101
|
De Almeida LKS, Pletschke BI, Frost CL. Moderate levels of glyphosate and its formulations vary in their cytotoxicity and genotoxicity in a whole blood model and in human cell lines with different estrogen receptor status. 3 Biotech 2018; 8:438. [PMID: 30306007 DOI: 10.1007/s13205-018-1464-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 09/26/2018] [Indexed: 12/19/2022] Open
Abstract
In vitro studies were conducted to determine the short-term cytotoxic and genotoxic effects of pure glyphosate and two glyphosate formulations (Roundup® and Wipeout®) at concentrations relevant to human exposure using whole blood (cytotoxicity) and various cancer cell lines (cytotoxicity and genotoxicity). Pure glyphosate (pure glyph) and Roundup® (Ro) showed similar non-monotonic toxicological profiles at low dose exposure (from 10 µg/ml), whereas Wipeout® (Wo) demonstrated a monotonic reduction in cell viability from a threshold concentration of 50 µg/ml, when tested in whole blood. We evaluated whether using various cancer cells (the estrogen-E2-responsive HEC1A, MCF7 and the estrogen-insensitive MDA-MB-231) exposed to moderate doses (75-500 µg/ml) would indicate varied toxicity and results indicated significant effects in the HEC1A cancer cells. A non-monotonic reduction in cell viability was observed in HEC1A exposed to pure glyph (75-500 µg/ml) and proliferative effects were observed after exposure to Wo (75, 125 and 250 µg/ml). Genotoxicity assessment (test concentration 500 µg/ml) demonstrated DNA damage in the HEC1A and MDA-MB-231 cells. Adjuvants and/or glyphosate impurities were potential contributing factors of toxicity based on the differential toxicities displayed by Ro and Wo in human whole blood and the HEC1A cells. This study contributes to the existing knowledge about in vitro exposure to moderate concentrations of glyphosate or glyphosate formulations at cytotoxic and genotoxic levels. In addition, a suggestion on the relevance of the estrogen receptor status of the cell lines used is provided, leading to the need to further investigate a potential endocrine disruptive role.
Collapse
Affiliation(s)
- L K S De Almeida
- 1Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140 South Africa
| | - B I Pletschke
- 1Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140 South Africa
| | - C L Frost
- 2Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77000, Port Elizabeth, 6031 South Africa
| |
Collapse
|
102
|
Ullah S, Li Z, Hasan Z, Khan SU, Fahad S. Malathion induced oxidative stress leads to histopathological and biochemical toxicity in the liver of rohu (Labeo rohita, Hamilton) at acute concentration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:270-280. [PMID: 29886314 DOI: 10.1016/j.ecoenv.2018.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Organophosphorus pesticides form a diverse group of chemicals, having a wide range of physicochemical properties with crucial toxicological actions and endpoints. These are extensively used to control pests of different food (fruits, vegetables, tea, etc.) and non-food (tobacco, cotton, etc.) crops. Malathion is an important widely used organophosphorus pesticide but its hepatotoxic effects on fish are not well studied. Therefore, the current study was designed to investigate the hepatotoxic effects of Malathion on rohu (Labeo rohita) fish in a semi-static system using different parameters. The LC50 of Malathion was found to be 5 µg/L for rohu for 96 h through Probit analysis and was used for further toxicity testing. To find the hepatotoxic effects of Malathion, changes in different biochemical indices including protein contents, Lipid Peroxidation (LPO), activities of four protein metabolic enzymes [Aspartate Aminotransferase (AAT), Lactate Dehydrogenase (LDH), Alanine Aminotransferase (AlAT), and Glutamate Dehydrogenase (GDH)], seven antioxidant enzymes [Catalase (CAT), Superoxide Dismutase (SOD), Peroxidase (POD), Glutathione (GSH), Glutathione Reductase (GR), Glutathione-s-transferase (GST), and Glutathione Peroxidase (GSH-Px)], DNA damage [in term of comet tail length, tail moment, DNA percentage in tail, and olive tail moment], reactive oxygen species (ROS), and Histopathological alterations were assayed. Malathion exposure led to a time-reliant significant (P < 0.05) decrease in protein contents and a significant (P < 0.05) increase in ROS, LPO, enzymatic activities, and DNA damage. The histopathological examination of the liver showed different changes including hepatic necrosis, fatty infiltration, hemorrhage vacuolation, glycogen vacuolation, congestion, and cellular swelling. The current study clearly revealed Malathion as a potent hepatotoxic pesticide; therefore the injudicious, indiscriminate and extensive use of Malathion should be prohibited or at least reduced and strictly monitored.
Collapse
Affiliation(s)
- Sana Ullah
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Zhongqiu Li
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| | - Zaigham Hasan
- Department of Zoology, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ullah Khan
- College of Plant Sciences and Technology/National Key Laboratory of Crop Genetics and Improvement Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shah Fahad
- College of Plant Sciences and Technology/National Key Laboratory of Crop Genetics and Improvement Huazhong Agricultural University, Wuhan 430070, PR China; Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
103
|
Avdatek F, Birdane YO, Türkmen R, Demirel HH. Ameliorative effect of resveratrol on testicular oxidative stress, spermatological parameters and DNA damage in glyphosate-based herbicide-exposed rats. Andrologia 2018; 50:e13036. [PMID: 29761542 DOI: 10.1111/and.13036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 12/30/2022] Open
Abstract
In this study, the reproductive impacts of being exposed to glyphosate (GLF) and the protective impacts of resveratrol (RES) were assessed in 28 Wistar male rats, which were equally separated into four groups. Control group were fed normal diet without GLF or RES, group II received normal feed containing 20 mg kg-1 daily-1 RES, group III received normal feed containing 375 mg kg-1 daily-1 GLF, and group IV received normal feed containing 375 mg kg-1 daily-1 GLF+20 mg kg-1 daily-1 RES. GLF administration decreased sperm motility, sperm plasma membrane integrity, glutathione level and superoxide dismutase in the testicular tissue of rats. On the other hand, abnormal sperm rate, malondialdehyde level, and DNA damage were detected to be high in the group treated with GLF. The findings indicate that RES protects spermatological parameters and DNA damage, decreases GLF-induced lipid peroxidation, improves the antioxidant defence mechanism and regenerates tissue damage in the testis of rats.
Collapse
Affiliation(s)
- F Avdatek
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Y O Birdane
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - R Türkmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - H H Demirel
- Department of Laborant and Veterinary Health, Bayat Vocational School, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
104
|
Setayesh T, Nersesyan A, Mišík M, Ferk F, Langie S, Andrade VM, Haslberger A, Knasmüller S. Impact of obesity and overweight on DNA stability: Few facts and many hypotheses. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 777:64-91. [PMID: 30115431 DOI: 10.1016/j.mrrev.2018.07.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/03/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022]
Abstract
Health authorities are alarmed worldwide about the increase of obesity and overweight in the last decades which lead to adverse health effects including inflammation, cancer, accelerated aging and infertility. We evaluated the state of knowledge concerning the impact of elevated body mass on genomic instability. Results of investigations with humans (39 studies) in which DNA damage was monitored in lymphocytes and sperm cells, are conflicting and probably as a consequence of heterogeneous study designs and confounding factors (e.g. uncontrolled intake of vitamins and minerals and consumption of different food types). Results of animal studies with defined diets (23 studies) are more consistent and show that excess body fat causes DNA damage in multiple organs including brain, liver, colon and testes. Different molecular mechanisms may cause genetic instability in overweight/obese individuals. ROS formation and lipid peroxidation were found in several investigations and may be caused by increased insulin, fatty acid and glucose levels or indirectly via inflammation. Also reduced DNA repair and formation of advanced glycation end products may play a role but more data are required to draw firm conclusions. Reduction of telomere lengths and hormonal imbalances are characteristic for overweight/obesity but the former effects are delayed and moderate and hormonal effects were not investigated in regard to genomic instability in obese individuals. Increased BMI values affect also the activities of drug metabolizing enzymes which activate/detoxify genotoxic carcinogens, but no studies concerning the impact of these alterations of DNA damage in obese individuals are available. Overall, the knowledge concerning the impact of increased body weight and DNA damage is poor and further research is warranted to shed light on this important issue.
Collapse
Affiliation(s)
- Tahereh Setayesh
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Miroslav Mišík
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Franziska Ferk
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Sabine Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Vanessa M Andrade
- Laboratório de Biologia Celulare Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Brazil
| | | | - Siegfried Knasmüller
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
105
|
Pearson HBC, Dallas LJ, Comber SDW, Braungardt CB, Worsfold PJ, Jha AN. Mixtures of tritiated water, zinc and dissolved organic carbon: Assessing interactive bioaccumulation and genotoxic effects in marine mussels, Mytilus galloprovincialis. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 187:133-143. [PMID: 29482966 DOI: 10.1016/j.jenvrad.2017.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/06/2017] [Accepted: 12/27/2017] [Indexed: 06/08/2023]
Abstract
Release of tritium (3H) in the marine environment is of concern with respect to its potential bioaccumulation and detrimental impact on the biota. Previous studies have investigated the uptake and toxicity of this radionuclide in marine mussels, and the interaction of 3H with dissolved organic ligands and elevated temperature. However, despite the well-established view that toxicity is partly governed by chemical speciation, and that toxic effects of mixture of contaminants are not always additive, there have been no studies linking the prevailing chemistry of exposure waters with observed biological effects and tissue specific accumulation of 3H in combination with other constituents commonly found in natural waters. This study exposed the marine mussel Mytilus galloprovincialis for 14 days to mixtures of 3H (as tritiated water, HTO) and zinc (Zn) at 5 Mbq L-1, and 383, 1913 and 3825 nM Zn, respectively, to investigate (a) 3H and Zn partitioning in soft tissues of mussels, and (b) DNA damage in haemocytes, determined using the single cell gel electrophoresis or the comet assay. Additionally, the extent of association of 3H with dissolved organic carbon (DOC, added as humic acid) over the exposure period was investigated in order to aid the interpretation of biological uptake and effects. Results concluded a clear antagonistic effect of Zn on 3H-induced DNA damage at all Zn concentrations used, likely explained by the importance of Zn in DNA repair enzymes. The interaction of DOC with 3H was variable, with strong 3H-DOC associations observed in the first 3 d of the experiment. The secretion of 3H-binding ligands by the mussels is suggested as a possible mechanism for early biological control of 3H toxicity. The results suggest risk assessments for radionuclides in the environment require consideration of potential mixture effects.
Collapse
Affiliation(s)
- Holly B C Pearson
- School of Geography, Earth & Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Lorna J Dallas
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Sean D W Comber
- School of Geography, Earth & Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Charlotte B Braungardt
- School of Geography, Earth & Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Paul J Worsfold
- School of Geography, Earth & Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| |
Collapse
|
106
|
Karri V, Kumar V, Ramos D, Oliveira E, Schuhmacher M. Comparative In Vitro Toxicity Evaluation of Heavy Metals (Lead, Cadmium, Arsenic, and Methylmercury) on HT-22 Hippocampal Cell Line. Biol Trace Elem Res 2018; 184:226-239. [PMID: 28994012 DOI: 10.1007/s12011-017-1177-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/28/2017] [Indexed: 01/06/2023]
Abstract
Heavy metals are considered some of the most toxic environmental pollutants. Exposure to heavy metals including lead (Pb), cadmium (Cd), arsenic (As), and methyl mercury (MeHg) has long been known to cause damage to human health. Many recent studies have supported the hippocampus as the major target for these four metals for inflicting cognitive dysfunction. In the present study, we proposed hippocampal relevant in vitro toxicity of Pb, Cd, As, and MeHg in HT-22 cell line. This study reports, initially, cytotoxic effects in acute, subchronic, chronic exposures. We further investigated the mechanistic potency of DNA damage and apoptosis damage with the observed cytotoxicity. The genotoxicity and apoptosis were measured by using the comet assay, annexin-V FTIC / propidium iodide (PI) assay, respectively. The results of cytotoxicity assay clearly demonstrated significant concentration and time-dependent effects on HT-22 cell line. The genotoxic and apoptosis effects also concentration-dependent fashion with respect to their potency in the range of IC10-IC30, maximal level of damage observed in MeHg. In conclusion, the obtained result suggests concentration and potency-dependent response; the maximal level of toxicity was observed in MeHg. These novel findings support that Pb, Cd, As, and MeHg induce cytotoxic, genotoxic, and apoptotic effects on HT-22 cells in potency-dependent manner; MeHg> As> Cd> Pb. Therefore, the toxicity of Pb, Cd, As, and MeHg could be useful for knowing the common underlying molecular mechanism, and also for estimating the mixture impacts on HT-22 cell line.
Collapse
Affiliation(s)
- Venkatanaidu Karri
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain.
| | - David Ramos
- Plataforma de Proteòmica, Parc Científic de Barcelona, C/ Baldiri Reixac, 10-12, 08028, Barcelona, Spain
| | - Eliandre Oliveira
- Unidad de Toxicologia, Parc Científic de Barcelona, C/ Baldiri Reixac, 10-12, 08028, Barcelona, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain
| |
Collapse
|
107
|
Gomes T, Song Y, Brede DA, Xie L, Gutzkow KB, Salbu B, Tollefsen KE. Gamma radiation induces dose-dependent oxidative stress and transcriptional alterations in the freshwater crustacean Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:206-216. [PMID: 29432932 DOI: 10.1016/j.scitotenv.2018.02.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/03/2018] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
Among aquatic organisms, invertebrate species such as the freshwater crustacean Daphnia magna are believed to be sensitive to gamma radiation, although information on responses at the individual, biochemical and molecular level is scarce. Following gamma radiation exposure, biological effects are attributed to the formation of free radicals, formation of reactive oxygen species (ROS) and subsequently oxidative damage to lipids, proteins and DNA in exposed organisms. Thus, in the present study, effects and modes of action (MoA) have been investigated in D. magna exposed to gamma radiation (dose rates: 0.41, 1.1, 4.3, 10.7, 42.9 and 106 mGy/h) after short-term exposure (24 and 48 h). Several individual, cellular and molecular endpoints were addressed, such as ROS formation, lipid peroxidation, DNA damage and global transcriptional changes. The results showed that oxidative stress is one of the main toxic effects in gamma radiation exposed D. magna, mediated by the dose-dependent increase in ROS formation and consequently oxidative damage to lipids and DNA over time. Global transcriptional analysis verified oxidative stress as one of the main MoA of gamma radiation at high dose rates, and identified a number of additional MoAs that may be of toxicological relevance. The present study confirmed that acute exposure to gamma radiation caused a range of cellular and molecular effects in D. magna exposed to intermediate dose rates, and highlights the need for assessing effects at longer and more environmentally relevant exposure durations in future studies.
Collapse
Affiliation(s)
- Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.
| | - You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Dag A Brede
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Faculty of Environmental Science and Nature Resource Management, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Li Xie
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Kristine B Gutzkow
- Department of Molecular Biology, Norwegian Institute of Public Health, Oslo 0403, Norway
| | - Brit Salbu
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Faculty of Environmental Science and Nature Resource Management, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Faculty of Environmental Science and Nature Resource Management, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| |
Collapse
|
108
|
Nunes B, Leal C, Rodrigues S, Antunes SC. Assessment of ecotoxicological effects of ciprofloxacin in Daphnia magna: life-history traits, biochemical and genotoxic effects. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 2017:835-844. [PMID: 30016301 DOI: 10.2166/wst.2018.255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Antibiotics (e.g. ciprofloxacin) have been detected in surface water and groundwater for several decades. In order to understand the potential impact of the continuous exposure of aquatic organisms to ciprofloxacin, a chronic assay was carried out with Daphnia magna. This approach allowed evaluation of the effects of ciprofloxacin on life-history and sub-individual parameters (antioxidant status and metabolic response: activities of catalase and glutathione S-transferases - GSTs; peroxidative damage; thiobarbituric acid reactive substances and genotoxic effects (genetic damage index, measured by the comet assay). Life-history parameters of D. magna showed no significant effects after ciprofloxacin exposure. Concerning oxidative stress and metabolism parameters, no significant alterations were reported for catalase and GSTs activities. However, a dual response was observed, with a significant decrease in lipid peroxidation levels at low ciprofloxacin concentrations (<0.013 mg/L), while a significant increase was verified at high ciprofloxacin concentrations (0.078 mg/L). The genotoxicity assay detected a significant increase in genetic damage index up to 0.013 mg/L of ciprofloxacin. The here-tested ciprofloxacin concentrations, which are ecologically relevant, did not cause significant impacts concerning the life-history parameters of D. magna; however, at the same levels of ciprofloxacin an oxidative stress and genotoxic damage scenarios were recorded.
Collapse
Affiliation(s)
- B Nunes
- Departamento de Biologia & CESAM (Centro de Estudos do Ambiente e do Mar), Universidade de Aveiro, Aveiro, Portugal
| | - C Leal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal E-mail:
| | - S Rodrigues
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal E-mail: ; CIIMAR (Centro Interdisciplinar de Investigação Marinha e Ambiental), Universidade do Porto, Porto, Portugal
| | - S C Antunes
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal E-mail: ; CIIMAR (Centro Interdisciplinar de Investigação Marinha e Ambiental), Universidade do Porto, Porto, Portugal
| |
Collapse
|
109
|
Hurem S, Gomes T, Brede DA, Mayer I, Lobert VH, Mutoloki S, Gutzkow KB, Teien HC, Oughton D, Aleström P, Lyche JL. Gamma irradiation during gametogenesis in young adult zebrafish causes persistent genotoxicity and adverse reproductive effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 154:19-26. [PMID: 29453161 DOI: 10.1016/j.ecoenv.2018.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/10/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
The biological effects of gamma radiation may exert damage beyond that of the individual through its deleterious effects on reproductive function. Impaired reproductive performance can result in reduced population size over consecutive generations. In a continued effort to investigate reproductive and heritable effects of ionizing radiation, we recently demonstrated adverse effects and genomic instability in progeny of parents exposed to gamma radiation. In the present study, genotoxicity and effects on the reproduction following subchronic exposure during a gametogenesis cycle to 60Co gamma radiation (27 days, 8.7 and 53 mGy/h, total doses 5.2 and 31 Gy) were investigated in the adult wild-type zebrafish (Danio rerio). A significant reduction in embryo production was observed one month after exposure in the 53 mGy/h exposure group compared to control and 8.7 mGy/h. One year later, embryo production was significantly lower in the 53 mGy/h group compared only to control, with observed sterility, accompanied by a regression of reproductive organs in 100% of the fish 1.5 years after exposure. Histopathological examinations revealed no significant changes in the testis in the 8.7 mGy/h group, while in 62.5% of females exposed to this dose rate the oogenesis was found to be only at the early previtellogenic stage. The DNA damage determined in whole blood, 1.5 years after irradiation, using a high throughput Comet assay, was significantly higher in the exposed groups (1.2 and 3-fold increase in 8.7 and 53 mGy/h females respectively; 3-fold and 2-fold increase in 8.7 and 53 mGy/h males respectively) compared to controls. A significantly higher number of micronuclei (4-5%) was found in erythrocytes of both the 8.7 and 53 mGy/h fish compared to controls. This study shows that gamma radiation at a dose rate of ≥ 8.7 mGy/h during gametogenesis causes adverse reproductive effects and persistent genotoxicity (DNA damage and increased micronuclei) in adult zebrafish.
Collapse
Affiliation(s)
- Selma Hurem
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway.
| | - Tânia Gomes
- Norwegian Institute for Water research (NIVA), Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Dag A Brede
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Ian Mayer
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Viola H Lobert
- Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway; Oslo University Hospital, Institute for Cancer Research Dept. of Molecular Cell Biology, Montebello, Oslo, Norway
| | - Stephen Mutoloki
- Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Kristine B Gutzkow
- Norwegian Institute of Public Health, PO Box 4404 Nydalen 0403 Oslo, Norway
| | - Hans-Christian Teien
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Deborah Oughton
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Peter Aleström
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Jan L Lyche
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| |
Collapse
|
110
|
Obeidat M, McConnell KA, Li X, Bui B, Stathakis S, Papanikolaou N, Rasmussen K, Ha CS, Lee SE, Shim EY, Kirby N. DNA double-strand breaks as a method of radiation measurements for therapeutic beams. Med Phys 2018; 45:3460-3465. [PMID: 29745994 DOI: 10.1002/mp.12956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/20/2018] [Accepted: 04/29/2018] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Many types of dosimeters are used to measure radiation dose and calibrate radiotherapy equipment, but none directly measure the biological effect of this dose. The purpose here is to create a dosimeter that can measure the probability of double-strand breaks (DSB) for DNA, which is directly related to the biological effect of radiation. METHODS A DNA dosimeter, consisting of magnetic streptavidin beads attached to four kilobase pair DNA strands labeled with biotin and fluorescein amidite (FAM) on opposing ends, was suspended in phosphate-buffered saline (PBS). Fifty microliter samples were placed in plastic tubes inside a water tank setup and irradiated at the dose levels of 25, 50, 100, 150, and 200 Gy. After irradiation, the dosimeters were mechanically separated into beads (intact DNA) and supernatant (broken DNA/FAM) using a magnet. The fluorescence was read and the probability of DSB was calculated. This DNA dosimeter response was benchmarked against a Southern blot analysis technique for the measurement of DSB probability. RESULTS For the DNA dosimeter, the probabilities of DSB at the dose levels of 25, 50, 100, 150, and 200 Gy were 0.043, 0.081, 0.149, 0.196, and 0.242, respectively, and the standard errors of the mean were 0.002, 0.003, 0.006, 0.005, and 0.011, respectively. For the Southern blot method, the probabilities of DSB at the dose levels of 25, 50, 100, 150, and 200 Gy were 0.053, 0.105, 0.198, 0.235, and 0.264, respectively, and the standard errors of the mean were 0.013, 0.024, 0.040, 0.044, and 0.063, respectively. CONCLUSIONS A DNA dosimeter can accurately determine the probability of DNA double-strand break (DSB), one of the most toxic effects of radiotherapy, for absorbed radiation doses from 25 to 200 Gy. This is an important step in demonstrating the viability of DNA dosimeters as a measurement technique for radiation.
Collapse
Affiliation(s)
- Mohammad Obeidat
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kristen A McConnell
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xiaolei Li
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Brian Bui
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Sotirios Stathakis
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Niko Papanikolaou
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Karl Rasmussen
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Chul Soo Ha
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Sang Eun Lee
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Eun Yong Shim
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Neil Kirby
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
111
|
Paraswani N, Thoh M, Bhilwade HN, Ghosh A. Early antioxidant responses via the concerted activation of NF-κB and Nrf2 characterize the gamma-radiation-induced adaptive response in quiescent human peripheral blood mononuclear cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 831:50-61. [PMID: 29875077 DOI: 10.1016/j.mrgentox.2018.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 11/16/2022]
Abstract
The radiation-induced adaptive response (RI-AR) is a non-targeted effect which is outside the scope of the classical Linear-No-Threshold (LNT) dose-response paradigm. However, the mechanisms of the RI-AR are not well understood. We have studied the RI-AR in quiescent human peripheral blood mononuclear cells (PBMCs). PBMCs in G0 phase were 'primed' with a low dose (100 mGy gamma radiation) and then, after an 'adaptive window' of 4 h, 'challenged' with a high dose (2 Gy). A small (5.7%) increase in viability and a decrease in DNA strand breaks were seen in primed cells, compared to non-primed cells. This was consistent with lower levels of reactive oxygen species, higher mitochondrial membrane potential, and increased activity of antioxidant enzymes such as catalase, superoxide dismutase, thioredoxin reductase, and glutathione peroxidase, in the primed cells. Reduced oxidative stress in primed PBMCs correlated with greater nuclear translocation of the redox-sensitive transcription factors Nuclear factor kappa B (NF-κB) and Nuclear factor E2-related factor 2 (Nrf2). Distinct differences in responses were seen in PBMCs irradiated with low dose (100 mGy) and high dose (2 Gy). These findings provide insight into the mechanisms of radioadaptation in human cells.
Collapse
Affiliation(s)
- Neha Paraswani
- Radiation Signaling Group, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - Maikho Thoh
- Free Radical Biology Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Hari N Bhilwade
- Free Radical Biology Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Anu Ghosh
- Radiation Signaling Group, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India.
| |
Collapse
|
112
|
Sarker S, Vashistha D, Saha Sarker M, Sarkar A. DNA damage in marine rock oyster (Saccostrea Cucullata) exposed to environmentally available PAHs and heavy metals along the Arabian Sea coast. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 151:132-143. [PMID: 29331918 DOI: 10.1016/j.ecoenv.2018.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/24/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Molecular biomarkers are used world wide for quick assessment of the immediate effect of environmental pollution on marine ecosystems. Recently, we evaluated oxidative stress responses of marine rock oyster, Saccostrea cucullata impacted due to polycyclic aromatic hydrocarbons (PAHs) accumulated in their tissues at a few sampling sites along the coast of Goa around the region of the Arabian sea coast, India (Sarkar et al., 2017). Using a combination of partial alkaline unwinding and comet assays, we now report a comprehensive study on the impairment of DNA integrity (DI) in S. cucullata due to exposure to environmentally available PAHs and also heavy metals (Pb, Cd, Cu, Fe and Mn) along the Arabian Sea coast, Goa, India exclusively around the entire coast of Goa. First, we determined significant correlation between DI in S. cucullata and the extent of exposure to and bioaccumulation of different PAH compounds including 2-3 aromatic ring PAHs (R2, 0.95), 4-6 aromatic ring PAHs (R2, 0.85), oxygenated-PAHs (oxy-PAHs, R2, 0.84) and total PAHs (t-PAHs, R2, 0.98). Second, we observed dose-dependent decrease in DI in S. cucullata with increasing concentrations of different PAH components in oyster tissues. We substantiated our field observations with appropriate laboratory controls using benzo[a]pyrene (BaP). Third, we performed stepwise multiple regression analyses of different water quality parameters including pH, salinity, temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), nitrite (NO2), nitrate (NO3), phosphate (PO4), turbidity and also t-PAH-biota, t-PAH-water with DI as the dependent variable. Among all these parameters, only four parameters such as t-PAH-biota in combination with DO, BOD and NO2 showed significant correlation (R¯2 = 0.95) with loss in DI in S. cucullata. Based on these results, we created a map indicating the percentage of DNA damage in S. cucullata exposed to PAHs and heavy metals at each sampling location along the west coast of India around Goa, India.
Collapse
Affiliation(s)
- Subhodeep Sarker
- Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia; Global Enviro-Care, Kevnem, Caranzalem, Goa 403002, India.
| | - Deepti Vashistha
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Global Enviro-Care, Kevnem, Caranzalem, Goa 403002, India
| | - Munmun Saha Sarker
- Global Enviro-Care, Kevnem, Caranzalem, Goa 403002, India; Rabindra Bharati University, Emerald Bower Campus, Kolkata 700050, India.
| | - A Sarkar
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Global Enviro-Care, Kevnem, Caranzalem, Goa 403002, India.
| |
Collapse
|
113
|
Goswami P, Paul S, Banerjee R, Kundu R, Mukherjee A. Betulinic acid induces DNA damage and apoptosis in SiHa cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 828:1-9. [DOI: 10.1016/j.mrgentox.2018.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/02/2018] [Accepted: 02/07/2018] [Indexed: 12/28/2022]
|
114
|
Hong YH, Jeon HL, Ko KY, Kim J, Yi JS, Ahn I, Kim TS, Lee JK. Assessment of the predictive capacity of the optimized in vitro comet assay using HepG2 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 827:59-67. [DOI: 10.1016/j.mrgentox.2018.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
|
115
|
Mussttaf RA, Jenkins DF, Jha AN. Photo‐stimulatory effect of LLLT on the proliferation rate of human monocytic leukaemia cells. IET Nanobiotechnol 2018. [DOI: 10.1049/iet-nbt.2017.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
| | - David F.L. Jenkins
- School of Computing, Electronics and MathematicsPlymouth UniversityPlymouthUK
| | - Awadhesh N. Jha
- School of Biological and Marine SciencesPlymouth UniversityPlymouthUK
| |
Collapse
|
116
|
Guidi P, Corsolini S, Bernardeschi M, Rocco L, Nigro M, Baroni D, Mottola F, Scarcelli V, Santonastaso M, Falleni A, Della Torre C, Corsi I, Pozo K, Frenzilli G. Dioxin-like compounds bioavailability and genotoxicity assessment in the Gulf of Follonica, Tuscany (Northern Tyrrhenian Sea). MARINE POLLUTION BULLETIN 2018; 126:467-472. [PMID: 29421127 DOI: 10.1016/j.marpolbul.2017.11.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 06/08/2023]
Abstract
The Gulf of Follonica (Italy) is impacted by the chemical pollution from ancient mining activity and present industrial processes. This study was aimed to determine the bioavailability of dioxin-like compounds (DLCs) in coastal marine environment and to assess the genotoxic potential of waste waters entering the sea from an industrial canal. Moderately high levels of DCLs compounds (∑ PCDDs + PCDFs 2.18–29.00 pg/g dry wt) were detected in Mytilus galloprovincialis transplanted near the waste waters canal and their corresponding Toxic Equivalents (TEQs) calculated. In situ exposed mussels did not show any genotoxic effect (by Comet and Micronucleus assay). Otherwise, laboratory exposure to canal waters exhibited a reduced genomic template stability (by RAPD-PCR assay) but not DNA or chromosomal damage. Our data reveal the need to focus on the levels and distribution of DLCs in edible species from the study area considering their potential transfer to humans through the consumption of sea food.
Collapse
Affiliation(s)
- Patrizia Guidi
- Department of Clinical and Experimental Medicine - Section of Applied Biology and Genetics, University of Pisa, Pisa, Italy
| | - Simonetta Corsolini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Margherita Bernardeschi
- Department of Clinical and Experimental Medicine - Section of Applied Biology and Genetics, University of Pisa, Pisa, Italy
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical, Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - Marco Nigro
- Department of Clinical and Experimental Medicine - Section of Applied Biology and Genetics, University of Pisa, Pisa, Italy.
| | - Davide Baroni
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical, Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - Vittoria Scarcelli
- Department of Clinical and Experimental Medicine - Section of Applied Biology and Genetics, University of Pisa, Pisa, Italy
| | - Marianna Santonastaso
- Department of Environmental, Biological and Pharmaceutical, Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - Alessandra Falleni
- Department of Clinical and Experimental Medicine - Section of Applied Biology and Genetics, University of Pisa, Pisa, Italy
| | - Camilla Della Torre
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy; Department of Biosciences, University of Milan, Milan, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Karla Pozo
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy; Masaryk University, Research Centre for Toxic Compounds in the Environment, Brno, Czech Republic; Facultad de Ciencias, Universidad Católica Santísima Concepción, Concepción, Chile
| | - Giada Frenzilli
- Department of Clinical and Experimental Medicine - Section of Applied Biology and Genetics, University of Pisa, Pisa, Italy
| |
Collapse
|
117
|
Orozco-Hernández L, Gutiérrez-Gómez AA, SanJuan-Reyes N, Islas-Flores H, García-Medina S, Galar-Martínez M, Dublán-García O, Natividad R, Gómez-Oliván LM. 17β-Estradiol induces cyto-genotoxicity on blood cells of common carp (Cyprinus carpio). CHEMOSPHERE 2018; 191:118-127. [PMID: 29031051 DOI: 10.1016/j.chemosphere.2017.10.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/18/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
17β-Estradiol, a natural hormone present at high concentrations in aquatic ecosystems, affects and modifies endocrine function in animals. In recent years research workers have expressed concern over its potential effects on aquatic organisms; however, little is known about its capacity to induce genetic damage or the pro-apoptotic effects of such damage on fish. Therefore, this study aimed to evaluate 17β-estradiol-induced cyto-genotoxicity in blood cells of the common carp Cyprinus carpio exposed to different concentrations (1 ng, 1 μg and 1 mg L-1). Peripheral blood samples were collected and evaluated by comet assay, micronucleus test, determination of caspase-3 activity and TUNEL assay at 12, 24, 48, 72 and 96 h of exposure. Increases in frequency of micronuclei, TUNEL-positive cells and caspase-3 activity were observed, particularly at the highest concentration. In contrast, the comet assay detected significant increases at 24 and 96 h with the 1 μg and 1 ng L-1 concentrations respectively. The set of assays used in the present study constitutes a reliable early warning biomarker for evaluating the toxicity induced by this type of emerging contaminants on aquatic species.
Collapse
Affiliation(s)
- Luis Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Adriana Andrea Gutiérrez-Gómez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu S/n y Cerrada de Manuel Stampa, Col. Industrial Vallejo, C.P. 007700, Ciudad de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu S/n y Cerrada de Manuel Stampa, Col. Industrial Vallejo, C.P. 007700, Ciudad de México, Mexico
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Reyna Natividad
- Chemical Engineering Lab., Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Unidad San Cayetano, Toluca, Estado de México, 50200, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico.
| |
Collapse
|
118
|
D’costa AH, S.K. S, M.K. PK, Furtado S. The Backwater Clam ( Meretrix casta ) as a bioindicator species for monitoring the pollution of an estuarine environment by genotoxic agents. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 825:8-14. [DOI: 10.1016/j.mrgentox.2017.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
|
119
|
Langan LM, Arossa S, Owen SF, Jha AN. Assessing the impact of benzo[a]pyrene with the in vitro fish gut model: An integrated approach for eco-genotoxicological studies. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 826:53-64. [PMID: 29412870 DOI: 10.1016/j.mrgentox.2017.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/06/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022]
Abstract
In vitro models are emerging tools for reducing reliance on traditional toxicity tests, especially in areas where information is sparse. For studies of fish, this is especially important for extrahepatic organs, such as the intestine, which, until recently, have been largely overlooked in favour of the liver or gill. Considering the importance of dietary uptake of contaminants, the rainbow trout (Oncorhynchus mykiss) intestine-derived cell line RTgutGC was cultured, to test its suitability as a high-throughput in vitro model. Benzo[a]pyrene (B[a]P) is an important contaminant and a model polycyclic aromatic hydrocarbon (PAH). Over 48 h exposure, a range of endpoints and xenobiotic metabolism rates were examined at three different pH levels indicative of the in vitro (pH 7.5) and in vivo mid-gut (pH 7.7) and hind-gut (pH 7.4) regions as a function of time. These endpoints included (i) cell viability: acid phosphatase (APH) and lactate dehydrogenase (LDH) assays; (ii) glucose uptake; (iii) cytochrome P450 enzyme activity: 7-ethoxyresoorufin-O-deethylase (EROD) assay; (iv) glutathione transferase (GST) activity; (v) genotoxic damage determined using the comet assay. Absence of cell viability loss, in parallel with decrease in the parent compound (B[a]P) in the medium and its subsequent increase in the cells suggested active sequestration, biotransformation, and removal of this representative PAH. With respect to genotoxic response, significant differences were observed at both the sampling times and the two highest concentrations of B[a]P. No significant differences were observed for the different pH conditions. Overall, this in vitro xenobiotic metabolism system appears to be a robust model, providing a basis for further development to evaluate metabolic and toxicological potential of contaminants without use of animals.
Collapse
Affiliation(s)
- Laura M Langan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Silvia Arossa
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Stewart F Owen
- AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TF, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK.
| |
Collapse
|
120
|
Das KR, Kerkar S, Meena Y, Mishra S. Effects of iron nanoparticles on iron-corroding bacteria. 3 Biotech 2017; 7:385. [PMID: 29201585 DOI: 10.1007/s13205-017-1018-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/31/2017] [Indexed: 01/22/2023] Open
Abstract
The toxicological effects of Fe3O4 nanoparticles were evaluated with an iron-corroding bacterium (ICB) for preventing the biocorrosion of iron. Fe3O4 nanoparticles of 18 nm were successfully prepared and characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) patterns and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS). A halophilic ICB strain L4 was isolated from Ribandar saltpan Goa, India and identified biochemically and by 16S rRNA gene sequence analysis as Halanaerobium sp. The Fe3O4 nanoparticles in increasing doses (0.1-100 mg/L) caused transformation in growth and sulfide production of ICB strain L4. SEM-EDS analysis revealed a deformed cell structure with adsorption of nanoparticle on the cell surface and increased cell size. Comet assay revealed genotoxic effect of Fe3O4 nanoparticles on strain L4 which resulted in dose-dependent DNA damage by increasing percentage tail DNA from 5 to 88% with increasing Fe3O4 nanoparticles concentration. Furthermore, sulfide production rate was reduced to 11.8% in presence of 100 mg/L Fe3O4 nanoparticles which reduced the corroding property of ICB strain L4; thus, it was unable to corrode the iron nail in presence of Fe3O4 nanoparticle. This work suggests the possible application of Fe3O4 nanoparticle in addressing biocorrosion problems faced by different industries.
Collapse
Affiliation(s)
| | - Savita Kerkar
- Department of Biotechnology, Goa University, Goa, 403206 India
| | - Yogeeta Meena
- Department of Biotechnology, Goa University, Goa, 403206 India
| | - Samir Mishra
- Environmental Biotechnology Laboratory, School of Biotechnology, KIIT University, Odisha, 751024 India
| |
Collapse
|
121
|
Hurem S, Gomes T, Brede DA, Lindbo Hansen E, Mutoloki S, Fernandez C, Mothersill C, Salbu B, Kassaye YA, Olsen AK, Oughton D, Aleström P, Lyche JL. Parental gamma irradiation induces reprotoxic effects accompanied by genomic instability in zebrafish (Danio rerio) embryos. ENVIRONMENTAL RESEARCH 2017; 159:564-578. [PMID: 28892785 DOI: 10.1016/j.envres.2017.07.053] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
Gamma radiation represents a potential health risk to aquatic and terrestrial biota, due to its ability to ionize atoms and molecules in living tissues. The effects of exposure to 60Co gamma radiation in zebrafish (Danio rerio) were studied during two sensitive life stages: gametogenesis (F0: 53 and 8.7mGy/h for 27 days, total doses 31 and 5.2Gy) and embryogenesis (9.6mGy/h for 65h; total dose 0.62Gy). Progeny of F0 exposed to 53mGy/h showed 100% mortality occurring at the gastrulation stage corresponding to 8h post fertilization (hpf). Control and F0 fish exposed to 8.7mGy/h were used to create four lines in the first filial generation (F1): control, G line (irradiated during parental gametogenesis), E line (irradiated during embryogenesis) and GE line (irradiated during parental gametogenesis and embryogenesis). A statistically significant cumulative mortality of GE larva (9.3%) compared to controls was found at 96 hpf. E line embryos hatched significantly earlier compared to controls, G and GE (48-72 hpf). The deformity frequency was higher in G and GE, but not E line compared to controls at 72 hpf. One month after parental irradiation, the formation of reactive oxygen species (ROS) was increased in the G line, but did not significantly differ from controls one year after parental irradiation, while at the same time point it was significantly increased in the directly exposed E and GE lines from 60 to 120 hpf. Lipid peroxidation (LPO) was significantly increased in the G line one year after parental irradiation, while significant increase in DNA damage was detected in both the G and GE compared to controls and E line at 72 hpf. Radiation-induced bystander effects, triggered by culture media from tissue explants and observed as influx of Ca2+ ions through the cellular membrane of the reporter cells, were significantly increased in 72 hpf G line progeny one month after irradiation of the parents. One year after parental irradiation, the bystander effects were increased in the E line compared to controls, but not in progeny of irradiated parents (G and GE lines). Overall, this study showed that irradiation of parents can result in multigenerational oxidative stress and genomic instability in irradiated (GE) and non-irradiated (G) progeny of irradiated parents, including increases in ROS formation, LPO, DNA damage and bystander effects. The results therefore highlight the necessity for multi- and transgenerational studies to assess the environmental impact of gamma radiation.
Collapse
Affiliation(s)
- Selma Hurem
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway.
| | - Tânia Gomes
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian Institute for Water research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Dag A Brede
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Elisabeth Lindbo Hansen
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian Radiation Protection Authority (NRPA), Postboks 55, 1332 Østerås, Norway
| | - Stephen Mutoloki
- Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Cristian Fernandez
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern, Switzerland
| | - Carmel Mothersill
- McMaster University, Department of Biology, 1280 Main St. West Hamilton, Ontario, Canada
| | - Brit Salbu
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Yetneberk A Kassaye
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Ann-Karin Olsen
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian Institute of Public Health (NIPH), PO Box 4404 Nydalen, 0403 Oslo, Norway
| | - Deborah Oughton
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Peter Aleström
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Jan L Lyche
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| |
Collapse
|
122
|
Norishadkam M, Andishmand S, Zavar Reza J, Zare Sakhvidi MJ, Hachesoo VR. Oxidative stress and DNA damage in the cord blood of preterm infants. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 824:20-24. [PMID: 29150046 DOI: 10.1016/j.mrgentox.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 10/01/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
Preterm birth infants are more susceptible to oxidative stress and aftermaths unwanted outcomes such as DNA damage due to hyperoxic stress. In this study, we compared the DNA strand breaks as one of the results of DNA oxidation in white blood cells, malondialdehyde (oxidative stress marker), catalase and superoxide dismutase activity, and total antioxidant capacity (markers of antioxidant defense) in a cord blood plasma of a group of preterm (n=25) and full term births (n=25). The primary DNA damage and plasma oxidative stress markers were significantly higher in a preterm group (p<0.05). Cord plasma activity of superoxide dismutase was significantly lower in preterm infants (p≤0.001). However, there were no significant differences in the cord blood total antioxidant capacity, catalase activity and malondialdehyde in preterm and term infants. Among the oxidative stress markers, the malondialdehyde concentration showed the strongest effect size (1.54; 95%CI: 0.9-2.17). For comet parameters, the most powerful effect size was observed for tail length (5.24; 95% CI: 4.05-6.42). However, tail DNA percent and tail moment were also significantly higher in cases compared to controls. Significant negative correlation was observed between comet assay parameters and birth weight and gestational age when all cases and controls entered into the analysis. There was no significant association between the levels of oxidative stress markers and early DNA damage in cord blood plasma with future nutritional tolerance in preterm infants. In the present study, the primary DNA damage and plasma oxidative stress markers significantly were increased in a preterm group. Preterm babies are more prone to the outcomes related to the early DNA damage. Tail DNA percent does not depend on experimental conditions as other parameters (tail length and thus also tail moment) and can be used for comparison with other studies.
Collapse
Affiliation(s)
- Mahmood Norishadkam
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Soudeh Andishmand
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Zavar Reza
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mohammad Javad Zare Sakhvidi
- Department of Occupational Health, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Vida Rezae Hachesoo
- Department of Occupational Health, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
123
|
Sarkar A, Bhagat J, Saha Sarker M, Gaitonde DCS, Sarker S. Evaluation of the impact of bioaccumulation of PAH from the marine environment on DNA integrity and oxidative stress in marine rock oyster (Saccostrea cucullata) along the Arabian sea coast. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:1105-1116. [PMID: 28755287 DOI: 10.1007/s10646-017-1837-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Marine pollution due to oil spills is of great concern globally for their impact on the health of marine ecosystems. We assessed the genotoxic effects and oxidative stress due to genotoxic pollutants accumulated from the ambient marine environment in the tissues of marine rock oyster, Saccostrea cucullata along the Arabian Sea coast around Goa, India. The extent of DNA damage in S. cucullata was determined by comet assay as variation of comet parameter: mean % tail DNA along the coast with respect to that at the reference site (Tiracol, Goa, India). In addition, the oxidative stress responses of rock oysters exposed to marine pollutants such as polycyclic aromatic hydrocarbons (PAHs) were assessed as a function of variation in antioxidant enzyme activities such as glutathione-s-transferase (GST), catalase (CAT) and superoxide dismutase (SOD) along the coast. Spearman correlation analysis showed significant correlation between different components of PAHs (viz., 2-3-PAH, 4-6-PAH and oxy-PAH) in the tissues of the rock oysters and the antioxidant enzyme activities. The antioxidant enzyme activities in S. cucullata increased with increasing concentrations of PAHs in tissues in the following order of sampling sites: Tiracol < Arambol < Betul < Velsao. Among the PAHs, oxy-PAH was found to be most predominant in causing DNA damage in S. cucullata. These results provide an insight into environmental genotoxicity and oxidative stress induced by PAHs along the Arabian Sea coast, India.
Collapse
Affiliation(s)
- A Sarkar
- Chemical Oceanographic Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India.
- Global Enviro-Care, Caranzalem, Kevnem, Goa, 403002, India.
| | - Jacky Bhagat
- Chemical Oceanographic Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Munmun Saha Sarker
- Global Enviro-Care, Caranzalem, Kevnem, Goa, 403002, India
- Rabindra Bharati University, Emerald Bower Campus, Kolkata, West Bengal, 700 050, India
| | - Dipak C S Gaitonde
- Global Enviro-Care, Caranzalem, Kevnem, Goa, 403002, India
- Department of Environmental Science, Government Polytechnic College, Panaji, Goa, 403001, India
| | - Subhodeep Sarker
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria.
- Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
124
|
Nataraj B, Hemalatha D, Rangasamy B, Maharajan K, Ramesh M. Hepatic oxidative stress, genotoxicity and histopathological alteration in fresh water fish Labeo rohita exposed to organophosphorus pesticide profenofos. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
125
|
Zinger A, Cho WC, Ben-Yehuda A. Cancer and Aging - the Inflammatory Connection. Aging Dis 2017; 8:611-627. [PMID: 28966805 PMCID: PMC5614325 DOI: 10.14336/ad.2016.1230] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/30/2016] [Indexed: 12/13/2022] Open
Abstract
Aging and cancer are highly correlated biological phenomena. Various cellular processes such as DNA damage responses and cellular senescence that serve as tumor suppressing mechanisms throughout life result in degenerative changes and contribute to the aging phenotype. In turn, aging is considered a pro-tumorigenic state, and constitutes the single most important risk factor for cancer development. However, the causative relations between aging and cancer is not straight forward, as these processes carry contradictory hallmarks; While aging is characterized by tissue degeneration and organ loss of function, cancer is a state of sustained cellular proliferation and gain of new functions. Here, we review the molecular and cellular pathways that stand in the base of aging related cancer. Specifically, we deal with the inflammatory perspective that link these two processes, and suggest possible molecular targets that may be exploited to modify their courses.
Collapse
Affiliation(s)
- Adar Zinger
- 1Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - William C Cho
- 2Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Arie Ben-Yehuda
- 1Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
126
|
Langan LM, Harper GM, Owen SF, Purcell WM, Jackson SK, Jha AN. Application of the rainbow trout derived intestinal cell line (RTgutGC) for ecotoxicological studies: molecular and cellular responses following exposure to copper. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:1117-1133. [PMID: 28785844 PMCID: PMC5617881 DOI: 10.1007/s10646-017-1838-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
There is an acknowledged need for in vitro fish intestinal model to help understand dietary exposure to chemicals in the aquatic environment. The presence and use of such models is however largely restrictive due to technical difficulties in the culturing of enterocytes in general and the availability of appropriate established cell lines in particular. In this study, the rainbow trout (Oncorhynchus mykiss) intestinal derived cell line (RTgutGC) was used as a surrogate for the "gut sac" method. To facilitate comparison, RTgutGC cells were grown as monolayers (double-seeded) on permeable Transwell supports leading to a two-compartment intestinal model consisting of polarised epithelium. This two-compartment model divides the system into an upper apical (lumen) and a lower basolateral (portal blood) compartment. In our studies, these cells stained weakly for mucosubstances, expressed the tight junction protein ZO-1 in addition to E-cadherin and revealed the presence of polarised epithelium in addition to microvilli protrusions. The cells also revealed a comparable transepithelial electrical resistance (TEER) to the in vivo situation. Importantly, the cell line tolerated apical saline (1:1 ratio) thus mimicking the intact organ to allow assessment of uptake of compounds across the intestine. Following an exposure over 72 h, our study demonstrated that the RTgutGC cell line under sub-lethal concentrations of copper sulphate (Cu) and modified saline solutions demonstrated uptake of the metal with saturation levels comparable to short term ex situ gut sac preparations. Gene expression analysis revealed no significant influence of pH or time on mRNA expression levels of key stress related genes (i.e. CYP3A, GST, mtA, Pgp and SOD) in the Transwell model. However, significant positive correlations were found between all genes investigated suggesting a co-operative relationship amongst the genes studied. When the outlined characteristics of the cell line are combined with the division of compartments, the RTgutGC double seeded model represents a potential animal replacement model for ecotoxicological studies. Overall, this model could be used to study the effects and predict aquatic gastrointestinal permeability of metals and other environmentally relevant contaminants in a cost effective and high throughput manner.
Collapse
Affiliation(s)
- Laura M Langan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Glenn M Harper
- Electron Microscopy Unit, Faculty of Science and Engineering, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Stewart F Owen
- AstraZeneca, Alderly Park, Macclesfield, Cheshire, SK10 4TF, UK
| | - Wendy M Purcell
- School of Biomedical and Health Care Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Simon K Jackson
- School of Biomedical and Health Care Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK.
| |
Collapse
|
127
|
Dobrzyńska MM, Pachocki KA, Owczarska K. DNA strand breaks in peripheral blood leucocytes of Polish blood donors. Mutagenesis 2017; 33:69-76. [DOI: 10.1093/mutage/gex024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 09/04/2017] [Indexed: 01/09/2023] Open
Affiliation(s)
- Małgorzata M Dobrzyńska
- Department of Radiation Hygiene and Radiobiology, National Institute of Public Health—National Institute of Hygiene, Warsaw, Poland
| | - Krzysztof A Pachocki
- Department of Radiation Hygiene, Central Laboratory for Radiological Protection, Warsaw, Poland
| | - Katarzyna Owczarska
- The Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Clinic of Diagnostic Oncology and Cardiooncology, Warsaw, Poland
| |
Collapse
|
128
|
Barreto A, Luis L, Soares A, Paíga P, Santos L, Delerue-Matos C, Hylland K, Loureiro S, Oliveira M. Genotoxicity of gemfibrozil in the gilthead seabream ( Sparus aurata ). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 821:36-42. [DOI: 10.1016/j.mrgentox.2017.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 01/26/2023]
|
129
|
Zhang YR, Li YY, Wang JY, Wang HW, Wang HN, Kang XM, Xu WQ. Synthesis and Characterization of a Rosmarinic Acid Derivative that Targets Mitochondria and Protects against Radiation-Induced Damage In Vitro. Radiat Res 2017; 188:264-275. [PMID: 28657498 DOI: 10.1667/rr14590.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Mitochondrial dysfunction plays an important role in gamma-radiation-induced mediating oxidative stress. Scavenging radiation-induced reactive oxygen species (ROS) can help mitochondria to maintain their physiological function. Rosmarinic acid is a polyphenol antioxidant that can scavenge radiation-induced ROS, but the structure prevents it from accumulating in mitochondria. In this study, we designed and synthesized a novel rosmarinic acid derivative (Mito-RA) that could use the mitochondrial membrane potential to enter the organelle and scavenge ROS. The DCFH-DA assay revealed that Mito-RA was more effective than rosmarinic acid at scavenging ROS. DNA double-strand breaks, chromosomal aberration, micronucleus and comet assays demonstrated the ability of Mito-RA to protect against radiation-induced oxidative stress in vitro. These findings demonstrate the potential of Mito-RA as an antioxidant, which can penetrate mitochondria, scavenge ROS and protect cells against radiation-induced oxidative damage.
Collapse
Affiliation(s)
- Yu-Rui Zhang
- a Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Yuan-Yuan Li
- a Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Jun-Ying Wang
- b Department of Physics, School of Sciences and Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Hua-Wei Wang
- a Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Hua-Nan Wang
- a Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xiao-Meng Kang
- a Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Wen-Qing Xu
- a Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
130
|
Dong S, Masalha N, Plewa MJ, Nguyen TH. Toxicity of Wastewater with Elevated Bromide and Iodide after Chlorination, Chloramination, or Ozonation Disinfection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9297-9304. [PMID: 28691804 DOI: 10.1021/acs.est.7b02345] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Water reuse is receiving unprecedented attention as many areas around the globe attempt to better-manage their fresh water resources. Wastewaters in coastal regions may contain elevated levels of bromide (Br-) and iodide (I-) from seawater intrusion or high mineral content in the source waters. Disinfection of such wastewater is essential to prevent the spread of pathogens; however, little is known about the toxicity of the treated wastewater. In this study, we evaluated the genotoxicity to Chinese hamster ovary (CHO) cells induced by municipal secondary wastewater effluent amended with elevated Br- and I- after disinfection by chlorine, chloramines, or ozone. We calibrated and applied an N-acetylcysteine (NAC) thiol reactivity assay as a surrogate for thiol reactivity with biological proteins (glutathione) of wastewater samples. Chlorination of wastewaters produced CHO cell genotoxicity comparable to chloramination, 3.9 times more genotoxic than the nondisinfected controls. Ozonated wastewater was at least 3 times less genotoxic than the samples treated with chlorine-based disinfectants and was not significantly different compared with the nondisinfected controls. Positive and significant correlations were observed among genotoxicity, cytotoxicity, and NAC thiol reactivity for all disinfected samples. These results indicate that the ozonation of wastewater with high Br- and I- levels may yield organics with lower genotoxicity to CHO cells than chlorine-based disinfection. NAC thiol reactivity, although excluding the possible effect of bromate from ozonation in this work, could be used as a rapid in chemico screen for potential genotoxicity and cytotoxicity in mammalian cells exposed to disinfected wastewaters.
Collapse
Affiliation(s)
- Shengkun Dong
- Department of Civil and Environmental Engineering, ‡Department of Crop Sciences, and §Safe Global Water Institute, University of Illinois , Urbana, Illinois 61801, United States
| | - Nedal Masalha
- Department of Civil and Environmental Engineering, ‡Department of Crop Sciences, and §Safe Global Water Institute, University of Illinois , Urbana, Illinois 61801, United States
| | - Michael J Plewa
- Department of Civil and Environmental Engineering, ‡Department of Crop Sciences, and §Safe Global Water Institute, University of Illinois , Urbana, Illinois 61801, United States
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, ‡Department of Crop Sciences, and §Safe Global Water Institute, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
131
|
Wagner ED, Plewa MJ. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review. J Environ Sci (China) 2017; 58:64-76. [PMID: 28774627 DOI: 10.1016/j.jes.2017.04.021] [Citation(s) in RCA: 474] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/25/2017] [Accepted: 04/20/2017] [Indexed: 05/07/2023]
Abstract
The disinfection of drinking water is an important public health service that generates high quality, safe and palatable tap water. The disinfection of drinking water to reduce waterborne disease was an outstanding public health achievement of the 20th century. An unintended consequence is the reaction of disinfectants with natural organic matter, anthropogenic contaminants and bromide/iodide to form disinfection by-products (DBPs). A large number of DBPs are cytotoxic, neurotoxic, mutagenic, genotoxic, carcinogenic and teratogenic. Epidemiological studies demonstrated low but significant associations between disinfected drinking water and adverse health effects. The distribution of DBPs in disinfected waters has been well defined by advances in high precision analytical chemistry. Progress in the analytical biology and toxicology of DBPs has been forthcoming. The objective of this review was to provide a detailed presentation of the methodology for the quantitative, comparative analyses on the induction of cytotoxicity and genotoxicity of 103 DBPs using an identical analytical biological platform and endpoints. A single Chinese hamster ovary cell line was employed in the assays. The data presented are derived from papers published in the literature as well as additional new data and represent the largest direct quantitative comparison on the toxic potency of both regulated and emerging DBPs. These data may form the foundation of novel research to define the major forcing agents of DBP-mediated toxicity in disinfected water and may play an important role in achieving the goal of making safe drinking water better.
Collapse
Affiliation(s)
- Elizabeth D Wagner
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 1101 W Peabody Dr., Urbana, IL 61801, United States; Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 W Peabody Dr., Urbana, IL 61801, United States.
| | - Michael J Plewa
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 1101 W Peabody Dr., Urbana, IL 61801, United States; Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 W Peabody Dr., Urbana, IL 61801, United States
| |
Collapse
|
132
|
Jeong CH, Machek EJ, Shakeri M, Duirk SE, Ternes TA, Richardson SD, Wagner ED, Plewa MJ. The impact of iodinated X-ray contrast agents on formation and toxicity of disinfection by-products in drinking water. J Environ Sci (China) 2017; 58:173-182. [PMID: 28774606 DOI: 10.1016/j.jes.2017.03.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
The presence of iodinated X-ray contrast media (ICM) in source waters is of high concern to public health because of their potential to generate highly toxic disinfection by-products (DBPs). The objective of this study was to determine the impact of ICM in source waters and the type of disinfectant on the overall toxicity of DBP mixtures and to determine which ICM and reaction conditions give rise to toxic by-products. Source waters collected from Akron, OH were treated with five different ICMs, including iopamidol, iopromide, iohexol, diatrizoate and iomeprol, with or without chlorine or chloramine disinfection. The reaction product mixtures were concentrated with XAD resins and the mammalian cell cytotoxicity and genotoxicity of the reaction mixture concentrates was measured. Water containing iopamidol generated an enhanced level of mammalian cell cytotoxicity and genotoxicity after disinfection. While chlorine disinfection with iopamidol resulted in the highest cytotoxicity overall, the relative iopamidol-mediated increase in toxicity was greater when chloramine was used as the disinfectant compared with chlorine. Four other ICMs (iopromide, iohexol, diatrizoate, and iomeprol) expressed some cytotoxicity over the control without any disinfection, and induced higher cytotoxicity when chlorinated. Only iohexol enhanced genotoxicity compared to the chlorinated source water.
Collapse
Affiliation(s)
- Clara H Jeong
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | - Edward J Machek
- Department of Civil Engineering, University of Akron, Akron, OH, USA
| | - Morteza Shakeri
- Department of Civil Engineering, University of Akron, Akron, OH, USA
| | - Stephen E Duirk
- Department of Civil Engineering, University of Akron, Akron, OH, USA
| | - Thomas A Ternes
- Department of Water Chemistry, Federal Institute of Hydrology, Koblenz, Germany
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Elizabeth D Wagner
- Department of Crop Sciences and the Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael J Plewa
- Department of Crop Sciences and the Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
133
|
Le Roux J, Plewa MJ, Wagner ED, Nihemaiti M, Dad A, Croué JP. Chloramination of wastewater effluent: Toxicity and formation of disinfection byproducts. J Environ Sci (China) 2017; 58:135-145. [PMID: 28774602 DOI: 10.1016/j.jes.2017.04.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/06/2017] [Accepted: 04/20/2017] [Indexed: 05/25/2023]
Abstract
The reclamation and disinfection of waters impacted by human activities (e.g., wastewater effluent discharges) are of growing interest for various applications but has been associated with the formation of toxic nitrogenous disinfection byproducts (N-DBPs). Monochloramine used as an alternative disinfectant to chlorine can be an additional source of nitrogen in the formation of N-DBPs. Individual toxicity assays have been performed on many DBPs, but few studies have been conducted with complex mixtures such as wastewater effluents. In this work, we compared the cytotoxicity and genotoxicity of wastewater effluent organic matter (EfOM) before and after chloramination. The toxicity of chloraminated EfOM was significantly higher than the toxicity of raw EfOM, and the more hydrophobic fraction (HPO) isolated on XAD-8 resin was more toxic than the fraction isolated on XAD-4 resin. More DBPs were also isolated on the XAD-8 resin. N-DBPs (i.e., haloacetonitriles or haloacetamides) were responsible for the majority of the cytotoxicity estimated from DBP concentrations measured in the XAD-8 and XAD-4 fractions (99.4% and 78.5%, respectively). Measured DBPs accounted for minor proportions of total brominated and chlorinated products, which means that many unknown halogenated compounds were formed and can be responsible for a significant part of the toxicity. Other non-halogenated byproducts (e.g., nitrosamines) may contribute to the toxicity of chloraminated effluents as well.
Collapse
Affiliation(s)
- Julien Le Roux
- LEESU (UMR MA 102), Université Paris-Est - AgroParisTech, 94010 Créteil Cedex, France.
| | - Michael J Plewa
- Department of Crop Sciences, the Global Safe Water Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Elizabeth D Wagner
- Department of Crop Sciences, the Global Safe Water Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Maolida Nihemaiti
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Azra Dad
- US Food and Drug Administration National Center for Toxicological Research, Jefferson, AR, 72079, United States
| | - Jean-Philippe Croué
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| |
Collapse
|
134
|
D'Costa A, Shyama SK, Praveen Kumar MK. Bioaccumulation of trace metals and total petroleum and genotoxicity responses in an edible fish population as indicators of marine pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:22-28. [PMID: 28384500 DOI: 10.1016/j.ecoenv.2017.03.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
The present study reports the genetic damage and the concentrations of trace metals and total petroleum hydrocarbons prevailing in natural populations of an edible fish, Arius arius in different seasons along the coast of Goa, India as an indicator of the pollution status of coastal water. Fish were collected from a suspected polluted site and a reference site in the pre-monsoon, monsoon and post-monsoon seasons. Physico-chemical parameters as well as the concentrations of total petroleum hydrocarbons (TPH) and trace metals in the water and sediment as well as the tissues of fish collected from these sites were recorded. The genotoxicity status of the fish was assessed employing the micronucleus test and comet assay. A positive correlation (p<0.001) was observed between the tail DNA and micronuclei in all the fish collected. Multiple regression analysis revealed that tissue and environmental pollutant concentrations and genotoxicity were positively associated and higher in the tissues of the fish collected from the polluted site. Pollution indicators and genotoxicity tests, combined with other physiological or biochemical parameters represent an essential integrated approach for efficient monitoring of aquatic ecosystems in Goa.
Collapse
Affiliation(s)
- Avelyno D'Costa
- Genetic Toxicology Laboratory, Department of Zoology, Goa University, Goa 403 206, India.
| | - S K Shyama
- Genetic Toxicology Laboratory, Department of Zoology, Goa University, Goa 403 206, India.
| | - M K Praveen Kumar
- Genetic Toxicology Laboratory, Department of Zoology, Goa University, Goa 403 206, India.
| |
Collapse
|
135
|
Rolland L, Courbiere B, Tassistro V, Sansoni A, Orsière T, Liu W, Di Giorgio C, Perrin J. Comet assay on thawed embryos: An optimized technique to evaluate DNA damage in mouse embryos. Toxicol In Vitro 2017; 44:266-272. [PMID: 28712879 DOI: 10.1016/j.tiv.2017.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
Abstract
Our objective was to optimize the CA technique on mammal embryos. MATERIALS AND METHODS 1000 frozen 2-cell embryos from B6CBA mice were used. Based on a literature review, and after checking post-thaw embryo viability, the main outcome measures included: 1) comparison of the embryo recovery rate between 2 CA protocols (2 agarose layers and 3 agarose layers); 2) comparison of DNA damage by the CA on embryos with (ZP+) and without (ZP-) zona pellucida; and 3) comparison of DNA damage in embryos exposed to 2 genotoxic agents (H2O2 and simulated sunlight irradiation (SSI)). DNA damage was quantified by the % tail DNA. RESULTS 1) The recovery rate was 3,3% (n=5/150) with the 2 agarose layers protocol and 71,3% (n=266/371) with the 3 agarose layers protocol. 2) DNA damage did not differ statistically significantly between ZP- and ZP+ embryos (12.60±2.53% Tail DNA vs 11.04±1.50 (p=0.583) for the control group and 49.23±4.16 vs 41.13±4.31 (p=0.182) for the H2O2 group); 3) H2O2 and SSI induced a statistically significant increase in DNA damage compared with the control group (41.13±4.31% Tail DNA, 36.33±3.02 and 11.04±1.50 (p<0.0001)). The CA on mammal embryos was optimized by using thawed embryos, by avoiding ZP removal and by the adjunction of a third agarose layer.
Collapse
Affiliation(s)
- L Rolland
- Department of Gynecology, Obstetrics and Reproductive Medicine, AP-HM La Conception, Pôle femmes parents enfants, 147 bd Baille, 13005 Marseille, France; Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille Univ, CNRS, IRD, Univ Avignon, Marseille, France
| | - B Courbiere
- Department of Gynecology, Obstetrics and Reproductive Medicine, AP-HM La Conception, Pôle femmes parents enfants, 147 bd Baille, 13005 Marseille, France; Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille Univ, CNRS, IRD, Univ Avignon, Marseille, France.
| | - V Tassistro
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille Univ, CNRS, IRD, Univ Avignon, Marseille, France.
| | - A Sansoni
- Centre d'Immunophénomique - CIPHE, PHENOMIN, INSERM US012, CNRS UMS3367, UM2 Aix-Marseille Université Marseille, France.
| | - T Orsière
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille Univ, CNRS, IRD, Univ Avignon, Marseille, France.
| | - W Liu
- CNRS, Aix Marseille Univ, IRD, CEREGE UM34, UMR 7330, 13545 Aix en Provence, France.
| | - C Di Giorgio
- Laboratoire de mutagagénèse environnementale, Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Marseille, France.
| | - J Perrin
- Department of Gynecology, Obstetrics and Reproductive Medicine, AP-HM La Conception, Pôle femmes parents enfants, 147 bd Baille, 13005 Marseille, France; Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille Univ, CNRS, IRD, Univ Avignon, Marseille, France; CECOS, Laboratory of Reproductive Biology, Department of Gynecology, Obstetric and Reproductive Medicine, Pôle femmes parents enfants, AP-HM La Conception, 147 bd Baille, 13005 Marseille, France.
| |
Collapse
|
136
|
Ronci L, De Matthaeis E, Chimenti C, Davolos D. Arsenic-contaminated freshwater: assessing arsenate and arsenite toxicity and low-dose genotoxicity in Gammarus elvirae (Crustacea; Amphipoda). ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:581-588. [PMID: 28332024 DOI: 10.1007/s10646-017-1791-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
Arsenic (As) contamination of freshwater is largely due to geogenic processes, but As is also released into the environment because of improper anthropic activities. The European regulatory limits in drinking water are of 10 μg L-1 As. However, knowledge of the genotoxic effects induced by low doses of As in freshwater environments is still scanty. This study was designed to investigate arsenate (As(V)) and arsenite (As(III)) toxicity and low-dose genotoxicity in Gammarus elvirae, which has proved to be a useful organism for genotoxicity assays in freshwater. As(V) and As(III) toxicity was assessed on the basis of the median lethal concentration, LC(50), while estimates of DNA damage were based on the Comet assay. The G. elvirae LC (50-240 h) value we calculated was 1.55 mg L-1 for As(V) and 1.72 mg L-1 for As(III). Arsenic exposure (240 h) at 5, 10, and 50 µg L-1 of As in assays with either arsenate or arsenite-induced DNA damage in hemocytes of G. elvirae in a concentration-dependent manner. Our study provides a basis for future genotoxic research on exposure to freshwater that contains low levels of arsenic.
Collapse
Affiliation(s)
- Lucilla Ronci
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Viale dell'Università 32, Rome, Italy
| | - Elvira De Matthaeis
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Viale dell'Università 32, Rome, Italy
| | - Claudio Chimenti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Viale dell'Università 32, Rome, Italy
| | - Domenico Davolos
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Viale dell'Università 32, Rome, Italy.
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, INAIL, Research Area, Via R. Ferruzzi 38/40, Rome, Italy.
| |
Collapse
|
137
|
Frenzilli G, Ryskalin L, Ferrucci M, Cantafora E, Chelazzi S, Giorgi FS, Lenzi P, Scarcelli V, Frati A, Biagioni F, Gambardella S, Falleni A, Fornai F. Loud Noise Exposure Produces DNA, Neurotransmitter and Morphological Damage within Specific Brain Areas. Front Neuroanat 2017; 11:49. [PMID: 28694773 PMCID: PMC5483448 DOI: 10.3389/fnana.2017.00049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022] Open
Abstract
Exposure to loud noise is a major environmental threat to public health. Loud noise exposure, apart from affecting the inner ear, is deleterious for cardiovascular, endocrine and nervous systems and it is associated with neuropsychiatric disorders. In this study we investigated DNA, neurotransmitters and immune-histochemical alterations induced by exposure to loud noise in three major brain areas (cerebellum, hippocampus, striatum) of Wistar rats. Rats were exposed to loud noise (100 dBA) for 12 h. The effects of noise on DNA integrity in all three brain areas were evaluated by using Comet assay. In parallel studies, brain monoamine levels and morphology of nigrostriatal pathways, hippocampus and cerebellum were analyzed at different time intervals (24 h and 7 days) after noise exposure. Loud noise produced a sudden increase in DNA damage in all the brain areas under investigation. Monoamine levels detected at 7 days following exposure were differently affected depending on the specific brain area. Namely, striatal but not hippocampal dopamine (DA) significantly decreased, whereas hippocampal and cerebellar noradrenaline (NA) was significantly reduced. This is in line with pathological findings within striatum and hippocampus consisting of a decrease in striatal tyrosine hydroxylase (TH) combined with increased Bax and glial fibrillary acidic protein (GFAP). Loud noise exposure lasting 12 h causes immediate DNA, and long-lasting neurotransmitter and immune-histochemical alterations within specific brain areas of the rat. These alterations may suggest an anatomical and functional link to explain the neurobiology of diseases which prevail in human subjects exposed to environmental noise.
Collapse
Affiliation(s)
- Giada Frenzilli
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Emanuela Cantafora
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Silvia Chelazzi
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Filippo S Giorgi
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Vittoria Scarcelli
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Alessandro Frati
- Istituto di Ricovero e Cura a Carattere Scientifico IRCCS NeuromedIsernia, Italy
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico IRCCS NeuromedIsernia, Italy
| | - Stefano Gambardella
- Istituto di Ricovero e Cura a Carattere Scientifico IRCCS NeuromedIsernia, Italy
| | - Alessandra Falleni
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico IRCCS NeuromedIsernia, Italy
| |
Collapse
|
138
|
MicroRNAs Modulate Oxidative Stress in Hypertension through PARP-1 Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3984280. [PMID: 28660007 PMCID: PMC5474262 DOI: 10.1155/2017/3984280] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023]
Abstract
Oxidative stress is thought to contribute to aging and age-related diseases, such as cardiovascular and neurodegenerative diseases, and is a risk factor for systemic arterial hypertension. Previously, we reported differential mRNA and microRNA (miRNA) expression between African American (AA) and white women with hypertension. Here, we found that the poly-(ADP-ribose) polymerase 1 (PARP-1), a DNA damage sensor protein involved in DNA repair and other cellular processes, is upregulated in AA women with hypertension. To explore this mechanism, we identified two miRNAs, miR-103a-2-5p and miR-585-5p, that are differentially expressed with hypertension and were predicted to target PARP1. Through overexpression of each miRNA-downregulated PARP-1 mRNA and protein levels and using heterologous luciferase reporter assays, we demonstrate that miR-103a-2-5p and miR-585-5p regulate PARP1 through binding within the coding region. Given the important role of PARP-1 in DNA repair, we assessed whether overexpression of miR-103a-2-5p or miR-585-5p affected DNA damage and cell survival. Overexpression of these miRNAs enhanced DNA damage and decreased both cell survival and colony formation. These findings highlight the role for PARP-1 in regulating oxidative DNA damage in hypertension and identify important new miRNA regulators of PARP-1 expression. These insights may provide additional avenues to understand hypertension health disparities.
Collapse
|
139
|
2-Nitroanisole-induced oxidative DNA damage in Salmonella typhimurium and in rat urinary bladder cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 816-817:18-23. [PMID: 28464992 DOI: 10.1016/j.mrgentox.2017.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/24/2017] [Accepted: 03/21/2017] [Indexed: 11/21/2022]
Abstract
2-Nitroanisole (2-NA) is used in the manufacturing of azo dyes and causes cancer, mainly in the urinary bladder. Previous in vivo genotoxic data seems to be insufficient to explain the mechanism through which 2-NA induces carcinogenesis, and several bladder carcinogens were reported to induce oxidative DNA damage. Thus, we examined the potential induction of oxidative DNA damage by 2-NA using bacterial strain YG3008, a mutMST-deficient derivative of strain TA100. Consequently, strain YG3008, when compared with strain TA100, was found to be more sensitive to 2-NA, indicating oxidative DNA damage in bacterial cells. For further investigation, we performed the comet assay using the urinary bladder and liver of rats, with and without human 8-oxoguanine DNA-glycosylase 1 (hOGG1), to confirm the potential of 2-NA for inducing oxidative DNA damage. Simultaneously, we conducted a micronucleus test using bone marrow from rats to assess the genotoxicity of 2-NA in vivo. 2-NA was administered orally to male Fischer 344 rats for 3 consecutive days. The rats were divided into 6 treatment groups: 3 groups treated with 2-NA at doses of 125, 250, and 500mg/kg; a group treated with the combination of 2-NA and glutathione-SH (GSH); a negative control group; and a positive control group. The comet assay without hOGG1 detected no DNA damage in the liver or urinary bladder, and the micronucleus test did not show clastogenic effects in bone marrow cells. However, the comet assay with hOGG1 was positive in the urinary bladder samples, indicating the induction of oxidative DNA damage in the urinary bladder for the group treated with 2-NA at 500mg/kg. Moreover, an antioxidant of GSH significantly reduced oxidative DNA damage caused by 2-NA. These results indicate that oxidative DNA damage is a possible mode of action for carcinogenesis in the urinary bladder of rats treated with 2-NA.
Collapse
|
140
|
Polyalthia longifolia Methanolic Leaf Extracts (PLME) induce apoptosis, cell cycle arrest and mitochondrial potential depolarization by possibly modulating the redox status in hela cells. Biomed Pharmacother 2017; 89:499-514. [DOI: 10.1016/j.biopha.2017.02.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/23/2022] Open
|
141
|
Zengin G, Ceylan R, Katanić J, Mollica A, Aktumsek A, Boroja T, Matić S, Mihailović V, Stanić S, Aumeeruddy-Elalfi Z, Yilmaz MA, Mahomoodally MF. Combining in vitro, in vivo and in silico approaches to evaluate nutraceutical potentials and chemical fingerprints of Moltkia aurea and Moltkia coerulea. Food Chem Toxicol 2017; 107:540-553. [PMID: 28390858 DOI: 10.1016/j.fct.2017.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/02/2017] [Accepted: 04/04/2017] [Indexed: 12/11/2022]
Abstract
Methanolic extracts of Moltkia aurea Boiss. (MA) and Moltkia coerulea (Willd.) Lehm. (MC) were investigated for their antioxidant capacity and enzymatic inhibitory potential against acetylcholinesterase, butyrylcholinesterase, α-amylase, α-glucosidase, and tyrosinase in vitro. MA and MC were also explored for their antimicrobial effect, as well as for their possible genotoxic/antigenotoxic potential on Drosophila melanogaster in vivo. The total bioactive components (phenolic (TPC) and flavonoid contents (TFC)) were determined and liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolite profiling of MA and MC appraised. The plausible docking poses of bioactive compounds to key enzymes were further studied using molecular modelling approach. MA proved to be a better antioxidant with higher TPC and TFC compared to MC. Protocatechuic acid, rutin, hesperidin and malic acid were the most abundant in these extracts. Both MA and MC exhibited antigenotoxic potential with a %R in DNA damage of 60.90 and 53.14% respectively. The docking studies revealed that rutin, hesperidin, and rosmarinic acid have the best scores for all the enzymes tested. MA and MC were found to be rich in phytochemicals with potent antioxidant, antimicrobial, and antigenotoxic activities that can be further studied for the management of neurodegenerative complications, diabetes, and hyperpigmentation.
Collapse
Affiliation(s)
- Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey
| | - Ramazan Ceylan
- Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey.
| | - Jelena Katanić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, Kragujevac, Serbia
| | - Adriano Mollica
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Abdurrahman Aktumsek
- Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey
| | - Tatjana Boroja
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, Kragujevac, Serbia
| | - Sanja Matić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, Kragujevac, Serbia
| | - Vladimir Mihailović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, Kragujevac, Serbia
| | - Snežana Stanić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, Kragujevac, Serbia
| | | | - Mustafa Abdullah Yilmaz
- Research and Application of Science and Technology Center (DUBTAM), University of Dicle, Diyarbakır, Turkey
| | | |
Collapse
|
142
|
Bernabò P, Gaglio M, Bellamoli F, Viero G, Lencioni V. DNA damage and translational response during detoxification from copper exposure in a wild population of Chironomus riparius. CHEMOSPHERE 2017; 173:235-244. [PMID: 28110013 DOI: 10.1016/j.chemosphere.2017.01.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/20/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
Copper is one of the predominant components of pesticides employed in agriculture and known to be highly toxic once it reaches aquatic organisms. The impact of sublethal concentrations of this metal on wild insects is not yet completely understood. Studies addressing alterations in different levels of gene expression are still lacking. We previously demonstrated that in a wild population of Chironomus riparius, HSP and CYP families of genes were up-regulated at the transcriptional level after copper exposure. Here, we analyse the impact of copper at the genomic, translational and protein functional level, obtaining a comprehensive picture of the molecular reply to this metal. We studied genotoxicity in C. riparius larvae by Comet Assay, the translational response by polysomal profiling and the detoxification capacity by the CYP450 enzymes activity. Fourth-instar larvae from a mountain stream polluted by agricultural land run-off (NE-Italy) were exposed for 3 h copper concentrations ≤ LC50. We report DNA damage induced by copper, even at sublethal levels, as demonstrated by significant increases in all the comet parameters at concentrations ≥1 mg L-1. By estimating the transcript-specific translational efficiency, we observe a specific up-regulation of CYP4G. Furthermore, the enzymatic activity of CYP450 enzymes is increased at all sublethal copper concentrations, confirming the role of this protein family in the detoxification processes. Surprisingly, the HSP transcripts are up-regulated at the transcriptional level, but these changes are buffered at the translational level suggesting the existence of still unknown post-transcriptional controls that may be connected to survival processes.
Collapse
Affiliation(s)
- Paola Bernabò
- Centre for Integrative Biology, University of Trento, Via Sommarive n. 9, 38123, Povo (TN), Trento, Italy; Institute of Biophysics - CNR - Trento Unit, Via Sommarive 18, 38123, Povo, Trento, Italy; Section of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza 3, 38123 Trento, Italy
| | - Matteo Gaglio
- Institute of Biophysics - CNR - Trento Unit, Via Sommarive 18, 38123, Povo, Trento, Italy
| | - Francesco Bellamoli
- Section of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza 3, 38123 Trento, Italy
| | - Gabriella Viero
- Institute of Biophysics - CNR - Trento Unit, Via Sommarive 18, 38123, Povo, Trento, Italy
| | - Valeria Lencioni
- Section of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza 3, 38123 Trento, Italy.
| |
Collapse
|
143
|
Moreno-Fernandez J, Diaz-Castro J, Alférez MJ, Boesch C, Nestares T, López-Aliaga I. Fermented goat milk improves antioxidant status and protects from oxidative damage to biomolecules during anemia recovery. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1433-1442. [PMID: 27380761 DOI: 10.1002/jsfa.7882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/02/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Iron deficiency anemia (IDA) is one of the most common nutritional problems in the world, and it is accepted that reactive oxygen species (ROS) production is altered during IDA. The aim of this study was to assess the influence of fermented goat and cow milks on enzymatic antioxidant activities and gene expression, and their role in protecting from oxidative damage during anemia recovery. RESULTS After feeding the fermented milks-based diets (cow or goat), a significant elevation of some antioxidant endogenous enzymes was found, together with an increase in total antioxidant status (TAS), and a decrease in 8-hydroxy-2'-deoxyguanosine (8-OHdG) was recorded in animals consuming fermented goat milk-based diet. In contrast, DNA strand breaks, hydroperoxides, 15-F2t-isoprostanes and protein carbonyl groups were lower in some tissues in animals fed fermented goat milk-based diet, revealing an improvement in both systemic and cellular antioxidant activity of plasma and tissues due to fermented goat milk consumption. CONCLUSION Fermented goat milk consumption induces a protective increase in TAS together with lower oxidative damage biomarkers, revealing that the milk protects main cell bioconstituents (lipids, protein, DNA, prostaglandins) from evoked oxidative damage during anemia recovery. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jorge Moreno-Fernandez
- Department of Physiology, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix Verdú', University of Granada, Granada, Spain
| | - Javier Diaz-Castro
- Department of Physiology, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix Verdú', University of Granada, Granada, Spain
| | - María Jm Alférez
- Department of Physiology, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix Verdú', University of Granada, Granada, Spain
| | - Christine Boesch
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Teresa Nestares
- Department of Physiology, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix Verdú', University of Granada, Granada, Spain
| | - Inmaculada López-Aliaga
- Department of Physiology, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix Verdú', University of Granada, Granada, Spain
| |
Collapse
|
144
|
Zhang H, Wu H, Yang J, Ye J. Sodium perbarate and benzalkonium chloride induce DNA damage in Chang conjunctival epithelial cells. Cutan Ocul Toxicol 2017; 36:336-342. [PMID: 28166658 DOI: 10.1080/15569527.2017.1291664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Content and objective: To investigate and compare the toxic effects of benzalkonium chloride (BAC) and new type oxidative preservative sodium perborate (NaBO3) on DNA damage, reactive oxygen species (ROS), and cell survival in immortalized human Chang conjunctival cells. MATERIALS AND METHODS Cells were exposed to BAC and NaBO3 in concentrations of 0.00001-0.001% for 30 min. Cell viability was measured by the MTT test. Alkaline comet assay was used to detect DNA damage. Mitochondrial membrane potential (MMP), cell apoptosis, and ROS production were detected by flow cytometry analysis. RESULTS Significant changes in the relative cell survival rate in cells were observed after exposure to 0.0005-0.001% BAC for 30 min (p < 0.001). DNA damage and intracellular ROS were observed in a dose-dependent manner with BAC exposure (p < 0.001). However, 0.001% BAC induced less ROS than 0.0005% BAC. A decrease in MMP was also recorded. NaBO3 did not induce the decrease in cell survival and MMP in low concentration but could induce DNA damage and ROS generation in a 0.001% concentration (p < 0.001). DISCUSSION AND CONCLUSIONS BAC can induce DNA damage in human conjunctival epithelial cells; this effect may be related to oxidative stress. Although NaBO3 did not induce a significant decrease in cell survival and MMP, DNA damage and ROS generation were still detected in high concentration. New type oxidative preservative has less toxicity than the old type, but it still has the tendency of producing genotoxic changes in an in vitro test system.
Collapse
Affiliation(s)
- Huina Zhang
- a Department of Ophthalmology , The second Affiliated Hospital of Zhejiang University, College of Medicine , Hangzhou , China and
| | - Han Wu
- a Department of Ophthalmology , The second Affiliated Hospital of Zhejiang University, College of Medicine , Hangzhou , China and
| | - Jun Yang
- b Department of Toxicology , Hangzhou Normal University School of Public Health , Hangzhou , China
| | - Juan Ye
- a Department of Ophthalmology , The second Affiliated Hospital of Zhejiang University, College of Medicine , Hangzhou , China and
| |
Collapse
|
145
|
Lemos J, Neuparth T, Trigo M, Costa P, Vieira D, Cunha L, Ponte F, Costa PS, Metello LF, Carvalho AP. Single Low-Dose Ionizing Radiation Induces Genotoxicity in Adult Zebrafish and its Non-Irradiated Progeny. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 98:190-195. [PMID: 28025689 DOI: 10.1007/s00128-016-2006-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
This study investigated to what extent a single exposure to low doses of ionizing radiation can induce genotoxic damage in irradiated adult zebrafish (Danio rerio) and its non-irradiated F1 progeny. Four groups of adult zebrafish were irradiated with a single dose of X-rays at 0 (control), 100, 500 and 1000 mGy, respectively, and couples of each group were allowed to reproduce following irradiation. Blood of parental fish and whole-body offspring were analysed by the comet assay for detection of DNA damage. The level of DNA damage in irradiated parental fish increased in a radiation dose-dependent manner at day 1 post-irradiation, but returned to the control level thereafter. The level of DNA damage in the progeny was directly correlated with the parental irradiation dose. Results highlight the genotoxic risk of a single exposure to low-dose ionizing radiation in irradiated individuals and also in its non-irradiated progeny.
Collapse
Affiliation(s)
- J Lemos
- ICBAS - Institute of Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
- Nuclear Medicine Department, High Institute for Allied Health Technologies of Porto - Polytechnic Institute of Porto (ESTSP.IPP), Rua Valente Perfeito 322, 4400-330, Vila Nova de Gaia, Portugal
| | - T Neuparth
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
| | - M Trigo
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - P Costa
- Nuclear Medicine Department, High Institute for Allied Health Technologies of Porto - Polytechnic Institute of Porto (ESTSP.IPP), Rua Valente Perfeito 322, 4400-330, Vila Nova de Gaia, Portugal
| | - D Vieira
- Nuclear Medicine Department, High Institute for Allied Health Technologies of Porto - Polytechnic Institute of Porto (ESTSP.IPP), Rua Valente Perfeito 322, 4400-330, Vila Nova de Gaia, Portugal
| | - L Cunha
- IsoPor SA, PO box 4028, 4445, Ermesinde, Portugal
| | - F Ponte
- Radiotherapy Deptartment, Júlio Teixeira SA, Rua Arquitecto Cassiano Barbosa 6, F, Sala 26, 4100-009, Porto, Portugal
| | - P S Costa
- Radiotherapy Deptartment, Júlio Teixeira SA, Rua Arquitecto Cassiano Barbosa 6, F, Sala 26, 4100-009, Porto, Portugal
| | - L F Metello
- Nuclear Medicine Department, High Institute for Allied Health Technologies of Porto - Polytechnic Institute of Porto (ESTSP.IPP), Rua Valente Perfeito 322, 4400-330, Vila Nova de Gaia, Portugal
- IsoPor SA, PO box 4028, 4445, Ermesinde, Portugal
| | - A P Carvalho
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
146
|
Rouamba A, Ouedraogo M, Kiendrebeogo M. Antioxidant capacity and genoprotective effect of ethanol fruit extract from Detarium microcarpum Guill. and Perr. (Caesalpiniaceae). Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2016.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
147
|
Ramadass K, Palanisami T, Smith E, Mayilswami S, Megharaj M, Naidu R. Earthworm Comet Assay for Assessing the Risk of Weathered Petroleum Hydrocarbon Contaminated Soils: Need to Look Further than Target Contaminants. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 71:561-571. [PMID: 27722931 DOI: 10.1007/s00244-016-0318-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Earthworm toxicity assays contribute to ecological risk assessment and consequently standard toxicological endpoints, such as mortality and reproduction, are regularly estimated. These endpoints are not enough to better understand the mechanism of toxic pollutants. We employed an additional endpoint in the earthworm Eisenia andrei to estimate the pollutant-induced stress. In this study, comet assay was used as an additional endpoint to evaluate the genotoxicity of weathered hydrocarbon contaminated soils containing 520 to 1450 mg hydrocarbons kg-1 soil. Results showed that significantly higher DNA damage levels (two to sixfold higher) in earthworms exposed to hydrocarbon impacted soils. Interestingly, hydrocarbons levels in the tested soils were well below site-specific screening guideline values. In order to explore the reasons for observed toxicity, the contaminated soils were leached with rainwater and subjected to earthworm tests, including the comet assay, which showed no DNA damage. Soluble hydrocarbon fractions were not found originally in the soils and hence no hydrocarbons leached out during soil leaching. The soil leachate's Electrical Conductivity (EC) decreased from an average of 1665 ± 147 to 204 ± 20 µS cm-1. Decreased EC is due to the loss of sodium, magnesium, calcium, and sulphate. The leachate experiment demonstrated that elevated salinity might cause the toxicity and not the weathered hydrocarbons. Soil leaching removed the toxicity, which is substantiated by the comet assay and soil leachate analysis data. The implication is that earthworm comet assay can be included in future eco (geno) toxicology studies to assess accurately the risk of contaminated soils.
Collapse
Affiliation(s)
- Kavitha Ramadass
- Centre for Environmental Risk Assessment and Remediation (Changed as Future Industries Institute), University of South Australia, Environmental Sciences Building, Mawson Lakes, Adelaide, SA, 5095, Australia.
| | - Thavamani Palanisami
- Global Centre for Environmental Research (GCER), University of Newcastle, ATC Building, Callaghan, Newcastle, NSW, 2308, Australia
- CRC for Contamination Assessment and Remediation of the Environment, University of Newcastle, ATC Building, Callaghan, Newcastle, NSW, 2308, Australia
| | - Euan Smith
- Centre for Environmental Risk Assessment and Remediation (Changed as Future Industries Institute), University of South Australia, Environmental Sciences Building, Mawson Lakes, Adelaide, SA, 5095, Australia
| | - Srinithi Mayilswami
- Centre for Environmental Risk Assessment and Remediation (Changed as Future Industries Institute), University of South Australia, Environmental Sciences Building, Mawson Lakes, Adelaide, SA, 5095, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Research (GCER), University of Newcastle, ATC Building, Callaghan, Newcastle, NSW, 2308, Australia
- CRC for Contamination Assessment and Remediation of the Environment, University of Newcastle, ATC Building, Callaghan, Newcastle, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Research (GCER), University of Newcastle, ATC Building, Callaghan, Newcastle, NSW, 2308, Australia
- CRC for Contamination Assessment and Remediation of the Environment, University of Newcastle, ATC Building, Callaghan, Newcastle, NSW, 2308, Australia
| |
Collapse
|
148
|
Nayak D, Kumari M, Rajachandar S, Ashe S, Thathapudi NC, Nayak B. Biofilm Impeding AgNPs Target Skin Carcinoma by Inducing Mitochondrial Membrane Depolarization Mediated through ROS Production. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28538-28553. [PMID: 27715004 DOI: 10.1021/acsami.6b11391] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Reactive oxygen species (ROS) are a double-edged sword that possesses both beneficial and harmful effects. Although basic research on skin cancer prevention has undergone a huge transformation, cases of recurrence with higher rates of drug resistance are some of its drawbacks. Therefore, targeting mitochondria by ROS overproduction provides an alternate approach for anticancer therapy. In the present study, green-synthesized silver nanoparticles (AgNPs) were explored for triggering the ROS production in A431 skin carcinoma cells. The synthesized AgNPs were characterized for size, charge, morphology, and phase through high-throughput DLS, Fe-SEM, XRD, and ATR-FTIR techniques. Their physiochemical properties with hemoglobin and blood plasma were screened through hemolysis, hemagglutination assay, and circular dichroism spectroscopy confirmed their nontoxic nature. The AgNPs also exhibited additional efficacy in inhibiting biofilm produced by V. cholerae and B. subtilis, thereby facilitating better applicability in wound-healing biomaterials. The depolarization of mitochondrial membrane potential ΔΨm through excess ROS production was deduced to be the triggering force behind the apoptotic cell death mechanism of the skin carcinoma. Subsequent experimentation through DNA fragmentation, comet tail formation, cell membrane blebbing, and reduced invasiveness potentials through scratch assay confirmed the physiological hallmarks of apoptosis. Thus, depolarizing mitochondrial membrane potential through green-synthesized AgNPs provides an economic, nontoxic, specific approach for targeting skin carcinoma with additional benefits of antibacterial activities.
Collapse
Affiliation(s)
- Debasis Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| | - Manisha Kumari
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| | - Sripathi Rajachandar
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| | - Sarbani Ashe
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| | - Neethi Chandra Thathapudi
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| |
Collapse
|
149
|
Di Y, Aminot Y, Schroeder DC, Readman JW, Jha AN. Integrated biological responses and tissue-specific expression of p53 and ras genes in marine mussels following exposure to benzo(α)pyrene and C60 fullerenes, either alone or in combination. Mutagenesis 2016; 32:77-90. [PMID: 28011749 DOI: 10.1093/mutage/gew049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We used the marine bivalve (Mytilus galloprovincialis) to assess a range of biological or biomarker responses following exposure to a model-engineered nanoparticle, C60 fullerene, either alone or in combination with a model polycyclic aromatic hydrocarbon, benzo(α)pyrene [B(α)P]. An integrated biomarker approach was used that included: (i) determination of 'clearance rates' (a physiological indicator at individual level), (ii) histopathological alterations (at tissue level), (iii) DNA strand breaks using the comet assay (at cellular level) and (iv) transcriptional alterations of p53 (anti-oncogene) and ras (oncogene) determined by real-time quantitative polymerase chain reaction (at the molecular/genetic level). In addition, total glutathione in the digestive gland was measured as a proxy for oxidative stress. Here, we report that mussels showed no significant changes in 'clearance rates' after 1 day exposure, however significant increases in 'clearance rates' were found following exposure for 3 days. Histopathology on selected organs (i.e. gills, digestive glands, adductor muscles and mantles) showed increased occurrence of abnormalities in all tissues types, although not all the exposed organisms showed these abnormalities. Significantly, increased levels of DNA strand breaks were found after exposure for 3-days in most individuals tested. In addition, a significant induction for p53 and ras expression was observed in a tissue and chemical-specific pattern, although large amounts of inter-individual variability, compared with other biomarkers, were clearly apparent. Overall, biological responses at different levels showed variable sensitivity, with DNA strand breaks and gene expression alterations exhibiting higher sensitivities. Furthermore, the observed genotoxic responses were reversible after a recovery period, suggesting the ability of mussels to cope with the toxicants C60 and/or B(α)P under our experimental conditions. Overall, in this comprehensive study, we have demonstrated mussels as a suitable model marine invertebrate species to study the potential detrimental effects induced by possible genotoxicants and toxicants, either alone or in combinations at different levels of biological organisation (i.e. molecular to individual levels).
Collapse
Affiliation(s)
- Yanan Di
- School of Biological Sciences and.,Present address: Institute of Marine Biology, Ocean College, Zhejiang University, People's Republic of China
| | - Yann Aminot
- School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, PL4 8AA, UK
| | - Declan C Schroeder
- Marine Biological Association of the United Kingdom (MBA), Citadel Hill, Plymouth, PL1 2PB, UK and
| | - James W Readman
- School of Biological Sciences and.,School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, PL4 8AA, UK.,Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | | |
Collapse
|
150
|
Liu YK, Deng XX, Yang HL. Cytotoxicity and genotoxicity in liver cells induced by cobalt nanoparticles and ions. Bone Joint Res 2016; 5:461-469. [PMID: 27754833 PMCID: PMC5075796 DOI: 10.1302/2046-3758.510.bjr-2016-0016.r1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 07/04/2016] [Indexed: 12/12/2022] Open
Abstract
Objectives The cytotoxicity induced by cobalt ions (Co2+) and cobalt nanoparticles (Co-NPs) which released following the insertion of a total hip prosthesis, has been reported. However, little is known about the underlying mechanisms. In this study, we investigate the toxic effect of Co2+ and Co-NPs on liver cells, and explain further the potential mechanisms. Methods Co-NPs were characterised for size, shape, elemental analysis, and hydrodynamic diameter, and were assessed by Transmission Electron Microscope, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy and Dynamic Light Scattering. BRL-3A cells were used in this study. Cytotoxicity was evaluated by MTT and lactate dehydrogenase release assay. In order to clarify the potential mechanisms, reactive oxygen species, Bax/Bcl-2 mRNA expression, IL-8 mRNA expression and DNA damage were assessed on BRL-3A cells after Co2+ or Co-NPs treatment. Results Results showed cytotoxic effects of Co2+ and Co-NPs were dependent upon time and dosage, and the cytotoxicity of Co-NPs was greater than that of Co2+. In addition, Co-NPs elicited a significant (p < 0.05) reduction in cell viability with a concomitant increase in lactic dehydrogenase release, reactive oxygen species generation, IL-8 mRNA expression, Bax/Bcl-2 mRNA expression and DNA damage after 24 hours of exposure. Conclusion Co-NPs induced greater cytotoxicity and genotoxicity in BRL-3A cells than Co2+. Cell membrane damage, oxidative stress, immune inflammation and DNA damage may play an important role in the effects of Co-NPs on liver cells. Cite this article: Y. K. Liu, X. X. Deng, H.L. Yang. Cytotoxicity and genotoxicity in liver cells induced by cobalt nanoparticles and ions. Bone Joint Res 2016;5:461–469. DOI: 10.1302/2046-3758.510.BJR-2016-0016.R1.
Collapse
Affiliation(s)
- Y K Liu
- Department of Orthopaedics, The Affiliated Hospital to Soochow University, Jiangsu, China
| | - X X Deng
- Department of Orthopaedics, The Affiliated Hospital to Soochow University, Jiangsu, China
| | - H L Yang
- The Affiliated Hospital to Nantong University, Jiangsu, China
| |
Collapse
|