101
|
Wu X, Fang N, Liang Z, Nie J, Lang S, Fan C, Liang C, Huang W, Wang Y. Development of a Bioluminescent Imaging Mouse Model for SARS-CoV-2 Infection Based on a Pseudovirus System. Vaccines (Basel) 2023; 11:1133. [PMID: 37514949 PMCID: PMC10385336 DOI: 10.3390/vaccines11071133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains widely pandemic around the world. Animal models that are sensitive to the virus are therefore urgently needed to evaluate potential vaccines and antiviral agents; however, SARS-CoV-2 requires biosafety level 3 containment. To overcome this, we developed an animal model using the intranasal administration of SARS-CoV-2 pseudovirus. As the pseudovirus contains the firefly luciferase reporter gene, infected tissues and the viral load could be monitored by in vivo bioluminescent imaging. We used the model to evaluate the protective efficacy of monoclonal antibodies and the tissue tropism of different variants. The model may also be a useful tool for the safe and convenient preliminary evaluation of the protective efficacy of vaccine candidates against SARS-CoV-2, as well as the treatment efficacy of anti-viral drugs.
Collapse
Affiliation(s)
- Xi Wu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Nana Fang
- National Vaccine and Serum Institute, Beijing 101111, China
| | - Ziteng Liang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Sen Lang
- National Rodent Laboratory Animal Resources Center, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Changfa Fan
- National Rodent Laboratory Animal Resources Center, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Chunnan Liang
- National Rodent Laboratory Animal Resources Center, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Youchun Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| |
Collapse
|
102
|
Miguel-Batuecas A, Fuertes-Recuero M, Díaz-Regañón D, Ortiz-Díez G, Revuelta L, De Pablo-Moreno JA. Animal Research in Spain: A Study of Public Perception and Attitudes. Animals (Basel) 2023; 13:2039. [PMID: 37370549 DOI: 10.3390/ani13122039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Since the time of Hippocrates in the 4th century BC, animal research has been extensively used for various purposes up to the present day. However, the use of animals for research has also been controversial for a long time. We report the findings of a public, online questionnaire-based survey designed to assess the opinions of a sample of Spanish society regarding animal research. Demographic data and opinions were obtained from 806 respondents. The results indicated a high level of acceptance of animal research (73.1%). However, certain factors, such as completing the questionnaire immediately after a reading negative media report (OR = 2.41; 95%CI: 1.64-3.54; p < 0.001), being a woman (OR = 1.77; 95%CI: 1.24-2.53; p = 0.002) or having a non-scientific background (OR = 2.47; 95%CI: 1.76-3.47; p < 0.001), were associated with a tendency towards a more negative opinion. The opinions seemed to be influenced by gender, education level and by protest incidents reported in the media. Our results also indicate that a lot of information regarding animal welfare, such as care and handling protocols, along with legislation was unknown to individuals. Further, a growing popularity of companion species and opposition to animal experimentation for non-biomedical purposes were reflected in the responses obtained. The use of animals for research purposes emerged as a sensitive social issue in terms of concerns about animal ethics and welfare.
Collapse
Affiliation(s)
- Andrea Miguel-Batuecas
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University of Madrid, C/José Antonio Novais 12, 28040 Madrid, Spain
| | - Manuel Fuertes-Recuero
- Department of Physiology, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - David Díaz-Regañón
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Gustavo Ortiz-Díez
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Luis Revuelta
- Department of Physiology, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Juan A De Pablo-Moreno
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University of Madrid, C/José Antonio Novais 12, 28040 Madrid, Spain
| |
Collapse
|
103
|
Perdiguero B, Marcos-Villar L, López-Bravo M, Sánchez-Cordón PJ, Zamora C, Valverde JR, Sorzano CÓS, Sin L, Álvarez E, Ramos M, Del Val M, Esteban M, Gómez CE. Immunogenicity and efficacy of a novel multi-patch SARS-CoV-2/COVID-19 vaccine candidate. Front Immunol 2023; 14:1160065. [PMID: 37404819 PMCID: PMC10316789 DOI: 10.3389/fimmu.2023.1160065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction While there has been considerable progress in the development of vaccines against SARS-CoV-2, largely based on the S (spike) protein of the virus, less progress has been made with vaccines delivering different viral antigens with cross-reactive potential. Methods In an effort to develop an immunogen with the capacity to induce broad antigen presentation, we have designed a multi-patch synthetic candidate containing dominant and persistent B cell epitopes from conserved regions of SARS-CoV-2 structural proteins associated with long-term immunity, termed CoV2-BMEP. Here we describe the characterization, immunogenicity and efficacy of CoV2-BMEP using two delivery platforms: nucleic acid DNA and attenuated modified vaccinia virus Ankara (MVA). Results In cultured cells, both vectors produced a main protein of about 37 kDa as well as heterogeneous proteins with size ranging between 25-37 kDa. In C57BL/6 mice, both homologous and heterologous prime/boost combination of vectors induced the activation of SARS-CoV-2-specific CD4 and CD8 T cell responses, with a more balanced CD8+ T cell response detected in lungs. The homologous MVA/MVA immunization regimen elicited the highest specific CD8+ T cell responses in spleen and detectable binding antibodies (bAbs) to S and N antigens of SARS-CoV-2. In SARS-CoV-2 susceptible k18-hACE2 Tg mice, two doses of MVA-CoV2-BMEP elicited S- and N-specific bAbs as well as cross-neutralizing antibodies against different variants of concern (VoC). After SARS-CoV-2 challenge, all animals in the control unvaccinated group succumbed to the infection while vaccinated animals with high titers of neutralizing antibodies were fully protected against mortality, correlating with a reduction of virus infection in the lungs and inhibition of the cytokine storm. Discussion These findings revealed a novel immunogen with the capacity to control SARS-CoV-2 infection, using a broader antigen presentation mechanism than the approved vaccines based solely on the S antigen.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María López-Bravo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pedro J. Sánchez-Cordón
- Veterinary Pathology Department, Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen Zamora
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José Ramón Valverde
- Scientific Computing, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carlos Óscar S. Sorzano
- Biocomputing Unit and Computational Genomics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Laura Sin
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Enrique Álvarez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Manuel Ramos
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Margarita Del Val
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
104
|
Huang XY, Chen Q, Sun MX, Zhou HY, Ye Q, Chen W, Peng JY, Qi YN, Zhai JQ, Tian Y, Liu ZX, Huang YJ, Deng YQ, Li XF, Wu A, Yang X, Yang G, Shen Y, Qin CF. A pangolin-origin SARS-CoV-2-related coronavirus: infectivity, pathogenicity, and cross-protection by preexisting immunity. Cell Discov 2023; 9:59. [PMID: 37330497 DOI: 10.1038/s41421-023-00557-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/29/2023] [Indexed: 06/19/2023] Open
Abstract
Virus spillover remains a major challenge to public health. A panel of SARS-CoV-2-related coronaviruses have been identified in pangolins, while the infectivity and pathogenicity of these pangolin-origin coronaviruses (pCoV) in humans remain largely unknown. Herein, we comprehensively characterized the infectivity and pathogenicity of a recent pCoV isolate (pCoV-GD01) in human cells and human tracheal epithelium organoids and established animal models in comparison with SARS-CoV-2. pCoV-GD01 showed similar infectivity to SARS-CoV-2 in human cells and organoids. Remarkably, intranasal inoculation of pCoV-GD01 caused severe lung pathological damage in hACE2 mice and could transmit among cocaged hamsters. Interestingly, in vitro neutralization assays and animal heterologous challenge experiments demonstrated that preexisting immunity induced by SARS-CoV-2 infection or vaccination was sufficient to provide at least partial cross-protection against pCoV-GD01 challenge. Our results provide direct evidence supporting pCoV-GD01 as a potential human pathogen and highlight the potential spillover risk.
Collapse
Affiliation(s)
- Xing-Yao Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Qi Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Meng-Xu Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Hang-Yu Zhou
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qing Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, Guangdong, China
| | - Jin-Yu Peng
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yi-Ni Qi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Jun-Qiong Zhai
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, Guangdong, China
| | - Ying Tian
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Zi-Xin Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yi-Jiao Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Aiping Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Guan Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Yongyi Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, Guangdong, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
105
|
Zhou X, Sun W, Zhang Y, Gu H, Wang R, Xie P, Zhu Y, Qiu M, Ding X, Wang H, Gao Y, Li J. A novel hACE2 knock-in mouse model recapitulates pulmonary and intestinal SARS-CoV-2 infection. Front Microbiol 2023; 14:1175188. [PMID: 37350787 PMCID: PMC10283006 DOI: 10.3389/fmicb.2023.1175188] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission is responsible for the coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) receptor to enter the host, and the gastrointestinal tract is a potential infection site as this receptor is expressed on it. Multiple studies have indicated that an increasing number of COVID-19 patients presented with gastrointestinal symptoms that are highly associated with disease severity. Moreover, emerging evidence has demonstrated that alterations in the gut immune microenvironment induced by intestinal SARS-CoV-2 infection can regulate respiratory symptoms. Therefore, targeting the intestines may be a candidate therapeutic strategy in patients with COVID-19; however, no mouse model can serve as an appropriate infection model for the development of fatal pneumonia while mimicking intestinal infection. In this study, a novel human ACE2 knock-in (KI) mouse model (or hACE2-KI) was systemically compared with the popular K18-hACE2 mice; it showed differences in the distribution of lung and intestinal infections and pathophysiological characteristics. These newly generated hACE2-KI mice were susceptible to intranasal infection with SARS-CoV-2, and not only developed mild to severe lung injury, but also acquired intestinal infection. Consequently, this model can be a useful tool for studying intestinal SARS-CoV-2 infection and developing effective therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoyang Zhou
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Weiyang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yu Zhang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Hongjing Gu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Ruixuan Wang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Peng Xie
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Yunkai Zhu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Minyue Qiu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Xiaoyan Ding
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Hui Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jintao Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
106
|
Liang X, Chen X, Zhai J, Li X, Zhang X, Zhang Z, Zhang P, Wang X, Cui X, Wang H, Zhou N, Chen ZJ, Su R, Zhou F, Holmes EC, Irwin DM, Chen RA, He Q, Wu YJ, Wang C, Du XQ, Peng SM, Xie WJ, Shan F, Li WP, Dai JW, Shen X, Feng Y, Xiao L, Chen W, Shen Y. Pathogenicity, tissue tropism and potential vertical transmission of SARSr-CoV-2 in Malayan pangolins. PLoS Pathog 2023; 19:e1011384. [PMID: 37196026 DOI: 10.1371/journal.ppat.1011384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/30/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Malayan pangolin SARS-CoV-2-related coronavirus (SARSr-CoV-2) is closely related to SARS-CoV-2. However, little is known about its pathogenicity in pangolins. Using CT scans we show that SARSr-CoV-2 positive Malayan pangolins are characterized by bilateral ground-glass opacities in lungs in a similar manner to COVID-19 patients. Histological examination and blood gas tests are indicative of dyspnea. SARSr-CoV-2 infected multiple organs in pangolins, with the lungs the major target, and histological expression data revealed that ACE2 and TMPRSS2 were co-expressed with viral RNA. Transcriptome analysis indicated that virus-positive pangolins were likely to have inadequate interferon responses, with relative greater cytokine and chemokine activity in the lung and spleen. Notably, both viral RNA and viral proteins were detected in three pangolin fetuses, providing initial evidence for vertical virus transmission. In sum, our study outlines the biological framework of SARSr-CoV-2 in pangolins, revealing striking similarities to COVID-19 in humans.
Collapse
Affiliation(s)
- Xianghui Liang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoyuan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Junqiong Zhai
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Xiaobing Li
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- College of Life Sciences, Longyan University, Longyan, China
| | - Xu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhipeng Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinyuan Cui
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hai Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Niu Zhou
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Zu-Jin Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Renwei Su
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fuqing Zhou
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Rui-Ai Chen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Qian He
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ya-Jiang Wu
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Chen Wang
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Xue-Qing Du
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Shi-Ming Peng
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Wei-Jun Xie
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Fen Shan
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Wan-Ping Li
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Jun-Wei Dai
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Xuejuan Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Yongyi Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| |
Collapse
|
107
|
Abstract
Viral infections are a leading cause of myocarditis and pericarditis worldwide, conditions that frequently coexist. Myocarditis and pericarditis were some of the early comorbidities associated with SARS-CoV-2 infection and COVID-19. Many epidemiologic studies have been conducted since that time concluding that SARS-CoV-2 increased the incidence of myocarditis/pericarditis at least 15× over pre-COVID levels although the condition remains rare. The incidence of myocarditis pre-COVID was reported at 1 to 10 cases/100 000 individuals and with COVID ranging from 150 to 4000 cases/100 000 individuals. Before COVID-19, some vaccines were reported to cause myocarditis and pericarditis in rare cases, but the use of novel mRNA platforms led to a higher number of reported cases than with previous platforms providing new insight into potential pathogenic mechanisms. The incidence of COVID-19 vaccine-associated myocarditis/pericarditis covers a large range depending on the vaccine platform, age, and sex examined. Importantly, the findings highlight that myocarditis occurs predominantly in male patients aged 12 to 40 years regardless of whether the cause was due to a virus-like SARS-CoV-2 or associated with a vaccine-a demographic that has been reported before COVID-19. This review discusses findings from COVID-19 and COVID-19 vaccine-associated myocarditis and pericarditis considering the known symptoms, diagnosis, management, treatment, and pathogenesis of disease that has been gleaned from clinical research and animal models. Sex differences in the immune response to COVID-19 are discussed, and theories for how mRNA vaccines could lead to myocarditis/pericarditis are proposed. Additionally, gaps in our understanding that need further research are raised.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (D.F.,)
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN (D.F., D.J.B., D.N.D.)
| | - Danielle J. Beetler
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
- Mayo Clinic Graduate School of Biomedical Sciences (D.J.B., D.N.D.), Mayo Clinic, Jacksonville, FL
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN (D.F., D.J.B., D.N.D.)
| | - Damian N. Di Florio
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
- Mayo Clinic Graduate School of Biomedical Sciences (D.J.B., D.N.D.), Mayo Clinic, Jacksonville, FL
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN (D.F., D.J.B., D.N.D.)
| | - Nicolas Musigk
- Deutsches Herzzentrum der Charité, Berlin, Germany (N.M., B.H.)
| | | | - Leslie T. Cooper
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
| |
Collapse
|
108
|
Couto J, Gonçalves R, Lamas S, Saraiva M. Protocol for infecting and monitoring susceptible k18-hACE2 mice with SARS-CoV-2. STAR Protoc 2023; 4:102303. [PMID: 37178116 PMCID: PMC10133884 DOI: 10.1016/j.xpro.2023.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Intranasal infection of k18-hACE2 mice with SARS-CoV-2 recapitulates the clinical characteristics present in severe COVID-19. Here, we present a protocol for intranasal administration of SARS-CoV-2 to k18-hACE2 mice and their subsequent daily monitoring. We describe steps for intranasal inoculation of SARS-CoV-2 and the collection of clinical scores on weight, body condition, hydration, appearance, neurological symptoms, behavior, and respiratory movements. This protocol contributes to the establishment of a model of severe SARS-CoV-2 infection that minimizes animal suffering. For complete details on the use and execution of this protocol, please refer to Gonçalves et al. (2023).1.
Collapse
Affiliation(s)
- Joana Couto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
| | - Rute Gonçalves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
| | - Sofia Lamas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4200-135, Portugal.
| | - Margarida Saraiva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4200-135, Portugal.
| |
Collapse
|
109
|
Adams LE, Leist SR, Dinnon KH, West A, Gully KL, Anderson EJ, Loome JF, Madden EA, Powers JM, Schäfer A, Sarkar S, Castillo IN, Maron JS, McNamara RP, Bertera HL, Zweigert MR, Higgins JS, Hampton BK, Premkumar L, Alter G, Montgomery SA, Baxter VK, Heise MT, Baric RS. Fc-mediated pan-sarbecovirus protection after alphavirus vector vaccination. Cell Rep 2023; 42:112326. [PMID: 37000623 PMCID: PMC10063157 DOI: 10.1016/j.celrep.2023.112326] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
Group 2B β-coronaviruses (sarbecoviruses) have caused regional and global epidemics in modern history. Here, we evaluate the mechanisms of cross-sarbecovirus protective immunity, currently less clear yet important for pan-sarbecovirus vaccine development, using a panel of alphavirus-vectored vaccines covering bat to human strains. While vaccination does not prevent virus replication, it protects against lethal heterologous disease outcomes in both severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and clade 2 bat sarbecovirus challenge models. The spike vaccines tested primarily elicit a highly S1-specific homologous neutralizing antibody response with no detectable cross-virus neutralization. Rather, non-neutralizing antibody functions, mechanistically linked to FcgR4 and spike S2, mediate cross-protection in wild-type mice. Protection is lost in FcR knockout mice, further supporting a model for non-neutralizing, protective antibodies. These data highlight the importance of FcR-mediated cross-protective immune responses in universal pan-sarbecovirus vaccine designs.
Collapse
Affiliation(s)
- Lily E Adams
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth J Anderson
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer F Loome
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily A Madden
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sanjay Sarkar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Izabella N Castillo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jenny S Maron
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, USA
| | - Ryan P McNamara
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, USA
| | - Harry L Bertera
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, USA
| | - Mark R Zweigert
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jaclyn S Higgins
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brea K Hampton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, USA
| | - Stephanie A Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Dallas Tissue Research, Dallas, TX, USA
| | - Victoria K Baxter
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark T Heise
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Ralph S Baric
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
110
|
Yang B, Liu C, Ju X, Wu B, Wang Z, Dong F, Yu Y, Hou X, Fang M, Gao F, Guo X, Gui Y, Ding Q, Li W. A tissue specific-infection mouse model of SARS-CoV-2. Cell Discov 2023; 9:43. [PMID: 37080957 PMCID: PMC10117269 DOI: 10.1038/s41421-023-00536-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/06/2023] [Indexed: 04/22/2023] Open
Abstract
Animal models play crucial roles in the rapid development of vaccines/drugs for the prevention and therapy of COVID-19, but current models have some deficits when studying the pathogenesis of SARS-CoV-2 on some special tissues or organs. Here, we generated a human ACE2 and SARS-CoV-2 NF/F knockin mouse line that constitutively expresses human ACE2 and specifically expresses SARS-CoV-2 N gene induced by Cre-recombinase. By crossing with Cre transgenic lines allowing for lung-specific and constitutive expression, we generated lung-specific (Sftpc-hACE2-NF/F) and constitutive SARS-CoV-2 N (EIIa-hACE2-NF/F) expressing mice. Upon intranasal infection with a SARS-CoV-2 GFP/ΔN strain which can only replicate in SARS-CoV-2 N expressed cells, we demonstrated that both the Sftpc-hACE2-NF/F and EIIa-hACE2-NF/F mice support viral replication. Consistent with our design, viral replication was limited to the lung tissues in Sftpc-hACE2-NF/F mice, while the EIIa-hACE2-NF/F mice developed infections in multiple tissues. Furthermore, our model supports different SARS-CoV-2 variants infection, and it can be successfully used to evaluate the effects of therapeutic monoclonal antibodies (Ab1F11) and antiviral drugs (Molnupiravir). Finally, to test the effect of SARS-CoV-2 infection on male reproduction, we generated Sertoli cell-specific SARS-CoV-2 N expressed mice by crossing with AMH-Cre transgenic line. We found that SARS-CoV-2 GFP/ΔN strain could infect Sertoli cells, led to spermatogenic defects due to the destruction of blood-testis barrier. Overall, combining with different tissue-specific Cre transgenic lines, the human ACE2 and SARS-CoV-2 NF/F line enables us to evaluate antivirals in vivo and study the pathogenesis of SARS-CoV-2 on some special tissues or organs.
Collapse
Affiliation(s)
- Bo Yang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chao Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Ju
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Bingbing Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuangfei Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Fucheng Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanying Yu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaohui Hou
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, China.
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
111
|
da Silva Santos Y, Gamon THM, de Azevedo MSP, Telezynski BL, de Souza EE, de Oliveira DBL, Dombrowski JG, Rosa-Fernandes L, Palmisano G, de Moura Carvalho LJ, Luvizotto MCR, Wrenger C, Covas DT, Curi R, Marinho CRF, Durigon EL, Epiphanio S. Virulence Profiles of Wild-Type, P.1 and Delta SARS-CoV-2 Variants in K18-hACE2 Transgenic Mice. Viruses 2023; 15:v15040999. [PMID: 37112979 PMCID: PMC10146242 DOI: 10.3390/v15040999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
Since December 2019, the world has been experiencing the COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and we now face the emergence of several variants. We aimed to assess the differences between the wild-type (Wt) (Wuhan) strain and the P.1 (Gamma) and Delta variants using infected K18-hACE2 mice. The clinical manifestations, behavior, virus load, pulmonary capacity, and histopathological alterations were analyzed. The P.1-infected mice showed weight loss and more severe clinical manifestations of COVID-19 than the Wt and Delta-infected mice. The respiratory capacity was reduced in the P.1-infected mice compared to the other groups. Pulmonary histological findings demonstrated that a more aggressive disease was generated by the P.1 and Delta variants compared to the Wt strain of the virus. The quantification of the SARS-CoV-2 viral copies varied greatly among the infected mice although it was higher in P.1-infected mice on the day of death. Our data revealed that K18-hACE2 mice infected with the P.1 variant develop a more severe infectious disease than those infected with the other variants, despite the significant heterogeneity among the mice.
Collapse
Affiliation(s)
- Yasmin da Silva Santos
- Laboratory of Cellular and Molecular Immunopathology of Malaria, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Laboratory of Malaria Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Thais Helena Martins Gamon
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marcela Santiago Pacheco de Azevedo
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Laboratory of Experimental Immunoparasitology, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Bruna Larotonda Telezynski
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Edmarcia Elisa de Souza
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Danielle Bruna Leal de Oliveira
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
| | - Jamille Gregório Dombrowski
- Laboratory of Experimental Immunoparasitology, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Livia Rosa-Fernandes
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
- School of Natural Sciences, Macquarie University, Sydney 2109, Australia
| | | | | | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Dimas Tadeu Covas
- Butantan Institute, São Paulo 05508-040, Brazil
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Rui Curi
- Interdisciplinary Program of Health Sciences, Cruzeiro do Sul University, São Paulo 08060-070, Brazil
- Immunobiological Production Section, Bioindustrial Center, Butantan Institute, São Paulo 05503-900, Brazil
| | - Claudio Romero Farias Marinho
- Laboratory of Experimental Immunoparasitology, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Plataform Pasteur/USP, University of São Paulo, São Paulo 05508-020, Brazil
| | - Sabrina Epiphanio
- Laboratory of Cellular and Molecular Immunopathology of Malaria, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
112
|
Clever S, Volz A. Mouse models in COVID-19 research: analyzing the adaptive immune response. Med Microbiol Immunol 2023; 212:165-183. [PMID: 35661253 PMCID: PMC9166226 DOI: 10.1007/s00430-022-00735-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
Abstract
The emergence of SARS-CoV-2, the severe acute respiratory syndrome coronavirus type 2 causing the COVID-19 pandemic, resulted in a major necessity for scientific countermeasures. Investigations revealing the exact mechanisms of the SARS-CoV-2 pathogenesis provide the basis for the development of therapeutic measures and protective vaccines against COVID-19. Animal models are inevitable for infection and pre-clinical vaccination studies as well as therapeutic testing. A well-suited animal model, mimicking the pathology seen in human COVID-19 patients, is an important basis for these investigations. Several animal models were already used during SARS-CoV-2 studies with different clinical outcomes after SARS-CoV-2 infection. Here, we give an overview of different animal models used in SARS-CoV-2 infection studies with a focus on the mouse model. Mice provide a well-established animal model for laboratory use and several different mouse models have been generated and are being used in SARS-CoV-2 studies. Furthermore, the analysis of SARS-CoV-2-specific T cells during infection and in vaccination studies in mice is highlighted.
Collapse
Affiliation(s)
- Sabrina Clever
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
113
|
Domínguez-Oliva A, Hernández-Ávalos I, Martínez-Burnes J, Olmos-Hernández A, Verduzco-Mendoza A, Mota-Rojas D. The Importance of Animal Models in Biomedical Research: Current Insights and Applications. Animals (Basel) 2023; 13:ani13071223. [PMID: 37048478 PMCID: PMC10093480 DOI: 10.3390/ani13071223] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Animal research is considered a key element in advance of biomedical science. Although its use is controversial and raises ethical challenges, the contribution of animal models in medicine is essential for understanding the physiopathology and novel treatment alternatives for several animal and human diseases. Current pandemics’ pathology, such as the 2019 Coronavirus disease, has been studied in primate, rodent, and porcine models to recognize infection routes and develop therapeutic protocols. Worldwide issues such as diabetes, obesity, neurological disorders, pain, rehabilitation medicine, and surgical techniques require studying the process in different animal species before testing them on humans. Due to their relevance, this article aims to discuss the importance of animal models in diverse lines of biomedical research by analyzing the contributions of the various species utilized in science over the past five years about key topics concerning human and animal health.
Collapse
Affiliation(s)
- Adriana Domínguez-Oliva
- Master’s Program in Agricultural and Livestock Sciences [Maestría en Ciencias Agropecuarias], Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán 54714, Mexico
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
- Correspondence:
| |
Collapse
|
114
|
Kalyoncu S, Yilmaz S, Kuyucu AZ, Sayili D, Mert O, Soyturk H, Gullu S, Akinturk H, Citak E, Arslan M, Taskinarda MG, Tarman IO, Altun GY, Ozer C, Orkut R, Demirtas A, Tilmensagir I, Keles U, Ulker C, Aralan G, Mercan Y, Ozkan M, Caglar HO, Arik G, Ucar MC, Yildirim M, Yildirim TC, Karadag D, Bal E, Erdogan A, Senturk S, Uzar S, Enul H, Adiay C, Sarac F, Ekiz AT, Abaci I, Aksoy O, Polat HU, Tekin S, Dimitrov S, Ozkul A, Wingender G, Gursel I, Ozturk M, Inan M. Process development for an effective COVID-19 vaccine candidate harboring recombinant SARS-CoV-2 delta plus receptor binding domain produced by Pichia pastoris. Sci Rep 2023; 13:5224. [PMID: 36997624 PMCID: PMC10062263 DOI: 10.1038/s41598-023-32021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/21/2023] [Indexed: 04/01/2023] Open
Abstract
Recombinant protein-based SARS-CoV-2 vaccines are needed to fill the vaccine equity gap. Because protein-subunit based vaccines are easier and cheaper to produce and do not require special storage/transportation conditions, they are suitable for low-/middle-income countries. Here, we report our vaccine development studies with the receptor binding domain of the SARS-CoV-2 Delta Plus strain (RBD-DP) which caused increased hospitalizations compared to other variants. First, we expressed RBD-DP in the Pichia pastoris yeast system and upscaled it to a 5-L fermenter for production. After three-step purification, we obtained RBD-DP with > 95% purity from a protein yield of > 1 g/L of supernatant. Several biophysical and biochemical characterizations were performed to confirm its identity, stability, and functionality. Then, it was formulated in different contents with Alum and CpG for mice immunization. After three doses of immunization, IgG titers from sera reached to > 106 and most importantly it showed high T-cell responses which are required for an effective vaccine to prevent severe COVID-19 disease. A live neutralization test was performed with both the Wuhan strain (B.1.1.7) and Delta strain (B.1.617.2) and it showed high neutralization antibody content for both strains. A challenge study with SARS-CoV-2 infected K18-hACE2 transgenic mice showed good immunoprotective activity with no viruses in the lungs and no lung inflammation for all immunized mice.
Collapse
Affiliation(s)
| | - Semiramis Yilmaz
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- VIB-UGent Center for Medical Biotechnology, Gent, Belgium
| | | | - Dogu Sayili
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Olcay Mert
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | | | - Seyda Gullu
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | | | - Erhan Citak
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- VIB-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Merve Arslan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | | | | | | | - Ceren Ozer
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ridvan Orkut
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | | | | | - Umur Keles
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Lund University, Lund, Sweden
| | - Ceren Ulker
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Gizem Aralan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Yavuz Mercan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Muge Ozkan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Hasan Onur Caglar
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Erzurum Technical University, Erzurum, Turkey
| | - Gizem Arik
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Ankara Medipol University, Ankara, Turkey
| | - Mehmet Can Ucar
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Imperial College London, London, UK
| | | | | | | | - Erhan Bal
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir Tinaztepe University, Izmir, Turkey
| | - Aybike Erdogan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Serdar Uzar
- Pendik Veterinary Research and Control Institute, Istanbul, Turkey
| | - Hakan Enul
- Pendik Veterinary Research and Control Institute, Istanbul, Turkey
| | - Cumhur Adiay
- Pendik Veterinary Research and Control Institute, Istanbul, Turkey
| | - Fahriye Sarac
- Pendik Veterinary Research and Control Institute, Istanbul, Turkey
| | | | - Irem Abaci
- Marmara Research Center, TUBITAK, Kocaeli, Turkey
| | - Ozge Aksoy
- Marmara Research Center, TUBITAK, Kocaeli, Turkey
| | | | - Saban Tekin
- Marmara Research Center, TUBITAK, Kocaeli, Turkey
- University of Health Sciences, Istanbul, Turkey
| | | | | | | | - Ihsan Gursel
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Mehmet Ozturk
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir Tinaztepe University, Izmir, Turkey
| | - Mehmet Inan
- Izmir Biomedicine and Genome Center, Izmir, Turkey.
- Akdeniz University, Antalya, Turkey.
| |
Collapse
|
115
|
Zhao Y, Wang CL, Gao ZY, Qiao HX, Wang WJ, Liu XY, Chuai X. Ferrets: A powerful model of SARS-CoV-2. Zool Res 2023; 44:323-330. [PMID: 36799224 PMCID: PMC10083223 DOI: 10.24272/j.issn.2095-8137.2022.351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent years not only caused a global pandemic but resulted in enormous social, economic, and health burdens worldwide. Despite considerable efforts to combat coronavirus disease 2019 (COVID-19), various SARS-CoV-2 variants have emerged, and their underlying mechanisms of pathogenicity remain largely unknown. Furthermore, effective therapeutic drugs are still under development. Thus, an ideal animal model is crucial for studying the pathogenesis of COVID-19 and for the preclinical evaluation of vaccines and antivirals against SARS-CoV-2 and variant infections. Currently, several animal models, including mice, hamsters, ferrets, and non-human primates (NHPs), have been established to study COVID-19. Among them, ferrets are naturally susceptible to SARS-CoV-2 infection and are considered suitable for COVID-19 study. Here, we summarize recent developments and application of SARS-CoV-2 ferret models in studies on pathogenesis, therapeutic agents, and vaccines, and provide a perspective on the role of these models in preventing COVID-19 spread.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Institute of Medicine and Healthy of Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Chang-Le Wang
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Zhi-Yun Gao
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Institute of Medicine and Healthy of Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Hong-Xiu Qiao
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Institute of Medicine and Healthy of Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Wei-Jie Wang
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Institute of Medicine and Healthy of Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xin-Yan Liu
- Department of Oncology, Hebei Provincial Thoracic Hospital, Shijiazhuang, Hebei 050010, China
| | - Xia Chuai
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Institute of Medicine and Healthy of Hebei Medical University, Shijiazhuang, Hebei 050017, China. E-mail:
| |
Collapse
|
116
|
Liu N, Jiang X, Li H. The viral hypothesis in Alzheimer's disease: SARS-CoV-2 on the cusp. Front Aging Neurosci 2023; 15:1129640. [PMID: 37009449 PMCID: PMC10050697 DOI: 10.3389/fnagi.2023.1129640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Increasing evidence highlights that infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has long-term effects on cognitive function, which may cause neurodegenerative diseases like Alzheimer's disease (AD) in the future. We performed an analysis of a possible link between SARS-CoV-2 infection and AD risk and proposed several hypotheses for its possible mechanism, including systemic inflammation, neuroinflammation, vascular endothelial injury, direct viral infection, and abnormal amyloid precursor protein metabolism. The purpose of this review is to highlight the impact of infection with SASR-CoV-2 on the future risk of AD, to provide recommendations on medical strategies during the pandemic, and to propose strategies to address the risk of AD induced by SASR-CoV-2. We call for the establishment of a follow-up system for survivors to help researchers better understand the occurrence, natural history, and optimal management of SARS-CoV-2-related AD and prepare for the future.
Collapse
Affiliation(s)
- Nanyang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefan Jiang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
117
|
Zhang T, Wang N, Zhu L, Chen L, Liu H. Bidirectional Relationship between Glycemic Control and COVID-19 and Perspectives of Islet Organoid Models of SARS-CoV-2 Infection. Biomedicines 2023; 11:biomedicines11030856. [PMID: 36979836 PMCID: PMC10045433 DOI: 10.3390/biomedicines11030856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to morbidity and mortality, with several clinical manifestations, and has caused a widespread pandemic. It has been found that type 2 diabetes is a risk factor for severe coronavirus disease 2019 (COVID-19) illness. Moreover, accumulating evidence has shown that SARS-CoV-2 infection can increase the risk of hyperglycemia and diabetes, though the underlying mechanism remains unclear because of a lack of authentic disease models to recapitulate the abnormalities involved in the development, regeneration, and function of human pancreatic islets under SARS-CoV-2 infection. Stem-cell-derived islet organoids have been valued as a model to study islets’ development and function, and thus provide a promising model for unraveling the mechanisms underlying the onset of diabetes under SARS-CoV-2 infection. This review summarized the latest results from clinical and basic research on SARS-CoV-2-induced pancreatic islet damage and impaired glycemic control. Furthermore, we discuss the potential and perspectives of using human ES/iPS cell-derived islet organoids to unravel the bidirectional relationship between glycemic control and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Tongran Zhang
- Guangzhou Laboratory, Guangzhou 510006, China; (T.Z.); (N.W.)
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Nannan Wang
- Guangzhou Laboratory, Guangzhou 510006, China; (T.Z.); (N.W.)
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lingqiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Lihua Chen
- Guangzhou Laboratory, Guangzhou 510006, China; (T.Z.); (N.W.)
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, China
- Correspondence: (L.C.); (H.L.)
| | - Huisheng Liu
- Guangzhou Laboratory, Guangzhou 510006, China; (T.Z.); (N.W.)
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, China
- Correspondence: (L.C.); (H.L.)
| |
Collapse
|
118
|
Zheng L, Zhang L, Zheng Y, An J, Wen G, Jin H, Tuo B. Digestive system infection by SARS‑CoV‑2: Entry mechanism, clinical symptoms and expression of major receptors (Review). Int J Mol Med 2023; 51:19. [PMID: 36660939 PMCID: PMC9911086 DOI: 10.3892/ijmm.2023.5222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2022] [Indexed: 01/21/2023] Open
Abstract
Besides causing severe acute respiratory syndrome (SARS), SARS‑coronavirus 2 (SARS‑CoV‑2) also harms the digestive system. Given the appearance of numerous cases of SARS‑CoV‑2, it has been demonstrated that SARS‑CoV‑2 is able to harm target organs such as the gastrointestinal tract, liver and pancreas, and either worsen the condition of patients with basic digestive illnesses or make their prognosis poor. According to several previously published studies, angiotensin‑converting enzyme II (ACE2) and transmembrane serine protease II (TMPRSS2) are expressed either singly or in combination in the digestive system and in other regions of the human body. In order to change the viral conformation, create a fusion hole and release viral RNA into the host cell for replication and transcription, SARS‑CoV‑2 is capable of binding to these two proteins through the spike protein on its surface. As a result, the body experiences an immune reaction and an inflammatory reaction, which may lead to nausea, diarrhea, abdominal pain and even gastrointestinal bleeding, elevated levels of liver enzymes, acute liver injury, pancreatitis and other serious lesions. In order to provide possible strategies for the clinical diagnosis and treatment of digestive system diseases during the COVID‑19 pandemic, the molecular structure of SARS‑CoV‑2 and the mechanism via which SARS‑CoV‑2 enters the human body through ACE2 and TMPRSS2 were discussed in the present review, and the clinical manifestations of SARS‑CoV‑2 infection in the digestive system were also summarized. Finally, the expression characteristics of ACE2 and TMPRSS2 in the main target organs of the digestive system were described.
Collapse
Affiliation(s)
- Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yi Zheng
- Department of Gastroenterology, The Fifth People's Hospital of Zunyi, Zunyi, Guizhou 563000, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
119
|
A SARS-CoV-2-Related Virus from Malayan Pangolin Causes Lung Infection without Severe Disease in Human ACE2-Transgenic Mice. J Virol 2023; 97:e0171922. [PMID: 36688655 PMCID: PMC9972989 DOI: 10.1128/jvi.01719-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the most severe emerging infectious disease in the current century. The discovery of SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins in South Asian countries indicates that SARS-CoV-2 likely originated from wildlife. To date, two SARSr-CoV-2 strains have been isolated from pangolins seized in Guangxi and Guangdong by the customs agency of China, respectively. However, it remains unclear whether these viruses cause disease in animal models and whether they pose a transmission risk to humans. In this study, we investigated the biological features of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin (Manis javanica) captured by the Guangxi customs agency, termed MpCoV-GX, in terms of receptor usage, cell tropism, and pathogenicity in wild-type BALB/c mice, human angiotensin-converting enzyme 2 (ACE2)-transgenic mice, and human ACE2 knock-in mice. We found that MpCoV-GX can utilize ACE2 from humans, pangolins, civets, bats, pigs, and mice for cell entry and infect cell lines derived from humans, monkeys, bats, minks, and pigs. The virus could infect three mouse models but showed limited pathogenicity, with mild peribronchial and perivascular inflammatory cell infiltration observed in lungs. Our results suggest that this SARSr-CoV-2 virus from pangolins has the potential for interspecies infection, but its pathogenicity is mild in mice. Future surveillance among these wildlife hosts of SARSr-CoV-2 is needed to monitor variants that may have higher pathogenicity and higher spillover risk. IMPORTANCE SARS-CoV-2, which likely spilled over from wildlife, is the third highly pathogenic human coronavirus. Being highly transmissible, it is perpetuating a pandemic and continuously posing a severe threat to global public health. Several SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins have been identified since the SARS-CoV-2 outbreak. It is therefore important to assess their potential of crossing species barriers for better understanding of their risk of future emergence. In this work, we investigated the biological features and pathogenicity of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin, named MpCoV-GX. We found that MpCoV-GX can utilize ACE2 from 7 species for cell entry and infect cell lines derived from a variety of mammalian species. MpCoV-GX can infect mice expressing human ACE2 without causing severe disease. These findings suggest the potential of cross-species transmission of MpCoV-GX, and highlight the need of further surveillance of SARSr-CoV-2 in pangolins and other potential animal hosts.
Collapse
|
120
|
Dumenil T, Le TT, Rawle DJ, Yan K, Tang B, Nguyen W, Bishop C, Suhrbier A. Warmer ambient air temperatures reduce nasal turbinate and brain infection, but increase lung inflammation in the K18-hACE2 mouse model of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160163. [PMID: 36395835 PMCID: PMC9659553 DOI: 10.1016/j.scitotenv.2022.160163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Warmer climatic conditions have been associated with fewer COVID-19 cases. Herein we infected K18-hACE2 mice housed at the standard animal house temperature of ∼22 °C, or at ∼31 °C, which is considered to be thermoneutral for mice. On day 2 post infection, RNA-Seq analyses showed no significant differential gene expression lung in lungs of mice housed at the two temperatures, with almost identical viral loads and type I interferon responses. There was also no significant difference in viral loads in lungs on day 5, but RNA-Seq and histology analyses showed clearly elevated inflammatory signatures and infiltrates. Thermoneutrality thus promoted lung inflammation. On day 2 post infection mice housed at 31 °C showed reduced viral loads in nasal turbinates, consistent with increased mucociliary clearance at the warmer ambient temperature. These mice also had reduced virus levels in the brain, and an ensuing amelioration of weight loss and a delay in mortality. Warmer air temperatures may thus reduce infection of the upper respiratory track and the olfactory epithelium, resulting in reduced brain infection. Potential relevance for anosmia and neurological sequelae in COVID-19 patients is discussed.
Collapse
Affiliation(s)
- Troy Dumenil
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Thuy T Le
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Daniel J Rawle
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Kexin Yan
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Bing Tang
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Wilson Nguyen
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Cameron Bishop
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Andreas Suhrbier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia; Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, Queensland 4029, 4072, Australia.
| |
Collapse
|
121
|
Characterization of a Vesicular Stomatitis Virus-Vectored Recombinant Virus Bearing Spike Protein of SARS-CoV-2 Delta Variant. Microorganisms 2023; 11:microorganisms11020431. [PMID: 36838396 PMCID: PMC9960918 DOI: 10.3390/microorganisms11020431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
The frequent emergence of SARS-CoV-2 variants thwarts the prophylactic and therapeutic countermeasures confronting COVID-19. Among them, the Delta variant attracts widespread attention due to its high pathogenicity and fatality rate compared with other variants. However, with the emergence of new variants, studies on Delta variants have been gradually weakened and ignored. In this study, a replication-competent recombinant virus carrying the S protein of the SARS-CoV-2 Delta variant was established based on the vesicular stomatitis virus (VSV), which presented a safe alternative model for studying the Delta variant. The recombinant virus showed a replication advantage in Vero E6 cells, and the viral titers reach 107.3 TCID50/mL at 36 h post-inoculation. In the VSV-vectored recombinant platform, the spike proteins of the Delta variant mediated higher fusion activity and syncytium formation than the wild-type strain. Notably, the recombinant virus was avirulent in BALB/c mice, Syrian hamsters, 3-day ICR suckling mice, and IFNAR/GR-/- mice. It induced protective neutralizing antibodies in rodents, and protected the Syrian hamsters against the SARS-CoV-2 Delta variant infection. Meanwhile, the eGFP reporter of recombinant virus enabled the visual assay of neutralizing antibodies. Therefore, the recombinant virus could be a safe and convenient surrogate tool for authentic SARS-CoV-2. This efficient and reliable model has significant potential for research on viral-host interactions, epidemiological investigation of serum-neutralizing antibodies, and vaccine development.
Collapse
|
122
|
Interactions between Humans and Dogs during the COVID-19 Pandemic: Recent Updates and Future Perspectives. Animals (Basel) 2023; 13:ani13030524. [PMID: 36766413 PMCID: PMC9913536 DOI: 10.3390/ani13030524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
COVID-19 is one of the deadliest epidemics. This pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the role of dogs in spreading the disease in human society is poorly understood. This review sheds light on the limited susceptibility of dogs to COVID-19 infections which is likely attributed to the relatively low levels of angiotensin-converting enzyme 2 (ACE2) in the respiratory tract and the phylogenetic distance of ACE2 in dogs from the human ACE2 receptor. The low levels of ACE2 affect the binding affinity between spike and ACE2 proteins resulting in it being uncommon for dogs to spread the disease. To demonstrate the role of dogs in spreading COVID-19, we reviewed the epidemiological studies and prevalence of SARS-CoV-2 in dogs. Additionally, we discussed the use of detection dogs as a rapid and reliable method for effectively discriminating between SARS-CoV-2 infected and non-infected individuals using different types of samples (secretions, saliva, and sweat). We considered the available information on COVID-19 in the human-dog interfaces involving the possibility of transmission of COVID-19 to dogs by infected individuals and vice versa, the human-dog behavior changes, and the importance of preventive measures because the risk of transmission by domestic dogs remains a concern.
Collapse
|
123
|
Tang AT, Buchholz DW, Szigety KM, Imbiakha B, Gao S, Frankfurter M, Wang M, Yang J, Hewins P, Mericko-Ishizuka P, Leu NA, Sterling S, Monreal IA, Sahler J, August A, Zhu X, Jurado KA, Xu M, Morrisey EE, Millar SE, Aguilar HC, Kahn ML. Cell-autonomous requirement for ACE2 across organs in lethal mouse SARS-CoV-2 infection. PLoS Biol 2023; 21:e3001989. [PMID: 36745682 PMCID: PMC9934376 DOI: 10.1371/journal.pbio.3001989] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 01/04/2023] [Indexed: 02/07/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the cell-surface receptor for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). While its central role in Coronavirus Disease 2019 (COVID-19) pathogenesis is indisputable, there remains significant debate regarding the role of this transmembrane carboxypeptidase in the disease course. These include the role of soluble versus membrane-bound ACE2, as well as ACE2-independent mechanisms that may contribute to viral spread. Testing these roles requires in vivo models. Here, we report humanized ACE2-floxed mice in which hACE2 is expressed from the mouse Ace2 locus in a manner that confers lethal disease and permits cell-specific, Cre-mediated loss of function, and LSL-hACE2 mice in which hACE2 is expressed from the Rosa26 locus enabling cell-specific, Cre-mediated gain of function. Following exposure to SARS-CoV-2, hACE2-floxed mice experienced lethal cachexia, pulmonary infiltrates, intravascular thrombosis and hypoxemia-hallmarks of severe COVID-19. Cre-mediated loss and gain of hACE2 demonstrate that neuronal infection confers lethal cachexia, hypoxemia, and respiratory failure in the absence of lung epithelial infection. In this series of genetic experiments, we demonstrate that ACE2 is absolutely and cell-autonomously required for SARS-CoV-2 infection in the olfactory epithelium, brain, and lung across diverse cell types. Therapies inhibiting or blocking ACE2 at these different sites are likely to be an effective strategy towards preventing severe COVID-19.
Collapse
Affiliation(s)
- Alan T. Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David W. Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Katherine M. Szigety
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian Imbiakha
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Siqi Gao
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maxwell Frankfurter
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Min Wang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jisheng Yang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Peter Hewins
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Patricia Mericko-Ishizuka
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - N Adrian Leu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Stephanie Sterling
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Isaac A. Monreal
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Julie Sahler
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Xuming Zhu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kellie A. Jurado
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mingang Xu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Edward E. Morrisey
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Sarah E. Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Mark L. Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
124
|
Snouwaert JN, Jania LA, Nguyen T, Martinez DR, Schäfer A, Catanzaro NJ, Gully KL, Baric RS, Heise M, Ferris MT, Anderson E, Pressey K, Dillard JA, Taft-Benz S, Baxter VK, Ting JPY, Koller BH. Human ACE2 expression, a major tropism determinant for SARS-CoV-2, is regulated by upstream and intragenic elements. PLoS Pathog 2023; 19:e1011168. [PMID: 36812267 PMCID: PMC9987828 DOI: 10.1371/journal.ppat.1011168] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/06/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2), part of the renin-angiotensin system (RAS), serves as an entry point for SARS-CoV-2, leading to viral proliferation in permissive cell types. Using mouse lines in which the Ace2 locus has been humanized by syntenic replacement, we show that regulation of basal and interferon induced ACE2 expression, relative expression levels of different ACE2 transcripts, and sexual dimorphism in ACE2 expression are unique to each species, differ between tissues, and are determined by both intragenic and upstream promoter elements. Our results indicate that the higher levels of expression of ACE2 observed in the lungs of mice relative to humans may reflect the fact that the mouse promoter drives expression of ACE2 in populous airway club cells while the human promoter drives expression in alveolar type 2 (AT2) cells. In contrast to transgenic mice in which human ACE2 is expressed in ciliated cells under the control of the human FOXJ1 promoter, mice expressing ACE2 in club cells under the control of the endogenous Ace2 promoter show a robust immune response after infection with SARS-CoV-2, leading to rapid clearance of the virus. This supports a model in which differential expression of ACE2 determines which cell types in the lung are infected, and this in turn modulates the host response and outcome of COVID-19.
Collapse
Affiliation(s)
- John N. Snouwaert
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Leigh A. Jania
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Trang Nguyen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - David R. Martinez
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alexandra Schäfer
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nicholas J. Catanzaro
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kendra L. Gully
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elizabeth Anderson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Katia Pressey
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jacob A. Dillard
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sharon Taft-Benz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Victoria K. Baxter
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Beverly H. Koller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
125
|
Chen M, Li S, Liu S, Zhang Y, Cui X, Lv L, Liu B, Zheng A, Wang Q, Duo S, Gao F. Infection of SARS-CoV-2 causes severe pathological changes in mouse testis. J Genet Genomics 2023; 50:99-107. [PMID: 36494057 PMCID: PMC9724560 DOI: 10.1016/j.jgg.2022.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected more than 600 million people worldwide. Several organs including lung, intestine, and brain are infected by SARS-CoV-2. It has been reported that SARS-CoV-2 receptor angiotensin-converting enzyme-2 (ACE2) is expressed in human testis. However, whether testis is also affected by SARS-CoV-2 is still unclear. In this study, we generate a human ACE2 (hACE2) transgenic mouse model in which the expression of hACE2 gene is regulated by hACE2 promoter. Sertoli and Leydig cells from hACE2 transgenic mice can be infected by SARS-CoV-2 pseudovirus in vitro, and severe pathological changes are observed after injecting the SARS-CoV-2 pseudovirus into the seminiferous tubules. Further studies reveal that Sertoli and Leydig cells from hACE2 transgenic mice are also infected by authentic SARS-CoV-2 virus in vitro. After testis interstitium injection, authentic SARS-CoV-2 viruses are first disseminated to the interstitial cells, and then detected inside the seminiferous tubules which in turn cause germ cell loss and disruption of seminiferous tubules. Our study demonstrates that testis is most likely a target of SARS-CoV-2 virus. Attention should be paid to the reproductive function in SARS-CoV-2 patients.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Shihua Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shujun Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhang Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Limin Lv
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bowen Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shuguang Duo
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
126
|
Carpenter KC, Yang J, Xu JJ. Animal Models for the Study of Neurologic Manifestations Of COVID-19. Comp Med 2023; 73:91-103. [PMID: 36744556 PMCID: PMC9948905 DOI: 10.30802/aalas-cm-22-000073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the worldwide coronavirus (COVID-19) pandemic, has infected an estimated 525 million people with over 6 million deaths. Although COVID-19 is primarily a respiratory disease, an escalating number of neurologic symptoms have been reported in humans. Some neurologic symptoms, such as loss of smell or taste, are mild. However, other symptoms, such as meningoencephalitis or stroke, are potentially fatal. Along with surveys and postmortem evaluations on humans, scientists worked with several animal species to try to elucidate the causes of neurologic symptoms. Neurologic sequelae remain challenging to study due to the complexity of the nervous system and difficulties in identification and quantification of neurologic signs. We reviewed animal models used in the study of neurologic COVID-19, specifically research in mice, hamsters, ferrets, and nonhuman primates. We summarized findings on the presence and pathologic effects of SARS-CoV-2 on the nervous system. Given the need to increase understanding of COVID-19 and its effects on the nervous system, scientists must strive to obtain new information from animals to reduce mortality and morbidity with neurologic complications in humans.
Collapse
Affiliation(s)
- Kelsey C Carpenter
- Division of Laboratory Animal Resources, Wayne State University, Detroit, Michigan;,
| | - Jibing Yang
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jiajie J Xu
- Division of Animal Resources, University of Illinois at Urbana-Champaign, Champaign, Illinois
| |
Collapse
|
127
|
Najafabadi ZY, Fanuel S, Falak R, Kaboli S, Kardar GA. The Trend of CRISPR-Based Technologies in COVID-19 Disease: Beyond Genome Editing. Mol Biotechnol 2023; 65:146-161. [PMID: 35091986 PMCID: PMC8799426 DOI: 10.1007/s12033-021-00431-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
Biotechnological approaches have always sought to utilize novel and efficient methods in the prevention, diagnosis, and treatment of diseases. This science has consistently tried to revolutionize medical science by employing state-of-the-art technologies in genomic and proteomic engineering. CRISPR-Cas system is one of the emerging techniques in the field of biotechnology. To date, the CRISPR-Cas system has been extensively applied in gene editing, targeting genomic sequences for diagnosis, treatment of diseases through genomic manipulation, and in creating animal models for preclinical researches. With the emergence of the COVID-19 pandemic in 2019, there is need for the development and modification of novel tools such as the CRISPR-Cas system for use in diagnostic emergencies. This system can compete with other existing biotechnological methods in accuracy, precision, and wide performance that could guarantee its future in these conditions. In this article, we review the various platforms of the CRISPR-Cas system meant for SARS-CoV-2 diagnosis, anti-viral therapeutic procedures, producing animal models for preclinical studies, and genome-wide screening studies toward drug and vaccine development.
Collapse
Affiliation(s)
- Zeinab Yousefi Najafabadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology, Asthma Allergy Research Institute (IAARI), Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Songwe Fanuel
- Department of Applied Biosciences and Biotechnology, Faculty of Science and Technology, Midlands State University (MSU), Gweru, Zimbabwe
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Kaboli
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Gholam Ali Kardar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology, Asthma Allergy Research Institute (IAARI), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
128
|
Gonçalves R, Couto J, Ferreirinha P, Costa JM, Silvério D, Silva ML, Fernandes AI, Madureira P, Alves NL, Lamas S, Saraiva M. SARS-CoV-2 variants induce distinct disease and impact in the bone marrow and thymus of mice. iScience 2023; 26:105972. [PMID: 36687317 PMCID: PMC9838028 DOI: 10.1016/j.isci.2023.105972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved to variants associated with milder disease. We employed the k18-hACE2 mouse model to study how differences in the course of infection by SARS-CoV-2 variants alpha, delta, and omicron relate to tissue pathology and the immune response triggered. We documented a variant-specific pattern of infection severity, inducing discrete lung and blood immune responses and differentially impacting primary lymphoid organs. Infections with variants alpha and delta promoted bone marrow (BM) emergency myelopoiesis, with blood and lung neutrophilia. The defects in the BM hematopoietic compartment extended to the thymus, with the infection by the alpha variant provoking a marked thymic atrophy. Importantly, the changes in the immune responses correlated with the severity of infection. Our study provides a comprehensive platform to investigate the modulation of disease by SARS-CoV-2 variants and underscores the impact of this infection on the function of primary lymphoid organs.
Collapse
Affiliation(s)
- Rute Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Couto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Pedro Ferreirinha
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - José Maria Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Diogo Silvério
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marta L. Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Isabel Fernandes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Pedro Madureira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,Immunethep, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Nuno L. Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sofia Lamas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal,Corresponding author
| |
Collapse
|
129
|
Cheng ZJ, Li B, Zhan Z, Zhao Z, Xue M, Zheng P, Lyu J, Hu C, He J, Chen R, Sun B. Clinical Application of Antibody Immunity Against SARS-CoV-2: Comprehensive Review on Immunoassay and Immunotherapy. Clin Rev Allergy Immunol 2023; 64:17-32. [PMID: 35031959 PMCID: PMC8760112 DOI: 10.1007/s12016-021-08912-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 02/07/2023]
Abstract
The current COVID-19 global pandemic poses immense challenges to global health, largely due to the difficulty to detect infection in the early stages of the disease, as well as the current lack of effective antiviral therapy. Research and understanding of the human immune system can provide important theoretical and technical support for the clinical diagnosis and treatment of COVID-19, the clinical implementations of which include immunoassays and immunotherapy, which play a crucial role in the fight against the pandemic. This review consolidates the current scientific evidence for immunoassay, which includes multiple methods of detecting antigen and antibody against SARS-CoV-2. We compared the characteristics, advantages and disadvantages, and clinical applications of these three detection techniques. In addition to detecting viral infections, knowledge on the body's immunity against the virus is desirable; thus, the immunotherapy-based neutralizing antibody (nAb) detection methods were discussed. We also gave a brief introduction to the new immunoassay technology such as biosensing. This was followed by an in-depth and extensive review on a variety of immunotherapy methods. It includes convalescent plasma therapy, neutralizing antibody-based treatments targeting different regions of SARS-CoV-2, immunotherapy targeted on the host cell including inhibiting the host cell receptor and cytokine storm, as well as cocktail antibodies, cross-neutralizing antibodies, and immunotherapy based on cross-reactivity between viral epitopes and autoepitopes and autoantibody. Despite the development of various immunological testing methods and antibody therapies, the current global situation of COVID-19 is still tense. We need more efficient detection methods and more reliable antibody therapies. The up-to-date knowledge on therapeutic strategies will likely help clinicians worldwide to protect patients from life-threatening viral infections.
Collapse
Affiliation(s)
- Zhangkai J. Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| | - Bizhou Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| | - Zhiqing Zhan
- Guangzhou Medical University, Guangzhou, 511436 China
| | - Zifan Zhao
- Guangzhou Medical University, Guangzhou, 511436 China
| | - Mingshan Xue
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| | - Peiyan Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| | - Jiali Lyu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| | - Chundi Hu
- Guangzhou Medical University, Guangzhou, 511436 China
| | - Jianxing He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| | - Ruchong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| |
Collapse
|
130
|
Rodríguez-Pulido M, Calvo-Pinilla E, Polo M, Saiz JC, Fernández-González R, Pericuesta E, Gutiérrez-Adán A, Sobrino F, Martín-Acebes MA, Sáiz M. Non-coding RNAs derived from the foot-and-mouth disease virus genome trigger broad antiviral activity against coronaviruses. Front Immunol 2023; 14:1166725. [PMID: 37063925 PMCID: PMC10090856 DOI: 10.3389/fimmu.2023.1166725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of a potentially severe respiratory disease, the coronavirus disease 2019 (COVID-19), an ongoing pandemic with limited therapeutic options. Here, we assessed the anti-coronavirus activity of synthetic RNAs mimicking specific domains in the non-coding regions of the foot-and-mouth disease virus (FMDV) genome (ncRNAs). These molecules are known to exert broad-spectrum antiviral activity in cell culture, mice and pigs effectively triggering the host innate immune response. The ncRNAs showed potent antiviral activity against SARS-CoV-2 after transfection in human intestinal Caco-2 and lung epithelium Calu-3 2B4 cells. When the in vivo efficacy of the FMDV ncRNAs was assessed in K18-hACE2 mice, administration of naked ncRNA before intranasal SARS-CoV-2 infection significantly decreased the viral load and the levels of pro-inflammatory cytokines in the lungs compared with untreated infected mice. The ncRNAs were also highly efficacious when assayed against common human HCoV-229E and porcine transmissible gastroenteritis virus (TGEV) in hepatocyte-derived Huh-7 and swine testis ST cells, respectively. These results are a proof of concept of the pan-coronavirus antiviral activity of the FMDV ncRNAs including human and animal divergent coronaviruses and potentially enhance our ability to fight future emerging variants.
Collapse
Affiliation(s)
- Miguel Rodríguez-Pulido
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Eva Calvo-Pinilla
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Miryam Polo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Raúl Fernández-González
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Eva Pericuesta
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Miguel A. Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- *Correspondence: Margarita Sáiz,
| |
Collapse
|
131
|
Meller AE, Fokeev VA, Shakhova MA, Shakhov AV. [COVID-19-associated anosmia]. Vestn Otorinolaringol 2023; 88:63-68. [PMID: 37450393 DOI: 10.17116/otorino20228803163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The article is a systematic review of the literature data summarizes to date on the issue of COVID-19-associated anosmia. We mainly used full-text and abstract electronic databases (PubMed, Scopus and Web of Science). The paper discusses hypothetical mechanisms of development, clinical features, as well as methods of diagnosis and treatment of COVID-19-associated anosmia.
Collapse
Affiliation(s)
- A E Meller
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russia
| | - V A Fokeev
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russia
| | - M A Shakhova
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russia
| | - A V Shakhov
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russia
| |
Collapse
|
132
|
Amruta N, Ismael S, Leist SR, Gressett TE, Srivastava A, Dinnon KH, Engler-Chiurazzi EB, Maness NJ, Qin X, Kolls JK, Baric RS, Bix G. Mouse Adapted SARS-CoV-2 (MA10) Viral Infection Induces Neuroinflammation in Standard Laboratory Mice. Viruses 2022; 15:114. [PMID: 36680154 PMCID: PMC9863644 DOI: 10.3390/v15010114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Increasing evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection impacts neurological function both acutely and chronically, even in the absence of pronounced respiratory distress. Developing clinically relevant laboratory mouse models of the neuropathogenesis of SARS-CoV-2 infection is an important step toward elucidating the underlying mechanisms of SARS-CoV-2-induced neurological dysfunction. Although various transgenic models and viral delivery methods have been used to study the infection potential of SARS-CoV-2 in mice, the use of commonly available laboratory mice would facilitate the study of SARS-CoV-2 neuropathology. Herein we show neuroinflammatory profiles of immunologically intact mice, C57BL/6J and BALB/c, as well as immunodeficient (Rag2-/-) mice, to a mouse-adapted strain of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2 (MA10)). Our findings indicate that brain IL-6 levels are significantly higher in BALB/c male mice infected with SARS-CoV-2 MA10. Additionally, blood-brain barrier integrity, as measured by the vascular tight junction protein claudin-5, was reduced by SARS-CoV-2 MA10 infection in all three strains. Brain glial fibrillary acidic protein (GFAP) mRNA was also elevated in male C57BL/6J infected mice compared with the mock group. Lastly, immune-vascular effects of SARS-CoV-2 (MA10), as measured by H&E scores, demonstrate an increase in perivascular lymphocyte cuffing (PLC) at 30 days post-infection among infected female BALB/c mice with a significant increase in PLC over time only in SARS-CoV-2 MA10) infected mice. Our study is the first to demonstrate that SARS-CoV-2 (MA10) infection induces neuroinflammation in laboratory mice and could be used as a novel model to study SARS-CoV-2-mediated cerebrovascular pathology.
Collapse
Affiliation(s)
- Narayanappa Amruta
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Saifudeen Ismael
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Sarah R. Leist
- Department of Epidemiology, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy E. Gressett
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| | - Akhilesh Srivastava
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Kenneth H. Dinnon
- Department of Epidemiology, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth B. Engler-Chiurazzi
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Nicholas J. Maness
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Xuebin Qin
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Jay K. Kolls
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ralph S. Baric
- Department of Epidemiology, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gregory Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70122, USA
| |
Collapse
|
133
|
Tailor N, Warner BM, Griffin BD, Tierney K, Moffat E, Frost K, Vendramelli R, Leung A, Willman M, Thomas SP, Pei Y, Booth SA, Embury-Hyatt C, Wootton SK, Kobasa D. Generation and Characterization of a SARS-CoV-2-Susceptible Mouse Model Using Adeno-Associated Virus (AAV6.2FF)-Mediated Respiratory Delivery of the Human ACE2 Gene. Viruses 2022; 15:85. [PMID: 36680125 PMCID: PMC9863330 DOI: 10.3390/v15010085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19) that has caused a pandemic with millions of human infections. There continues to be a pressing need to develop potential therapies and vaccines to inhibit SARS-CoV-2 infection to mitigate the ongoing pandemic. Epidemiological data from the current pandemic indicates that there may be sex-dependent differences in disease outcomes. To investigate these differences, we proposed to use common small animal species that are frequently used to model disease with viruses. However, common laboratory strains of mice are not readily infected by SARS-CoV-2 because of differences in the angiotensin-converting enzyme 2 (ACE2), the cellular receptor for the virus. To overcome this limitation, we transduced common laboratory accessible strains of mice of different sexes and age groups with a novel a triple AAV6 mutant, termed AAV6.2FF, encoding either human ACE2 or luciferase via intranasal administration to promote expression in the lung and nasal turbinates. Infection of AAV-hACE2-transduced mice with SARS-CoV-2 resulted in high viral titers in the lungs and nasal turbinates, establishment of an IgM and IgG antibody response, and modulation of lung and nasal turbinate cytokine profiles. There were insignificant differences in infection characteristics between age groups and sex-related differences; however, there were significant strain-related differences between BALB/c vs. C57BL/6 mice. We show that AAV-hACE2-transduced mice are a useful for determining immune responses and for potential evaluation of SARS-CoV-2 vaccines and antiviral therapies, and this study serves as a model for the utility of this approach to rapidly develop small-animal models for emerging viruses.
Collapse
Affiliation(s)
- Nikesh Tailor
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Bryce M. Warner
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Bryan D. Griffin
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Kevin Tierney
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Estella Moffat
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington Street, Winnipeg, MB R3E 3M4, Canada
| | - Kathy Frost
- Molecular Pathobiology, National Microbiology Laboratory NML, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Robert Vendramelli
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Anders Leung
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Marnie Willman
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, College of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Sylvia P. Thomas
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stephanie A. Booth
- Molecular Pathobiology, National Microbiology Laboratory NML, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, College of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Carissa Embury-Hyatt
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington Street, Winnipeg, MB R3E 3M4, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, College of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
134
|
A C57BL/6 Mouse Model of SARS-CoV-2 Infection Recapitulates Age- and Sex-Based Differences in Human COVID-19 Disease and Recovery. Vaccines (Basel) 2022; 11:vaccines11010047. [PMID: 36679892 PMCID: PMC9860616 DOI: 10.3390/vaccines11010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
We present a comprehensive analysis of SARS-CoV-2 infection and recovery using wild type C57BL/6 mice and a mouse-adapted virus, and we demonstrate that this is an ideal model of infection and recovery that phenocopies acute human disease arising from the ancestral SARS-CoV-2. Disease severity and infection kinetics are age- and sex-dependent, as has been reported for humans, with older mice and males in particular exhibiting decreased viral clearance and increased mortality. We identified key parallels with human pathology, including intense virus positivity in bronchial epithelial cells, wide-spread alveolar involvement, recruitment of immune cells to the infected lungs, and acute bronchial epithelial cell death. Moreover, older animals experienced increased virus persistence, delayed dispersal of immune cells into lung parenchyma, and morphologic evidence of tissue damage and inflammation. Parallel analysis of SCID mice revealed that the adaptive immune response was not required for recovery from COVID disease symptoms nor early phase clearance of virus but was required for efficient clearance of virus at later stages of infection. Finally, transcriptional analyses indicated that induction and duration of key innate immune gene programs may explain differences in age-dependent disease severity. Importantly, these data demonstrate that SARS-CoV-2-mediated disease in C57BL/6 mice phenocopies human disease across ages and establishes a platform for future therapeutic and genetic screens for not just SARS-CoV-2 but also novel coronaviruses that have yet to emerge.
Collapse
|
135
|
Animal Models to Test SARS-CoV-2 Vaccines: Which Ones Are in Use and Future Expectations. Pathogens 2022; 12:pathogens12010020. [PMID: 36678369 PMCID: PMC9861368 DOI: 10.3390/pathogens12010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Since late 2019 and early 2020, with the emergence of the COVID-19 pandemic, scientists are rushing to develop treatment and prevention methods to combat SARS-CoV-2. Among these are vaccines. In view of this, the use of animals as experimental models, both to investigate the immunopathology of the disease and to evaluate the efficacy and safety of vaccines, is mandatory. This work aims to describe, through recent scientific articles found in reliable databases, the animal models used for the in vivo testing of COVID-19 vaccines, demonstrating some possibilities of more advantageous/gold-standard models for SARS-CoV-2 vaccines. The majority of the studies use rodents and primates. Meanwhile, the most adequate model to be used as the gold standard for in vivo tests of COVID-19 vaccines is not yet conclusive. Promising options are being discussed as new tests are being carried out and new SARS-CoV-2 variants are emerging.
Collapse
|
136
|
Ramirez SI, Grifoni A, Weiskopf D, Parikh UM, Heaps A, Faraji F, Sieg SF, Ritz J, Moser C, Eron JJ, Currier JS, Klekotka P, Sette A, Wohl DA, Daar ES, Hughes MD, Chew KW, Smith DM, Crotty S. Bamlanivimab therapy for acute COVID-19 does not blunt SARS-CoV-2-specific memory T cell responses. JCI Insight 2022; 7:e163471. [PMID: 36378539 PMCID: PMC9869965 DOI: 10.1172/jci.insight.163471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the widespread use of SARS-CoV-2-specific monoclonal antibody (mAb) therapy for the treatment of acute COVID-19, the impact of this therapy on the development of SARS-CoV-2-specific T cell responses has been unknown, resulting in uncertainty as to whether anti-SARS-CoV-2 mAb administration may result in failure to generate immune memory. Alternatively, it has been suggested that SARS-CoV-2-specific mAb may enhance adaptive immunity to SARS-CoV-2 via a "vaccinal effect." Bamlanivimab (Eli Lilly and Company) is a recombinant human IgG1 that was granted FDA emergency use authorization for the treatment of mild to moderate COVID-19 in those at high risk for progression to severe disease. Here, we compared SARS-CoV-2-specific CD4+ and CD8+ T cell responses of 95 individuals from the ACTIV-2/A5401 clinical trial 28 days after treatment with bamlanivimab versus placebo. SARS-CoV-2-specific T cell responses were evaluated using activation-induced marker assays in conjunction with intracellular cytokine staining. We demonstrate that most individuals with acute COVID-19 developed SARS-CoV-2-specific T cell responses. Overall, our findings suggest that the quantity and quality of SARS-CoV-2-specific T cell memory were not diminished in individuals who received bamlanivimab for acute COVID-19. Receipt of bamlanivimab during acute COVID-19 neither diminished nor enhanced SARS-CoV-2-specific cellular immunity.
Collapse
Affiliation(s)
- Sydney I. Ramirez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Urvi M. Parikh
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy Heaps
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Farhoud Faraji
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, California, USA
| | - Scott F. Sieg
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve School of Medicine, Cleveland, Ohio, USA
| | - Justin Ritz
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Carlee Moser
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Judith S. Currier
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | | | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - David A. Wohl
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Eric S. Daar
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Michael D. Hughes
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kara W. Chew
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Davey M. Smith
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
137
|
Pang XM, Peng ZY, Zheng X, Shi JJ, Zhou BC. Analysis of research hotspots in COVID-19 genomics based on citespace software: Bibliometric analysis. Front Cell Infect Microbiol 2022; 12:1060031. [PMID: 36579345 PMCID: PMC9791043 DOI: 10.3389/fcimb.2022.1060031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction To analyze the current state, hotspots, and cutting-edge trends of genomics research on the outbreak of Corona Virus Disease 2019 (COVID-19) from 2019 to the present (March 2022). Methods Statistical and visual analysis of COVID-19 genomics results published in the 2019-2022 Web of Science Core Collection Database (WOSCC) was performed using CiteSpace software, including data on countries, institutions, authors, journals, co-citations, keywords, etc. Results A total of 9133 English literature were included. The number of publications has significantly increased in 2021, and it is expected that this upward trend will last into the future. The research hotspots of COVID-19 revolve around quarantine, biological management, angiotensin-converting enzyme-2, RNA-dependent RNA polymerase, etc. Research frontiers and trends focus on molecular docking, messenger RNA, functional receptor, etc. Conclusion The last two years have seen a significant increase in research interest in the field of novel coronavirus pneumonia genomics.
Collapse
Affiliation(s)
- Xue meng Pang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhao yun Peng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,*Correspondence: Zhao yun Peng, ; Xin Zheng,
| | - Xin Zheng
- Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, Shandong, China,*Correspondence: Zhao yun Peng, ; Xin Zheng,
| | - Jing jing Shi
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Bao chen Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
138
|
Upadhyay V, Suryawanshi R, Tasoff P, McCavitt-Malvido M, Kumar GR, Murray VW, Noecker C, Bisanz JE, Hswen Y, Ha C, Sreekumar B, Chen IP, Lynch SV, Ott M, Lee S, Turnbaugh PJ. Mild SARS-CoV-2 infection results in long-lasting microbiota instability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.07.519508. [PMID: 36523400 PMCID: PMC9753784 DOI: 10.1101/2022.12.07.519508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viruses targeting mammalian cells can indirectly alter the gut microbiota, potentially compounding their phenotypic effects. Multiple studies have observed a disrupted gut microbiota in severe cases of SARS-CoV-2 infection that require hospitalization. Yet, despite demographic shifts in disease severity resulting in a large and continuing burden of non-hospitalized infections, we still know very little about the impact of mild SARS-CoV-2 infection on the gut microbiota in the outpatient setting. To address this knowledge gap, we longitudinally sampled 14 SARS-CoV-2 positive subjects who remained outpatient and 4 household controls. SARS-CoV-2 cases exhibited a significantly less stable gut microbiota relative to controls, as long as 154 days after their positive test. These results were confirmed and extended in the K18-hACE2 mouse model, which is susceptible to SARS-CoV-2 infection. All of the tested SARS-CoV-2 variants significantly disrupted the mouse gut microbiota, including USA-WA1/2020 (the original variant detected in the United States), Delta, and Omicron. Surprisingly, despite the fact that the Omicron variant caused the least severe symptoms in mice, it destabilized the gut microbiota and led to a significant depletion in Akkermansia muciniphila . Furthermore, exposure of wild-type C57BL/6J mice to SARS-CoV-2 disrupted the gut microbiota in the absence of severe lung pathology. IMPORTANCE Taken together, our results demonstrate that even mild cases of SARS-CoV-2 can disrupt gut microbial ecology. Our findings in non-hospitalized individuals are consistent with studies of hospitalized patients, in that reproducible shifts in gut microbial taxonomic abundance in response to SARS-CoV-2 have been difficult to identify. Instead, we report a long-lasting instability in the gut microbiota. Surprisingly, our mouse experiments revealed an impact of the Omicron variant, despite producing the least severe symptoms in genetically susceptible mice, suggesting that despite the continued evolution of SARS-CoV-2 it has retained its ability to perturb the intestinal mucosa. These results will hopefully renew efforts to study the mechanisms through which Omicron and future SARS-CoV-2 variants alter gastrointestinal physiology, while also considering the potentially broad consequences of SARS-CoV-2-induced microbiota instability for host health and disease.
Collapse
|
139
|
Beer J, Crotta S, Breithaupt A, Ohnemus A, Becker J, Sachs B, Kern L, Llorian M, Ebert N, Labroussaa F, Nhu Thao TT, Trueeb BS, Jores J, Thiel V, Beer M, Fuchs J, Kochs G, Wack A, Schwemmle M, Schnepf D. Impaired immune response drives age-dependent severity of COVID-19. J Exp Med 2022; 219:e20220621. [PMID: 36129445 PMCID: PMC9499827 DOI: 10.1084/jem.20220621] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/05/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022] Open
Abstract
Severity of COVID-19 shows an extraordinary correlation with increasing age. We generated a mouse model for severe COVID-19 and show that the age-dependent disease severity is caused by the disruption of a timely and well-coordinated innate and adaptive immune response due to impaired interferon (IFN) immunity. Aggravated disease in aged mice was characterized by a diminished IFN-γ response and excessive virus replication. Accordingly, adult IFN-γ receptor-deficient mice phenocopied the age-related disease severity, and supplementation of IFN-γ reversed the increased disease susceptibility of aged mice. Further, we show that therapeutic treatment with IFN-λ in adults and a combinatorial treatment with IFN-γ and IFN-λ in aged Ifnar1-/- mice was highly efficient in protecting against severe disease. Our findings provide an explanation for the age-dependent disease severity and clarify the nonredundant antiviral functions of type I, II, and III IFNs during SARS-CoV-2 infection in an age-dependent manner. Our data suggest that highly vulnerable individuals could benefit from immunotherapy combining IFN-γ and IFN-λ.
Collapse
Affiliation(s)
- Julius Beer
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Stefania Crotta
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Annette Ohnemus
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Jan Becker
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Benedikt Sachs
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Lisa Kern
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Miriam Llorian
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Nadine Ebert
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Fabien Labroussaa
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tran Thi Nhu Thao
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Biomedical Science, University of Bern, Bern, Switzerland
| | - Bettina Salome Trueeb
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joerg Jores
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Switzerland
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jonas Fuchs
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| |
Collapse
|
140
|
Du Y, Miah KM, Habib O, Meyer-Berg H, Conway CC, Viegas MA, Dean R, Satyapertiwi D, Zhao J, Wang Y, Temperton NJ, Gamlen TPE, Gill DR, Hyde SC. Lung directed antibody gene transfer confers protection against SARS-CoV-2 infection. Thorax 2022; 77:1229-1236. [PMID: 35165144 PMCID: PMC8861887 DOI: 10.1136/thoraxjnl-2021-217650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND The COVID-19 pandemic continues to be a worldwide threat and effective antiviral drugs and vaccines are being developed in a joint global effort. However, some elderly and immune-compromised populations are unable to raise an effective immune response against traditional vaccines. AIMS We hypothesised that passive immunity engineered by the in vivo expression of anti-SARS-CoV-2 monoclonal antibodies (mAbs), an approach termed vectored-immunoprophylaxis (VIP), could offer sustained protection against COVID-19 in all populations irrespective of their immune status or age. METHODS We developed three key reagents to evaluate VIP for SARS-CoV-2: (i) we engineered standard laboratory mice to express human ACE2 via rAAV9 in vivo gene transfer, to allow in vivo assessment of SARS-CoV-2 infection, (ii) to simplify in vivo challenge studies, we generated SARS-CoV-2 Spike protein pseudotyped lentiviral vectors as a simple mimic of authentic SARS-CoV-2 that could be used under standard laboratory containment conditions and (iii) we developed in vivo gene transfer vectors to express anti-SARS-CoV-2 mAbs. CONCLUSIONS A single intranasal dose of rAAV9 or rSIV.F/HN vectors expressing anti-SARS-CoV-2 mAbs significantly reduced SARS-CoV-2 mimic infection in the lower respiratory tract of hACE2-expressing mice. If translated, the VIP approach could potentially offer a highly effective, long-term protection against COVID-19 for highly vulnerable populations; especially immune-deficient/senescent individuals, who fail to respond to conventional SARS-CoV-2 vaccines. The in vivo expression of multiple anti-SARS-CoV-2 mAbs could enhance protection and prevent rapid mutational escape.
Collapse
Affiliation(s)
- Yue Du
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Kamran M Miah
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Omar Habib
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Helena Meyer-Berg
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Catriona C Conway
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Mariana A Viegas
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rebecca Dean
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Jincun Zhao
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Yanqun Wang
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | | | - Toby P E Gamlen
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Deborah R Gill
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen C Hyde
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
141
|
Pang W, Lu Y, Zhao YB, Shen F, Fan CF, Wang Q, He WQ, He XY, Li ZK, Chen TT, Yang CX, Li YZ, Xiao SX, Zhao ZJ, Huang XS, Luo RH, Yang LM, Zhang M, Dong XQ, Li MH, Feng XL, Zhou QC, Qu W, Jiang S, Ouyang S, Zheng YT. A variant-proof SARS-CoV-2 vaccine targeting HR1 domain in S2 subunit of spike protein. Cell Res 2022; 32:1068-1085. [PMID: 36357786 PMCID: PMC9648449 DOI: 10.1038/s41422-022-00746-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
The emerging SARS-CoV-2 variants, commonly with many mutations in S1 subunit of spike (S) protein are weakening the efficacy of the current vaccines and antibody therapeutics. This calls for the variant-proof SARS-CoV-2 vaccines targeting the more conserved regions in S protein. Here, we designed a recombinant subunit vaccine, HR121, targeting the conserved HR1 domain in S2 subunit of S protein. HR121 consisting of HR1-linker1-HR2-linker2-HR1, is conformationally and functionally analogous to the HR1 domain present in the fusion intermediate conformation of S2 subunit. Immunization with HR121 in rabbits and rhesus macaques elicited highly potent cross-neutralizing antibodies against SARS-CoV-2 and its variants, particularly Omicron sublineages. Vaccination with HR121 achieved near-full protections against prototype SARS-CoV-2 infection in hACE2 transgenic mice, Syrian golden hamsters and rhesus macaques, and effective protection against Omicron BA.2 infection in Syrian golden hamsters. This study demonstrates that HR121 is a promising candidate of variant-proof SARS-CoV-2 vaccine with a novel conserved target in the S2 subunit for application against current and future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Wei Pang
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Ying Lu
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Yan-Bo Zhao
- grid.411503.20000 0000 9271 2478The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian China
| | - Fan Shen
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Chang-Fa Fan
- grid.410749.f0000 0004 0577 6238Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Qian Wang
- grid.8547.e0000 0001 0125 2443Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wen-Qiang He
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yan He
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Ze-Kai Li
- grid.411503.20000 0000 9271 2478The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian China
| | - Tao-Tao Chen
- grid.411503.20000 0000 9271 2478The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian China
| | - Cui-Xian Yang
- grid.508267.eYunnan Provincial Infectious Disease Hospital, Kunming, Yunnan China
| | - You-Zhi Li
- grid.411503.20000 0000 9271 2478The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian China
| | - Si-Xuan Xiao
- grid.411503.20000 0000 9271 2478The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian China
| | - Zu-Jiang Zhao
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Xu-Sheng Huang
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Rong-Hua Luo
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Liu-Meng Yang
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Mi Zhang
- grid.508267.eYunnan Provincial Infectious Disease Hospital, Kunming, Yunnan China
| | - Xing-Qi Dong
- grid.508267.eYunnan Provincial Infectious Disease Hospital, Kunming, Yunnan China
| | - Ming-Hua Li
- grid.9227.e0000000119573309Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Xiao-Li Feng
- grid.9227.e0000000119573309Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Qing-Cui Zhou
- grid.9227.e0000000119573309Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Wang Qu
- grid.9227.e0000000119573309Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China.
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,University of the Chinese Academy of Sciences, Beijing, China. .,Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
142
|
Zhang X, Chen S, Cao Z, Yao Y, Yu J, Zhou J, Gao G, He P, Dong Z, Zhong J, Luo J, Wei H, Zhang H. Increased pathogenicity and aerosol transmission for one SARS-CoV-2 B.1.617.2 Delta variant over the wild-type strain in hamsters. Virol Sin 2022; 37:796-803. [PMID: 36182073 PMCID: PMC9519367 DOI: 10.1016/j.virs.2022.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/26/2022] [Indexed: 12/27/2022] Open
Abstract
During the two-year pandemic of coronavirus disease 2019 (COVID-19), its causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been evolving. SARS-CoV-2 Delta, a variant of concern, has become the dominant circulating strain worldwide within just a few months. Here, we performed a comprehensive analysis of a new B.1.617.2 Delta strain (Delta630) compared with the early WIV04 strain (WIV04) in vitro and in vivo, in terms of replication, infectivity, pathogenicity, and transmission in hamsters. When inoculated intranasally, Delta630 led to more pronounced weight loss and more severe disease in hamsters. Moreover, 40% mortality occurred about one week after infection with 104 PFU of Delta630, whereas no deaths occurred even after infection with 105 PFU of WIV04 or other strains belonging to the Delta variant. Moreover, Delta630 outgrew over WIV04 in the competitive aerosol transmission experiment. Taken together, the Delta630 strain showed increased replication ability, pathogenicity, and transmissibility over WIV04 in hamsters. To our knowledge, this is the first SARS-CoV-2 strain that causes death in a hamster model, which could be an asset for the efficacy evaluation of vaccines and antivirals against infections of SARS-CoV-2 Delta strains. The underlying molecular mechanisms of increased virulence and transmission await further analysis.
Collapse
Affiliation(s)
- Xinghai Zhang
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China,Corresponding authors
| | - Shaohong Chen
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China,University of Chinese Academy of Sciences, Beijing, 101409, China
| | - Zengguo Cao
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yanfeng Yao
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Junping Yu
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Junhui Zhou
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China,University of Chinese Academy of Sciences, Beijing, 101409, China
| | - Ge Gao
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ping He
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China,University of Chinese Academy of Sciences, Beijing, 101409, China
| | - Zhuo Dong
- Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan, 430040, China
| | - Jie Zhong
- Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan, 430040, China
| | - Jing Luo
- Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan, 430040, China
| | - Hongping Wei
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China,Corresponding authors
| | - Huajun Zhang
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China,Corresponding authors
| |
Collapse
|
143
|
Zhang Y, Zhang L, Wu J, Yu Y, Liu S, Li T, Li Q, Ding R, Wang H, Nie J, Cui Z, Wang Y, Huang W, Wang Y. A second functional furin site in the SARS-CoV-2 spike protein. Emerg Microbes Infect 2022; 11:182-194. [PMID: 34856891 PMCID: PMC8741242 DOI: 10.1080/22221751.2021.2014284] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ubiquitously-expressed proteolytic enzyme furin is closely related to the pathogenesis of SARS-CoV-2 and therefore represents a key target for antiviral therapy. Based on bioinformatic analysis and pseudovirus tests, we discovered a second functional furin site located in the spike protein. Furin still increased the infectivity of mutated SARS-CoV-2 pseudovirus in 293T-ACE2 cells when the canonical polybasic cleavage site (682-686) was deleted. However, K814A mutation eliminated the enhancing effect of furin on virus infection. Furin inhibitor prevented infection by 682-686-deleted SARS-CoV-2 in 293T-ACE2-furin cells, but not the K814A mutant. K814A mutation did not affect the activity of TMPRSS2 and cathepsin L but did impact the cleavage of S2 into S2' and cell-cell fusion. Additionally, we showed that this functional furin site exists in RaTG13 from bat and PCoV-GD/GX from pangolin. Therefore, we discovered a new functional furin site that is pivotal in promoting SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yue Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
- National Vaccine & Serum Institute, Beijing, People's Republic of China
| | - Li Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Jiajing Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Yuanling Yu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Shuo Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Tao Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Qianqian Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Ruxia Ding
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Haixin Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Zhimin Cui
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Yulin Wang
- National Vaccine & Serum Institute, Beijing, People's Republic of China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
- Lead Contact
| |
Collapse
|
144
|
Jing X, Wu J, Dong C, Gao J, Seki T, Kim C, Urgard E, Hosaka K, Yang Y, Long S, Huang P, Zheng J, Szekely L, Zhang Y, Tao W, Coquet J, Ge M, Chen Y, Adner M, Cao Y. COVID-19 instigates adipose browning and atrophy through VEGF in small mammals. Nat Metab 2022; 4:1674-1683. [PMID: 36482111 PMCID: PMC9771808 DOI: 10.1038/s42255-022-00697-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/21/2022] [Indexed: 12/13/2022]
Abstract
Patients with COVID-19 frequently manifest adipose atrophy, weight loss and cachexia, which significantly contribute to poor quality of life and mortality1,2. Browning of white adipose tissue and activation of brown adipose tissue are effective processes for energy expenditure3-7; however, mechanistic and functional links between SARS-CoV-2 infection and adipose thermogenesis have not been studied. In this study, we provide experimental evidence that SARS-CoV-2 infection augments adipose browning and non-shivering thermogenesis (NST), which contributes to adipose atrophy and body weight loss. In mouse and hamster models, SARS-CoV-2 infection activates brown adipose tissue and instigates a browning or beige phenotype of white adipose tissues, including augmented NST. This browning phenotype was also observed in post-mortem adipose tissue of four patients who died of COVID-19. Mechanistically, high levels of vascular endothelial growth factor (VEGF) in the adipose tissue induces adipose browning through vasculature-adipocyte interaction. Inhibition of VEGF blocks COVID-19-induced adipose tissue browning and NST and partially prevents infection-induced body weight loss. Our data suggest that the browning of adipose tissues induced by COVID-19 can contribute to adipose tissue atrophy and weight loss observed during infection. Inhibition of VEGF signaling may represent an effective approach for preventing and treating COVID-19-associated weight loss.
Collapse
Affiliation(s)
- Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Jieyu Wu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Caijuan Dong
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Karolinska Institute, Stockholm, Sweden
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juan Gao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Takahiro Seki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Egon Urgard
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Kayoko Hosaka
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Yunlong Yang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Siwen Long
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Ping Huang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Laszlo Szekely
- Department of Pathology/Cytology, Karolinska University Laboratory, Stockholm, Sweden
| | - Yuanting Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong, Hong Kong
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan Coquet
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Minghua Ge
- Department of Head, Neck and Thyroid Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuguo Chen
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
| | - Mikael Adner
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Karolinska Institute, Stockholm, Sweden
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
145
|
Adams LE, Leist SR, Dinnon KH, West A, Gully KL, Anderson EJ, Loome JF, Madden EA, Powers JM, Schäfer A, Sarkar S, Castillo IN, Maron JS, McNamara RP, Bertera HL, Zweigert MR, Higgins JS, Hampton BK, Premkumar L, Alter G, Montgomery SA, Baxter VK, Heise MT, Baric RS. Fc mediated pan-sarbecovirus protection after alphavirus vector vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.28.518175. [PMID: 36482964 PMCID: PMC9727761 DOI: 10.1101/2022.11.28.518175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two group 2B β-coronaviruses (sarbecoviruses) have caused regional and global epidemics in modern history. The mechanisms of cross protection driven by the sarbecovirus spike, a dominant immunogen, are less clear yet critically important for pan-sarbecovirus vaccine development. We evaluated the mechanisms of cross-sarbecovirus protective immunity using a panel of alphavirus-vectored vaccines covering bat to human strains. While vaccination did not prevent virus replication, it protected against lethal heterologous disease outcomes in both SARS-CoV-2 and clade 2 bat sarbecovirus HKU3-SRBD challenge models. The spike vaccines tested primarily elicited a highly S1-specific homologous neutralizing antibody response with no detectable cross-virus neutralization. We found non-neutralizing antibody functions that mediated cross protection in wild-type mice were mechanistically linked to FcgR4 and spike S2-binding antibodies. Protection was lost in FcR knockout mice, further supporting a model for non-neutralizing, protective antibodies. These data highlight the importance of FcR-mediated cross-protective immune responses in universal pan-sarbecovirus vaccine designs.
Collapse
|
146
|
Davis M, Voss K, Turnbull JB, Gustin AT, Knoll M, Muruato A, Hsiang TY, Dinnon KH, Leist SR, Nickel K, Baric RS, Ladiges W, Akilesh S, Smith KD, Gale M. A C57BL/6 Mouse model of SARS-CoV-2 infection recapitulates age- and sex-based differences in human COVID-19 disease and recovery. RESEARCH SQUARE 2022:rs.3.rs-2194450. [PMID: 36415465 PMCID: PMC9681052 DOI: 10.21203/rs.3.rs-2194450/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We present a comprehensive analysis of SARS-CoV-2 infection and recovery in wild type C57BL/6 mice, demonstrating that this is an ideal model of infection and recovery that accurately phenocopies acute human disease arising from the ancestral SARS-CoV-2. Disease severity and infection kinetics are age- and sex-dependent, as has been reported for humans, with older mice and males in particular exhibiting decreased viral clearance and increased mortality. We identified key parallels with human pathology, including intense virus positivity in bronchial epithelial cells, wide-spread alveolar involvement, recruitment of immune cells to the infected lungs, and acute bronchial epithelial cell death. Moreover, older animals experienced increased virus persistence, delayed dispersal of immune cells into lung parenchyma, and morphologic evidence of tissue damage and inflammation. Parallel analysis of SCID mice revealed that the adaptive immune response was not required for recovery from COVID disease symptoms nor early phase clearance of virus but was required for efficient clearance of virus at later stages of infection. Finally, transcriptional analyses indicated that induction and duration of key innate immune gene programs may explain differences in age-dependent disease severity. Importantly, these data demonstrate that SARS-CoV-2-mediated disease in C57BL/6 mice accurately phenocopies human disease across ages and establishes a platform for future therapeutic and genetic screens for not just SARS-CoV-2 but also novel coronaviruses that have yet to emerge.
Collapse
|
147
|
Nakandakari-Higa S, Parsa R, Reis BS, de Carvalho RVH, Mesin L, Hoffmann HH, Bortolatto J, Muramatsu H, Lin PJC, Bilate AM, Rice CM, Pardi N, Mucida D, Victora GD, Canesso MCC. A minimally-edited mouse model for infection with multiple SARS-CoV-2 strains. Front Immunol 2022; 13:1007080. [PMID: 36451809 PMCID: PMC9703079 DOI: 10.3389/fimmu.2022.1007080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/24/2022] [Indexed: 01/25/2024] Open
Abstract
Efficient mouse models to study SARS-CoV-2 infection are critical for the development and assessment of vaccines and therapeutic approaches to mitigate the current pandemic and prevent reemergence of COVID-19. While the first generation of mouse models allowed SARS-CoV-2 infection and pathogenesis, they relied on ectopic expression and non-physiological levels of human angiotensin-converting enzyme 2 (hACE2). Here we generated a mouse model carrying the minimal set of modifications necessary for productive infection with multiple strains of SARS-CoV-2. Substitution of only three amino acids in the otherwise native mouse Ace2 locus (Ace2 TripleMutant or Ace2™), was sufficient to render mice susceptible to both SARS-CoV-2 strains USA-WA1/2020 and B.1.1.529 (Omicron). Infected Ace2™ mice exhibited weight loss and lung damage and inflammation, similar to COVID-19 patients. Previous exposure to USA-WA1/2020 or mRNA vaccination generated memory B cells that participated in plasmablast responses during breakthrough B.1.1.529 infection. Thus, the Ace2™ mouse replicates human disease after SARS-CoV-2 infection and provides a tool to study immune responses to sequential infections in mice.
Collapse
Affiliation(s)
| | - Roham Parsa
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, United States
| | - Bernardo S. Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, United States
| | | | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States
| | - Juliana Bortolatto
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, United States
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Angelina M. Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, United States
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, United States
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, United States
| | - Gabriel D. Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States
| | - Maria Cecilia C. Canesso
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, United States
| |
Collapse
|
148
|
Hilligan KL, Oyesola OO, Namasivayam S, Howard N, Clancy CS, Oland SD, Garza NL, Lafont BAP, Johnson RF, Mayer-Barber KD, Sher A, Loke P. Helminth exposure protects against murine SARS-CoV-2 infection through macrophage dependent T cell activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.09.515832. [PMID: 36380767 PMCID: PMC9665339 DOI: 10.1101/2022.11.09.515832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Helminth endemic regions report lower COVID-19 morbidity and mortality. Here, we show that lung remodeling from a prior infection with a lung migrating helminth, Nippostrongylus brasiliensis , enhances viral clearance and survival of human-ACE2 transgenic mice challenged with SARS-CoV-2 (SCV2). This protection is associated with a lymphocytic infiltrate including an increased accumulation of pulmonary SCV2-specific CD8+ T cells and anti-CD8 antibody depletion abrogated the N. brasiliensis -mediated reduction in viral loads. Pulmonary macrophages with a type-2 transcriptional signature persist in the lungs of N. brasiliensis exposed mice after clearance of the parasite and establish a primed environment for increased antigen presentation. Accordingly, depletion of macrophages ablated the augmented viral clearance and accumulation of CD8+ T cells driven by prior N. brasiliensis infection. Together, these findings support the concept that lung migrating helminths can limit disease severity during SCV2 infection through macrophage-dependent enhancement of anti-viral CD8+ T cell responses. Abstract Figure
Collapse
Affiliation(s)
- Kerry L. Hilligan
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Oyebola O. Oyesola
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nina Howard
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chad S. Clancy
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Sandra D. Oland
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole L. Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bernard A. P. Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reed F. Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - P’ng Loke
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
149
|
Yang S, Tian M, Dai Y, Feng S, Wang Y, Chhangani D, Ou T, Li W, Yang Z, McAdow J, Rincon-Limas DE, Yin X, Tai W, Cheng G, Johnson A. Infection and chronic disease activate a brain-muscle signaling axis that regulates muscle performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2020.12.20.423533. [PMID: 33398283 PMCID: PMC7781322 DOI: 10.1101/2020.12.20.423533] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infections and neurodegenerative diseases induce neuroinflammation, but affected individuals often show a number of non-neural symptoms including muscle pain and muscle fatigue. The molecular pathways by which neuroinflammation causes pathologies outside the central nervous system (CNS) are poorly understood, so we developed three models to investigate the impact of neuroinflammation on muscle performance. We found that bacterial infection, COVID-like viral infection, and expression of a neurotoxic protein associated with Alzheimer' s disease promoted the accumulation of reactive oxygen species (ROS) in the brain. Excessive ROS induces the expression of the cytokine Unpaired 3 (Upd3) in insects, or its orthologue IL-6 in mammals, and CNS-derived Upd3/IL-6 activates the JAK/Stat pathway in skeletal muscle. In response to JAK/Stat signaling, mitochondrial function is impaired and muscle performance is reduced. Our work uncovers a brain-muscle signaling axis in which infections and chronic diseases induce cytokine-dependent changes in muscle performance, suggesting IL-6 could be a therapeutic target to treat muscle weakness caused by neuroinflammation.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Meijie Tian
- Genetics Branch, Oncogenomics Section, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yulong Dai
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Shengyong Feng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yunyun Wang
- Tongji Medical College of Huazhong University of Science and Technology, Department of Forensic Medicine, Wuhan, Hubei 430074, China
| | - Deepak Chhangani
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tiffany Ou
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Wenle Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Ze Yang
- The Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Jennifer McAdow
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Diego E. Rincon-Limas
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Wanbo Tai
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Aaron Johnson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Lead corresponding author
| |
Collapse
|
150
|
Hao Y, Wang Y, Wang M, Zhou L, Shi J, Cao J, Wang D. The origins of COVID-19 pandemic: A brief overview. Transbound Emerg Dis 2022; 69:3181-3197. [PMID: 36218169 PMCID: PMC9874793 DOI: 10.1111/tbed.14732] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 02/06/2023]
Abstract
The novel coronavirus disease (COVID-19) outbreak that emerged at the end of 2019 has now swept the world for more than 2 years, causing immeasurable damage to the lives and economies of the world. It has drawn so much attention to discovering how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated and entered the human body. The current argument revolves around two contradictory theories: a scenario of laboratory spillover events and human contact with zoonotic diseases. Here, we reviewed the transmission, pathogenesis, possible hosts, as well as the genome and protein structure of SARS-CoV-2, which play key roles in the COVID-19 pandemic. We believe the coronavirus was originally transmitted to human by animals rather than by a laboratory leak. However, there still needs more investigations to determine the source of the pandemic. Understanding how COVID-19 emerged is vital to developing global strategies for mitigating future outbreaks.
Collapse
Affiliation(s)
- Ying‐Jian Hao
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Yu‐Lan Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Mei‐Yue Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Lan Zhou
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Jian‐Yun Shi
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Ji‐Min Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - De‐Ping Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| |
Collapse
|