101
|
Eskandary A, Moazedi AA, Najaph Zade H, Akhond MR. Effects of Donepezil Hydrochloride on Neuronal Response of Pyramidal Neurons of the CA1 Hippocampus in Rat Model of Alzheimer's Disease. Basic Clin Neurosci 2019; 10:109-117. [PMID: 31031898 PMCID: PMC6484192 DOI: 10.32598/bcn.9.10.305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/25/2018] [Accepted: 11/10/2018] [Indexed: 11/20/2022] Open
Abstract
Introduction Donepezil (DON), an Acetylcholinesterase Inhibitor (AChEI), is widely used in the treatment of Alzheimer's Disease (AD). The current study aimed at evaluating the effect of donepezil hydrochloride on pyramidal neuron response in CA1 region of a rat model of AD. Methods In the current experimental study, adult male Wistar rats were randomly divided into four groups: Nucleus Basalis Magnocellularis (NBM) lesion (the lesions were induced by an electrical method of 0.5 m A, for 3 s in NBM) and three donepezil groups (lesions plus 5, 10, and 15 mg/kg donepezil intraperitoneal injection). Neuronal spontaneous activity to injection of the donepezil and saline were recorded in CA1 region of hippocampal. Results The obtained results showed that IntraPeritoneal (IP) injection of donepezil (10 and 15 mg/kg) increased neuronal spontaneous activity in the rat model of AD. Conclusion The current study results suggested that acute IP injection of donepezil increased neuronal response in CA1 region of hippocampal in a rat model of AD.
Collapse
Affiliation(s)
- Azade Eskandary
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ahmad Ali Moazedi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hosein Najaph Zade
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohamad Reza Akhond
- Department of Statistics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
102
|
Sagnou M, Mavroidi B, Shegani A, Paravatou-Petsotas M, Raptopoulou C, Psycharis V, Pirmettis I, Papadopoulos MS, Pelecanou M. Remarkable Brain Penetration of Cyclopentadienyl M(CO)3+ (M = 99mTc, Re) Derivatives of Benzothiazole and Benzimidazole Paves the Way for Their Application as Diagnostic, with Single-Photon-Emission Computed Tomography (SPECT), and Therapeutic Agents for Alzheimer’s Disease. J Med Chem 2019; 62:2638-2650. [DOI: 10.1021/acs.jmedchem.8b01949] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
103
|
Goyal A, Tirumalasetty S, Hossain G, Challoo R, Arya M, Agrawal R, Agrawal D. Development of a Stand-Alone Independent Graphical User Interface for Neurological Disease Prediction with Automated Extraction and Segmentation of Gray and White Matter in Brain MRI Images. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:9610212. [PMID: 30906515 PMCID: PMC6393878 DOI: 10.1155/2019/9610212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/16/2018] [Indexed: 11/29/2022]
Abstract
This research presents an independent stand-alone graphical computational tool which functions as a neurological disease prediction framework for diagnosis of neurological disorders to assist neurologists or researchers in the field to perform automatic segmentation of gray and white matter regions in brain MRI images. The tool was built in collaboration with neurologists and neurosurgeons and many of the features are based on their feedback. This tool provides the user automatized functionality to perform automatic segmentation and extract the gray and white matter regions of patient brain image data using an algorithm called adapted fuzzy c-means (FCM) membership-based clustering with preprocessing using the elliptical Hough transform and postprocessing using connected region analysis. Dice coefficients for several patient brain MRI images were calculated to measure the similarity between the manual tracings by experts and automatic segmentations obtained in this research. The average Dice coefficients are 0.86 for gray matter, 0.88 for white matter, and 0.87 for total cortical matter. Dice coefficients of the proposed algorithm were also the highest when compared with previously published standard state-of-the-art brain MRI segmentation algorithms in terms of accuracy in segmenting the gray matter, white matter, and total cortical matter.
Collapse
Affiliation(s)
- Ayush Goyal
- Texas A&M University-Kingsville, Kingsville, Texas, USA
| | | | | | - Rajab Challoo
- Texas A&M University-Kingsville, Kingsville, Texas, USA
| | - Manish Arya
- G. L. Bajaj Institute of Technology and Management, Greater Noida, UP, India
| | - Rajeev Agrawal
- G. L. Bajaj Institute of Technology and Management, Greater Noida, UP, India
| | - Deepak Agrawal
- All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
104
|
Liao L, Shi J, Jiang C, Zhang L, Feng L, Liu J, Zhang J. Activation of anti-oxidant of curcumin pyrazole derivatives through preservation of mitochondria function and Nrf2 signaling pathway. Neurochem Int 2019; 125:82-90. [PMID: 30771374 DOI: 10.1016/j.neuint.2019.01.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/13/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022]
Abstract
Oxidative stress is an important cause of neurodegenerative diseases. Antioxidant is an potential important method to treat such diseases. The aim of this study is to discover new and effective antioxidants and their mechanism. The neuroprotective effect of six curcumin pyrozole compounds were first evaluated on sodium nitroprusside (SNP) - induced PC12 cell injury by testing cell viability and LDH release. The results showed that four compounds (C1-C4) have more significant protective effects compared to curcumin and edaravone. Furthermore, compounds C1-C4 can attenuate the intracellular ROS, and compound C3 is the most effective one which can preservate the mitochondria function by inhibiting the mitochondrial membrane potential loss and enhance nuclear translocation of Nrf2 in PC12 cell. These results indicated that C3 may be a potential candidate drug for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Liping Liao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jinguo Shi
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Caibao Jiang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Liantao Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Lisi Feng
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jiayong Liu
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jingxia Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
105
|
Zhong L, Tong Y, Chuan J, Bai L, Shi J, Zhu Y. Protective effect of ethyl vanillin against Aβ-induced neurotoxicity in PC12 cells via the reduction of oxidative stress and apoptosis. Exp Ther Med 2019; 17:2666-2674. [PMID: 30930969 PMCID: PMC6425458 DOI: 10.3892/etm.2019.7242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
Increased aggregation of β-amyloid (Aβ) peptides induces oxidative stress, which is considered a major contributor in the development of Alzheimer's disease (AD). Prevention of Aβ-induced neurotoxicity is proposed as a possible modality for treatment of AD. The present study aimed to elucidate possible effects of ethyl vanillin (EVA), an analog of vanillin isolated from vanilla beans, on the Aβ1-42-induced oxidative injury in PC12 cells. EVA restrained the decrease in PC12 cell viability and apoptosis induction caused by treatment with Aβ1-42. In addition, EVA markedly alleviated intracellular lipid peroxidation as demonstrated by malondialdehyde levels and reactive oxygen species production in Aβ1-42-treated PC12 cells. In addition, the reduction in the activity levels of the antioxidative enzymes superoxide dismutase, catalase and glutathione peroxidase was detected in Aβ1-42-treated PC12 cells. This effect was partially reversed by treatment with EVA. Furthermore, the results indicated that EVA attenuated Aβ1-42-induced caspase-3 activation and the increase noted in the apoptosis regulator Bcl-2/apoptosis regulator Bax ratio of PC12 cells. These results indicated that EVA could be used as an efficient and novel agent for the prevention of neurodegenerative diseases via inhibition of oxidative stress and cell apoptosis.
Collapse
Affiliation(s)
- Lei Zhong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Yuna Tong
- Department of Nephrology, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, P.R. China
| | - Junlan Chuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Lan Bai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Yuxuan Zhu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
106
|
Deering Brose R, Lehrmann E, Zhang Y, Reeves RH, Smith KD, Mattson MP. Hydroxyurea attenuates oxidative, metabolic, and excitotoxic stress in rat hippocampal neurons and improves spatial memory in a mouse model of Alzheimer's disease. Neurobiol Aging 2018; 72:121-133. [PMID: 30245242 PMCID: PMC6215724 DOI: 10.1016/j.neurobiolaging.2018.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/17/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by accumulation of amyloid β-peptide (Aβ) plaques in the brain and decreased cognitive function leading to dementia. We tested if hydroxyurea (HU), a ribonucleotide reductase inhibitor known to activate adaptive cellular stress responses and ameliorate abnormalities associated with several genetic disorders, could protect rat hippocampal neurons against oxidative-, excitatory-, mitochondrial-, and Aβ-induced stress and if HU treatment could improve learning and memory in the APP/PS1 mouse model of AD. HU treatment attenuated the loss of cell viability induced by treatment of hippocampal neurons with hydrogen peroxide, glutamate, rotenone, and Aβ1-42. HU treatment attenuated reductions of mitochondrial reserve capacity, maximal respiration, and cellular adenosine triphosphate content induced by hydrogen peroxide treatment. In vivo, treatment of APP/PS1 mice with HU (45 mg/kg/d) improved spatial memory performance in the hippocampus-dependent Morris water maze task without reducing Aβ levels. HU provides neuroprotection against toxic insults including Aβ, improves mitochondrial bioenergetics, and improves spatial memory in an AD mouse model. HU may offer a new therapeutic approach to delay cognitive decline in AD.
Collapse
Affiliation(s)
- Rebecca Deering Brose
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21025, USA , ,
- Laboratory of Neurosciences, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute of Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA , ,
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute of Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA , ,
| | - Roger H. Reeves
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21025, USA , ,
| | - Kirby D. Smith
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21025, USA , ,
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| |
Collapse
|
107
|
Eskandary A, Moazedi AA. Effect of co-administration of donepezil and folic acid on spatial memory impairment in adult male rat model of Alzheimer's disease. THE JOURNAL OF QAZVIN UNIVERSITY OF MEDICAL SCIENCES 2018. [DOI: 10.29252/qums.22.5.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
108
|
Rakotoarisoa M, Angelova A. Amphiphilic Nanocarrier Systems for Curcumin Delivery in Neurodegenerative Disorders. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E126. [PMID: 30477087 PMCID: PMC6313553 DOI: 10.3390/medicines5040126] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases have become a major challenge for public health because of their incurable status. Soft nanotechnology provides potential for slowing down the progression of neurodegenerative disorders by using innovative formulations of neuroprotective antioxidants like curcumin, resveratrol, vitamin E, rosmarinic acid, 7,8-dihydroxyflavone, coenzyme Q10, and fish oil. Curcumin is a natural, liposoluble compound, which is of considerable interest for nanomedicine development in combination therapies. The neuroprotective effects of combination treatments can involve restorative mechanisms against oxidative stress, mitochondrial dysfunction, inflammation, and protein aggregation. Despite the anti-amyloid and anti-tau potential of curcumin and its neurogenesis-stimulating properties, the utilization of this antioxidant as a drug in neuroregenerative therapies has huge limitations due to its poor water solubility, physico-chemical instability, and low oral bioavailability. We highlight the developments of soft lipid- and polymer-based delivery carriers of curcumin, which help improve the drug solubility and stability. We specifically focus on amphiphilic liquid crystalline nanocarriers (cubosome, hexosome, spongosome, and liposome particles) for the encapsulation of curcumin with the purpose of halting the progressive neuronal loss in Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Miora Rakotoarisoa
- Institut Galien Paris-Sud CNRS UMR 8612, LabEx LERMIT, Univ Paris-Sud, Univ Paris-Saclay, F-92296 Châtenay-Malabry, France.
| | - Angelina Angelova
- Institut Galien Paris-Sud CNRS UMR 8612, LabEx LERMIT, Univ Paris-Sud, Univ Paris-Saclay, F-92296 Châtenay-Malabry, France.
| |
Collapse
|
109
|
Weinberg RP, Koledova VV, Schneider K, Sambandan TG, Grayson A, Zeidman G, Artamonova A, Sambanthamurthi R, Fairus S, Sinskey AJ, Rha C. Palm Fruit Bioactives modulate human astrocyte activity in vitro altering the cytokine secretome reducing levels of TNFα, RANTES and IP-10. Sci Rep 2018; 8:16423. [PMID: 30401897 PMCID: PMC6219577 DOI: 10.1038/s41598-018-34763-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, are becoming more prevalent and an increasing burden on society. Neurodegenerative diseases often arise in the milieu of neuro-inflammation of the brain. Reactive astrocytes are key regulators in the development of neuro-inflammation. This study describes the effects of Palm Fruit Bioactives (PFB) on the behavior of human astrocytes which have been activated by IL-1β. When activated, the astrocytes proliferate, release numerous cytokines/chemokines including TNFα, RANTES (CCL5), IP-10 (CXCL10), generate reactive oxygen species (ROS), and express specific cell surface biomarkers such as the Intercellular Adhesion Molecule (ICAM), Vascular Cellular Adhesion Molecule (VCAM) and the Neuronal Cellular Adhesion Molecule (NCAM). Interleukin 1-beta (IL-1β) causes activation of human astrocytes with marked upregulation of pro-inflammatory genes. We show significant inhibition of these pro-inflammatory processes when IL-1β-activated astrocytes are exposed to PFB. PFB causes a dose-dependent and time-dependent reduction in specific cytokines: TNFα, RANTES, and IP-10. We also show that PFB significantly reduces ROS production by IL-1β-activated astrocytes. Furthermore, PFB also reduces the expression of ICAM and VCAM, both in activated and naïve human astrocytes in vitro. Since reactive astrocytes play an essential role in the neuroinflammatory state preceding neurodegenerative diseases, this study suggests that PFB may have a potential role in their prevention and/or treatment.
Collapse
Affiliation(s)
- Robert P Weinberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Vera V Koledova
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kirsten Schneider
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - T G Sambandan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Adlai Grayson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Gal Zeidman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Anastasia Artamonova
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ravigadevi Sambanthamurthi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Syed Fairus
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - ChoKyun Rha
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
110
|
Resveratrol and Alzheimer's disease. From molecular pathophysiology to clinical trials. Exp Gerontol 2018; 113:36-47. [DOI: 10.1016/j.exger.2018.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/04/2018] [Accepted: 09/21/2018] [Indexed: 12/18/2022]
|
111
|
Neuroprotective Mechanisms of Resveratrol in Alzheimer's Disease: Role of SIRT1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8152373. [PMID: 30510627 PMCID: PMC6232815 DOI: 10.1155/2018/8152373] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/21/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive and neurodegenerative disorder of the cortex and hippocampus, which eventually leads to cognitive impairment. Although the etiology of AD remains unclear, the presence of β-amyloid (Aβ) peptides in these learning and memory regions is a hallmark of AD. Therefore, the inhibition of Aβ peptide aggregation has been considered the primary therapeutic strategy for AD treatment. Many studies have shown that resveratrol has antioxidant, anti-inflammatory, and neuroprotective properties and can decrease the toxicity and aggregation of Aβ peptides in the hippocampus of AD patients, promote neurogenesis, and prevent hippocampal damage. In addition, the antioxidant activity of resveratrol plays an important role in neuronal differentiation through the activation of silent information regulator-1 (SIRT1). SIRT1 plays a vital role in the growth and differentiation of neurons and prevents the apoptotic death of these neurons by deacetylating and repressing p53 activity; however, the exact mechanisms remain unclear. Resveratrol also has anti-inflammatory effects as it suppresses M1 microglia activation, which is involved in the initiation of neurodegeneration, and promotes Th2 responses by increasing anti-inflammatory cytokines and SIRT1 expression. This review will focus on the antioxidant and anti-inflammatory neuroprotective effects of resveratrol, specifically on its role in SIRT1 and the association with AD pathophysiology.
Collapse
|
112
|
Current Screening Methodologies in Drug Discovery for Selected Human Diseases. Mar Drugs 2018; 16:md16080279. [PMID: 30110923 PMCID: PMC6117650 DOI: 10.3390/md16080279] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/11/2018] [Indexed: 01/31/2023] Open
Abstract
The increase of many deadly diseases like infections by multidrug-resistant bacteria implies re-inventing the wheel on drug discovery. A better comprehension of the metabolisms and regulation of diseases, the increase in knowledge based on the study of disease-born microorganisms’ genomes, the development of more representative disease models and improvement of techniques, technologies, and computation applied to biology are advances that will foster drug discovery in upcoming years. In this paper, several aspects of current methodologies for drug discovery of antibacterial and antifungals, anti-tropical diseases, antibiofilm and antiquorum sensing, anticancer and neuroprotectors are considered. For drug discovery, two different complementary approaches can be applied: classical pharmacology, also known as phenotypic drug discovery, which is the historical basis of drug discovery, and reverse pharmacology, also designated target-based drug discovery. Screening methods based on phenotypic drug discovery have been used to discover new natural products mainly from terrestrial origin. Examples of the discovery of marine natural products are provided. A section on future trends provides a comprehensive overview on recent advances that will foster the pharmaceutical industry.
Collapse
|
113
|
Guillen PO, Gegunde S, Jaramillo KB, Alfonso A, Calabro K, Alonso E, Rodriguez J, Botana LM, Thomas OP. Zoanthamine Alkaloids from the Zoantharian Zoanthus cf. pulchellus and Their Effects in Neuroinflammation. Mar Drugs 2018; 16:md16070242. [PMID: 30036989 PMCID: PMC6071026 DOI: 10.3390/md16070242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/15/2018] [Accepted: 07/19/2018] [Indexed: 01/26/2023] Open
Abstract
Two new zoanthamine alkaloids, namely 3-acetoxynorzoanthamine (1) and 3-acetoxyzoanthamine (2), have been isolated from the zoantharian Zoanthus cf. pulchellus collected off the coast of the Santa Elena Peninsula, Ecuador, together with three known derivatives: zoanthamine, norzoanthamine, and 3-hydroxynorzoanthamine. The chemical structures of 1 and 2 were determined by interpretation of their 1D and 2D NMR data and comparison with literature data. This is the first report of zoanthamine-type alkaloids from Zoanthus cf. pulchellus collected in the Tropical Eastern Pacific. The neuroinflammatory activity of all the isolated compounds was evaluated in microglia BV-2 cells and high inhibitory effects were observed in reactive oxygen species (ROS) and nitric oxide (NO) generation.
Collapse
Affiliation(s)
- Paul O Guillen
- ESPOL Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuacultura e Investigaciones Marinas, Campus Gustavo Galindo km. 30.5 vía Perimetral, P.O. Box 09-01-5863 Guayaquil, Ecuador.
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33 Galway, Ireland.
| | - Sandra Gegunde
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Karla B Jaramillo
- ESPOL Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuacultura e Investigaciones Marinas, Campus Gustavo Galindo km. 30.5 vía Perimetral, P.O. Box 09-01-5863 Guayaquil, Ecuador.
- Zoology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33 Galway, Ireland.
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Kevin Calabro
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33 Galway, Ireland.
| | - Eva Alonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Jenny Rodriguez
- ESPOL Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuacultura e Investigaciones Marinas, Campus Gustavo Galindo km. 30.5 vía Perimetral, P.O. Box 09-01-5863 Guayaquil, Ecuador.
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Olivier P Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33 Galway, Ireland.
| |
Collapse
|
114
|
Syad AN, Devi KP. Gelidiella acerosa Exhibits Neuroprotective Effect Against Amyloid Beta 25–35 Peptide–Induced Toxicity in PC12 Cells. J Diet Suppl 2018; 16:491-505. [DOI: 10.1080/19390211.2018.1471563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Arif Nisha Syad
- Department of Biotechnology, Srimad Andavan Arts & Science College (Autonomous), Tamil Nadu, India
- Department of Biotechnology, Alagappa University (Science Campus), Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Tamil Nadu, India
| |
Collapse
|
115
|
The Role of Eif6 in Skeletal Muscle Homeostasis Revealed by Endurance Training Co-expression Networks. Cell Rep 2018; 21:1507-1520. [PMID: 29117557 PMCID: PMC5695912 DOI: 10.1016/j.celrep.2017.10.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 08/16/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
Regular endurance training improves muscle oxidative capacity and reduces the risk of age-related disorders. Understanding the molecular networks underlying this phenomenon is crucial. Here, by exploiting the power of computational modeling, we show that endurance training induces profound changes in gene regulatory networks linking signaling and selective control of translation to energy metabolism and tissue remodeling. We discovered that knockdown of the mTOR-independent factor Eif6, which we predicted to be a key regulator of this process, affects mitochondrial respiration efficiency, ROS production, and exercise performance. Our work demonstrates the validity of a data-driven approach to understanding muscle homeostasis. Endurance exercise profoundly affects the structure of gene networks Eif6 is a hub in gene networks responsible for muscle metabolism and protein synthesis Mitochondrial metabolic capacity altered in muscle from Eif6+/− mice Eif6 haploinsufficiency increased ROS generation and reduced exercise performance
Collapse
|
116
|
Raninga PV, Di Trapani G, Tonissen KF. The Multifaceted Roles of DJ-1 as an Antioxidant. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1037:67-87. [PMID: 29147904 DOI: 10.1007/978-981-10-6583-5_6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The DJ-1 protein was originally linked with Parkinson's disease and is now known to have antioxidant functions. The protein has three redox-sensitive cysteine residues, which are involved in its dimerisation and functional properties. A mildly oxidised form of DJ-1 is the most active form and protects cells from oxidative stress conditions. DJ-1 functions as an antioxidant through a variety of mechanisms, including a weak direct antioxidant activity by scavenging reactive oxygen species. DJ-1 also regulates a number of signalling pathways, including the inhibition of apoptosis signal-regulating kinase 1 (ASK1)-induced apoptosis under oxidative stress conditions. Other proteins regulated by DJ-1 include enzymes, chaperones, the 20S proteasome and transcription factors, including Nrf2. Once activated by oxidative stress, Nrf2 upregulates antioxidant gene expression including members of the thioredoxin and glutathione pathways, which in turn mediate an antioxidant protective function. Crosstalk between DJ-1 and both the thioredoxin and glutathione systems has also been identified. Thioredoxin reduces a cysteine residue on DJ-1 to modulate its activity, while glutaredoxin1 de-glutathionylates DJ-1, preventing degradation of DJ-1 and resulting in its accumulation. DJ-1 also regulates the activity of glutamate cysteine ligase, which is the rate-limiting step for glutathione synthesis. These antioxidant functions of DJ-1 are key to its role in protecting neurons from oxidative stress and are hypothesised to protect the brain from the development of neurodegenerative diseases such as Parkinson's disease (PD) and to protect cardiac tissues from ischaemic-reperfusion injury. However, DJ-1, as an antioxidant, also protects cancer cells from undergoing oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Prahlad V Raninga
- School of Natural Sciences, Griffith University, Nathan, QLD, 4111, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - Giovanna Di Trapani
- School of Natural Sciences, Griffith University, Nathan, QLD, 4111, Australia
| | - Kathryn F Tonissen
- School of Natural Sciences, Griffith University, Nathan, QLD, 4111, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
117
|
Karki R, Kodamullil AT, Hofmann-Apitius M. Comorbidity Analysis between Alzheimer's Disease and Type 2 Diabetes Mellitus (T2DM) Based on Shared Pathways and the Role of T2DM Drugs. J Alzheimers Dis 2018; 60:721-731. [PMID: 28922161 PMCID: PMC5611890 DOI: 10.3233/jad-170440] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Various studies suggest a comorbid association between Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM) indicating that there could be shared underlying pathophysiological mechanisms. Objective: This study aims to systematically model relevant knowledge at the molecular level to find a mechanistic rationale explaining the existing comorbid association between AD and T2DM. Method: We have used a knowledge-based modeling approach to build two network models for AD and T2DM using Biological Expression Language (BEL), which is capable of capturing and representing causal and correlative relationships at both molecular and clinical levels from various knowledge resources. Results: Using comparative analysis, we have identified several putative “shared pathways”. We demonstrate, at a mechanistic level, how the insulin signaling pathway is related to other significant AD pathways such as the neurotrophin signaling pathway, PI3K/AKT signaling, MTOR signaling, and MAPK signaling and how these pathways do cross-talk with each other both in AD and T2DM. In addition, we present a mechanistic hypothesis that explains both favorable and adverse effects of the anti-diabetic drug metformin in AD. Conclusion: The two computable models introduced here provide a powerful framework to identify plausible mechanistic links shared between AD and T2DM and thereby identify targeted pathways for new therapeutics. Our approach can also be used to provide mechanistic answers to the question of why some T2DM treatments seem to increase the risk of AD.
Collapse
Affiliation(s)
- Reagon Karki
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Bonn, Germany
| | - Alpha Tom Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Bonn, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Bonn, Germany
| |
Collapse
|
118
|
Eskandary A, Moazedi AA, Najaph zade varzi H, Akhond MR. Combined Effects of Donepezil and Lovastatin on Cognition Deficit Induced by Bilateral Lesion of the Nucl. Basalis Magnocellularis in a Rat Model of Alzheimer’s Disease. NEUROPHYSIOLOGY+ 2018. [DOI: 10.1007/s11062-018-9723-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
119
|
Wang C, Liao Y, Wang S, Wang D, Wu N, Xu Q, Jiang W, Qiu M, Liu C. Cytoprotective effects of diosmetin against hydrogen peroxide-induced L02 cell oxidative damage via activation of the Nrf2-ARE signaling pathway. Mol Med Rep 2018; 17:7331-7338. [PMID: 29568961 DOI: 10.3892/mmr.2018.8750] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/13/2018] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress is considered a crucial mediator in the pathogenesis of various liver diseases. The flavone diosmetin has been reported to exhibit antioxidant activities; however, the hepatoprotective effects of diosmetin against oxidative stress, and the underlying molecular mechanisms, remain unknown. The present study aimed to investigate the potential hepatoprotective effects of diosmetin on hydrogen peroxide (H2O2)‑induced oxidative damage in L02 cells and attempted to evaluate the role of the nuclear factor erythroid 2‑related factor 2 (Nrf2)/antioxidant response element pathway in this process. L02 cells were divided into groups: Control (DMSO, diosmetin), H2O2, Trolox or tertiary butylhydroquinone and diosmetin (different doses). Protective effects in L02 cells were determined by CCK‑8, cell apoptosis and lactate dehydrogenase leakage assays. Flow cytometry and inverted fluorescence microscope were used to measure the intracellular reactive oxygen species (ROS) and mitochondrial membrane potential (MMP). Protein expression levels were of Nrf2, heme oxygenase‑1 (HO‑1) and NAD(P)H quinone oxidoreductase‑1 (NQO1) were determined by western blotting and mRNA levels were determined by reverse transcription‑quantitative polymerase chain reaction. The results revealed that H2O2 induced notable injury to L02 cells, as demonstrated by decreased cell viability, increased lactate dehydrogenase release, apoptotic rate and intracellular ROS production, and by the loss of MMP. Conversely, diosmetin (20‑40 µM) significantly reversed the damaging effects of H2O2, which indicated that diosmetin may exhibit potent hepatoprotective potential against H2O2‑induced oxidative damage. Furthermore, pretreatment with diosmetin elevated mRNA and protein expression levels of Nrf2, HO‑1 and NQO1. The present study is the first, to the best of our knowledge, to demonstrate that activation of the Nrf2/NQO1‑HO‑1 signaling pathway maybe involved in the cytoprotective effects of diosmetin against oxidative stress. Therefore, diosmetin may be considered a promising therapeutic agent for the treatment of various liver diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Chunjing Wang
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yaping Liao
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Shengnan Wang
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Dan Wang
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Nana Wu
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Qingao Xu
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Wanwan Jiang
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Menran Qiu
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Changqing Liu
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
120
|
Wu W, Liu BH, Xie CL, Xia XD, Zhang YM. Neuroprotective effects of N-acetyl cysteine on primary hippocampus neurons against hydrogen peroxide-induced injury are mediated via inhibition of mitogen-activated protein kinases signal transduction and antioxidative action. Mol Med Rep 2018; 17:6647-6654. [PMID: 29512790 DOI: 10.3892/mmr.2018.8699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 05/11/2017] [Indexed: 11/05/2022] Open
Abstract
N-acetyl cysteine (NAC) has been extensively reported to exert neuroprotective effects on the central nervous system. Oxidative stress may contribute to the underlying mechanisms causing Alzheimer's disease (AD). The effect of NAC against oxidative stress injury was investigated in a cellular model of AD in the present study and the underlying mechanisms were revealed. The neuroprotective action of NAC (1, 10, 100 and 1,000 µmol/l) on a cellular model of AD [hydrogen peroxide (H2O2)‑induced (3, 30 and 300 µmol/l) toxicity in primary rat hippocampus neurons] demonstrated the underlying mechanisms. Cytotoxicity was measured using the MTT assay, and light microscopy and the dichloro-dihydro-fluorescein diacetate method were used to detect the reactive oxygen species (ROS) levels. Furthermore, the levels of mitogen-activated protein kinases (MAPKs) signal transduction and tau protein phosphorylation were measured via western blotting. NAC (100 µmol/l) protected hippocampus neurons against H2O2‑mediated toxicity, as evidenced by enhanced cell viability. Using MTT assay and light microscopy for the observation of cell death, NAC ameliorated cell viability, which was induced by H2O2 injury (P<0.05). NAC was found to mitigate the excessive production of ROS (P<0.05). Another mechanism involved in the neuroprotective action of NAC may be its ability to inhibit MAPK signal transduction following H2O2 exposure. In addition, NAC may protect cells against H2O2‑induced toxicity by attenuating increased tau phosphorylation. Thus, the protective ability of NAC is hypothesized to result from inhibition of oxidative stress and downregulation of MAPK signal transduction and tau phosphorylation.
Collapse
Affiliation(s)
- Wei Wu
- Department of Brain Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Bao-Hua Liu
- Department of Brain Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Cheng-Long Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiao-Dong Xia
- Department of Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yan-Mei Zhang
- Department of Neurology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| |
Collapse
|
121
|
Abstract
Alzheimer's disease (AD) is characterized by brain deposition of amyloid plaques and tau neurofibrillary tangles along with steady cognitive decline. Synaptic damage, an early pathological event, correlates strongly with cognitive deficits and memory loss. Mitochondria are essential organelles for synaptic function. Neurons utilize specialized mechanisms to drive mitochondrial trafficking to synapses in which mitochondria buffer Ca2+ and serve as local energy sources by supplying ATP to sustain neurotransmitter release. Mitochondrial abnormalities are one of the earliest and prominent features in AD patient brains. Amyloid-β (Aβ) and tau both trigger mitochondrial alterations. Accumulating evidence suggests that mitochondrial perturbation acts as a key factor that is involved in synaptic failure and degeneration in AD. The importance of mitochondria in supporting synaptic function has made them a promising target of new therapeutic strategies for AD. Here, we review the molecular mechanisms regulating mitochondrial function at synapses, highlight recent findings on the disturbance of mitochondrial dynamics and transport in AD, and discuss how these alterations impact synaptic vesicle release and thus contribute to synaptic pathology associated with AD.
Collapse
|
122
|
Ferro D, Franchi N, Bakiu R, Ballarin L, Santovito G. Molecular characterization and metal induced gene expression of the novel glutathione peroxidase 7 from the chordate invertebrate Ciona robusta. Comp Biochem Physiol C Toxicol Pharmacol 2018; 205:1-7. [PMID: 29253620 DOI: 10.1016/j.cbpc.2017.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 11/28/2022]
Abstract
In the present study, we describe the identified and characterized the gene and the transcript of a novel glutathione peroxidase-7 (GPx7) from the solitary ascidian Ciona robusta, an invertebrate chordate widely distributed in temperate shallow seawater. The putative nucleotide and amino acid sequences were compared with those of GPx7 from other metazoans and phylogenetic analysis suggests the presence of a high evolutionary pressure in the contest of neutral evolution. The mRNA of CrGPx7 is located in hemocytes and ovarian follicular cells, as revealed by in situ hybridization. The time course of CrGPx7 mRNA levels in the presence of Cd, Cu and Zn, showed upregulation in the final stages of the experiments, suggesting a role of GPx7 in late protection from oxidative stress. Our in silico analyses of the crgpx7 promoter region revealed putative consensus sequences similar to mammalian metal-responsive elements (MRE) and xenobiotic-responsive elements (XRE), suggesting that the transcription of these genes directly depends on metals. Cell-free extract from C. robusta tissues show the presence of selenium-independent GPx activity that is inhibited by the presence of metals.
Collapse
Affiliation(s)
- D Ferro
- Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität, Münster, Germany
| | - N Franchi
- Department of Biology, University of Padova, Padova, Italy
| | - R Bakiu
- Department of Aquaculture and Fisheries, Agricultural University of Tirana, Tirana, Albania
| | - L Ballarin
- Department of Biology, University of Padova, Padova, Italy.
| | - G Santovito
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
123
|
TRPM2 dependence of ROS-induced NLRP3 activation in Alzheimer's disease. Int Immunopharmacol 2018; 54:78-85. [DOI: 10.1016/j.intimp.2017.10.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 10/02/2017] [Accepted: 10/18/2017] [Indexed: 01/09/2023]
|
124
|
Xiao-Li Z, Meng-Bei X, Ting-Yu J, Pei-Qing R, Guo-Qing Z, Yan L. Preclinical Evidence and Possible Mechanisms of Extracts or Compounds from Cistanches for Alzheimer’s Disease. Aging Dis 2018. [DOI: 10.14336/ad.2018.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
125
|
Rahim NS, Lim SM, Mani V, Abdul Majeed AB, Ramasamy K. Enhanced memory in Wistar rats by virgin coconut oil is associated with increased antioxidative, cholinergic activities and reduced oxidative stress. PHARMACEUTICAL BIOLOGY 2017; 55:825-832. [PMID: 28118770 PMCID: PMC6130622 DOI: 10.1080/13880209.2017.1280688] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
CONTEXT Virgin coconut oil (VCO) has been reported to possess antioxidative, anti-inflammatory and anti-stress properties. OBJECTIVE Capitalizing on these therapeutic effects, this study investigated for the first time the potential of VCO on memory improvement in vivo. MATERIALS AND METHODS Thirty male Wistar rats (7-8 weeks old) were randomly assigned to five groups (n = six per group). Treatment groups were administered with 1, 5 and 10 g/kg VCO for 31 days by oral gavages. The cognitive function of treated-rats were assessed using the Morris Water Maze Test. Brains were removed, homogenized and subjected to biochemical analyses of acetylcholine (ACh) and acetylcholinesterase (AChE), antioxidants [superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx) and glutathione reductase (GRx)], lipid peroxidase [malondialdehyde (MDA)] as well as nitric oxide (NO). α-Tocopherol (αT; 150 mg/kg) was also included for comparison purposes. RESULTS VCO-fed Wistar rats exhibited significant (p < 0.05) improvement of cognitive functions [reduced escape latency (≥ 1.8 s), reduced escape distance (≥ 0.3 m) and increased total time spent on platform (≥ 1 s)]. The findings were accompanied by elevation of ACh (15%), SOD (8%), CAT (≥ 54%), GSH (≥ 20%) and GPx (≥ 12%) and reduction of AChE (≥17%), MDA (> 33%) and NO (≥ 34%). Overall, memory improvement by VCO was comparable to αT. DISCUSSION AND CONCLUSION VCO has the potential to be used as a memory enhancer, the effect of which was mediated, at least in part, through enhanced cholinergic activity, increased antioxidants level and reduced oxidative stress.
Collapse
Affiliation(s)
- Nur Syafiqah Rahim
- Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical and Life Sciences Community of Research, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor Darul Ehsan, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau, Perlis, Malaysia
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical and Life Sciences Community of Research, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor Darul Ehsan, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Darul Ehsan, Malaysia
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | | | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical and Life Sciences Community of Research, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor Darul Ehsan, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Darul Ehsan, Malaysia
| |
Collapse
|
126
|
Nesi G, Chen Q, Sestito S, Digiacomo M, Yang X, Wang S, Pi R, Rapposelli S. Nature-based molecules combined with rivastigmine: A symbiotic approach for the synthesis of new agents against Alzheimer's disease. Eur J Med Chem 2017; 141:232-239. [DOI: 10.1016/j.ejmech.2017.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/31/2017] [Accepted: 10/02/2017] [Indexed: 11/25/2022]
|
127
|
Rezvani-Kamran A, Salehi I, Shahidi S, Zarei M, Moradkhani S, Komaki A. Effects of the hydroalcoholic extract of Rosa damascena on learning and memory in male rats consuming a high-fat diet. PHARMACEUTICAL BIOLOGY 2017; 55:2065-2073. [PMID: 28832226 PMCID: PMC6130717 DOI: 10.1080/13880209.2017.1362010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/05/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT High-fat diet (HFD) can cause deficits in learning and memory through oxidative stress and increase Alzheimer disease risk. Rosa damascena Mill. (Rosaceae) extract possesses potent antioxidant properties. OBJECTIVE This study investigated the effects of the hydroalcoholic extracts of petals of R. damascena on learning and memory in male rats consuming an HFD. MATERIALS AND METHODS Forty male Wistar rats (200-250 g) were randomly assigned to four groups: control, R. damascena extract, HFD and HFD + extract. The extract (1 g/kg bw daily) was administered by oral gavage for 1 month. Animals were allowed free access to high-fat chow for 3 months. The Morris water maze and the passive avoidance learning tests were used to assess learning and memory. RESULTS In the passive avoidance learning test, the step-through latencies in the retention test (STLr) of the extract (147.4 ± 23.3) and HFD (150.3 ± 25.2) groups were significantly lower than those of the control group (270.4 ± 10.5) (respectively, p < 0.001 and p < 0.01). STLr was significantly higher in the HFD + extract group (265.3 ± 10.6) than in the HFD group (150.3 ± 25.2) (p < 0.01). Time spent in the dark compartment (TDC) in the HFD + extract group (5.3 ± 2.6) was significantly lower than that in the HFD group (85.8 ± 19.1) (p < 0.05). DISCUSSION AND CONCLUSION Our results indicate that, while HFD or R. damascena extract alone leads to memory deficits, R. damascena extract exerted a positive effect on HFD-induced memory deficits. We hypothesize that the observed effects of R. damascena extract are likely due to its strong antioxidant properties.
Collapse
Affiliation(s)
- Arezoo Rezvani-Kamran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shirin Moradkhani
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
128
|
Guo J, Cheng J, North BJ, Wei W. Functional analyses of major cancer-related signaling pathways in Alzheimer's disease etiology. Biochim Biophys Acta Rev Cancer 2017; 1868:341-358. [PMID: 28694093 PMCID: PMC5675793 DOI: 10.1016/j.bbcan.2017.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disease and accounts for majority of human dementia. The hyper-phosphorylated tau-mediated intracellular neurofibrillary tangle and amyloid β-mediated extracellular senile plaque are characterized as major pathological lesions of AD. Different from the dysregulated growth control and ample genetic mutations associated with human cancers, AD displays damage and death of brain neurons in the absence of genomic alterations. Although various biological processes predominately governing tumorigenesis such as inflammation, metabolic alteration, oxidative stress and insulin resistance have been associated with AD genesis, the mechanistic connection of these biological processes and signaling pathways including mTOR, MAPK, SIRT, HIF, and the FOXO pathway controlling aging and the pathological lesions of AD are not well recapitulated. Hence, we performed a thorough review by summarizing the physiological roles of these key cancer-related signaling pathways in AD pathogenesis, comprising of the crosstalk of these pathways with neurofibrillary tangle and senile plaque formation to impact AD phenotypes. Importantly, the pharmaceutical investigations of anti-aging and AD relevant medications have also been highlighted. In summary, in this review, we discuss the potential role that cancer-related signaling pathways may play in governing the pathogenesis of AD, as well as their potential as future targeted strategies to delay or prevent aging-related diseases and combating AD.
Collapse
Affiliation(s)
- Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ji Cheng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
129
|
Conte-Daban A, Boff B, Candido Matias A, Aparicio CNM, Gateau C, Lebrun C, Cerchiaro G, Kieffer I, Sayen S, Guillon E, Delangle P, Hureau C. A Trishistidine Pseudopeptide with Ability to Remove Both Cu Ι and Cu ΙΙ from the Amyloid-β Peptide and to Stop the Associated ROS Formation. Chemistry 2017; 23:17078-17088. [PMID: 28846165 PMCID: PMC5714062 DOI: 10.1002/chem.201703429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Indexed: 01/08/2023]
Abstract
The pseudopeptide L, derived from a nitrilotriacetic acid scaffold and functionalized with three histidine moieties, is reminiscent of the amino acid side chains encountered in the Alzheimer's peptide (Aβ). Its synthesis and coordination properties for CuΙ and CuΙΙ are described. L efficiently complex CuΙΙ in a square-planar geometry involving three imidazole nitrogen atoms and an amidate-Cu bond. By contrast, CuΙ is coordinated in a tetrahedral environment. The redox behavior is irreversible and follows an ECEC mechanism in accordance with the very different environments of the two redox states of the Cu center. This is in line with the observed resistance of the CuΙ complex to oxidation by oxygen and the CuΙΙ complex reduction by ascorbate. The affinities of L for CuΙΙ and CuΙ at physiological pH are larger than that reported for the Aβ peptide. Therefore, due to its peculiar Cu coordination properties, the ligand L is able to target both redox states of Cu, redox silence them and prevent reactive oxygen species production by the CuAβ complex. Because reactive oxygen species contribute to the oxidative stress, a key issue in Alzheimer's disease, this ligand thus represents a new strategy in the long route of finding molecular concepts for fighting Alzheimer's disease.
Collapse
Affiliation(s)
- A. Conte-Daban
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne,BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4, France
| | - B. Boff
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - A. Candido Matias
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
- Center for Natural Sciences and Humanities, Federal University of ABC – UFABC 09210-580, Santo André, SP, Brazil
| | - C. N. Montes Aparicio
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne,BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4, France
| | - C. Gateau
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - C. Lebrun
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - G. Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC – UFABC 09210-580, Santo André, SP, Brazil
| | - I. Kieffer
- BM30B/FAME beamline, ESRF, F-38043 Grenoble cedex 9, France
- Observatoire des Sciences de l’Univers de Grenoble, UMS 832 CNRS Université Grenoble Alpes, F-38041 Grenoble, France
| | - S. Sayen
- Institut de Chimie Moléculaire de Reims (ICMR, UMR CNRS 7312), Université de Reims Champagne-Ardenne, F-51687 Reims Cedex 2, France
| | - E. Guillon
- Institut de Chimie Moléculaire de Reims (ICMR, UMR CNRS 7312), Université de Reims Champagne-Ardenne, F-51687 Reims Cedex 2, France
| | - P. Delangle
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - C. Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne,BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4, France
| |
Collapse
|
130
|
Amelioration of Scopolamine-Induced Learning and Memory Impairment by α-Pinene in C57BL/6 Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4926815. [PMID: 29234406 PMCID: PMC5687139 DOI: 10.1155/2017/4926815] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/08/2017] [Indexed: 01/27/2023]
Abstract
Increasing evidence suggests that neurodegenerative disorders such as Alzheimer's disease (AD) are mediated via disruption of cholinergic neurons and enhanced oxidative stress. Therefore, attention has been focused on searching for antioxidant phytochemicals for the prevention and/or treatment of AD through their ability to fortify cholinergic function and antioxidant defense capacity. In this study, we have investigated the neuroprotective effect of α-pinene (APN) against learning and memory impairment induced by scopolamine (SCO, 1 mg/kg, i.p.), a muscarinic receptor antagonist in C57BL/6 mice. Administration of APN (10 mg/kg, i.p.) significantly improved SCO-induced cognitive dysfunction as assessed by Y-maze and passive avoidance tests. In Morris water-maze test, APN effectively shortened the mean escape latency to find the hidden platform during training days. To further elucidate the molecular mechanisms underlying the neuroprotective effect of APN, the expression of proteins involved in the acetylcholine metabolism and antioxidant system was examined. Particularly, APN treatment increased mRNA expression of choline acetyltransferase in the cortex and protein levels of antioxidant enzymes such as heme oxygenase-1 and manganese superoxide dismutase in the hippocampus via activation of NF-E2-related factor 2. These findings suggest the possible neuroprotective potentials of APN for the management of dementia with learning and memory loss.
Collapse
|
131
|
|
132
|
Gao C, Chang P, Yang L, Wang Y, Zhu S, Shan H, Zhang M, Tao L. Neuroprotective effects of hydrogen sulfide on sodium azide-induced oxidative stress in PC12 cells. Int J Mol Med 2017; 41:242-250. [PMID: 29115393 PMCID: PMC5746291 DOI: 10.3892/ijmm.2017.3227] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 10/19/2017] [Indexed: 12/04/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, responsible for >50% of all dementia cases. Sodium azide (NaN3) inhibits cytochrome oxidase by irreversibly binding to the heme cofactor and selectively reducing the complex IV activity, which is present in post-mortem AD brains. Previous data demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator, exerted protective effects against neuronal damage. Therefore, it was hypothesized that H2S may be able to scavenge excess reactive oxygen species (ROS), thereby protecting against oxidative stress and cell death. In the present study, it was observed that cell viability decreased in a concentration-dependent manner 12 h after NaN3 treatment (20, 30 and 50 mmol/l). A decrease in cell viability (to 51±3%) was observed 12 h after treatment with 30 mM NaN3. NaN3 treatment also led to decreased mitochondrial membrane potential, increased lipid peroxidation (excessive production of malondialdehyde), and increased the protein expression levels of caspase-3. Pretreatment with H2S (200 μmol/l) attenuated NaN3-mediated apoptosis, and the anti-apoptotic action of H2S was partially dependent on suppressing the production of ROS. The findings of the present study suggested that H2S exerted a neuroprotective effect against NaN3-induced neurotoxicity through mechanisms related to anti-oxidation and anti-apoptosis. Therefore, the findings of the present study suggest there may be a promising future for H2S-based preventions and therapies for neuronal damage following exposure to NaN3.
Collapse
Affiliation(s)
- Cheng Gao
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing 100088, P.R. China
| | - Pan Chang
- Central Laboratory, The Second Affiliated Hospital of Xi'an Medical College, Xi'an, Shaanxi 710038, P.R. China
| | - Lijun Yang
- Institute of Forensic Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yi Wang
- Institute of Forensic Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shaohua Zhu
- Institute of Forensic Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, North District of Suzhou Municipal Hospital, Suzhou, Jiangsu 215000, P.R. China
| | - Mingyang Zhang
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing 100088, P.R. China
| | - Luyang Tao
- Institute of Forensic Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
133
|
Chiang MC, Nicol CJ, Cheng YC. Resveratrol activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced inflammation and oxidative stress. Neurochem Int 2017; 115:1-10. [PMID: 28989083 DOI: 10.1016/j.neuint.2017.10.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/31/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with progressive memory loss resulting in dementia. Amyloid-beta (Aβ) peptides play a critical role in the pathogenesis of this disease, and are thought to promote inflammation and oxidative stress leading to neurodegeneration in the neocortex and hippocampus of the AD brains. AMP-activated protein kinase (AMPK) is a master regulator of cellular energy homeostasis, and cell survival in response to inflammation and oxidative stress. However, the neuroprotective mechanisms by which AMPK achieves these beneficial effects in human neural stem cells (hNSCs) exposed to Aβ is still not well understood. Resveratrol is a potent activator of AMPK suggesting it may have therapeutic potential against AD. Therefore, we will test the hypothesis that the AMPK activator resveratrol protects against Aβ mediated neuronal impairment (inflammation and oxidative stress) in hNSCs. Here, Aβ-treated hNSCs had significantly decreased cell viability that correlated with increased TNF-α and IL-1β inflammatory cytokine expression. Co-treatment with resveratrol significantly abrogated the Aβ-mediated effects in hNSCs, and was effectively blocked by the addition of the AMPK-specific antagonist (Compound C). These results suggest the neuroprotective effects of resveratrol are mediated by an AMPK-dependent pathway. In addition, resveratrol rescued the transcript expression levels of inhibitory kappa B kinase (IKK) in Aβ-treated hNSCs. NF-κB is a transcription factor with a key role in the expression of a variety of genes involved in inflammatory responses. Resveratrol prevented the Aβ-mediated increases in NF-κB mRNA and protein levels, and its nuclear translocation in hNSCs. Co-treatment with resveratrol also significantly restored iNOS and COX-2 levels in Aβ-treated hNSCs. Furthermore, hNSCs co-treated with resveratrol were significantly rescued from Aβ-induced oxidative stress, which correlated with reversal of the Aβ-induced mRNA decrease in oxidative defense genes (SOD-1, NRF2, Gpx1, Catalase, GSH and HO-1). Taken together, these novel findings show that activation of AMPK-dependent signaling by resveratrol rescues Aβ-mediated neurotoxicity in hNSCs, and provides evidence supporting a neuroprotective role for AMPK activating drugs in Aβ-related diseases such as AD.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City, 242, Taiwan.
| | - Christopher J Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Division of Cancer Biology & Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao Yuan, 333, Taiwan
| |
Collapse
|
134
|
Lian Y, Xia X, Zhao H, Zhu Y. The potential of chrysophanol in protecting against high fat-induced cardiac injury through Nrf2-regulated anti-inflammation, anti-oxidant and anti-fibrosis in Nrf2 knockout mice. Biomed Pharmacother 2017; 93:1175-1189. [DOI: 10.1016/j.biopha.2017.05.148] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 01/16/2023] Open
|
135
|
Lai AY, McLaurin J. Rho-associated protein kinases as therapeutic targets for both vascular and parenchymal pathologies in Alzheimer's disease. J Neurochem 2017; 144:659-668. [PMID: 28722749 DOI: 10.1111/jnc.14130] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/21/2017] [Accepted: 07/14/2017] [Indexed: 12/30/2022]
Abstract
The causes of late-onset Alzheimer's disease are unclear and likely multifactorial. Rho-associated protein kinases (ROCKs) are ubiquitously expressed signaling messengers that mediate a wide array of cellular processes. Interestingly, they play an important role in several vascular and brain pathologies implicated in Alzheimer's etiology, including hypertension, hypercholesterolemia, blood-brain barrier disruption, oxidative stress, deposition of vascular and parenchymal amyloid-beta peptides, tau hyperphosphorylation, and cognitive decline. The current review summarizes the functions of ROCKs with respect to the various risk factors and pathologies on both sides of the blood-brain barrier and present support for targeting ROCK signaling as a multifactorial and multi-effect approach for the prevention and amelioration of late-onset Alzheimer's disease. This article is part of the Special Issue "Vascular Dementia".
Collapse
Affiliation(s)
- Aaron Y Lai
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - JoAnne McLaurin
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
136
|
Cenit MC, Sanz Y, Codoñer-Franch P. Influence of gut microbiota on neuropsychiatric disorders. World J Gastroenterol 2017; 23:5486-5498. [PMID: 28852308 PMCID: PMC5558112 DOI: 10.3748/wjg.v23.i30.5486] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/08/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
The last decade has witnessed a growing appreciation of the fundamental role played by an early assembly of a diverse and balanced gut microbiota and its subsequent maintenance for future health of the host. Gut microbiota is currently viewed as a key regulator of a fluent bidirectional dialogue between the gut and the brain (gut-brain axis). A number of preclinical studies have suggested that the microbiota and its genome (microbiome) may play a key role in neurodevelopmental and neurodegenerative disorders. Furthermore, alterations in the gut microbiota composition in humans have also been linked to a variety of neuropsychiatric conditions, including depression, autism and Parkinson's disease. However, it is not yet clear whether these changes in the microbiome are causally related to such diseases or are secondary effects thereof. In this respect, recent studies in animals have indicated that gut microbiota transplantation can transfer a behavioral phenotype, suggesting that the gut microbiota may be a modifiable factor modulating the development or pathogenesis of neuropsychiatric conditions. Further studies are warranted to establish whether or not the findings of preclinical animal experiments can be generalized to humans. Moreover, although different communication routes between the microbiota and brain have been identified, further studies must elucidate all the underlying mechanisms involved. Such research is expected to contribute to the design of strategies to modulate the gut microbiota and its functions with a view to improving mental health, and thus provide opportunities to improve the management of psychiatric diseases. Here, we review the evidence supporting a role of the gut microbiota in neuropsychiatric disorders and the state of the art regarding the mechanisms underlying its contribution to mental illness and health. We also consider the stages of life where the gut microbiota is more susceptible to the effects of environmental stressors, and the possible microbiota-targeted intervention strategies that could improve health status and prevent psychiatric disorders in the near future.
Collapse
|
137
|
Wang X, Fan X, Yuan S, Jiao W, Liu B, Cao J, Jiang W. Chlorogenic acid protects against aluminium-induced cytotoxicity through chelation and antioxidant actions in primary hippocampal neuronal cells. Food Funct 2017; 8:2924-2934. [PMID: 28745369 DOI: 10.1039/c7fo00659d] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chlorogenic acid (CGA), a major polyphenolic component of many plants, displays antioxidant and neuroprotective properties in neurodegenerative diseases. To investigate whether CGA may influence aluminium (Al) induced cytotoxicity, aluminium chloride (50 μM Al) was administered in primary hippocampal neuronal cells presupplemented with CGA (10, 50 and 100 μM). Our study shows that the exposure to Al caused cell death, Al3+ accumulation, reactive oxygen species generation and mitochondrial damage in cells. The administration of CGA (50 μM) increased cell viability by 37.5%, decreased the levels of Al3+ by 26.0%, together with significantly weakening the oxidative damage compared with Al treatment alone. CGA protected neurons against Al-induced oxidative stress by increasing the expression of nuclear factor-E2-related factor 2 and its target phase 2 enzymes. The administration of CGA remarkably promoted the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, creatine kinase and acetylcholinesterase and attenuated the rate of ATP hydrolysis. Our finding shows that CGA has neuroprotective effects against Al-induced cytotoxicity by chelation and antioxidant activation.
Collapse
Affiliation(s)
- Xiaomei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China.
| | - Xinguang Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China.
| | - Shuzhi Yuan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China.
| | - Wenxiao Jiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China.
| | - Bangdi Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China.
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China.
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
138
|
Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2525967. [PMID: 28785371 PMCID: PMC5529664 DOI: 10.1155/2017/2525967] [Citation(s) in RCA: 495] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/26/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023]
Abstract
Increasing numbers of individuals, particularly the elderly, suffer from neurodegenerative disorders. These diseases are normally characterized by progressive loss of neuron cells and compromised motor or cognitive function. Previous studies have proposed that the overproduction of reactive oxygen species (ROS) may have complex roles in promoting the disease development. Research has shown that neuron cells are particularly vulnerable to oxidative damage due to their high polyunsaturated fatty acid content in membranes, high oxygen consumption, and weak antioxidant defense. However, the exact molecular pathogenesis of neurodegeneration related to the disturbance of redox balance remains unclear. Novel antioxidants have shown great potential in mediating disease phenotypes and could be an area of interest for further research. In this review, we provide an updated discussion on the roles of ROS in the pathological mechanisms of Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, and spinocerebellar ataxia, as well as a highlight on the antioxidant-based therapies for alleviating disease severity.
Collapse
|
139
|
Ameen D, Michniak-Kohn B. Transdermal delivery of dimethyl fumarate for Alzheimer's disease: Effect of penetration enhancers. Int J Pharm 2017; 529:465-473. [PMID: 28709939 DOI: 10.1016/j.ijpharm.2017.07.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/20/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
Abstract
Dimethyl fumarate (DMF) is an orally administered drug with neuroprotective and immunomodulatory activities. It has potential uses in the treatment of neurodegenerative diseases such as Alzheimer's disease (AD). The objective of this study was to investigate the feasibility of transdermal delivery of DMF by studying the effect of different penetration enhancers on the skin permeation of DMF. The permeation of saturated DMF solutions was investigated in propylene glycol (PG) with varying concentrations of each of the following enhancers: Polysorbate 80 (T80), N-methyl pyrrolidone (NMP), laurocapram (Azone®) (Az), Transcutol P (Tc), Terpineol (Terp), and cineole (Cin) using vertical Franz diffusion cells and human cadaver skin. The results showed that all penetration enhancers improved the rate of permeation of DMF. The rank order for the highest concentration of each enhancer was as follows: Cin > Az>TC > Terp>T80≥NMP. The most effective penetration enhancer was shown to be 5% cineole with a 5.3-fold increase in the enhancement ratio (ER). The amounts of drug delivered suggest that DMF is a potential candidate for transdermal drug delivery.
Collapse
Affiliation(s)
- Dina Ameen
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA; Department od Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Bozena Michniak-Kohn
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
140
|
Azam F, Alabdullah NH, Ehmedat HM, Abulifa AR, Taban I, Upadhyayula S. NSAIDs as potential treatment option for preventing amyloid β toxicity in Alzheimer's disease: an investigation by docking, molecular dynamics, and DFT studies. J Biomol Struct Dyn 2017; 36:2099-2117. [PMID: 28571516 DOI: 10.1080/07391102.2017.1338164] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Aggregation of amyloid beta (Aβ) protein considered as one of contributors in development of Alzheimer's disease (AD). Several investigations have identified the importance of non-steroidal anti-inflammatory drugs (NSAIDs) as Aβ aggregation inhibitors. Here, we have examined the binding interactions of 24 NSAIDs belonging to eight different classes, with Aβ fibrils by exploiting docking and molecular dynamics studies. Minimum energy conformation of the docked NSAIDs were further optimized by density functional theory (DFT) employing Becke's three-parameter hybrid model, Lee-Yang-Parr (B3LYP) correlation functional method. DFT-based global reactivity descriptors, such as electron affinity, hardness, softness, chemical potential, electronegativity, and electrophilicity index were calculated to inspect the expediency of these descriptors for understanding the reactive nature and sites of the molecules. Few selected NSAID-Aβ fibrils complexes were subjected to molecular dynamics simulation to illustrate the stability of these complexes and the most prominent interactions during the simulated trajectory. All of the NSAIDs exhibited potential activity against Aβ fibrils in terms of predicted binding affinity. Sulindac was found to be the most active compound underscoring the contribution of indene methylene substitution, whereas acetaminophen was observed as least active NSAID. General structural requirements for interaction of NSAIDs with Aβ fibril include: aryl/heteroaryl aromatic moiety connected through a linker of 1-2 atoms to a distal aromatic group. Considering these structural requirements and electronic features, new potent agents can be designed and developed as potential Aβ fibril inhibitors for the treatment of AD.
Collapse
Affiliation(s)
- Faizul Azam
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Misurata University , Misurata , Libya
| | - Nada Hussin Alabdullah
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Misurata University , Misurata , Libya
| | - Hadeel Mohammed Ehmedat
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Misurata University , Misurata , Libya
| | - Abdullah Ramadan Abulifa
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Misurata University , Misurata , Libya
| | - Ismail Taban
- b School of Pharmacy and Pharmaceutical Sciences , Cardiff University , Cardiff , UK
| | - Sreedevi Upadhyayula
- c Department of Chemical Engineering , Indian Institute of Technology , New Delhi , India
| |
Collapse
|
141
|
An HM, Lin C, Gu C, Chen JJ, Sun WX, Jin M, Zhang TL, Qiu MF, Hu B. Di-Huang-Yi-Zhi herbal formula attenuates amyloid-β-induced neurotoxicity in PC12 cells. Exp Ther Med 2017; 13:3003-3008. [PMID: 28587372 DOI: 10.3892/etm.2017.4368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/13/2017] [Indexed: 12/17/2022] Open
Abstract
Traditional Chinese medicine can be used for Alzheimer's disease management, such as the modern herbal formula Di-Huang-Yi-Zhi (DHYZ). In the present study, neuronal differentiated PC12 cells were used as a model to evaluate the effects of DHYZ against amyloid-β peptide 25-35 (Aβ25-35) induced neurotoxicity, particularly regarding cell proliferation, apoptosis and related events. Following treatment with DHYZ, cell viability, cell membrane damage, apoptosis, mitochondrial membrane potential, cytochrome c release, caspase-3 activity and levels of reactive oxygen species in PC12 cells were detected. The results demonstrated that pretreatment with DHYZ significantly protected PC12 cells from Aβ25-35-induced proliferation inhibition, lactate dehydrogenase release and apoptosis, as well as upregulating mitochondrial membrane potential and downregulating cytochrome c release and caspase-3 activation. DHYZ also inhibited the Aβ25-35-induced reactive oxygen species generation in PC12 cells. These observations suggest that DHYZ protected PC12 cells from the Aβ-induced neurotoxicity.
Collapse
Affiliation(s)
- Hong-Mei An
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Chen Lin
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Chao Gu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Jin-Jun Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, The Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, P.R. China
| | - Wen-Xian Sun
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Miao Jin
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Tian-Li Zhang
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Ming-Feng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Bing Hu
- Department of Oncology and Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
142
|
Wilson AA, Sadovski O, Nobrega JN, Raymond RJ, Bambico FR, Nashed MG, Garcia A, Bloomfield PM, Houle S, Mizrahi R, Tong J. Evaluation of a novel radiotracer for positron emission tomography imaging of reactive oxygen species in the central nervous system. Nucl Med Biol 2017; 53:14-20. [PMID: 28719807 DOI: 10.1016/j.nucmedbio.2017.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Few, if any, radiotracers are available for the in vivo imaging of reactive oxygen species (ROS) in the central nervous system. ROS play a critical role in normal cell processes such as signaling and homeostasis but overproduction of ROS is implicated in several disorders. We describe here the radiosynthesis and initial ex vivo and in vivo evaluation of [11C]hydromethidine ([11C]HM) as a radiotracer to image ROS using positron emission tomography (PET). METHODS [11C]HM and its deuterated isotopologue [11C](4) were produced using [11C]methyl triflate in a one-pot, two-step reaction and purified by high performance liquid chromatography. Ex vivo biodistribution studies were performed after tail vein injections of both radiotracers. To demonstrate sensitivity of uptake to ROS, [11C]HM was administered to rats treated systemically with lipopolysaccharide (LPS). In addition, ex vivo autoradiography and in vivo PET imaging were performed using [11C]HM on rats which had been microinjected with sodium nitroprusside (SNP) to induce ROS. RESULTS [11C]HM and [11C](4) radiosyntheses were reliable and produced the radiotracers at high specific activities and radiochemical purities. Both radiotracers demonstrated good brain uptake and fast washout of radioactivity, but [11C](4) washout was faster. Pretreatment with LPS resulted in a significant increase in brain retention of radioactivity. Ex vivo autoradiography and PET imaging of rats unilaterally treated with microinjections of SNP demonstrated increased retention of radioactivity in the treated side of the brain. CONCLUSIONS [11C]HM has the attributes of a radiotracer for PET imaging of ROS in the brain including good brain penetration and increased retention of radioactivity in animal models of oxidative stress.
Collapse
Affiliation(s)
- Alan A Wilson
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8.
| | - Oleg Sadovski
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| | - José N Nobrega
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| | - Roger J Raymond
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| | - Francis R Bambico
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| | - Mina G Nashed
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| | - Armando Garcia
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| | - Peter M Bloomfield
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| | - Junchao Tong
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| |
Collapse
|
143
|
Zhang W, Wang X, Li P, Xiao H, Zhang W, Wang H, Tang B. Illuminating Superoxide Anion and pH Enhancements in Apoptosis of Breast Cancer Cells Induced by Mitochondrial Hyperfusion Using a New Two-Photon Fluorescence Probe. Anal Chem 2017; 89:6840-6845. [DOI: 10.1021/acs.analchem.7b01290] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wen Zhang
- College of Chemistry, Chemical Engineering
and Materials Science, Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Institutes of
Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering
and Materials Science, Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Institutes of
Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering
and Materials Science, Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Institutes of
Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Haibin Xiao
- College of Chemistry, Chemical Engineering
and Materials Science, Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Institutes of
Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering
and Materials Science, Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Institutes of
Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Hui Wang
- College of Chemistry, Chemical Engineering
and Materials Science, Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Institutes of
Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering
and Materials Science, Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Institutes of
Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| |
Collapse
|
144
|
Seo JY, Kim SK, Nguyen PH, Lee JY, Tung PHT, Sung SH, Oh WK. Chemical constituents from a Gynostemma laxum and their antioxidant and neuroprotective activities. Chin Med 2017; 12:15. [PMID: 28546827 PMCID: PMC5442659 DOI: 10.1186/s13020-017-0136-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/17/2017] [Indexed: 01/28/2023] Open
Abstract
Background A few bioactivities of constituents from Gynostemma laxum, which has been collected in Vietnam, have been
reported until now. There is no report about the effects of constituents from G. laxum although the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated heme oxygenase-1 (HO-1) antioxidant defense system is involved in neuroprotection in the brain. Therefore, we investigated whether quercetin (2), benzoic acid (10) and their analogues (1, 3–9 and 11) from G. laxum have the antioxidant and neuroprotective activities and also their underlying mechanism. Methods To examine their neuroprotective and antioxidant activities, oxytosis, total oxidant scavenging capacity (TOSC), 2,7-dichlorofluorescein (DCFDA), dihydroethidium (DHE), antioxidant response element (ARE)-luciferase reporter gene assays, Western blot analysis, real time-PCR, immunocytochemistry and in silico 3D molecular docking simulation were performed. Results The study of constituents using chromatographic techniques and spectroscopic analysis showed that G. laxum contained an abundance of quercetin (2), benzoic acid (10) and their analogues (1, 3–9 and 11). Our data demonstrated that quercetin (2) and its analogue (4) among the constituents from G. laxum showed the strongest neuroprotective effect against oxytosis triggered by the excessive amount of glutamate. Compounds 2, 4, 6 and 11 exhibited reactive oxygen species (ROS) inhibitory and ARE transcriptional activities in immortalized hippocampal HT22 cell line. Among them, compound 4, a second active compound, induced Nrf2/HO-1 activation. They were also fit stable onto the Tramtrack and Bric-à-Brac (BTB) domain of Kelch-like ECH-associated protein 1 (Keap1), a known Nrf2 inhibitor protein, based on the results of docking and interaction energies. Overall, these data suggest that –OH and –OCH3 groups of quercetin and its analogues are responsible for their neuroprotective effect. Conclusions In summary, the major constituents of G. laxum had strong antioxidant and neuroprotective activities so that they could consider as a natural antioxidant supplement. Furthermore, G. laxum might be used beneficially in reducing oxidative complications with the further deep investigation in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13020-017-0136-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ji Yeon Seo
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Phi Hung Nguyen
- College of Pharmacy, Chosun University, Gwangju, 61452 Republic of Korea
| | - Ju Yong Lee
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Pham Ha Thanh Tung
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sang Hyun Sung
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
145
|
Role of Gasotransmitters in Oxidative Stresses, Neuroinflammation, and Neuronal Repair. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1689341. [PMID: 28386548 PMCID: PMC5366188 DOI: 10.1155/2017/1689341] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/12/2017] [Accepted: 02/07/2017] [Indexed: 12/21/2022]
Abstract
To date, three main gasotransmitters, that is, hydrogen sulfide (H2S), carbon monoxide (CO), and nitric oxide (NO), have been discovered to play major bodily physiological roles. These gasotransmitters have multiple functional roles in the body including physiologic and pathologic functions with respect to the cellular or tissue quantities of these gases. Gasotransmitters were originally known to have only detrimental and noxious effects in the body but that notion has much changed with years; vast studies demonstrated that these gasotransmitters are precisely involved in the normal physiological functioning of the body. From neuromodulation, oxidative stress subjugation, and cardiovascular tone regulation to immunomodulation, these gases perform critical roles, which, should they deviate from the norm, can trigger the genesis of a number of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). The purpose of this review is to discuss at great length physical and chemical properties and physiological actions of H2S, NO, and CO as well as shedding light on recently researched molecular targets. We particularly put emphasis on the roles in neuronal inflammation and neurodegeneration and neuronal repair.
Collapse
|
146
|
Omar SH, Scott CJ, Hamlin AS, Obied HK. The protective role of plant biophenols in mechanisms of Alzheimer's disease. J Nutr Biochem 2017; 47:1-20. [PMID: 28301805 DOI: 10.1016/j.jnutbio.2017.02.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/03/2017] [Accepted: 02/16/2017] [Indexed: 12/31/2022]
Abstract
Self-assembly of amyloid beta peptide (Aβ) into the neurotoxic oligomers followed by fibrillar aggregates is a defining characteristic of Alzheimer's disease (AD). Several lines of proposed hypotheses have suggested the mechanism of AD pathology, though the exact pathophysiological mechanism is not yet elucidated. The poor understanding of AD and multitude of adverse responses reported from the current synthetic drugs are the leading cause of failure in the drug development to treat or halt the progression of AD and mandate the search for safer and more efficient alternatives. A number of natural compounds have shown the ability to prevent the formation of the toxic oligomers and disrupt the aggregates, thus attracted much attention. Referable to the abundancy and multitude of pharmacological activities of the plant active constituents, biophenols that distinguish them from the other phytochemicals as a natural weapon against the neurodegenerative disorders. This review provides a critical assessment of the current literature on in vitro and in vivo mechanistic activities of biophenols associated with the prevention and treatment of AD. We have contended the need for more comprehensive approaches to evaluate the anti-AD activity of biophenols at various pathologic levels and to assess the current evidences. Consequently, we highlighted the various problems and challenges confronting the AD research, and offer recommendations for future research.
Collapse
Affiliation(s)
- Syed H Omar
- School of Biomedical Sciences, Faculty of Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Christopher J Scott
- School of Biomedical Sciences, Faculty of Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Adam S Hamlin
- School of Science & Technology, University of New England, Armidale, NSW 2351, Australia
| | - Hassan K Obied
- School of Biomedical Sciences, Faculty of Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
147
|
Akintunde JK, Labaika RG. Neuro-Preventive Effect and Elevation of Cellular Adenosine Triphosphate by PUFAs from Pteleiosis suberosa Stem Bark on Mercury Sub-Acute Exposed Rats. J Acute Med 2017; 7:1-9. [PMID: 32995163 PMCID: PMC7517971 DOI: 10.6705/j.jacme.2017.0701.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVES Occupational/industrial exposure and experimental intoxication of mercury can produce neurological effects but Pteleiosis suberosa stem bark extract (PTSSBE) might be useful in the treatment of brain disorders because it's anti-ulcer, anti-inflammatory and antioxidant effects had been documented. METHODS The present study was therefore designed to investigate some phenolic constituents, evaluate its antioxidant properties and examine its reversal effects of PTSSBE on sub-acute mercury-induced brain toxicity. Rats were divided into five groups of 10 animals each. Group I was given distilled water; group II, III, IV and V was orally administered with mercury at a dose of 3.75 mg/kg body weight. Group III, IV and V were co-treated with PTSSBE of 25, 50 and 100 mg/ kg body weight respectively, for 10 days. RESULTS The results revealed that the stem bark extract exhibited high presence of antioxidants. Experimental exposure of rats to mercury significantly decreased the activities of catalase (CAT), lactate dehydrogenase (LDH), and the level of reduced glutathione (GSH), while the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and the formation of malondialdehyde (MDA) were increased. These effects were reversed by co-administration with PTSSBE in mercury-induced brain toxicity in rats. CONCLUSION The protective effects of Pteleiosis suberosa, during mercury exposure suggest that these phenolics and PUFAs may be helpful in treating neurological disorders and other related cerebral toxicity implicated in depleted cellular ATP and oxidative stress.
Collapse
Affiliation(s)
- Jacob K Akintunde
- University of Ibadan Toxicology Unit, Department of Environmental Health Sciences, College of Medicine Nigeria
- Kwara State University Department of Biosciences and Biotechnology, Biochemistry Unit, College of Pure and Applied Sciences Malete Nigeria
| | - R G Labaika
- Kwara State University Department of Biosciences and Biotechnology, Biochemistry Unit, College of Pure and Applied Sciences Malete Nigeria
| |
Collapse
|
148
|
Kiametis AS, Silva MA, Romeiro LAS, Martins JBL, Gargano R. Potential acetylcholinesterase inhibitors: molecular docking, molecular dynamics, and in silico prediction. J Mol Model 2017; 23:67. [PMID: 28185116 DOI: 10.1007/s00894-017-3228-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/12/2017] [Indexed: 01/23/2023]
Abstract
This paper deals with molecular modeling of new therapeutic agents for treating the Alzheimer's disease. The therapeutic line adopted for this study is the cholinergic hypothesis. To modulate positively the cholinergic function through the inhibition of the acetylcholinesterase, a set of candidates was designed from a natural compound extracted from the cashew nutshell liquid, anacardic acid. In silico screening of this chemical library revealed a ligand that is more promising once it is correlated with an active drug through specific topological and electronic descriptors. The protein-ligand docking showed stable binding modes and the binding free energy computed for the active site of the receptor suggests that our ligand presents a potential biological response. Graphical Abstract Representation of the three dimensional structure of the AChE, showing the important binding sites of the Gorge and the conformation of the ligand.
Collapse
Affiliation(s)
| | - Mônica A Silva
- Institute of Physics, University of Brasilia, Brasilia, Brazil.
| | - Luiz A S Romeiro
- Departament of Tropical Medicine, University of Brasilia, Brasilia, Brazil
| | - João B L Martins
- Institute of Chemistry, University of Brasilia, Brasilia, Brazil
| | - Ricardo Gargano
- Institute of Physics, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
149
|
Synthesis and SAR study of novel sarsasapogenin derivatives as potent neuroprotective agents and NO production inhibitors. Bioorg Med Chem Lett 2017; 27:662-665. [DOI: 10.1016/j.bmcl.2016.11.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/09/2016] [Accepted: 11/23/2016] [Indexed: 11/23/2022]
|
150
|
Habib HM, Theuri SW, Kheadr E, Mohamed FE. DNA and BSA damage inhibitory activities, and anti-acetylcholinesterase, anti-porcine α-amylase and antioxidant properties of Dolichos lablab beans. Food Funct 2017; 8:881-887. [DOI: 10.1039/c6fo01164k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The underutilized Kenyan variety of Dolichos lablab bean seeds serve as a good source of natural antioxidants, which can probably be effective in reducing the risk of occurrence of several diseases.
Collapse
Affiliation(s)
- Hosam M. Habib
- Functional Foods and Nutraceuticals Laboratory (FFNL)
- Dairy Science and Technology Department
- Faculty of Agriculture
- Alexandria University
- Alexandria
| | - Serah W. Theuri
- Food and Nutrition Program
- College of Nursing and Health Professions
- University of Southern Indiana
- 8600 University Boulevard
- Evansville
| | - Ehab Kheadr
- Functional Foods and Nutraceuticals Laboratory (FFNL)
- Dairy Science and Technology Department
- Faculty of Agriculture
- Alexandria University
- Alexandria
| | - Fedah E. Mohamed
- College of Medicine and Health Sciences
- United Arab Emirates University
- Al Ain
- United Arab Emirates
| |
Collapse
|