101
|
Rupp AC, Ren M, Altimus CM, Fernandez DC, Richardson M, Turek F, Hattar S, Schmidt TM. Distinct ipRGC subpopulations mediate light's acute and circadian effects on body temperature and sleep. eLife 2019; 8:e44358. [PMID: 31333190 PMCID: PMC6650245 DOI: 10.7554/elife.44358] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/18/2019] [Indexed: 12/16/2022] Open
Abstract
The light environment greatly impacts human alertness, mood, and cognition by both acute regulation of physiology and indirect alignment of circadian rhythms. These processes require the melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs), but the relevant downstream brain areas involved remain elusive. ipRGCs project widely in the brain, including to the central circadian pacemaker, the suprachiasmatic nucleus (SCN). Here we show that body temperature and sleep responses to acute light exposure are absent after genetic ablation of all ipRGCs except a subpopulation that projects to the SCN. Furthermore, by chemogenetic activation of the ipRGCs that avoid the SCN, we show that these cells are sufficient for acute changes in body temperature. Our results challenge the idea that the SCN is a major relay for the acute effects of light on non-image forming behaviors and identify the sensory cells that initiate light's profound effects on body temperature and sleep.
Collapse
Affiliation(s)
- Alan C Rupp
- Department of BiologyJohns Hopkins UniversityBaltimoreUnited States
| | - Michelle Ren
- Department of NeurobiologyNorthwestern UniversityEvanstonUnited States
| | - Cara M Altimus
- Department of BiologyJohns Hopkins UniversityBaltimoreUnited States
| | | | | | - Fred Turek
- Department of NeurobiologyNorthwestern UniversityEvanstonUnited States
| | - Samer Hattar
- Department of BiologyJohns Hopkins UniversityBaltimoreUnited States
- Department of NeuroscienceJohns Hopkins UniversityBaltimoreUnited States
| | - Tiffany M Schmidt
- Department of NeurobiologyNorthwestern UniversityEvanstonUnited States
| |
Collapse
|
102
|
Berry M, Ahmed Z, Logan A. Return of function after CNS axon regeneration: Lessons from injury-responsive intrinsically photosensitive and alpha retinal ganglion cells. Prog Retin Eye Res 2019; 71:57-67. [DOI: 10.1016/j.preteyeres.2018.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/26/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022]
|
103
|
Zele AJ, Adhikari P, Cao D, Feigl B. Melanopsin driven enhancement of cone-mediated visual processing. Vision Res 2019; 160:72-81. [DOI: 10.1016/j.visres.2019.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/16/2019] [Accepted: 04/21/2019] [Indexed: 12/13/2022]
|
104
|
Thoreson WB, Dacey DM. Diverse Cell Types, Circuits, and Mechanisms for Color Vision in the Vertebrate Retina. Physiol Rev 2019; 99:1527-1573. [PMID: 31140374 PMCID: PMC6689740 DOI: 10.1152/physrev.00027.2018] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/13/2023] Open
Abstract
Synaptic interactions to extract information about wavelength, and thus color, begin in the vertebrate retina with three classes of light-sensitive cells: rod photoreceptors at low light levels, multiple types of cone photoreceptors that vary in spectral sensitivity, and intrinsically photosensitive ganglion cells that contain the photopigment melanopsin. When isolated from its neighbors, a photoreceptor confounds photon flux with wavelength and so by itself provides no information about color. The retina has evolved elaborate color opponent circuitry for extracting wavelength information by comparing the activities of different photoreceptor types broadly tuned to different parts of the visible spectrum. We review studies concerning the circuit mechanisms mediating opponent interactions in a range of species, from tetrachromatic fish with diverse color opponent cell types to common dichromatic mammals where cone opponency is restricted to a subset of specialized circuits. Distinct among mammals, primates have reinvented trichromatic color vision using novel strategies to incorporate evolution of an additional photopigment gene into the foveal structure and circuitry that supports high-resolution vision. Color vision is absent at scotopic light levels when only rods are active, but rods interact with cone signals to influence color perception at mesopic light levels. Recent evidence suggests melanopsin-mediated signals, which have been identified as a substrate for setting circadian rhythms, may also influence color perception. We consider circuits that may mediate these interactions. While cone opponency is a relatively simple neural computation, it has been implemented in vertebrates by diverse neural mechanisms that are not yet fully understood.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center , Omaha, Nebraska ; and Department of Biological Structure, Washington National Primate Research Center, University of Washington , Seattle, Washington
| | - Dennis M Dacey
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center , Omaha, Nebraska ; and Department of Biological Structure, Washington National Primate Research Center, University of Washington , Seattle, Washington
| |
Collapse
|
105
|
Lax P, Ortuño-Lizarán I, Maneu V, Vidal-Sanz M, Cuenca N. Photosensitive Melanopsin-Containing Retinal Ganglion Cells in Health and Disease: Implications for Circadian Rhythms. Int J Mol Sci 2019; 20:E3164. [PMID: 31261700 PMCID: PMC6651433 DOI: 10.3390/ijms20133164] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022] Open
Abstract
Melanopsin-containing retinal ganglion cells (mRGCs) represent a third class of retinal photoreceptors involved in regulating the pupillary light reflex and circadian photoentrainment, among other things. The functional integrity of the circadian system and melanopsin cells is an essential component of well-being and health, being both impaired in aging and disease. Here we review evidence of melanopsin-expressing cell alterations in aging and neurodegenerative diseases and their correlation with the development of circadian rhythm disorders. In healthy humans, the average density of melanopsin-positive cells falls after age 70, accompanied by age-dependent atrophy of dendritic arborization. In addition to aging, inner and outer retinal diseases also involve progressive deterioration and loss of mRGCs that positively correlates with progressive alterations in circadian rhythms. Among others, mRGC number and plexus complexity are impaired in Parkinson's disease patients; changes that may explain sleep and circadian rhythm disorders in this pathology. The key role of mRGCs in circadian photoentrainment and their loss in age and disease endorse the importance of eye care, even if vision is lost, to preserve melanopsin ganglion cells and their essential functions in the maintenance of an adequate quality of life.
Collapse
Affiliation(s)
- Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain
| | - Isabel Ortuño-Lizarán
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain
| | - Manuel Vidal-Sanz
- Department of Ophthalmology, University of Murcia, 30120 Murcia, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain.
- Multidisciplinary Institute for Environmental Studies "Ramon Margalef", University of Alicante, 03690 Alicante, Spain.
| |
Collapse
|
106
|
de Zeeuw J, Papakonstantinou A, Nowozin C, Stotz S, Zaleska M, Hädel S, Bes F, Münch M, Kunz D. Living in Biological Darkness: Objective Sleepiness and the Pupillary Light Responses Are Affected by Different Metameric Lighting Conditions during Daytime. J Biol Rhythms 2019; 34:410-431. [PMID: 31156018 PMCID: PMC6637815 DOI: 10.1177/0748730419847845] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nighttime melatonin suppression is the most commonly used method to indirectly quantify acute nonvisual light effects. Since light is the principal zeitgeber in humans, there is a need to assess its strength during daytime as well. This is especially important since humans evolved under natural daylight but now often spend their time indoors under artificial light, resulting in a different quality and quantity of light. We tested whether the pupillary light response (PLR) could be used as a marker for nonvisual light effects during daytime. We also recorded the wake electroencephalogram to objectively determine changes in daytime sleepiness between different illuminance levels and/or spectral compositions of light. In total, 72 participants visited the laboratory 4 times for 3-h light exposures. All participants underwent a dim-light condition and either 3 metameric daytime light exposures with different spectral compositions of polychromatic white light (100 photopic lux, peak wavelengths at 435 nm or 480 nm, enriched with longer wavelengths of light) or 3 different illuminances (200, 600, and 1200 photopic lux) with 1 metameric lighting condition (peak wavelength at 435 nm or 480 nm; 24 participants each). The results show that the PLR was sensitive to both spectral differences between metameric lighting conditions and different illuminances in a dose-responsive manner, depending on melanopic irradiance. Objective sleepiness was significantly reduced, depending on melanopic irradiance, at low illuminance (100 lux) and showed fewer differences at higher illuminance. Since many people are exposed to such low illuminance for most of their day—living in biological darkness—our results imply that optimizing the light spectrum could be important to improve daytime alertness. Our results suggest the PLR as a noninvasive physiological marker for ambient light exposure effects during daytime. These findings may be applied to assess light-dependent zeitgeber strength and evaluate lighting improvements at workplaces, schools, hospitals, and homes.
Collapse
Affiliation(s)
- Jan de Zeeuw
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology.,Intellux GmbH, Berlin, Germany
| | - Alexandra Papakonstantinou
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology.,St. Hedwig-Hospital, Clinic for Sleep & Chronomedicine, Berlin
| | - Claudia Nowozin
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology.,St. Hedwig-Hospital, Clinic for Sleep & Chronomedicine, Berlin
| | - Sophia Stotz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology.,St. Hedwig-Hospital, Clinic for Sleep & Chronomedicine, Berlin
| | | | - Sven Hädel
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology
| | - Frederik Bes
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology.,St. Hedwig-Hospital, Clinic for Sleep & Chronomedicine, Berlin
| | - Mirjam Münch
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology.,St. Hedwig-Hospital, Clinic for Sleep & Chronomedicine, Berlin.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Immunology, Laboratory of Chronobiology.,Sleep/Wake Research Centre, Massey University, Wellington, New Zealand
| | - Dieter Kunz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology.,Intellux GmbH, Berlin, Germany.,St. Hedwig-Hospital, Clinic for Sleep & Chronomedicine, Berlin
| |
Collapse
|
107
|
Abstract
Detection and discrimination of spatial patterns is thought to originate with photoreception by rods and cones. Here, we investigated whether the inner-retinal photoreceptor melanopsin could represent a third origin for form vision. We developed a 4-primary visual display capable of presenting patterns differing in contrast for melanopsin vs cones, and generated spectrally distinct stimuli that were indistinguishable for cones (metamers) but presented contrast for melanopsin. Healthy observers could detect sinusoidal gratings formed by these metamers when presented in the peripheral retina at low spatial (≤0.8 cpd) and temporal (≤0.45 Hz) frequencies, and Michelson contrasts ≥14% for melanopsin. Metameric gratings became invisible at lower light levels (<1013 melanopsin photons cm−2 sr−1 s−1) when rods are more active. The addition of metameric increases in melanopsin contrast altered appearance of greyscale representations of coarse gratings and a range of everyday images. These data identify melanopsin as a new potential origin for aspects of spatial vision in humans. The perception of spatial patterns (form vision) is thought to rely on rod and cone cells in the retina. Here, the authors show that a third kind of retinal cell, melanopsin-expressing ganglion cells, can also detect form in humans, under particular conditions.
Collapse
|
108
|
Pupil responses to hidden photoreceptor-specific modulations in movies. PLoS One 2019; 14:e0216307. [PMID: 31071113 PMCID: PMC6508665 DOI: 10.1371/journal.pone.0216307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/17/2019] [Indexed: 11/19/2022] Open
Abstract
Under typical daytime light levels, the human pupillary light response (PLR) is driven by the activity of the L, M, and S cones, and melanopsin expressed in the so-called intrinsically photosensitive retinal ganglion cells (ipRGCs). However, the importance of each of these photoreceptive mechanisms in defining pupil size under real-world viewing conditions remains to be established. To address this question, we embedded photoreceptor-specific modulations in a movie displayed using a novel projector-based five-primary spatial stimulation system, which allowed for the precise control of photoreceptor activations in time and space. We measured the pupillary light response in eleven observers, who viewed short cartoon movies which contained hidden low-frequency (0.25 Hz) silent-substitution modulations of the L, M and S cones (no stimulation of melanopsin), melanopsin (no stimulation of L, M and S cones), both L, M, and S cones and melanopsin or no modulation at all. We find that all photoreceptors active at photopic light levels regulate pupil size under this condition. Our data imply that embedding modulations in photoreceptor contrast could provide a method to manipulate key adaptive aspects of the human visual system in everyday, real-world activities such as watching a movie.
Collapse
|
109
|
Chan JW, Hills NK, Bakall B, Fernandez B. Indirect Traumatic Optic Neuropathy in Mild Chronic Traumatic Brain Injury. ACTA ACUST UNITED AC 2019; 60:2005-2011. [DOI: 10.1167/iovs.18-26094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jane W. Chan
- Department of Ophthalmology, University of Arizona College of Medicine, Phoenix, Arizona, United States
- Phoenix Veterans Affairs Health Care System, Phoenix, Arizona, United States
| | - Nancy K. Hills
- Department of Neurology, University of California, San Francisco, School of Medicine, San Francisco, California, United States
| | - Benjamin Bakall
- Department of Ophthalmology, University of Arizona College of Medicine, Phoenix, Arizona, United States
- Associated Retinal Consultants, Phoenix, Arizona, United States
| | - Brian Fernandez
- Heidelberg Engineering, Inc., Franklin, Massachusetts, United States
| |
Collapse
|
110
|
Lin MS, Liao PY, Chen HM, Chang CP, Chen SK, Chern Y. Degeneration of ipRGCs in Mouse Models of Huntington's Disease Disrupts Non-Image-Forming Behaviors Before Motor Impairment. J Neurosci 2019; 39:1505-1524. [PMID: 30587542 PMCID: PMC6381252 DOI: 10.1523/jneurosci.0571-18.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 11/22/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs), which express the photopigment melanopsin, are photosensitive neurons in the retina and are essential for non-image-forming functions, circadian photoentrainment, and pupillary light reflexes. Five subtypes of ipRGCs (M1-M5) have been identified in mice. Although ipRGCs are spared in several forms of inherited blindness, they are affected in Alzheimer's disease and aging, which are associated with impaired circadian rhythms. Huntington's disease (HD) is an autosomal neurodegenerative disease caused by the expansion of a CAG repeat in the huntingtin gene. In addition to motor function impairment, HD mice also show impaired circadian rhythms and loss of ipRGC. Here, we found that, in HD mouse models (R6/2 and N171-82Q male mice), the expression of melanopsin was reduced before the onset of motor deficits. The expression of retinal T-box brain 2, a transcription factor essential for ipRGCs, was associated with the survival of ipRGCs. The number of M1 ipRGCs in R6/2 male mice was reduced due to apoptosis, whereas non-M1 ipRGCs were relatively resilient to HD progression. Most importantly, the reduced innervations of M1 ipRGCs, which was assessed by X-gal staining in R6/2-OPN4Lacz/+ male mice, contributed to the diminished light-induced c-fos and vasoactive intestinal peptide in the suprachiasmatic nuclei (SCN), which may explain the impaired circadian photoentrainment in HD mice. Collectively, our results show that M1 ipRGCs were susceptible to the toxicity caused by mutant Huntingtin. The resultant impairment of M1 ipRGCs contributed to the early degeneration of the ipRGC-SCN pathway and disrupted circadian regulation during HD progression.SIGNIFICANCE STATEMENT Circadian disruption is a common nonmotor symptom of Huntington's disease (HD). In addition to the molecular defects in the suprachiasmatic nuclei (SCN), the cause of circadian disruption in HD remains to be further explored. We hypothesized that ipRGCs, by integrating light input to the SCN, participate in the circadian regulation in HD mice. We report early reductions in melanopsin in two mouse models of HD, R6/2, and N171-82Q. Suppression of retinal T-box brain 2, a transcription factor essential for ipRGCs, by mutant Huntingtin might mediate the reduced number of ipRGCs. Importantly, M1 ipRGCs showed higher susceptibility than non-M1 ipRGCs in R6/2 mice. The resultant impairment of M1 ipRGCs contributed to the early degeneration of the ipRGC-SCN pathway and the circadian abnormality during HD progression.
Collapse
Affiliation(s)
- Meng-Syuan Lin
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 115, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and
| | - Po-Yu Liao
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Hui-Mei Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and
| | - Ching-Pang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and
| | - Shih-Kuo Chen
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and
| |
Collapse
|
111
|
Wienbar S, Schwartz GW. The dynamic receptive fields of retinal ganglion cells. Prog Retin Eye Res 2018; 67:102-117. [PMID: 29944919 PMCID: PMC6235744 DOI: 10.1016/j.preteyeres.2018.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 11/30/2022]
Abstract
Retinal ganglion cells (RGCs) were one of the first classes of sensory neurons to be described in terms of a receptive field (RF). Over the last six decades, our understanding of the diversity of RGC types and the nuances of their response properties has grown exponentially. We will review the current understanding of RGC RFs mostly from studies in mammals, but including work from other vertebrates as well. We will argue for a new paradigm that embraces the fluidity of RGC RFs with an eye toward the neuroethology of vision. Specifically, we will focus on (1) different methods for measuring RGC RFs, (2) RF models, (3) feature selectivity and the distinction between fluid and stable RF properties, and (4) ideas about the future of understanding RGC RFs.
Collapse
Affiliation(s)
- Sophia Wienbar
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, United States.
| | - Gregory W Schwartz
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, United States.
| |
Collapse
|
112
|
Lakk M, Young D, Baumann JM, Jo AO, Hu H, Križaj D. Polymodal TRPV1 and TRPV4 Sensors Colocalize but Do Not Functionally Interact in a Subpopulation of Mouse Retinal Ganglion Cells. Front Cell Neurosci 2018; 12:353. [PMID: 30386208 PMCID: PMC6198093 DOI: 10.3389/fncel.2018.00353] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/20/2018] [Indexed: 01/23/2023] Open
Abstract
Retinal ganglion cells (RGCs) are projection neurons that transmit the visual signal from the retina to the brain. Their excitability and survival can be strongly influenced by mechanical stressors, temperature, lipid metabolites, and inflammatory mediators but the transduction mechanisms for these non-synaptic sensory inputs are not well characterized. Here, we investigate the distribution, functional expression, and localization of two polymodal transducers of mechanical, lipid, and inflammatory signals, TRPV1 and TRPV4 cation channels, in mouse RGCs. The most abundant vanilloid mRNA species was Trpv4, followed by Trpv2 and residual expression of Trpv3 and Trpv1. Immunohistochemical and functional analyses showed that TRPV1 and TRPV4 channels are expressed as separate molecular entities, with TRPV1-only (∼10%), TRPV4-only (∼40%), and TRPV1 + TRPV4 (∼10%) expressing RGC subpopulations. The TRPV1 + TRPV4 cohort included SMI-32-immunopositive alpha RGCs, suggesting potential roles for polymodal signal transduction in modulation of fast visual signaling. Arguing against obligatory heteromerization, optical imaging showed that activation and desensitization of TRPV1 and TRPV4 responses evoked by capsaicin and GSK1016790A are independent of each other. Overall, these data predict that RGC subpopulations will be differentially sensitive to mechanical and inflammatory stressors.
Collapse
Affiliation(s)
- Monika Lakk
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Derek Young
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Jackson M Baumann
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States.,Department of Bioengineering, University of Utah, Salt Lake City, UT, United States
| | - Andrew O Jo
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Hongzhen Hu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States.,Department of Bioengineering, University of Utah, Salt Lake City, UT, United States.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
113
|
Rodgers J, Peirson SN, Hughes S, Hankins MW. Functional characterisation of naturally occurring mutations in human melanopsin. Cell Mol Life Sci 2018; 75:3609-3624. [PMID: 29700553 PMCID: PMC6133154 DOI: 10.1007/s00018-018-2813-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Abstract
Melanopsin is a blue light-sensitive opsin photopigment involved in a range of non-image forming behaviours, including circadian photoentrainment and the pupil light response. Many naturally occurring genetic variants exist within the human melanopsin gene (OPN4), yet it remains unclear how these variants affect melanopsin protein function and downstream physiological responses to light. Here, we have used bioinformatic analysis and in vitro expression systems to determine the functional phenotypes of missense human OPN4 variants. From 1242 human OPN4 variants collated in the NCBI Short Genetic Variation database (dbSNP), we identified 96 that lead to non-synonymous amino acid substitutions. These 96 missense mutations were screened using sequence alignment and comparative approaches to select 16 potentially deleterious variants for functional characterisation using calcium imaging of melanopsin-driven light responses in HEK293T cells. We identify several previously uncharacterised OPN4 mutations with altered functional properties, including attenuated or abolished light responses, as well as variants demonstrating abnormal response kinetics. These data provide valuable insight into the structure-function relationships of human melanopsin, including several key functional residues of the melanopsin protein. The identification of melanopsin variants with significantly altered function may serve to detect individuals with disrupted melanopsin-based light perception, and potentially highlight those at increased risk of sleep disturbance, circadian dysfunction, and visual abnormalities.
Collapse
Affiliation(s)
- Jessica Rodgers
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK
| | - Stuart N Peirson
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK.
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
114
|
Palumaa T, Gilhooley MJ, Jagannath A, Hankins MW, Hughes S, Peirson SN. Melanopsin: photoreceptors, physiology and potential. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
115
|
Li JY, Schmidt TM. Divergent projection patterns of M1 ipRGC subtypes. J Comp Neurol 2018; 526:2010-2018. [PMID: 29888785 PMCID: PMC6158116 DOI: 10.1002/cne.24469] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 02/01/2023]
Abstract
In addition to its well-known role in pattern vision, light influences a wide range of non-image forming, subconscious visual behaviors including circadian photoentrainment, sleep, mood, learning, and the pupillary light reflex. Each of these behaviors is thought to require input from the M1 subtype of melanopsin-expressing, intrinsically photosensitive retinal ganglion cell (ipRGC). Recent work has demonstrated that the M1 subtype of ipRGC can be further subdivided based on expression of the transcription factor Brn3b. Brn3b-positive M1 ipRGCs project to the olivary pretectal nucleus and are necessary for the pupillary light reflex, while Brn3b-negative M1 ipRGCs project to the suprachiasmatic nucleus (SCN) and are sufficient for circadian photoentrainment. However, beyond the circadian and pupil systems, little is known about the projection patterns of M1 ipRGC subtypes. Here we show that Brn3b-positive M1 ipRGCs comprise the majority of sparse M1 ipRGC inputs to the thalamus, midbrain, and hypothalamus. Our data demonstrate that very few brain targets receive convergent input from both M1 ipRGC subpopulations, suggesting that each subpopulation drives a specific subset of light-driven behaviors.
Collapse
Affiliation(s)
- Jennifer Y. Li
- Department of Neurobiology, Northwestern University, Evanston, IL
60208
| | | |
Collapse
|
116
|
Sonoda T, Lee SK, Birnbaumer L, Schmidt TM. Melanopsin Phototransduction Is Repurposed by ipRGC Subtypes to Shape the Function of Distinct Visual Circuits. Neuron 2018; 99:754-767.e4. [PMID: 30017393 PMCID: PMC6107377 DOI: 10.1016/j.neuron.2018.06.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 01/07/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022]
Abstract
Melanopsin is expressed in distinct types of intrinsically photosensitive retinal ganglion cells (ipRGCs), which drive behaviors from circadian photoentrainment to contrast detection. A major unanswered question is how the same photopigment, melanopsin, influences such vastly different functions. Here we show that melanopsin's role in contrast detection begins in the retina, via direct effects on M4 ipRGC (ON alpha RGC) signaling. This influence persists across an unexpectedly wide range of environmental light levels ranging from starlight to sunlight, which considerably expands the functional reach of melanopsin on visual processing. Moreover, melanopsin increases the excitability of M4 ipRGCs via closure of potassium leak channels, a previously unidentified target of the melanopsin phototransduction cascade. Strikingly, this mechanism is selective for image-forming circuits, as M1 ipRGCs (involved in non-image forming behaviors), exhibit a melanopsin-mediated decrease in excitability. Thus, melanopsin signaling is repurposed by ipRGC subtypes to shape distinct visual behaviors.
Collapse
Affiliation(s)
- Takuma Sonoda
- Department of Neurobiology, Northwestern University, Evanston, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA
| | - Seul Ki Lee
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA; Institute of Biomedical Research (BIOMED), School of Medical Sciences, Catholic University of Argentina, Buenos Aires, Argentina
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
117
|
Inner and Outer Retinal Contributions to Pupillary Light Response: Correlation to Functional and Morphologic Parameters in Glaucoma. J Glaucoma 2018; 27:723-732. [DOI: 10.1097/ijg.0000000000001003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
118
|
Hayter EA, Brown TM. Additive contributions of melanopsin and both cone types provide broadband sensitivity to mouse pupil control. BMC Biol 2018; 16:83. [PMID: 30064443 PMCID: PMC6066930 DOI: 10.1186/s12915-018-0552-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/20/2018] [Indexed: 01/13/2023] Open
Abstract
Background Intrinsically photosensitive retinal ganglion cells (ipRGCs) drive an array of non-image-forming (NIF) visual responses including circadian photoentrainment and the pupil light reflex. ipRGCs integrate extrinsic (rod/cone) and intrinsic (melanopsin) photoreceptive signals, but the contribution of cones to ipRGC-dependent responses remains incompletely understood. Given recent data revealing that cone-derived colour signals influence mouse circadian timing and pupil responses in humans, here we set out to investigate the role of colour information in pupil control in mice. Results We first recorded electrophysiological activity from the pretectal olivary nucleus (PON) of anaesthetised mice with a red-shifted cone population (Opn1mwR) and mice lacking functional cones (Cnga3−/−) or melanopsin (Opn1mwR; Opn4−/−). Using multispectral stimuli to selectively modulate the activity of individual opsin classes, we show that PON cells which receive ipRGC input also exhibit robust S- and/or L-cone opsin-driven activity. This population includes many cells where the two cone opsins drive opponent responses (most commonly excitatory/ON responses to S-opsin stimulation and inhibitory/OFF responses to L-opsin stimulation). These cone inputs reliably tracked even slow (0.025 Hz) changes in illuminance/colour under photopic conditions with melanopsin contributions becoming increasingly dominant for higher-contrast/lower temporal frequency stimuli. We also evaluated consensual pupil responses in awake animals and show that, surprisingly, this aspect of physiology is insensitive to chromatic signals originating with cones. Instead, by contrast with the situation in humans, signals from melanopsin and both cone opsins combine in a purely additive manner to drive pupil constriction in mice. Conclusion Our data reveal a key difference in the sensory control of the mouse pupil relative to another major target of ipRGCs—the circadian clock. Whereas the latter uses colour information to help estimate time of day, the mouse pupil instead sums signals across cone opsin classes to provide broadband spectral sensitivity to changes in illumination. As such, while the widespread co-occurrence of chromatic responses and melanopsin input in the PON supports a close association between colour discrimination mechanisms and NIF visual processing, our data suggest that colour opponent PON cells in the mouse contribute to functions other than pupil control. Electronic supplementary material The online version of this article (10.1186/s12915-018-0552-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edward A Hayter
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Timothy M Brown
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
119
|
Schroeder MM, Harrison KR, Jaeckel ER, Berger HN, Zhao X, Flannery MP, St Pierre EC, Pateqi N, Jachimska A, Chervenak AP, Wong KY. The Roles of Rods, Cones, and Melanopsin in Photoresponses of M4 Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) and Optokinetic Visual Behavior. Front Cell Neurosci 2018; 12:203. [PMID: 30050414 PMCID: PMC6052130 DOI: 10.3389/fncel.2018.00203] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/21/2018] [Indexed: 11/13/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate not only image-forming vision like other ganglion cells, but also non-image-forming physiological responses to light such as pupil constriction and circadian photoentrainment. All ipRGCs respond to light through their endogenous photopigment melanopsin as well as rod/cone-driven synaptic inputs. A major knowledge gap is how melanopsin, rods, and cones differentially drive ipRGC photoresponses and image-forming vision. We whole-cell-recorded from M4-type ipRGCs lacking melanopsin, rod input, or cone input to dissect the roles of each component in ipRGCs' responses to steady and temporally modulated (≥0.3 Hz) lights. We also used a behavioral assay to determine how the elimination of melanopsin, rod, or cone function impacts the optokinetic visual behavior of mice. Results showed that the initial, transient peak in an M4 cell's responses to 10-s light steps arises from rod and cone inputs. Both the sustainability and poststimulus persistence of these light-step responses depend only on rod and/or cone inputs, which is unexpected because these ipRGC photoresponse properties have often been attributed primarily to melanopsin. For temporally varying stimuli, the enhancement of response sustainedness involves melanopsin, whereas stimulus tracking is mediated by rod and cone inputs. Finally, the behavioral assay showed that while all three photoreceptive systems are nearly equally important for contrast sensitivity, only cones and rods contribute to spatial acuity.
Collapse
Affiliation(s)
- Melanie M Schroeder
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Krystal R Harrison
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Elizabeth R Jaeckel
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Hunter N Berger
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Xiwu Zhao
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Michael P Flannery
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Emma C St Pierre
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Nancy Pateqi
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Agnieszka Jachimska
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Andrew P Chervenak
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Kwoon Y Wong
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
120
|
Guido W. Development, form, and function of the mouse visual thalamus. J Neurophysiol 2018; 120:211-225. [PMID: 29641300 PMCID: PMC6093956 DOI: 10.1152/jn.00651.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022] Open
Abstract
The dorsal lateral geniculate nucleus (dLGN) of the thalamus is the exclusive relay of retinal information en route to the visual cortex. Although much of our understanding about dLGN comes from studies done in higher mammals, such as the cat and primate, the mouse as a model organism has moved to the forefront as a tractable experimental platform to examine cell type-specific relations. This review highlights our current knowledge about the development, structure, and function of the mouse dLGN.
Collapse
Affiliation(s)
- William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine , Louisville, Kentucky
| |
Collapse
|
121
|
Wen X, Cahill AL, Barta C, Thoreson WB, Nawy S. Elevated Pressure Increases Ca 2+ Influx Through AMPA Receptors in Select Populations of Retinal Ganglion Cells. Front Cell Neurosci 2018; 12:162. [PMID: 29950974 PMCID: PMC6008319 DOI: 10.3389/fncel.2018.00162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
The predominate type of AMPA receptor expressed in the CNS is impermeable to Ca2+ (CI-AMPAR). However, some AMPA receptors are permeable to Ca2+ (CP-AMPAR) and play important roles in development, plasticity and disease. In the retina, ganglion cells (RGCs) are targets of disease including glaucoma and diabetic retinopathy, but there are many types of RGCs and not all types are targeted equally. In the present study, we sought to determine if there are differences in expression of AMPARs amongst RGC subtypes, and if these differences might contribute to differential vulnerability in a model of stress. Using cultured RGCs we first show that acute exposure to elevated pressure increased expression of Ca2+-permeable AMPA receptors (CP-AMPARs) in some, but not all classes of RGCs. When RGCs were sampled without regard to subtype, AMPA currents, measured using patch clamp recording, were blocked by the CP-AMPAR blocker PhTX-74 to a greater extent in pressure-treated RGCs vs. control. Furthermore, imaging experiments revealed an increase in Ca2+ influx during AMPA application in pressure-treated RGCs. However, examination of specific RGC subtypes using reporter lines revealed striking differences in both baseline AMPAR composition and modulation of this baseline composition by stress. Notably, ON alpha RGCs identified using the Opn4 mouse line and immunohistochemistry, had low expression of CP-AMPARs. Conversely, an ON-OFF direction selective RGC and putative OFF alpha RGC each expressed high levels of CP-AMPARs. These differences between RGC subtypes were also observed in RGCs from whole retina. Elevated pressure further lowered expression of CP-AMPARs in ON alpha RGCs, but raised expression in ON-OFF and OFF RGCs. Changes in CP-AMPAR expression following challenge with elevated pressure were correlated with RGC survival: ON alpha RGCs were unaffected by application of pressure, while the number of putative OFF alpha RGCs declined by approximately 50% following challenge with pressure. Differences in expression of CP-AMPARs between RGC subtypes may form the underpinnings for subtype-specific synaptic plasticity. Furthermore, the differential responses of these RGC subtypes to elevated pressure may contribute to the reported resistance of ON alpha, and susceptibility of OFF and ON-OFF RGCs to injury in models of glaucoma.
Collapse
Affiliation(s)
- Xiangyi Wen
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Asia L. Cahill
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Cody Barta
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Wallace B. Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Scott Nawy
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
122
|
Sánchez-Migallón MC, Valiente-Soriano FJ, Nadal-Nicolás FM, Di Pierdomenico J, Vidal-Sanz M, Agudo-Barriuso M. Survival of melanopsin expressing retinal ganglion cells long term after optic nerve trauma in mice. Exp Eye Res 2018; 174:93-97. [PMID: 29856984 DOI: 10.1016/j.exer.2018.05.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/04/2018] [Accepted: 05/29/2018] [Indexed: 01/27/2023]
Abstract
In this study we have compared the response to optic nerve crush (ONC) and to optic nerve transection (ONT) of the general population of retinal ganglion cells in charge of the image-forming visual functions that express Brn3a (Brn3a+RGCs) with that of the sub-population of non-image forming RGCs that express melanopsin (m+RGCs). Intact animals were used as control. ONT and ONC were performed at 0.5 mm from the optic disk, and retinas dissected 3, 5, 7, 14, 30, 45 or 90 days later (n = 5/injury/time point). In all the retinas, Brn3a+RGCs and m+RGCs were identified and their survival analyzed quantitatively and topographically. There were no differences in the course of RGC loss between lesions. The decrease of RGCs was significant at short time points (3 or 5 days for Brn3a+ or m+ RGCs, respectively) and, up to 14 days, the course of loss of both RGC populations was similar, surviving at this time point between 20 and 22% of their original population. However, while the loss of Brn3a+RGCs continues steadily up to 90 days when only 5-6% of them still remain, the loss of m+RGCs stops at 14 days, and the proportion of surviving m+RGCs remains constant up to 90 days (26-30%). In conclusion, m+RGC do not respond to axotomy in the same way than the rest of RGCs, and so whilst image-forming RGCs die in two exponential phases a quick one and a slow protracted one, non-image forming RGCs die only during the first quick phase.
Collapse
Affiliation(s)
- M C Sánchez-Migallón
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - F J Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| | - F M Nadal-Nicolás
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - J Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - M Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - M Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
123
|
Chakraborty R, Ostrin LA, Nickla DL, Iuvone PM, Pardue MT, Stone RA. Circadian rhythms, refractive development, and myopia. Ophthalmic Physiol Opt 2018; 38:217-245. [PMID: 29691928 PMCID: PMC6038122 DOI: 10.1111/opo.12453] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/11/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE Despite extensive research, mechanisms regulating postnatal eye growth and those responsible for ametropias are poorly understood. With the marked recent increases in myopia prevalence, robust and biologically-based clinical therapies to normalize refractive development in childhood are needed. Here, we review classic and contemporary literature about how circadian biology might provide clues to develop a framework to improve the understanding of myopia etiology, and possibly lead to rational approaches to ameliorate refractive errors developing in children. RECENT FINDINGS Increasing evidence implicates diurnal and circadian rhythms in eye growth and refractive error development. In both humans and animals, ocular length and other anatomical and physiological features of the eye undergo diurnal oscillations. Systemically, such rhythms are primarily generated by the 'master clock' in the surpachiasmatic nucleus, which receives input from the intrinsically photosensitive retinal ganglion cells (ipRGCs) through the activation of the photopigment melanopsin. The retina also has an endogenous circadian clock. In laboratory animals developing experimental myopia, oscillations of ocular parameters are perturbed. Retinal signaling is now believed to influence refractive development; dopamine, an important neurotransmitter found in the retina, not only entrains intrinsic retinal rhythms to the light:dark cycle, but it also modulates refractive development. Circadian clocks comprise a transcription/translation feedback control mechanism utilizing so-called clock genes that have now been associated with experimental ametropias. Contemporary clinical research is also reviving ideas first proposed in the nineteenth century that light exposures might impact refraction in children. As a result, properties of ambient lighting are being investigated in refractive development. In other areas of medical science, circadian dysregulation is now thought to impact many non-ocular disorders, likely because the patterns of modern artificial lighting exert adverse physiological effects on circadian pacemakers. How, or if, such modern light exposures and circadian dysregulation contribute to refractive development is not known. SUMMARY The premise of this review is that circadian biology could be a productive area worthy of increased investigation, which might lead to the improved understanding of refractive development and improved therapeutic interventions.
Collapse
Affiliation(s)
- Ranjay Chakraborty
- College of Nursing and Health Sciences, Flinders University, Adelaide, Australia
| | | | | | | | - Machelle T. Pardue
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur
| | - Richard A. Stone
- University of Pennsylvania School of Medicine, Philadelphia, USA
| |
Collapse
|
124
|
Park SJH, Pottackal J, Ke JB, Jun NY, Rahmani P, Kim IJ, Singer JH, Demb JB. Convergence and Divergence of CRH Amacrine Cells in Mouse Retinal Circuitry. J Neurosci 2018; 38:3753-3766. [PMID: 29572434 PMCID: PMC5895998 DOI: 10.1523/jneurosci.2518-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 11/21/2022] Open
Abstract
Inhibitory interneurons sculpt the outputs of excitatory circuits to expand the dynamic range of information processing. In mammalian retina, >30 types of amacrine cells provide lateral inhibition to vertical, excitatory bipolar cell circuits, but functional roles for only a few amacrine cells are well established. Here, we elucidate the function of corticotropin-releasing hormone (CRH)-expressing amacrine cells labeled in Cre-transgenic mice of either sex. CRH cells costratify with the ON alpha ganglion cell, a neuron highly sensitive to positive contrast. Electrophysiological and optogenetic analyses demonstrate that two CRH types (CRH-1 and CRH-3) make GABAergic synapses with ON alpha cells. CRH-1 cells signal via graded membrane potential changes, whereas CRH-3 cells fire action potentials. Both types show sustained ON-type responses to positive contrast over a range of stimulus conditions. Optogenetic control of transmission at CRH-1 synapses demonstrates that these synapses are tuned to low temporal frequencies, maintaining GABA release during fast hyperpolarizations during brief periods of negative contrast. CRH amacrine cell output is suppressed by prolonged negative contrast, when ON alpha ganglion cells continue to receive inhibitory input from converging OFF-pathway amacrine cells; the converging ON- and OFF-pathway inhibition balances tonic excitatory drive to ON alpha cells. Previously, it was demonstrated that CRH-1 cells inhibit firing by suppressed-by-contrast (SbC) ganglion cells during positive contrast. Therefore, divergent outputs of CRH-1 cells inhibit two ganglion cell types with opposite responses to positive contrast. The opposing responses of ON alpha and SbC ganglion cells are explained by differing excitation/inhibition balance in the two circuits.SIGNIFICANCE STATEMENT A goal of neuroscience research is to explain the function of neural circuits at the level of specific cell types. Here, we studied the function of specific types of inhibitory interneurons, corticotropin-releasing hormone (CRH) amacrine cells, in the mouse retina. Genetic tools were used to identify and manipulate CRH cells, which make GABAergic synapses with a well studied ganglion cell type, the ON alpha cell. CRH cells converge with other types of amacrine cells to tonically inhibit ON alpha cells and balance their high level of excitation. CRH cells diverge to different types of ganglion cell, the unique properties of which depend on their balance of excitation and inhibition.
Collapse
Affiliation(s)
| | | | - Jiang-Bin Ke
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | | | - In-Jung Kim
- Department of Ophthalmology and Visual Science
- Interdepartmental Neuroscience Program
- Department of Neuroscience
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Jonathan B Demb
- Department of Ophthalmology and Visual Science,
- Interdepartmental Neuroscience Program
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06511, and
| |
Collapse
|
125
|
Functional Assessment of Melanopsin-Driven Light Responses in the Mouse: Multielectrode Array Recordings. Methods Mol Biol 2018; 1753:289-303. [PMID: 29564797 DOI: 10.1007/978-1-4939-7720-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are a special subset of retinal output neurons capable of detecting and responding to light via a unique photopigment called melanopsin. Melanopsin activation is essential to a wide array of physiological functions, especially to those related to non-image-forming vision. Since ipRGCs only constitute a very small proportion of retinal ganglion cells, targeted recording of melanopsin-driven responses used to be a big challenge to vision researchers. Multielectrode array (MEA) recording provides a noninvasive, high throughput method to monitor melanopsin-driven responses. When synaptic inputs from rod/cone photoreceptors are silenced with glutamatergic blockers, extracellular electric signals derived from melanopsin activation can be recorded from multiple ipRGCs simultaneously by tens of microelectrodes aligned in an array. In this chapter we describe how our labs have approached MEA recording of melanopsin-driven light responses in adult mouse retinas. Instruments, tools and chemical reagents routinely used for setting up a successful MEA recording are listed, and a standard experimental procedure is provided. The implementation of this technique offers a useful paradigm that can be used to conduct functional assessments of ipRGCs and NIF vision.
Collapse
|
126
|
Axogenic mechanism enhances retinal ganglion cell excitability during early progression in glaucoma. Proc Natl Acad Sci U S A 2018; 115:E2393-E2402. [PMID: 29463759 PMCID: PMC5877940 DOI: 10.1073/pnas.1714888115] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Identifying new therapies for neurodegenerative disease requires understanding how neurons respond to stress and whether this response includes adaptation to slow progression. Because neurodegeneration affects both axons and dendrites, with their synaptic contacts, adaptation could involve both compartments. We investigated this question in experimental glaucoma, the world’s leading cause of irreversible vision loss. Glaucoma attacks retinal ganglion cell neurons and their axons, which comprise the optic nerve. We found that elevations in ocular pressure, a prominent risk factor for glaucoma, caused a paradoxical increase in ganglion cell excitability, including response to light, even in cells with substantial dendritic pruning. This adaptation arose from voltage-dependent mechanisms in the axon and may help maintain signaling to the brain to preserve vision. Diseases of the brain involve early axon dysfunction that often precedes outright degeneration. Pruning of dendrites and their synapses represents a potential driver of axonopathy by reducing activity. Optic nerve degeneration in glaucoma, the world’s leading cause of irreversible blindness, involves early stress to retinal ganglion cell (RGC) axons from sensitivity to intraocular pressure (IOP). This sensitivity also influences survival of RGC dendrites and excitatory synapses in the retina. Here we tested in individual RGCs identified by type the relationship between dendritic organization and axon signaling to light following modest, short-term elevations in pressure. We found dendritic pruning occurred early, by 2 wk of elevation, and independent of whether the RGC responded to light onset (ON cells) or offset (OFF cells). Pruning was similarly independent of ON and OFF in the DBA/2J mouse, a chronic glaucoma model. Paradoxically, all RGCs, even those with significant pruning, demonstrated a transient increase in axon firing in response to the preferred light stimulus that occurred on a backdrop of generally enhanced excitability. The increased response was not through conventional presynaptic signaling, but rather depended on voltage-sensitive sodium channels that increased transiently in the axon. Pruning, axon dysfunction, and deficits in visual acuity did not progress between 2 and 4 wk of elevation. These results suggest neurodegeneration in glaucoma involves an early axogenic response that counters IOP-related stress to excitatory dendritic architecture to slow progression and maintain signaling to the brain. Thus, short-term exposure to elevated IOP may precondition the neural system to further insult.
Collapse
|
127
|
The organization of melanopsin-immunoreactive cells in microbat retina. PLoS One 2018; 13:e0190435. [PMID: 29304147 PMCID: PMC5755760 DOI: 10.1371/journal.pone.0190435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/14/2017] [Indexed: 01/05/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) respond to light and play roles in non-image forming vision, such as circadian rhythms, pupil responses, and sleep regulation, or image forming vision, such as processing visual information and directing eye movements in response to visual clues. The purpose of the present study was to identify the distribution, types, and proportion of melanopsin-immunoreactive (IR) cells in the retina of a nocturnal animal, i.e., the microbat (Rhinolophus ferrumequinum). Three types of melanopsin-IR cells were observed in the present study. The M1 type had dendritic arbors that extended into the OFF sublayer of the inner plexiform layer (IPL). M1 soma locations were identified either in the ganglion cell layer (GCL, M1c; 21.00%) or in the inner nuclear layer (INL, M1d; 5.15%). The M2 type had monostratified dendrites in the ON sublayer of the IPL and their cell bodies lay in the GCL (M2; 5.79%). The M3 type was bistratified cells with dendrites in both the ON and OFF sublayers of the IPL. M3 soma locations were either in the GCL (M3c; 26.66%) or INL (M3d; 4.69%). Additionally, some M3c cells had curved dendrites leading up towards the OFF sublayer of the IPL and down to the ON sublayer of the IPL (M3c-crv; 7.67%). Melanopsin-IR cells displayed a medium soma size and medium dendritic field diameters. There were 2-5 primary dendrites and sparsely branched dendrites with varicosities. The total number of the neurons in the GCL was 12,254.17 ± 660.39 and that of the optic nerve axons was 5,179.04 ± 208.00 in the R. ferrumequinum retina. The total number of melanopsin-IR cells was 819.74 ± 52.03. The ipRGCs constituted approximately 15.83% of the total RGC population. This study demonstrated that the nocturnal microbat, R. ferrumequinum, has a much higher density of melanopsin-IR cells than documented in diurnal animals.
Collapse
|
128
|
Stabio ME, Sabbah S, Quattrochi LE, Ilardi MC, Fogerson PM, Leyrer ML, Kim MT, Kim I, Schiel M, Renna JM, Briggman KL, Berson DM. The M5 Cell: A Color-Opponent Intrinsically Photosensitive Retinal Ganglion Cell. Neuron 2018; 97:150-163.e4. [PMID: 29249284 PMCID: PMC5757626 DOI: 10.1016/j.neuron.2017.11.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/09/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) combine direct photosensitivity through melanopsin with synaptically mediated drive from classical photoreceptors through bipolar-cell input. Here, we sought to provide a fuller description of the least understood ipRGC type, the M5 cell, and discovered a distinctive functional characteristic-chromatic opponency (ultraviolet excitatory, green inhibitory). Serial electron microscopic reconstructions revealed that M5 cells receive selective UV-opsin drive from Type 9 cone bipolar cells but also mixed cone signals from bipolar Types 6, 7, and 8. Recordings suggest that both excitation and inhibition are driven by the ON channel and that chromatic opponency results from M-cone-driven surround inhibition mediated by wide-field spiking GABAergic amacrine cells. We show that M5 cells send axons to the dLGN and are thus positioned to provide chromatic signals to visual cortex. These findings underscore that melanopsin's influence extends beyond unconscious reflex functions to encompass cortical vision, perhaps including the perception of color.
Collapse
Affiliation(s)
- Maureen E Stabio
- Department of Cell & Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Shai Sabbah
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | | | - Marissa C Ilardi
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | | | - Megan L Leyrer
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Min Tae Kim
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Inkyu Kim
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Matthew Schiel
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Jordan M Renna
- Department of Biology, University of Akron, Akron, OH 44325, USA
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - David M Berson
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| |
Collapse
|
129
|
Lee SK, Schmidt TM. Morphological Identification of Melanopsin-Expressing Retinal Ganglion Cell Subtypes in Mice. Methods Mol Biol 2018; 1753:275-287. [PMID: 29564796 DOI: 10.1007/978-1-4939-7720-8_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) are a relatively recently discovered class of photoreceptor. ipRGCs can be subdivided into at least five subtypes (M1-M5), each of which has a distinct complement of morphological and physiological properties. ipRGC subtypes can be identified morphologically based on a combination of dendritic morphology and immunostaining for a cell-type specific marker. In this chapter, we describe methods for conclusively identifying each of the five ipRGC subtypes through a combination of patch clamp electrophysiology, Neurobiotin filling, visualization of ipRGC dendrites, and immunostaining for the marker SMI-32.
Collapse
Affiliation(s)
- Seul Ki Lee
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
130
|
Johnson EN, Westbrook T, Shayesteh R, Chen EL, Schumacher JW, Fitzpatrick D, Field GD. Distribution and diversity of intrinsically photosensitive retinal ganglion cells in tree shrew. J Comp Neurol 2017; 527:328-344. [PMID: 29238991 DOI: 10.1002/cne.24377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/24/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate the pupillary light reflex, circadian entrainment, and may contribute to luminance and color perception. The diversity of ipRGCs varies from rodents to primates, suggesting differences in their contributions to retinal output. To further understand the variability in their organization and diversity across species, we used immunohistochemical methods to examine ipRGCs in tree shrew (Tupaia belangeri). Tree shrews share membership in the same clade, or evolutionary branch, as rodents and primates. They are highly visual, diurnal animals with a cone-dominated retina and a geniculo-cortical organization resembling that of primates. We identified cells with morphological similarities to M1 and M2 cells described previously in rodents and primates. M1-like cells typically had somas in the ganglion cell layer, with 23% displaced to the inner nuclear layer (INL). However, unlike M1 cells, they had bistratified dendritic fields ramifying in S1 and S5 that collectively tiled space. M2-like cells had dendritic fields restricted to S5 that were smaller and more densely branching. A novel third type of melanopsin immunopositive cell was identified. These cells had somata exclusively in the INL and monostratified dendritic fields restricted to S1 that tiled space. Surprisingly, these cells immunolabeled for tyrosine hydroxylase, a key component in dopamine synthesis. These cells immunolabeled for an RGC marker, not amacrine cell markers, suggesting that they are dopaminergic ipRGCs. We found no evidence for M4 or M5 ipRGCs, described previously in rodents. These results identify some organizational features of the ipRGC system that are canonical versus species-specific.
Collapse
Affiliation(s)
- Elizabeth N Johnson
- Neurobiology Department, Duke University School of Medicine, Durham, North Carolina.,Wharton Neuroscience Initiative, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Teleza Westbrook
- Neurobiology Department, Duke University School of Medicine, Durham, North Carolina
| | - Rod Shayesteh
- Neurobiology Department, Duke University School of Medicine, Durham, North Carolina
| | - Emily L Chen
- Neurobiology Department, Duke University School of Medicine, Durham, North Carolina
| | | | | | - Greg D Field
- Neurobiology Department, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
131
|
Takeshita D, Smeds L, Ala-Laurila P. Processing of single-photon responses in the mammalian On and Off retinal pathways at the sensitivity limit of vision. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0073. [PMID: 28193818 PMCID: PMC5312023 DOI: 10.1098/rstb.2016.0073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2016] [Indexed: 12/21/2022] Open
Abstract
Visually guided behaviour at its sensitivity limit relies on single-photon responses originating in a small number of rod photoreceptors. For decades, researchers have debated the neural mechanisms and noise sources that underlie this striking sensitivity. To address this question, we need to understand the constraints arising from the retinal output signals provided by distinct retinal ganglion cell types. It has recently been shown in the primate retina that On and Off parasol ganglion cells, the cell types likely to underlie light detection at the absolute visual threshold, differ fundamentally not only in response polarity, but also in the way they handle single-photon responses originating in rods. The On pathway provides the brain with a thresholded, low-noise readout and the Off pathway with a noisy, linear readout. We outline the mechanistic basis of these different coding strategies and analyse their implications for detecting the weakest light signals. We show that high-fidelity, nonlinear signal processing in the On pathway comes with costs: more single-photon responses are lost and their propagation is delayed compared with the Off pathway. On the other hand, the responses of On ganglion cells allow better intensity discrimination compared with the Off ganglion cell responses near visual threshold. This article is part of the themed issue ‘Vision in dim light’.
Collapse
Affiliation(s)
- Daisuke Takeshita
- Department of Biosciences, University of Helsinki, PO Box 65, 00014 University of Helsinki, Finland
| | - Lina Smeds
- Department of Biosciences, University of Helsinki, PO Box 65, 00014 University of Helsinki, Finland
| | - Petri Ala-Laurila
- Department of Biosciences, University of Helsinki, PO Box 65, 00014 University of Helsinki, Finland .,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, PO Box 12200, 00076 Aalto, Finland
| |
Collapse
|
132
|
Milner ES, Do MTH. A Population Representation of Absolute Light Intensity in the Mammalian Retina. Cell 2017; 171:865-876.e16. [PMID: 28965762 PMCID: PMC6647834 DOI: 10.1016/j.cell.2017.09.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/02/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022]
Abstract
Environmental illumination spans many log units of intensity and is tracked for essential functions that include regulation of the circadian clock, arousal state, and hormone levels. Little is known about the neural representation of light intensity and how it covers the necessary range. This question became accessible with the discovery of mammalian photoreceptors that are required for intensity-driven functions, the M1 ipRGCs. The spike outputs of M1s are thought to uniformly track intensity over a wide range. We provide a different understanding: individual cells operate over a narrow range, but the population covers irradiances from moonlight to full daylight. The range of most M1s is limited by depolarization block, which is generally considered pathological but is produced intrinsically by these cells. The dynamics of block allow the population to code stimulus intensity with flexibility and efficiency. Moreover, although spikes are distorted by block, they are regularized during axonal propagation.
Collapse
Affiliation(s)
- Elliott Scott Milner
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, Boston, MA 02115, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - Michael Tri Hoang Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, Boston, MA 02115, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
133
|
Abstract
Although much is known about the regenerative capacity of retinal ganglion cells, very significant barriers remain in our ability to restore visual function following traumatic injury or disease-induced degeneration. Here we summarize our current understanding of the factors regulating axon guidance and target engagement in regenerating axons, and review the state of the field of neural regeneration, focusing on the visual system and highlighting studies using other model systems that can inform analysis of visual system regeneration. This overview is motivated by a Society for Neuroscience Satellite meeting, "Reconnecting Neurons in the Visual System," held in October 2015 sponsored by the National Eye Institute as part of their "Audacious Goals Initiative" and co-organized by Carol Mason (Columbia University) and Michael Crair (Yale University). The collective wisdom of the conference participants pointed to important gaps in our knowledge and barriers to progress in promoting the restoration of visual system function. This article is thus a summary of our existing understanding of visual system regeneration and provides a blueprint for future progress in the field.
Collapse
|
134
|
Abstract
Two new studies show that neural systems receiving inputs from the melanopsin-containing retinal ganglion cells encode spatial information and therefore see the world in more detail than previously thought.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; VA Palo Alto Health Care System, Mental Illness Research Education and Clinical Center, Palo Alto, CA 94304, USA
| | - Geoffrey K Aguirre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
135
|
Chew KS, Renna JM, McNeill DS, Fernandez DC, Keenan WT, Thomsen MB, Ecker JL, Loevinsohn GS, VanDunk C, Vicarel DC, Tufford A, Weng S, Gray PA, Cayouette M, Herzog ED, Zhao H, Berson DM, Hattar S. A subset of ipRGCs regulates both maturation of the circadian clock and segregation of retinogeniculate projections in mice. eLife 2017; 6:e22861. [PMID: 28617242 PMCID: PMC5513697 DOI: 10.7554/elife.22861] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/14/2017] [Indexed: 12/25/2022] Open
Abstract
The visual system consists of two major subsystems, image-forming circuits that drive conscious vision and non-image-forming circuits for behaviors such as circadian photoentrainment. While historically considered non-overlapping, recent evidence has uncovered crosstalk between these subsystems. Here, we investigated shared developmental mechanisms. We revealed an unprecedented role for light in the maturation of the circadian clock and discovered that intrinsically photosensitive retinal ganglion cells (ipRGCs) are critical for this refinement process. In addition, ipRGCs regulate retinal waves independent of light, and developmental ablation of a subset of ipRGCs disrupts eye-specific segregation of retinogeniculate projections. Specifically, a subset of ipRGCs, comprising ~200 cells and which project intraretinally and to circadian centers in the brain, are sufficient to mediate both of these developmental processes. Thus, this subset of ipRGCs constitute a shared node in the neural networks that mediate light-dependent maturation of the circadian clock and light-independent refinement of retinogeniculate projections.
Collapse
Affiliation(s)
- Kylie S Chew
- Department of Biology, Johns Hopkins University, Baltimore, United States
- Department of Biology, Stanford University, Stanford, United States
| | - Jordan M Renna
- Department of Biology, Program in Integrated Bioscience, The University of Akron, Akron, United States
| | - David S McNeill
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Diego C Fernandez
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - William T Keenan
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Michael B Thomsen
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Jennifer L Ecker
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | | | - Cassandra VanDunk
- Department of Anatomy and Neurobiology, Washington University, St. Louis, United States
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Daniel C Vicarel
- Department of Biology, Program in Integrated Bioscience, The University of Akron, Akron, United States
| | - Adele Tufford
- Cellular Neurobiology Research Unit, Institut De Recherches Cliniques De Montréal, Montreal, Canada
| | - Shijun Weng
- Department of Neuroscience, Brown University, Providence, United States
| | - Paul A Gray
- Department of Anatomy and Neurobiology, Washington University, St. Louis, United States
- Indigo Agriculture, Charlestown, United States
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut De Recherches Cliniques De Montréal, Montreal, Canada
- Faculty of Medicine, Université De Montréal, Montreal, Canada
| | - Erik D Herzog
- Department of Biology, Washington University, St. Louis, United States
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - David M Berson
- Department of Neuroscience, Brown University, Providence, United States
| | - Samer Hattar
- Department of Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
136
|
Laboissonniere LA, Sonoda T, Lee SK, Trimarchi JM, Schmidt TM. Single-cell RNA-Seq of Defined Subsets of Retinal Ganglion Cells. J Vis Exp 2017. [PMID: 28570514 DOI: 10.3791/55229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The discovery of cell type-specific markers can provide insight into cellular function and the origins of cellular heterogeneity. With a recent push for the improved understanding of neuronal diversity, it is important to identify genes whose expression defines various subpopulations of cells. The retina serves as an excellent model for the study of central nervous system diversity, as it is composed of multiple major cell types. The study of each major class of cells has yielded genetic markers that facilitate the identification of these populations. However, multiple subtypes of cells exist within each of these major retinal cell classes, and few of these subtypes have known genetic markers, although many have been characterized by morphology or function. A knowledge of genetic markers for individual retinal subtypes would allow for the study and mapping of brain targets related to specific visual functions and may also lend insight into the gene networks that maintain cellular diversity. Current avenues used to identify the genetic markers of subtypes possess drawbacks, such as the classification of cell types following sequencing. This presents a challenge for data analysis and requires rigorous validation methods to ensure that clusters contain cells of the same function. We propose a technique for identifying the morphology and functionality of a cell prior to isolation and sequencing, which will allow for the easier identification of subtype-specific markers. This technique may be extended to non-neuronal cell types, as well as to rare populations of cells with minor variations. This protocol yields excellent-quality data, as many of the libraries have provided read depths greater than 20 million reads for single cells. This methodology overcomes many of the hurdles presented by Single-cell RNA-Seq and may be suitable for researchers aiming to profile cell types in a straightforward and highly efficient manner.
Collapse
Affiliation(s)
| | | | - Seul Ki Lee
- Department of Neurobiology, Northwestern University
| | - Jeffrey M Trimarchi
- Department of Genetics, Development, and Cell Biology, Iowa State University;
| | | |
Collapse
|
137
|
Allen AE, Storchi R, Martial FP, Bedford RA, Lucas RJ. Melanopsin Contributions to the Representation of Images in the Early Visual System. Curr Biol 2017; 27:1623-1632.e4. [PMID: 28528909 PMCID: PMC5462620 DOI: 10.1016/j.cub.2017.04.046] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 11/19/2022]
Abstract
Melanopsin photoreception enhances retinal responses to variations in ambient light (irradiance) and drives non-image-forming visual reflexes such as circadian entrainment [1, 2, 3, 4, 5, 6]. Melanopsin signals also reach brain regions responsible for form vision [7, 8, 9], but melanopsin’s contribution, if any, to encoding visual images remains unclear. We addressed this deficit using principles of receptor silent substitution to present images in which visibility for melanopsin versus rods+cones was independently modulated, and we recorded evoked responses in the mouse dorsal lateral geniculate nucleus (dLGN; thalamic relay for cortical vision). Approximately 20% of dLGN units responded to patterns visible only to melanopsin, revealing that melanopsin signals alone can convey spatial information. Spatial receptive fields (RFs) mapped using melanopsin-isolating stimuli had ON centers with diameters ∼13°. Melanopsin and rod+cone responses differed in the temporal domain, and responses to slow changes in radiance (<0.9 Hz) and stationary images were deficient when stimuli were rendered invisible for melanopsin. We employed these data to devise and test a mathematical model of melanopsin’s involvement in form vision and applied it, along with further experimental recordings, to explore melanopsin signals under simulated active view of natural scenes. Our findings reveal that melanopsin enhances the thalamic representation of scenes containing local correlations in radiance, compensating for the high temporal frequency bias of cone vision and the negative correlation between magnitude and frequency for changes in direction of view. Together, these data reveal a distinct melanopsin contribution to encoding visual images, predicting that, under natural view, melanopsin augments the early visual system’s ability to encode patterns over moderate spatial scales. A five-primary display is used to define melanopsin’s contribution to form vision Melanopsin extends the spatiotemporal range of the mouse early visual system The representation of spatial patterns is deficient when melanopsin is not engaged A linear model predicting melanopsin’s contribution to pattern vision is defined
Collapse
Affiliation(s)
- Annette E Allen
- Division of Neuroscience and Experimental Psychology, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| | - Riccardo Storchi
- Division of Neuroscience and Experimental Psychology, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Franck P Martial
- Division of Neuroscience and Experimental Psychology, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Robert A Bedford
- Division of Neuroscience and Experimental Psychology, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Robert J Lucas
- Division of Neuroscience and Experimental Psychology, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
138
|
Lazzerini Ospri L, Prusky G, Hattar S. Mood, the Circadian System, and Melanopsin Retinal Ganglion Cells. Annu Rev Neurosci 2017; 40:539-556. [PMID: 28525301 DOI: 10.1146/annurev-neuro-072116-031324] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of a third type of photoreceptors in the mammalian retina, intrinsically photosensitive retinal ganglion cells (ipRGCs), has had a revolutionary impact on chronobiology. We can now properly account for numerous non-vision-related functions of light, including its effect on the circadian system. Here, we give an overview of ipRGCs and their function as it relates specifically to mood and biological rhythms. Although circadian disruptions have been traditionally hypothesized to be the mediators of light's effects on mood, here we present an alternative model that dispenses with assumptions of causality between the two phenomena and explains mood regulation by light via another ipRGC-dependent mechanism.
Collapse
Affiliation(s)
- Lorenzo Lazzerini Ospri
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Glen Prusky
- Department of Physiology and Biophysics, Cornell University, Ithaca, New York 10065
| | - Samer Hattar
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; .,Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
139
|
Structural divergence of essential triad ribbon synapse proteins among placental mammals - Implications for preclinical trials in photoreceptor transplantation therapy. Exp Eye Res 2017; 159:156-167. [PMID: 28322827 DOI: 10.1016/j.exer.2017.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/24/2017] [Accepted: 03/17/2017] [Indexed: 11/22/2022]
Abstract
As photoreceptor transplantation rapidly moves closer to the clinic, verifying graft efficacy in animal models may have unforeseen xenogeneic barriers. Although photoreceptor transplants have most convincingly exhibited functional synaptogenesis in conspecific studies, such evidence (while ruling out false-positives due to: viral graft labeling, fusion/cytosolic transfer, or neuroprotection) has not yet been shown for discordant xenografts. From this, a fundamental question should be raised: is useful xenosynaptogenesis likely between human photoreceptors and mouse retina? The triad ribbon synapse (TRS) that would normally form is unique and contains trans-synaptic proteins essential to its formation and function. Thus, could interspecific structural divergence be present that may inhibit this trans-synaptic bridge in discordant xenografts? In an effort to address this question computationally, we compared eight recently confirmed (including subcellular location) TRS specific (or predominantly expressed at the TRS) proteins among placental mammals (1-to-1 orthologs) using HyPhy selection analysis (a predictive measure of structural divergence) and by using Phyre2 tertiary structural modeling. Here, selection analysis revealed strong positive (diversifying) selection acting on a particularly important TRS protein: pikachurin. This positive selection was localized to its second Laminin-G (LG)-like domain and on its N-terminal domain - a putative region of trans-synaptic interaction. Localization of structural divergence to the N-terminus of each putative post-translational cleavage (PTC) product may suggest neofunctionalization from ancestral uncleaved pikachurin - this would be consistent with a recent counter-paradigm report of pikachurin cleavage predominating at the TRS. From this, we suggest a dual role after cleavage where the N-terminal fragment can still mediate the trans-synaptic bridge, while the C-terminal fragment may act as a diffusible trophic or "homing" factor for bipolar cell dendrite migration. Tertiary structural models mirrored the conformational divergence predicted by selection analysis. With human and mouse pikachurin (as well as other TRS proteins) likely to diverge considerably in structure among placental mammals - alongside known inter-mammalian variation in TRS phenotype and protein repertoire, high levels of diversifying selection acting on genes involving sensation, considerable timespans allowing for genetic drift that can create xenogeneic epistasis, and uncertainty surrounding the extent of xenosynaptogenesis in PPC transplant studies to date - use of distantly related hosts to test human photoreceptor graft therapeutic efficacy should be considered with caution.
Collapse
|
140
|
Hannibal J, Christiansen AT, Heegaard S, Fahrenkrug J, Kiilgaard JF. Melanopsin expressing human retinal ganglion cells: Subtypes, distribution, and intraretinal connectivity. J Comp Neurol 2017; 525:1934-1961. [PMID: 28160289 DOI: 10.1002/cne.24181] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/15/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin belong to a heterogenic population of RGCs which regulate the circadian clock, masking behavior, melatonin suppression, the pupillary light reflex, and sleep/wake cycles. The different functions seem to be associated to different subtypes of melanopsin cells. In rodents, subtype classification has associated subtypes to function. In primate and human retina such classification has so far, not been applied. In the present study using antibodies against N- and C-terminal parts of human melanopsin, confocal microscopy and 3D reconstruction of melanopsin immunoreactive (-ir) RGCs, we applied the criteria used in mouse on human melanopsin-ir RGCs. We identified M1, displaced M1, M2, and M4 cells. We found two other subtypes of melanopsin-ir RGCs, which were named "gigantic M1 (GM1)" and "gigantic displaced M1 (GDM1)." Few M3 cells and no M5 subtypes were labeled. Total cell counts from one male and one female retina revealed that the human retina contains 7283 ± 237 melanopsin-ir (0.63-0.75% of the total number of RGCs). The melanopsin subtypes were unevenly distributed. Most significant was the highest density of M4 cells in the nasal retina. We identified input to the melanopsin-ir RGCs from AII amacrine cells and directly from rod bipolar cells via ribbon synapses in the innermost ON layer of the inner plexiform layer (IPL) and from dopaminergic amacrine cells and GABAergic processes in the outermost OFF layer of the IPL. The study characterizes a heterogenic population of human melanopsin-ir RGCs, which most likely are involved in different functions.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Steffen Heegaard
- Department of Ophalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Folke Kiilgaard
- Department of Ophalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
141
|
Nasir-Ahmad S, Lee SCS, Martin PR, Grünert U. Melanopsin-expressing ganglion cells in human retina: Morphology, distribution, and synaptic connections. J Comp Neurol 2017; 527:312-327. [PMID: 28097654 DOI: 10.1002/cne.24176] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 11/05/2022]
Abstract
Melanopsin-expressing retinal ganglion cells are intrinsically photosensitive cells that are involved in non-image forming visual processes such as the pupillary light reflex and circadian entrainment but also contribute to visual perception. Here we used immunohistochemistry to study the morphology, density, distribution, and synaptic connectivity of melanopsin-expressing ganglion cells in four post mortem human donor retinas. Two types of melanopsin-expressing ganglion cells were distinguished based on their dendritic stratification near either the outer or the inner border of the inner plexiform layer. Outer stratifying cells make up on average 60% of the melanopsin-expressing cells. About half of the melanopsin-expressing cells (or 80% of the outer stratifying cells) have their soma displaced to the inner nuclear layer. Inner stratifying cells have their soma exclusively in the ganglion cell layer and include a small proportion of bistratified cells. The dendritic field diameter of melanopsin-expressing cells ranges from 250 (near the fovea) to 1,000 µm in peripheral retina. The dendritic trees of outer stratifying cells cover the retina independent of soma location. The dendritic fields of both outer and inner stratifying cells show a high degree of overlap with a coverage factor of approximately two. Melanopsin-expressing cells occur at an average peak density of between ∼20 and ∼40 cells/mm2 at about 2 mm eccentricity, the density drops to below ∼10 cells/mm2 at about 8 mm eccentricity. Both the outer and inner stratifying dendrites express postsynaptic density (PSD95) immunoreactive puncta suggesting that they receive synaptic input from bipolar cells.
Collapse
Affiliation(s)
- Subha Nasir-Ahmad
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Sammy C S Lee
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Paul R Martin
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, 2000, Australia.,School of Medical Sciences, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Ulrike Grünert
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, 2000, Australia.,School of Medical Sciences, The University of Sydney, Sydney, New South Wales, 2000, Australia
| |
Collapse
|
142
|
Ksendzovsky A, Pomeraniec IJ, Zaghloul KA, Provencio JJ, Provencio I. Clinical implications of the melanopsin-based non-image-forming visual system. Neurology 2017; 88:1282-1290. [PMID: 28251921 DOI: 10.1212/wnl.0000000000003761] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 01/06/2017] [Indexed: 01/06/2023] Open
Abstract
Since the discovery of the non-image-forming visual system, tremendous research efforts have been dedicated to understanding its mechanisms and functional roles. Original functions associated with the melanopsin system include the photoentrainment of circadian sleep-wake cycles and the pupillary light reflex. Recent findings, however, suggest a much broader involvement of this system in an array of physiologic responses to light. This newfound insight into the underlying function of the non-image-forming system has revealed the many connections to human pathology and attendant disease states, including seasonal affective disorder, migraine, glaucoma, inherited mitochondrial optic neuropathy, and sleep dysregulation of aging. In this review, the authors discuss in detail the clinical implications of the melanopsin system.
Collapse
Affiliation(s)
- Alexander Ksendzovsky
- From the Departments of Neurological Surgery (A.K., I.J.P.) and Neurology and Neuroscience (J.J.P.), University of Virginia Health Sciences Center, Charlottesville; Surgical Neurology Branch (A.K., K.A.Z.), National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD; and the Departments of Molecular Physiology and Biological Physics (A.K.) and Biology (I.P.), University of Virginia, Charlottesville.
| | - I Jonathan Pomeraniec
- From the Departments of Neurological Surgery (A.K., I.J.P.) and Neurology and Neuroscience (J.J.P.), University of Virginia Health Sciences Center, Charlottesville; Surgical Neurology Branch (A.K., K.A.Z.), National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD; and the Departments of Molecular Physiology and Biological Physics (A.K.) and Biology (I.P.), University of Virginia, Charlottesville
| | - Kareem A Zaghloul
- From the Departments of Neurological Surgery (A.K., I.J.P.) and Neurology and Neuroscience (J.J.P.), University of Virginia Health Sciences Center, Charlottesville; Surgical Neurology Branch (A.K., K.A.Z.), National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD; and the Departments of Molecular Physiology and Biological Physics (A.K.) and Biology (I.P.), University of Virginia, Charlottesville
| | - J Javier Provencio
- From the Departments of Neurological Surgery (A.K., I.J.P.) and Neurology and Neuroscience (J.J.P.), University of Virginia Health Sciences Center, Charlottesville; Surgical Neurology Branch (A.K., K.A.Z.), National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD; and the Departments of Molecular Physiology and Biological Physics (A.K.) and Biology (I.P.), University of Virginia, Charlottesville
| | - Ignacio Provencio
- From the Departments of Neurological Surgery (A.K., I.J.P.) and Neurology and Neuroscience (J.J.P.), University of Virginia Health Sciences Center, Charlottesville; Surgical Neurology Branch (A.K., K.A.Z.), National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD; and the Departments of Molecular Physiology and Biological Physics (A.K.) and Biology (I.P.), University of Virginia, Charlottesville
| |
Collapse
|
143
|
Abstract
The dorsal lateral geniculate nucleus (dLGN) of the thalamus is the principal conduit for visual information from retina to visual cortex. Viewed initially as a simple relay, recent studies in the mouse reveal far greater complexity in the way input from the retina is combined, transmitted, and processed in dLGN. Here we consider the structural and functional organization of the mouse retinogeniculate pathway by examining the patterns of retinal projections to dLGN and how they converge onto thalamocortical neurons to shape the flow of visual information to visual cortex.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences,Washington University School of Medicine,Saint Louis,Missouri 63110
| | - William Guido
- Department of Anatomical Sciences and Neurobiology,University of Louisville School of Medicine,Louisville,Kentucky 40292
| |
Collapse
|
144
|
Tam SKE, Hasan S, Hughes S, Hankins MW, Foster RG, Bannerman DM, Peirson SN. Modulation of recognition memory performance by light requires both melanopsin and classical photoreceptors. Proc Biol Sci 2016; 283:20162275. [PMID: 28003454 PMCID: PMC5204172 DOI: 10.1098/rspb.2016.2275] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/14/2016] [Indexed: 01/26/2023] Open
Abstract
Acute light exposure exerts various effects on physiology and behaviour. Although the effects of light on brain network activity in humans are well demonstrated, the effects of light on cognitive performance are inconclusive, with the size, as well as direction, of the effect depending on the nature of the task. Similarly, in nocturnal rodents, bright light can either facilitate or disrupt performance depending on the type of task employed. Crucially, it is unclear whether the effects of light on behavioural performance are mediated via the classical image-forming rods and cones or the melanopsin-expressing photosensitive retinal ganglion cells. Here, we investigate the modulatory effects of light on memory performance in mice using the spontaneous object recognition task. Importantly, we examine which photoreceptors are required to mediate the effects of light on memory performance. By using a cross-over design, we show that object recognition memory is disrupted when the test phase is conducted under a bright light (350 lux), regardless of the light level in the sample phase (10 or 350 lux), demonstrating that exposure to a bright light at the time of test, rather than at the time of encoding, impairs performance. Strikingly, the modulatory effect of light on memory performance is completely abolished in both melanopsin-deficient and rodless-coneless mice. Our findings provide direct evidence that melanopsin-driven and rod/cone-driven photoresponses are integrated in order to mediate the effect of light on memory performance.
Collapse
Affiliation(s)
- Shu K E Tam
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
- Department of Experimental Psychology, Oxford University, Tinbergen Building, 9 South Parks Road, Oxford OX1 3UD, UK
| | - Sibah Hasan
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Steven Hughes
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Mark W Hankins
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - David M Bannerman
- Department of Experimental Psychology, Oxford University, Tinbergen Building, 9 South Parks Road, Oxford OX1 3UD, UK
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
145
|
Smith BJ, Côté PD, Tremblay F. Contribution of Na v1.8 sodium channels to retinal function. Neuroscience 2016; 340:279-290. [PMID: 27984182 DOI: 10.1016/j.neuroscience.2016.10.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/07/2016] [Accepted: 10/21/2016] [Indexed: 12/28/2022]
Abstract
We examined the contribution of the sodium channel isoform Nav1.8 to retinal function using the specific blocker A803467. We found that A803467 has little influence on the electroretinogram (ERG) a- and b-waves, but significantly reduces the oscillatory potentials (OPs) to 40-60% of their original amplitude, with significant changes in implicit time in the rod-driven range. To date, only two cell types were found in mouse to express Nav1.8; the starburst amacrine cells (SBACs), and a subtype of retinal ganglion cells (RGCs). When we recorded light responses from ganglion cells using a multielectrode array we found significant and opposing changes in two physiological groups of RGCs. ON-sustained cells showed significant decreases while transient ON-OFF cells showed significant increases. The effects on ON-OFF transient cells but not ON-sustained cells disappeared in the presence of an inhibitory cocktail. We have previously shown that RGCs have only a minor contribution to the OPs (Smith et al., 2014), therefore suggesting that SBACs might be a significant contributor to this ERG component. Targeting SBACs with the cholinergic neurotoxin ethylcholine mustard aziridinium (AF64A) caused a reduction in the amplitude of the OPs similar to A803467. Our results, both using the ERG and MEA recordings from RGCs, suggest that Nav1.8 plays a role in modulating specific aspects of the retinal physiology and that SBACs are a fundamental cellular contributor to the OPs in mice, a clear demonstration of the dichotomy between ERG b-wave and OPs.
Collapse
Affiliation(s)
- Benjamin J Smith
- Department of Biology, Dalhousie University, 1355 Oxford St., PO Box 15000, Halifax, NS B3H 4R2, Canada.
| | - Patrice D Côté
- Department of Biology, Dalhousie University, 1355 Oxford St., PO Box 15000, Halifax, NS B3H 4R2, Canada; Department of Ophthalmology and Visual Sciences, Dalhousie University, 1276 South Park St., PO Box 15000, Halifax, NS B3H 4R2, Canada.
| | - François Tremblay
- Department of Ophthalmology and Visual Sciences, Dalhousie University, 1276 South Park St., PO Box 15000, Halifax, NS B3H 4R2, Canada; Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, PO Box 15000, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
146
|
Keenan WT, Rupp AC, Ross RA, Somasundaram P, Hiriyanna S, Wu Z, Badea TC, Robinson PR, Lowell BB, Hattar SS. A visual circuit uses complementary mechanisms to support transient and sustained pupil constriction. eLife 2016; 5:e15392. [PMID: 27669145 PMCID: PMC5079752 DOI: 10.7554/elife.15392] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 09/22/2016] [Indexed: 12/22/2022] Open
Abstract
Rapid and stable control of pupil size in response to light is critical for vision, but the neural coding mechanisms remain unclear. Here, we investigated the neural basis of pupil control by monitoring pupil size across time while manipulating each photoreceptor input or neurotransmitter output of intrinsically photosensitive retinal ganglion cells (ipRGCs), a critical relay in the control of pupil size. We show that transient and sustained pupil responses are mediated by distinct photoreceptors and neurotransmitters. Transient responses utilize input from rod photoreceptors and output by the classical neurotransmitter glutamate, but adapt within minutes. In contrast, sustained responses are dominated by non-conventional signaling mechanisms: melanopsin phototransduction in ipRGCs and output by the neuropeptide PACAP, which provide stable pupil maintenance across the day. These results highlight a temporal switch in the coding mechanisms of a neural circuit to support proper behavioral dynamics.
Collapse
Affiliation(s)
| | - Alan C Rupp
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Rachel A Ross
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
- Department of Psychiatry, Massachusetts General Hospital, Boston, United States
| | - Preethi Somasundaram
- Department of Biological Sciences, University of Marlyand, Baltimore, United States
| | - Suja Hiriyanna
- National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Zhijian Wu
- National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Tudor C Badea
- National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Phyllis R Robinson
- Department of Biological Sciences, University of Marlyand, Baltimore, United States
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
- Program in Neuroscience, Harvard Medical School, Boston, United States
| | - Samer S Hattar
- Department of Biology, Johns Hopkins University, Baltimore, United States
- Department of Neuroscience, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
147
|
Matynia A, Nguyen E, Sun X, Blixt FW, Parikh S, Kessler J, Pérez de Sevilla Müller L, Habib S, Kim P, Wang ZZ, Rodriguez A, Charles A, Nusinowitz S, Edvinsson L, Barnes S, Brecha NC, Gorin MB. Peripheral Sensory Neurons Expressing Melanopsin Respond to Light. Front Neural Circuits 2016; 10:60. [PMID: 27559310 PMCID: PMC4978714 DOI: 10.3389/fncir.2016.00060] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/26/2016] [Indexed: 01/17/2023] Open
Abstract
The ability of light to cause pain is paradoxical. The retina detects light but is devoid of nociceptors while the trigeminal sensory ganglia (TG) contain nociceptors but not photoreceptors. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are thought to mediate light-induced pain but recent evidence raises the possibility of an alternative light responsive pathway independent of the retina and optic nerve. Here, we show that melanopsin is expressed in both human and mouse TG neurons. In mice, they represent 3% of small TG neurons that are preferentially localized in the ophthalmic branch of the trigeminal nerve and are likely nociceptive C fibers and high-threshold mechanoreceptor Aδ fibers based on a strong size-function association. These isolated neurons respond to blue light stimuli with a delayed onset and sustained firing, similar to the melanopsin-dependent intrinsic photosensitivity observed in ipRGCs. Mice with severe bilateral optic nerve crush exhibit no light-induced responses including behavioral light aversion until treated with nitroglycerin, an inducer of migraine in people and migraine-like symptoms in mice. With nitroglycerin, these same mice with optic nerve crush exhibit significant light aversion. Furthermore, this retained light aversion remains dependent on melanopsin-expressing neurons. Our results demonstrate a novel light-responsive neural function independent of the optic nerve that may originate in the peripheral nervous system to provide the first direct mechanism for an alternative light detection pathway that influences motivated behavior.
Collapse
Affiliation(s)
- Anna Matynia
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLALos Angeles, CA, USA; Brain Research Institute, UCLALos Angeles, CA, USA
| | - Eileen Nguyen
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLA Los Angeles, CA, USA
| | - Xiaoping Sun
- Department of Neurobiology and Medicine, David Geffen School of Medicine, UCLA Los Angeles, CA, USA
| | - Frank W Blixt
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Lund, Sweden
| | - Sachin Parikh
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLALos Angeles, CA, USA; Brain Research Institute, UCLALos Angeles, CA, USA
| | - Jason Kessler
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLA Los Angeles, CA, USA
| | | | - Samer Habib
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLA Los Angeles, CA, USA
| | - Paul Kim
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLA Los Angeles, CA, USA
| | - Zhe Z Wang
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLA Los Angeles, CA, USA
| | - Allen Rodriguez
- Department of Neurobiology and Medicine, David Geffen School of Medicine, UCLA Los Angeles, CA, USA
| | - Andrew Charles
- Brain Research Institute, UCLALos Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine, UCLALos Angeles, CA, USA
| | - Steven Nusinowitz
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLA Los Angeles, CA, USA
| | - Lars Edvinsson
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Lund, Sweden
| | - Steven Barnes
- Department of Neurobiology and Medicine, David Geffen School of Medicine, UCLALos Angeles, CA, USA; Departments of Physiology & Biophysics and Ophthalmology and Visual Sciences, Dalhousie UniversityHalifax, NS, Canada
| | - Nicholas C Brecha
- Brain Research Institute, UCLALos Angeles, CA, USA; Department of Neurobiology and Medicine, David Geffen School of Medicine, UCLALos Angeles, CA, USA; Veterans Administration Greater Los Angeles Health SystemLos Angeles, CA, USA
| | - Michael B Gorin
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLALos Angeles, CA, USA; Brain Research Institute, UCLALos Angeles, CA, USA
| |
Collapse
|
148
|
Sonoda T, Schmidt TM. Re-evaluating the Role of Intrinsically Photosensitive Retinal Ganglion Cells: New Roles in Image-Forming Functions. Integr Comp Biol 2016; 56:834-841. [DOI: 10.1093/icb/icw066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
149
|
Fasick JI, Robinson PR. Adaptations of Cetacean Retinal Pigments to Aquatic Environments. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
150
|
The Visual Cycle in the Inner Retina of Chicken and the Involvement of Retinal G-Protein-Coupled Receptor (RGR). Mol Neurobiol 2016; 54:2507-2517. [DOI: 10.1007/s12035-016-9830-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/04/2016] [Indexed: 11/27/2022]
|