in aggregates in neurodegenerative diseases and their structural variability will be addressed. We will further evaluate the clinical relevance and future applications of the study of the structural heterogeneity of protein aggregates, which may aid the understanding of the phenotypic diversity observed in neurodegenerative disorders.
Collapse
Affiliation(s)
- Niccolò Candelise
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-338-891-2668
| | - Silvia Scaricamazza
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
| | - Illari Salvatori
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Alberto Ferri
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Cristiana Valle
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Valeria Manganelli
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Tina Garofalo
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Maurizio Sorice
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Roberta Misasi
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| |
Collapse
|
122
|
Kabir MT, Uddin MS, Abdeen A, Ashraf GM, Perveen A, Hafeez A, Bin-Jumah MN, Abdel-Daim MM. Evidence Linking Protein Misfolding to Quality Control in Progressive Neurodegenerative Diseases. Curr Top Med Chem 2021; 20:2025-2043. [PMID: 32552649 DOI: 10.2174/1568026620666200618114924] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
Several proteolytic systems including ubiquitin (Ub)-proteasome system (UPS), chaperonemediated autophagy (CMA), and macroautophagy are used by the mammalian cells to remove misfolded proteins (MPs). UPS mediates degradation of most of the MPs, where Ub-conjugated substrates are deubiquitinated, unfolded, and passed through the proteasome's narrow chamber, and eventually break into smaller peptides. It has been observed that the substrates that show a specific degradation signal, the KFERQ sequence motif, can be delivered to and go through CMA-mediated degradation in lysosomes. Macroautophagy can help in the degradation of substrates that are prone to aggregation and resistant to both the CMA and UPS. In the aforesaid case, cargoes are separated into autophagosomes before lysosomal hydrolase-mediated degradation. Even though the majority of the aggregated and MPs in the human proteome can be removed via cellular protein quality control (PQC), some mutant and native proteins tend to aggregate into β-sheet-rich oligomers that exhibit resistance to all identified proteolytic processes and can, therefore, grow into extracellular plaques or inclusion bodies. Indeed, the buildup of protease-resistant aggregated and MPs is a usual process underlying various protein misfolding disorders, including neurodegenerative diseases (NDs) for example Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and prion diseases. In this article, we have focused on the contribution of PQC in the degradation of pathogenic proteins in NDs.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.,Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
123
|
Chemical Stimulation of Rodent and Human Cortical Synaptosomes: Implications in Neurodegeneration. Cells 2021; 10:cells10051174. [PMID: 34065927 PMCID: PMC8151714 DOI: 10.3390/cells10051174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 12/14/2022] Open
Abstract
Synaptic plasticity events, including long-term potentiation (LTP), are often regarded as correlates of brain functions of memory and cognition. One of the central players in these plasticity-related phenomena is the α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor (AMPAR). Increased levels of AMPARs on postsynaptic membranes thus constitute a biochemical measure of LTP. Isolated synaptic terminals (synaptosomes) are an excellent ex vivo tool to monitor synaptic physiology in healthy and diseased brains, particularly in human research. We herein describe three protocols for chemically-induced LTP (cLTP) in synaptosomes from both rodent and human brain tissues. Two of these chemical stimulation protocols are described for the first time in synaptosomes. A pharmacological block of synaptosomal actin dynamics confirmed the efficiency of the cLTP protocols. Furthermore, the study prototypically evaluated the deficiency of cLTP in cortical synaptosomes obtained from human cases of early-onset Alzheimer’s disease (EOAD) and frontotemporal lobar degeneration (FLTD), as well as an animal model that mimics FLTD.
Collapse
|
124
|
Needs HI, Protasoni M, Henley JM, Prudent J, Collinson I, Pereira GC. Interplay between Mitochondrial Protein Import and Respiratory Complexes Assembly in Neuronal Health and Degeneration. Life (Basel) 2021; 11:432. [PMID: 34064758 PMCID: PMC8151517 DOI: 10.3390/life11050432] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
The fact that >99% of mitochondrial proteins are encoded by the nuclear genome and synthesised in the cytosol renders the process of mitochondrial protein import fundamental for normal organelle physiology. In addition to this, the nuclear genome comprises most of the proteins required for respiratory complex assembly and function. This means that without fully functional protein import, mitochondrial respiration will be defective, and the major cellular ATP source depleted. When mitochondrial protein import is impaired, a number of stress response pathways are activated in order to overcome the dysfunction and restore mitochondrial and cellular proteostasis. However, prolonged impaired mitochondrial protein import and subsequent defective respiratory chain function contributes to a number of diseases including primary mitochondrial diseases and neurodegeneration. This review focuses on how the processes of mitochondrial protein translocation and respiratory complex assembly and function are interlinked, how they are regulated, and their importance in health and disease.
Collapse
Affiliation(s)
- Hope I. Needs
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Margherita Protasoni
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Jeremy M. Henley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Julien Prudent
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Gonçalo C. Pereira
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| |
Collapse
|
125
|
Tau internalization: A complex step in tau propagation. Ageing Res Rev 2021; 67:101272. [PMID: 33571704 DOI: 10.1016/j.arr.2021.101272] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/04/2020] [Accepted: 02/04/2021] [Indexed: 12/16/2022]
Abstract
Aggregation of microtubule-associated protein Tau (MAPT) may underlie abnormalities of the intracellular matrix and neuronal death in tauopathies. Tau proteins can be secreted to the extracellular space and internalized into adjacent cells. The internalization of Tau is a complex but critical step in Tau propagation. This review summarizes the internalization pathways of Tau, including macropinocytosis, Clathrin-mediated endocytosis (CME), lipid raft dependent endocytosis, Tunneling nanotubes dependent endocytosis (TNTs) and phagocytosis. The conformation of Tau fibrils and the types of recipient cell determine the internalization pathway. However, the HSPGs-dependent endocytosis seems to be the predominant pathway of Tau internalization. After internalization, Tau fibrils undergo clearance and seeding. Imbalance among Tau secretion, internalization and clearance may result in the propagation of misfolded Tau in the brain, thereby inducing Tauopathies. A better understanding of the internalization of Tau proteins may facilitate the discovery of novel therapeutic strategies to block the propagation of Tau pathology.
Collapse
|
126
|
Bok E, Leem E, Lee BR, Lee JM, Yoo CJ, Lee EM, Kim J. Role of the Lipid Membrane and Membrane Proteins in Tau Pathology. Front Cell Dev Biol 2021; 9:653815. [PMID: 33996814 PMCID: PMC8119898 DOI: 10.3389/fcell.2021.653815] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal accumulation of misfolded tau aggregates is a pathological hallmark of various tauopathies including Alzheimer’s disease (AD). Although tau is a cytosolic microtubule-associated protein enriched in neurons, it is also found in extracellular milieu, such as interstitial fluid, cerebrospinal fluid, and blood. Accumulating evidence showed that pathological tau spreads along anatomically connected areas in the brain through intercellular transmission and templated misfolding, thereby inducing neurodegeneration and cognitive dysfunction. In line with this, the spatiotemporal spreading of tau pathology is closely correlated with cognitive decline in AD patients. Although the secretion and uptake of tau involve multiple different pathways depending on tau species and cell types, a growing body of evidence suggested that tau is largely secreted in a vesicle-free forms. In this regard, the interaction of vesicle-free tau with membrane is gaining growing attention due to its importance for both of tau secretion and uptake as well as aggregation. Here, we review the recent literature on the mechanisms of the tau-membrane interaction and highlights the roles of lipids and proteins at the membrane in the tau-membrane interaction as well as tau aggregation.
Collapse
Affiliation(s)
- Eugene Bok
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Eunju Leem
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Bo-Ram Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Ji Min Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea.,School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Chang Jae Yoo
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Eun Mi Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jaekwang Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
127
|
Kanaan NM, Grabinski T. Neuronal and Glial Distribution of Tau Protein in the Adult Rat and Monkey. Front Mol Neurosci 2021; 14:607303. [PMID: 33986642 PMCID: PMC8112591 DOI: 10.3389/fnmol.2021.607303] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
Tau is a microtubule-associated protein for which the physiological functions remain a topic of vigorous investigation. Additionally, tau is a central player in the pathogenesis of several diseases such as Alzheimer's disease and several frontotemporal dementias. A critical variable to understanding tau in physiological and disease contexts is its normal localization within cells of the adult CNS. Tau is often described as an axon-specific (or enriched) and neuron-specific protein with little to no expression in glial cells, all of which are untrue. Understanding normal tau distribution also impacts interpretation of experimental results and hypotheses regarding its role in disease. Thus, we set out to help clarify the normal localization of tau in the adult CNS of middle-aged rats and rhesus macaque using the hippocampus as a representative brain structure. The physiological concentration of tau in the rat hippocampus was 6.6 μM and in white matter was 3.6 μM as determined by quantitative sandwich ELISAs. We evaluated the cellular localization of tau using multiple tau-specific antibodies with epitopes to different regions, including Tau1, Tau5, Tau7, R1, and two novel primate-specific antibodies NT9 and NT15. In the rat and monkey, tau was localized within the somatodendritic and axonal compartments, as well as a subset of neuronal nuclei. Semi-quantitative fluorescence intensity measurements revealed that depending on the specific reagent used the somatodendritic tau is relatively equal to, higher than, or lower than axonal tau, highlighting differential labeling of tau with various antibodies despite its distribution throughout the neuron. Tau was strongly expressed in mature oligodendrocytes and displayed little to no expression in oligodendrocyte precursor cells, astrocytes or microglia. Collectively, the data indicate tau is ∼3 - 7 μM under physiological conditions, is not specifically enriched in axons, and is normally found in both neurons and mature oligodendrocytes in the adult CNS. The full landscape of tau distribution is not revealed by all antibodies suggesting availability of the epitopes is different within specific neuronal compartments. These findings set the stage for better understanding normal tau distributions and interpreting data regarding the presence of tau in different compartments or cell types within disease conditions.
Collapse
Affiliation(s)
- Nicholas M. Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
- Mercy Health Hauenstein Neuroscience Center, Grand Rapids, MI, United States
| | - Tessa Grabinski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| |
Collapse
|
128
|
Pereira JB, Janelidze S, Ossenkoppele R, Kvartsberg H, Brinkmalm A, Mattsson-Carlgren N, Stomrud E, Smith R, Zetterberg H, Blennow K, Hansson O. Untangling the association of amyloid-β and tau with synaptic and axonal loss in Alzheimer's disease. Brain 2021; 144:310-324. [PMID: 33279949 PMCID: PMC8210638 DOI: 10.1093/brain/awaa395] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 01/10/2023] Open
Abstract
It is currently unclear how amyloid-β and tau deposition are linked to changes in
synaptic function and axonal structure over the course of Alzheimer’s disease. Here, we
assessed these relationships by measuring presynaptic (synaptosomal-associated protein 25,
SNAP25; growth-associated protein 43, GAP43), postsynaptic (neurogranin, NRGN) and axonal
(neurofilament light chain) markers in the CSF of individuals with varying levels of
amyloid-β and tau pathology based on 18F-flutemetamol PET and
18F-flortaucipir PET. In addition, we explored the relationships between
synaptic and axonal markers with cognition as well as functional and anatomical brain
connectivity markers derived from resting-state functional MRI and diffusion tensor
imaging. We found that the presynaptic and postsynaptic markers SNAP25, GAP43 and NRGN are
elevated in early Alzheimer’s disease i.e. in amyloid-β-positive individuals without
evidence of tau pathology. These markers were associated with greater amyloid-β pathology,
worse memory and functional changes in the default mode network. In contrast,
neurofilament light chain was abnormal in later disease stages, i.e. in individuals with
both amyloid-β and tau pathology, and correlated with more tau and worse global cognition.
Altogether, these findings support the hypothesis that amyloid-β and tau might have
differential downstream effects on synaptic and axonal function in a stage-dependent
manner, with amyloid-related synaptic changes occurring first, followed by tau-related
axonal degeneration.
Collapse
Affiliation(s)
- Joana B Pereira
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Neurology and Alzheimer Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Hlin Kvartsberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ann Brinkmalm
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Niklas Mattsson-Carlgren
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
129
|
Maté de Gérando A, d'Orange M, Augustin E, Joséphine C, Aurégan G, Gaudin-Guérif M, Guillermier M, Hérard AS, Stimmer L, Petit F, Gipchtein P, Jan C, Escartin C, Selingue E, Carvalho K, Blum D, Brouillet E, Hantraye P, Gaillard MC, Bonvento G, Bemelmans AP, Cambon K. Neuronal tau species transfer to astrocytes and induce their loss according to tau aggregation state. Brain 2021; 144:1167-1182. [PMID: 33842937 DOI: 10.1093/brain/awab011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/24/2020] [Accepted: 11/01/2020] [Indexed: 11/12/2022] Open
Abstract
Deposits of different abnormal forms of tau in neurons and astrocytes represent key anatomo-pathological features of tauopathies. Although tau protein is highly enriched in neurons and poorly expressed by astrocytes, the origin of astrocytic tau is still elusive. Here, we used innovative gene transfer tools to model tauopathies in adult mouse brains and to investigate the origin of astrocytic tau. We showed in our adeno-associated virus (AAV)-based models and in Thy-Tau22 transgenic mice that astrocytic tau pathology can emerge secondarily to neuronal pathology. By designing an in vivo reporter system, we further demonstrated bidirectional exchanges of tau species between neurons and astrocytes. We then determined the consequences of tau accumulation in astrocytes on their survival in models displaying various status of tau aggregation. Using stereological counting of astrocytes, we report that, as for neurons, soluble tau species are highly toxic to some subpopulations of astrocytes in the hippocampus, whereas the accumulation of tau aggregates does not affect their survival. Thus, astrocytes are not mere bystanders of neuronal pathology. Our results strongly suggest that tau pathology in astrocytes may significantly contribute to clinical symptoms.
Collapse
Affiliation(s)
- Anastasie Maté de Gérando
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Marie d'Orange
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Emma Augustin
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Charlène Joséphine
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Gwénaelle Aurégan
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Mylène Gaudin-Guérif
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Martine Guillermier
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Anne-Sophie Hérard
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Lev Stimmer
- MIRCen, INSERM-CEA, Platform for experimental pathology, U1169 and US27, F-92265 Fontenay-aux-Roses, France
| | - Fanny Petit
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Pauline Gipchtein
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Caroline Jan
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Carole Escartin
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Erwan Selingue
- Université Paris-Saclay, CEA, Neurospin, 91191, Gif-sur-Yvette, France
| | - Kévin Carvalho
- Université Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - David Blum
- Université Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Philippe Hantraye
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Marie-Claude Gaillard
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Gilles Bonvento
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Alexis-Pierre Bemelmans
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Karine Cambon
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| |
Collapse
|
130
|
Ash PEA, Lei S, Shattuck J, Boudeau S, Carlomagno Y, Medalla M, Mashimo BL, Socorro G, Al-Mohanna LFA, Jiang L, Öztürk MM, Knobel M, Ivanov P, Petrucelli L, Wegmann S, Kanaan NM, Wolozin B. TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau. Proc Natl Acad Sci U S A 2021; 118:e2014188118. [PMID: 33619090 PMCID: PMC7936275 DOI: 10.1073/pnas.2014188118] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tau protein plays an important role in the biology of stress granules and in the stress response of neurons, but the nature of these biochemical interactions is not known. Here we show that the interaction of tau with RNA and the RNA binding protein TIA1 is sufficient to drive phase separation of tau at physiological concentrations, without the requirement for artificial crowding agents such as polyethylene glycol (PEG). We further show that phase separation of tau in the presence of RNA and TIA1 generates abundant tau oligomers. Prior studies indicate that recombinant tau readily forms oligomers and fibrils in vitro in the presence of polyanionic agents, including RNA, but the resulting tau aggregates are not particularly toxic. We discover that tau oligomers generated during copartitioning with TIA1 are significantly more toxic than tau aggregates generated by incubation with RNA alone or phase-separated tau complexes generated by incubation with artificial crowding agents. This pathway identifies a potentially important source for generation of toxic tau oligomers in tau-related neurodegenerative diseases. Our results also reveal a general principle that phase-separated RBP droplets provide a vehicle for coassortment of selected proteins. Tau selectively copartitions with TIA1 under physiological conditions, emphasizing the importance of TIA1 for tau biology. Other RBPs, such as G3BP1, are able to copartition with tau, but this happens only in the presence of crowding agents. This type of selective mixing might provide a basis through which membraneless organelles bring together functionally relevant proteins to promote particular biological activities.
Collapse
Affiliation(s)
- Peter E A Ash
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Shuwen Lei
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Jenifer Shattuck
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Samantha Boudeau
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
| | - Bryce L Mashimo
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Guillermo Socorro
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Louloua F A Al-Mohanna
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Lulu Jiang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Muhammet M Öztürk
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Mark Knobel
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Pavel Ivanov
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | - Susanne Wegmann
- German Center for Neurodegenerative Diseases, DZNE, Berlin, 10117, Germany
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, Grand Rapids Research Center, Michigan State University, Grand Rapids, MI 49503
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118;
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- Center for Systems Neuroscience, Boston University School of Medicine, Boston, MA 02118
- Neurophotonics Center, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
131
|
Ash PEA, Lei S, Shattuck J, Boudeau S, Carlomagno Y, Medalla M, Mashimo BL, Socorro G, Al-Mohanna LFA, Jiang L, Öztürk MM, Knobel M, Ivanov P, Petrucelli L, Wegmann S, Kanaan NM, Wolozin B. TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau. Proc Natl Acad Sci U S A 2021; 118:2014188118. [PMID: 33619090 DOI: 10.1073/pnas.2014188118/suppl_file/pnas.2014188118.sapp.pdf] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Tau protein plays an important role in the biology of stress granules and in the stress response of neurons, but the nature of these biochemical interactions is not known. Here we show that the interaction of tau with RNA and the RNA binding protein TIA1 is sufficient to drive phase separation of tau at physiological concentrations, without the requirement for artificial crowding agents such as polyethylene glycol (PEG). We further show that phase separation of tau in the presence of RNA and TIA1 generates abundant tau oligomers. Prior studies indicate that recombinant tau readily forms oligomers and fibrils in vitro in the presence of polyanionic agents, including RNA, but the resulting tau aggregates are not particularly toxic. We discover that tau oligomers generated during copartitioning with TIA1 are significantly more toxic than tau aggregates generated by incubation with RNA alone or phase-separated tau complexes generated by incubation with artificial crowding agents. This pathway identifies a potentially important source for generation of toxic tau oligomers in tau-related neurodegenerative diseases. Our results also reveal a general principle that phase-separated RBP droplets provide a vehicle for coassortment of selected proteins. Tau selectively copartitions with TIA1 under physiological conditions, emphasizing the importance of TIA1 for tau biology. Other RBPs, such as G3BP1, are able to copartition with tau, but this happens only in the presence of crowding agents. This type of selective mixing might provide a basis through which membraneless organelles bring together functionally relevant proteins to promote particular biological activities.
Collapse
Affiliation(s)
- Peter E A Ash
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Shuwen Lei
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Jenifer Shattuck
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Samantha Boudeau
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
| | - Bryce L Mashimo
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Guillermo Socorro
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Louloua F A Al-Mohanna
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Lulu Jiang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Muhammet M Öztürk
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Mark Knobel
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Pavel Ivanov
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | - Susanne Wegmann
- German Center for Neurodegenerative Diseases, DZNE, Berlin, 10117, Germany
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, Grand Rapids Research Center, Michigan State University, Grand Rapids, MI 49503
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118;
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- Center for Systems Neuroscience, Boston University School of Medicine, Boston, MA 02118
- Neurophotonics Center, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
132
|
Tamil Selvan S, Ravichandar R, Kanta Ghosh K, Mohan A, Mahalakshmi P, Gulyás B, Padmanabhan P. Coordination chemistry of ligands: Insights into the design of amyloid beta/tau-PET imaging probes and nanoparticles-based therapies for Alzheimer’s disease. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
133
|
Sonawane SK, Uversky VN, Chinnathambi S. Baicalein inhibits heparin-induced Tau aggregation by initializing non-toxic Tau oligomer formation. Cell Commun Signal 2021; 19:16. [PMID: 33579328 PMCID: PMC7879681 DOI: 10.1186/s12964-021-00704-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background Amyloid aggregate deposition is the key feature of Alzheimer’s disease. The proteinaceous aggregates found in the afflicted brain are the intra-neuronal neurofibrillary tangles formed by the microtubule-associated protein Tau and extracellular deposits, senile plaques, of amyloid beta (Aβ) peptide proteolytically derived from the amyloid precursor protein. Accumulation of these aggregates has manifestations in the later stages of the disease, such as memory loss and cognitive inabilities originating from the neuronal dysfunction, neurodegeneration, and brain atrophy. Treatment of this disease at the late stages is difficult, and many clinical trials have failed. Hence, the goal is to find means capable of preventing the aggregation of these intrinsically disordered proteins by inhibiting the early stages of their pathological transformations. Polyphenols are known to be neuroprotective agents with the noticeable potential against many neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, and Prion diseases. Methods We analyzed the capability of Baicalein to inhibit aggregation of human Tau protein by a multifactorial analysis that included several biophysical and biochemical techniques. Results The potency of Baicalein, a polyphenol from the Scutellaria baicalensis Georgi, against in vitro Tau aggregation and PHF dissolution has been screened and validated. ThS fluorescence assay revealed the potent inhibitory activity of Baicalein, whereas ANS revealed its mechanism of Tau inhibition viz. by oligomer capture and dissociation. In addition, Baicalein dissolved the preformed mature fibrils of Tau thereby possessing a dual target action. Tau oligomers formed by Baicalein were non-toxic to neuronal cells, highlighting its role as a potent molecule to be screened against AD. Conclusion In conclusion, Baicalein inhibits aggregation of hTau40 by enhancing the formation of SDS-stable oligomers and preventing fibril formation. Baicalein-induced oligomers do not affect the viability of the neuroblastoma cells. Therefore, Baicalein can be considered as a lead molecule against Tau pathology in AD. Video Abstract
Collapse
Affiliation(s)
- Shweta Kishor Sonawane
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
134
|
Nesari A, Mansouri MT, Khodayar MJ, Rezaei M. Preadministration of high-dose alpha-tocopherol improved memory impairment and mitochondrial dysfunction induced by proteasome inhibition in rat hippocampus. Nutr Neurosci 2021; 24:119-129. [PMID: 31084475 DOI: 10.1080/1028415x.2019.1601888] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective: The ubiquitin-proteasome system plays a key role in memory consolidation. Proteasome inhibition and free radical-induced neural damage were implicated in neurodegenerative states. In this study, it was tested whether alpha-tocopherol (αT) in low and high doses could improve the long-term memory impairment induced by proteasome inhibition and protects against hippocampal oxidative stress. Methods: Alpha-tocopherol (αT) (60, 200 mg/kg, i.p. for 5 days) was administered to rats with memory deficit and hippocampal oxidative stress induced by bilateral intra-hippocampal injection of lactacystin (32 ng/μl) and mitochondrial evaluations were performed for improvement assessments. Results: The results showed that lactacystin significantly reduced the passive avoidance memory performance and increased the level of malondialdehyde (MDA), reactive oxygen species (ROS) and diminished the mitochondrial membrane potential (MMP) in the rat hippocampus. Furthermore, Intraperitoneal administration of αT significantly increased the passive avoidance memory, glutathione content and reduced ROS, MDA levels and impaired MMP. Conclusions: The results suggested that αT has neuroprotective effects against lactacystin-induced oxidative stress and memory impairment via the enhancement of hippocampal antioxidant capacity and concomitant mitochondrial sustainability. This finding shows a way to prevent and also to treat neurodegenerative diseases associated with mitochondrial impairment.
Collapse
Affiliation(s)
- Ali Nesari
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Taghi Mansouri
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anesthesiology, Irving Medical Center, Columbia University, New York, NY, USA
| | - Mohammad Javad Khodayar
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Rezaei
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
135
|
Sepulveda-Falla D, Chavez-Gutierrez L, Portelius E, Vélez JI, Dujardin S, Barrera-Ocampo A, Dinkel F, Hagel C, Puig B, Mastronardi C, Lopera F, Hyman BT, Blennow K, Arcos-Burgos M, de Strooper B, Glatzel M. A multifactorial model of pathology for age of onset heterogeneity in familial Alzheimer's disease. Acta Neuropathol 2021; 141:217-233. [PMID: 33319314 PMCID: PMC7847436 DOI: 10.1007/s00401-020-02249-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Presenilin-1 (PSEN1) mutations cause familial Alzheimer's disease (FAD) characterized by early age of onset (AoO). Examination of a large kindred harboring the PSEN1-E280A mutation reveals a range of AoO spanning 30 years. The pathophysiological drivers and clinical impact of AoO variation in this population are unknown. We examined brains of 23 patients focusing on generation and deposition of beta-amyloid (Aβ) and Tau pathology profile. In 14 patients distributed at the extremes of AoO, we performed whole-exome capture to identify genotype-phenotype correlations. We also studied kinome activity, proteasome activity, and protein polyubiquitination in brain tissue, associating it with Tau phosphorylation profiles. PSEN1-E280A patients showed a bimodal distribution for AoO. Besides AoO, there were no clinical differences between analyzed groups. Despite the effect of mutant PSEN1 on production of Aβ, there were no relevant differences between groups in generation and deposition of Aβ. However, differences were found in hyperphosphorylated Tau (pTau) pathology, where early onset patients showed severe pathology with diffuse aggregation pattern associated with increased activation of stress kinases. In contrast, late-onset patients showed lesser pTau pathology and a distinctive kinase activity. Furthermore, we identified new protective genetic variants affecting ubiquitin-proteasome function in early onset patients, resulting in higher ubiquitin-dependent degradation of differentially phosphorylated Tau. In PSEN1-E280A carriers, altered γ-secretase activity and resulting Aβ accumulation are prerequisites for early AoO. However, Tau hyperphosphorylation pattern, and its degradation by the proteasome, drastically influences disease onset in individuals with otherwise similar Aβ pathology, hinting toward a multifactorial model of disease for FAD. In sporadic AD (SAD), a wide range of heterogeneity, also influenced by Tau pathology, has been identified. Thus, Tau-induced heterogeneity is a common feature in both AD variants, suggesting that a multi-target therapeutic approach should be used to treat AD.
Collapse
Affiliation(s)
- Diego Sepulveda-Falla
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Neuroscience Group of Antioquia, Faculty of Medicine, University of Antioquia, Medellín, Colombia.
| | - Lucia Chavez-Gutierrez
- VIB Center for Brain and Disease Research, 3000, Leuven, Belgium
- Department of Neurology, KU Leuven, Leuven, Belgium
| | - Erik Portelius
- Institute of Neuroscience and Physiology, Dept. of Psychiatry and Neurochemistry, The Sahlgrenska Academy At the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Mölndal, Sweden
| | - Jorge I Vélez
- Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Universidad del Norte, Barranquilla, Colombia
| | - Simon Dujardin
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Charlestown, USA
| | - Alvaro Barrera-Ocampo
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Facultad de Ciencias Naturales, Departamento de Ciencias Farmaceuticas, Universidad Icesi, Grupo Natura, Calle 18 No. 122 -135, Cali, Colombia
| | - Felix Dinkel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Berta Puig
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudio Mastronardi
- Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- GIPSI Group, Department of Psychiatry, Medical Research Institute, University of Antioquia, Medellín, Colombia
| | - Francisco Lopera
- Neuroscience Group of Antioquia, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Charlestown, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Dept. of Psychiatry and Neurochemistry, The Sahlgrenska Academy At the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Mölndal, Sweden
| | - Mauricio Arcos-Burgos
- GIPSI Group, Department of Psychiatry, Medical Research Institute, University of Antioquia, Medellín, Colombia
| | - Bart de Strooper
- VIB Center for Brain and Disease Research, 3000, Leuven, Belgium
- Department of Neurology, KU Leuven, Leuven, Belgium
- UK Dementia Research Institute, University College London, Queen Square, London, WC1N 3BG, UK
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
136
|
Tomaru U, Ito T, Ohmura Y, Higashikawa K, Miyajima S, Tomatsu R, Higashi T, Ishizu A, Kuge Y, Yoshioka M, Kasahara M. Decreased Proteasomal Function Induces Neuronal Loss and Memory Impairment. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:144-156. [PMID: 33339546 DOI: 10.1016/j.ajpath.2020.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/20/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disorder and the most common type of dementia worldwide. There is considerable evidence of age-related disruption of proteostasis being responsible for the development of AD. The proteasome is a multicatalytic enzyme complex that degrades both normal and damaged proteins, and an age-related decline in its activity has been implicated in age-related pathologies. Although proteasomal dysfunction is assumed to be a key AD hallmark, it remains unclear whether its role in disease onset is causative or secondary. In this study, we demonstrate that mice with proteasomal dysfunction exhibited memory impairment with associated neuronal loss, accumulation of phosphorylated tau, and activation of endoplasmic reticulum (ER) stress-related apoptosis pathways. Impaired proteasomal activity also activated ER stress-related apoptosis pathways in HT-22, a murine hippocampal neuronal cell line. HT-22 cell death, caused by proteasomal inhibition, was prevented by an inhibitor of c-Jun N-terminal kinase, an ER stress-related molecule. Collective evidence suggests that impaired proteasomal activity alters proteostasis, and subsequent ER stress-mediated pathways play pivotal roles in neuronal loss. Because aging decreases proteasomal function, age-related impairment of proteasomes may be involved in the development and progression of AD in elderly patients.
Collapse
Affiliation(s)
- Utano Tomaru
- Department of Pathology, Hokkaido University, Sapporo, Japan.
| | - Tomoki Ito
- Department of Pathology, Hokkaido University, Sapporo, Japan
| | - Yu Ohmura
- Department of Neuropharmacology, Hokkaido University, Sapporo, Japan
| | - Kei Higashikawa
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Syota Miyajima
- Department of Pathology, Hokkaido University, Sapporo, Japan
| | - Ruka Tomatsu
- Department of Pathology, Hokkaido University, Sapporo, Japan
| | - Tsunehito Higashi
- Department of Cellular Pharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiro Ishizu
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
137
|
Isoform-selective decrease of glycogen synthase kinase-3-beta (GSK-3β) reduces synaptic tau phosphorylation, transcellular spreading, and aggregation. iScience 2021; 24:102058. [PMID: 33554064 PMCID: PMC7848608 DOI: 10.1016/j.isci.2021.102058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/20/2020] [Accepted: 01/07/2021] [Indexed: 12/27/2022] Open
Abstract
It has been suggested that aberrant activation of glycogen synthase kinase-3-beta (GSK-3β) can trigger abnormal tau hyperphosphorylation and aggregation, which ultimately leads to neuronal/synaptic damage and impaired cognition in Alzheimer disease (AD). We examined if isoform-selective partial reduction of GSK-3β can decrease pathological tau changes, including hyperphosphorylation, aggregation, and spreading, in mice with localized human wild-type tau (hTau) expression in the brain. We used adeno-associated viruses (AAVs) to express hTau locally in the entorhinal cortex of wild-type and GSK-3β hemi-knockout (GSK-3β-HK) mice. GSK-3β-HK mice had significantly less accumulation of hyperphosphorylated tau in synapses and showed a significant decrease of tau protein spread between neurons. In primary neuronal cultures from GSK-3β-HK mice, the aggregation of exogenous FTD-mutant tau was also significantly reduced. These results show that a partial decrease of GSK-3β significantly represses tau-initiated neurodegenerative changes in the brain, and therefore is a promising therapeutic target for AD and other tauopathies. Genetic reduction of GSK-3β decreases synaptic accrual of GSK-3β and p-Tau in mice Reduction of GSK-3β lowers the trans-cellular spread of tau in vivo and in vitro Reduction of GSK-3β diminishes the formation of tau aggregates in vitro
Collapse
|
138
|
Arnsten AFT, Datta D, Del Tredici K, Braak H. Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer's disease. Alzheimers Dement 2021; 17:115-124. [PMID: 33075193 PMCID: PMC7983919 DOI: 10.1002/alz.12192] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
The etiology of the common, sporadic form of Alzheimer's disease (sAD) is unknown. We hypothesize that tau pathology within select projection neurons with susceptible microenvironments can initiate sAD. This postulate rests on extensive data demonstrating that in human brains tau pathology appears about a decade before the formation of Aβ plaques (Aβps), especially targeting glutamate projection neurons in the association cortex. Data from aging rhesus monkeys show abnormal tau phosphorylation within vulnerable neurons, associated with calcium dysregulation. Abnormally phosphorylated tau (pTau) on microtubules traps APP-containing endosomes, which can increase Aβ production. As Aβ oligomers increase abnormal phosphorylation of tau, this would drive vicious cycles leading to sAD pathology over a long lifespan, with genetic and environmental factors that may accelerate pathological events. This hypothesis could be testable in the aged monkey association cortex that naturally expresses characteristics capable of promoting and sustaining abnormal tau phosphorylation and Aβ production.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Heiko Braak
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| |
Collapse
|
139
|
Lemke N, Melis V, Lauer D, Magbagbeolu M, Neumann B, Harrington CR, Riedel G, Wischik CM, Theuring F, Schwab K. Differential compartmental processing and phosphorylation of pathogenic human tau and native mouse tau in the line 66 model of frontotemporal dementia. J Biol Chem 2020; 295:18508-18523. [PMID: 33127647 PMCID: PMC7939472 DOI: 10.1074/jbc.ra120.014890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/09/2020] [Indexed: 12/23/2022] Open
Abstract
Synapse loss is associated with motor and cognitive decline in multiple neurodegenerative disorders, and the cellular redistribution of tau is related to synaptic impairment in tauopathies, such as Alzheimer's disease and frontotemporal dementia. Here, we examined the cellular distribution of tau protein species in human tau overexpressing line 66 mice, a transgenic mouse model akin to genetic variants of frontotemporal dementia. Line 66 mice express intracellular tau aggregates in multiple brain regions and exhibit sensorimotor and motor learning deficiencies. Using a series of anti-tau antibodies, we observed, histologically, that nonphosphorylated transgenic human tau is enriched in synapses, whereas phosphorylated tau accumulates predominantly in cell bodies and axons. Subcellular fractionation confirmed that human tau is highly enriched in insoluble cytosolic and synaptosomal fractions, whereas endogenous mouse tau is virtually absent from synapses. Cytosolic tau was resistant to solubilization with urea and Triton X-100, indicating the formation of larger tau aggregates. By contrast, synaptic tau was partially soluble after Triton X-100 treatment and most likely represents aggregates of smaller size. MS corroborated that synaptosomal tau is nonphosphorylated. Tau enriched in the synapse of line 66 mice, therefore, appears to be in an oligomeric and nonphosphorylated state, and one that could have a direct impact on cognitive function.
Collapse
Affiliation(s)
- Nora Lemke
- Charité-Universitätsmedizin Berlin, Berlin, Germany; Bundesanstalt für Materialforschung und-prüfung, Berlin, Germany
| | - Valeria Melis
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | | | | | - Boris Neumann
- Charité-Universitätsmedizin Berlin, Berlin, Germany; Proteome Factory AG, Berlin, Germany
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom; TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom; TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | | | - Karima Schwab
- Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
140
|
Weng FL, He L. Disrupted ubiquitin proteasome system underlying tau accumulation in Alzheimer's disease. Neurobiol Aging 2020; 99:79-85. [PMID: 33422896 DOI: 10.1016/j.neurobiolaging.2020.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/12/2020] [Accepted: 11/22/2020] [Indexed: 01/02/2023]
Abstract
Accumulation of phosphorylated tau (p-tau) has long been an underappreciated hallmark of Alzheimer's disease. Tau is one of the major components of microtubule networks in neurons, and its abnormal phosphorylation and aggregation are closely related to the impairment of axonal transport. Abnormalities in axonal transport can impede autophagy in neurons, interrupting the autophagic clearance of amyloid beta. The ubiquitin proteasome system (UPS) maintains intracellular proteostasis by degrading abnormal or redundant proteins. Ever-mounting evidence suggests that UPS deficits contribute to p-tau accumulation. And targeting UPS attenuates tau pathology. This review endeavors to exam the potential role of UPS in p-tau aggregation, and how pathogenic tau may inflict other abnormalities such as amyloid beta accumulation in Alzheimer's disease.
Collapse
Affiliation(s)
- Fang-Lin Weng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
141
|
Li Y, Wen G, Ding R, Ren X, Jing C, Liu L, Yao J, Zhang G, Lu Y, Li B, Wu X. Effects of Single-Dose and Long-Term Ketamine Administration on Tau Phosphorylation-Related Enzymes GSK-3β, CDK5, PP2A, and PP2B in the Mouse Hippocampus. J Mol Neurosci 2020; 70:2068-2076. [PMID: 32705526 DOI: 10.1007/s12031-020-01613-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/22/2020] [Indexed: 10/23/2022]
Abstract
Ketamine is a recreational drug that causes emotional and cognitive impairments, but its specific mechanisms of action are still unclear. Recent evidence suggests that Tau protein phosphorylation and targeted delivery to the postsynaptic area are closely related to its neurotoxicity, and our recent studies have shown that long-term ketamine administration causes excessive Tau protein phosphorylation. However, the regulatory mechanism of Tau protein phosphorylation induced by ketamine has not been clarified. In the present study, we administered a single ketamine injection and long-term (6 months) ketamine injections in C57BL/6 mice, to investigate the effects of different doses of ketamine on the expression levels of Tau protein and its phosphorylation, the expression levels and activities of the related protein phosphokinases GSK-3β and CDK5, and the expression levels and activities of the related protein phosphatases PP2A and PP2B in the mouse hippocampus. Our results showed that both single-dose and long-term ketamine administration induced excessive phosphorylation of the Tau protein at ser202/thr205 and ser396. A single ketamine administration caused an increase in the activity of GSK-3β (at high doses) and a decrease in the activity of PP2A. On the other hand, long-term ketamine administration resulted in an increase in the activities of GSK-3β (at high doses) and CDK5, and a decrease in the activity of PP2A. Our results indicate that GSK-3β, CDK5, and PP2A may be involved in ketamine-induced Tau protein phosphorylation.
Collapse
Affiliation(s)
- Yanning Li
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
- School of Basic Medicine, Gannan Medical University, Ganzhou, People's Republic of China
| | - Gehua Wen
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Runtao Ding
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Xinghua Ren
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Chenchen Jing
- School of Basic Medicine, Gannan Medical University, Ganzhou, People's Republic of China
| | - Lin Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, People's Republic of China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Guohua Zhang
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Yan Lu
- Key Laboratory of Health Ministry in Congenital Malformation, The Affiliated Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.
| | - Baoman Li
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China.
| | - Xu Wu
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
142
|
Jogamoto T, Utsunomiya R, Sato A, Kihara N, Choudhury ME, Miyanishi K, Kubo M, Nagai M, Nomoto M, Yano H, Shimizu YI, Fukuda M, Ishii E, Eguchi M, Tanaka J. Lister hooded rats as a novel animal model of attention-deficit/hyperactivity disorder. Neurochem Int 2020; 141:104857. [DOI: 10.1016/j.neuint.2020.104857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/17/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
|
143
|
Alyenbaawi H, Allison WT, Mok SA. Prion-Like Propagation Mechanisms in Tauopathies and Traumatic Brain Injury: Challenges and Prospects. Biomolecules 2020; 10:E1487. [PMID: 33121065 PMCID: PMC7692808 DOI: 10.3390/biom10111487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
The accumulation of tau protein in the form of filamentous aggregates is a hallmark of many neurodegenerative diseases such as Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). These dementias share traumatic brain injury (TBI) as a prominent risk factor. Tau aggregates can transfer between cells and tissues in a "prion-like" manner, where they initiate the templated misfolding of normal tau molecules. This enables the spread of tau pathology to distinct parts of the brain. The evidence that tauopathies spread via prion-like mechanisms is considerable, but work detailing the mechanisms of spread has mostly used in vitro platforms that cannot fully reveal the tissue-level vectors or etiology of progression. We review these issues and then briefly use TBI and CTE as a case study to illustrate aspects of tauopathy that warrant further attention in vivo. These include seizures and sleep/wake disturbances, emphasizing the urgent need for improved animal models. Dissecting these mechanisms of tauopathy progression continues to provide fresh inspiration for the design of diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hadeel Alyenbaawi
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Medical Laboratories, Majmaah University, Majmaah 11952, Saudi Arabia
| | - W. Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Sue-Ann Mok
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
144
|
Ejaz HW, Wang W, Lang M. Copper Toxicity Links to Pathogenesis of Alzheimer's Disease and Therapeutics Approaches. Int J Mol Sci 2020; 21:E7660. [PMID: 33081348 PMCID: PMC7589751 DOI: 10.3390/ijms21207660] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible, age-related progressive neurological disorder, and the most common type of dementia in aged people. Neuropathological lesions of AD are neurofibrillary tangles (NFTs), and senile plaques comprise the accumulated amyloid-beta (Aβ), loaded with metal ions including Cu, Fe, or Zn. Some reports have identified metal dyshomeostasis as a neurotoxic factor of AD, among which Cu ions seem to be a central cationic metal in the formation of plaque and soluble oligomers, and have an essential role in the AD pathology. Cu-Aβ complex catalyzes the generation of reactive oxygen species (ROS) and results in oxidative damage. Several studies have indicated that oxidative stress plays a crucial role in the pathogenesis of AD. The connection of copper levels in AD is still ambiguous, as some researches indicate a Cu deficiency, while others show its higher content in AD, and therefore there is a need to increase and decrease its levels in animal models, respectively, to study which one is the cause. For more than twenty years, many in vitro studies have been devoted to identifying metals' roles in Aβ accumulation, oxidative damage, and neurotoxicity. Towards the end, a short review of the modern therapeutic approach in chelation therapy, with the main focus on Cu ions, is discussed. Despite the lack of strong proofs of clinical advantage so far, the conjecture that using a therapeutic metal chelator is an effective strategy for AD remains popular. However, some recent reports of genetic-regulating copper transporters in AD models have shed light on treating this refractory disease. This review aims to succinctly present a better understanding of Cu ions' current status in several AD features, and some conflicting reports are present herein.
Collapse
Affiliation(s)
- Hafza Wajeeha Ejaz
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth WA6027, Australia;
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
145
|
Henríquez G, Gomez A, Guerrero E, Narayan M. Potential Role of Natural Polyphenols against Protein Aggregation Toxicity: In Vitro, In Vivo, and Clinical Studies. ACS Chem Neurosci 2020; 11:2915-2934. [PMID: 32822152 DOI: 10.1021/acschemneuro.0c00381] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
One of the main features of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease is the amyloidogenic behavior of disease-specific proteins including amyloid β, tau, α-synuclein, and mutant Huntingtin which participate in the formation, accumulation, and deposition of toxic misfolded aggregates. Consequently, these proteins not only associated with the progress of their respective neurodegenerative pathologies but also qualify as disease-specific biomarkers. The aim of using natural polyphenols is to target amyloid-dependent proteopathies by decreasing free radical damage and inhibiting and dissolving amyloid fibrils. We explore the effectiveness of the polyphenols epigallocatechin-3-gallate, oleuropein aglycone, and quercetin on their ability to inhibit aggregation of amyloid β, tau, and α-synuclein and mitigate other pathological features for Alzheimer's disease and Parkinson's disease. The analysis was carried from in vitro and cell line studies to animal models and clinical trials. This Review describes the use of phytochemical compounds as prophylactic agents for Alzheimer's disease, Parkinson's disease, and other proteopathies.
Collapse
Affiliation(s)
- Gabriela Henríquez
- Department of Environmental Science and Engineering, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Alejandra Gomez
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Erick Guerrero
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
146
|
Li J, Chen F, Zhang Q, Meng X, Yao X, Risacher SL, Yan J, Saykin AJ, Liang H, Shen L. Genome-wide Network-assisted Association and Enrichment Study of Amyloid Imaging Phenotype in Alzheimer's Disease. Curr Alzheimer Res 2020; 16:1163-1174. [PMID: 31755389 DOI: 10.2174/1567205016666191121142558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The etiology of Alzheimer's disease remains poorly understood at the mechanistic level, and genome-wide network-based genetics have the potential to provide new insights into the disease mechanisms. OBJECTIVE The study aimed to explore the collective effects of multiple genetic association signals on an AV-45 PET measure, which is a well-known Alzheimer's disease biomarker, by employing a network assisted strategy. METHODS First, we took advantage of a dense module search algorithm to identify modules enriched by genetic association signals in a protein-protein interaction network. Next, we performed statistical evaluation to the modules identified by dense module search, including a normalization process to adjust the topological bias in the network, a replication test to ensure the modules were not found randomly , and a permutation test to evaluate unbiased associations between the modules and amyloid imaging phenotype. Finally, topological analysis, module similarity tests and functional enrichment analysis were performed for the identified modules. RESULTS We identified 24 consensus modules enriched by robust genetic signals in a genome-wide association analysis. The results not only validated several previously reported AD genes (APOE, APP, TOMM40, DDAH1, PARK2, ATP5C1, PVRL2, ELAVL1, ACTN1 and NRF1), but also nominated a few novel genes (ABL1, ABLIM2) that have not been studied in Alzheimer's disease but have shown associations with other neurodegenerative diseases. CONCLUSION The identified genes, consensus modules and enriched pathways may provide important clues to future research on the neurobiology of Alzheimer's disease and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Jin Li
- College of Automation, Harbin Engineering University, Harbin, China
| | - Feng Chen
- College of Automation, Harbin Engineering University, Harbin, China
| | - Qiushi Zhang
- College of Information Engineering, Northeast Dianli University, Jilin, China
| | - Xianglian Meng
- College of Automation, Harbin Engineering University, Harbin, China
| | - Xiaohui Yao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, PA, United States
| | - Jingwen Yan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, PA, United States
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, PA, United States
| | - Hong Liang
- College of Automation, Harbin Engineering University, Harbin, China
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | | |
Collapse
|
147
|
Kent SA, Spires-Jones TL, Durrant CS. The physiological roles of tau and Aβ: implications for Alzheimer's disease pathology and therapeutics. Acta Neuropathol 2020; 140:417-447. [PMID: 32728795 PMCID: PMC7498448 DOI: 10.1007/s00401-020-02196-w] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023]
Abstract
Tau and amyloid beta (Aβ) are the prime suspects for driving pathology in Alzheimer's disease (AD) and, as such, have become the focus of therapeutic development. Recent research, however, shows that these proteins have been highly conserved throughout evolution and may have crucial, physiological roles. Such functions may be lost during AD progression or be unintentionally disrupted by tau- or Aβ-targeting therapies. Tau has been revealed to be more than a simple stabiliser of microtubules, reported to play a role in a range of biological processes including myelination, glucose metabolism, axonal transport, microtubule dynamics, iron homeostasis, neurogenesis, motor function, learning and memory, neuronal excitability, and DNA protection. Aβ is similarly multifunctional, and is proposed to regulate learning and memory, angiogenesis, neurogenesis, repair leaks in the blood-brain barrier, promote recovery from injury, and act as an antimicrobial peptide and tumour suppressor. This review will discuss potential physiological roles of tau and Aβ, highlighting how changes to these functions may contribute to pathology, as well as the implications for therapeutic development. We propose that a balanced consideration of both the physiological and pathological roles of tau and Aβ will be essential for the design of safe and effective therapeutics.
Collapse
Affiliation(s)
- Sarah A. Kent
- Translational Neuroscience PhD Programme, Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| | - Tara L. Spires-Jones
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| | - Claire S. Durrant
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| |
Collapse
|
148
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
149
|
Labus J, Röhrs KF, Ackmann J, Varbanov H, Müller FE, Jia S, Jahreis K, Vollbrecht AL, Butzlaff M, Schill Y, Guseva D, Böhm K, Kaushik R, Bijata M, Marin P, Chaumont-Dubel S, Zeug A, Dityatev A, Ponimaskin E. Amelioration of Tau pathology and memory deficits by targeting 5-HT7 receptor. Prog Neurobiol 2020; 197:101900. [PMID: 32841723 DOI: 10.1016/j.pneurobio.2020.101900] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 07/21/2020] [Accepted: 08/17/2020] [Indexed: 01/01/2023]
Abstract
Tauopathies comprise a heterogeneous family of neurodegenerative diseases characterized by pathological accumulation of hyperphosphorylated Tau protein. Pathological changes in serotonergic signaling have been associated with tauopathy etiology, but the underlying mechanisms remain poorly understood. Here, we studied the role of the serotonin receptor 7 (5-HT7R), in a mouse model of tauopathy induced by overexpressing the human Tau[R406W] mutant associated with inherited forms of frontotemporal dementia. We showed that the constitutive 5-HT7R activity is required for Tau hyperphosphorylation and formation of highly bundled Tau structures (HBTS) through G-protein-independent, CDK5-dependent mechanism. We also showed that 5-HT7R physically interacts with CDK5. At the systemic level, 5-HT7R-mediated CDK5 activation induces HBTS leading to neuronal death, reduced long-term potentiation (LTP), and impaired memory in mice. Specific blockade of constitutive 5-HT7R activity in neurons that overexpressed Tau[R406W] prevents Tau hyperphosphorylation, aggregation, and neurotoxicity. Moreover, 5-HT7R knockdown in the prefrontal cortex fully abrogates Tau[R406W]-induced LTP deficits and memory impairments. Thus, 5-HT7R/CDK5 signaling emerged as a new, promising target for tauopathy treatments.
Collapse
Affiliation(s)
- Josephine Labus
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Kian-Fritz Röhrs
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jana Ackmann
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Hristo Varbanov
- Instituite of Neurophysiology, Hannover Medical School, Hannover, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Franziska E Müller
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Shaobo Jia
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Kathrin Jahreis
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Anna-Lena Vollbrecht
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Malte Butzlaff
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Yvonne Schill
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Daria Guseva
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Katrin Böhm
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Rahul Kaushik
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Monika Bijata
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany; Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Science, Warsaw, Poland
| | - Philippe Marin
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Andre Zeug
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany; Institute of Neuroscience, Lobachevsky State University of Nizhni Novgorod, Russia.
| |
Collapse
|
150
|
Braak H, Del Tredici K. From the Entorhinal Region via the Prosubiculum to the Dentate Fascia: Alzheimer Disease-Related Neurofibrillary Changes in the Temporal Allocortex. J Neuropathol Exp Neurol 2020; 79:163-175. [PMID: 31913466 PMCID: PMC6970449 DOI: 10.1093/jnen/nlz123] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/16/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
The pathological process underlying Alzheimer disease (AD) unfolds predominantly in the cerebral cortex with the gradual appearance and regional progression of abnormal tau. Intraneuronal tau pathology progresses from the temporal transentorhinal and entorhinal regions into neocortical fields/areas of the temporal allocortex. Here, based on 95 cases staged for AD-related neurofibrillary changes, we propose an ordered progression of abnormal tau in the temporal allocortex. Initially, abnormal tau was limited to distal dendritic segments followed by tau in cell bodies of projection neurons of the transentorhinal/entorhinal layer pre-α. Next, abnormal distal dendrites accumulated in the prosubiculum and extended into the CA1 stratum oriens and lacunosum. Subsequently, altered dendrites developed in the CA2/CA3 stratum oriens and stratum lacunosum-moleculare, combined with tau-positive thorny excrescences of CA3/CA4 mossy cells. Finally, granule cells of the dentate fascia became involved. Such a progression might recapitulate a sequence of transsynaptic spreading of abnormal tau from 1 projection neuron to the next: From pre-α cells to distal dendrites in the prosubiculum and CA1; then, from CA1 or prosubicular pyramids to CA2 principal cells and CA3/CA4 mossy cells; finally, from CA4 mossy cells to dentate granule cells. The lesions are additive: Those from the previous steps persist.
Collapse
Affiliation(s)
- Heiko Braak
- From the Department of Neurology, Clinical Neuroanatomy, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Kelly Del Tredici
- From the Department of Neurology, Clinical Neuroanatomy, Center for Biomedical Research, University of Ulm, Ulm, Germany
| |
Collapse
|