101
|
Unniappan S, Kieffer TJ. Leptin extends the anorectic effects of chronic PYY(3-36) administration in ad libitum-fed rats. Am J Physiol Regul Integr Comp Physiol 2008; 295:R51-8. [PMID: 18417649 DOI: 10.1152/ajpregu.00234.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute administration of peptide YY(3-36) [PYY(3-36)] results in a reduction in food intake in several different vertebrates. However, long-term continuous administration of PYY(3-36) causes only a transient reduction in food intake, thus potentially limiting its therapeutic efficacy. We hypothesized that a fall in leptin levels associated with reduced food intake could contribute to the transient anorectic effects of continuous PYY(3-36) infusion and thus that leptin replacement might prolong the anorectic effects of PYY(3-36). Seven-day administration of 100 microg x kg body wt(-1) x day(-1) PYY(3-36) using osmotic minipumps caused a significant reduction in food intake of ad libitum-fed rats, but only for the first 2 days postimplantation. Circulating levels of leptin were reduced 1 day following continuous infusion of PYY(3-36), and combined leptin infusion at a dose of leptin that had no anorectic effects on its own (100 microg x kg body wt(-1) x day(-1)) prolonged the anorectic actions of PYY(3-36) in ad libitum-fed rats for up to 6 days postimplantation and yielded reduced weight gain compared with either peptide alone. The inhibitory effects of 100 microg x kg body wt(-1) x day(-1) PYY(3-36) on food intake were absent in rats refed after a 24-h fast and substantially reduced at a dose of 1,000 microg x kg body wt(-1) x day(-1) PYY(3-36). Leptin replacement was unable to recover the anorectic effects of PYY(3-36) in fasted rats. Our results suggest that an acute fall in leptin levels is not solely responsible for limiting duration of action of chronic PYY(3-36) infusion, yet chronic coadministration of a subanorectic dose of leptin can extend the anorectic effects of PYY(3-36).
Collapse
Affiliation(s)
- Suraj Unniappan
- Laboratory of Molecular and Cellular Medicine, Departments of Cellular and Physiological Sciences and Surgery, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
102
|
Parkinson JRC, Dhillo WS, Small CJ, Chaudhri OB, Bewick GA, Pritchard I, Moore S, Ghatei MA, Bloom SR. PYY3-36 injection in mice produces an acute anorexigenic effect followed by a delayed orexigenic effect not observed with other anorexigenic gut hormones. Am J Physiol Endocrinol Metab 2008; 294:E698-708. [PMID: 18285527 DOI: 10.1152/ajpendo.00405.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Peptide YY (PYY) is secreted postprandially from the endocrine L cells of the gastrointestinal tract. PYY(3-36), the major circulating form of the peptide, is thought to reduce food intake in humans and rodents via high-affinity binding to the autoinhibitory neuropeptide Y (NPY) receptor within the arcuate nucleus. We studied the effect of early light-phase injection of PYY(3-36) on food intake in mice fasted for 0, 6, 12, 18, 24, and 30 h and show that PYY(3-36) produces an acute anorexigenic effect regardless of the duration of fasting. We also show evidence of a delayed orexigenic effect in ad libitum-fed mice injected with PYY(3-36) in the early light phase. This delayed orexigenic effect also occurs in mice administered a potent analog of PYY(3-36), d-Allo Ile(3) PYY(3-36), but not following injection of other anorectic agents (glucagon-like-peptide 1, oxyntomodulin, and lithium chloride). Early light-phase injection of PYY(3-36) to ad libitum-fed mice resulted in a trend toward increased levels of hypothalamic NPY and agouti-related peptide mRNA and a decrease in proopiomelanocortin mRNA at the beginning of the dark phase. Furthermore, plasma levels of ghrelin were increased significantly, and there was a trend toward decreased plasma PYY(3-36) levels at the beginning of the dark phase. These data indicate that PYY(3-36) injection results in an acute anorexigenic effect followed by a delayed orexigenic effect.
Collapse
Affiliation(s)
- James R C Parkinson
- Department of Metabolic Medicine, Hammersmith Hospital, Imperial College London, Du Cane Road, London, W12 ONN UK
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Affiliation(s)
- Josephine M Egan
- National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA
| | | |
Collapse
|
104
|
Boey D, Lin S, Enriquez RF, Lee NJ, Slack K, Couzens M, Baldock PA, Herzog H, Sainsbury A. PYY transgenic mice are protected against diet-induced and genetic obesity. Neuropeptides 2008; 42:19-30. [PMID: 18164057 DOI: 10.1016/j.npep.2007.11.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/16/2007] [Accepted: 11/12/2007] [Indexed: 10/22/2022]
Abstract
The gut-derived hormone, peptide YY (PYY) reduces food intake and enhances satiety in both humans and animals. Obese individuals also have a deficiency in circulating peptide YY, although whether this is a cause or a consequence of obesity is unclear. Our aims were to determine whether peptide YY (PYY) over-expression may have therapeutic effects for the treatment of obesity by altering energy balance and glucose homeostasis. We generated PYY transgenic mice and measured body weight, food intake, temperature, adiposity, glucose tolerance, circulating hormone and lipid concentrations and hypothalamic neuropeptide levels (neuropeptide Y; proopiomelanocortin, and thyrotropin-releasing hormone) under chow and high-fat feeding and after crossing these mice onto the genetically obese leptin-deficient ob/ob mouse background. PYY transgenic mice were protected against diet-induced obesity in association with increased body temperature (indicative of increased thermogenesis) and sustained expression of thyrotropin-releasing hormone in the paraventricular nucleus of the hypothalamus. Moreover, PYY transgenic mice crossed onto the genetically obese ob/ob background had significantly decreased weight gain and adiposity, reduced serum triglyceride levels and improved glucose tolerance compared to ob/ob controls. There was no effect of PYY transgenic over expression on basal or fasting-induced food intake measured at 11-12 weeks of age. Together, these findings suggest that long-term administration of PYY, PYY-like compounds or agents that stimulate PYY synthesis in vivo can reduce excess adiposity and improve glucose tolerance, possibly via effects on the hypothalamo-pituitary-thyroid axis and thermogenesis.
Collapse
Affiliation(s)
- Dana Boey
- Neuroscience Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Abstract
PURPOSE OF REVIEW This review discusses recent studies examining the effects of peptide YY on energy homeostasis, highlights the emerging hedonic effects of peptide YY and evaluates the therapeutic potential of the peptide YY system. RECENT FINDINGS A role for exogenous PYY3-36 as an anorectic agent in obese humans and rodents has been established and weight loss effects demonstrated in obese rodents. New lines of evidence support a role for endogenous peptide YY in regulating energy homeostasis. The NPY-Y2 receptor mediates the anorectic actions of PYY3-36 with rodent studies implicating the hypothalamus, vagus and brainstem as key target sites. Functional imaging in humans has confirmed that PYY3-36 activates brainstem and hypothalamic regions. The greatest effects, however, were observed within the orbitofrontal cortex, a brain region involved in reward processing. Further evidence for a hedonic role for PYY3-36 is supported by rodent studies showing that PYY3-36 decreases the motivation to seek high-fat food. Rodent studies using selective Y2 agonists and strategies combining PYY3-36/Y2 agonists with other anorectic agents have revealed increased anorectic and weight-reducing effects. SUMMARY Peptide YY plays a role in the integrative regulation of metabolism. The emerging hedonic effects of peptide YY together with the weight-reducing effects observed in obese rodents suggest that targeting the peptide YY system may offer a therapeutic strategy for obesity.
Collapse
Affiliation(s)
- Keval Chandarana
- Centre for Diabetes and Endocrinology, Department of Medicine, University College London, London, WC1E 6JJ, UK
| | | |
Collapse
|
106
|
Mendieta-Zerón H, López M, Diéguez C. Gastrointestinal peptides controlling body weight homeostasis. Gen Comp Endocrinol 2008; 155:481-95. [PMID: 18164707 DOI: 10.1016/j.ygcen.2007.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 11/06/2007] [Accepted: 11/12/2007] [Indexed: 12/25/2022]
Abstract
Obesity has become an international public health problem. Unfortunately, effective treatment options are limited. In the last 20 years, research in obesity and associated pathologies has derived in a significant increase in the knowledge of the physiological and molecular mechanism regulating body mass, such as gastrointestinal-neuroendocrine communications. Gut-brain peptides may provide attractive therapeutic targets against this disease. This review summarizes research into energy balance through gastrointestinal tract peptides. Understanding these molecular mechanisms will provide new pharmacological targets for the treatment of obesity and appetite disorders.
Collapse
Affiliation(s)
- Hugo Mendieta-Zerón
- Department of Physiology, School of Medicine, University of Santiago de Compostela, San Franscisco s/n, 15782 Santiago de Compostea, A Coruña, Spain
| | | | | |
Collapse
|
107
|
Abstract
PURPOSE OF REVIEW This review discusses the role of enteroendocrine cells of the gastrointestinal tract as chemoreceptors that sense lumen contents and induce changes in gastrointestinal function and food intake through the release of signaling substances acting on a variety of targets locally or at a distance. RECENT FINDINGS Recent evidence supports the concept that chemosensing in the gut involves G protein-coupled receptors and effectors that are known to mediate gustatory signals in the oral cavity. These include sweet-taste and bitter-taste receptors, and their associated G proteins, which are expressed in the gastrointestinal mucosa, including selected populations of enteroendocrine cells. In addition, taste receptor agonists elicit a secretory response in enteroendocrine cells in vitro and in animals in vivo, and induce neuronal activation. SUMMARY Taste-signaling molecules expressed in the gastrointestinal mucosa might participate in the functional detection of nutrients and harmful substances in the lumen and prepare the gut to absorb them or initiate a protective response. They might also participate in the control of food intake through the activation of gut-brain neural pathways. These findings provide a new dimension to unraveling the regulatory circuits initiated by luminal contents of the gastrointestinal tract.
Collapse
Affiliation(s)
- Catia Sternini
- Division of Digestive Diseases and CURE: Digestive Diseases Research Center, and Departments of Medicine, USA.
| | | | | |
Collapse
|
108
|
|
109
|
Blevins JE, Chelikani PK, Haver AC, Reidelberger RD. PYY(3-36) induces Fos in the arcuate nucleus and in both catecholaminergic and non-catecholaminergic neurons in the nucleus tractus solitarius of rats. Peptides 2008; 29:112-9. [PMID: 18082288 PMCID: PMC2219464 DOI: 10.1016/j.peptides.2007.11.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 11/01/2007] [Accepted: 11/02/2007] [Indexed: 02/01/2023]
Abstract
Peptide YY (3-36) [PYY(3-36)] inhibits feeding in rodents, nonhuman primates and humans, yet the neural circuits underlying this action remain to be determined. Here we assessed whether PYY(3-36) inhibits feeding by activating neurons in forebrain and hindbrain sites containing Y2 receptors and linked to control of food intake, or in hindbrain sites immediately downstream of vagal afferent neurons. Rats received an anorexigenic dose of PYY(3-36), and the number of neurons expressing Fos, an indicator of neuronal activation, was determined in anterior hypothalamus (AH), arcuate nucleus (ARC), dorsomedial hypothalamus (DMH), lateral hypothalamus (LH), ventromedial hypothalamus (VMH), central nucleus of the amygdala (CeA), area postrema (AP), and caudal medial nucleus tractus solitarius (cmNTS), commissural NTS (cNTS), and gelatinosus NTS (gNTS). Expression of tyrosine hydroxylase (TH), an indicator of catecholamine synthesis, was also measured in the cmNTS. PYY(3-36) increased Fos in ARC, cmNTS, gNTS and AP. Approximately 10% of Fos+ neurons in the cmNTS were TH+. These results suggest that PYY(3-36) inhibits feeding through direct activation of ARC neurons, and direct and/or indirect activation via vagal afferent nerves of cmNTS, gNTS and AP, including some catecholaminergic neurons in the cmNTS.
Collapse
Affiliation(s)
- J. E. Blevins
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Medical Research Service, VA Puget Sound Health Care System, Seattle, WA 98108
| | - P. K. Chelikani
- Department of Biomedical Sciences, Creighton University, Omaha, NE, 68178
| | - A. C. Haver
- Research Service, VA Nebraska Western Iowa Health Care System, Omaha, NE, 68105
| | - R. D. Reidelberger
- Department of Biomedical Sciences, Creighton University, Omaha, NE, 68178
- Research Service, VA Nebraska Western Iowa Health Care System, Omaha, NE, 68105
| |
Collapse
|
110
|
Roth JD, Coffey T, Jodka CM, Maier H, Athanacio JR, Mack CM, Weyer C, Parkes DG. Combination therapy with amylin and peptide YY[3-36] in obese rodents: anorexigenic synergy and weight loss additivity. Endocrinology 2007; 148:6054-61. [PMID: 17761760 DOI: 10.1210/en.2007-0898] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Circulating levels of the pancreatic beta-cell peptide hormone amylin and the gut peptide PYY[3-36] increase after nutrient ingestion. Both have been implicated as short-term signals of meal termination with anorexigenic and weight-reducing effects. However, their combined effects are unknown. We report that the combination of amylin and PYY[3-36] elicited greater anorexigenic and weight-reducing effects than either peptide alone. In high-fat-fed rats, a single ip injection of amylin (10 microg/kg) plus PYY[3-36] (1000 microg/kg) reduced food intake for 24 h (P < 0.05 vs. vehicle), whereas the anorexigenic effects of either PYY[3-36] or amylin alone began to diminish 6 h after injection. These anorexigenic effects were dissociable from changes in locomotor activity. Subcutaneous infusion of amylin plus PYY[3-36] for 14 d suppressed food intake and body weight to a greater extent than either agent alone in both rat and mouse diet-induced obesity (DIO) models (P < 0.05). In DIO-prone rats, 24-h metabolic rate was maintained despite weight loss, and amylin plus PYY[3-36] (but not monotherapy) increased 24-h fat oxidation (P < 0.05 vs. vehicle). Finally, a 4 x 3 factorial design was used to formally describe the interaction between amylin and PYY[3-36]. DIO-prone rats were treated with amylin (0, 4, 20, and 100 microg/kg.d) and PYY[3-36] (0, 200, 400 microg/kg.d) alone and in combination for 14 d. Statistical analyses revealed that food intake suppression with amylin plus PYY[3-36] treatment was synergistic, whereas body weight reduction was additive. Collectively, these observations highlight the importance of studying peptide hormones in combination and suggest that integrated neurohormonal approaches may hold promise as treatments for obesity.
Collapse
Affiliation(s)
- Jonathan D Roth
- Amylin Pharmaceuticals Inc., 9360 Towne Centre Drive, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Rozengurt E, Sternini C. Taste receptor signaling in the mammalian gut. Curr Opin Pharmacol 2007; 7:557-62. [PMID: 18024184 PMCID: PMC2753238 DOI: 10.1016/j.coph.2007.10.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 10/01/2007] [Accepted: 10/05/2007] [Indexed: 12/12/2022]
Abstract
Molecular sensing by gastrointestinal (GI) cells plays a crucial role in the control of multiple fundamental functions including digestion, regulation of caloric intake, pancreatic insulin secretion, and metabolism, as well as protection from ingested harmful drugs and toxins. These processes are likely to be mediated by the initiation of humoral and/or neural pathways through the activation of endocrine cells. However, the initial recognition events and mechanism(s) involved are still largely unknown. This article reviews the current evidence that the chemosensory machinery discovered in specialized neuroepithelial taste receptor cells of the lingual epithelium is operational in enteroendocrine open GI cells that sense the chemical composition of the luminal contents of the gut.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Division of Digestive Diseases and CURE, Digestive Diseases Research Center, David Geffen School of Medicine, University of California at Los Angeles, 900 Veteran Avenue, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
112
|
Wortley KE, Garcia K, Okamoto H, Thabet K, Anderson KD, Shen V, Herman JP, Valenzuela D, Yancopoulos GD, Tschöp MH, Murphy A, Sleeman MW. Peptide YY regulates bone turnover in rodents. Gastroenterology 2007; 133:1534-43. [PMID: 17920065 DOI: 10.1053/j.gastro.2007.08.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Accepted: 07/12/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Peptide YY (PYY) and pancreatic polypeptide (PPY) are members of the neuropeptide Y peptide family. The neuropeptide Y receptor signaling pathway has been implicated in a number of physiologic processes, including the regulation of energy balance and bone mass. To investigate the contribution of endogenous PYY and PPY to these processes, we generated both Pyy- and Ppy-deficient mice. METHODS Pyy(-/-) and Ppy(-/-) mice and their respective wild-type littermates were studied from 8 weeks to 9 months of age. Food intake, metabolic parameters, and locomotor activity were monitored using indirect calorimetry. Body composition and bone parameters were analyzed using dual energy x-ray absorptiometry, histomorphometry, and vertebral compression testing. RESULTS Studies in these mice showed an osteopenic phenotype specific to the Pyy-deficient line, which included a reduction in trabecular bone mass and a functional deficit in bone strength. Furthermore, female Pyy(-/-) mice showed a greater sensitivity to ovariectomy-induced bone loss compared with wild-type littermates. No food intake or metabolic phenotype was apparent in male or female Pyy(-/-) mice on standard chow. However, female Pyy(-/-) mice on a high-fat diet showed a greater propensity to gain body weight and adiposity. No metabolic or osteopenic phenotype was observed in Ppy-deficient mice. CONCLUSIONS These results indicate that endogenous PYY plays a critical role in regulating bone mass. In comparison, its role in regulating body weight is minor and is confined to situations of high-fat feeding.
Collapse
|
113
|
|
114
|
Ghitza UE, Nair SG, Golden SA, Gray SM, Uejima JL, Bossert JM, Shaham Y. Peptide YY3-36 decreases reinstatement of high-fat food seeking during dieting in a rat relapse model. J Neurosci 2007; 27:11522-32. [PMID: 17959795 PMCID: PMC2100402 DOI: 10.1523/jneurosci.5405-06.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 09/13/2007] [Accepted: 09/13/2007] [Indexed: 01/01/2023] Open
Abstract
A major problem in treating obesity is high rates of relapse to maladaptive food-taking habits during dieting. This relapse is often provoked by acute re-exposure to palatable food, food-associated cues, or stress. We used a reinstatement model, commonly used to study relapse to abused drugs, to explore the effect of peptide YY3-36 (PYY3-36) on reinstatement of high-fat (35%, 45 mg pellets) food seeking induced by acute exposure to the pellets (pellet priming), a cue previously associated with pellet delivery (pellet cue), or yohimbine (2 mg/kg, a pharmacological stressor). Rats were placed on a restricted diet (16 g of chow per day) and lever-pressed for the pellets for 9-12 sessions (6 h/d, every 48 h); pellet delivery was paired with a tone-light cue. They were then given 10-20 extinction sessions wherein lever presses were not reinforced with the pellets and subsequently tested for reinstatement of food seeking. Systemic PYY3-36 injections (100-200 microg/kg) decreased pellet priming- and pellet cue-induced reinstatement of food seeking but not yohimbine-induced reinstatement. Arcuate nucleus (Arc) injections of PYY3-36 (0.4 microg per side) decreased pellet priming-induced reinstatement. The attenuation of pellet priming-induced reinstatement by systemic PYY3-36 was reversed by systemic (2 mg/kg) but not Arc (0.5 microg per side) injections of the Y2 receptor antagonist BIIE0246. Arc PYY3-36 injections did not decrease pellet cue-induced reinstatement. Finally, systemic PYY3-36 injections had minimal effects on ongoing food self-administration or heroin priming- or heroin cue-induced reinstatement of heroin seeking. These data identify an effect of systemic PYY3-36 on relapse to food seeking that is independent of Y2 receptor activation in Arc and suggest that PYY3-36 should be considered for the treatment of relapse to maladaptive food-taking habits during dieting.
Collapse
Affiliation(s)
- Udi E. Ghitza
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224
| | - Sunila G. Nair
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224
| | - Sam A. Golden
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224
| | - Sarah M. Gray
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224
| | - Jamie L. Uejima
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224
| | - Jennifer M. Bossert
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224
| | - Yavin Shaham
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224
| |
Collapse
|
115
|
Whited KL, Tso P, Raybould HE. Involvement of apolipoprotein A-IV and cholecystokinin1 receptors in exogenous peptide YY3 36-induced stimulation of intestinal feedback. Endocrinology 2007; 148:4695-703. [PMID: 17641001 DOI: 10.1210/en.2006-1665] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Peptide YY (PYY)(3-36), released by intestinal lipid elicits functional effects that comprise the intestinal feedback response to luminal nutrients, but the pathway of action is not fully characterized. The aim of the present study was to determine the role of the apolipoprotein (apo) A-IV-cholecystokinin (CCK)(1) receptor (CCK(1)R) pathway in exogenous PYY(3-36)-induced activation of the gut-brain axis and inhibition of gastric emptying and food intake. PYY(3-36) (5 microg/100 g ip) significantly inhibited gastric emptying of a chow meal in wild-type but not A-IV(-/-) mice andCCK(1)R receptor blockade with devazepide (10 microg/100 g), abolished PYY(3-36)-induced inhibition of gastric emptying. PYY(3-36)-induced inhibition of food intake in both ad libitum-fed and 16-h fasted mice was unaltered in A-IV(-/-) mice, compared with wild-type controls, or by CCK(1)R receptor blockade with devazepide. PYY(3-36) activated neurons in the midregion of the nucleus of the solitary tract (bregma -7.32 to -7.76 mm) in A-IV(+/+) mice; this was measured by immunohistochemical localization of Fos protein. PYY(3-36)-induced Fos expression was significantly reduced by 65% in A-IV(+/+) mice pretreated systemically with the sensory neurotoxin capsaicin (5 mg/100 g), 78% by the CCK(1)R antagonist, devazepide (10 microg/100 g), and 39% by the Y2R antagonist, BIIE0246 (200 and 600 microg/100 g) and decreased by 67% in apo A-IV(-/-) mice, compared with A-IV(+/+) controls. The data suggest a role for apo A-IV and the CCK(1)R in PYY(3-36)-induced activation of the vagal afferent pathway and inhibition of gastric emptying, but this is likely not the pathway mediating the effects of PYY(3-36) on food intake.
Collapse
Affiliation(s)
- K L Whited
- Department of Anatomy, Physiology, and Cell Biology, University of California-Davis, Davis, CA 95616, USA
| | | | | |
Collapse
|
116
|
Dumont Y, Moyse E, Fournier A, Quirion R. Distribution of Peripherally Injected Peptide YY ([125I] PYY (3–36)) and Pancreatic Polypeptide ([125I] hPP) in the CNS: Enrichment in the Area Postrema. J Mol Neurosci 2007; 33:294-304. [DOI: 10.1007/s12031-007-9007-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 08/23/2007] [Indexed: 12/13/2022]
|
117
|
Abstract
We briefly survey the current knowledge and concepts regarding structure and function of the neuropeptide Y Y2 receptor and its agonists, especially as related to pharmacology of the receptor and its roles in pathological processes. Specific structural features are considered that could be responsible for the known compartmentalization and participation of the receptor in cell and tissue organization. This is further discussed in relation to changes of levels of the Y2 receptor in pathological conditions (especially in epilepsy and drug abuse), to endocytosis and recycling, and to participation in wound healing, retinopathy and angiogenesis. Properties of the receptor and of Y2 agonists are considered and reviewed in connection to the negative regulation of transmitter release, feeding, mood and social behavior. The possible involvement of the Y2 receptor in diabetes, carcinogenesis and bone formation is also reviewed.
Collapse
Affiliation(s)
- S L Parker
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | |
Collapse
|
118
|
López M, Tovar S, Vázquez MJ, Williams LM, Diéguez C. Peripheral tissue-brain interactions in the regulation of food intake. Proc Nutr Soc 2007; 66:131-55. [PMID: 17343779 DOI: 10.1017/s0029665107005368] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
More than 70 years ago the glucostatic, lipostatic and aminostatic hypotheses proposed that the central nervous system sensed circulating levels of different metabolites, changing feeding behaviour in response to the levels of those molecules. In the last 20 years the rapid increase in obesity and associated pathologies in developed countries has involved a substantial increase in the knowledge of the physiological and molecular mechanism regulating body mass. This effort has resulted in the recent discovery of new peripheral signals, such as leptin and ghrelin, as well as new neuropeptides, such as orexins, involved in body-weight homeostasis. The present review summarises research into energy balance, starting from the original classical hypotheses proposing metabolite sensing, through peripheral tissue-brain interactions and coming full circle to the recently-discovered role of hypothalamic fatty acid synthase in feeding regulation. Understanding these molecular mechanisms will provide new pharmacological targets for the treatment of obesity and appetite disorders.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, School of Medicine, University of Santiago de Compostela, C/San Francisco s/n 15782, Santiago de Compostela, A Coruña, Spain
| | | | | | | | | |
Collapse
|
119
|
Abstract
Many peptides are synthesized and released from the gastrointestinal tract. Although their roles in the regulation of gastrointestinal function have been known for some time, it is now evident that they also physiologically influence eating behavior. Our understanding of how neurohormonal gut-brain signaling regulates energy homeostasis has advanced significantly in recent years. Ghrelin is an orexigenic peptide produced by the stomach, which appears to act as a meal initiator. Satiety signals derived from the intestine and pancreas include peptide YY, pancreatic polypeptide, glucagon-like peptide 1, oxyntomodulin, and cholecystokinin. Recent research suggests that gut hormones can be manipulated to regulate energy balance in humans, and that obese subjects retain sensitivity to the actions of gut hormones. Gut hormone-based therapies may thus provide an effective and well-tolerated treatment for obesity.
Collapse
Affiliation(s)
- A M Wren
- Department of Metabolic Medicine, Imperial College London, London, England
| | | |
Collapse
|
120
|
Abstract
Numerous circulating peptides and steroids produced in the body influence appetite through their actions on the hypothalamus, the brain stem, and the autonomic nervous system. These hormones come from three major sites-fat cells, the gastrointestinal tract, and the pancreas. In this Review we provide a synthesis of recent evidence concerning the actions of these hormones on food intake.
Collapse
Affiliation(s)
- Anthony P. Coll
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 2XY, United Kingdom
| | - I. Sadaf Farooqi
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 2XY, United Kingdom
| | - Stephen O'Rahilly
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 2XY, United Kingdom
| |
Collapse
|
121
|
Chelikani PK, Haver AC, Reidelberger RD. Intermittent intraperitoneal infusion of peptide YY(3-36) reduces daily food intake and adiposity in obese rats. Am J Physiol Regul Integr Comp Physiol 2007; 293:R39-46. [PMID: 17428898 DOI: 10.1152/ajpregu.00164.2007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptide YY(3-36) [PYY(3-36)] is a gut-brain peptide that decreases food intake when administered by intravenous infusion to lean and obese humans and rats. However, chronic administration of PYY(3-36) by osmotic minipump to lean and obese rodents produces only a transient reduction in daily food intake and weight gain. It has recently been shown that 1-h intravenous infusions of PYY(3-36) every other hour for 10 days produced a sustained reduction in daily food intake, body weight, and adiposity in lean rats. Here, we determined whether intermittent delivery of PYY(3-36) can produce a similar response in diet-induced obese rats. During a 21-day period, obese rats (body fat >25%) received twice daily intraperitoneal infusion of vehicle (n = 18) or PYY(3-36) (n = 24) during hours 1-3 and 7-9 of the dark period. Rats had free access to both a 45% fat solid diet and a 29% fat liquid diet; intakes were determined from continuous computer recording of changes in food container weights. To sustain a 15-25% reduction in daily caloric intake, the initial PYY(3-36) dose of 30 pmol.kg(-1).min(-1) was reduced to 10 pmol.kg(-1).min(-1) on day 10 and then increased to 17 pmol.kg(-1).min(-1) on day 13. This dosing strategy produced a sustained reduction in daily caloric intake of 11-32% and prevented body weight gain (8 +/- 6 vs. 51 +/- 11 g) and fat deposition (4.4 +/- 7.6 vs. 41.0 +/- 12.8 g). These results indicate that intermittent intraperitoneal infusion of PYY(3-36) can produce a sustained reduction in food intake and adiposity in diet-induced obese rodents consuming palatable high-fat foods.
Collapse
Affiliation(s)
- Prasanth K Chelikani
- Department of Veterans Affairs-Nebraska Western Iowa Health Care System, Research Service (151), 4101 Woolworth Ave., Omaha, NE 68105, USA
| | | | | |
Collapse
|
122
|
Abstract
The neuropeptide Y system - comprising neuropeptide Y, peptide YY, pancreatic polypeptide and the Y receptors through which they act (Y1, Y2, Y4, Y5 and y6) - has been at the center of attention with regards to regulation of feeding behavior and its possible involvement in obesity. In the past, research has focused mainly on the orexigenic and obesogenic action of this system, with Y1 and Y5 receptors being prime candidates as mediators of neuropeptide Y-induced hyperphagia and obesity. However, in recent years, the role of other members of the neuropeptide Y family, peptide YY, pancreatic polypeptide and the Y2 and Y4 receptors through which they predominantly act, have commanded increasing attention on account of their effects to mediate satiety and promote weight loss via actions in key brain structures, such as the arcuate nucleus of the hypothalamus and the brain stem. This review focuses on the role of peptide YY- and pancreatic polypeptide-like compounds as possible antiobesity drugs, taking into account their effects, not only on energy balance, but also in the regulation of bone formation, and highlights potential benefits of using Y2 and/or Y4 antagonists (as opposed to agonists such as peptide YY or pancreatic polypeptide) in the treatment of obesity.
Collapse
Affiliation(s)
- En-Ju D Lin
- a Research Officer, The Garvan Institute of Medical Research, Neuroscience Research Program, 384 Victoria Street, Darlinghurst NSW 2010, Sydney, Australia.
| | - Lei Zhang
- b Research Officer, The Garvan Institute of Medical Research, Neuroscience Research Program, 384 Victoria Street, Darlinghurst NSW 2010, Sydney, Australia.
| | - Amanda Sainsbury
- c Research Fellow, The Garvan Institute of Medical Research, Neuroscience Research Program, 384 Victoria Street, Darlinghurst NSW 2010, Sydney, Australia.
| | - Herbert Herzog
- d Director of Neuroscience Research Program, The Garvan Institute of Medical Research, Neuroscience Research Program, 384 Victoria Street, Darlinghurst NSW 2010, Sydney, Australia.
| |
Collapse
|
123
|
Grudell ABM, Camilleri M. The role of peptide YY in integrative gut physiology and potential role in obesity. Curr Opin Endocrinol Diabetes Obes 2007; 14:52-7. [PMID: 17940420 DOI: 10.1097/med.0b013e3280123119] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Obesity is an increasing global epidemic. Several central and peripheral hormones and neurotransmitters are involved in appetite control. Peptide YY (PYY) - one of the major anorexigenic (satiation-causing) gastrointestinal peptides - when administered peripherally, leads to decreased food intake and hunger scores. RECENT FINDINGS The vagus nerve, brainstem, and hypothalamus play an important role in PYY-mediated appetite control. In some studies, fasting and postprandial PYY levels are decreased in obese subjects. In others, levels are no different between obese and nonobese subjects. One study showed that obese subjects must consume more calories to increase PYY to levels seen in nonobese subjects. Surgical weight-loss procedures lead to increased fasting and postprandial PYY levels that are thought to contribute to weight loss achieved with these procedures. SUMMARY These findings lend some support for the association between PYY and obesity that could lead to possible new therapeutic options in obesity. PYY exerts anorexigenic effects; it is possible that surgical weight-loss procedures work synergistically with PYY to promote weight loss. Further investigation is needed to clarify whether PYY actually causes reduced calorie intake or whether the rate of food delivery to the ileo-colonic segment influences PYY levels, thus affecting satiation.
Collapse
|
124
|
Abstract
UNLABELLED PYY(3-36) is a gut regulatory peptide which has recently been found to reduce appetite. Variability of this effect across different experimental conditions has led to confusion and polarization of opinion on its potential as an anti-obesity treatment. This review summarizes recent progress in this area. The basic anorexigenic effect leading to weight loss in rodents has now been confirmed by several groups. Anorexia has also been confirmed in human studies although optimal route and dosing remain to be defined. Gastric bypass causes PYY levels to rise, which may in part mediate the weight loss occurring after this surgery, and levels have been found to be normal or low in obese people. The straightforward ARC model of mechanism, involving inhibition and activation, respectively, of NPY and POMC neurons, is giving way to a more complicated system involving vagal afferent signals. CONCLUSION It works, but not how we thought it did.
Collapse
Affiliation(s)
- D Ashby
- Department of Metabolic Medicine, Hammersmith Hospital, Imperial College London, 6th Floor Commonwealth Building, Du Cane Road, London W12 ONN, UK
| | | |
Collapse
|
125
|
Sternini C. Taste receptors in the gastrointestinal tract. IV. Functional implications of bitter taste receptors in gastrointestinal chemosensing. Am J Physiol Gastrointest Liver Physiol 2007; 292:G457-61. [PMID: 17095755 DOI: 10.1152/ajpgi.00411.2006] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Changes in the luminal contents of the gastrointestinal tract modulate gastrointestinal functions, including absorption of nutrients, food intake, and protection against harmful substances. The current notion is that mucosal enteroendocrine cells act as primary chemoreceptors by releasing signaling molecules in response to changes in the luminal environment, which in turn activate nerve terminals. The recent discovery that taste receptors and G protein subunits alpha-gustducin and alpha-transducin, involved in gustatory signal transduction, are expressed in the gastrointestinal mucosa supports the concept of a chemosensory machinery in the gastrointestinal tract. An understanding of luminal sensing processes responsible for the generation of the appropriate functional response to specific nutrients and nonnutrients is of clinical importance since aberrant or unsteady responses to changes in luminal contents might result in disease states ranging from intoxication to feeding disorders and inflammation. The purpose of this theme article is to discuss the functional implications of bitter taste signaling molecules in the gastrointestinal tract deduced by their localization in selected populations of epithelial cells and their relationship with neural pathways responsible for the generation of specific responses to luminal contents.
Collapse
Affiliation(s)
- Catia Sternini
- CURE Digestive Diseases Research Center, VAGLAHS, Los Angeles, CA 90073, USA.
| |
Collapse
|
126
|
Abstract
Food intake, energy expenditure and body adiposity are homeostatically regulated. Central and peripheral signals communicate information about the current state of energy balance to key brain regions, including the hypothalamus and brainstem. Hunger and satiety represent coordinated responses to these signals, which include neural and hormonal messages from the gut. In recent years our understanding of how neural and hormonal brain-gut signalling regulates energy homeostasis has advanced considerably. Gut hormones have various physiological functions that include specifically targeting the brain to regulate appetite. New research suggests that gut hormones can be used to specifically regulate energy homeostasis in humans, and offer a target for anti-obesity drugs.
Collapse
Affiliation(s)
- Kevin G Murphy
- Department of Metabolic Medicine, Imperial College Faculty of Medicine, Hammersmith Campus, Du Cane Road, London W12 ONN, UK
| | | |
Collapse
|
127
|
Weickert MO, Spranger J, Holst JJ, Otto B, Koebnick C, Möhlig M, Pfeiffer AFH. Wheat-fibre-induced changes of postprandial peptide YY and ghrelin responses are not associated with acute alterations of satiety. Br J Nutr 2007; 96:795-8. [PMID: 17092365 DOI: 10.1017/bjn20061902] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Weight gain and risk of type 2 diabetes are inversely associated with a high intake of insoluble cereal fibres. Because nutrient-induced changes of 'satiety hormones' from the gut may play a role in this process, we evaluated the effects of purified insoluble fibres on postprandial responses of plasma peptide YY (PYY), serum ghrelin and satiety as secondary outcome measures of a study investigating effects of cereal fibres on parameters of glucose metabolism. Fourteen healthy women were studied on six occasions in a randomized, single-blind, controlled crossover design. After 24 h run-in periods and 10 h overnight fasts, subjects ingested isoenergetic and macronutrient matched portions of control white bread or fibre-enriched bread (wheat-fibre or oat-fibre) at 08.15 hours. Gut hormones and hunger scores were measured for 300 min. Basal PYY and ghrelin concentrations were not different between the test meals (P>0.15). Postprandial responses of PYY and ghrelin were blunted after the intake of wheat-fibre (total area under the curve (AUC) PYY, 177.9 (SEM 8.1) (pmol/l) min; P=0.016; ghrelin 51.0 (SEM 2.5) (pmol/l) min; P=0.003), but not after oat-fibre (PYY 226.7 (SEM 25.7) (pmol/l) min; P>0.15; ghrelin 46.2 (SEM 1.6) (pmol/l) min; P=0.127), compared to control (PYY 247.5 (SEM 25.6) (pmol/l) min; ghrelin 42.5 (SEM 1.3) (pmol/l) min). Postprandial hunger scores were unaffected by the different test meals (P>0.15). Thus, oat- and wheat-fibre consumption result in different postprandial responses of PYY and ghrelin, but interestingly do not differ in satiety effects.
Collapse
Affiliation(s)
- Martin O Weickert
- Department of Endocrinology, Diabetes and Nutrition, Charité-University-Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
128
|
Nogueiras R, Caton SJ, Perez-Tilve D, Bidlingmaier M, Tschöp MH. Gastrointestinal signalling peptides in obesity. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.ddmec.2006.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
129
|
Chelikani PK, Haver AC, Reidelberger RD. Dose-dependent effects of peptide YY(3-36) on conditioned taste aversion in rats. Peptides 2006; 27:3193-201. [PMID: 16962209 DOI: 10.1016/j.peptides.2006.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 07/30/2006] [Accepted: 08/03/2006] [Indexed: 10/24/2022]
Abstract
We used a conditioned taste aversion test to assess whether PYY(3-36) reduces food intake by producing malaise. Two-hour IV infusion of PYY(3-36) (8, 15, and 30 pmol/kg/min) at dark onset in non-food-deprived rats produced a dose-dependent inhibition of feeding and a conditioned aversion to the flavored chow paired with PYY(3-36) infusion. In food-deprived rats, PYY(3-36) at 2 and 4 pmol/kg/min inhibited intake of a flavored saccharin solution without producing conditioned taste aversion, whereas higher doses (8 and 15 pmol/kg/min) inhibited saccharin intake and produced taste aversion. These results suggest that anorexic doses of PYY(3-36) may produce a dose-dependent malaise in rats, which is similar to that reported for PYY(3-36) infusion in humans. Previous studies have shown that PYY(3-36) potently inhibits gastric emptying, and that gut distention can produce a conditioned taste aversion. Thus, PYY(3-36) may produce conditioned taste aversion in part by slowing gastric emptying.
Collapse
|
130
|
Abstract
The melanocortin system refers to a set of hormonal, neuropeptidergic, and paracrine signaling pathways that are defined by components that include the five G protein-coupled melanocortin receptors; peptide agonists derived from the proopiomelanocortin preprohormone precursor; and the endogenous antagonists, agouti and agouti-related protein. This signaling system regulates a remarkably diverse array of physiological functions including pigmentation, adrenocortical steroidogenesis, energy homeostasis, natriuresis, erectile responses, energy homeostasis, and exocrine gland secretion. There are many complex and unique aspects of melanocortin signaling, such as the existence of endogenous antagonists, the agouti proteins, that act at three of the five melanocortin receptors. However, there is an aspect of melanocortin signaling that has facilitated highly reductionist approaches aimed at understanding the physiological functions of each receptor and peptide: in contrast to many peptides, the melanocortin agonists and antagonists are expressed in a limited number of very discrete locations. Similarly, the melanocortin receptors are also expressed in a limited number of discrete locations where they tend to be involved in rather circumscribed physiological functions. This review examines my laboratory's participation in the cloning of the melanocortin receptors and characterization of their physiological roles.
Collapse
Affiliation(s)
- Roger D Cone
- Center for the Study of Weight Regulation and Associated Disorders, and Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239-3098, USA.
| |
Collapse
|
131
|
Abstract
Gut hormones signal to the central nervous system to influence energy homeostasis. Evidence supports the existence of a system in the gut that senses the presence of food in the gastrointestinal tract and signals to the brain via neural and endocrine mechanisms to regulate short-term appetite and satiety. Recent evidence has shown that specific gut hormones administered at physiological or pathophysiological concentrations can influence appetite in rodents and humans. Gut hormones therefore have an important physiological role in postprandial satiety, and gut hormone signaling systems represent important pharmaceutical targets for potential antiobesity therapies. Our laboratory investigates the role of gut hormones in energy homeostasis and has a particular interest in this field of translational research. In this review we describe our initial studies and the results of more recent investigations into the effects of the gastric hormone ghrelin and the intestinal hormones peptide YY, pancreatic polypeptide, glucagon-like peptide-1, and oxyntomodulin on energy homeostasis. We also speculate on the role of gut hormones in the future treatment of obesity.
Collapse
Affiliation(s)
- Kevin G Murphy
- Department of Metabolic Medicine, Imperial College Faculty of Medicine, Hammersmith Campus, London W12 ONN, UK
| | | | | |
Collapse
|
132
|
Abstract
PURPOSE OF REVIEW Complex physiological mechanisms have evolved to control food intake in mammals, which in health ensure the relative stability of body weight in adults. Central brain centres, gut-derived peptides and adipose-derived signals result in an integrative response to defend against starvation. Enteroendocrine cells throughout the gut and pancreas secrete a number of peptides with activity on gut motility, gut secretions and appetite. Understanding the interactions between different gut peptides has produced a rewardingly active research field with many unanswered questions. RECENT FINDINGS Many gut peptides are now in translational research programmes to investigate their potential in human physiology and disease. Ghrelin has been shown in short-term human studies to both increase appetite and body weight. Oxyntomodulin has been shown to reduce weight and food intake in a 4 week study in humans. Anorectic activity of peptide YY(3-36) has been confirmed in a number of animal models. Obestatin has been identified as a novel gut peptide. Increasing evidence points to the effect of gastric-bypass surgery on body weight, including alteration of gut peptide activity. SUMMARY Gut peptides, or gut-peptide mimetics, show great promise for use as therapeutic agents for the treatment of obesity and cachexia.
Collapse
Affiliation(s)
- Kevin C R Baynes
- Department of Metabolic Medicine, Hammersmith Campus, Imperial College London, UK
| | | | | |
Collapse
|
133
|
Rozengurt N, Wu SV, Chen MC, Huang C, Sternini C, Rozengurt E. Colocalization of the alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon. Am J Physiol Gastrointest Liver Physiol 2006; 291:G792-802. [PMID: 16728727 DOI: 10.1152/ajpgi.00074.2006] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In view of the importance of molecular sensing in the function of the gastrointestinal (GI) tract, we assessed whether signal transduction proteins that mediate taste signaling are expressed in cells of the human gut. Here, we demonstrated that the alpha-subunit of the taste-specific G protein gustducin (Galpha(gust)) is expressed prominently in cells of the human colon that also contain chromogranin A, an established marker of endocrine cells. Double-labeling immunofluorescence and staining of serial sections demonstrated that Galpha(gust) localized to enteroendocrine L cells that express peptide YY and glucagon-like peptide-1 in the human colonic mucosa. We also found expression of transcripts encoding human type 2 receptor (hT2R) family members, hT1R3, and Galpha(gust) in the human colon and in the human intestinal endocrine cell lines (HuTu-80 and NCI-H716 cells). Stimulation of HuTu-80 or NCI-H716 cells with the bitter-tasting compound phenylthiocarbamide, which binds hT2R38, induced a rapid increase in the intracellular Ca2+ concentration in these cells. The identification of Galpha(gust) and chemosensory receptors that perceive chemical components of ingested substances, including drugs and toxins, in open enteroendocrine L cells has important implications for understanding molecular sensing in the human GI tract and for developing novel therapeutic compounds that modify the function of these receptors in the gut.
Collapse
Affiliation(s)
- Nora Rozengurt
- Department of Pathology, David Geffen School of Medicine, University of California-Los Angeles, 900 Veteran Ave., Warren Hall Rm. 11-115, Los Angeles, CA 90095-1786, USA.
| | | | | | | | | | | |
Collapse
|
134
|
Boey D, Heilbronn L, Sainsbury A, Laybutt R, Kriketos A, Herzog H, Campbell LV. Low serum PYY is linked to insulin resistance in first-degree relatives of subjects with type 2 diabetes. Neuropeptides 2006; 40:317-24. [PMID: 17045646 DOI: 10.1016/j.npep.2006.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 07/25/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
Low circulating peptide YY (PYY) levels are reported in obese and type II diabetic subjects and results from PYY knockout animals suggests that PYY deficiency may have a causative role in the etiology of obesity and type 2 diabetes. Here, our aims were to determine whether people with a genetic predisposition to developing type 2 diabetes and obesity differ from otherwise similar subjects without such family history, in fasting or meal-related PYY levels, fasting insulin, insulin secretion (HOMA-B) and insulin sensitivity. We also investigated whether PYY ablation affects the intrinsic ability of islets to secrete insulin, which may be a contributing factor to the hyperinsulinemia observed in PYY knockout mice. Healthy female first-degree relatives of people with type 2 diabetes were matched for age, gender and BMI to control subjects but had significantly lower insulin sensitivity (p<0.05). Relatives also had significantly lower fasting serum PYY levels than controls (p<0.05), but their PYY response to a high fat meal (4250 kJ, 73% fat) was not significantly different. Fasting PYY level correlated positively with glucose infusion rate (r=0.713, p=0.002) and fasting adiponectin (r=0.5, p=0.02). Islets of Langerhans from PYY knockout mice were found to hypersecrete insulin in response to 25 mM glucose (p<0.05). These data demonstrate that lack of PYY enhances insulin secretion from the Islets of Langerhans and that low fasting PYY levels are associated with insulin resistance in humans. Together, these findings suggest that low circulating levels of PYY could contribute to hyperinsulinemia and insulin resistance, and possibly contribute to subsequent development of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Dana Boey
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | | | | | | | | | | |
Collapse
|
135
|
López M, Lage R, Mendieta H, González R, Diéguez C. Effects of perinatal overfeeding on mechanisms controlling food intake and body weight homeostasis. Expert Rev Endocrinol Metab 2006; 1:651-659. [PMID: 30754095 DOI: 10.1586/17446651.1.5.651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The prevalence of overweight and obesity in most developed countries has markedly increased during the last several decades. In addition to genetic, hormonal and metabolic influences, epigenetic environmental factors, such as fetal and neonatal nutrition, play a key role in the development of obesity. Interestingly, becoming overweight during critical developmental periods of fetal and/or neonatal life has been shown to continue throughout juvenile life into adulthood. In spite of this evidence, the specific biological mechanisms underlying this fetal/neonatal programming are not perfectly understood. However, it is clear that circulating hormones, such as insulin, leptin and ghrelin, play a critical role in the development and programming of hypothalamic circuits regulating food intake and bodyweight homeostasis.
Collapse
Affiliation(s)
- Miguel López
- a Postdoctoral Research Associate, University of Santiago de Compostela, Department of Physiology, School of Medicine, c/ San Francisco s/n 15782. Santiago de Compostela (A Coruña), Spain.
| | - Ricardo Lage
- b Student, University of Santiago de Compostela, Department of Physiology, School of Medicine, c/ San Francisco s/n 15782. Santiago de Compostela (A Coruña), Spain.
| | - Hugo Mendieta
- c PhD Student, University of Santiago de Compostela, Department of Physiology, School of Medicine, c/ San Francisco s/n 15782. Santiago de Compostela (A Coruña), Spain.
| | - Ruth González
- d PhD Student, University of Santiago de Compostela, Department of Physiology, School of Medicine, c/ San Francisco s/n 15782. Santiago de Compostela (A Coruña), Spain.
| | - Carlos Diéguez
- e Professor, University of Santiago de Compostela, Department of Physiology, School of Medicine, C/ San Francisco s/n 15782, Santiago de Compostela, (A Coruña), Spain.
| |
Collapse
|
136
|
Batterham RL, Heffron H, Kapoor S, Chivers JE, Chandarana K, Herzog H, Le Roux CW, Thomas EL, Bell JD, Withers DJ. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab 2006; 4:223-33. [PMID: 16950139 DOI: 10.1016/j.cmet.2006.08.001] [Citation(s) in RCA: 436] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 06/16/2006] [Accepted: 08/08/2006] [Indexed: 12/31/2022]
Abstract
Dietary protein enhances satiety and promotes weight loss, but the mechanisms by which appetite is affected remain unclear. We investigated the role of gut hormones, key regulators of ingestive behavior, in mediating the satiating effects of different macronutrients. In normal-weight and obese human subjects, high-protein intake induced the greatest release of the anorectic hormone peptide YY (PYY) and the most pronounced satiety. Long-term augmentation of dietary protein in mice increased plasma PYY levels, decreased food intake, and reduced adiposity. To directly determine the role of PYY in mediating the satiating effects of protein, we generated Pyy null mice, which were selectively resistant to the satiating and weight-reducing effects of protein and developed marked obesity that was reversed by exogenous PYY treatment. Our findings suggest that modulating the release of endogenous satiety factors, such as PYY, through alteration of specific diet constituents could provide a rational therapy for obesity.
Collapse
Affiliation(s)
- Rachel L Batterham
- Centre for Diabetes and Endocrinology, Department of Medicine, University College London, WC1E 6JJ, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Unniappan S, McIntosh CHS, Demuth HU, Heiser U, Wolf R, Kieffer TJ. Effects of dipeptidyl peptidase IV on the satiety actions of peptide YY. Diabetologia 2006; 49:1915-23. [PMID: 16802131 DOI: 10.1007/s00125-006-0310-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 04/06/2006] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS Dipeptidyl peptidase IV (DP IV) inhibitors are currently being developed to prolong the biological activity of insulinotropic peptides as a novel approach in the treatment of diabetes. We hypothesised that DP IV inhibition could attenuate the satiety actions of peptide YY (PYY) by altering the conversion of PYY(1-36) to PYY(3-36). MATERIALS AND METHODS The effects of PYY delivered by osmotic mini-pumps were assessed in rats treated with a DP IV inhibitor and in a rat model deficient in DP IV. RESULTS Pharmacological levels of total PYY were found in the circulation after the exogenous administration of PYY(3-36). While both PYY(1-36) and PYY(3-36) reduced food intake in normal rats, PYY(1-36) was ineffective in rats deficient in DP IV. When re-fed after a 24-h fast, DP IV-deficient rats exhibited higher food intake and weight gain than normal rats. Moreover, unlike controls, there was no postprandial increase in PYY levels in DP IV-deficient rats. Despite these findings, administration of a DP IV inhibitor, Pro-boroPro, did not alter the acute anorectic effects of exogenous PYY(1-36) in normal rats. This could be the result of the protection of other appetite regulatory peptides or the generation of PYY(3-36) by remaining DP IV activity or other dipeptidyl peptidases. CONCLUSIONS/INTERPRETATION Although DP IV inhibition with Pro-boroPro attenuated the generation of PYY(3-36), our results indicate that short-term DP IV inhibition does not eliminate the satiety actions of exogenously administered PYY(1-36) at the doses tested.
Collapse
Affiliation(s)
- S Unniappan
- Laboratory of Cellular and Molecular Medicine, Departments of Cellular and Physiological Sciences and Surgery, Life Sciences Institute, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3 Canada
| | | | | | | | | | | |
Collapse
|
138
|
Rozengurt E. Taste receptors in the gastrointestinal tract. I. Bitter taste receptors and alpha-gustducin in the mammalian gut. Am J Physiol Gastrointest Liver Physiol 2006; 291:G171-7. [PMID: 16710053 DOI: 10.1152/ajpgi.00073.2006] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Molecular sensing by gastrointestinal (GI) cells plays a critical role in the control of multiple fundamental functions in digestion and also initiates hormonal and/or neural pathways leading to the regulation of caloric intake, pancreatic insulin secretion, and metabolism. Molecular sensing in the GI tract is also responsible for the detection of ingested harmful drugs and toxins, thereby initiating responses critical for survival. The initial recognition events and mechanism(s) involved remain incompletely understood. The notion to be discussed in this article is that there are important similarities between the chemosensory machinery elucidated in specialized neuroepithelial taste receptor cells of the lingual epithelium and the molecular transducers localized recently in enteroendocrine open GI cells that sense the chemical composition of the luminal contents of the gut.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Division of Digestive Diseases and CURE: Digestive Diseases Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1786, USA.
| |
Collapse
|
139
|
Chen MC, Wu SV, Reeve JR, Rozengurt E. Bitter stimuli induce Ca2+ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive Ca2+ channels. Am J Physiol Cell Physiol 2006; 291:C726-39. [PMID: 16707556 DOI: 10.1152/ajpcell.00003.2006] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated the expression of bitter taste receptors of the type 2 family (T2R) and the alpha-subunits of the G protein gustducin (Galpha(gust)) in the rodent gastrointestinal (GI) tract and in GI endocrine cells. In this study, we characterized mechanisms of Ca(2+) fluxes induced by two distinct T2R ligands: denatonium benzoate (DB) and phenylthiocarbamide (PTC), in mouse enteroendocrine cell line STC-1. Both DB and PTC induced a marked increase in intracellular [Ca(2+)] ([Ca(2+)](i)) in a dose- and time-dependent manner. Chelating extracellular Ca(2+) with EGTA blocked the increase in [Ca(2+)](i) induced by either DB or PTC but, in contrast, did not prevent the effect induced by bombesin. Thapsigargin blocked the transient increase in [Ca(2+)](i) induced by bombesin, but did not attenuate the [Ca(2+)](i) increase elicited by DB or PTC. These results indicate that Ca(2+) influx mediates the increase in [Ca(2+)](i) induced by DB and PTC in STC-1 cells. Preincubation with the L-type voltage-sensitive Ca(2+) channel (L-type VSCC) blockers nitrendipine or diltiazem for 30 min inhibited the increase in [Ca(2+)](i) elicited by DB or PTC. Furthermore, exposure to the L-type VSCCs opener BAY K 8644 potentiated the increase in [Ca(2+)](i) induced by DB and PTC. Stimulation with DB also induced a marked increase in the release of cholecystokinin from STC-1 cells, an effect also abrogated by prior exposure to EGTA or L-type VSCC blockers. Collectively, our results demonstrate that bitter tastants increase [Ca(2+)](i) and cholecystokinin release through Ca(2+) influx mediated by the opening of L-type VSCCs in enteroendocrine STC-1 cells.
Collapse
Affiliation(s)
- Monica C Chen
- Division of Digestive Diseases, Department of Medicine, CURE, Digestive Diseases Research Center and Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles 90095-1786, USA
| | | | | | | |
Collapse
|
140
|
López M, Lelliott CJ, Tovar S, Kimber W, Gallego R, Virtue S, Blount M, Vázquez MJ, Finer N, Powles TJ, O'Rahilly S, Saha AK, Diéguez C, Vidal-Puig AJ. Tamoxifen-induced anorexia is associated with fatty acid synthase inhibition in the ventromedial nucleus of the hypothalamus and accumulation of malonyl-CoA. Diabetes 2006; 55:1327-36. [PMID: 16644689 DOI: 10.2337/db05-1356] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fatty acid metabolism in the hypothalamus has recently been shown to regulate feeding. The selective estrogen receptor modulator tamoxifen (TMX) exerts a potent anorectic effect. Here, we show that the anorectic effect of TMX is associated with the accumulation of malonyl-CoA in the hypothalamus and inhibition of fatty acid synthase (FAS) expression specifically in the ventromedial nucleus of the hypothalamus (VMN). Furthermore, we demonstrate that FAS mRNA expression is physiologically regulated by fasting and refeeding in the VMN but not in other hypothalamic nuclei. Thus, the VMN appears to be the hypothalamic site where regulation of FAS and feeding converge. Supporting the potential clinical relevance of these observations, reanalysis of a primary breast cancer prevention study showed that obese women treated with TMX gained significantly less body weight over a 6-year period than obese women given placebo. The finding that TMX can modulate appetite through alterations in FAS expression and malonyl-CoA levels suggests a link between hypothalamic sex steroid receptors, fatty acid metabolism, and feeding behavior.
Collapse
Affiliation(s)
- Miguel López
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QR, U.K
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Vrang N, Madsen AN, Tang-Christensen M, Hansen G, Larsen PJ. PYY(3-36) reduces food intake and body weight and improves insulin sensitivity in rodent models of diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 2006; 291:R367-75. [PMID: 16914421 DOI: 10.1152/ajpregu.00726.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gut hormone peptide YY (PYY) was recently proposed to comprise an endogenous satiety factor. We have studied acute anorectic functions of PYY(3-36) in mice and rats, as well as metabolic effects of chronic PYY(3-36) administration to diet-induced obese (DIO) mice and rats. A single intraperitoneal injection of PYY(3-36) inhibited food intake in mice, but not in rats. We next investigated the effects of increasing doses (100, 300, and 1,000 microg.kg-1.day-1) of PYY(3-36) administered subcutaneously via osmotic minipumps on food intake and body weight in DIO C57BL/6J mice. Whereas only the highest dose (1,000 microg.kg-1.day-1) of PYY(3-36) significantly reduced food intake over the first 3 days, body weight gain was dose dependently reduced, and on day 28 the group treated with 1,000 microg.kg-1.day-1 PYY(3-36) weighed approximately 10% less than the vehicle-treated group. Mesenteric, epididymal, retroperitoneal, and inguinal fat pad weight was dose dependently reduced. Subcutaneous administration of PYY(3-36) (250 and 1,000 microg.kg-1.day-1) for 28 days reduced body weight and improved glycemic control in glucose-intolerant DIO rats. Neither 250 nor 1,000 microg/kg PYY(3-36) elicited a conditioned taste aversion in male rats.
Collapse
Affiliation(s)
- Niels Vrang
- Rheoscience, Glerupvej 2, 2610 Rødovre, Denmark.
| | | | | | | | | |
Collapse
|
142
|
Akanmu MA, Ukponmwan OE, Katayama Y, Honda K. Neuropeptide-Y Y2-receptor agonist, PYY3–36 promotes non-rapid eye movement sleep in rat. Neurosci Res 2006; 54:165-70. [PMID: 16378653 DOI: 10.1016/j.neures.2005.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 10/18/2005] [Accepted: 11/18/2005] [Indexed: 10/25/2022]
Abstract
PYY3-36 is a major component of the gut-brain axis and peripheral administration has been reported to exert significant effects on feeding, brain function and is more selective for neuropeptide Y2 receptor. Therefore, we investigated the effects of nocturnal intraperitoneal administration of single doses of PYY3-36 (30 and 100 microg/kg i.p.) on food intake, water intake and the sleep-wake cycle in rats. Sleep recordings were carried out in male Sprague-Dawley rats implanted with cortical electroencephalogram (EEG) and neck electromyogram (EMG) electrodes. The EEG, EMG, food intake and water intake were assessed. The electrographic recordings obtained were scored visually as rapid eye movement (REM) sleep, non-REM (NREM) sleep and wakefulness. PYY3-36 administration 15 min prior to dark onset significantly (p<0.05) increased non-rapid eye movement (NREM) sleep and decreased wakefulness. Analysis of the dark-period at 4-h time intervals showed that nocturnal administration of PYY3-36 (30 and 100 microg/kg) significantly suppressed wakefulness and increased non-REM sleep during the first 4-h time interval. Time spent in wakefulness was significantly decreased after administration of PYY3-36 (30 and 100 microg/kg) when compared with administration of vehicle. In addition, PYY3-36 (30 and 100 microg/kg i.p.) induced an increase in the time spent in NREM sleep. The nocturnal intraperitoneal administration of the lower dose of PYY3-36 (30 microg/kg) also significantly decreased food intake [F (2,23)=4.90, p<0.05] but had no effect on water intake. These findings suggest that PYY3-36 may play an important role in the enhancement of NREM sleep and feeding behavior.
Collapse
Affiliation(s)
- Moses A Akanmu
- Department of Biosystem Regulation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Tokyo 101-0062, Japan
| | | | | | | |
Collapse
|
143
|
Perez-Tilve D, Nogueiras R, Mallo F, Benoit SC, Tschoep M. Gut hormones ghrelin, PYY, and GLP-1 in the regulation of energy balance [corrected] and metabolism. Endocrine 2006; 29:61-71. [PMID: 16622293 DOI: 10.1385/endo:29:1:61] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 11/30/1999] [Accepted: 11/15/2005] [Indexed: 02/07/2023]
Abstract
The first hormone discovered in the gastrointestinal tract was secretin, isolated from duodenal mucosa. Some years later, two additional gastrointestinal hormones, gastrin and cholecystokinin (CCK), were discovered, but it was not until the 1970s that gastrointestinal endocrinology studies became more prevalent, resulting in the discovery of many more hormones. Here, we examine the role of gut hormones in energy balance regulation and their possible use as pharmaceutical targets for obesity.
Collapse
Affiliation(s)
- Diego Perez-Tilve
- Department of Psychiatry, University of Cincinnati Genome Research Institute, Cincinnati, OH 45237, USA
| | | | | | | | | |
Collapse
|
144
|
Ellacott KLJ, Halatchev IG, Cone RD. Interactions between gut peptides and the central melanocortin system in the regulation of energy homeostasis. Peptides 2006; 27:340-9. [PMID: 16309792 DOI: 10.1016/j.peptides.2005.02.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 02/21/2005] [Indexed: 12/20/2022]
Abstract
Genetic and pharmacological studies have shown that the central melanocortin system plays a critical role in the regulation of energy homeostasis. Animals and humans with defects in the central melanocortin system display a characteristic melanocortin obesity phenotype typified by increased adiposity, hyperphagia, metabolic defects and increased linear growth. In addition to interacting with long-term regulators of energy homeostasis such as leptin, more recent data suggest that the central melanocortin system also responds to gut-released peptides involved in mediating satiety. In this review, we discuss the interactions between these systems, with particular emphasis on cholecystokinin (CCK), ghrelin and PYY(3-36).
Collapse
Affiliation(s)
- Kate L J Ellacott
- Vollum Institute and The Center for Weight Regulation and Associated Disorders, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239-3098, USA
| | | | | |
Collapse
|
145
|
Abstract
The prevalence of obesity is increasing rapidly and the associated morbidity and mortality has led to an urgent need for potential therapeutic targets to reduce appetite and food intake. Gut hormones released after eating that coordinate digestive activity and promote satiety are novel potential treatments for obesity. Oxyntomodulin is a gut hormone that is produced by the L cells in the small intestine and reduces food intake. It is timely to review some of the original literature on oxyntomodulin, to evaluate what is already known about the peptide, and also to set the recent findings on its effects on food intake and bodyweight into context.Recent studies have shown that long-term peripheral administration of oxyntomodulin to rats leads to reduced food intake and reduced weight gain. Studies in humans have demonstrated that acute administration reduces food intake by 19%. When given preprandially by subcutaneous injection three times daily, oxyntomodulin resulted in a reduction in food intake and mean weight loss of 2.8kg over 4 weeks. Oxyntomodulin thus represents a potential therapy for obesity.The mechanism of action of oxyntomodulin is not known. Current evidence suggests that it acts via the glucagon-like peptide 1 (GLP-1) receptor. There may be an additional receptor in the gastric mucosa mediating its effects on gastric acid secretion. Although oxyntomodulin probably acts via the GLP-1 receptor, the two peptides differentially regulate food intake and energy expenditure in the mouse.Oxyntomodulin represents a potential therapy for obesity. Further work will help to clarify its mechanisms of action.
Collapse
Affiliation(s)
- Maralyn R Druce
- Department of Metabolic Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | | |
Collapse
|
146
|
Affiliation(s)
- Ruben Nogueiras
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH 45237, USA
| | | |
Collapse
|
147
|
Mithieux G, Misery P, Magnan C, Pillot B, Gautier-Stein A, Bernard C, Rajas F, Zitoun C. Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein. Cell Metab 2005; 2:321-9. [PMID: 16271532 DOI: 10.1016/j.cmet.2005.09.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 08/01/2005] [Accepted: 09/30/2005] [Indexed: 12/24/2022]
Abstract
Protein feeding is known to decrease hunger and subsequent food intake in animals and humans. It has also been suggested that glucose appearance into portal vein, as occurring during meal assimilation, may induce comparable effects. Here, we connect these previous observations by reporting that intestinal gluconeogenesis (i.e., de novo synthesis of glucose) is induced during the postabsorptive time (following food digestion) in rats specifically fed on protein-enriched diet. This results in glucose release into portal blood, counterbalancing the lowering of glycemia resulting from intestinal glucose utilization. Comparable infusions into the portal vein of control postabsorptive rats (fed on starch-enriched diet) decrease food consumption and activate the hypothalamic nuclei regulating food intake. Similar hypothalamic activation occurs on protein feeding. All these effects are absent after denervation of the portal vein. Thus, portal sensing of intestinal gluconeogenesis may be a novel mechanism connecting the macronutrient composition of diet to food intake.
Collapse
Affiliation(s)
- Gilles Mithieux
- Institut National de la Sante et de la Recherche Medicale, U449, Lyon, F-69372, France.
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Boggiano MM, Chandler PC, Oswald KD, Rodgers RJ, Blundell JE, Ishii Y, Beattie AH, Holch P, Allison DB, Schindler M, Arndt K, Rudolf K, Mark M, Schoelch C, Joost HG, Klaus S, Thöne-Reineke C, Benoit SC, Seeley RJ, Beck-Sickinger AG, Koglin N, Raun K, Madsen K, Wulff BS, Stidsen CE, Birringer M, Kreuzer OJ, Deng XY, Whitcomb DC, Halem H, Taylor J, Dong J, Datta R, Culler M, Ortmann S, Castañeda TR, Tschöp M. PYY3-36 as an anti-obesity drug target. Obes Rev 2005; 6:307-22. [PMID: 16246216 DOI: 10.1111/j.1467-789x.2005.00218.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neuropeptide Y (NPY)/peptide YY (PYY) system has been implicated in the physiology of obesity for several decades. More recently ignited enormous interest in PYY3-36, an endogenous Y2-receptor agonist, as a promising anti-obesity compound. Despite this interest, there have been remarkably few subsequent reports reproducing or extending the initial findings, while at the same time studies finding no anti-obesity effects have surfaced. Out of 41 different rodent studies conducted (in 16 independent labs worldwide), 33 (83%) were unable to reproduce the reported effects and obtained no change or sometimes increased food intake, despite use of the same experimental conditions (i.e. adaptation protocols, routes of drug administration and doses, rodent strains, diets, drug vendors, light cycles, room temperatures). Among studies by authors in the original study, procedural caveats are reported under which positive effects may be obtained. Currently, data speak against a sustained decrease in food intake, body fat, or body weight gain following PYY3-36 administration and make the previously suggested role of the hypothalamic melanocortin system unlikely as is the existence of PYY deficiency in human obesity. We review the studies that are in the public domain which support or challenge PYY3-36 as a potential anti-obesity target.
Collapse
Affiliation(s)
- M M Boggiano
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Ghamari-Langroudi M, Colmers WF, Cone RD. PYY3-36 inhibits the action potential firing activity of POMC neurons of arcuate nucleus through postsynaptic Y2 receptors. Cell Metab 2005; 2:191-9. [PMID: 16154101 DOI: 10.1016/j.cmet.2005.08.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 06/21/2005] [Accepted: 08/09/2005] [Indexed: 11/20/2022]
Abstract
Intracerebroventricular administration of gut peptide PYY3-36 stimulates food intake. In contrast, peripheral administration inhibits food intake, suggesting that the peptide has the opposite effect by virtue of accessing a unique subset of brain sites. A previous study suggested that peripheral PYY3-36 activates anorexigenic POMC neurons in the arcuate nucleus, and this was proposed to be the mechanism underlying the peptide's anorexigenic activity. Here, we demonstrate in an electrophysiological slice preparation that, in contrast to the original model, PYY3-36 potently and reversibly inhibits POMC neurons via postsynaptic Y2 receptors. These data show a complex role for Y2 receptors in regulation of the NPY/POMC circuitry, as they are present as inhibitory receptors on both the orexigenic NPY neurons as well as the anorexigenic POMC neurons. Secondly, these data argue against a direct role of POMC neurons in mediating the anorexigenic response to administration of peripheral PYY3-36.
Collapse
Affiliation(s)
- Masoud Ghamari-Langroudi
- Vollum Institute and Center for the Study of Weight Regulation and Associated Disorders, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
150
|
Cone RD. Anatomy and regulation of the central melanocortin system. Nat Neurosci 2005; 8:571-8. [PMID: 15856065 DOI: 10.1038/nn1455] [Citation(s) in RCA: 1145] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 03/15/2005] [Indexed: 12/12/2022]
Abstract
The central melanocortin system is perhaps the best-characterized neuronal pathway involved in the regulation of energy homeostasis. This collection of circuits is unique in having the capability of sensing signals from a staggering array of hormones, nutrients and afferent neural inputs. It is likely to be involved in integrating long-term adipostatic signals from leptin and insulin, primarily received by the hypothalamus, with acute signals regulating hunger and satiety, primarily received by the brainstem. The system is also unique from a regulatory point of view in that it is composed of fibers expressing both agonists and antagonists of melanocortin receptors. Given that the central melanocortin system is an active target for development of drugs for the treatment of obesity, diabetes and cachexia, it is important to understand the system in its full complexity, including the likelihood that the system also regulates the cardiovascular and reproductive systems.
Collapse
Affiliation(s)
- Roger D Cone
- Vollum Institute and the Center for the Study of Weight Regulation, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.
| |
Collapse
|