101
|
Cheng Q, Shah N, Bröer A, Fairweather S, Jiang Y, Schmoll D, Corry B, Bröer S. Identification of novel inhibitors of the amino acid transporter B 0 AT1 (SLC6A19), a potential target to induce protein restriction and to treat type 2 diabetes. Br J Pharmacol 2017; 174:468-482. [PMID: 28176326 DOI: 10.1111/bph.13711] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE The neutral amino acid transporter B0 AT1 (SLC6A19) has recently been identified as a possible target to treat type 2 diabetes and related disorders. B0 AT1 mediates the Na+ -dependent uptake of all neutral amino acids. For surface expression and catalytic activity, B0 AT1 requires coexpression of collectrin (TMEM27). In this study, we established tools to identify and evaluate novel inhibitors of B0 AT1. EXPERIMENTAL APPROACH A CHO-based cell line was generated, stably expressing collectrin and B0 AT1. Using this cell line, a high-throughput screening assay was developed, which uses a fluorescent dye to detect depolarisation of the cell membrane during amino acid uptake via B0 AT1. In parallel to these functional assays, we ran a computational compound screen using AutoDock4 and a homology model of B0 AT1 based on the high-resolution structure of the highly homologous Drosophila dopamine transporter. KEY RESULTS We characterized a series of novel inhibitors of the B0 AT1 transporter. Benztropine was identified as a competitive inhibitor of the transporter showing an IC50 of 44 ± 9 μM. The compound was selective with regard to related transporters and blocked neutral amino acid uptake in inverted sections of mouse intestine. CONCLUSION AND IMPLICATIONS The tools established in this study can be widely used to identify new transport inhibitors. Using these tools, we were able to identify compounds that can be used to study epithelial transport, to induce protein restriction, or be developed further through medicinal chemistry.
Collapse
Affiliation(s)
- Qi Cheng
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Nishank Shah
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Angelika Bröer
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Stephen Fairweather
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Yang Jiang
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Dieter Schmoll
- Industriepark Hoechst, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Ben Corry
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
102
|
Celi FS. Human Brown Adipose Tissue Plasticity: Hormonal and Environmental Manipulation. RESEARCH AND PERSPECTIVES IN ENDOCRINE INTERACTIONS 2017. [DOI: 10.1007/978-3-319-72790-5_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
103
|
Lundsgaard AM, Fritzen AM, Sjøberg KA, Myrmel LS, Madsen L, Wojtaszewski JFP, Richter EA, Kiens B. Circulating FGF21 in humans is potently induced by short term overfeeding of carbohydrates. Mol Metab 2016; 6:22-29. [PMID: 28123934 PMCID: PMC5220397 DOI: 10.1016/j.molmet.2016.11.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 01/05/2023] Open
Abstract
Objective Fibroblast-growth factor 21 (FGF21) is thought to be important in metabolic regulation. Recently, low protein diets have been shown to increase circulating FGF21 levels. However, when energy contribution from dietary protein is lowered, other macronutrients, such as carbohydrates, must be increased to meet eucaloric balance. This raises the possibility that intake of a diet rich in carbohydrates may induce an increase in plasma FGF21 levels per se. Here we studied the role of dietary carbohydrates on the levels of circulating FGF21 and concomitant physiologic effects by feeding healthy men a carbohydrate rich diet without reducing protein intake. Methods A diet enriched in carbohydrates (80 E% carbohydrate; CHO) and a eucaloric control diet (CON) were provided to nine healthy men for three days. The energy intake during the CHO diet was increased (+75% energy) to ensure similar dietary protein intake in CHO and CON. To control for the effect of caloric surplus, we similarly overfed (+75% energy) the same subjects for three days with a fat-rich diet (78 E% fat; FAT), consisting of primarily unsaturated fatty acids. The three diets were provided in random order. Results After CHO, plasma FGF21 concentration increased 8-fold compared to CON (329 ± 99 vs. 39 ± 9 pg ml−1, p < 0.05). In contrast, after FAT only a non-significant tendency (p = 0.073) to an increase in plasma FGF21 concentration was found. The increase in FGF21 concentration after CHO correlated closely (r = 0.88, p < 0.01) with increased leg glucose uptake (62%, p < 0.05) and increased hepatic glucose production (17%, p < 0.01), indicating increased glucose turnover. Plasma fatty acid (FA) concentration was decreased by 68% (p < 0.01), supported by reduced subcutaneous adipose tissue HSL Ser660 phosphorylation (p < 0.01) and perilipin 1 protein content (p < 0.01), pointing to a suppression of adipose tissue lipolysis. Concomitantly, a 146% increase in the plasma marker of hepatic de novo lipogenesis C16:1 n−7 FA (p < 0.01) was observed together with 101% increased plasma TG concentration (p < 0.001) in association with CHO intake and increased plasma FGF21 concentration. Conclusion Excess dietary carbohydrate, but not fat, led to markedly increased FGF21 secretion in humans, notably without protein restriction, and affected glucose and lipid homeostais. Dietary carbohydrate excess induces circulating FGF21 8-fold in humans. Increased FGF21 was associated with increased hepatic glucose production and lipogenesis. The induction of FGF21 was associated with increased leg glucose uptake. The induction of FGF21 was accompanied by indices of lower adipose tissue lipolysis.
Collapse
Key Words
- AMPK, AMP-activated kinase
- ATGL, adipose triglyceride lipase
- BCA, bicinchoninic acid
- BM, body mass
- BMI, body mass index
- CHO, carbohydrate-rich diet
- CON, control diet
- Carbohydrates
- ChREBP, carbohydrate-responsive element binding protein
- Diet
- FA, fatty acid
- FAT, fat-rich diet
- FGF21
- FGF21, fibroblast growth factor 21
- GLUT4, glucose transporter 4
- HSL, hormone sensitive lipase
- LM, leg mass
- Lipolysis
- Liver
- PKA, protein kinase A
- Ra, rate of appearance
- TG, triacylglycerol
- VLDL, very low density lipoprotein
- VO2peak, maximal oxygen consumption
Collapse
Affiliation(s)
- Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas M Fritzen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kim A Sjøberg
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lene S Myrmel
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Lise Madsen
- National Institute of Nutrition and Seafood Research, Bergen, Norway; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
104
|
Sharma S, Taliyan R. Histone deacetylase inhibitors: Future therapeutics for insulin resistance and type 2 diabetes. Pharmacol Res 2016; 113:320-326. [DOI: 10.1016/j.phrs.2016.09.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/19/2022]
|
105
|
Chemical Hybridization of Glucagon and Thyroid Hormone Optimizes Therapeutic Impact for Metabolic Disease. Cell 2016; 167:843-857.e14. [PMID: 27720451 DOI: 10.1016/j.cell.2016.09.014] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 06/24/2016] [Accepted: 09/07/2016] [Indexed: 11/22/2022]
Abstract
Glucagon and thyroid hormone (T3) exhibit therapeutic potential for metabolic disease but also exhibit undesired effects. We achieved synergistic effects of these two hormones and mitigation of their adverse effects by engineering chemical conjugates enabling delivery of both activities within one precisely targeted molecule. Coordinated glucagon and T3 actions synergize to correct hyperlipidemia, steatohepatitis, atherosclerosis, glucose intolerance, and obesity in metabolically compromised mice. We demonstrate that each hormonal constituent mutually enriches cellular processes in hepatocytes and adipocytes via enhanced hepatic cholesterol metabolism and white fat browning. Synchronized signaling driven by glucagon and T3 reciprocally minimizes the inherent harmful effects of each hormone. Liver-directed T3 action offsets the diabetogenic liability of glucagon, and glucagon-mediated delivery spares the cardiovascular system from adverse T3 action. Our findings support the therapeutic utility of integrating these hormones into a single molecular entity that offers unique potential for treatment of obesity, type 2 diabetes, and cardiovascular disease.
Collapse
|
106
|
iNKT Cells Induce FGF21 for Thermogenesis and Are Required for Maximal Weight Loss in GLP1 Therapy. Cell Metab 2016; 24:510-519. [PMID: 27593966 PMCID: PMC5061124 DOI: 10.1016/j.cmet.2016.08.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 01/05/2016] [Accepted: 08/03/2016] [Indexed: 12/25/2022]
Abstract
Adipose-resident invariant natural killer T (iNKT) cells are key players in metabolic regulation. iNKT cells are innate lipid sensors, and their activation, using their prototypic ligand α-galactosylceramide (αGalCer), induces weight loss and restores glycemic control in obesity. Here, iNKT activation induced fibroblast growth factor 21 (FGF21) production and thermogenic browning of white fat. Complete metabolic analysis revealed that iNKT cell activation induced increased body temperature, V02, VC02, and fatty acid oxidation, without affecting food intake or activity. FGF21 induction played a major role in iNKT cell-induced weight loss, as FGF21 null mice lost significantly less weight after αGalCer treatment. The glucagon-like peptide 1 (GLP-1) receptor agonist, liraglutide, also activated iNKT cells in humans and mice. In iNKT-deficient mice, liraglutide promoted satiety but failed to induce FGF21, resulting in less weight loss. These findings reveal an iNKT cell-FGF21 axis that defines a new immune-mediated pathway that could be targeted for glycemic control and weight regulation.
Collapse
|
107
|
Ost M, Coleman V, Kasch J, Klaus S. Regulation of myokine expression: Role of exercise and cellular stress. Free Radic Biol Med 2016; 98:78-89. [PMID: 26898145 DOI: 10.1016/j.freeradbiomed.2016.02.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/26/2022]
Abstract
Exercise training is well known to improve physical fitness and to combat chronic diseases and aging related disorders. Part of this is thought to be mediated by myokines, muscle derived secretory proteins (mainly cytokines) that elicit auto/paracrine but also endocrine effects on organs such as liver, adipose tissue, and bone. Today, several hundred potential myokines have been identified most of them not exclusive to muscle cells. Strenuous exercise is associated with increased production of free radicals and reactive oxidant species (ROS) as well as endoplasmic reticulum (ER)-stress which at an excessive level can lead to muscle damage and cell death. On the other hand, transient elevations in oxidative and ER-stress are thought to be necessary for adaptive improvements by regular exercise through a hormesis action termed mitohormesis since mitochondria are essential for the generation of energy and tightly connected to ER- and oxidative stress. Exercise induced myokines have been identified by various in vivo and in vitro approaches and accumulating evidence suggests that ROS and ER-stress linked pathways are involved in myokine induction. For example, interleukin (IL)-6, the prototypic exercise myokine is also induced by oxidative and ER-stress. Exercise induced expression of some myokines such as irisin and meteorin-like is linked to the transcription factor PGC-1α and apparently not related to ER-stress whereas typical ER-stress induced cytokines such as FGF-21 and GDF-15 are not exercise myokines under normal physiological conditions. Recent technological advances have led to the identification of numerous potential new myokines but for most of them regulation by oxidative and ER-stress still needs to be unraveled.
Collapse
Affiliation(s)
- Mario Ost
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition in Potsdam Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Verena Coleman
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition in Potsdam Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Juliane Kasch
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition in Potsdam Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Susanne Klaus
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition in Potsdam Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
108
|
Sánchez-Garrido MA, Habegger KM, Clemmensen C, Holleman C, Müller TD, Perez-Tilve D, Li P, Agrawal AS, Finan B, Drucker DJ, Tschöp MH, DiMarchi RD, Kharitonenkov A. Fibroblast activation protein (FAP) as a novel metabolic target. Mol Metab 2016; 5:1015-1024. [PMID: 27689014 PMCID: PMC5034526 DOI: 10.1016/j.molmet.2016.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 01/10/2023] Open
Abstract
Objective Fibroblast activation protein (FAP) is a serine protease belonging to a S9B prolyl oligopeptidase subfamily. This enzyme has been implicated in cancer development and recently reported to regulate degradation of FGF21, a potent metabolic hormone. Using a known FAP inhibitor, talabostat (TB), we explored the impact of FAP inhibition on metabolic regulation in mice. Methods To address this question we evaluated the pharmacology of TB in various mouse models including those deficient in FGF21, GLP1 and GIP signaling. We also studied the ability of FAP to process FGF21 in vitro and TB to block FAP enzymatic activity. Results TB administration to diet-induced obese (DIO) animals led to profound decreases in body weight, reduced food consumption and adiposity, increased energy expenditure, improved glucose tolerance and insulin sensitivity, and lowered cholesterol levels. Total and intact plasma FGF21 were observed to be elevated in TB-treated DIO mice but not lean animals where the metabolic impact of TB was significantly attenuated. Furthermore, and in stark contrast to naïve DIO mice, the administration of TB to obese FGF21 knockout animals demonstrated no appreciable effect on body weight or any other measures of metabolism. In support of these results we observed no enzymatic degradation of human FGF21 at either end of the protein when FAP was inhibited in vitro by TB. Conclusions We conclude that pharmacological inhibition of FAP enhances levels of FGF21 in obese mice to provide robust metabolic benefits not observed in lean animals, thus validating this enzyme as a novel drug target for the treatment of obesity and diabetes. Pharmacological inhibition of FAP reduces weight, improves glucose and lipid metabolism in obese, but not lean mice. FAP inhibitor Talabostat at higher doses lessens food intake, without any apparent adverse effects in short term studies. Obese FGF21 deficient mice did not exhibit meaningful change in metabolic regulation when treated with Talabostat. The mechanism of Talabostat in vivo action appears to center on an increase in total and active levels of plasma FGF21. FAP inhibition alone, or in combination with DPP4 is proposed as a novel approach to treat metabolic diseases.
Collapse
Affiliation(s)
- Miguel Angel Sánchez-Garrido
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center, Munich, 85748, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, 85748, Germany; German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
| | - Kirk M Habegger
- Department of Medicine Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Christoffer Clemmensen
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center, Munich, 85748, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, 85748, Germany; German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
| | - Cassie Holleman
- Department of Medicine Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center, Munich, 85748, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, 85748, Germany; German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
| | - Diego Perez-Tilve
- Division of Endocrinology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45237, United States
| | - Pengyun Li
- Department of Chemistry, Indiana University, Bloomington, IN, 46405, United States
| | - Archita S Agrawal
- Department of Chemistry, Indiana University, Bloomington, IN, 46405, United States
| | - Brian Finan
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center, Munich, 85748, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, 85748, Germany; German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
| | - Daniel J Drucker
- Lunenfeld Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, 600 University Ave, TCP5-1004 Mailbox 39, Toronto, Ontario, M5G 1X5, Canada
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center, Munich, 85748, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, 85748, Germany; German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
| | - Richard D DiMarchi
- Department of Chemistry, Indiana University, Bloomington, IN, 46405, United States.
| | - Alexei Kharitonenkov
- Department of Chemistry, Indiana University, Bloomington, IN, 46405, United States.
| |
Collapse
|
109
|
Metabolic Responses to Dietary Protein Restriction Require an Increase in FGF21 that Is Delayed by the Absence of GCN2. Cell Rep 2016; 16:707-16. [PMID: 27396336 DOI: 10.1016/j.celrep.2016.06.044] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/22/2016] [Accepted: 06/09/2016] [Indexed: 02/06/2023] Open
Abstract
FGF21 contributes to the metabolic response to dietary protein restriction, and prior data implicate GCN2 as the amino acid sensor linking protein restriction to FGF21 induction. Here, we demonstrate the persistent and essential role of FGF21 in the metabolic response to protein restriction. We show that Fgf21 KO mice are fully resistant to low protein (LP)-induced changes in food intake, energy expenditure (EE), body weight gain, and metabolic gene expression for 6 months. Gcn2 KO mice recapitulate this phenotype, but LP-induced effects on food intake, EE, and body weight subsequently begin to appear after 14 days on diet. We show that this delayed emergence of LP-induced metabolic effects in Gcn2 KO mice coincides with a delayed but progressive increase of hepatic Fgf21 expression and blood FGF21 concentrations over time. These data indicate that FGF21 is essential for the metabolic response to protein restriction but that GCN2 is only transiently required for LP-induced FGF21.
Collapse
|
110
|
Montagner A, Polizzi A, Fouché E, Ducheix S, Lippi Y, Lasserre F, Barquissau V, Régnier M, Lukowicz C, Benhamed F, Iroz A, Bertrand-Michel J, Al Saati T, Cano P, Mselli-Lakhal L, Mithieux G, Rajas F, Lagarrigue S, Pineau T, Loiseau N, Postic C, Langin D, Wahli W, Guillou H. Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut 2016; 65:1202-14. [PMID: 26838599 PMCID: PMC4941147 DOI: 10.1136/gutjnl-2015-310798] [Citation(s) in RCA: 543] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor expressed in tissues with high oxidative activity that plays a central role in metabolism. In this work, we investigated the effect of hepatocyte PPARα on non-alcoholic fatty liver disease (NAFLD). DESIGN We constructed a novel hepatocyte-specific PPARα knockout (Pparα(hep-/-)) mouse model. Using this novel model, we performed transcriptomic analysis following fenofibrate treatment. Next, we investigated which physiological challenges impact on PPARα. Moreover, we measured the contribution of hepatocytic PPARα activity to whole-body metabolism and fibroblast growth factor 21 production during fasting. Finally, we determined the influence of hepatocyte-specific PPARα deficiency in different models of steatosis and during ageing. RESULTS Hepatocyte PPARα deletion impaired fatty acid catabolism, resulting in hepatic lipid accumulation during fasting and in two preclinical models of steatosis. Fasting mice showed acute PPARα-dependent hepatocyte activity during early night, with correspondingly increased circulating free fatty acids, which could be further stimulated by adipocyte lipolysis. Fasting led to mild hypoglycaemia and hypothermia in Pparα(hep-/-) mice when compared with Pparα(-/-) mice implying a role of PPARα activity in non-hepatic tissues. In agreement with this observation, Pparα(-/-) mice became overweight during ageing while Pparα(hep-/-) remained lean. However, like Pparα(-/-) mice, Pparα(hep-/-) fed a standard diet developed hepatic steatosis in ageing. CONCLUSIONS Altogether, these findings underscore the potential of hepatocyte PPARα as a drug target for NAFLD.
Collapse
Affiliation(s)
| | - Arnaud Polizzi
- INRA UMR1331, ToxAlim, University of Toulouse, Toulouse, France
| | - Edwin Fouché
- INRA UMR1331, ToxAlim, University of Toulouse, Toulouse, France
| | - Simon Ducheix
- INRA UMR1331, ToxAlim, University of Toulouse, Toulouse, France
| | - Yannick Lippi
- INRA UMR1331, ToxAlim, University of Toulouse, Toulouse, France
| | | | - Valentin Barquissau
- INSERM UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Paul Sabatier University, France
| | - Marion Régnier
- INRA UMR1331, ToxAlim, University of Toulouse, Toulouse, France
| | - Céline Lukowicz
- INRA UMR1331, ToxAlim, University of Toulouse, Toulouse, France
| | - Fadila Benhamed
- INSERM U1016, Cochin Institute, Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Alison Iroz
- INSERM U1016, Cochin Institute, Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Justine Bertrand-Michel
- INSERM UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Paul Sabatier University, France
| | - Talal Al Saati
- INSERM/UPS-US006/CREFRE, Service d'Histopathologie, CHU Purpan, Toulouse, France
| | - Patricia Cano
- INRA UMR1331, ToxAlim, University of Toulouse, Toulouse, France
| | | | | | | | - Sandrine Lagarrigue
- INRA UMR1348 Pegase, Saint-Gilles, France
- Agrocampus Ouest, UMR1348 Pegase, Rennes, France
- Université Européenne de Bretagne, France
| | - Thierry Pineau
- INRA UMR1331, ToxAlim, University of Toulouse, Toulouse, France
| | - Nicolas Loiseau
- INRA UMR1331, ToxAlim, University of Toulouse, Toulouse, France
| | - Catherine Postic
- INSERM U1016, Cochin Institute, Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Dominique Langin
- INSERM UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Paul Sabatier University, France
- Laboratory of Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
| | - Walter Wahli
- INRA UMR1331, ToxAlim, University of Toulouse, Toulouse, France
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Center for Integrative Genomics, University of Lausanne, Genopode Building, Lausanne, Switzerland
| | - Hervé Guillou
- INRA UMR1331, ToxAlim, University of Toulouse, Toulouse, France
| |
Collapse
|
111
|
CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis. Sci Rep 2016; 6:27938. [PMID: 27301791 PMCID: PMC4908383 DOI: 10.1038/srep27938] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/26/2016] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue lipolysis produces glycerol and nonesterified fatty acids (NEFA) that serve as energy sources during nutrient scarcity. Adipose tissue lipolysis is tightly regulated and excessive lipolysis causes hepatic steatosis, as NEFA released from adipose tissue constitutes a major source of TG in the liver of patients with nonalcoholic fatty liver diseases. Here we show that the liver-enriched transcription factor CREBH is activated by TG accumulation and induces FGF21, which suppresses adipose tissue lipolysis, ameliorating hepatic steatosis. CREBH-deficient mice developed severe hepatic steatosis due to increased adipose tissue lipolysis, when fasted or fed a high-fat low-carbohydrate ketogenic diet. FGF21 production was impaired in CREBH-deficient mice, and adenoviral overexpression of FGF21 suppressed adipose tissue lipolysis and improved hepatic steatosis in these mice. Thus, our results uncover a negative feedback loop in which CREBH regulates NEFA flux from adipose tissue to the liver via FGF21.
Collapse
|
112
|
Myostatin signals through miR-34a to regulate Fndc5 expression and browning of white adipocytes. Int J Obes (Lond) 2016; 41:137-148. [PMID: 27297797 PMCID: PMC5220162 DOI: 10.1038/ijo.2016.110] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND/OBJECTIVES Myostatin (Mstn) has a pivotal role in glucose and lipid metabolism. Mstn deficiency leads to the increased browning of white adipose tissue (WAT), which results in the increased energy expenditure and protection against diet-induced obesity and insulin resistance. In this study, we investigated the molecular mechanism(s) through which Mstn regulates browning of white adipocytes. METHODS Quantitative molecular analyses were performed to assess Mstn regulation of miR-34a and Fndc5 expression. miR-34a was overexpressed and repressed to investigate miR-34a regulation of Fndc5. Luciferase reporter analysis verified direct binding between miR-34a and the Fndc5 3'-untranslated region (UTR). The browning phenotype of Mstn-/- adipocytes was assessed through the analysis of brown fat marker gene expression, mitochondrial function and infrared thermography. The role of miR-34a and Fndc5 in this browning phenotype was verified through antibody-mediated neutralization of FNDC5, knockdown of Fndc5 by small interfering RNA and through miR-34a gain-of-function and loss-of-function experiments. RESULTS Mstn treatment of myoblasts inhibited Fndc5 expression, whereas the loss of Mstn increased Fndc5 levels in muscles and in circulation. Mstn inhibition of Fndc5 is miR-34a dependent. Mstn treatment of C2C12 myoblasts upregulated miR-34a expression, whereas reduced miR-34a expression was noted in Mstn-/- muscle and WAT. Subsequent overexpression of miR-34a inhibited Fndc5 expression, whereas blockade of miR-34a increased Fndc5 expression in myoblasts. Reporter analysis revealed that miR-34a directly suppresses Fndc5 expression through a miR-34a-specific binding site within the Fndc5 3'UTR. Importantly, Mstn-mediated inhibition of Fndc5 was blocked upon miR-34a inhibition. Mstn-/- adipocytes showed reduced miR-34a, enhanced Fndc5 expression and increased thermogenic gene expression, which was reversed upon either neutralization of Fndc5 or Fndc5 knockdown. In agreement, Mstn-/- adipocytes have increased mitochondria, improved mitochondrial function and increased heat production. CONCLUSIONS Mstn regulates Fndc5/Irisin expression and secretion through a novel miR-34a-dependent post-transcriptional mechanism. Loss of Mstn in mice leads to the increased Fndc5/Irisin expression, which contributes to the browning of white adipocytes.
Collapse
|
113
|
Park EJ, Lim SM, Lee KC, Na DH. Exendins and exendin analogs for diabetic therapy: a patent review (2012-2015). Expert Opin Ther Pat 2016; 26:833-42. [DOI: 10.1080/13543776.2016.1192130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
114
|
Yin J, Bao L, Tian H, Wang Q, Gao X, Yao W. Genetic fusion of human FGF21 to a synthetic polypeptide improves pharmacokinetics and pharmacodynamics in a mouse model of obesity. Br J Pharmacol 2016; 173:2208-23. [PMID: 27339749 DOI: 10.1111/bph.13499] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/14/2016] [Accepted: 04/05/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Chemical conjugation of therapeutic proteins with polyethylene glycol (PEG) is an established strategy to extend their biological half-life (t1/2 ) to a clinically useful range. We developed a novel uncharged and unstructured recombinant polypeptide composed of five amino acids (P, S, T, A and G), named PsTag, as another approach to extend the t1/2 of human FGF21, with increased hydrodynamic radius. EXPERIMENTAL APPROACH Human FGF21 was fused with PsTag polymers of differing lengths (200 - 600 residues). Three fusion proteins and native FGF21 were produced in Escherichia coli. The biophysical characteristics, metabolic stability, immunogenicity and pharmacokinetics in were assessed in first. In lean and diet-induced obese (DIO) mice, effects on body weight, oral glucose tolerance tests and levels of relevant hormones and metabolites were studied. KEY RESULTS Fusion proteins were solubly expressed in E. coli and prolonged the t1/2 from 0.34h up to 12.9 h in mice. Fusion proteins were also biodegradable, thus avoiding vacuole formation, while lacking immunogenicity in mice. In DIO mice, administration of PsTag fused to FGF21 reduced body weight, blood glucose and lipids levels and reversed hepatic steatosis. CONCLUSIONS AND IMPLICATIONS The novel recombinant polypeptide, PsTag, should be useful in the development of biological drugs with properties comparable to those achievable by PEGylation, but with potentially less side effects. In mice, fusion of FGF21 to PsTag prolonged and potentiated pharmacological effects of native FGF21, and may offer greater therapeutic effects in treatment of obesity.
Collapse
Affiliation(s)
- Jun Yin
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lichen Bao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hong Tian
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qun Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiangdong Gao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenbing Yao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
115
|
Zhang J, Li Y. Therapeutic uses of FGFs. Semin Cell Dev Biol 2016; 53:144-54. [DOI: 10.1016/j.semcdb.2015.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/07/2015] [Indexed: 01/23/2023]
|
116
|
Samms RJ, Cheng CC, Kharitonenkov A, Gimeno RE, Adams AC. Overexpression of β-Klotho in Adipose Tissue Sensitizes Male Mice to Endogenous FGF21 and Provides Protection From Diet-Induced Obesity. Endocrinology 2016; 157:1467-80. [PMID: 26901091 DOI: 10.1210/en.2015-1722] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The endocrine hormone fibroblast growth factor 21 (FGF21) is induced in the adaptive response to nutrient deprivation, where it serves to regulate the integrated response to fasting via its primary receptor complex, FGF receptor 1 coupled with the cofactor β-klotho (KLB) in target tissues. Curiously, endogenous FGF21 levels are also elevated in preclinical models of obesity and in obese/diabetic individuals. In addition to higher FGF21 levels, reduced KLB expression in liver and adipose tissue has been noted in these same individuals, suggesting that obesity may represent an FGF21 resistant state. To explore the contribution of tissue-specific KLB levels to endogenous FGF21 activity, in both fasting and high-fat diet feeding conditions, we generated animals overexpressing KLB in liver (LKLBOE) or adipose (ATKLBOE). Supportive of tissue-specific partitioning of FGF21 action, after chronic high-fat feeding, ATKLBOE mice gained significantly less weight than WT. Reduced weight gain was associated with elevated caloric expenditure, accompanied by a reduced respiratory exchange ratio and lower plasma free fatty acids levels, suggestive of augmented lipid metabolism. In contrast, LKLBOE had no effect on body weight but did reduce plasma cholesterol. The metabolic response to fasting was enhanced in LKLBOE mice, evidenced by increased ketone production, whereas no changes in this were noted in ATKLBOE mice. Taken together, these data provide further support that specific effects of FGF21 are mediated via engagement of distinct target organs. Furthermore, enhancing KLB expression in adipose may sensitize to endogenous FGF21, thus representing a novel strategy to combat metabolic disease.
Collapse
Affiliation(s)
- Ricardo J Samms
- Lilly Research Laboratories (R.J.S., C.C.C., R.E.G., A.C.A.) and formerly of Lilly Research Laboratories (A.K.), Lilly Corporate Center, Indianapolis, Indiana 46285
| | - Christine C Cheng
- Lilly Research Laboratories (R.J.S., C.C.C., R.E.G., A.C.A.) and formerly of Lilly Research Laboratories (A.K.), Lilly Corporate Center, Indianapolis, Indiana 46285
| | - Alexei Kharitonenkov
- Lilly Research Laboratories (R.J.S., C.C.C., R.E.G., A.C.A.) and formerly of Lilly Research Laboratories (A.K.), Lilly Corporate Center, Indianapolis, Indiana 46285
| | - Ruth E Gimeno
- Lilly Research Laboratories (R.J.S., C.C.C., R.E.G., A.C.A.) and formerly of Lilly Research Laboratories (A.K.), Lilly Corporate Center, Indianapolis, Indiana 46285
| | - Andrew C Adams
- Lilly Research Laboratories (R.J.S., C.C.C., R.E.G., A.C.A.) and formerly of Lilly Research Laboratories (A.K.), Lilly Corporate Center, Indianapolis, Indiana 46285
| |
Collapse
|
117
|
Jager J, Wang F, Fang B, Lim HW, Peed LC, Steger DJ, Won KJ, Kharitonenkov A, Adams AC, Lazar MA. The Nuclear Receptor Rev-erbα Regulates Adipose Tissue-specific FGF21 Signaling. J Biol Chem 2016; 291:10867-75. [PMID: 27002153 DOI: 10.1074/jbc.m116.719120] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 01/14/2023] Open
Abstract
FGF21 is an atypical member of the FGF family that functions as a hormone to regulate carbohydrate and lipid metabolism. Here we demonstrate that the actions of FGF21 in mouse adipose tissue, but not in liver, are modulated by the nuclear receptor Rev-erbα, a potent transcriptional repressor. Interrogation of genes induced in the absence of Rev-erbα for Rev-erbα-binding sites identified βKlotho, an essential coreceptor for FGF21, as a direct target gene of Rev-erbα in white adipose tissue but not liver. Rev-erbα ablation led to the robust elevated expression of βKlotho. Consequently, the effects of FGF21 were markedly enhanced in the white adipose tissue of mice lacking Rev-erbα. A major Rev-erbα-controlled enhancer at the Klb locus was also bound by the adipocytic transcription factor peroxisome proliferator-activated receptor (PPAR) γ, which regulates its activity in the opposite direction. These findings establish Rev-erbα as a specific modulator of FGF21 signaling in adipose tissue.
Collapse
Affiliation(s)
- Jennifer Jager
- From the Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Genetics, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Fenfen Wang
- From the Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Genetics, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Bin Fang
- From the Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Genetics, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hee-Woong Lim
- From the Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Genetics, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Lindsey C Peed
- From the Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Genetics, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - David J Steger
- From the Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Genetics, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kyoung-Jae Won
- From the Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Genetics, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Alexei Kharitonenkov
- the Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, and
| | - Andrew C Adams
- the Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285
| | - Mitchell A Lazar
- From the Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Genetics, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,
| |
Collapse
|
118
|
Jung TW, Yoo HJ, Choi KM. Implication of hepatokines in metabolic disorders and cardiovascular diseases. BBA CLINICAL 2016; 5:108-13. [PMID: 27051596 PMCID: PMC4816030 DOI: 10.1016/j.bbacli.2016.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/22/2016] [Accepted: 03/04/2016] [Indexed: 02/07/2023]
Abstract
The liver is a central regulator of systemic energy homeostasis and has a pivotal role in glucose and lipid metabolism. Impaired gluconeogenesis and dyslipidemia are often observed in patients with nonalcoholic fatty liver disease (NAFLD). The liver is now recognized to be an endocrine organ that secretes hepatokines, which are proteins that regulate systemic metabolism and energy homeostasis. Hepatokines are known to contribute to the pathogenesis of metabolic syndrome, NAFLD, type 2 diabetes (T2DM), and cardiovascular diseases (CVDs). In this review, we focus on the roles of two major hepatokines, fetuin-A and fibroblast growth factor 21 (FGF21), as well as recently-redefined hepatokines, such as selenoprotein P, angiopoietin-like protein 4 (ANGPTL4), and leukocyte cell-derived chemotaxin 2 (LECT2). We also assess the biology and molecular mechanisms of hepatokines in the context of their potential as therapeutic targets for metabolic disorders and cardiovascular diseases. The roles of hepatokines such as fetuin-A, FGF21, selenoprotein P, ANGPTL4, and LECT2 The molecular mechanisms of hepatokines in metabolic disorders and CVD Hepatokines as therapeutic strategies for metabolic disorders and CVD
Collapse
Affiliation(s)
- Tae Woo Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
119
|
Böhm A, Weigert C, Staiger H, Häring HU. Exercise and diabetes: relevance and causes for response variability. Endocrine 2016; 51:390-401. [PMID: 26643313 PMCID: PMC4762932 DOI: 10.1007/s12020-015-0792-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/28/2015] [Indexed: 12/31/2022]
Abstract
Exercise as a key prevention strategy for diabetes and obesity is commonly accepted and recommended throughout the world. Unfortunately, not all individuals profit to the same extent, some exhibit exercise resistance. This phenomenon of non-response to exercise is found for several endpoints, including glucose tolerance and insulin sensitivity. Since these non-responders are of notable quantity, there is the need to understand the underlying mechanisms and to identify predictors of response. This displays the basis to develop personalized training intervention regimes. In this review, we summarize the current knowledge on response variability, with focus on human studies and improvement of glucose homeostasis as outcome.
Collapse
Affiliation(s)
- Anja Böhm
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Cora Weigert
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Harald Staiger
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| |
Collapse
|
120
|
Affiliation(s)
- Ranjit Unnikrishnan
- Dr. Mohan's Diabetes Specialities Centre and Madras Diabetes Research Foundation , Chennai, India
| | - Viswanathan Mohan
- Dr. Mohan's Diabetes Specialities Centre and Madras Diabetes Research Foundation , Chennai, India
| |
Collapse
|
121
|
Choi KM. The Impact of Organokines on Insulin Resistance, Inflammation, and Atherosclerosis. Endocrinol Metab (Seoul) 2016; 31:1-6. [PMID: 26996418 PMCID: PMC4803543 DOI: 10.3803/enm.2016.31.1.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 01/25/2016] [Accepted: 02/01/2016] [Indexed: 12/25/2022] Open
Abstract
Immoderate energy intake, a sedentary lifestyle, and aging have contributed to the increased prevalence of obesity, sarcopenia, metabolic syndrome, type 2 diabetes, and cardiovascular disease. There is an urgent need for the development of novel pharmacological interventions that can target excessive fat accumulation and decreased muscle mass and/or strength. Adipokines, bioactive molecules derived from adipose tissue, are involved in the regulation of appetite and satiety, inflammation, energy expenditure, insulin resistance and secretion, glucose and lipid metabolism, and atherosclerosis. Recently, there is emerging evidence that skeletal muscle and the liver also function as endocrine organs that secrete myokines and hepatokines, respectively. Novel discoveries and research into these organokines (adipokines, myokines, and hepatokines) may lead to the development of promising biomarkers and therapeutics for cardiometabolic disease. In this review, I summarize recent data on these organokines and focus on the role of adipokines, myokines, and hepatokines in the regulation of insulin resistance, inflammation, and atherosclerosis.
Collapse
Affiliation(s)
- Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
122
|
Zhao S, Mugabo Y, Ballentine G, Attane C, Iglesias J, Poursharifi P, Zhang D, Nguyen T, Erb H, Prentki R, Peyot ML, Joly E, Tobin S, Fulton S, Brown J, Madiraju S, Prentki M. α/β-Hydrolase Domain 6 Deletion Induces Adipose Browning and Prevents Obesity and Type 2 Diabetes. Cell Rep 2016; 14:2872-88. [DOI: 10.1016/j.celrep.2016.02.076] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/21/2015] [Accepted: 02/18/2016] [Indexed: 01/22/2023] Open
|
123
|
Cheng P, Zhang F, Yu L, Lin X, He L, Li X, Lu X, Yan X, Tan Y, Zhang C. Physiological and Pharmacological Roles of FGF21 in Cardiovascular Diseases. J Diabetes Res 2016; 2016:1540267. [PMID: 27247947 PMCID: PMC4876232 DOI: 10.1155/2016/1540267] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/26/2016] [Accepted: 04/18/2016] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the most severe diseases in clinics. Fibroblast growth factor 21 (FGF21) is regarded as an important metabolic regulator playing a therapeutic role in diabetes and its complications. The heart is a key target as well as a source of FGF21 which is involved in heart development and also induces beneficial effects in CVDs. Our review is to clarify the roles of FGF21 in CVDs. Strong evidence showed that the development of CVDs including atherosclerosis, coronary heart disease, myocardial ischemia, cardiac hypertrophy, and diabetic cardiomyopathy is associated with serum FGF21 levels increase which was regarded as a compensatory response to induced cardiac protection. Furthermore, administration of FGF21 suppressed the above CVDs. Mechanistic studies revealed that FGF21 induced cardiac protection likely by preventing cardiac lipotoxicity and the associated oxidative stress, inflammation, and apoptosis. Normally, FGF21 induced therapeutic effects against CVDs via activation of the above kinases-mediated pathways by directly binding to the FGF receptors of the heart in the presence of β-klotho. However, recently, growing evidence showed that FGF21 induced beneficial effects on peripheral organs through an indirect way mediated by adiponectin. Therefore whether adiponectin is also involved in FGF21-induced cardiac protection still needs further investigation.
Collapse
Affiliation(s)
- Peng Cheng
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Fangfang Zhang
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Lechu Yu
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiufei Lin
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Luqing He
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaokun Li
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuemian Lu
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yi Tan
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- Kosair Children Hospital Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- *Yi Tan: and
| | - Chi Zhang
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- *Chi Zhang:
| |
Collapse
|
124
|
Xia M, Erickson A, Yi X, Moreau R. Mapping the response of human fibroblast growth factor 21 (FGF21) promoter to serum availability and lipoic acid in HepG2 hepatoma cells. Biochim Biophys Acta Gen Subj 2015; 1860:498-507. [PMID: 26691139 DOI: 10.1016/j.bbagen.2015.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/23/2015] [Accepted: 12/11/2015] [Indexed: 12/15/2022]
Abstract
The hormone-like polypeptide, fibroblast growth factor 21 (FGF21), is a major modulator of lipid and glucose metabolism and an exploratory treatment strategy for obesity related metabolic disorders. The costs of recombinant FGF21 and mode of delivery by injection are important constraints to its wide therapeutic use. The stimulation of endogenous FGF21 production through diet is being explored as an alternative approach. To that end, we examined the mechanism(s) by which serum manipulation and lipoic acid (a dietary activator of FGF21) induce FGF21 in human hepatocellular carcinoma HepG2 cells. Serum withdrawal markedly induced FGF21 mRNA levels (88 fold) and FGF21 secreted in the media (19 fold). Lipoic acid induced FGF21 mRNA 7 fold above DMSO-treated control cells and FGF21 secretion 3 fold. These effects were several-fold greater than those of PPARα agonist, Wy14643, which failed to induce FGF21 above and beyond the induction seen with serum withdrawal. The use of transcription inhibitor, actinomycin D, revealed that de novo mRNA synthesis drives FGF21 secretion in response to serum starvation. Four previously unrecognized loci in FGF21 promoter were nucleosome depleted and enriched in acetylated histone H3 revealing their role as transcriptional enhancers and putative transcription factor binding sites. FGF21 did not accumulate to a significant degree in induced HepG2 cells, which secreted FGF21 time dependently in media. We conclude that lipoic acid cell signaling connects with the transcriptional upregulation of FGF21 and it may prove to be a safe and affordable means to stimulate FGF21 production.
Collapse
Affiliation(s)
- Mengna Xia
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Anjeza Erickson
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Xiaohua Yi
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
125
|
Xiao J, Bei Y, Liu J, Dimitrova-Shumkovska J, Kuang D, Zhou Q, Li J, Yang Y, Xiang Y, Wang F, Yang C, Yang W. miR-212 downregulation contributes to the protective effect of exercise against non-alcoholic fatty liver via targeting FGF-21. J Cell Mol Med 2015; 20:204-16. [PMID: 26648452 PMCID: PMC4727558 DOI: 10.1111/jcmm.12733] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/03/2015] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with obesity and lifestyle, while exercise is beneficial for NAFLD. Dysregulated microRNAs (miRs) control the pathogenesis of NAFLD. However, whether exercise could prevent NAFLD via targeting microRNA is unknown. In this study, normal or high-fat diet (HF) mice were either subjected to a 16-week running program or kept sedentary. Exercise attenuated liver steatosis in HF mice. MicroRNA array and qRT-PCR demonstrated that miR-212 was overexpressed in HF liver, while reduced by exercise. Next, we investigated the role of miR-212 in lipogenesis using HepG2 cells with/without long-chain fatty acid treatment (± FFA). FFA increased miR-212 in HepG2 cells. Moreover, miR-212 promoted lipogenesis in HepG2 cells (± FFA). Fibroblast growth factor (FGF)-21, a key regulator for lipid metabolism, was negatively regulated by miR-212 at protein level in HepG2 cells. Meanwhile, FFA downregulated FGF-21 both at mRNA and protein levels in HepG2 cells. Also, FGF-21 protein level was reduced in HF liver, while reversed by exercise in vivo. Furthermore, siRNA-FGF-21 abolished the lipogenesis-reducing effect of miR-212 inhibitor in HepG2 cells (± FFA), validating FGF-21 as a target gene of miR-212. These data link the benefit of exercise and miR-212 downregulation in preventing NAFLD via targeting FGF-21.
Collapse
Affiliation(s)
- Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingqi Liu
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jasmina Dimitrova-Shumkovska
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China.,Department of Experimental Biochemistry and Physiology, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius, Skopje, Republic of Macedonia
| | - Dapeng Kuang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiulian Zhou
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jin Li
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yanning Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biochemistry, Nanjing University, Nanjing, China
| | - Fei Wang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changqing Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenzhuo Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
126
|
Ost M, Coleman V, Voigt A, van Schothorst EM, Keipert S, van der Stelt I, Ringel S, Graja A, Ambrosi T, Kipp AP, Jastroch M, Schulz TJ, Keijer J, Klaus S. Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action. Mol Metab 2015; 5:79-90. [PMID: 26909316 PMCID: PMC4735627 DOI: 10.1016/j.molmet.2015.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/02/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022] Open
Abstract
Objective Fibroblast growth factor 21 (FGF21) was recently discovered as stress-induced myokine during mitochondrial disease and proposed as key metabolic mediator of the integrated stress response (ISR) presumably causing systemic metabolic improvements. Curiously, the precise cell-non-autonomous and cell-autonomous relevance of endogenous FGF21 action remained poorly understood. Methods We made use of the established UCP1 transgenic (TG) mouse, a model of metabolic perturbations made by a specific decrease in muscle mitochondrial efficiency through increased respiratory uncoupling and robust metabolic adaptation and muscle ISR-driven FGF21 induction. In a cross of TG with Fgf21-knockout (FGF21−/−) mice, we determined the functional role of FGF21 as a muscle stress-induced myokine under low and high fat feeding conditions. Results Here we uncovered that FGF21 signaling is dispensable for metabolic improvements evoked by compromised mitochondrial function in skeletal muscle. Strikingly, genetic ablation of FGF21 fully counteracted the cell-non-autonomous metabolic remodeling and browning of subcutaneous white adipose tissue (WAT), together with the reduction of circulating triglycerides and cholesterol. Brown adipose tissue activity was similar in all groups. Remarkably, we found that FGF21 played a negligible role in muscle mitochondrial stress-related improved obesity resistance, glycemic control and hepatic lipid homeostasis. Furthermore, the protective cell-autonomous muscle mitohormesis and metabolic stress adaptation, including an increased muscle proteostasis via mitochondrial unfolded protein response (UPRmt) and amino acid biosynthetic pathways did not require the presence of FGF21. Conclusions Here we demonstrate that although FGF21 drives WAT remodeling, the adaptive pseudo-starvation response under elevated muscle mitochondrial stress conditions operates independently of both WAT browning and FGF21 action. Thus, our findings challenge FGF21 as key metabolic mediator of the mitochondrial stress adaptation and powerful therapeutic target during muscle mitochondrial disease. Muscle mitochondrial stress-induced browning of white adipose tissue fully requires FGF21. Negligible role of myokine FGF21 on whole body metabolic adaptations. Muscle mitohormesis and starvation-like response operates independently of FGF21 action.
Collapse
Affiliation(s)
- Mario Ost
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition, Nuthetal, 14558, Germany.
| | - Verena Coleman
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition, Nuthetal, 14558, Germany
| | - Anja Voigt
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition, Nuthetal, 14558, Germany
| | | | - Susanne Keipert
- Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Inge van der Stelt
- Human and Animal Physiology, Wageningen University, Wageningen, 6708, Netherlands
| | - Sebastian Ringel
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition, Nuthetal, 14558, Germany
| | - Antonia Graja
- Research Group Adipocyte Development, German Institute of Human Nutrition, Nuthetal, 14558, Germany
| | - Thomas Ambrosi
- Research Group Adipocyte Development, German Institute of Human Nutrition, Nuthetal, 14558, Germany
| | - Anna P Kipp
- Department of Molecular Toxicology, German Institute of Human Nutrition, Nuthetal, 14558, Germany
| | - Martin Jastroch
- Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Tim J Schulz
- Research Group Adipocyte Development, German Institute of Human Nutrition, Nuthetal, 14558, Germany
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, 6708, Netherlands
| | - Susanne Klaus
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition, Nuthetal, 14558, Germany
| |
Collapse
|
127
|
Abstract
Fibroblast growth factor 21 (FGF21) is a peptide hormone that is synthesized by several organs and regulates energy homeostasis. Excitement surrounding this relatively recently identified hormone is based on the documented metabolic beneficial effects of FGF21, which include weight loss and improved glycemia. The biology of FGF21 is intrinsically complicated owing to its diverse metabolic functions in multiple target organs and its ability to act as an autocrine, paracrine, and endocrine factor. In the liver, FGF21 plays an important role in the regulation of fatty acid oxidation both in the fasted state and in mice consuming a high-fat, low-carbohydrate ketogenic diet. FGF21 also regulates fatty acid metabolism in mice consuming a diet that promotes hepatic lipotoxicity. In white adipose tissue (WAT), FGF21 regulates aspects of glucose metabolism, and in susceptible WAT depots, it can cause browning. This peptide is highly expressed in the pancreas, where it appears to play an anti-inflammatory role in experimental pancreatitis. It also has an anti-inflammatory role in cardiac muscle. Although typically not expressed in skeletal muscle, FGF21 is induced in situations of muscle stress, particularly mitochondrial myopathies. FGF21 has been proposed as a novel therapeutic for metabolic complications such as diabetes and fatty liver disease. This review aims to interpret and delineate the ever-expanding complexity of FGF21 physiology.
Collapse
Affiliation(s)
- Ffolliott Martin Fisher
- Department of Medicine, Harvard Medical School, and Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215;
| | - Eleftheria Maratos-Flier
- Department of Medicine, Harvard Medical School, and Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215;
| |
Collapse
|
128
|
Skeletal muscle mitochondrial uncoupling prevents diabetes but not obesity in NZO mice, a model for polygenic diabesity. GENES AND NUTRITION 2015; 10:57. [PMID: 26584809 DOI: 10.1007/s12263-015-0507-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/04/2015] [Indexed: 01/04/2023]
Abstract
Induction of skeletal muscle (SM) mitochondrial stress by expression of uncoupling protein 1 (UCP1) in mice results in a healthy metabolic phenotype associated with increased secretion of FGF21 from SM. Here, we investigated whether SM mitochondrial uncoupling can compensate obesity and insulin resistance in the NZO mouse, a polygenic diabesity model. Male NZO mice were crossed with heterozygous UCP1 transgenic (tg) mice (mixed C57BL/6/CBA background) and further backcrossed to obtain F1 and N2 offspring with 50 and 75 % NZO background, respectively. Male F1 and N2 progeny were fed a high-fat diet ad libitum for 20 weeks from weaning. Blood glucose was reduced, and diabetes (severe hyperglycemia >300 mg/dl) was fully prevented in both F1- and N2-tg progeny compared to a diabetes prevalence of 15 % in F1 and 42 % in N2 wild type. In contrast, relative body fat content and plasma insulin were decreased, and glucose tolerance was improved, in F1-tg only. Both F1 and N2-tg showed decreased lean body mass. Accordingly, induction of SM stress response including FGF21 expression and secretion was similar in both F1 and N2-tg mice. In white adipose tissue, expression of FGF21 target genes was enhanced in F1 and N2-tg mice, whereas lipid metabolism genes were induced in F1-tg only. There was no evidence for induction of browning in either UCP1 backcross. We conclude that SM mitochondrial uncoupling induces FGF21 expression and prevents diabetes in mice with a 50-75 % NZO background independent of its effects on adipose tissue.
Collapse
|
129
|
Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov 2015; 15:51-69. [PMID: 26567701 DOI: 10.1038/nrd.2015.9] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocrine fibroblast growth factors (FGFs), FGF19, FGF21 and FGF23, are critical for maintaining whole-body homeostasis, with roles in bile acid, glucose and lipid metabolism, modulation of vitamin D and phosphate homeostasis and metabolic adaptation during fasting. Given these functions, the endocrine FGFs have therapeutic potential in a wide array of chronic human diseases, including obesity, type 2 diabetes, cancer, and kidney and cardiovascular disease. However, the safety and feasibility of chronic endocrine FGF administration has been challenged, and FGF analogues and mimetics are now being investigated. Here, we discuss current knowledge of the complex biology of the endocrine FGFs and assess how this may be harnessed therapeutically.
Collapse
|
130
|
Kharitonenkov A, DiMarchi R. FGF21 Revolutions: Recent Advances Illuminating FGF21 Biology and Medicinal Properties. Trends Endocrinol Metab 2015; 26:608-617. [PMID: 26490383 DOI: 10.1016/j.tem.2015.09.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/18/2015] [Accepted: 09/19/2015] [Indexed: 12/11/2022]
Abstract
The biology of fibroblast growth factor 21 (FGF21) has evolved through its first decade at a revolutionary pace with dramatic refinements in this relatively short span of time. This field is poised now with a deeper understanding of its specific physiological role, pathological ramifications for its inappropriate function, and a much-enriched context of the complex hormonal network in which it serves to regulate metabolism. As a derivative of these discoveries, the application of FGF21 as a medicinal agent has emerged with structurally optimized protein-based analogs being preclinically explored in multiple species, and, more recently, through clinical studies. These novel findings set a foundation for ongoing inquiries that structure future research into this intriguing protein.
Collapse
|
131
|
El Agha E, Kosanovic D, Schermuly RT, Bellusci S. Role of fibroblast growth factors in organ regeneration and repair. Semin Cell Dev Biol 2015; 53:76-84. [PMID: 26459973 DOI: 10.1016/j.semcdb.2015.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/08/2015] [Indexed: 02/04/2023]
Abstract
In its broad sense, regeneration refers to the renewal of lost cells, tissues or organs as part of the normal life cycle (skin, hair, endometrium etc.) or as part of an adaptive mechanism that organisms have developed throughout evolution. For example, worms, starfish and amphibians have developed remarkable regenerative capabilities allowing them to voluntarily shed body parts, in a process called autotomy, only to replace the lost parts afterwards. The bizarre myth of the fireproof homicidal salamander that can survive fire and poison apple trees has persisted until the 20th century. Salamanders possess one of the most robust regenerative machineries in vertebrates and attempting to draw lessons from limb regeneration in these animals and extrapolate the knowledge to mammals is a never-ending endeavor. Fibroblast growth factors are potent morphogens and mitogens that are highly conserved among the animal kingdom. These growth factors play key roles in organogenesis during embryonic development as well as homeostatic balance during postnatal life. In this review, we provide a summary about the current knowledge regarding the involvement of fibroblast growth factor signaling in organ regeneration and repair. We also shed light on the use of these growth factors in previous and current clinical trials in a wide array of human diseases.
Collapse
Affiliation(s)
- Elie El Agha
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Djuro Kosanovic
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Ralph T Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Saverio Bellusci
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
132
|
Samms RJ, Murphy M, Fowler MJ, Cooper S, Emmerson P, Coskun T, Adams AC, Kharitonenkov A, Ebling FJP, Tsintzas K. Dual effects of fibroblast growth factor 21 on hepatic energy metabolism. J Endocrinol 2015; 227:37-47. [PMID: 26294388 DOI: 10.1530/joe-15-0334] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2015] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate the mechanisms by which fibroblast growth factor 21 (FGF21) affects hepatic integration of carbohydrate and fat metabolism in Siberian hamsters, a natural model of adiposity. Twelve aged matched adult male Siberian hamsters maintained in their long-day fat state since birth were randomly assigned to one of two treatment groups and were continuously infused with either vehicle (saline; n=6) or recombinant human FGF21 protein (1 mg/kg per day; n=6) for 14 days. FGF21 administration caused a 40% suppression (P<0.05) of hepatic pyruvate dehydrogenase complex (PDC), the rate-limiting step in glucose oxidation, a 34% decrease (P<0.05) in hepatic acetylcarnitine accumulation, an index of reduced PDC flux, a 35% increase (P<0.05) in long-chain acylcarnitine content (an index of flux through β-oxidation) and a 47% reduction (P<0.05) in hepatic lipid content. These effects were underpinned by increased protein abundance of PD kinase-4 (PDK4, a negative regulator of PDC), the phosphorylated (inhibited) form of acetyl-CoA carboxylase (ACC, a negative regulator of delivery of fatty acids into the mitochondria) and the transcriptional co-regulators of energy metabolism peroxisome proliferator activated receptor gamma co-activator alpha (PGC1α) and sirtuin-1. These findings provide novel mechanistic basis to support the notion that FGF21 exerts profound metabolic benefits in the liver by modulating nutrient flux through both carbohydrate (mediated by a PDK4-mediated suppression of PDC activity) and fat (mediated by deactivation of ACC) metabolism, and therefore may be an attractive target for protection from increased hepatic lipid content and insulin resistance that frequently accompany obesity and diabetes.
Collapse
Affiliation(s)
- Ricardo J Samms
- School of Life SciencesQueen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UKLilly Research LaboratoriesIndianapolis, IN, USAChemistry DepartmentCollege of Arts and Sciences, Indiana University Bloomington, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Michelle Murphy
- School of Life SciencesQueen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UKLilly Research LaboratoriesIndianapolis, IN, USAChemistry DepartmentCollege of Arts and Sciences, Indiana University Bloomington, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Maxine J Fowler
- School of Life SciencesQueen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UKLilly Research LaboratoriesIndianapolis, IN, USAChemistry DepartmentCollege of Arts and Sciences, Indiana University Bloomington, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Scott Cooper
- School of Life SciencesQueen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UKLilly Research LaboratoriesIndianapolis, IN, USAChemistry DepartmentCollege of Arts and Sciences, Indiana University Bloomington, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Paul Emmerson
- School of Life SciencesQueen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UKLilly Research LaboratoriesIndianapolis, IN, USAChemistry DepartmentCollege of Arts and Sciences, Indiana University Bloomington, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Tamer Coskun
- School of Life SciencesQueen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UKLilly Research LaboratoriesIndianapolis, IN, USAChemistry DepartmentCollege of Arts and Sciences, Indiana University Bloomington, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Andrew C Adams
- School of Life SciencesQueen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UKLilly Research LaboratoriesIndianapolis, IN, USAChemistry DepartmentCollege of Arts and Sciences, Indiana University Bloomington, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Alexei Kharitonenkov
- School of Life SciencesQueen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UKLilly Research LaboratoriesIndianapolis, IN, USAChemistry DepartmentCollege of Arts and Sciences, Indiana University Bloomington, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Francis J P Ebling
- School of Life SciencesQueen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UKLilly Research LaboratoriesIndianapolis, IN, USAChemistry DepartmentCollege of Arts and Sciences, Indiana University Bloomington, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Kostas Tsintzas
- School of Life SciencesQueen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UKLilly Research LaboratoriesIndianapolis, IN, USAChemistry DepartmentCollege of Arts and Sciences, Indiana University Bloomington, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| |
Collapse
|
133
|
Stemmer K, Zani F, Habegger KM, Neff C, Kotzbeck P, Bauer M, Yalamanchilli S, Azad A, Lehti M, Martins PJF, Müller TD, Pfluger PT, Seeley RJ. FGF21 is not required for glucose homeostasis, ketosis or tumour suppression associated with ketogenic diets in mice. Diabetologia 2015; 58:2414-23. [PMID: 26099854 PMCID: PMC5144740 DOI: 10.1007/s00125-015-3668-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/26/2015] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Ketogenic diets (KDs) have increasingly gained attention as effective means for weight loss and potential adjunctive treatment of cancer. The metabolic benefits of KDs are regularly ascribed to enhanced hepatic secretion of fibroblast growth factor 21 (FGF21) and its systemic effects on fatty-acid oxidation, energy expenditure (EE) and body weight. Ambiguous data from Fgf21-knockout animal strains and low FGF21 concentrations reported in humans with ketosis have nevertheless cast doubt regarding the endogenous function of FGF21. We here aimed to elucidate the causal role of FGF21 in mediating the therapeutic benefits of KDs on metabolism and cancer. METHODS We established a dietary model of increased vs decreased FGF21 by feeding C57BL/6J mice with KDs, either depleted of protein or enriched with protein. We furthermore used wild-type and Fgf21-knockout mice that were subjected to the respective diets, and monitored energy and glucose homeostasis as well as tumour growth after transplantation of Lewis lung carcinoma cells. RESULTS Hepatic and circulating, but not adipose tissue, FGF21 levels were profoundly increased by protein starvation, independent of the state of ketosis. We demonstrate that endogenous FGF21 is not essential for the maintenance of normoglycaemia upon protein and carbohydrate starvation and is therefore not needed for the effects of KDs on EE. Furthermore, the tumour-suppressing effects of KDs were independent of FGF21 and, rather, driven by concomitant protein and carbohydrate starvation. CONCLUSIONS/INTERPRETATION Our data indicate that the multiple systemic effects of KD exposure in mice, previously ascribed to increased FGF21 secretion, are rather a consequence of protein malnutrition.
Collapse
Affiliation(s)
- Kerstin Stemmer
- Division of Metabolism and Cancer, Institute for Diabetes and Obesity, Helmholtz Centre Munich, Neuherberg, Germany
| | - Fabio Zani
- Division of Metabolism and Cancer, Institute for Diabetes and Obesity, Helmholtz Centre Munich, Neuherberg, Germany
| | - Kirk M Habegger
- Comprehensive Diabetes Center and Department of Medicine-Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christina Neff
- Division of Metabolism and Cancer, Institute for Diabetes and Obesity, Helmholtz Centre Munich, Neuherberg, Germany
| | - Petra Kotzbeck
- Division of Metabolism and Cancer, Institute for Diabetes and Obesity, Helmholtz Centre Munich, Neuherberg, Germany
| | - Michaela Bauer
- Division of Metabolism and Cancer, Institute for Diabetes and Obesity, Helmholtz Centre Munich, Neuherberg, Germany
| | - Suma Yalamanchilli
- Division of Metabolism and Cancer, Institute for Diabetes and Obesity, Helmholtz Centre Munich, Neuherberg, Germany
| | - Ali Azad
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - Maarit Lehti
- LIKES Research Center for Sport and Health Sciences, Jyväskylä, Finland
| | - Paulo J F Martins
- Division of Hematology-Oncology, Department of Internal Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Timo D Müller
- Division of Molecular Pharmacology, Institute for Diabetes and Obesity, Helmholtz Centre Munich, Neuherberg, Germany
| | - Paul T Pfluger
- Research Unit NeuroBiology of Diabetes, Helmholtz Centre Munich, Neuherberg, Germany
| | - Randy J Seeley
- Department of Surgery, University of Michigan, North Campus Research Center, 2800 Plymouth Road, Ann Arbor, MI, 48109-2800, USA.
| |
Collapse
|
134
|
Markan KR, Potthoff MJ. Metabolic fibroblast growth factors (FGFs): Mediators of energy homeostasis. Semin Cell Dev Biol 2015; 53:85-93. [PMID: 26428296 DOI: 10.1016/j.semcdb.2015.09.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/25/2015] [Indexed: 01/07/2023]
Abstract
The metabolic fibroblast growth factors (FGFs), FGF1, FGF15/19, and FGF21 differ from classic FGFs in that they modulate energy homeostasis in response to fluctuating nutrient availability. These unique mediators of metabolism regulate a number of physiological processes which contribute to their potent pharmacological properties. Administration of pharmacological doses of these FGFs causes weight loss, increases energy expenditure, and improves carbohydrate and lipid metabolism in obese animal models. However, many questions remain regarding the precise molecular and physiological mechanisms governing the effects of individual metabolic FGFs. Here we review the metabolic actions of FGF1, FGF15/19, and FGF21 while providing insights into their pharmacological effects by examining known biological functions.
Collapse
Affiliation(s)
- Kathleen R Markan
- Department of Pharmacology and University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Pharmacology and University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
135
|
Iroz A, Couty JP, Postic C. Hepatokines: unlocking the multi-organ network in metabolic diseases. Diabetologia 2015; 58:1699-703. [PMID: 26032022 DOI: 10.1007/s00125-015-3634-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/27/2015] [Indexed: 01/16/2023]
Abstract
In the face of urbanisation, surplus energy intake, sedentary habits and obesity, type 2 diabetes has developed into a major health concern worldwide. Commonly overlooked in contemporary obesity research, the liver is emerging as a central regulator of whole body energy homeostasis. Liver-derived proteins known as hepatokines are now considered attractive targets for the development of novel type 2 diabetes treatments. This commentary presents examples of three leading hepatokines: fetuin-A, the first to be described and correlated with increased inflammation and insulin resistance; angiopoietin-like protein (ANGPTL)8/betatrophin, initially proposed for its action on beta cell proliferation, although this effect has recently been brought into question; and fibroblast growth factor 21 (FGF21), an insulin-sensitising hormone that is an appealing drug target because of its beneficial metabolic actions. Novel discoveries in hepatokine research may lead to promising biomarkers and treatments for metabolic disorders and type 2 diabetes. This is one of a series of commentaries under the banner '50 years forward', giving personal opinions on future perspectives in diabetes, to celebrate the 50th anniversary of Diabetologia (1965-2015).
Collapse
Affiliation(s)
- Alison Iroz
- Inserm U1016 Institut Cochin, 24 rue du Faubourg Saint Jacques, 75014, Paris, France
| | | | | |
Collapse
|
136
|
Shao M, Yu L, Zhang F, Lu X, Li X, Cheng P, Lin X, He L, Jin S, Tan Y, Yang H, Zhang C, Cai L. Additive protection by LDR and FGF21 treatment against diabetic nephropathy in type 2 diabetes model. Am J Physiol Endocrinol Metab 2015; 309:E45-E54. [PMID: 25968574 PMCID: PMC4490332 DOI: 10.1152/ajpendo.00026.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/05/2015] [Indexed: 12/20/2022]
Abstract
The onset of diabetic nephropathy (DN) is associated with both systemic and renal changes. Fibroblast growth factor (FGF)-21 prevents diabetic complications mainly by improving systemic metabolism. In addition, low-dose radiation (LDR) protects mice from DN directly by preventing renal oxidative stress and inflammation. In the present study, we tried to define whether the combination of FGF21 and LDR could further prevent DN by blocking its systemic and renal pathogeneses. To this end, type 2 diabetes was induced by feeding a high-fat diet for 12 wk followed by a single dose injection of streptozotocin. Diabetic mice were exposed to 50 mGy LDR every other day for 4 wk with and without 1.5 mg/kg FGF21 daily for 8 wk. The changes in systemic parameters, including blood glucose levels, lipid profiles, and insulin resistance, as well as renal pathology, were examined. Diabetic mice exhibited renal dysfunction and pathological abnormalities, all of which were prevented significantly by LDR and/or FGF21; the best effects were observed in the group that received the combination treatment. Our studies revealed that the additive renal protection conferred by the combined treatment against diabetes-induced renal fibrosis, inflammation, and oxidative damage was associated with the systemic improvement of hyperglycemia, hyperlipidemia, and insulin resistance. These results suggest that the combination treatment with LDR and FGF21 prevented DN more efficiently than did either treatment alone. The mechanism behind these protective effects could be attributed to the suppression of both systemic and renal pathways.
Collapse
Affiliation(s)
- Minglong Shao
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Lechu Yu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Fangfang Zhang
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Xuemian Lu
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Peng Cheng
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Xiufei Lin
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Luqing He
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Shunzi Jin
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health of Jilin University, Changchun, China; and
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, Kentucky
| | - Hong Yang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Chi Zhang
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China;
| | - Lu Cai
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
137
|
Tanaka N, Takahashi S, Zhang Y, Krausz KW, Smith PB, Patterson AD, Gonzalez FJ. Role of fibroblast growth factor 21 in the early stage of NASH induced by methionine- and choline-deficient diet. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1852:1242-1252. [PMID: 25736301 PMCID: PMC4433820 DOI: 10.1016/j.bbadis.2015.02.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 02/06/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a modulator of energy homeostasis and is increased in human nonalcoholic liver disease (NAFLD) and after feeding of methionine- and choline-deficient diet (MCD), a conventional inducer of murine nonalcoholic steatohepatitis (NASH). However, the significance of FGF21 induction in the occurrence of MCD-induced NASH remains undetermined. C57BL/6J Fgf21-null and wild-type mice were treated with MCD for 1 week. Hepatic Fgf21 mRNA was increased early after commencing MCD treatment independent of peroxisome proliferator-activated receptor (PPAR) α and farnesoid X receptor. While no significant differences in white adipose lipolysis were seen in both genotypes, hepatic triglyceride (TG) contents were increased in Fgf21-null mice, likely due to the up-regulation of genes encoding CD36 and phosphatidic acid phosphatase 2a/2c, involved in fatty acid (FA) uptake and diacylglycerol synthesis, respectively, and suppression of increased mRNAs encoding carnitine palmitoyl-CoA transferase 1α, PPARγ coactivator 1α, and adipose TG lipase, which are associated with lipid clearance in the liver. The MCD-treated Fgf21-null mice showed increased hepatic endoplasmic reticulum (ER) stress. Exposure of primary hepatocytes to palmitic acid elevated the mRNA levels encoding DNA damage-inducible transcript 3, an indicator of ER stress, and FGF21 in a PPARα-independent manner, suggesting that lipid-induced ER stress can enhance hepatic FGF21 expression. Collectively, FGF21 is elevated in the early stage of MCD-induced NASH likely to minimize hepatic lipid accumulation and ensuing ER stress. These results provide a possible mechanism on how FGF21 is increased in NAFLD/NASH.
Collapse
Affiliation(s)
- Naoki Tanaka
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States; Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yuan Zhang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Philip B Smith
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, United States
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, United States
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
138
|
High-fat diet and FGF21 cooperatively promote aerobic thermogenesis in mtDNA mutator mice. Proc Natl Acad Sci U S A 2015; 112:8714-9. [PMID: 26124126 DOI: 10.1073/pnas.1509930112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria are highly adaptable organelles that can facilitate communication between tissues to meet the energetic demands of the organism. However, the mechanisms by which mitochondria can nonautonomously relay stress signals remain poorly understood. Here we report that mitochondrial mutations in the young, preprogeroid polymerase gamma mutator (POLG) mouse produce a metabolic state of starvation. As a result, these mice exhibit signs of metabolic imbalance including thermogenic defects in brown adipose tissue (BAT). An unexpected benefit of this adaptive response is the complete resistance to diet-induced obesity when POLG mice are placed on a high-fat diet (HFD). Paradoxically, HFD further increases oxygen consumption in part by inducing thermogenesis and mitochondrial biogenesis in BAT along with enhanced expression of fibroblast growth factor 21 (FGF21). Collectively, these findings identify a mechanistic link between FGF21, a long-known marker of mitochondrial disease, and systemic metabolic adaptation in response to mitochondrial stress.
Collapse
|
139
|
Park SE, Park CY, Sweeney G. Biomarkers of insulin sensitivity and insulin resistance: Past, present and future. Crit Rev Clin Lab Sci 2015; 52:180-90. [PMID: 26042993 DOI: 10.3109/10408363.2015.1023429] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Insulin resistance in insulin target tissues including liver, skeletal muscle and adipose tissue is an early step in the progression towards type 2 diabetes. Accurate diagnostic parameters reflective of insulin resistance are essential. Longstanding tests for fasting blood glucose and HbA1c are useful and although the hyperinsulinemic euglycemic clamp remains a "gold standard" for accurately determining insulin resistance, it cannot be implemented on a routine basis. The study of adipokines, and more recently myokines and hepatokines, as potential biomarkers for insulin sensitivity is now an attractive and relatively straightforward approach. This review discusses potential biomarkers including adiponectin, RBP4, chemerin, A-FABP, FGF21, fetuin-A, myostatin, IL-6, and irisin, all of which may play significant roles in determining insulin sensitivity. We also review potential future directions of new biological markers for measuring insulin resistance, including metabolomics and gut microbiome. Collectively, these approaches will provide clinicians with the tools for more accurate, and perhaps personalized, diagnosis of insulin resistance.
Collapse
Affiliation(s)
- Se Eun Park
- a Division of Endocrinology and Metabolism, Department of Internal Medicine , Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine , Seoul , South Korea and
| | | | | |
Collapse
|
140
|
Assini JM, Mulvihill EE, Burke AC, Sutherland BG, Telford DE, Chhoker SS, Sawyez CG, Drangova M, Adams AC, Kharitonenkov A, Pin CL, Huff MW. Naringenin prevents obesity, hepatic steatosis, and glucose intolerance in male mice independent of fibroblast growth factor 21. Endocrinology 2015; 156:2087-102. [PMID: 25774553 DOI: 10.1210/en.2014-2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The molecular mechanisms and metabolic pathways whereby the citrus flavonoid, naringenin, reduces dyslipidemia and improves glucose tolerance were investigated in C57BL6/J wild-type mice and fibroblast growth factor 21 (FGF21) null (Fgf21(-/-)) mice. FGF21 regulates energy homeostasis and the metabolic adaptation to fasting. One avenue of this regulation is through induction of peroxisome proliferator-activated receptor-γ coactivator-1α (Pgc1a), a regulator of hepatic fatty acid oxidation and ketogenesis. Because naringenin is a potent activator of hepatic FA oxidation, we hypothesized that induction of FGF21 might be an integral part of naringenin's mechanism of action. Furthermore, we predicted that FGF21 deficiency would potentiate high-fat diet (HFD)-induced metabolic dysregulation and compromise metabolic protection by naringenin. The absence of FGF21 exacerbated the response to a HFD. Interestingly, naringenin supplementation to the HFD robustly prevented obesity in both genotypes. Gene expression analysis suggested that naringenin was not primarily targeting fatty acid metabolism in white adipose tissue. Naringenin corrected hepatic triglyceride concentrations and normalized hepatic expression of Pgc1a, Cpt1a, and Srebf1c in both wild-type and Fgf21(-/-) mice. HFD-fed Fgf21(-/-) mice displayed greater muscle triglyceride deposition, hyperinsulinemia, and impaired glucose tolerance as compared with wild-type mice, confirming the role of FGF21 in insulin sensitivity; however, naringenin supplementation improved these metabolic parameters in both genotypes. We conclude that FGF21 deficiency exacerbates HFD-induced obesity, hepatic steatosis, and insulin resistance. Furthermore, FGF21 is not required for naringenin to protect mice from HFD-induced metabolic dysregulation. Collectively these studies support the concept that naringenin has potent lipid-lowering effects and may act as an insulin sensitizer in vivo.
Collapse
Affiliation(s)
- Julia M Assini
- Department of Vascular Biology (J.M.A., E.E.M., A.C.B., B.G.S., D.E.T., S.S.C., C.G.S., M.W.H.) and Imaging Research Laboratories (M.D.), Robarts Research Institute, London, Ontario, Canada N6A 5B7; Children's Health Research Institute and Departments of Paediatrics, Physiology and Pharmacology, and Oncology (C.L.P.); Departments of Biochemistry (J.M.A., E.E.M., A.C.B., S.S.C., M.W.H.), Medical Biophysics (M.D.) and Medicine (D.E.T., C.G.S., M.W.H.), The University of Western Ontario, London, Ontario, Canada N6A 5B7; and Lilly Research Laboratories (A.C.A., A.K.), Division of Eli Lilly and Company, Indianapolis, Indiana 46285
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Fasshauer M, Blüher M. Adipokines in health and disease. Trends Pharmacol Sci 2015; 36:461-70. [PMID: 26022934 DOI: 10.1016/j.tips.2015.04.014] [Citation(s) in RCA: 737] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 12/22/2022]
Abstract
Obesity increases the risk for metabolic, cardiovascular, chronic inflammatory, and several malignant diseases and, therefore, may contribute to shortened lifespan. Adipokines are peptides that signal the functional status of adipose tissue to targets in the brain, liver, pancreas, immune system, vasculature, muscle, and other tissues. Secretion of adipokines, including leptin, adiponectin, fibroblast growth factor 21 (FGF21), retinol-binding protein 4 (RBP4), dipeptidyl peptidase 4 (DPP-4), bone morphogenetic protein (BMP)-4, BMP-7, vaspin, apelin, and progranulin, is altered in adipose tissue dysfunction and may contribute to a spectrum of obesity-associated diseases. Adipokines are promising candidates both for novel pharmacological treatment strategies and as diagnostic tools, provided that we can develop a better understanding of the function and molecular targets of the more recently discovered adipokines.
Collapse
Affiliation(s)
- Mathias Fasshauer
- Department of Medicine, University of Leipzig, Liebigstrasse 20, D-04103 Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Liebigstrasse 20, D-04103 Leipzig, Germany.
| |
Collapse
|
142
|
Hanssen MJW, Broeders E, Samms RJ, Vosselman MJ, van der Lans AAJJ, Cheng CC, Adams AC, van Marken Lichtenbelt WD, Schrauwen P. Serum FGF21 levels are associated with brown adipose tissue activity in humans. Sci Rep 2015; 5:10275. [PMID: 25985218 PMCID: PMC4434994 DOI: 10.1038/srep10275] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/09/2015] [Indexed: 01/17/2023] Open
Abstract
The obesity pandemic has spurred a need for novel therapies to prevent and treat metabolic complications. The recent rediscovery of brown adipose tissue (BAT) in humans made this tissue a possible therapeutic target, due to its potentially substantial contributions to energy homeostasis. Fibroblast growth factor 21 (FGF21) has been identified as a facilitator of cold-induced thermogenesis in humans. Furthermore, pre-clinical studies revealed that FGF21 administration leads to improvement in the metabolic consequences of obesity, such as dyslipidemia and type 2 diabetes. Here we studied plasma FGF21 levels in two cohorts of human subjects, in whom BAT activity was determined using an individualized cooling protocol by [(18)F]FDG-PET/CT scan. Importantly, we found that circulating FGF21 levels correlated with BAT activity during acute cold exposure in male subjects. In addition, FGF21 levels were related to the change in core temperature upon acute cold exposure, indicating a role for FGF21 in maintaining normothermia, possibly via activation of BAT. Furthermore, cold acclimation increased BAT activity in parallel with increased FGF21 levels. In conclusion, our results demonstrate that FGF21 levels in humans are related to BAT activity, suggesting that FGF21 may represent a novel mechanism via which BAT activity in humans may be enhanced.
Collapse
Affiliation(s)
- Mark J W Hanssen
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism,Maastricht University Medical Centre+(MUMC+), Maastricht, the Netherlands
| | - Evie Broeders
- 1] Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism,Maastricht University Medical Centre+(MUMC+), Maastricht, the Netherlands [2] Department of surgery, Maastricht University Medical Centre+(MUMC+), Maastricht, the Netherlands
| | - Ricardo J Samms
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA 46285
| | - Maarten J Vosselman
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism,Maastricht University Medical Centre+(MUMC+), Maastricht, the Netherlands
| | - Anouk A J J van der Lans
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism,Maastricht University Medical Centre+(MUMC+), Maastricht, the Netherlands
| | - Christine C Cheng
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA 46285
| | - Andrew C Adams
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA 46285
| | - Wouter D van Marken Lichtenbelt
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism,Maastricht University Medical Centre+(MUMC+), Maastricht, the Netherlands
| | - Patrick Schrauwen
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism,Maastricht University Medical Centre+(MUMC+), Maastricht, the Netherlands
| |
Collapse
|
143
|
Keipert S, Kutschke M, Lamp D, Brachthäuser L, Neff F, Meyer CW, Oelkrug R, Kharitonenkov A, Jastroch M. Genetic disruption of uncoupling protein 1 in mice renders brown adipose tissue a significant source of FGF21 secretion. Mol Metab 2015; 4:537-42. [PMID: 26137441 PMCID: PMC4481421 DOI: 10.1016/j.molmet.2015.04.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 04/27/2015] [Accepted: 04/30/2015] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Circulating fibroblast growth factor 21 (FGF21) is an important auto- and endocrine player with beneficial metabolic effects on obesity and diabetes. In humans, thermogenic brown adipose tissue (BAT) was recently suggested as a source of FGF21 secretion during cold exposure. Here, we aim to clarify the role of UCP1 and ambient temperature in the regulation of FGF21 in mice. METHODS Wildtype (WT) and UCP1-knockout (UCP1 KO) mice, the latter being devoid of BAT-derived non-shivering thermogenesis, were exposed to different housing temperatures. Plasma metabolites and FGF21 levels were determined, gene expression was analyzed by qPCR, and tissue histology was performed with adipose tissue. RESULTS At thermoneutrality, FGF21 gene expression and serum levels were not different between WT and UCP1 KO mice. Cold exposure led to highly increased FGF21 serum levels in UCP1 KO mice, which were reflected in increased FGF21 gene expression in adipose tissues but not in liver and skeletal muscle. Ex vivo secretion assays revealed FGF21 release only from BAT, progressively increasing with decreasing ambient temperatures. In association with increased FGF21 serum levels in the UCP1 KO mouse, typical FGF21-related serum metabolites and inguinal white adipose tissue morphology and thermogenic gene expression were altered. CONCLUSIONS Here we show that the genetic ablation of UCP1 increases FGF21 gene expression in adipose tissue. The removal of adaptive nonshivering thermogenesis renders BAT a significant source of endogenous FGF21 under thermal stress. Thus, the thermogenic competence of BAT is not a requirement for FGF21 secretion. Notably, high endogenous FGF21 levels in UCP1-deficient models and subjects may confound pharmacological FGF21 treatments.
Collapse
Affiliation(s)
- Susanne Keipert
- Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Maria Kutschke
- Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Daniel Lamp
- Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Laura Brachthäuser
- Institute of Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Frauke Neff
- Institute of Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Carola W. Meyer
- Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Animal Physiology, Philipps-Universität, 35043 Marburg, Germany
| | - Rebecca Oelkrug
- Institute of Pharmacology and Toxicology, Biomedical Center, University of Bonn, 53105 Bonn, Germany
- Department of Animal Physiology, Philipps-Universität, 35043 Marburg, Germany
| | | | - Martin Jastroch
- Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Animal Physiology, Philipps-Universität, 35043 Marburg, Germany
- Corresponding author. Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany. Tel.: +49 89 3187 2105.
| |
Collapse
|
144
|
Samms RJ, Smith DP, Cheng CC, Antonellis PP, Perfield JW, Kharitonenkov A, Gimeno RE, Adams AC. Discrete Aspects of FGF21 In Vivo Pharmacology Do Not Require UCP1. Cell Rep 2015; 11:991-9. [PMID: 25956583 DOI: 10.1016/j.celrep.2015.04.046] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/12/2015] [Accepted: 04/22/2015] [Indexed: 12/30/2022] Open
Abstract
A primary target of the pleiotropic metabolic hormone FGF21 is adipose tissue, where it initiates a gene expression program to enhance energy expenditure, an effect presumed to be centered on augmented UCP1 expression and activity. In UCP1 null (UCP1KO) mice, we show that the effect of FGF21 to increase the metabolic rate is abolished. However, in contrast to prior expectations, we found that increased UCP1-dependent thermogenesis is only partially required to achieve the beneficial effects of FGF21 treatment. In UCP1KO mice, there appears to be an underlying reduction in food intake following FGF21 administration, facilitating weight loss equal to that observed in wild-type animals. Furthermore, we show that UCP1-dependent thermogenesis is not required for FGF21 to improve glycemic control or to reduce circulating cholesterol or free fatty acids. These data indicate that several important metabolic endpoints of FGF21 are UCP1 independent; however, the contribution of UCP1-dependent thermogenesis to other discrete aspects of FGF21 biology requires further study.
Collapse
Affiliation(s)
- Ricardo J Samms
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Dennis P Smith
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Christine C Cheng
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Patrick P Antonellis
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - James W Perfield
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Alexei Kharitonenkov
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Andrew C Adams
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| |
Collapse
|
145
|
Jiang Y, Rose AJ, Sijmonsma TP, Bröer A, Pfenninger A, Herzig S, Schmoll D, Bröer S. Mice lacking neutral amino acid transporter B(0)AT1 (Slc6a19) have elevated levels of FGF21 and GLP-1 and improved glycaemic control. Mol Metab 2015; 4:406-17. [PMID: 25973388 PMCID: PMC4421019 DOI: 10.1016/j.molmet.2015.02.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Type 2 diabetes arises from insulin resistance of peripheral tissues followed by dysfunction of β-cells in the pancreas due to metabolic stress. Both depletion and supplementation of neutral amino acids have been discussed as strategies to improve insulin sensitivity. Here we characterise mice lacking the intestinal and renal neutral amino acid transporter B(0)AT1 (Slc6a19) as a model to study the consequences of selective depletion of neutral amino acids. METHODS Metabolic tests, analysis of metabolite levels and signalling pathways were used to characterise mice lacking the intestinal and renal neutral amino acid transporter B(0)AT1 (Slc6a19). RESULTS Reduced uptake of neutral amino acids in the intestine and loss of neutral amino acids in the urine causes an overload of amino acids in the lumen of the intestine and reduced systemic amino acid availability. As a result, higher levels of glucagon-like peptide 1 (GLP-1) are produced by the intestine after a meal, while the liver releases the starvation hormone fibroblast growth factor 21 (FGF21). The combination of these hormones generates a metabolic phenotype that is characterised by efficient removal of glucose, particularly by the heart, reduced adipose tissue mass, browning of subcutaneous white adipose tissue, enhanced production of ketone bodies and reduced hepatic glucose output. CONCLUSIONS Reduced neutral amino acid availability improves glycaemic control. The epithelial neutral amino acid transporter B(0)AT1 could be a suitable target to treat type 2 diabetes.
Collapse
Affiliation(s)
- Yang Jiang
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Adam J. Rose
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Tjeerd P. Sijmonsma
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Angelika Bröer
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Anja Pfenninger
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt am Main 65926, Germany
| | - Stephan Herzig
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Dieter Schmoll
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt am Main 65926, Germany
| | - Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
146
|
Abstract
Obesity and its associated metabolic diseases present a major public health problem around the world. The discovery that thermogenic fat is active in adult humans has sparked a renewal of interest in the study of its development and function and in the feasibility of using modulators of thermogenesis to work against obesity. In recent years, it has been shown that there are at least two distinct types of thermogenic fat cells: brown and beige fat. In this review, we discuss the transcriptional mediators of thermogenesis and the signaling molecules that regulate thermogenic cells. We also review the effects of thermogenic fat activation on whole-body metabolic parameters and evaluate the increasing evidence that activating thermogenesis in humans can be a viable method of ameliorating obesity. In these discussions, we highlight targets that can potentially be stimulated or modified in anti-obesity treatments.
Collapse
Affiliation(s)
- Margo P Emont
- Life Sciences Institute Department of Molecular and Integrative Physiology University of Michigan, 210 Washtenaw Avenue, LSI, RM5115A, Ann Arbor, Michigan 48109, USA Life Sciences Institute Department of Molecular and Integrative Physiology University of Michigan, 210 Washtenaw Avenue, LSI, RM5115A, Ann Arbor, Michigan 48109, USA
| | - Hui Yu
- Life Sciences Institute Department of Molecular and Integrative Physiology University of Michigan, 210 Washtenaw Avenue, LSI, RM5115A, Ann Arbor, Michigan 48109, USA
| | - Jun Wu
- Life Sciences Institute Department of Molecular and Integrative Physiology University of Michigan, 210 Washtenaw Avenue, LSI, RM5115A, Ann Arbor, Michigan 48109, USA Life Sciences Institute Department of Molecular and Integrative Physiology University of Michigan, 210 Washtenaw Avenue, LSI, RM5115A, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
147
|
Affiliation(s)
- Milène Catoire
- Nutrition, Metabolism and Genomics Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
148
|
|
149
|
Rysz J, Gluba-Brzózka A, Mikhailidis DP, Banach M. Fibroblast growth factor 19-targeted therapies for the treatment of metabolic disease. Expert Opin Investig Drugs 2015; 24:603-10. [PMID: 25604607 DOI: 10.1517/13543784.2015.1006357] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Fibroblast growth factors (FGFs) belong to the FGF superfamily with diverse biological functions, including proliferation, cellular differentiation, wound repair, angiogenesis and tumorigenesis. The ability to reduce liver fat content and concentrations of triglycerides, total cholesterol and plasma glucose, and to improve sensitivity and limit pro-lipogenic properties of insulin, makes FGF19 a promising therapeutic target for the treatment of metabolic syndrome. FGF19 regulates bile acid biosynthesis in the bile duct, glucose metabolism and vitamin D and phosphate homeostasis, raises the metabolic rate, reduces body weight, and ameliorates diabetes in mice. The therapeutic potential of FGF19 to treat metabolic disorders has been widely studied in animal models, but currently there are no reports concerning its use in humans. AREAS COVERED The following article highlights the metabolic effects and mechanism of action of FGF19. It also discusses the potential therapies that target FGF19. EXPERT OPINION FGF19 is emerging as a new target for the therapy of metabolic disorders, including diabetes. The results obtained from animal models are promising. However, there is still much to be done before the translation of these effects into practice will be possible.
Collapse
Affiliation(s)
- Jacek Rysz
- WAM University Hospital of Lodz, Department of Nephrology, Hypertension and Family Medicine , Zeromskiego 113, 90-549 Lodz , Poland +48 42 639 37 50 ; +48 42 639 37 50 ;
| | | | | | | |
Collapse
|
150
|
Nies VJM, Sancar G, Liu W, van Zutphen T, Struik D, Yu RT, Atkins AR, Evans RM, Jonker JW, Downes MR. Fibroblast Growth Factor Signaling in Metabolic Regulation. Front Endocrinol (Lausanne) 2015; 6:193. [PMID: 26834701 PMCID: PMC4718082 DOI: 10.3389/fendo.2015.00193] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/25/2015] [Indexed: 12/22/2022] Open
Abstract
The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.
Collapse
Affiliation(s)
- Vera J. M. Nies
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gencer Sancar
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Weilin Liu
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tim van Zutphen
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Dicky Struik
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Annette R. Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Johan W. Jonker
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Johan W. Jonker, ; Michael Robert Downes,
| | - Michael Robert Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- *Correspondence: Johan W. Jonker, ; Michael Robert Downes,
| |
Collapse
|