101
|
Deng P, Dong X, Wu Z, Hou X, Mao L, Guo J, Zhao W, Peng C, Zhang Z, Peng L. Development of Glycosylation-Modified DPPA-1 Compounds as Innovative PD-1/PD-L1 Blockers: Design, Synthesis, and Biological Evaluation. Molecules 2024; 29:1898. [PMID: 38675717 PMCID: PMC11054459 DOI: 10.3390/molecules29081898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In the context of peptide drug development, glycosylation plays a pivotal role. Accordingly, L-type peptides were synthesized predicated upon the PD-1/PD-L1 blocker DPPA-1. Subsequent glycosylation resulted in the production of two distinct glycopeptides, D-glu-LPPA-1 and D-gal-LPPA-1, by using D-glucose (D-glu) and D-galactose (D-gal), respectively, during glycosylation. Both glycopeptides significantly inhibited the interaction between PD-1 and PD-L1, and the measured half maximal inhibitory concentrations (IC50s) were 75.5 μM and 101.9 μM for D-glu-LPPA-1 and D-gal-LPPA-1, respectively. Furthermore, D-gal-LPPA-1 displayed a pronounced ability to restore T-cell functionality. In an MC38 tumor-bearing mouse model, D-gal-LPPA-1 demonstrated a significant inhibitory effect. Notably, D-gal-LPPA-1 substantially augmented the abundance and functionality of CD8+ T cells in the tumor microenvironment. Additionally, in the lymph nodes and spleens, D-gal-LPPA-1 significantly increased the proportion of CD8+ T cells secreting interferon-gamma (IFN-γ). These strong findings position D-gal-LPPA-1 as a potent enhancer of the antitumor immune response in MC38 tumor-bearing mice, underscoring its potential as a formidable PD-1/PD-L1 blocking agent.
Collapse
Affiliation(s)
- Peng Deng
- Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiaodan Dong
- Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ziyuan Wu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang 471003, China
| | - Xixi Hou
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Longfei Mao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang 471003, China
| | - Jingjing Guo
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China;
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Chune Peng
- Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhe Zhang
- School of Sciences, Henan University of Technology, Zhengzhou 450001, China
| | - Lizeng Peng
- Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
102
|
Javed SA, Najmi A, Ahsan W, Zoghebi K. Targeting PD-1/PD-L-1 immune checkpoint inhibition for cancer immunotherapy: success and challenges. Front Immunol 2024; 15:1383456. [PMID: 38660299 PMCID: PMC11039846 DOI: 10.3389/fimmu.2024.1383456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The programmed death-1 receptor (PD-1) acts as a T-cell brake, and its interaction with ligand-1 (PD-L-1) interferes with signal transduction of the T-cell receptor. This leads to suppression of T-cell survival, proliferation, and activity in the tumor microenvironment resulting in compromised anticancer immunity. PD-1/PD-L-1 interaction blockade shown remarkable clinical success in various cancer immunotherapies. To date, most PD-1/PD-L-1 blockers approved for clinical use are monoclonal antibodies (mAbs); however, their therapeutic use are limited owing to poor clinical responses in a proportion of patients. mAbs also displayed low tumor penetration, steep production costs, and incidences of immune-related side effects. This strongly indicates the importance of developing novel inhibitors as cancer immunotherapeutic agents. Recently, advancements in the small molecule-based inhibitors (SMIs) that directly block the PD-1/PD-L-1 axis gained attention from the scientific community involved in cancer research. SMIs demonstrated certain advantages over mAbs, including longer half-lives, low cost, greater cell penetration, and possibility of oral administration. Currently, several SMIs are in development pipeline as potential therapeutics for cancer immunotherapy. To develop new SMIs, a wide range of structural scaffolds have been explored with excellent outcomes; biphenyl-based scaffolds are most studied. In this review, we analyzed the development of mAbs and SMIs targeting PD-1/PD-L-1 axis for cancer treatment. Altogether, the present review delves into the problems related to mAbs use and a detailed discussion on the development and current status of SMIs. This article may provide a comprehensive guide to medicinal chemists regarding the potential structural scaffolds required for PD-1/PD-L-1 interaction inhibition.
Collapse
Affiliation(s)
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | | | | |
Collapse
|
103
|
Akbulut Z, Aru B, Aydın F, Yanıkkaya Demirel G. Immune checkpoint inhibitors in the treatment of hepatocellular carcinoma. Front Immunol 2024; 15:1379622. [PMID: 38638433 PMCID: PMC11024234 DOI: 10.3389/fimmu.2024.1379622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
Despite advances in cancer treatment, hepatocellular carcinoma (HCC), the most common form of liver cancer, remains a major public health problem worldwide. The immune microenvironment plays a critical role in regulating tumor progression and resistance to therapy, and in HCC, the tumor microenvironment (TME) is characterized by an abundance of immunosuppressive cells and signals that facilitate immune evasion and metastasis. Recently, anti-cancer immunotherapies, therapeutic interventions designed to modulate the immune system to recognize and eliminate cancer, have become an important cornerstone of cancer therapy. Immunotherapy has demonstrated the ability to improve survival and provide durable cancer control in certain groups of HCC patients, while reducing adverse side effects. These findings represent a significant step toward improving cancer treatment outcomes. As demonstrated in clinical trials, the administration of immune checkpoint inhibitors (ICIs), particularly in combination with anti-angiogenic agents and tyrosine kinase inhibitors, has prolonged survival in a subset of patients with HCC, providing an alternative for patients who progress on first-line therapy. In this review, we aimed to provide an overview of HCC and the role of the immune system in its development, and to summarize the findings of clinical trials involving ICIs, either as monotherapies or in combination with other agents in the treatment of the disease. Challenges and considerations regarding the administration of ICIs in the treatment of HCC are also outlined.
Collapse
Affiliation(s)
- Zeynep Akbulut
- Cancer and Stem Cell Research Center, Maltepe University, Istanbul, Türkiye
- Department of Medical Biology and Genetics, Faculty of Medicine, Maltepe University, Istanbul, Türkiye
| | - Başak Aru
- Department of Immunology, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Furkan Aydın
- Department of Immunology, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | | |
Collapse
|
104
|
Vaughan J, Patel M, Suchard M, Gededzha M, Ranchod H, Howard W, Snyman T, Wiggill T. Derangements of immunological proteins in HIV-associated diffuse large B-cell lymphoma: the frequency and prognostic impact. Front Cell Infect Microbiol 2024; 14:1340096. [PMID: 38633747 PMCID: PMC11021765 DOI: 10.3389/fcimb.2024.1340096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Diffuse large B-cell lymphoma (DLBCL) is an aggressive malignancy of B-cells frequently encountered among people living with HIV. Immunological abnormalities are common in immunocompetent individuals with DLBCL, and are often associated with poorer outcomes. Currently, data on derangements of immunological proteins, such as cytokines and acute phase reactants, and their impact on outcomes in HIV-associated DLBCL (HIV-DLBCL) is lacking. This study assessed the levels and prognostic relevance of interleukin (IL)-6, IL-10 and Transforming Growth Factor Beta (TGFβ), the acute phase proteins C-reactive protein (CRP) and ferritin; serum free light chains (SFLC) (elevation of which reflects a prolonged pro-inflammatory state); and the activity of the immunosuppressive enzyme Indoleamine 2,3-dioxygenase (IDO)in South African patients with DLBCL. Methods Seventy-six patients with incident DLBCL were enrolled, and peripheral blood IL-6, IL-10, TGFβ, SFLC and IDO-activity measured in selected patients. Additional clinical and laboratory findings (including ferritin and CRP) were recorded from the hospital records. Results Sixty-one (80.3%) of the included patients were people living with HIV (median CD4-count = 148 cells/ul), and survival rates were poor (12-month survival rate 30.0%). The majority of the immunological proteins, except for TGFβ and ferritin, were significantly higher among the people living with HIV. Elevation of IL-6, SFLC and IDO-activity were not associated with survival in HIV-DLBCL, while raised IL-10, CRP, ferritin and TGFβ were. On multivariate analysis, immunological proteins associated with survival independently from the International Prognostic Index (IPI) included TGFβ, ferritin and IL-10. Conclusion Derangements of immunological proteins are common in HIV-DLBCL, and have a differential association with survival compared to that reported elsewhere. Elevation of TGFβ, IL-10 and ferritin were associated with survival independently from the IPI. In view of the poor survival rates in this cohort, investigation of the directed targeting of these cytokines would be of interest in our setting.
Collapse
Affiliation(s)
- Jenifer Vaughan
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Health Laboratory Services, Johannesburg, South Africa
| | - Moosa Patel
- Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Clinical Haematology Unit, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa
| | - Melinda Suchard
- Department of Chemical Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maemu Gededzha
- National Health Laboratory Services, Johannesburg, South Africa
- Department of Immunology, University of the Witwatersrand, Johannesburg, South Africa
| | - Heena Ranchod
- Department of Chemical Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases, Centre for Vaccines and Immunology, Johannesburg, South Africa
| | - Wayne Howard
- Department of Chemical Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases, Centre for Vaccines and Immunology, Johannesburg, South Africa
| | - Tracy Snyman
- National Health Laboratory Services, Johannesburg, South Africa
| | - Tracey Wiggill
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Health Laboratory Services, Johannesburg, South Africa
| |
Collapse
|
105
|
van Dorst MMAR, Pyuza JJ, Nkurunungi G, Kullaya VI, Smits HH, Hogendoorn PCW, Wammes LJ, Everts B, Elliott AM, Jochems SP, Yazdanbakhsh M. Immunological factors linked to geographical variation in vaccine responses. Nat Rev Immunol 2024; 24:250-263. [PMID: 37770632 DOI: 10.1038/s41577-023-00941-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Vaccination is one of medicine's greatest achievements; however, its full potential is hampered by considerable variation in efficacy across populations and geographical regions. For example, attenuated malaria vaccines in high-income countries confer almost 100% protection, whereas in low-income regions these same vaccines achieve only 20-50% protection. This trend is also observed for other vaccines, such as bacillus Calmette-Guérin (BCG), rotavirus and yellow fever vaccines, in terms of either immunogenicity or efficacy. Multiple environmental factors affect vaccine responses, including pathogen exposure, microbiota composition and dietary nutrients. However, there has been variable success with interventions that target these individual factors, highlighting the need for a better understanding of their downstream immunological mechanisms to develop new ways of modulating vaccine responses. Here, we review the immunological factors that underlie geographical variation in vaccine responses. Through the identification of causal pathways that link environmental influences to vaccine responsiveness, it might become possible to devise modulatory compounds that can complement vaccines for better outcomes in regions where they are needed most.
Collapse
Affiliation(s)
- Marloes M A R van Dorst
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Jeremia J Pyuza
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Gyaviira Nkurunungi
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Vesla I Kullaya
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | | | - Linda J Wammes
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Alison M Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Simon P Jochems
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
106
|
Pan X, Ni S, Hu K. Nanomedicines for reversing immunosuppressive microenvironment of hepatocellular carcinoma. Biomaterials 2024; 306:122481. [PMID: 38286109 DOI: 10.1016/j.biomaterials.2024.122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
Although immunotherapeutic strategies such as immune checkpoint inhibitors (ICIs) have gained promising advances, their limited efficacy and significant toxicity remain great challenges for hepatocellular carcinoma (HCC) immunotherapy. The tumor immunosuppressive microenvironment (TIME) with insufficient T-cell infiltration and low immunogenicity accounts for most HCC patients' poor response to ICIs. Worse still, the current immunotherapeutics without precise delivery may elicit enormous autoimmune side effects and systemic toxicity in the clinic. With a better understanding of the TIME in HCC, nanomedicines have emerged as an efficient strategy to achieve remodeling of the TIME and superadditive antitumor effects via targeted delivery of immunotherapeutics or multimodal synergistic therapy. Based on the typical characteristics of the TIME in HCC, this review summarizes the recent advancements in nanomedicine-based strategies for TIME-reversing HCC treatment. Additionally, perspectives on the awaiting challenges and opportunities of nanomedicines in modulating the TIME of HCC are presented. Acquisition of knowledge of nanomedicine-mediated TIME reversal will provide researchers with a better opportunity for clinical translation of HCC immunotherapy.
Collapse
Affiliation(s)
- Xier Pan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuting Ni
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
107
|
Zhou Y, Wu W, Cai W, Zhang D, Zhang W, Luo Y, Cai F, Shi Z. Prognostic prediction using a gene signature developed based on exhausted T cells for liver cancer patients. Heliyon 2024; 10:e28156. [PMID: 38533068 PMCID: PMC10963654 DOI: 10.1016/j.heliyon.2024.e28156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/04/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Background Liver hepatocellular carcinoma (LIHC) is a solid primary malignancy with poor prognosis. This study discovered key prognostic genes based on T cell exhaustion and used them to develop a prognostic prediction model for LIHC. Methods SingleR's annotations combined with Seurat was used to automatically annotate the single-cell clustering results of the LIHC dataset GSE166635 downloaded from the Gene Expression Omnibus (GEO) database and to identify clusters related to exhausted T cells. Patients were classified using ConsensusClusterPlus package. Next, weighted gene co-expression network analysis (WGCNA) package was employed to distinguish key gene module, based on which least absolute shrinkage and selection operator (Lasso) and multi/univariate cox analysis were performed to construct a RiskScore system. Kaplan-Meier (KM) analysis and receiver operating characteristic curve (ROC) were employed to evaluate the efficacy of the model. To further optimize the risk model, a nomogram capable of predicting immune infiltration and immunotherapy sensitivity in different risk groups was developed. Expressions of genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence and Cell Counting Kit-8 (CCK-8) were performed for analyzing cell functions. Results We obtained 18,413 cells and clustered them into 7 immune and non-immune cell subpopulations. Based on highly variable genes among T cell exhaustion clusters, 3 molecular subtypes (C1, C2 and C3) of LIHC were defined, with C3 subtype showing the highest score of exhausted T cells and a poor prognosis. The Lasso and multivariate cox analysis selected 7 risk genes from the green module, which were closely associated with the C3 subtype. All the patients were divided into low- and high-risk groups based on the medium value of RiskScore, and we found that high-risk patients had higher immune infiltration and immune escape and poorer prognosis. The nomogram exhibited a strong performance for predicting long-term LIHC prognosis. In vitro experiments revealed that the 7 risk genes all had a higher expression in HCC cells, and that both liver HCC cell numbers and cell viability were reduced by knocking down MMP-9. Conclusion We developed a RiskScore model for predicting LIHC prognosis based on the scRNA-seq and RNA-seq data. The RiskScore as an independent prognostic factor could improve the clinical treatment for LIHC patients.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Infectious, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wanrui Wu
- Department of Vasointerventional, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wei Cai
- Department of Infectious, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Dong Zhang
- Department of Infectious, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weiwei Zhang
- Department of Infectious, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yunling Luo
- Department of Infectious, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Fujing Cai
- Department of Infectious, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhenjing Shi
- Department of Vasointerventional, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
108
|
Swaminathan S, Mai LT, Meli AP, Carmona-Pérez L, Charpentier T, Lamarre A, King IL, Stäger S. LAG-3- and CXCR5-expressing CD4 T cells display progenitor-like properties during chronic visceral leishmaniasis. Cell Rep 2024; 43:113879. [PMID: 38416647 DOI: 10.1016/j.celrep.2024.113879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/04/2024] [Accepted: 02/13/2024] [Indexed: 03/01/2024] Open
Abstract
Maintenance of CD4 T cells during chronic infections is vital for limiting pathogen burden and disease recrudescence. Although inhibitory receptor expression by CD4 T cells is commonly associated with immune suppression and exhaustion, such cell-intrinsic mechanisms that control activation are also associated with cell survival. Using a mouse model of visceral leishmaniasis (VL), we discovered a subset of lymphocyte activation gene 3 (LAG-3)-expressing CD4 T cells that co-express CXCR5. Although LAG3+CXCR5+ CD4 T cells are present in naive mice, they expand during VL. These cells express gene signatures associated with self-renewal capacity, suggesting progenitor-like properties. When transferred into Rag1-/- mice, these LAG3+CXCR5+ CD4 T cells differentiated into multiple effector types upon Leishmania donovani infection. The transcriptional repressor B cell lymphoma-6 was partially required for their maintenance. Altogether, we propose that the LAG3+CXCR5+ CD4 T cell subset could play a role in maintaining CD4 T cell responses during persistent infections.
Collapse
Affiliation(s)
- Sharada Swaminathan
- INRS-Centre Armand-Frappier Santé Biotechnologie and Infectiopôle INRS, 531 Boulevard des Prairies, Laval, QC, Canada
| | - Linh Thuy Mai
- INRS-Centre Armand-Frappier Santé Biotechnologie and Infectiopôle INRS, 531 Boulevard des Prairies, Laval, QC, Canada
| | - Alexandre P Meli
- Department of Microbiology & Immunology, Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, McGill Centre for Microbiome Research, McGill University, Montreal, QC, Canada
| | - Liseth Carmona-Pérez
- INRS-Centre Armand-Frappier Santé Biotechnologie and Infectiopôle INRS, 531 Boulevard des Prairies, Laval, QC, Canada
| | - Tania Charpentier
- INRS-Centre Armand-Frappier Santé Biotechnologie and Infectiopôle INRS, 531 Boulevard des Prairies, Laval, QC, Canada
| | - Alain Lamarre
- INRS-Centre Armand-Frappier Santé Biotechnologie and Infectiopôle INRS, 531 Boulevard des Prairies, Laval, QC, Canada
| | - Irah L King
- Department of Microbiology & Immunology, Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, McGill Centre for Microbiome Research, McGill University, Montreal, QC, Canada
| | - Simona Stäger
- INRS-Centre Armand-Frappier Santé Biotechnologie and Infectiopôle INRS, 531 Boulevard des Prairies, Laval, QC, Canada.
| |
Collapse
|
109
|
Li J, Hu H, Lian K, Zhang D, Hu P, He Z, Zhang Z, Wang Y. CAR-NK cells in combination therapy against cancer: A potential paradigm. Heliyon 2024; 10:e27196. [PMID: 38486782 PMCID: PMC10937699 DOI: 10.1016/j.heliyon.2024.e27196] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
Various preclinical and a limited number of clinical studies of CAR-NK cells have shown promising results: efficient elimination of target cells without side effects similar to CAR-T therapy. However, the homing and infiltration abilities of CAR-NK cells are poor due to the inhibitory tumor microenvironment. From the perspective of clinical treatment strategies, combined with the biological and tumor microenvironment characteristics of NK cells, CAR-NK combination therapy strategies with anti-PD-1/PD-L1, radiotherapy and chemotherapy, kinase inhibitors, proteasome inhibitors, STING agonist, oncolytic virus, photothermal therapy, can greatly promote the proliferation, migration and cytotoxicity of the NK cells. In this review, we will summarize the targets selection, structure constructions and combinational therapies of CAR-NK cells for tumors to provide feasible combination strategies for overcoming the inhibitory tumor microenvironment and improving the efficacy of CAR-NK cells.
Collapse
Affiliation(s)
- Junping Li
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Hong Hu
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Kai Lian
- Department of Orthopedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Dongdong Zhang
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Pengchao Hu
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Zhibing He
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Zhenfeng Zhang
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yong Wang
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| |
Collapse
|
110
|
Jing ZL, Liu GL, Zhou N, Xu DY, Feng N, Lei Y, Ma LL, Tang MS, Tong GH, Tang N, Deng YJ. Interferon-γ in the tumor microenvironment promotes the expression of B7H4 in colorectal cancer cells, thereby inhibiting cytotoxic T cells. Sci Rep 2024; 14:6053. [PMID: 38480774 PMCID: PMC10937991 DOI: 10.1038/s41598-024-56681-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/09/2024] [Indexed: 03/17/2024] Open
Abstract
The bioactivity of interferon-γ (IFN-γ) in cancer cells in the tumor microenvironment (TME) is not well understood in the current immunotherapy era. We found that IFN-γ has an immunosuppressive effect on colorectal cancer (CRC) cells. The tumor volume in immunocompetent mice was significantly increased after subcutaneous implantation of murine CRC cells followed by IFN-γ stimulation, and RNA sequencing showed high expression of B7 homologous protein 4 (B7H4) in these tumors. B7H4 promotes CRC cell growth by inhibiting the release of granzyme B (GzmB) from CD8+ T cells and accelerating apoptosis in CD8+ T cells. Furthermore, interferon regulatory factor 1 (IRF1), which binds to the B7H4 promoter, is positively associated with IFN-γ stimulation-induced expression of B7H4. The clinical outcome of patients with CRC was negatively related to the high expression of B7H4 in cancer cells or low expression of CD8 in the microenvironment. Therefore, B7H4 is a biomarker of poor prognosis in CRC patients, and interference with the IFN-γ/IRF1/B7H4 axis might be a novel immunotherapeutic method to restore the cytotoxic killing of CRC cells.
Collapse
Affiliation(s)
- Zhi-Liang Jing
- Department of Pathology, School of Basic Medical Sciences and Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, China
- Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Guang-Long Liu
- Department of Pathology, School of Basic Medical Sciences and Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, China
| | - Na Zhou
- Department of Pathology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Dong-Yan Xu
- Department of Pathology, School of Basic Medical Sciences and Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, China
| | - Na Feng
- Department of Pathology, Dongguan Songshan Lake Tungwah Hospital, Dongguan, 523413, China
| | - Yan Lei
- Department of Pathology, School of Basic Medical Sciences and Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, China
| | - Li-Li Ma
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Min-Shan Tang
- Department of Pathology, School of Basic Medical Sciences and Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, China
| | - Gui-Hui Tong
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510415, China
| | - Na Tang
- Department of Pathology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
| | - Yong-Jian Deng
- Department of Pathology, School of Basic Medical Sciences and Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, China.
| |
Collapse
|
111
|
Saffarzadeh N, Foord E, O'Leary E, Mahmoun R, Birkballe Hansen T, Levitsky V, Poiret T, Uhlin M. Inducing expression of ICOS-L by oncolytic adenovirus to enhance tumor-specific bi-specific antibody efficacy. J Transl Med 2024; 22:250. [PMID: 38454393 PMCID: PMC10921603 DOI: 10.1186/s12967-024-05049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Intratumoral injection of oncolytic viruses (OVs) shows promise in immunotherapy: ONCOS-102, a genetically engineered OV that encodes Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) demonstrated efficacy in early clinical trials, enhancing T cell infiltration in tumors. This suggests OVs may boost various forms of immunotherapy, including tumor-specific bi-specific antibodies (BsAbs). METHODS Our study investigated in vitro, how ONCOS-204, a variant of ONCOS-virus expressing the ligand of inducible T-cell co-stimulator (ICOSL), modulates the process of T cell activation induced by a BsAb. ONCOS-102 was used for comparison. Phenotypic and functional changes induced by combination of different OVs, and BsAb in T cell subsets were assessed by flow cytometry, viability, and proliferation assays. RESULTS Degranulation and IFNγ and TNF production of T cells, especially CD4 + T cells was the most increased upon target cell exposure to ONCOS-204. Unexpectedly, ONCOS-204 profoundly affected CD8 + T cell proliferation and function through ICOS-L/ICOS interaction. The effect solely depended on cell surface expression of ICOS-L as soluble ICOSL did not induce notable T cell activity. CONCLUSIONS Together, our data suggests that oncolytic adenoviruses encoding ICOSL may enhance functional activity of tumor-specific BsAbs thereby opening a novel avenue for clinical development in immunotherapeutics.
Collapse
Affiliation(s)
- Neshat Saffarzadeh
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, 141 52, Huddinge, Stockholm, Sweden
| | | | - Eoghan O'Leary
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, 141 52, Huddinge, Stockholm, Sweden
- Circio AB, Stockholm, Sweden
| | - Rand Mahmoun
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, 141 52, Huddinge, Stockholm, Sweden
| | | | | | - Thomas Poiret
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, 141 52, Huddinge, Stockholm, Sweden.
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, 141 52, Huddinge, Stockholm, Sweden
- Department of Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
112
|
Tiberio L, Laffranchi M, Zucchi G, Salvi V, Schioppa T, Sozzani S, Del Prete A, Bosisio D. Inhibitory receptors of plasmacytoid dendritic cells as possible targets for checkpoint blockade in cancer. Front Immunol 2024; 15:1360291. [PMID: 38504978 PMCID: PMC10948453 DOI: 10.3389/fimmu.2024.1360291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are the major producers of type I interferons (IFNs), which are essential to mount antiviral and antitumoral immune responses. To avoid exaggerated levels of type I IFNs, which pave the way to immune dysregulation and autoimmunity, pDC activation is strictly regulated by a variety of inhibitory receptors (IRs). In tumors, pDCs display an exhausted phenotype and correlate with an unfavorable prognosis, which largely depends on the accumulation of immunosuppressive cytokines and oncometabolites. This review explores the hypothesis that tumor microenvironment may reduce the release of type I IFNs also by a more pDC-specific mechanism, namely the engagement of IRs. Literature shows that many cancer types express de novo, or overexpress, IR ligands (such as BST2, PCNA, CAECAM-1 and modified surface carbohydrates) which often represent a strong predictor of poor outcome and metastasis. In line with this, tumor cells expressing ligands engaging IRs such as BDCA-2, ILT7, TIM3 and CD44 block pDC activation, while this blocking is prevented when IR engagement or signaling is inhibited. Based on this evidence, we propose that the regulation of IFN secretion by IRs may be regarded as an "innate checkpoint", reminiscent of the function of "classical" adaptive immune checkpoints, like PD1 expressed in CD8+ T cells, which restrain autoimmunity and immunopathology but favor chronic infections and tumors. However, we also point out that further work is needed to fully unravel the biology of tumor-associated pDCs, the neat contribution of pDC exhaustion in tumor growth following the engagement of IRs, especially those expressed also by other leukocytes, and their therapeutic potential as targets of combined immune checkpoint blockade in cancer immunotherapy.
Collapse
Affiliation(s)
- Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mattia Laffranchi
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur-Italia, Sapienza University of Rome, Rome, Italy
| | - Giovanni Zucchi
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur-Italia, Sapienza University of Rome, Rome, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur-Italia, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
113
|
Qiu J, Xia Y, Bao Y, Cheng J, Liu L, Qian D. Silencing PinX1 enhances radiosensitivity and antitumor-immunity of radiotherapy in non-small cell lung cancer. J Transl Med 2024; 22:228. [PMID: 38431575 PMCID: PMC10908107 DOI: 10.1186/s12967-024-05023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND We aimed to investigate the effects of PinX1 on non-small cell lung cancer(NSCLC) radiosensitivity and radiotherapy-associated tumor immune microenvironment and its mechanisms. METHODS The effect of PinX1 silencing on radiosensitivity in NSCLC was assessed by colony formation and CCK8 assay, immunofluorescence detection of γ- H2AX and micronucleus assay. Western blot was used to assess the effect of PinX1 silencing on DNA damage repair pathway and cGAS-STING pathway. The nude mouse and Lewis lung cancer mouse model were used to assess the combined efficacy of PinX1 silencing and radiotherapy in vivo. Changes in the tumor immune microenvironment were assessed by flow cytometry for different treatment modalities in the Lewis luuse model. The interaction protein RBM10 was screened by immunoprecipitation-mass spectrometry. RESULTS Silencing PinX1 enhanced radiosensitivity and activation of the cGAS-STING pathway while attenuating the DNA damage repair pathway. Silencing PinX1 further increases radiotherapy-stimulated CD8+ T cell infiltration and activation, enhances tumor control and improves survival in vivo; Moreover, PinX1 downregulation improves the anti-tumor efficacy of radioimmunotherapy, increases radioimmune-stimulated CD8+ T cell infiltration, and reprograms M2-type macrophages into M1-type macrophages in tumor tissues. The interaction of PinX1 and RBM10 may promote telomere maintenance by assisting telomerase localization to telomeres, thereby inhibiting the immunostimulatory effects of IR. CONCLUSIONS In NSCLC, silencing PinX1 significantly contributed to the radiosensitivity and promoted the efficacy of radioimmunotherapy. Mechanistically, PinX1 may regulate the transport of telomerase to telomeres through interacting with RBM10, which promotes telomere maintenance and DNA stabilization. Our findings reveal that PinX1 is a potential target to enhance the efficacy of radioimmunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Jieping Qiu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ying Xia
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yawei Bao
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingjing Cheng
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dong Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
114
|
Stergiopoulos GM, Iankov I, Galanis E. Personalizing Oncolytic Immunovirotherapy Approaches. Mol Diagn Ther 2024; 28:153-168. [PMID: 38150172 DOI: 10.1007/s40291-023-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
Development of successful cancer therapeutics requires exploration of the differences in genetics, metabolism, and interactions with the immune system among malignant and normal cells. The clinical observation of spontaneous tumor regression following natural infection with microorganism has created the premise of their use as cancer therapeutics. Oncolytic viruses (OVs) originate from viruses with attenuated virulence in humans, well-characterized vaccine strains of known human pathogens, or engineered replication-deficient viral vectors. Their selectivity is based on receptor expression level and post entry restriction factors that favor replication in the tumor, while keeping the normal cells unharmed. Clinical trials have demonstrated a wide range of patient responses to virotherapy, with subgroups of patients significantly benefiting from OV administration. Tumor-specific gene signatures, including antiviral interferon-stimulated gene (ISG) expression profile, have demonstrated a strong correlation with tumor permissiveness to infection. Furthermore, the combination of OVs with immunotherapeutics, including anticancer vaccines and immune checkpoint inhibitors [ICIs, such as anti-PD-1/PD-L1 or anti-CTLA-4 and chimeric antigen receptor (CAR)-T or CAR-NK cells], could synergistically improve the therapeutic outcome. Creating response prediction algorithms represents an important step for the transition to individualized immunovirotherapy approaches in the clinic. Integrative predictors could include tumor mutational burden (TMB), inflammatory gene signature, phenotype of tumor-infiltrating lymphocytes, tumor microenvironment (TME), and immune checkpoint receptor expression on both immune and target cells. Additionally, the gut microbiota has recently been recognized as a systemic immunomodulatory factor and could further be used in the optimization of individualized immunovirotherapy algorithms.
Collapse
Affiliation(s)
| | - Ianko Iankov
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
115
|
Sun C, Li D, Wang Z. BATF-mediated regulation of exhausted CD8 + T-cell responses and potential implications for chimeric antigen receptor-T therapy. Immunotherapy 2024; 16:331-340. [PMID: 38264838 DOI: 10.2217/imt-2023-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy for malignant tumors has reached a crucial stage, with recent studies underscoring the role of T-cell exhaustion in determining the efficacy of CAR-T therapy. This trailblazing discovery has opened new avenues to augment the potency of CAR-T therapy. Basic leucine zipper ATF-like transcription factor (BATF) is indispensable in alleviating T-cell exhaustion and is pivotal in the early stages of CD8+ T-cell differentiation. In cooperation with other transcription factors, it plays a key role in the differentiation and maturation processes of exhausted T cells. A deeper comprehension of BATF's mechanisms in T-cell biology may yield novel insights into amplifying the efficacy of CAR-T therapy.
Collapse
Affiliation(s)
- Chao Sun
- Liver Transplant Center, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Dan Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengxin Wang
- Liver Transplant Center, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| |
Collapse
|
116
|
Tieu V, Sotillo E, Bjelajac JR, Chen C, Malipatlolla M, Guerrero JA, Xu P, Quinn PJ, Fisher C, Klysz D, Mackall CL, Qi LS. A versatile CRISPR-Cas13d platform for multiplexed transcriptomic regulation and metabolic engineering in primary human T cells. Cell 2024; 187:1278-1295.e20. [PMID: 38387457 PMCID: PMC10965243 DOI: 10.1016/j.cell.2024.01.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
CRISPR technologies have begun to revolutionize T cell therapies; however, conventional CRISPR-Cas9 genome-editing tools are limited in their safety, efficacy, and scope. To address these challenges, we developed multiplexed effector guide arrays (MEGA), a platform for programmable and scalable regulation of the T cell transcriptome using the RNA-guided, RNA-targeting activity of CRISPR-Cas13d. MEGA enables quantitative, reversible, and massively multiplexed gene knockdown in primary human T cells without targeting or cutting genomic DNA. Applying MEGA to a model of CAR T cell exhaustion, we robustly suppressed inhibitory receptor upregulation and uncovered paired regulators of T cell function through combinatorial CRISPR screening. We additionally implemented druggable regulation of MEGA to control CAR activation in a receptor-independent manner. Lastly, MEGA enabled multiplexed disruption of immunoregulatory metabolic pathways to enhance CAR T cell fitness and anti-tumor activity in vitro and in vivo. MEGA offers a versatile synthetic toolkit for applications in cancer immunotherapy and beyond.
Collapse
Affiliation(s)
- Victor Tieu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeremy R Bjelajac
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Crystal Chen
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Meena Malipatlolla
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Justin A Guerrero
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peng Xu
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrick J Quinn
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chris Fisher
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dorota Klysz
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94080, USA.
| |
Collapse
|
117
|
Neidemire-Colley L, Khanal S, Braunreiter KM, Gao Y, Kumar R, Snyder KJ, Weber MA, Surana S, Toirov O, Karunasiri M, Duszynski ME, Chi M, Malik P, Kalyan S, Chan WK, Naeimi Kararoudi M, Choe HK, Garzon R, Ranganathan P. CRISPR/Cas9 deletion of MIR155HG in human T cells reduces incidence and severity of acute GVHD in a xenogeneic model. Blood Adv 2024; 8:947-958. [PMID: 38181781 PMCID: PMC10877121 DOI: 10.1182/bloodadvances.2023010570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
ABSTRACT Acute graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic cell transplantation (allo-HCT). Using preclinical mouse models of disease, previous work in our laboratory has linked microRNA-155 (miR-155) to the development of acute GVHD. Transplantation of donor T cells from miR-155 host gene (MIR155HG) knockout mice prevented acute GVHD in multiple murine models of disease while maintaining critical graft-versus-leukemia (GVL) response, necessary for relapse prevention. In this study, we used clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas9 genome editing to delete miR-155 in primary T cells (MIR155HGΔexon3) from human donors, resulting in stable and sustained reduction in expression of miR-155. Using the xenogeneic model of acute GVHD, we show that NOD/SCID/IL2rγnull (NSG) mice receiving MIR155HGΔexon3 human T cells provide protection from lethal acute GVHD compared with mice that received human T cells with intact miR-155. MIR155HGΔexon3 human T cells persist in the recipients displaying decreased proliferation potential, reduced pathogenic T helper-1 cell population, and infiltration into GVHD target organs, such as the liver and skin. Importantly, MIR155HGΔexon3 human T cells retain GVL response significantly improving survival in an in vivo model of xeno-GVL. Altogether, we show that CRISPR/Cas9-mediated deletion of MIR155HG in primary human donor T cells is an innovative approach to generate allogeneic donor T cells that provide protection from lethal GVHD while maintaining robust antileukemic response.
Collapse
Affiliation(s)
- Lotus Neidemire-Colley
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Biological Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Shrijan Khanal
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH
| | - Kara M. Braunreiter
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Yandi Gao
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Rathan Kumar
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Biological Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Katiri J. Snyder
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Biological Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Margot A. Weber
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Simran Surana
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Olimjon Toirov
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Malith Karunasiri
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Molly E. Duszynski
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Mengna Chi
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Sonu Kalyan
- Department of Pathology, New York University Langone Health, Long Island, NY
| | - Wing K. Chan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Hannah K. Choe
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Ramiro Garzon
- Division of Hematology and Hematological Malignancies, Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
118
|
Lian C, Li F, Xie Y, Zhang L, Chen H, Wang Z, Pan X, Wang X, Zhang J. Identification of T-cell exhaustion-related genes and prediction of their immunotherapeutic role in lung adenocarcinoma. J Cancer 2024; 15:2160-2178. [PMID: 38495503 PMCID: PMC10937285 DOI: 10.7150/jca.92839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Background: Lung adenocarcinoma ranks as the second most widespread form of cancer globally, accompanied by a significant mortality rate. Several studies have shown that T cell exhaustion is associated with immunotherapy of tumours. Consequently, it is essential to comprehend the possible impact of T cell exhaustion on the tumor microenvironment. The purpose of this research was to create a TEX-based model that would use single-cell RNA-seq (scRNA-seq) and bulk-RNA sequencing to explore new possibilities for assessing the prognosis and immunotherapeutic response of LUAD patients. Methods: RNA-seq data from LUAD patients was downloaded from the Cancer Genome Atlas (TCGA) database and the National Center for Biotechnology Information (GEO). 10X scRNA sequencing data, as reported by Bischoff P et al., was utilized for down-sampling clustering and subgroup identification using TSNE. TEX-associated genes were identified through gene set variance analysis (GSVA) and weighted gene correlation network analysis (WGCNA). We utilized LASSO-Cox analysis to establish predicted TEX features. External validation was conducted in GSE31210 and GSE30219 cohorts. Immunotherapeutic response was assessed in IMvigor210, GSE78220, GSE35640 and GSE100797 cohorts. Furthermore, we investigated differences in mutational profiles and immune microenvironment between various risk groups. We then screened TEXRS key regulatory genes using ROC diagnostic curves and KM survival curves. Finally, we verified the differential expression of key regulatory genes through RT-qPCR. Results: Nine TEX genes were identified as highly predictive of LUAD prognosis and strongly correlated with disease outcome. Univariate and multivariate analysis revealed that patients in the low-risk group had significantly better overall survival rates compared with those in the high-risk group, highlighting the model's ability to independently predict LUAD prognosis. Our analysis revealed significant variation in the biological function, mutational landscape, and immune cell infiltration within the tumor microenvironment of both high-risk and low-risk groups. Additionally, immunotherapy was found to have a significant impact on both groups, indicating strong predictive efficacy of the model. Conclusions: The TEX model showed good predictive performance and provided a new perspective for evaluating the efficacy of preimmunization, which provides a new strategy for the future treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Chaoqun Lian
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu 233030, China
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu 233030, China
| | - Feifan Li
- Department of Tumor Radiotherapy, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233030, China
| | - Yiluo Xie
- Department of Clinical Medicine, Bengbu Medical University, Bengbu 233030, China
| | - Linxiang Zhang
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu 233030, China
| | - Huili Chen
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu 233030, China
| | - Ziqiang Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu 233030, China
| | - Xinyu Pan
- Department of Medical Imaging, Bengbu Medical University, Bengbu 233030, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu 233030, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu 233030, China
| |
Collapse
|
119
|
Hou B, Hu Y, Zhu Y, Wang X, Li W, Tang J, Jia X, Wang J, Cong Y, Quan M, Yang H, Zheng H, Bao Y, Chen XL, Wang HR, Xu B, Gascoigne NRJ, Fu G. SHP-1 Regulates CD8+ T Cell Effector Function but Plays a Subtle Role with SHP-2 in T Cell Exhaustion Due to a Stage-Specific Nonredundant Functional Relay. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:397-409. [PMID: 38088801 DOI: 10.4049/jimmunol.2300462] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/14/2023] [Indexed: 01/18/2024]
Abstract
SHP-1 (Src homology region 2 domain-containing phosphatase 1) is a well-known negative regulator of T cells, whereas its close homolog SHP-2 is the long-recognized main signaling mediator of the PD-1 inhibitory pathway. However, recent studies have challenged the requirement of SHP-2 in PD-1 signaling, and follow-up studies further questioned the alternative idea that SHP-1 may replace SHP-2 in its absence. In this study, we systematically investigate the role of SHP-1 alone or jointly with SHP-2 in CD8+ T cells in a series of gene knockout mice. We show that although SHP-1 negatively regulates CD8+ T cell effector function during acute lymphocytic choriomeningitis virus (LCMV) infection, it is dispensable for CD8+ T cell exhaustion during chronic LCMV infection. Moreover, in contrast to the mortality of PD-1 knockout mice upon chronic LCMV infection, mice double deficient for SHP-1 and SHP-2 in CD8+ T cells survived without immunopathology. Importantly, CD8+ T cells lacking both phosphatases still differentiate into exhausted cells and respond to PD-1 blockade. Finally, we found that SHP-1 and SHP-2 suppressed effector CD8+ T cell expansion at the early and late stages, respectively, during chronic LCMV infection.
Collapse
Affiliation(s)
- Bowen Hou
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Yanyan Hu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuzhen Zhu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaocui Wang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Wanyun Li
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Jian Tang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Xian Jia
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiayu Wang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yu Cong
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Minxue Quan
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hongying Yang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Haiping Zheng
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yuzhou Bao
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiao Lei Chen
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hong-Rui Wang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Nicholas R J Gascoigne
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Department of Hematology, The First Affiliated Hospital and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Cancer Research Center of Xiamen University, Xiamen, China
- Laboratory Animal Center, Xiamen University; Xiamen, China
| |
Collapse
|
120
|
Luo YH, Shen CI, Chiang CL, Huang HC, Chen YM. Dynamic immune signatures of patients with advanced non-small-cell lung cancer for infection prediction after immunotherapy. Front Immunol 2024; 15:1269253. [PMID: 38343550 PMCID: PMC10853389 DOI: 10.3389/fimmu.2024.1269253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Background Pulmonary infections are a crucial health concern for patients with advanced non-small-cell lung cancer (NSCLC). Whether the clinical outcome of pulmonary infection is influenced by immunotherapy(IO) remains unclear. By evaluating immune signatures, this study investigated the post-immunotherapy risk of pulmonary infection in patients with lung cancer and identified circulating biomarkers that predict post-immunotherapy infection. Methods Blood specimens were prospectively collected from patients with NSCLC before and after chemotherapy(C/T) and/or IO to explore dynamic changes in immune signatures. Real-world clinical data were extracted from medical records for outcome evaluation. Mass cytometry and ELISA were employed to analyze immune signatures and cytokine profiles to reveal potential correlations between immune profiles and the risk of infection. Results The retrospective cohort included 283 patients with advanced NSCLC. IO was associated with a lower risk of pneumonia (odds ratio=0.46, p=0.012). Patients receiving IO and remained pneumonia-free exhibited the most favorable survival outcomes compared with those who received C/T or developed pneumonia (p<0.001). The prospective cohort enrolled 30 patients. The proportion of circulating NK cells significantly increased after treatment in IO alone (p<0.001) and C/T+IO group (p<0.01). An increase in cell densities of circulating PD-1+CD8+(cytotoxic) T cells (p<0.01) and PD-1+CD4+ T cells (p<0.01) were observed in C/T alone group after treatment. In IO alone group, a decrease in cell densities of TIM-3+ and PD-1+ cytotoxic T cells (p<0.05), and PD-1+CD4+ T cells (p<0.01) were observed after treatment. In C/T alone and C/T+IO groups, cell densities of circulating PD-1+ cytotoxic T cells significantly increased in patients with pneumonia after treatment(p<0.05). However, in IO alone group, cell density of PD-1+ cytotoxic T cells significantly decreased in patients without pneumonia after treatment (p<0.05). TNF-α significantly increased after treatment with IO alone (p<0.05) but decreased after C/T alone (p<0.01). Conclusions Our results indicate that the incorporation of immunotherapy into treatment regimens may potentially offer protective effects against pulmonary infection. Protective effects are associated with reduction of exhausted T-cells and augmentation of TNF-α and NK cells. Exhausted T cells, NK cells, and TNF-α may play crucial roles in immune responses against infections. These observations highlight the potential utility of certain circulating biomarkers, particularly exhausted T cells, for predicting post-treatment infections.
Collapse
Affiliation(s)
- Yung-Hung Luo
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-I Shen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Lu Chiang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsu-Ching Huang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
121
|
Zhang J, Ren Z, Hu Y, Shang S, Wang R, Ma J, Zhang Z, Wu M, Wang F, Yu J, Chen D. High HPK1 +PD-1 +TIM-3 +CD8 + T cells infiltration predicts poor prognosis to immunotherapy in NSCLC patients. Int Immunopharmacol 2024; 127:111363. [PMID: 38101218 DOI: 10.1016/j.intimp.2023.111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
At present the efficacy of immune checkpoint inhibitors (ICIs) remains limited. The lack of responsiveness in certain patients may be attributed to CD8+ T cell exhaustion within the tumor microenvironment (TME). Hematopoietic progenitor kinase 1 (HPK1) has been identified as a mediator of T cell dysfunction, leading to our hypothesis that HPK1 positive exhausted CD8+ T cells could serve as a predictor for ICIs' efficacy in NSCLC patients, and potentially indicate key cellular subset causing ICIs resistance. Here, we retrospectively collected tumor tissue samples from 36 NSCLC patients who underwent first-line immunotherapy. Using multiplex immunohistochemistry, we visualized various PD-1+CD8+ T cell subsets and explore biomarkers for response. The analysis endpoints included overall response rate (ORR), progression free survival (PFS), and overall survival (OS), correlating them with levels of cell infiltration or effective density. We found that the proportion of PD-1+CD8+ T cell subsets did not align with predictions for ORR, PFS, and OS. Conversely, a high infiltration of HPK1+PD-1+TIM-3+CD8+ T cells was identified as an independent risk factor for both PFS (P = 0.019) and OS (P = 0.03). These cells were found to express the highest levels of Granzyme B, and the secretion of Granzyme B in CD8+ T cell subsets was related to TCF-1. In conclusion, these data suggest that a high infiltration of HPK1+PD-1+TIM-3+CD8+ T cells correlates with poor clinical outcomes in NSCLC patients receiving immunotherapy. These cells may represent terminally exhausted T cells that fail to respond to ICIs, thereby laying the groundwork for the potential integration of HPK1 inhibitors with immunotherapy to enhance treatment strategy.
Collapse
Affiliation(s)
- Jingxin Zhang
- Shandong University Cancer Center, Jinan, Shandong, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ziyuan Ren
- Shandong University Cancer Center, Jinan, Shandong, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shijie Shang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruiyang Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiachun Ma
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zengfu Zhang
- Shandong University Cancer Center, Jinan, Shandong, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fei Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Shandong University Cancer Center, Jinan, Shandong, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Dawei Chen
- Shandong University Cancer Center, Jinan, Shandong, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
122
|
Liu D, Che X, Wu G. Deciphering the role of neddylation in tumor microenvironment modulation: common outcome of multiple signaling pathways. Biomark Res 2024; 12:5. [PMID: 38191508 PMCID: PMC10773064 DOI: 10.1186/s40364-023-00545-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/10/2023] [Indexed: 01/10/2024] Open
Abstract
Neddylation is a post-translational modification process, similar to ubiquitination, that controls several biological processes. Notably, it is often aberrantly activated in neoplasms and plays a critical role in the intricate dynamics of the tumor microenvironment (TME). This regulatory influence of neddylation permeates extensively and profoundly within the TME, affecting the behavior of tumor cells, immune cells, angiogenesis, and the extracellular matrix. Usually, neddylation promotes tumor progression towards increased malignancy. In this review, we highlight the latest understanding of the intricate molecular mechanisms that target neddylation to modulate the TME by affecting various signaling pathways. There is emerging evidence that the targeted disruption of the neddylation modification process, specifically the inhibition of cullin-RING ligases (CRLs) functionality, presents a promising avenue for targeted therapy. MLN4924, a small-molecule inhibitor of the neddylation pathway, precisely targets the neural precursor cell-expressed developmentally downregulated protein 8 activating enzyme (NAE). In recent years, significant advancements have been made in the field of neddylation modification therapy, particularly the integration of MLN4924 with chemotherapy or targeted therapy. This combined approach has demonstrated notable success in the treatment of a variety of hematological and solid tumors. Here, we investigated the inhibitory effects of MLN4924 on neddylation and summarized the current therapeutic outcomes of MLN4924 against various tumors. In conclusion, this review provides a comprehensive, up-to-date, and thorough overview of neddylation modifications, and offers insight into the critical importance of this cellular process in tumorigenesis.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
123
|
Mu HY, Lin CM, Chu LA, Lin YH, Li J, Liu CY, Huang HC, Cheng SL, Lee TY, Lee HM, Chen HM, Tsai YJ, Chen Y, Huang JH. Ex Vivo Evaluation of Combination Immunotherapy Using Tumor-Microenvironment-on-Chip. Adv Healthc Mater 2024; 13:e2302268. [PMID: 37748773 DOI: 10.1002/adhm.202302268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/03/2023] [Indexed: 09/27/2023]
Abstract
Combination immunotherapy has emerged as a promising strategy to address the challenges associated with immune checkpoint inhibitor (ICI) therapy in breast cancer. The efficacy of combination immunotherapy hinges upon the intricate and dynamic nature of the tumor microenvironment (TME), characterized by cellular heterogeneity and molecular gradients. However, current methodologies for drug screening often fail to accurately replicate these complex conditions, resulting in limited predictive capacity for treatment outcomes. Here, a tumor-microenvironment-on-chip (TMoC), integrating a circulation system and ex vivo tissue culture with physiological oxygen and nutrient gradients, is described. This platform enables spatial infiltration of cytotoxic CD8+ T cells and their targeted attack on the tumor, while preserving the high complexity and heterogeneity of the TME. The TMoC is employed to assess the synergistic effect of five targeted therapy drugs and five chemotherapy drugs in combination with immunotherapy, demonstrating strong concordance between chip and animal model responses. The TMoC holds significant potential for advancing drug development and guiding clinical decision-making, as it offers valuable insights into the complex dynamics of the TME.
Collapse
Affiliation(s)
- Hsuan-Yu Mu
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Chiao-Min Lin
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Li-An Chu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
- Brain Research Center, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Ya-Hui Lin
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Ji Li
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Chao-Yu Liu
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Hsi-Chien Huang
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Sheng-Liang Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Tsung-Ying Lee
- Institute of Biomedical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Hsin Mei Lee
- Institute of Biomedical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Hsin-Min Chen
- Institute of Biomedical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Yun-Jen Tsai
- Institute of Biomedical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Jen-Huang Huang
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| |
Collapse
|
124
|
Li K, Lu E, Wang Q, Xu R, Yuan W, Wu R, Lu L, Li P. Serum vitamin D deficiency is associated with increased risk of γδ T cell exhaustion in HBV-infected patients. Immunology 2024; 171:31-44. [PMID: 37702282 DOI: 10.1111/imm.13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
Previous studies have demonstrated that T cell exhaustion is associated with poor clearance of Hepatitis B virus (HBV). However, whether the expression of exhaustion markers on innate-like circulating γδ T cells derived from patients with HBV infection correlates with the serum level of vitamin D is not completely understood. In this study, we found that the frequency of circulating Vδ2+ T cell and serum levels of vitamin 25(OH)D3 were significantly decreased in patients with HBV. And serum 25(OH)D3 levels in HBV-infected patients were negatively correlated with HBV DNA load and PD-1 expression on γδ T cells. Interestingly, 1α,25(OH)2 D3 alleviated the exhaustion phenotype of Vδ2 T cells in HBV-infected patients and promoted IFN-β expression in human cytotoxic Vδ2 T cells in vitro. Collectively, these findings demonstrate that vitamin D plays a pivotal role in reversing γδ T-cell exhaustion and is highly promising target for ameliorating HBV infection.
Collapse
Affiliation(s)
- Ke Li
- Department of Geriatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Eying Lu
- Department of Infectious Disease, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Qian Wang
- Department of Infectious Disease, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Ruirong Xu
- Department of Infectious Disease, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Wenhui Yuan
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Ruan Wu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Peng Li
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| |
Collapse
|
125
|
Abizanda-Campo S, Virumbrales-Muñoz M, Humayun M, Marmol I, Beebe DJ, Ochoa I, Oliván S, Ayuso JM. Microphysiological systems for solid tumor immunotherapy: opportunities and challenges. MICROSYSTEMS & NANOENGINEERING 2023; 9:154. [PMID: 38106674 PMCID: PMC10724276 DOI: 10.1038/s41378-023-00616-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023]
Abstract
Immunotherapy remains more effective for hematologic tumors than for solid tumors. One of the main challenges to immunotherapy of solid tumors is the immunosuppressive microenvironment these tumors generate, which limits the cytotoxic capabilities of immune effector cells (e.g., cytotoxic T and natural killer cells). This microenvironment is characterized by hypoxia, nutrient starvation, accumulated waste products, and acidic pH. Tumor-hijacked cells, such as fibroblasts, macrophages, and T regulatory cells, also contribute to this inhospitable microenvironment for immune cells by secreting immunosuppressive cytokines that suppress the antitumor immune response and lead to immune evasion. Thus, there is a strong interest in developing new drugs and cell formulations that modulate the tumor microenvironment and reduce tumor cell immune evasion. Microphysiological systems (MPSs) are versatile tools that may accelerate the development and evaluation of these therapies, although specific examples showcasing the potential of MPSs remain rare. Advances in microtechnologies have led to the development of sophisticated microfluidic devices used to recapitulate tumor complexity. The resulting models, also known as microphysiological systems (MPSs), are versatile tools with which to decipher the molecular mechanisms driving immune cell antitumor cytotoxicity, immune cell exhaustion, and immune cell exclusion and to evaluate new targeted immunotherapies. Here, we review existing microphysiological platforms to study immuno-oncological applications and discuss challenges and opportunities in the field.
Collapse
Affiliation(s)
- Sara Abizanda-Campo
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI USA
- University of Wisconsin Carbone Cancer Center, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI USA
- Tissue Microenvironment Lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, Spain
- Centro Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - María Virumbrales-Muñoz
- University of Wisconsin Carbone Cancer Center, Madison, WI USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI USA
| | - Mouhita Humayun
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge, Cambridge, MA USA
| | - Ines Marmol
- Tissue Microenvironment Lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, Spain
| | - David J Beebe
- University of Wisconsin Carbone Cancer Center, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI USA
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI USA
| | - Ignacio Ochoa
- Tissue Microenvironment Lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, Spain
- Centro Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Sara Oliván
- Tissue Microenvironment Lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, Spain
| | - Jose M Ayuso
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI USA
- University of Wisconsin Carbone Cancer Center, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI USA
| |
Collapse
|
126
|
Zhu J, Yuan J, Arya S, Du Z, Liu X, Jia J. Exploring the immune microenvironment of osteosarcoma through T cell exhaustion-associated gene expression: a study on prognosis prediction. Front Immunol 2023; 14:1265098. [PMID: 38169731 PMCID: PMC10758463 DOI: 10.3389/fimmu.2023.1265098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Background Osteosarcoma is a highly aggressive type of bone cancer with a poor prognosis. In the tumor immune microenvironment, T-cell exhaustion can occur due to various factors, leading to reduced tumor-killing ability. The purpose of this study was to construct a prognostic model based on T-cell exhaustion-associated genes in osteosarcoma. Methods Patient data for osteosarcoma were retrieved from the TARGET and GEO databases. Consensus clustering was employed to identify two novel molecular subgroups. The dissimilarities in the tumor immune microenvironment between these subgroups were evaluated using the "xCell" algorithm. GO and KEGG analyses were conducted to elucidate the underlying mechanisms of gene expression. Predictive risk models were constructed using the least absolute shrinkage and selection operator algorithm and Cox regression analysis. To validate the prognostic significance of the risk gene expression model at the protein level, immunohistochemistry assays were performed on osteosarcoma patient samples. Subsequently, functional analysis of the key risk gene was carried out through in vitro experimentation. Results Four gene expression signatures (PLEKHO2, GBP2, MPP1, and VSIG4) linked to osteosarcoma prognosis were identified within the TARGET-osteosarcoma cohort, categorizing patients into two subgroups. The resulting prognostic model showed strong predictive capability, with area under the receiver operating characteristic curve (AUC) values of 0.728/0.740, 0.781/0.658, and 0.788/0.642 for 1, 3, and 5-year survival in both training and validation datasets. Notably, patients in the low-risk group had significantly higher stromal, immune, and ESTIMATE scores compared to high-risk counterparts. Additionally, a nomogram was developed, exhibiting high accuracy in predicting the survival outcome of osteosarcoma patients. Immunohistochemistry, Kaplan-Meier, and time-dependent AUC analyses consistently supported the prognostic value of the risk model within our osteosarcoma patient cohort. In vitro experiments provided additional validation by demonstrating that the downregulation of GBP2 promoted the proliferation, migration, and invasion of osteosarcoma cells while inhibiting apoptosis. Conclusion The current study established a prognostic signature associated with TEX-related genes and elucidated the impact of the pivotal gene GBP2 on osteosarcoma cells via in vitro experiments. Consequently, it introduces a fresh outlook for clinical prognosis prediction and sets the groundwork for targeted therapy investigations in osteosarcoma.
Collapse
Affiliation(s)
- Junchao Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jinghong Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shahrzad Arya
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Zhi Du
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xijuan Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jingyu Jia
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
127
|
Daradoumis J, Müller MD, Neckermann P, Asbach B, Schrödel S, Thirion C, Wagner R, thor Straten P, Holst PJ, Boilesen D. Preferential Expansion of HPV16 E1-Specific T Cells from Healthy Donors' PBMCs after Ex Vivo Immunization with an E1E2E6E7 Fusion Antigen. Cancers (Basel) 2023; 15:5863. [PMID: 38136407 PMCID: PMC10741473 DOI: 10.3390/cancers15245863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Persistent human papillomavirus (HPV) infection is responsible for practically all cervical and a high proportion of anogenital and oropharyngeal cancers. Therapeutic HPV vaccines in clinical development show great promise in improving outcomes for patients who mount an anti-HPV T-cell response; however, far from all patients elicit a sufficient immunological response. This demonstrates a translational gap between animal models and human patients. Here, we investigated the potential of a new assay consisting of co-culturing vaccine-transduced dendritic cells (DCs) with syngeneic, healthy, human peripheral blood mononuclear cells (PBMCs) to mimic a human in vivo immunization. This new promising human ex vivo PBMC assay was evaluated using an innovative therapeutic adenovirus (Adv)-based HPV vaccine encoding the E1, E2, E6, and E7 HPV16 genes. This new method allowed us to show that vaccine-transduced DCs yielded functional effector T cells and unveiled information on immunohierarchy, showing E1-specific T-cell immunodominance over time. We suggest that this assay can be a valuable translational tool to complement the known animal models, not only for HPV therapeutic vaccines, and supports the use of E1 as an immunotherapeutic target. Nevertheless, the findings reported here need to be validated in a larger number of donors and preferably in patient samples.
Collapse
Affiliation(s)
- Joana Daradoumis
- InProTher ApS, Bioinnovation Institute, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark; (M.D.M.); (P.J.H.)
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mikkel Dons Müller
- InProTher ApS, Bioinnovation Institute, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark; (M.D.M.); (P.J.H.)
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Patrick Neckermann
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | | | | | - Ralf Wagner
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Per thor Straten
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, 2730 Copenhagen, Denmark
| | - Peter Johannes Holst
- InProTher ApS, Bioinnovation Institute, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark; (M.D.M.); (P.J.H.)
| | - Ditte Boilesen
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Loma Therapeutics ApS, Bioinnovation Institute, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
128
|
Wang Y, Khalil A, Kamar A, Du M, Dinh T, McFarland C, Wang Z. Unveiling immune checkpoint regulation: exploring the power of in vivo CRISPR screenings in cancer immunotherapy. Front Genet 2023; 14:1304425. [PMID: 38162677 PMCID: PMC10755878 DOI: 10.3389/fgene.2023.1304425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer immunotherapy by reinvigorating antitumor immune responses, but their efficacy remains limited in most patients. To address this challenge and optimize Immune check inhibitor treatment, understanding the underlying molecular intricacies involved is crucial. The emergence of CRISPR-Cas9 technology has empowered researchers to precisely investigate gene function and has introduced transformative shifts in identifying key genes for various physiological and pathological processes. CRISPR screenings, particularly in vivo CRISPR screenings, have become invaluable tools in deciphering molecular networks and signaling pathways governing suppressive immune checkpoint molecules. In this review, we provide a comprehensive overview of in vivo CRISPR screenings in cancer immunotherapy, exploring how this cutting-edge technology has unraveled potential novel therapeutic targets and combination strategies. We delve into the latest findings and advancements, shedding light on immune checkpoint regulation and offering exciting prospects for the development of innovative and effective treatments for cancer patients.
Collapse
Affiliation(s)
- Yuxiang Wang
- Department of Genetics and Genome Sciences and Case Comprehesive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Athar Khalil
- Department of Genetics and Genome Sciences and Case Comprehesive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Amina Kamar
- Centre for Digital Transformation, Imperial College, London, United Kingdom
| | - Mengyan Du
- Department of Genetics and Genome Sciences and Case Comprehesive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Trang Dinh
- Department of Genetics and Genome Sciences and Case Comprehesive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Christopher McFarland
- Department of Genetics and Genome Sciences and Case Comprehesive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Zhenghe Wang
- Department of Genetics and Genome Sciences and Case Comprehesive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
129
|
Chen Y, Guo DZ, Zhu CL, Ren SC, Sun CY, Wang Y, Wang JF. The implication of targeting PD-1:PD-L1 pathway in treating sepsis through immunostimulatory and anti-inflammatory pathways. Front Immunol 2023; 14:1323797. [PMID: 38193090 PMCID: PMC10773890 DOI: 10.3389/fimmu.2023.1323797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
Sepsis currently remains a major contributor to mortality in the intensive care unit (ICU), with 48.9 million cases reported globally and a mortality rate of 22.5% in 2017, accounting for almost 20% of all-cause mortality worldwide. This highlights the urgent need to improve the understanding and treatment of this condition. Sepsis is now recognized as a dysregulation of the host immune response to infection, characterized by an excessive inflammatory response and immune paralysis. This dysregulation leads to secondary infections, multiple organ dysfunction syndrome (MODS), and ultimately death. PD-L1, a co-inhibitory molecule expressed in immune cells, has emerged as a critical factor in sepsis. Numerous studies have found a significant association between the expression of PD-1/PD-L1 and sepsis, with a particular focus on PD-L1 expressed on neutrophils recently. This review explores the role of PD-1/PD-L1 in immunostimulatory and anti-inflammatory pathways, illustrates the intricate link between PD-1/PD-L1 and sepsis, and summarizes current therapeutic approaches against PD-1/PD-L1 in the treatment and prognosis of sepsis in preclinical and clinical studies.
Collapse
Affiliation(s)
- Yu Chen
- School of Basic Medicine, Naval Medical University, Shanghai, China
| | - De-zhi Guo
- School of Basic Medicine, Naval Medical University, Shanghai, China
| | - Cheng-long Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shi-chun Ren
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen-yan Sun
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jia-feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
130
|
Cavallone IN, Belda W, de Carvalho CHC, Laurenti MD, Passero LFD. New Immunological Markers in Chromoblastomycosis-The Importance of PD-1 and PD-L1 Molecules in Human Infection. J Fungi (Basel) 2023; 9:1172. [PMID: 38132773 PMCID: PMC10744586 DOI: 10.3390/jof9121172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The pathogenesis of chromoblastomycosis (CBM) is associated with Th2 and/or T regulatory immune responses, while resistance is associated with a Th1 response. However, even in the presence of IFN-γ, fungi persist in the lesions, and the reason for this persistence is unknown. To clarify the factors associated with pathogenesis, this study aimed to determine the polarization of the cellular immune response and the densities of cells that express markers of exhaustion in the skin of CBM patients. In the skin of patients with CBM, a moderate inflammatory infiltrate was observed, characterized primarily by the occurrence of histiocytes. Analysis of fungal density allowed us to divide patients into groups that exhibited low and high fungal densities; however, the intensity of the inflammatory response was not related to mycotic loads. Furthermore, patients with CBM exhibited a significant increase in the number of CD4+ and CD8+ cells associated with a high density of IL-10-, IL-17-, and IFN-γ-producing cells, indicating the presence of a chronic and mixed cellular immune response, which was also independent of fungal load. A significant increase in the number of PD-1+ and PD-L1+ cells was observed, which may be associated with the maintenance of the fungus in the skin and the progression of the disease.
Collapse
Affiliation(s)
- Italo N. Cavallone
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, Brazil;
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School, São Paulo University, São Paulo 01246-903, Brazil
| | - Walter Belda
- Dermatology Department, Medical School, São Paulo University, Clinics Hospital, São Paulo 05403-000, Brazil; (W.B.J.); (C.H.C.d.C.); (M.D.L.)
| | - Caroline Heleno C. de Carvalho
- Dermatology Department, Medical School, São Paulo University, Clinics Hospital, São Paulo 05403-000, Brazil; (W.B.J.); (C.H.C.d.C.); (M.D.L.)
| | - Marcia D. Laurenti
- Dermatology Department, Medical School, São Paulo University, Clinics Hospital, São Paulo 05403-000, Brazil; (W.B.J.); (C.H.C.d.C.); (M.D.L.)
| | - Luiz Felipe D. Passero
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, Brazil;
- Institute for Advanced Studies of Ocean (IEAMAR), São Paulo State University (UNESP), Rua João Francisco Bensdorp, 1178, São Vicente 11350-011, Brazil
| |
Collapse
|
131
|
Schenkel JM, Pauken KE. Localization, tissue biology and T cell state - implications for cancer immunotherapy. Nat Rev Immunol 2023; 23:807-823. [PMID: 37253877 PMCID: PMC11448857 DOI: 10.1038/s41577-023-00884-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Tissue localization is a critical determinant of T cell immunity. CD8+ T cells are contact-dependent killers, which requires them to physically be within the tissue of interest to kill peptide-MHC class I-bearing target cells. Following their migration and extravasation into tissues, T cells receive many extrinsic cues from the local microenvironment, and these signals shape T cell differentiation, fate and function. Because major organ systems are variable in their functions and compositions, they apply disparate pressures on T cells to adapt to the local microenvironment. Additional complexity arises in the context of malignant lesions (either primary or metastatic), and this has made understanding the factors that dictate T cell function and longevity in tumours challenging. Moreover, T cell differentiation state influences how cues from the microenvironment are interpreted by tissue-infiltrating T cells, highlighting the importance of T cell state in the context of tissue biology. Here, we review the intertwined nature of T cell differentiation state, location, survival and function, and explain how dysfunctional T cell populations can adopt features of tissue-resident memory T cells to persist in tumours. Finally, we discuss how these factors have shaped responses to cancer immunotherapy.
Collapse
Affiliation(s)
- Jason M Schenkel
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Kristen E Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
132
|
Guerra C, Kalaitsidou M, Kueberuwa G, Hawkins R, Edmondson R. Engineering strategies to optimise adoptive cell therapy in ovarian cancer. Cancer Treat Rev 2023; 121:102632. [PMID: 37837788 DOI: 10.1016/j.ctrv.2023.102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Ovarian cancer is amongst the ten most common cancer types in women, and it is one of the leading causes of death. Despite the promising results of targeted therapies, including anti-angiogenic agents and poly (ADP-ribose) polymerase inhibitors (PARPi), the majority of patients will relapse and develop treatment resistance, implying that novel therapeutic strategies are required. Adoptive cell therapy (ACT) refers to the process by which autologous immune cells are used to eliminate cancer. Examples include tumour infiltrating lymphocytes (TILs), T cells genetically engineered with T cell receptors (TCR), or chimeric antigen receptor (CAR)-T cells. Recently, ACT has revealed promising results in the treatment of haematological malignancies, however, its application to solid tumours is still limited due to lack of functionality and persistence of T cells, prevalence of an exhausted phenotype and impaired trafficking towards the tumour microenvironment (TME). In this review we explore the potential of ACT for the treatment of ovarian cancer and strategies to overcome its principal limitations.
Collapse
Affiliation(s)
- Catarina Guerra
- InstilBio UK, 48 Grafton St, Manchester M13 9XX, Manchester, United Kingdom; School of Medical Sciences, The University of Manchester, Oxford Rd, Manchester, United Kingdom.
| | - Milena Kalaitsidou
- InstilBio UK, 48 Grafton St, Manchester M13 9XX, Manchester, United Kingdom.
| | - Gray Kueberuwa
- InstilBio UK, 48 Grafton St, Manchester M13 9XX, Manchester, United Kingdom.
| | - Robert Hawkins
- InstilBio UK, 48 Grafton St, Manchester M13 9XX, Manchester, United Kingdom.
| | - Richard Edmondson
- School of Medical Sciences, The University of Manchester, Oxford Rd, Manchester, United Kingdom.
| |
Collapse
|
133
|
Farokhi Boroujeni S, Rodriguez G, Galpin K, Yakubovich E, Murshed H, Ibrahim D, Asif S, Vanderhyden BC. BRCA1 and BRCA2 deficient tumour models generate distinct ovarian tumour microenvironments and differential responses to therapy. J Ovarian Res 2023; 16:231. [PMID: 38017453 PMCID: PMC10683289 DOI: 10.1186/s13048-023-01313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023] Open
Abstract
Clinical trials are currently exploring combinations of PARP inhibitors and immunotherapies for the treatment of ovarian cancer, but their effects on the ovarian tumour microenvironment (TME) remain unclear. Here, we investigate how olaparib, PD-L1 monoclonal antibodies, and their combination can influence TME composition and survival of tumour-bearing mice. We further explored how BRCA deficiencies can influence the response to therapy. Olaparib and combination therapies similarly improved the median survival of Brca1- and Brca2-deficient tumour-bearing mice. Anti-PD-L1 monotherapy improved the survival of mice with Brca1-null tumours, but not Brca2-null tumours. A detailed analysis of the TME revealed that olaparib monotherapy resulted in a large number of immunosuppressive and immunomodulatory effects in the more inflamed Brca1-deficient TME but not Brca2-deficient tumours. Anti-PD-L1 treatment was mostly immunosuppressive, resulting in a systemic reduction of cytokines and a compensatory increase in PD-L1 expression. The results of the combination therapy generally resembled the effects of one or both of the monotherapies, along with unique changes observed in certain immune populations. In-silico analysis of RNA-seq data also revealed numerous differences between Brca-deficient tumour models, such as the expression of genes involved in inflammation, angiogenesis and PD-L1 expression. In summary, these findings shed light on the influence of novel therapeutics and BRCA mutations on the ovarian TME.
Collapse
Affiliation(s)
- Salar Farokhi Boroujeni
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Galaxia Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Kristianne Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Edward Yakubovich
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Humaira Murshed
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Dalia Ibrahim
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Sara Asif
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
134
|
Yang Y, Louie R, Puc J, Vedvyas Y, Alcaina Y, Min IM, Britz M, Luciani F, Jin MM. Chimeric Antigen Receptor T Cell Therapy Targeting Epithelial Cell Adhesion Molecule in Gastric Cancer: Mechanisms of Tumor Resistance. Cancers (Basel) 2023; 15:5552. [PMID: 38067255 PMCID: PMC10705754 DOI: 10.3390/cancers15235552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 02/12/2024] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a tumor-associated antigen that is frequently overexpressed in various carcinomas. We have developed chimeric antigen receptor (CAR) T cells specifically targeting EpCAM for the treatment of gastric cancer. This study sought to unravel the precise mechanisms by which tumors evade immune surveillance and develop resistance to CAR T cell therapy. Through a combination of whole-body CAR T cell imaging and single-cell multiomic analyses, we uncovered intricate interactions between tumors and tumor-infiltrating lymphocytes (TILs). In a gastric cancer model, tumor-infiltrating CD8 T cells exhibited both cytotoxic and exhausted phenotypes, while CD4 T cells were mainly regulatory T cells. A T cell receptor (TCR) clonal analysis provided evidence of CAR T cell proliferation and clonal expansion within resistant tumors, which was substantiated by whole-body CAR T cell imaging. Furthermore, single-cell transcriptomics showed that tumor cells in mice with refractory or relapsing outcomes were enriched for genes involved in major histocompatibility complex (MHC) and antigen presentation pathways, interferon-γ and interferon-α responses, mitochondrial activities, and a set of genes (e.g., CD74, IDO1, IFI27) linked to tumor progression and unfavorable disease prognoses. This research highlights an approach that combines imaging and multiomic methodologies to concurrently characterize the evolution of tumors and the differentiation of CAR T cells.
Collapse
Affiliation(s)
- Yanping Yang
- Department of Radiology, Houston Methodist Research Institute, Houston, TX 77030, USA (I.M.M.)
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Raymond Louie
- School of Computer Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia;
| | - Janusz Puc
- AffyImmune Therapeutics, Inc., Natick, MA 01760, USA
| | - Yogindra Vedvyas
- Department of Radiology, Houston Methodist Research Institute, Houston, TX 77030, USA (I.M.M.)
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Yago Alcaina
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Irene M. Min
- Department of Radiology, Houston Methodist Research Institute, Houston, TX 77030, USA (I.M.M.)
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Matt Britz
- AffyImmune Therapeutics, Inc., Natick, MA 01760, USA
| | - Fabio Luciani
- School of Medical Sciences and Kirby Institute for Infection and Immunity, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Moonsoo M. Jin
- Department of Radiology, Houston Methodist Research Institute, Houston, TX 77030, USA (I.M.M.)
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA;
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
135
|
Kim CG, Koh JY, Shin SJ, Shin JH, Hong M, Chung HC, Rha SY, Kim HS, Lee CK, Lee JH, Han Y, Kim H, Che X, Yun UJ, Kim H, Kim JH, Lee SY, Park SK, Park S, Kim H, Ahn JY, Jeung HC, Lee JS, Nam YD, Jung M. Prior antibiotic administration disrupts anti-PD-1 responses in advanced gastric cancer by altering the gut microbiome and systemic immune response. Cell Rep Med 2023; 4:101251. [PMID: 37890486 PMCID: PMC10694627 DOI: 10.1016/j.xcrm.2023.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/13/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Evidence on whether prior antibiotic (pATB) administration modulates outcomes of programmed cell death protein-1 (PD-1) inhibitors in advanced gastric cancer (AGC) is scarce. In this study, we find that pATB administration is consistently associated with poor progression-free survival (PFS) and overall survival (OS) in multiple cohorts consisting of patients with AGC treated with PD-1 inhibitors. In contrast, pATB does not affect outcomes among patients treated with irinotecan. Multivariable analysis of the overall patients treated with PD-1 inhibitors confirms that pATB administration independently predicts worse PFS and OS. Administration of pATBs is associated with diminished gut microbiome diversity, reduced abundance of Lactobacillus gasseri, and disproportional enrichment of circulating exhaustive CD8+ T cells, all of which are associated with worse outcomes. Considering the inferior treatment response and poor survival outcomes by pATB administration followed by PD-1 blockade, ATBs should be prescribed with caution in patients with AGC who are planning to receive PD-1 inhibitors.
Collapse
Affiliation(s)
- Chang Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Genome Insight, Inc., Daejeon, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Hee Shin
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju, Republic of Korea
| | - Moonki Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Cheol Chung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Young Rha
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Song Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Choong-Kun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yejeong Han
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyoyong Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Xiumei Che
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Un-Jung Yun
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunki Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee Hung Kim
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seo Young Lee
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Kyoung Park
- Deparment of Medical Records, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sejung Park
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunwook Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Young Ahn
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hei-Cheul Jeung
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jeong Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Genome Insight, Inc., Daejeon, Republic of Korea.
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju, Republic of Korea.
| | - Minkyu Jung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
136
|
Borràs DM, Verbandt S, Ausserhofer M, Sturm G, Lim J, Verge GA, Vanmeerbeek I, Laureano RS, Govaerts J, Sprooten J, Hong Y, Wall R, De Hertogh G, Sagaert X, Bislenghi G, D'Hoore A, Wolthuis A, Finotello F, Park WY, Naulaerts S, Tejpar S, Garg AD. Single cell dynamics of tumor specificity vs bystander activity in CD8 + T cells define the diverse immune landscapes in colorectal cancer. Cell Discov 2023; 9:114. [PMID: 37968259 PMCID: PMC10652011 DOI: 10.1038/s41421-023-00605-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 11/17/2023] Open
Abstract
CD8+ T cell activation via immune checkpoint blockade (ICB) is successful in microsatellite instable (MSI) colorectal cancer (CRC) patients. By comparison, the success of immunotherapy against microsatellite stable (MSS) CRC is limited. Little is known about the most critical features of CRC CD8+ T cells that together determine the diverse immune landscapes and contrasting ICB responses. Hence, we pursued a deep single cell mapping of CRC CD8+ T cells on transcriptomic and T cell receptor (TCR) repertoire levels in a diverse patient cohort, with additional surface proteome validation. This revealed that CRC CD8+ T cell dynamics are underscored by complex interactions between interferon-γ signaling, tumor reactivity, TCR repertoire, (predicted) TCR antigen-specificities, and environmental cues like gut microbiome or colon tissue-specific 'self-like' features. MSI CRC CD8+ T cells showed tumor-specific activation reminiscent of canonical 'T cell hot' tumors, whereas the MSS CRC CD8+ T cells exhibited tumor unspecific or bystander-like features. This was accompanied by inflammation reminiscent of 'pseudo-T cell hot' tumors. Consequently, MSI and MSS CRC CD8+ T cells showed overlapping phenotypic features that differed dramatically in their TCR antigen-specificities. Given their high discriminating potential for CD8+ T cell features/specificities, we used the single cell tumor-reactive signaling modules in CD8+ T cells to build a bulk tumor transcriptome classification for CRC patients. This "Immune Subtype Classification" (ISC) successfully distinguished various tumoral immune landscapes that showed prognostic value and predicted immunotherapy responses in CRC patients. Thus, we deliver a unique map of CRC CD8+ T cells that drives a novel tumor immune landscape classification, with relevance for immunotherapy decision-making.
Collapse
Affiliation(s)
- Daniel Morales Borràs
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sara Verbandt
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Markus Ausserhofer
- Universität Innsbruck, Department of Molecular Biology, Digital Science Center (DiSC), Innsbruck, Austria
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Jinyeong Lim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Gil Arasa Verge
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S Laureano
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Yourae Hong
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Rebecca Wall
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Xavier Sagaert
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Gabriele Bislenghi
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - André D'Hoore
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Albert Wolthuis
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Francesca Finotello
- Universität Innsbruck, Department of Molecular Biology, Digital Science Center (DiSC), Innsbruck, Austria
| | - Woong-Yang Park
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Stefan Naulaerts
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sabine Tejpar
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Abhishek D Garg
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
137
|
Remley VA, Linden J, Bauer TW, Dimastromatteo J. Unlocking antitumor immunity with adenosine receptor blockers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:748-767. [PMID: 38263981 PMCID: PMC10804392 DOI: 10.20517/cdr.2023.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 01/25/2024]
Abstract
Tumors survive by creating a tumor microenvironment (TME) that suppresses antitumor immunity. The TME suppresses the immune system by limiting antigen presentation, inhibiting lymphocyte and natural killer (NK) cell activation, and facilitating T cell exhaustion. Checkpoint inhibitors like anti-PD-1 and anti-CTLA4 are immunostimulatory antibodies, and their blockade extends the survival of some but not all cancer patients. Extracellular adenosine triphosphate (ATP) is abundant in inflamed tumors, and its metabolite, adenosine (ADO), is a driver of immunosuppression mediated by adenosine A2A receptors (A2AR) and adenosine A2B receptors (A2BR) found on tumor-associated lymphoid and myeloid cells. This review will focus on adenosine as a key checkpoint inhibitor-like immunosuppressive player in the TME and how reducing adenosine production or blocking A2AR and A2BR enhances antitumor immunity.
Collapse
Affiliation(s)
- Victoria A. Remley
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22903, USA
| | | | - Todd W. Bauer
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22903, USA
| | | |
Collapse
|
138
|
Agarwal S, Aznar MA, Rech AJ, Good CR, Kuramitsu S, Da T, Gohil M, Chen L, Hong SJA, Ravikumar P, Rennels AK, Salas-Mckee J, Kong W, Ruella M, Davis MM, Plesa G, Fraietta JA, Porter DL, Young RM, June CH. Deletion of the inhibitory co-receptor CTLA-4 enhances and invigorates chimeric antigen receptor T cells. Immunity 2023; 56:2388-2407.e9. [PMID: 37776850 PMCID: PMC10591801 DOI: 10.1016/j.immuni.2023.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 06/08/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy targeting CD19 has achieved tremendous success treating B cell malignancies; however, some patients fail to respond due to poor autologous T cell fitness. To improve response rates, we investigated whether disruption of the co-inhibitory receptors CTLA4 or PD-1 could restore CART function. CRISPR-Cas9-mediated deletion of CTLA4 in preclinical models of leukemia and myeloma improved CAR T cell proliferation and anti-tumor efficacy. Importantly, this effect was specific to CTLA4 and not seen upon deletion of CTLA4 and/or PDCD1 in CAR T cells. Mechanistically, CTLA4 deficiency permitted unopposed CD28 signaling and maintenance of CAR expression on the T cell surface under conditions of high antigen load. In clinical studies, deletion of CTLA4 rescued the function of T cells from patients with leukemia that previously failed CAR T cell treatment. Thus, selective deletion of CTLA4 reinvigorates dysfunctional chronic lymphocytic leukemia (CLL) patient T cells, providing a strategy for increasing patient responses to CAR T cell therapy.
Collapse
Affiliation(s)
- Sangya Agarwal
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Angela Aznar
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Andrew J Rech
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charly R Good
- Department Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shunichiro Kuramitsu
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tong Da
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mercy Gohil
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Linhui Chen
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Seok-Jae Albert Hong
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Pranali Ravikumar
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Austin K Rennels
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - January Salas-Mckee
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Weimin Kong
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute of Cancer immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Hematology/Oncology, Department of Medicine and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Megan M Davis
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute of Cancer immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David L Porter
- Division of Hematology/Oncology, Department of Medicine and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Regina M Young
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute of Cancer immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute of Cancer immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
139
|
Wu H, Weng GZ, Sun LN, Pan ZC, Zhang L, Chen Q, Shi CM. T Cell Invigoration is Associated with the Clinical Response to Anti-PD-1-Based Immunotherapy in Non-Small Cell Lung Cancer. Cancer Manag Res 2023; 15:1141-1153. [PMID: 37842130 PMCID: PMC10576507 DOI: 10.2147/cmar.s415629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/02/2023] [Indexed: 10/17/2023] Open
Abstract
Purpose Immune checkpoint inhibitors (ICIs) have been developed for clinical application and proven effective for non-small cell lung cancer (NSCLC). Blockade of the programmed cell death 1 (PD-1) protein can partially reinvigorate circulating exhausted-phenotype CD8+ T cells (Tex cells) in preclinical models, however the clinical implication in anti-PD-1-based immunotherapy in NSCLC is unknown. Methods Serum specimens were obtained before and during treatment from 145 patients with NSCLC patients who received anti-PD-1 treatment and their prognoses were followed-up. Indicators such as cell subpopulations, T cell invigoration were detected by clinical laboratory testing. Survival curves were estimated by the Kaplan-Meier method, Cox regression analysis was used to identify factors associated with prognoses of NSCLC patients. Results The expressions of Ki-67 in PD-1+/CD8+ T cells in most NSCLC patients (97 of 145 cases) increased after treatment. The responding Ki-67+/CD8+ T cell population was mainly CD45RAlo CD27hi, containing cells with high expression of CTLA-4, PD-1, and 2B4 and low expression of NKG2-D (P < 0.0001). The maximum fold change of Ki-67+/PD-1+/CD8+T cells in treatment cycles and the tumor burden determined by imaging may be associated with survival. Patients with higher Ki-67 expression on PD-1+CD8+ T-cells (pretreatment) had statistically significant increased progression-free survival (PFS). A Ki-67 expression to tumor burden ratio greater than 0.6 at the 1st cycle of anti-PD-1 immunotherapy was associated with improvement of PFS and overall survival (P < 0.05). Conclusion Activation of circulating Tex cells before or during therapy related to tumor burden may be associated with clinical efficacy of anti-PD-1 immune therapy in NSCLC.
Collapse
Affiliation(s)
- Hui Wu
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People’s Republic of China
- Department of Oncology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, Zhejiang, 323000, People’s Republic of China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, 350001, People’s Republic of China
| | - Gui Zhen Weng
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People’s Republic of China
| | - Li Na Sun
- Department of Oncology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Zhang Chi Pan
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People’s Republic of China
| | - Lu Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Qiang Chen
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People’s Republic of China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, 350001, People’s Republic of China
| | - Chun Mei Shi
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People’s Republic of China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, 350001, People’s Republic of China
| |
Collapse
|
140
|
Hao L, Li S, Hu X. New insights into T-cell exhaustion in liver cancer: from mechanism to therapy. J Cancer Res Clin Oncol 2023; 149:12543-12560. [PMID: 37423958 DOI: 10.1007/s00432-023-05083-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Liver cancer is one of the most common malignancies. T-cell exhaustion is associated with immunosuppression of tumor and chronic infection. Although immunotherapies that enhance the immune response by targeting programmed cell death-1(PD-1)/programmed cell death ligand 1 (PD-L1) have been applied to malignancies, these treatments have shown limited response rates. This suggested that additional inhibitory receptors (IRs) also contributed to T-cell exhaustion and tumor prognosis. Exhausted T-cells (Tex) in the tumor immune microenvironment (TME) are usually in a dysfunctional state of exhaustion, such as impaired activity and proliferative ability, increased apoptosis rate, and reduced production of effector cytokines. Tex cells participate in the negative regulation of tumor immunity mainly through IRs on the cell surface, changes in cytokines and immunomodulatory cell types, causing tumor immune escape. However, T-cell exhaustion is not irreversible and targeted immune checkpoint inhibitors (ICIs) can effectively reverse the exhaustion of T-cells and restore the anti-tumor immune response. Therefore, the research on the mechanism of T-cell exhaustion in liver cancer, aimed at maintaining or restoring the effector function of Tex cells, might provide a new method for the treatment of liver cancer. In this review, we summarized the basic characteristics of Tex cells (such as IRs and cytokines), discussed the mechanisms associated with T-cell exhaustion, and specifically discussed how these exhaustion characteristics were acquired and shaped by key factors within TME. Then new insights into the molecular mechanism of T-cell exhaustion suggested a potential way to improve the efficacy of cancer immunotherapy, namely to restore the effector function of Tex cells. In addition, we also reviewed the research progress of T-cell exhaustion in recent years and provided suggestions for further research.
Collapse
Affiliation(s)
- Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Shenghao Li
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
141
|
Topchyan P, Lin S, Cui W. The Role of CD4 T Cell Help in CD8 T Cell Differentiation and Function During Chronic Infection and Cancer. Immune Netw 2023; 23:e41. [PMID: 37970230 PMCID: PMC10643329 DOI: 10.4110/in.2023.23.e41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023] Open
Abstract
CD4 and CD8 T cells are key players in the immune response against both pathogenic infections and cancer. CD4 T cells provide help to CD8 T cells via multiple mechanisms, including licensing dendritic cells (DCs), co-stimulation, and cytokine production. During acute infection and vaccination, CD4 T cell help is important for the development of CD8 T cell memory. However, during chronic viral infection and cancer, CD4 helper T cells are critical for the sustained effector CD8 T cell response, through a variety of mechanisms. In this review, we focus on T cell responses in conditions of chronic Ag stimulation, such as chronic viral infection and cancer. In particular, we address the significant role of CD4 T cell help in promoting effector CD8 T cell responses, emerging techniques that can be utilized to further our understanding of how these interactions may take place in the context of tertiary lymphoid structures, and how this key information can be harnessed for therapeutic utility against cancer.
Collapse
Affiliation(s)
- Paytsar Topchyan
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Siying Lin
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Weiguo Cui
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
142
|
Guo M, Abd-Rabbo D, Bertol BC, Carew M, Lukhele S, Snell LM, Xu W, Boukhaled GM, Elsaesser H, Halaby MJ, Hirano N, McGaha TL, Brooks DG. Molecular, metabolic, and functional CD4 T cell paralysis in the lymph node impedes tumor control. Cell Rep 2023; 42:113047. [PMID: 37651234 PMCID: PMC10578141 DOI: 10.1016/j.celrep.2023.113047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/14/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
CD4 T cells are central effectors of anti-cancer immunity and immunotherapy, yet the regulation of CD4 tumor-specific T (TTS) cells is unclear. We demonstrate that CD4 TTS cells are quickly primed and begin to divide following tumor initiation. However, unlike CD8 TTS cells or exhaustion programming, CD4 TTS cell proliferation is rapidly frozen in place by a functional interplay of regulatory T cells and CTLA4. Together these mechanisms paralyze CD4 TTS cell differentiation, redirecting metabolic circuits, and reducing their accumulation in the tumor. The paralyzed state is actively maintained throughout cancer progression and CD4 TTS cells rapidly resume proliferation and functional differentiation when the suppressive constraints are alleviated. Overcoming their paralysis established long-term tumor control, demonstrating the importance of rapidly crippling CD4 TTS cells for tumor progression and their potential restoration as therapeutic targets.
Collapse
Affiliation(s)
- Mengdi Guo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Diala Abd-Rabbo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Bruna C Bertol
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Madeleine Carew
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sabelo Lukhele
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Laura M Snell
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Microbiology and Immunology and Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wenxi Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Giselle M Boukhaled
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Heidi Elsaesser
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Marie Jo Halaby
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Naoto Hirano
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - David G Brooks
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
143
|
Simmons T, Levy D. Modeling the Development of Cellular Exhaustion and Tumor-Immune Stalemate. Bull Math Biol 2023; 85:106. [PMID: 37733164 DOI: 10.1007/s11538-023-01207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
Cellular exhaustion in various immune cells develops in response to prolonged stimulation and overactivation during chronic infections and in cancer. Marked by an upregulation of inhibitory receptors and diminished effector functions, exhausted immune cells are unable to fully eradicate the antigen responsible for the overexposure. In cancer settings, this results in a relatively small but constant tumor burden known as a localized tumor-immune stalemate. In recent years, studies have elucidated key aspects of the development and progression of cellular exhaustion and have re-addressed previous misconceptions. Biological publications have also provided insight into the functional capabilities of exhausted cells. Complementing these findings, the model presented here serves as a mathematical framework for the establishment of cellular exhaustion and the development of the localized stalemate against a solid tumor. Analysis of this model indicates that this stalemate is stable and can handle small perturbations. Additionally, model analysis also provides insight into potential targets of future immunotherapy efforts.
Collapse
Affiliation(s)
- Tyler Simmons
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA.
| | - Doron Levy
- Department of Mathematics, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
144
|
Chen M, Zhu X, Zhang L, Zhao D. COL5A2 is a prognostic-related biomarker and correlated with immune infiltrates in gastric cancer based on transcriptomics and single-cell RNA sequencing. BMC Med Genomics 2023; 16:220. [PMID: 37723519 PMCID: PMC10506210 DOI: 10.1186/s12920-023-01659-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND There is still a therapeutic challenge in treating gastric cancer (GC) due to its high incidence and poor prognosis. Collagen type V alpha 2 (COL5A2) is increased in various cancers, yet it remains unclear how it contributes to the prognosis and immunity of GC. METHODS The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets were used to download transcriptome profiling (TCGA-STAD; GSE84437), single-cell RNA sequencing (scRNA-seq) data (GSE167297) and clinical information. COL5A2 expression and its relationship with clinicopathological factors were analyzed. We conducted survival analysis and Cox regression analysis to evaluate the prognosis and independent factors of GC. Co-expressed analysis was also performed. To identify the underlying mechanism, we conducted analyses of differentially expressed genes (DEGs) and functional enrichment. The correlations between COL5A2 expression and immune cell infiltration levels and immune infiltrate gene marker sets were further explored. Additionally, we analyzed the association of COL5A2 expression with immunological checkpoint molecules. Furthermore, the relationship between COL5A2 expression and immunotherapy sensitivity was also investigated. RESULTS COL5A2 expression was elevated in GC. More than this, the scRNA-seq analysis revealed that COL5A2 expression had a spatial gradient. The upregulated COL5A2 was associated with worse overall survival. A significant correlation was found between COL5A2 overexpression and age, T classification and clinical stage in GC. COL5A2 was found to be an independent factor for the unfortunate outcome in Cox regression analysis. The co-expressed genes of COL5A2 were associated with tumor stage or poor survival. Enrichment analysis revealed that the DEGs were mainly associated with extracellular matrix (ECM)-related processes, PI3K-AKT signaling pathway, and focal adhesion. GSEA analyses revealed that COL5A2 was associated with tumor progression-related pathways. Meanwhile, COL5A2 expression was correlated with tumor-infiltrating immune cells. Moreover, immunophenoscore (IPS) analysis and PRJEB25780 cohorts showed that patients with low COL5A2 expression were highly sensitive to immunotherapy. CONCLUSIONS COL5A2 might act as a prognostic biomarker of GC prognosis and immune infiltration and may provide a therapeutic intervention strategy.
Collapse
Affiliation(s)
- Meiru Chen
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
- Department of Gastroenterology, Hengshui People's Hospital, Hengshui, Hebei Province, 053000, China
| | - Xinying Zhu
- Department of Gastroenterology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Lixian Zhang
- Department of Gastroenterology, Hengshui People's Hospital, Hengshui, Hebei Province, 053000, China
| | - Dongqiang Zhao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China.
| |
Collapse
|
145
|
Laubach K, Turan T, Mathew R, Wilsbacher J, Engelhardt J, Samayoa J. Tumor-intrinsic metabolic reprogramming and how it drives resistance to anti-PD-1/PD-L1 treatment. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:611-641. [PMID: 37842241 PMCID: PMC10571065 DOI: 10.20517/cdr.2023.60] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 10/17/2023]
Abstract
The development of immune checkpoint blockade (ICB) therapies has been instrumental in advancing the field of immunotherapy. Despite the prominence of these treatments, many patients exhibit primary or acquired resistance, rendering them ineffective. For example, anti-programmed cell death protein 1 (anti-PD-1)/anti-programmed cell death ligand 1 (anti-PD-L1) treatments are widely utilized across a range of cancer indications, but the response rate is only 10%-30%. As such, it is necessary for researchers to identify targets and develop drugs that can be used in combination with existing ICB therapies to overcome resistance. The intersection of cancer, metabolism, and the immune system has gained considerable traction in recent years as a way to comprehensively study the mechanisms that drive oncogenesis, immune evasion, and immunotherapy resistance. As a result, new research is continuously emerging in support of targeting metabolic pathways as an adjuvant to ICB to boost patient response and overcome resistance. Due to the plethora of studies in recent years highlighting this notion, this review will integrate the relevant articles that demonstrate how tumor-derived alterations in energy, amino acid, and lipid metabolism dysregulate anti-tumor immune responses and drive resistance to anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Kyra Laubach
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
- Immuno-Oncology, AbbVie, South San Francisco, CA 94080, USA
| | - Tolga Turan
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
| | - Rebecca Mathew
- Immuno-Oncology, AbbVie, South San Francisco, CA 94080, USA
| | | | | | - Josue Samayoa
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
| |
Collapse
|
146
|
Zhang L, Jiang Y, Zhang G, Wei S. The diversity and dynamics of tumor-associated macrophages in recurrent glioblastoma. Front Immunol 2023; 14:1238233. [PMID: 37731483 PMCID: PMC10507272 DOI: 10.3389/fimmu.2023.1238233] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Despite tremendous efforts to exploit effective therapeutic strategies, most glioblastoma (GBM) inevitably relapse and become resistant to therapies, including radiotherapy and immunotherapy. The tumor microenvironment (TME) of recurrent GBM (rGBM) is highly immunosuppressive, dominated by tumor-associated macrophages (TAMs). TAMs consist of tissue-resident microglia and monocyte-derived macrophages (MDMs), which are essential for favoring tumor growth, invasion, angiogenesis, immune suppression, and therapeutic resistance; however, restricted by the absence of potent methods, the heterogeneity and plasticity of TAMs in rGBM remain incompletely investigated. Recent application of single-cell technologies, such as single-cell RNA-sequencing has enabled us to decipher the unforeseen diversity and dynamics of TAMs and to identify new subsets of TAMs which regulate anti-tumor immunity. Here, we first review hallmarks of the TME, progress and challenges of immunotherapy, and the biology of TAMs in the context of rGBM, including their origins, categories, and functions. Next, from a single-cell perspective, we highlight recent findings regarding the distinctions between tissue-resident microglia and MDMs, the identification and characterization of specific TAM subsets, and the dynamic alterations of TAMs during tumor progression and treatment. Last, we briefly discuss the potential of TAM-targeted strategies for combination immunotherapy in rGBM. We anticipate the comprehensive understanding of the diversity and dynamics of TAMs in rGBM will shed light on further improvement of immunotherapeutic efficacy in rGBM.
Collapse
Affiliation(s)
- Lingyun Zhang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yu Jiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong, Hong Kong SAR, China
| | - Shiyou Wei
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
147
|
Miao X, Wu LS, Lin SXW, Xu Y, Chen Y, Iwaki Y, Kobos R, Stephenson T, Kemmerer K, Uhlar CM, Banerjee A, Goldberg JD, Trancucci D, Apte A, Verona R, Pei L, Desai R, Hickey K, Su Y, Ouellet D, Samtani MN, Guo Y, Garfall AL, Krishnan A, Usmani SZ, Zhou H, Girgis S. Population Pharmacokinetics and Exposure-Response with Teclistamab in Patients With Relapsed/Refractory Multiple Myeloma: Results From MajesTEC-1. Target Oncol 2023; 18:667-684. [PMID: 37713090 PMCID: PMC10518021 DOI: 10.1007/s11523-023-00989-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Teclistamab, a B-cell maturation antigen × CD3 bispecific antibody, is approved in patients with relapsed/refractory multiple myeloma (RRMM) who have previously received an immunomodulatory agent, a proteasome inhibitor, and an anti-CD38 antibody. OBJECTIVE We report the population pharmacokinetics of teclistamab administered intravenously and subcutaneously (SC) and exposure-response relationships from the phase I/II, first-in-human, open-label, multicenter MajesTEC-1 study. METHODS Phase I of MajesTEC-1 consisted of dose escalation and expansion at the recommended phase II dose (RP2D; 1.5 mg/kg SC weekly, preceded by step-up doses of 0.06 and 0.3 mg/kg); phase II investigated the efficacy of teclistamab RP2D in patients with RRMM. Population pharmacokinetics and the impact of covariates on teclistamab systemic exposure were assessed using a 2-compartment model with first-order absorption for SC and parallel time-independent and time-dependent elimination pathways. Exposure-response analyses were conducted, including overall response rate (ORR), duration of response (DoR), progression-free survival (PFS), overall survival (OS), and the incidence of grade ≥ 3 anemia, neutropenia, lymphopenia, leukopenia, thrombocytopenia, and infection. RESULTS In total, 4840 measurable serum concentration samples from 338 pharmacokinetics-evaluable patients who received teclistamab were analyzed. The typical population value of time-independent and time-dependent clearance were 0.449 L/day and 0.547 L/day, respectively. The time-dependent clearance decreased rapidly to < 10% after 8 weeks of teclistamab treatment. Patients who discontinue teclistamab after the 13th dose are expected to have a 50% reduction from Cmax in teclistamab concentration at a median (5th to 95th percentile) time of 15 days (7-33 days) after Tmax and a 97% reduction from Cmax in teclistamab concentration at a median time of 69 days (32-163 days) after Tmax. Body weight, multiple myeloma type (immunoglobulin G vs non-immunoglobulin G), and International Staging System (ISS) stage (II vs I and III vs I) were statistically significant covariates on teclistamab pharmacokinetics; however, these covariates had no clinically relevant effect on the efficacy of teclistamab at the RP2D. Across all doses, ORR approached a plateau at the concentration range associated with RP2D, and in patients who received the RP2D, a flat exposure-response curve was observed. No apparent relationship was observed between DoR, PFS, OS, and the incidence of grade ≥3 adverse events across the predicted exposure quartiles. CONCLUSION Body weight, myeloma type, and ISS stage impacted systemic teclistamab exposure without any clinically relevant effect on efficacy. The exposure-response analyses for ORR showed a positive trend with increasing teclistamab systemic exposure, with a plateau at the RP2D, and there was no apparent exposure-response trend for safety or other efficacy endpoints. These analyses support the RP2D of teclistamab in patients with RRMM. CLINICAL TRIAL REGISTRATION NCT03145181 (phase I, 09 May 2017); NCT04557098 (phase II, 21 September 2020).
Collapse
Affiliation(s)
- Xin Miao
- Janssen Research & Development, Spring House, PA, USA.
| | - Liviawati S Wu
- Janssen Research & Development, South San Francisco, CA, USA
| | | | - Yan Xu
- Janssen Research & Development, Spring House, PA, USA
| | - Yang Chen
- Janssen Research & Development, Spring House, PA, USA
| | | | - Rachel Kobos
- Janssen Research & Development, Raritan, NJ, USA
| | | | | | | | | | | | | | - Amit Apte
- Janssen Research & Development, Raritan, NJ, USA
| | - Raluca Verona
- Janssen Research & Development, Spring House, PA, USA
| | - Lixia Pei
- Janssen Research & Development, Raritan, NJ, USA
| | - Rachit Desai
- Janssen Research & Development, Raritan, NJ, USA
| | | | - Yaming Su
- Janssen Research & Development, Raritan, NJ, USA
| | | | | | - Yue Guo
- Janssen Research & Development, Spring House, PA, USA
| | - Alfred L Garfall
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Saad Z Usmani
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Honghui Zhou
- Janssen Research & Development, Spring House, PA, USA
| | | |
Collapse
|
148
|
Ma X, Wang Q, Sun C, Agarwal I, Wu H, Chen J, Zhao C, Qi G, Teng Q, Yuan C, Yan S, Peng J, Li R, Song K, Zhang Q, Kong B. Targeting TCF19 sensitizes MSI endometrial cancer to anti-PD-1 therapy by alleviating CD8 + T cell exhaustion via TRIM14-IFN-β axis. Cell Rep 2023; 42:112944. [PMID: 37566545 DOI: 10.1016/j.celrep.2023.112944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/25/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapies display clinical efficacy in microsatellite instable (MSI) endometrial cancer (EC) treatment, the key mechanism of which is reversing T cell exhaustion and restoration of anti-tumor immunity. Here, we demonstrate that transcription factor 19 (TCF19), one of the most significantly differentially expressed genes between MSI and microsatellite stable (MSS) patients in The Cancer Genome Atlas (TCGA)-EC cohort, is associated with poor prognosis and immune exhaustion signature. Specifically, TCF19 is significantly elevated in MSI EC, which in turn promotes tripartite motif-containing 14 (TRIM14) transcription and correlates with hyperactive signaling of the TANK-binding kinase 1 (TBK1)-interferon regulatory factor 3 (IRF3)-interferon β (IFN-β) pathway. The TCF19-TRIM14 axis promotes tumorigenicity under non-immunological background, and the enhanced downstream secretion of IFN-β facilitates CD8+ T cell exhaustion through cell differentiation reprogramming. Finally, using humanized models, we show that a combination of TCF19 inhibition and ICB therapy demonstrates more effective anti-tumor responses. Together, our study indicates that targeting TCF19 is a potent strategy for alleviating CD8+ T cell exhaustion and synergizing with ICB in tumor treatment.
Collapse
Affiliation(s)
- Xinyue Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Qiuman Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Chenggong Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Indu Agarwal
- Department of Pathology, Northwestern University, Chicago, IL 60208, USA
| | - Huan Wu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Jingying Chen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Chen Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Gonghua Qi
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Qiuli Teng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Shi Yan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Jiali Peng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Rongrong Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China.
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China.
| |
Collapse
|
149
|
McClory SE, Bardhan O, Rome KS, Giles JR, Baxter AE, Xu L, Gimotty PA, Faryabi RB, Wherry EJ, Pear WS, Jordan MS. The pseudokinase Trib1 regulates the transition of exhausted T cells to a KLR + CD8 + effector state, and its deletion improves checkpoint blockade. Cell Rep 2023; 42:112905. [PMID: 37527035 PMCID: PMC10540077 DOI: 10.1016/j.celrep.2023.112905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/22/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023] Open
Abstract
CD8+ T cell exhaustion (TEX) impairs the ability of T cells to clear chronic infection or cancer. While TEX are hypofunctional, some TEX retain effector gene signatures, a feature associated with killer lectin-like receptor (KLR) expression. Although KLR+ TEX (TKLR) may improve control of chronic antigen, the signaling molecules regulating this population are poorly understood. Using single-cell RNA sequencing (scRNA-seq), flow cytometry, RNA velocity, and single-cell T cell receptor sequencing (scTCR-seq), we demonstrate that deleting the pseudokinase Trib1 shifts TEX toward CX3CR1+ intermediates with robust enrichment of TKLR via clonal T cell expansion. Adoptive transfer studies demonstrate this shift toward CD8+ TKLR in Trib1-deficient cells is CD8 intrinsic, while CD4-depletion studies demonstrate CD4+ T cells are required for improved viral control in Trib1 conditional knockout mice. Further, Trib1 loss augments anti-programmed death-ligand 1 (PD-L1) blockade to improve viral clearance. These data identify Trib1 as an important regulator of CD8+ TEX whose targeting enhances the TKLR effector state and improves checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Susan E McClory
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Oishi Bardhan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelly S Rome
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy E Baxter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lanwei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Phyllis A Gimotty
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert B Faryabi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Warren S Pear
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Martha S Jordan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
150
|
Wu JE, Manne S, Ngiow SF, Baxter AE, Huang H, Freilich E, Clark ML, Lee JH, Chen Z, Khan O, Staupe RP, Huang YJ, Shi J, Giles JR, Wherry EJ. In vitro modeling of CD8 + T cell exhaustion enables CRISPR screening to reveal a role for BHLHE40. Sci Immunol 2023; 8:eade3369. [PMID: 37595022 PMCID: PMC11975459 DOI: 10.1126/sciimmunol.ade3369] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 07/07/2023] [Indexed: 08/20/2023]
Abstract
Identifying molecular mechanisms of exhausted CD8 T cells (Tex) is a key goal of improving immunotherapy of cancer and other diseases. However, high-throughput interrogation of in vivo Tex can be costly and inefficient. In vitro models of Tex are easily customizable and quickly generate high cellular yield, enabling CRISPR screening and other high-throughput assays. We established an in vitro model of chronic stimulation and benchmarked key phenotypic, functional, transcriptional, and epigenetic features against bona fide in vivo Tex. We leveraged this model of in vitro chronic stimulation in combination with CRISPR screening to identify transcriptional regulators of T cell exhaustion. This approach identified several transcription factors, including BHLHE40. In vitro and in vivo validation defined a role for BHLHE40 in regulating a key differentiation checkpoint between progenitor and intermediate Tex subsets. By developing and benchmarking an in vitro model of Tex, then applying high-throughput CRISPR screening, we demonstrate the utility of mechanistically annotated in vitro models of Tex.
Collapse
Affiliation(s)
- Jennifer E. Wu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Amy E. Baxter
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hua Huang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Freilich
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan L. Clark
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joanna H. Lee
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Omar Khan
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan P. Staupe
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yinghui J. Huang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junwei Shi
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Josephine R. Giles
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - E. John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|