101
|
Meng Y, Ma N, Zhang Q, You Q, Li N, Ali Khan M, Liu X, Wu L, Su Z, Gao J. Precise spatio-temporal modulation of ACC synthase by MPK6 cascade mediates the response of rose flowers to rehydration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:941-50. [PMID: 24942184 DOI: 10.1111/tpj.12594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 05/18/2023]
Abstract
Drought is a major abiotic stress that affects the development and growth of most plants, and limits crop yield worldwide. Although the response of plants to drought has been well documented, much less is known about how plants respond to the water recovery process, namely rehydration. Here, we describe the spatio-temporal response of plant reproductive organs to rehydration using rose flowers as an experimental system. We found that rehydration triggered rapid and transient ethylene production in the gynoecia. This ethylene burst serves as a signal to ensure water recovery in flowers, and promotes flower opening by influencing the expression of a set of rehydration-responsive genes. An in-gel kinase assay suggested that the rehydration-induced ethylene burst resulted from transient accumulation of RhACS1/2 proteins in gynoecia. Meanwhile, RhMPK6, a rose homolog of Arabidopsis thaliana MPK6, is rapidly activated by rehydration within 0.5 h. Furthermore, RhMPK6 was able to phosphorylate RhACS1 but not RhACS2 in vitro. Application of the kinase inhibitor K252a suppressed RhACS1 accumulation and rehydration-induced ethylene production in gynoecia, and the protein phosphatase inhibitor okadaic acid had the opposite effect, confirming that accumulation of RhACS1 was phosphorylation-dependent. Finally, silencing of RhMPK6 significantly reduced ethylene production in gynoecia when flowers were subjected to rehydration. Taken together, our results suggest that temporal- and spatial-specific activation of an RhMPK6-RhACS1 cascade is responsible for rehydration-induced ethylene production in gynoecia, and that the resulting ethylene-mediated signaling pathway is a key factor in flower rehydration.
Collapse
Affiliation(s)
- Yonglu Meng
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Lazar A, Coll A, Dobnik D, Baebler Š, Bedina-Zavec A, Žel J, Gruden K. Involvement of potato (Solanum tuberosum L.) MKK6 in response to potato virus Y. PLoS One 2014; 9:e104553. [PMID: 25111695 PMCID: PMC4128675 DOI: 10.1371/journal.pone.0104553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/14/2014] [Indexed: 11/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades have crucial roles in the regulation of plant development and in plant responses to stress. Plant recognition of pathogen-associated molecular patterns or pathogen-derived effector proteins has been shown to trigger activation of several MAPKs. This then controls defence responses, including synthesis and/or signalling of defence hormones and activation of defence related genes. The MAPK cascade genes are highly complex and interconnected, and thus the precise signalling mechanisms in specific plant–pathogen interactions are still not known. Here we investigated the MAPK signalling network involved in immune responses of potato (Solanum tuberosum L.) to Potato virus Y, an important potato pathogen worldwide. Sequence analysis was performed to identify the complete MAPK kinase (MKK) family in potato, and to identify those regulated in the hypersensitive resistance response to Potato virus Y infection. Arabidopsis has 10 MKK family members, of which we identified five in potato and tomato (Solanum lycopersicum L.), and eight in Nicotiana benthamiana. Among these, StMKK6 is the most strongly regulated gene in response to Potato virus Y. The salicylic acid treatment revealed that StMKK6 is regulated by the hormone that is in agreement with the salicylic acid-regulated domains found in the StMKK6 promoter. The involvement of StMKK6 in potato defence response was confirmed by localisation studies, where StMKK6 accumulated strongly only in Potato-virus-Y-infected plants, and predominantly in the cell nucleus. Using a yeast two-hybrid method, we identified three StMKK6 targets downstream in the MAPK cascade: StMAPK4_2, StMAPK6 and StMAPK13. These data together provide further insight into the StMKK6 signalling module and its involvement in plant defence.
Collapse
Affiliation(s)
- Ana Lazar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- * E-mail:
| | - Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Apolonija Bedina-Zavec
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Jana Žel
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
103
|
Sethi V, Raghuram B, Sinha AK, Chattopadhyay S. A mitogen-activated protein kinase cascade module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis. THE PLANT CELL 2014; 26:3343-57. [PMID: 25139007 PMCID: PMC4371833 DOI: 10.1105/tpc.114.128702] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/18/2014] [Accepted: 08/03/2014] [Indexed: 05/20/2023]
Abstract
Mitogen-activated protein kinase (MAPK) pathways are involved in several signal transduction processes in eukaryotes. Light signal transduction pathways have been extensively studied in plants; however, the connection between MAPK and light signaling pathways is currently unknown. Here, we show that MKK3-MPK6 is activated by blue light in a MYC2-dependent manner. MPK6 physically interacts with and phosphorylates a basic helix-loop-helix transcription factor, MYC2, and is phosphorylated by a MAPK kinase, MKK3. Furthermore, MYC2 binds to the MPK6 promoter and regulates its expression in a feedback regulatory mechanism in blue light signaling. We present mutational and physiological studies that illustrate the function of the MKK3-MPK6-MYC2 module in Arabidopsis thaliana seedling development and provide a revised mechanistic view of photomorphogenesis.
Collapse
Affiliation(s)
- Vishmita Sethi
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Badmi Raghuram
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | | - Sudip Chattopadhyay
- National Institute of Plant Genome Research, New Delhi 110067, India Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| |
Collapse
|
104
|
Pecher P, Eschen-Lippold L, Herklotz S, Kuhle K, Naumann K, Bethke G, Uhrig J, Weyhe M, Scheel D, Lee J. The Arabidopsis thaliana mitogen-activated protein kinases MPK3 and MPK6 target a subclass of 'VQ-motif'-containing proteins to regulate immune responses. THE NEW PHYTOLOGIST 2014; 203:592-606. [PMID: 24750137 DOI: 10.1111/nph.12817] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/18/2014] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play key roles in plant immune signalling, and elucidating their regulatory functions requires the identification of the pathway-specific substrates. We used yeast two-hybrid interaction screens, in vitro kinase assays and mass spectrometry-based phosphosite mapping to study a family of MAPK substrates. Site-directed mutagenesis and promoter-reporter fusion studies were performed to evaluate the impact of substrate phosphorylation on downstream signalling. A subset of the Arabidopsis thaliana VQ-motif-containing proteins (VQPs) were phosphorylated by the MAPKs MPK3 and MPK6, and renamed MPK3/6-targeted VQPs (MVQs). When plant protoplasts (expressing these MVQs) were treated with the flagellin-derived peptide flg22, several MVQs were destabilized in vivo. The MVQs interact with specific WRKY transcription factors. Detailed analysis of a representative member of the MVQ subset, MVQ1, indicated a negative role in WRKY-mediated defence gene expression - with mutation of the VQ-motif abrogating WRKY binding and causing mis-regulation of defence gene expression. We postulate the existence of a variety of WRKY-VQP-containing transcriptional regulatory protein complexes that depend on spatio-temporal VQP and WRKY expression patterns. Defence gene transcription can be modulated by changing the composition of these complexes - in part - through MAPK-mediated VQP degradation.
Collapse
Affiliation(s)
- Pascal Pecher
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | | | - Siska Herklotz
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Katja Kuhle
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Kai Naumann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Gerit Bethke
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Joachim Uhrig
- Department of Plant Molecular Biology and Physiology, Georg August University of Goettingen, Julia-Lermontowa-Weg 3, D-37077, Goettingen, Germany
| | - Martin Weyhe
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Dierk Scheel
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Justin Lee
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| |
Collapse
|
105
|
Kohorn BD, Kohorn SL, Saba NJ, Martinez VM. Requirement for pectin methyl esterase and preference for fragmented over native pectins for wall-associated kinase-activated, EDS1/PAD4-dependent stress response in Arabidopsis. J Biol Chem 2014; 289:18978-86. [PMID: 24855660 DOI: 10.1074/jbc.m114.567545] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The wall-associated kinases (WAKs) have a cytoplasmic protein kinase domain that spans the plasma membrane and binds pectin in the extracellular matrix of plants. WAKs are required for cell expansion during Arabidopsis seedling development but are also an integral part of the response to pathogens and stress that present oligogalacturonides (OGs), which subsequently bind to WAKs and activate a MPK6 (mitogen-activated protein kinase)-dependent pathway. It was unclear how WAKs distinguish native pectin polymers and OGs to activate one or the other of these two pathways. A dominant allele of WAK2 constitutively activates the stress response, and we show here that the effect is dependent upon EDS1 and PAD4, transcriptional activators involved in the pathogen response. Moreover, the WAK2 dominant allele is suppressed by a null allele of a pectin methyl esterase (PME3) whose activity normally leads to cross-linking of pectins in the cell wall. Although OGs activate a transcriptional response in wild type, the response is enhanced in a pme3/pme3 null, consistent with a competition by OG and native polymers for activation of WAKs. This provides a plausible mechanism for WAKs to distinguish an expansion from a stress pathway.
Collapse
Affiliation(s)
- Bruce D Kohorn
- From the Department of Biology, Bowdoin College, Brunswick, Maine 04011
| | - Susan L Kohorn
- From the Department of Biology, Bowdoin College, Brunswick, Maine 04011
| | - Nicholas J Saba
- From the Department of Biology, Bowdoin College, Brunswick, Maine 04011
| | | |
Collapse
|
106
|
Wang L, Su H, Han L, Wang C, Sun Y, Liu F. Differential expression profiles of poplar MAP kinase kinases in response to abiotic stresses and plant hormones, and overexpression of PtMKK4 improves the drought tolerance of poplar. Gene 2014; 545:141-8. [PMID: 24780863 DOI: 10.1016/j.gene.2014.04.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 11/18/2022]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules that play essential roles in plant growth, development and stress response. MAPK kinases (MAPKKs), which link MAPKs and MAPKK kinases (MAPKKKs), are integral in mediating various stress responses in plants. However, to date few data about the roles of poplar MAPKKs in stress signal transduction are available. In this study, we performed a systemic analysis of poplar MAPKK gene family expression profiles in response to several abiotic stresses and stress-associated hormones. Furthermore, Populus trichocarpa MAPKK4 (PtMKK4) was chosen for functional characterization. Transgenic analysis showed that overexpression of the PtMKK4 gene remarkably enhanced drought stress tolerance in the transgenic poplar plants. The PtMKK4-overexpressing plants also exhibited much lower levels of H2O2 and higher antioxidant enzyme activity after exposure to drought stress compared to the wide type lines. Besides, some drought marker genes including PtP5CS, PtSUS3, PtLTP3 and PtDREB8 exhibited higher expression levels in the transgenic lines than in the wide type under drought conditions. This study provided valuable information for understanding the putative functions of poplar MAPKKs involved in important signaling pathways under different stress conditions.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Sciences, Ludong University, Yantai, Shandong 264025, PR China
| | - Hongyan Su
- College of Agriculture, Ludong University, Yantai, Shandong 264025, PR China.
| | - Liya Han
- College of Agriculture, Ludong University, Yantai, Shandong 264025, PR China
| | - Chuanqi Wang
- College of Life Sciences, Ludong University, Yantai, Shandong 264025, PR China
| | - Yanlin Sun
- College of Life Sciences, Ludong University, Yantai, Shandong 264025, PR China
| | - Fenghong Liu
- College of Life Sciences, Ludong University, Yantai, Shandong 264025, PR China
| |
Collapse
|
107
|
Pitzschke A, Datta S, Persak H. Salt stress in Arabidopsis: lipid transfer protein AZI1 and its control by mitogen-activated protein kinase MPK3. MOLECULAR PLANT 2014; 7:722-38. [PMID: 24214892 PMCID: PMC3973493 DOI: 10.1093/mp/sst157] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A plant's capability to cope with environmental challenges largely relies on signal transmission through mitogen-activated protein kinase (MAPK) cascades. In Arabidopsis thaliana, MPK3 is particularly strongly associated with numerous abiotic and biotic stress responses. Identification of MPK3 substrates is a milestone towards improving stress resistance in plants. Here, we characterize AZI1, a lipid transfer protein (LTP)-related hybrid proline-rich protein (HyPRP), as a novel target of MPK3. AZI1 is phosphorylated by MPK3 in vitro. As documented by co-immunoprecipitation and bimolecular fluorescence complementation experiments, AZI1 interacts with MPK3 to form protein complexes in planta. Furthermore, null mutants of azi1 are hypersensitive to salt stress, while AZI1-overexpressing lines are markedly more tolerant. AZI1 overexpression in the mpk3 genetic background partially alleviates the salt-hypersensitive phenotype of this mutant, but functional MPK3 appears to be required for the full extent of AZI1-conferred robustness. Notably, this robustness does not come at the expense of normal development. Immunoblot and RT-PCR data point to a role of MPK3 as positive regulator of AZI1 abundance.
Collapse
Affiliation(s)
- Andrea Pitzschke
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | | | | |
Collapse
|
108
|
Brosché M, Blomster T, Salojärvi J, Cui F, Sipari N, Leppälä J, Lamminmäki A, Tomai G, Narayanasamy S, Reddy RA, Keinänen M, Overmyer K, Kangasjärvi J. Transcriptomics and functional genomics of ROS-induced cell death regulation by RADICAL-INDUCED CELL DEATH1. PLoS Genet 2014; 10:e1004112. [PMID: 24550736 PMCID: PMC3923667 DOI: 10.1371/journal.pgen.1004112] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 12/02/2013] [Indexed: 11/18/2022] Open
Abstract
Plant responses to changes in environmental conditions are mediated by a network of signaling events leading to downstream responses, including changes in gene expression and activation of cell death programs. Arabidopsis thaliana RADICAL-INDUCED CELL DEATH1 (RCD1) has been proposed to regulate plant stress responses by protein-protein interactions with transcription factors. Furthermore, the rcd1 mutant has defective control of cell death in response to apoplastic reactive oxygen species (ROS). Combining transcriptomic and functional genomics approaches we first used microarray analysis in a time series to study changes in gene expression after apoplastic ROS treatment in rcd1. To identify a core set of cell death regulated genes, RCD1-regulated genes were clustered together with other array experiments from plants undergoing cell death or treated with various pathogens, plant hormones or other chemicals. Subsequently, selected rcd1 double mutants were constructed to further define the genetic requirements for the execution of apoplastic ROS induced cell death. Through the genetic analysis we identified WRKY70 and SGT1b as cell death regulators functioning downstream of RCD1 and show that quantitative rather than qualitative differences in gene expression related to cell death appeared to better explain the outcome. Allocation of plant energy to defenses diverts resources from growth. Recently, a plant response termed stress-induced morphogenic response (SIMR) was proposed to regulate the balance between defense and growth. Using a rcd1 double mutant collection we show that SIMR is mostly independent of the classical plant defense signaling pathways and that the redox balance is involved in development of SIMR. Reactive oxygen species (ROS) are utilized in plants as signaling molecules to regulate development, stress responses and cell death. One extreme form of defense uses programmed cell death (PCD) in a scorched earth strategy to deliberately kill off cells invaded by a pathogen. Compared to animals, the regulation of plant PCD remains largely uncharacterized, particularly with regard to how ROS regulate changes in gene expression leading to PCD. Using comparative transcriptome analysis of mutants deficient in PCD regulation and publicly available cell death microarray data, we show that quantitative rather than qualitative differences in cell death gene expression appear to better explain the cell death response. In a genetic analysis with double mutants we also found the transcription factor WRKY70 and a component of ubiquitin mediated protein degradation, SGT1b, to be involved in regulation of ROS induced PCD.
Collapse
Affiliation(s)
- Mikael Brosché
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Institute of Technology, University of Tartu, Tartu, Estonia
- * E-mail:
| | - Tiina Blomster
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Jarkko Salojärvi
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Fuqiang Cui
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Nina Sipari
- Department of Biology, University of Eastern Finland, Joensuu, Finland
| | - Johanna Leppälä
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Airi Lamminmäki
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Gloria Tomai
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Shaman Narayanasamy
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Ramesha A. Reddy
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Markku Keinänen
- Department of Biology, University of Eastern Finland, Joensuu, Finland
| | - Kirk Overmyer
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
109
|
Pitzschke A, Datta S, Persak H. Mitogen-activated protein kinase-regulated AZI1 - an attractive candidate for genetic engineering. PLANT SIGNALING & BEHAVIOR 2014; 9:e27764. [PMID: 24518841 PMCID: PMC4091252 DOI: 10.4161/psb.27764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mitogen-activated protein kinases and their targets have been in the limelight of plant stress research. Signaling pathways mediating the responses to multiple stresses deserve particular attention. In a recent study, we reported AZI1, a member of the lipid transfer protein family, to play a role in MPK3-mediated responses to salt stress in Arabidopsis thaliana. MPK3 controls AZI1 at the transcriptional and posttranslational level. The AZI1 protein has several properties that make it very attractive for genetic engineering. A model of multi-level control of AZI1 by MPK3 is proposed, and strategies toward optimizing AZI1 protein properties are briefly discussed.
Collapse
|
110
|
Transient expression in Arabidopsis leaf mesophyll protoplast system for cell-based functional analysis of MAPK cascades signaling. Methods Mol Biol 2014; 1171:3-12. [PMID: 24908115 DOI: 10.1007/978-1-4939-0922-3_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Mitogen-Activated Protein Kinase (MAPK) cascade is one of the main signaling components mediating abiotic and biotic stress and hormone information in plants. Plant MAPK study has been impeded with a genetic approach using a long-term phenotypic analysis in spite of the transient nature of the protein kinase signaling. Arabidopsis leaf mesophyll protoplasts provide a versatile resource for diverse cell-based assays to acquire immediate molecular and biochemical responses with transient expression of MAPK cascade components of interests. Thus, it is an attractive tool for a high-throughput functional analysis of Arabidopsis MAPK cascade signaling. However, transient expression in Arabidopsis mesophyll protoplast (TEAMP) system requires mastered skills for protoplast preparation and handling to achieve steady and stable data. Here, we have described two analytical methods for MAPK cascade signaling using TEAMP system.
Collapse
|
111
|
López-Bucio JS, Dubrovsky JG, Raya-González J, Ugartechea-Chirino Y, López-Bucio J, de Luna-Valdez LA, Ramos-Vega M, León P, Guevara-García AA. Arabidopsis thaliana mitogen-activated protein kinase 6 is involved in seed formation and modulation of primary and lateral root development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:169-83. [PMID: 24218326 PMCID: PMC3883294 DOI: 10.1093/jxb/ert368] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPKs) cascades are signal transduction modules highly conserved in all eukaryotes regulating various aspects of plant biology, including stress responses and developmental programmes. In this study, we characterized the role of MAPK 6 (MPK6) in Arabidopsis embryo development and in post-embryonic root system architecture. We found that the mpk6 mutation caused altered embryo development giving rise to three seed phenotypes that, post-germination, correlated with alterations in root architecture. In the smaller seed class, mutant seedlings failed to develop the primary root, possibly as a result of an earlier defect in the division of the hypophysis cell during embryo development, but they had the capacity to develop adventitious roots to complete their life cycle. In the larger class, the MPK6 loss of function did not cause any evident alteration in seed morphology, but the embryo and the mature seed were bigger than the wild type. Seedlings developed from these bigger seeds were characterized by a primary root longer than that of the wild type, accompanied by significantly increased lateral root initiation and more and longer root hairs. Apparently, the increment in primary root growth resulted from an enhanced cell production and cell elongation. Our data demonstrated that MPK6 plays an important role during embryo development and acts as a repressor of primary and lateral root development.
Collapse
Affiliation(s)
- J. S. López-Bucio
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - J. G. Dubrovsky
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - J. Raya-González
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio A-1′, CP 58030 Morelia, Michoacán, México
| | - Y. Ugartechea-Chirino
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 3er circuito exterior SN, Del. Coyoacán, México D.F. 04510, México
| | - J. López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio A-1′, CP 58030 Morelia, Michoacán, México
| | - L. A. de Luna-Valdez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - M. Ramos-Vega
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - P. León
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - A. A. Guevara-García
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
112
|
Lassowskat I, Böttcher C, Eschen-Lippold L, Scheel D, Lee J. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2014; 5:554. [PMID: 25368622 PMCID: PMC4202796 DOI: 10.3389/fpls.2014.00554] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/27/2014] [Indexed: 05/20/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) target a variety of protein substrates to regulate cellular signaling processes in eukaryotes. In plants, the number of identified MAPK substrates that control plant defense responses is still limited. Here, we generated transgenic Arabidopsis thaliana plants with an inducible system to simulate in vivo activation of two stress-activated MAPKs, MPK3, and MPK6. Metabolome analysis revealed that this artificial MPK3/6 activation (without any exposure to pathogens or other stresses) is sufficient to drive the production of major defense-related metabolites, including various camalexin, indole glucosinolate and agmatine derivatives. An accompanying (phospho)proteome analysis led to detection of hundreds of potential phosphoproteins downstream of MPK3/6 activation. Besides known MAPK substrates, many candidates on this list possess typical MAPK-targeted phosphosites and in many cases, the corresponding phosphopeptides were detected by mass spectrometry. Notably, several of these putative phosphoproteins have been reported to be associated with the biosynthesis of antimicrobial defense substances (e.g., WRKY transcription factors and proteins encoded by the genes from the "PEN" pathway required for penetration resistance to filamentous pathogens). Thus, this work provides an inventory of candidate phosphoproteins, including putative direct MAPK substrates, for future analysis of MAPK-mediated defense control. (Proteomics data are available with the identifier PXD001252 via ProteomeXchange, http://proteomecentral.proteomexchange.org).
Collapse
Affiliation(s)
- Ines Lassowskat
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
| | - Christoph Böttcher
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
- Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn InstituteBerlin, Germany
| | - Lennart Eschen-Lippold
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
| | - Dierk Scheel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
| | - Justin Lee
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
- *Correspondence: Justin Lee, Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle/Saale, Germany e-mail:
| |
Collapse
|
113
|
Li Y, Zhang L, Lu W, Wang X, Wu CA, Guo X. Overexpression of cotton GhMKK4 enhances disease susceptibility and affects abscisic acid, gibberellin and hydrogen peroxide signalling in transgenic Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2014; 15:94-108. [PMID: 23980654 PMCID: PMC6638823 DOI: 10.1111/mpp.12067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are involved in plant development, stress responses and hormonal signal transduction. MAPK kinases (MAPKKs), as the key nodes in these cascades, link MAPKs and MAPKK kinases (MAPKKKs). In this study, GhMKK4, a novel group C MAPKK gene from cotton (Gossypium hirsutum), was isolated and identified. Its expression can be induced by various stresses and signalling molecules. The overexpression of GhMKK4 in Nicotiana benthamiana enhanced its susceptibility to bacterial and fungal pathogens, but had no significant effects on salt or drought tolerance. Notably, the overexpressing plants showed increased sensitivity to abscisic acid (ABA) and gibberellin A3 (GA3), and ABA and gibberellin (GA) signalling were affected on infection with Ralstonia solanacearum bacteria. Furthermore, the overexpressing plants showed more reactive oxygen species (ROS) accumulation and stronger inhibition of catalase (CAT), a ROS-scavenging enzyme, than control plants after salicylic acid (SA) treatment. Interestingly, two genes encoding ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC), the key enzymes in polyamine synthesis, exhibited reduced R. solanacearum-induced expression in overexpressing plants. These findings broaden our knowledge about the functions of MAPKKs in diverse signalling pathways and the negative regulation of disease resistance in the cotton crop.
Collapse
Affiliation(s)
- Yuzhen Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | | | | | | | | | | |
Collapse
|
114
|
An atypical tubulin kinase mediates stress-induced microtubule depolymerization in Arabidopsis. Curr Biol 2013; 23:1969-78. [PMID: 24120637 DOI: 10.1016/j.cub.2013.08.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND As sessile organisms, plants adapt to adverse environmental conditions by quickly adjusting cell physiology and metabolism. Transient depolymerization of interphase microtubules is triggered by various acute stresses and biotic interactions with pathogenic organisms. Although rapid remodeling of plant microtubule arrays in response to external stresses is an intriguing phenomenon, the underlying molecular mechanisms and the advantages of this response to plant performance are poorly understood. RESULTS A domain with weak homology to the slime mold actin-fragmin kinase in the Arabidopsis mitogen-activated protein kinase phosphatase PROPYZAMIDE-HYPERSENSITIVE 1 (PHS1) is a Mn2+-dependent kinase. This atypical kinase domain phosphorylates Thr349 of α-tubulin at the longitudinal interdimer interface, thereby generating a polymerization-incompetent isoform, and effectively depolymerizes microtubule arrays when ectopically expressed in plant or animal cells. The intrinsic tubulin kinase activity is normally suppressed by the phosphatase activity of PHS1 but is unmasked immediately after osmotic stress. In the phs1 null mutant, stress-induced microtubule depolymerization does not occur. CONCLUSIONS The rapid and reversible modification of tubulin subunits by PHS1-mediated phosphorylation enables dynamic remodeling of the plant microtubule cytoskeleton in response to external stimuli. Suppression of the potent tubulin kinase activity by the juxtaposed phosphatase domain tightly controls this stress-activated microtubule regulator.
Collapse
|
115
|
Li Y, Zhang L, Wang X, Zhang W, Hao L, Chu X, Guo X. Cotton GhMPK6a negatively regulates osmotic tolerance and bacterial infection in transgenic Nicotiana benthamiana, and plays a pivotal role in development. FEBS J 2013; 280:5128-44. [PMID: 23957843 DOI: 10.1111/febs.12488] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/24/2013] [Accepted: 08/12/2013] [Indexed: 02/01/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in the perception of external signals and the generation of suitable responses. Cotton (Gossypium hirsutum) is an important fibre-producing and oil-producing crop worldwide. However, few MAPKs and their interaction partners have been functionally characterized in cotton. In the present study, the group A MAPK G. hirsutum (Gh)MPK6a was identified and characterized. GhMPK6a expression can be induced through multiple defence-related signal molecules and abiotic and biotic stresses. The ectopic expression of GhMPK6a in Nicotiana benthamiana reduced drought and salt tolerance, with elevated malondialdehyde content, higher reactive oxygen species content and lower abscisic acid content than in wild-type plants. Moreover, plants overexpressing GhMPK6a were sensitive to the bacterial pathogen Ralstonia solanacearum. Histochemical analysis of β-glucuronidase activity revealed that GhMPK6a showed tissue-specific expression during postgermination development, mixed bud differentiation, and pollination. Most importantly, GhMPK6a interacts with the upstream MAPK kinase GhMKK4, as shown by the use of yeast two-hybrid and bimolecular fluorescence complementation systems, compensating for a deficiency of MAPK interaction partners in cotton crops. Taken together, these results suggest that GhMPK6a negatively regulates osmotic stress and bacterial infection, and plays an important role in developmental processes. These results provide useful information for elucidating the roles of MAPK cascades in cotton crops. STRUCTURED DIGITAL ABSTRACT GhMPK6a physically interacts with GhMPK4 by two hybrid (View interaction) GhMPK6a and GhMPK4 physically interact by bimolecular fluorescence complementation (View interaction).
Collapse
Affiliation(s)
- Yuzhen Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | | | | | | | | | | | | |
Collapse
|
116
|
Sheikh AH, Raghuram B, Jalmi SK, Wankhede DP, Singh P, Sinha AK. Interaction between two rice mitogen activated protein kinases and its possible role in plant defense. BMC PLANT BIOLOGY 2013; 13:121. [PMID: 23984709 PMCID: PMC3765826 DOI: 10.1186/1471-2229-13-121] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 08/24/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND The canonical mitogen activated protein kinase (MAPK) signaling pathway plays a vital role in carrying out the normal growth and development of the plant. The pathway, connecting the upstreams signal with the downstream target is considered to be linear, mostly starting with a MAPKKK and ending in a MAPK. RESULTS Here we report a novel interaction between two rice MAPKs, OsMPK20-4 and OsMPK3 suggesting the complex nature of the pathway rather than a linear one at individual steps. The interaction between OsMPK20-4 and OsMPK3 found by yeast two-hybrid analysis was confirmed in planta by co-immunoprecipitation and fluorescence resonance energy transfer (FRET) assays. The interaction is specific and is phosphorylation independent. The results suggest a role of the interaction between OsMPK20-4 and OsMPK3 in basic plant defense. CONCLUSIONS The current novel work showing the physical interaction between two plant MAPKs, OsMPK20-4 and OsMPK3 is the diversion from the dogma of a typical MAPK cascade thereby opening a new dimension to the MAPK signal transduction.
Collapse
Affiliation(s)
- Arsheed H Sheikh
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India
| | - Badmi Raghuram
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India
| | - Siddhi K Jalmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India
| | | | - Pallavi Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India
| | - Alok K Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India
| |
Collapse
|
117
|
Smékalová V, Doskočilová A, Komis G, Samaj J. Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol Adv 2013; 32:2-11. [PMID: 23911976 DOI: 10.1016/j.biotechadv.2013.07.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 01/04/2023]
Abstract
The crosstalk between second messengers, hormones and mitogen-activated protein kinases (MAPKs) in plant signalling systems facilitates adaptation and survival in the face of diverse environmental stresses. This review focuses on the transduction of second messenger and hormone signals by MAPK modules in plant abiotic stress responses. We discuss how this crosstalk regulates gene expression (e.g. by controlling transcription factor activity) and other cellular and physiological responses to enable adaptation and/or resistance to abiotic stresses.
Collapse
Affiliation(s)
- Veronika Smékalová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Anna Doskočilová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Jozef Samaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
118
|
Lu W, Chu X, Li Y, Wang C, Guo X. Cotton GhMKK1 induces the tolerance of salt and drought stress, and mediates defence responses to pathogen infection in transgenic Nicotiana benthamiana. PLoS One 2013; 8:e68503. [PMID: 23844212 PMCID: PMC3700956 DOI: 10.1371/journal.pone.0068503] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 05/30/2013] [Indexed: 11/18/2022] Open
Abstract
Mitogen-activated protein kinase kinases (MAPKK) mediate a variety of stress responses in plants. So far little is known on the functional role of MAPKKs in cotton. In the present study, Gossypium hirsutum MKK1 (GhMKK1) function was investigated. GhMKK1 protein may activate its specific targets in both the nucleus and cytoplasm. Treatments with salt, drought, and H2O2 induced the expression of GhMKK1 and increased the activity of GhMKK1, while overexpression of GhMKK1 in Nicotiana benthamiana enhanced its tolerance to salt and drought stresses as determined by many physiological data. Additionally, GhMKK1 activity was found to up-regulate pathogen-associated biotic stress, and overexpression of GhMKK1 increased the susceptibility of the transgenic plants to the pathogen Ralstonia solanacearum by reducing the expression of PR genes. Moreover, GhMKK1-overexpressing plants also exhibited an enhanced reactive oxygen species scavenging capability and markedly elevated activities of several antioxidant enzymes. These results indicate that GhMKK1 is involved in plants defence responses and provide new data to further analyze the function of plant MAPK pathways.
Collapse
Affiliation(s)
- Wenjing Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Xiaoqian Chu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Yuzhen Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| |
Collapse
|
119
|
Singh R, Jwa NS. The rice MAPKK-MAPK interactome: the biological significance of MAPK components in hormone signal transduction. PLANT CELL REPORTS 2013; 32:923-31. [PMID: 23571660 DOI: 10.1007/s00299-013-1437-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/15/2013] [Accepted: 03/25/2013] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signaling cascades are evolutionarily conserved fundamental signal transduction pathways. A MAPK cascade consists of many distinct MAPKKK-MAPKK-MAPK modules linked to various upstream receptors and downstream targets through sequential phosphorylation and activation of the cascade components. These cascades collaborate in transmitting a variety of extracellular signals and in controlling cellular responses and processes such as growth, differentiation, cell death, hormonal signaling, and stress responses. Although MAPK proteins play central roles in signal transduction pathways, our knowledge of MAPK signaling in hormonal responses in rice has been limited to a small subset of specific upstream and downstream interacting targets. However, recent studies revealing direct MAPK and MAPKK interactions have provided the basis for elucidating interaction specificities, functional divergence, and functional modulation during hormonal responses. In this review, we highlight current insights into MAPKK-MAPK interaction patterns in rice, with emphasis on the biological significance of these interacting pairs in SA (salicylic acid), JA (jasmonic acid), ET (ethylene), and ABA (abscisic acid) responses, and discuss the challenges in understanding functional signal transduction networks mediated by these hormones.
Collapse
Affiliation(s)
- Raksha Singh
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143-747, Republic of Korea
| | | |
Collapse
|
120
|
Wankhede DP, Misra M, Singh P, Sinha AK. Rice mitogen activated protein kinase kinase and mitogen activated protein kinase interaction network revealed by in-silico docking and yeast two-hybrid approaches. PLoS One 2013; 8:e65011. [PMID: 23738013 PMCID: PMC3667834 DOI: 10.1371/journal.pone.0065011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 04/23/2013] [Indexed: 12/26/2022] Open
Abstract
Protein-protein interaction is one of the crucial ways to decipher the functions of proteins and to understand their role in complex pathways at cellular level. Such a protein-protein interaction network in many crop plants remains poorly defined owing largely to the involvement of high costs, requirement for state of the art laboratory, time and labour intensive techniques. Here, we employed computational docking using ZDOCK and RDOCK programmes to identify interaction network between members of Oryza sativa mitogen activated protein kinase kinase (MAPKK) and mitogen activated protein kinase (MAPK). The 3-dimentional (3-D) structures of five MAPKKs and eleven MAPKs were determined by homology modelling and were further used as input for docking studies. With the help of the results obtained from ZDOCK and RDOCK programmes, top six possible interacting MAPK proteins were predicted for each MAPKK. In order to assess the reliability of the computational prediction, yeast two-hybrid (Y2H) analyses were performed using rice MAPKKs and MAPKs. A direct comparison of Y2H assay and computational prediction of protein interaction was made. With the exception of one, all the other MAPKK-MAPK pairs identified by Y2H screens were among the top predictions by computational dockings. Although, not all the predicted interacting partners could show interaction in Y2H, yet, the harmony between the two approaches suggests that the computational predictions in the present work are reliable. Moreover, the present Y2H analyses per se provide interaction network among MAPKKs and MAPKs which would shed more light on MAPK signalling network in rice.
Collapse
Affiliation(s)
| | - Mohit Misra
- National Institute of Plant Genome Research, New Delhi, India
| | - Pallavi Singh
- National Institute of Plant Genome Research, New Delhi, India
| | | |
Collapse
|
121
|
González Besteiro MA, Ulm R. ATR and MKP1 play distinct roles in response to UV-B stress in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:1034-1043. [PMID: 23237049 DOI: 10.1111/tpj.12095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 05/27/2023]
Abstract
Ultraviolet-B (UV-B) stress activates MAP kinases (MAPKs) MPK3 and MPK6 in Arabidopsis. MAPK activity must be tightly controlled in order to ensure an appropriate cellular outcome. MAPK phosphatases (MKPs) effectively control MAPKs by dephosphorylation of phosphothreonine and phosphotyrosine in their activation loops. Arabidopsis MKP1 is an important regulator of MPK3 and MPK6, and mkp1 knockout mutants are hypersensitive to UV-B stress, which is associated with reduced inactivation of MPK3 and MPK6. Here, we demonstrate that MPK3 and MPK6 are hyperactivated in response to UV-B in plants that are deficient in photorepair, suggesting that UV-damaged DNA is a trigger of MAPK signaling. This is not due to a block in replication, as, in contrast to atr, the mkp1 mutant is not hypersensitive to the replication-inhibiting drug hydroxyurea, hydroxyurea does not activate MPK3 and MPK6, and atr is not impaired in MPK3 and MPK6 activation in response to UV-B. We further show that mkp1 leaves and roots are UV-B hypersensitive, whereas atr is mainly affected at the root level. Tolerance to UV-B stress has been previously associated with stem cell removal and CYCB1;1 accumulation. Although UV-B-induced stem cell death and CYCB1;1 expression are not altered in mkp1 roots, CYCB1;1 expression is reduced in mkp1 leaves. We conclude that the MKP1 and ATR pathways operate in parallel, with primary roles for ATR in roots and MKP1 in leaves.
Collapse
Affiliation(s)
- Marina A González Besteiro
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211, Geneva 4, Switzerland
| | | |
Collapse
|
122
|
Meng X, Xu J, He Y, Yang KY, Mordorski B, Liu Y, Zhang S. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. THE PLANT CELL 2013; 25:1126-42. [PMID: 23524660 PMCID: PMC3634681 DOI: 10.1105/tpc.112.109074] [Citation(s) in RCA: 293] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/26/2013] [Accepted: 03/07/2013] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana MPK3 and MPK6, two mitogen-activated protein kinases (MAPKs or MPKs), play critical roles in plant disease resistance by regulating multiple defense responses. Previously, we characterized the regulation of phytoalexin biosynthesis by Arabidopsis MPK3/MPK6 cascade and its downstream WRKY33 transcription factor. Here, we report another substrate of MPK3/MPK6, ETHYLENE RESPONSE FACTOR6 (ERF6), in regulating Arabidopsis defense gene expression and resistance to the necrotrophic fungal pathogen Botrytis cinerea. Phosphorylation of ERF6 by MPK3/MPK6 in either the gain-of-function transgenic plants or in response to B. cinerea infection increases ERF6 protein stability in vivo. Phospho-mimicking ERF6 is able to constitutively activate defense-related genes, especially those related to fungal resistance, including PDF1.1 and PDF1.2, and confers enhanced resistance to B. cinerea. By contrast, expression of ERF6-EAR, in which ERF6 was fused to the ERF-associated amphiphilic repression (EAR) motif, strongly suppresses B. cinerea-induced defense gene expression, leading to hypersusceptibility of the ERF6-EAR transgenic plants to B. cinerea. Different from ERF1, the regulation and function of ERF6 in defensin gene activation is independent of ethylene. Based on these data, we conclude that ERF6, another substrate of MPK3 and MPK6, plays important roles downstream of the MPK3/MPK6 cascade in regulating plant defense against fungal pathogens.
Collapse
Affiliation(s)
- Xiangzong Meng
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Juan Xu
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunxia He
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Kwang-Yeol Yang
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, South Korea
| | - Breanne Mordorski
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Yidong Liu
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Shuqun Zhang
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Address correspondence to
| |
Collapse
|
123
|
Persak H, Pitzschke A. Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling. PLoS One 2013; 8:e57547. [PMID: 23437396 PMCID: PMC3578790 DOI: 10.1371/journal.pone.0057547] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/25/2013] [Indexed: 01/10/2023] Open
Abstract
Abiotic stress poses a huge, ever-increasing problem to plants and agriculture. The dissection of signalling pathways mediating stress tolerance is a prerequisite to develop more resistant plant species. Mitogen-activated protein kinase (MAPK) cascades are universal signalling modules. In Arabidopsis, the MAPK MPK3 and its upstream regulator MAPK kinase MKK4 initiate the adaptation response to numerous abiotic and biotic stresses. Yet, molecular steps directly linked with MKK4-MPK3 activation are largely unknown. Starting with a yeast-two-hybrid screen for interacting partners of MKK4, we identified a transcription factor, MYB44. MYB44 is controlled at multiple levels by and strongly inter-connected with MAPK signalling. As we had shown earlier, stress-induced expression of the MYB44 gene is regulated by a MPK3-targeted bZIP transcription factor VIP1. At the protein level, MYB44 interacts with MPK3 in vivo. MYB44 is phosphorylated by MPK3 in vitro at a single residue, Ser145. Although replacement of Ser145 by a non-phosphorylatable (S145A) or phosphomimetic (S145D) residue did not alter MYB44 subcellular localisation, dimerization behaviour nor DNA-binding characteristics, abiotic stress tolerance tests in stable transgenic Arabidopsis plants clearly related S145 phosphorylation to MYB44 function: Compared to Arabidopsis wild type plants, MYB44 overexpressing lines exhibit an enhanced tolerance to osmotic stress and are slightly more sensitive to abscisic acid. Interestingly, overexpression of the S145A variant revealed that impaired phosphorylation does not render the MYB44 protein non-functional. Instead, S145A lines are highly sensitive to abiotic stress, and thereby remarkably similar to mpk3-deficient plants. Its in vivo interaction with the nuclear sub-pools of both MPK3 and MKK4 renders MYB44 the first plant transcription factor to have a second function as putative MAPK cascade scaffolding protein.
Collapse
Affiliation(s)
- Helene Persak
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- * E-mail: (AP); (HP)
| | - Andrea Pitzschke
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- * E-mail: (AP); (HP)
| |
Collapse
|
124
|
Characterization of the defense transcriptome responsive to Fusarium oxysporum-infection in Arabidopsis using RNA-seq. Gene 2013; 512:259-66. [DOI: 10.1016/j.gene.2012.10.036] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/15/2012] [Accepted: 10/19/2012] [Indexed: 12/17/2022]
|
125
|
Meng X, Wang H, He Y, Liu Y, Walker JC, Torii KU, Zhang S. A MAPK cascade downstream of ERECTA receptor-like protein kinase regulates Arabidopsis inflorescence architecture by promoting localized cell proliferation. THE PLANT CELL 2012; 24:4948-60. [PMID: 23263767 PMCID: PMC3556968 DOI: 10.1105/tpc.112.104695] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 11/08/2012] [Accepted: 12/06/2012] [Indexed: 05/18/2023]
Abstract
Spatiotemporal-specific cell proliferation and cell differentiation are critical to the formation of normal tissues, organs, and organisms. The highly coordinated cell differentiation and proliferation events illustrate the importance of cell-cell communication during growth and development. In Arabidopsis thaliana, ERECTA (ER), a receptor-like protein kinase, plays important roles in promoting localized cell proliferation, which determines inflorescence architecture, organ shape, and size. However, the downstream signaling components remain unidentified. Here, we report a mitogen-activated protein kinase (MAPK; or MPK) cascade that functions downstream of ER in regulating localized cell proliferation. Similar to an er mutant, loss of function of MPK3/MPK6 or their upstream MAPK kinases (MAPKKs; or MKKs), MKK4/MKK5, resulted in shortened pedicels and clustered inflorescences. Epistasis analysis demonstrated that the gain of function of MKK4 and MKK5 transgenes could rescue the loss-of-function er mutant phenotype at both morphological and cellular levels, suggesting that the MPK3/MPK6 cascade functions downstream of the ER receptor. Furthermore, YODA (YDA), a MAPKK kinase, was shown to be upstream of MKK4/MKK5 and downstream of ER in regulating inflorescence architecture based on both gain- and loss-of-function data. Taken together, these results suggest that the YDA-MKK4/MKK5-MPK3/MPK6 cascade functions downstream of the ER receptor in regulating localized cell proliferation, which further shapes the morphology of plant organs.
Collapse
Affiliation(s)
- Xiangzong Meng
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Huachun Wang
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Yunxia He
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Yidong Liu
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - John C. Walker
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Keiko U. Torii
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, Washington 98195
| | - Shuqun Zhang
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
- Address correspondence to
| |
Collapse
|
126
|
Tsugama D, Liu S, Takano T. Drought-induced activation and rehydration-induced inactivation of MPK6 in Arabidopsis. Biochem Biophys Res Commun 2012; 426:626-9. [PMID: 22975351 DOI: 10.1016/j.bbrc.2012.08.141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 01/05/2023]
Abstract
Mitogen-activated protein kinases (MPKs) have roles in regulating developmental processes and responses to various stimuli in plants. Activations of some MPKs are necessary for proper responses to hyperosmolarity and to a stress-related phytohormone, abscisic acid (ABA). However, there is no direct evidence that MPK activations are regulated by drought and rehydration. Here we show that the activation state of one of the Arabidopsis MPKs, MPK6, is directly regulated by drought and rehydration. An immunoblot analysis using an anti-active MPK antibody detected drought-induced activation and rehydration-induced inactivation of MPK6. MPK6 was activated by drought even in an ABA-deficient mutant, aba2-4. In addition, exogenously added ABA failed to suppress the rehydration-dependent inactivation of MPK6. Under drought conditions, elevated levels of reactive oxygen species (ROS), which are known elicitors of MPK6 activation, were detected in both wild type and an MPK6-deficient mutant, mpk6-4. These results suggest that ROS, but not ABA, induces MPK6 activation as an upstream signal under drought conditions.
Collapse
Affiliation(s)
- Daisuke Tsugama
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo 188-0002, Japan.
| | | | | |
Collapse
|
127
|
Dóczi R, Okrész L, Romero AE, Paccanaro A, Bögre L. Exploring the evolutionary path of plant MAPK networks. TRENDS IN PLANT SCIENCE 2012; 17:518-25. [PMID: 22682803 DOI: 10.1016/j.tplants.2012.05.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 05/01/2012] [Accepted: 05/10/2012] [Indexed: 05/08/2023]
Abstract
The evolutionarily conserved mitogen-activated protein kinase (MAPK) signaling network comprises connected protein kinases arranged in MAPK modules. In this Opinion article, we analyze MAPK signaling components in evolutionarily representative species of the plant lineage and in Naegleria gruberi, a member of an early diverging eukaryotic clade. In Naegleria, there are two closely related MAPK kinases (MKKs) and a single conventional MAPK, whereas in several species of algae, there are two distinct MKKs and multiple MAPKs belonging to different groups. This suggests that the formation of multiple MAPK modules began early during plant evolution. The expansion of MAPK signaling components through gene duplications and the evolution of interaction motifs could have contributed to the highly connected complex MAPK signaling network that we know in Arabidopsis.
Collapse
Affiliation(s)
- Róbert Dóczi
- Institute of Agriculture, Agricultural Research Centre of the Hungarian Academy of Sciences, Brunszvik Rd 2, Martonvásár, H-2462, Hungary
| | | | | | | | | |
Collapse
|
128
|
Sörensson C, Lenman M, Veide-Vilg J, Schopper S, Ljungdahl T, Grøtli M, Tamás MJ, Peck SC, Andreasson E. Determination of primary sequence specificity of Arabidopsis MAPKs MPK3 and MPK6 leads to identification of new substrates. Biochem J 2012; 446:271-8. [PMID: 22631074 DOI: 10.1042/bj20111809] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
MAPKs (mitogen-activated protein kinases) are signalling components highly conserved among eukaryotes. Their diverse biological functions include cellular differentiation and responses to different extracellular stress stimuli. Although some substrates of MAPKs have been identified in plants, no information is available about whether amino acids in the primary sequence other than proline-directed phosphorylation (pS-P) contribute to kinase specificity towards substrates. In the present study, we used a random positional peptide library to search for consensus phosphorylation sequences for Arabidopsis MAPKs MPK3 and MPK6. These experiments indicated a preference towards the sequence L/P-P/X-S-P-R/K for both kinases. After bioinformatic processing, a number of novel candidate MAPK substrates were predicted and subsequently confirmed by in vitro kinase assays using bacterially expressed native Arabidopsis proteins as substrates. MPK3 and MPK6 phosphorylated all proteins tested more efficiently than did another MAPK, MPK4. These results indicate that the amino acid residues in the primary sequence surrounding the phosphorylation site of Arabidopsis MAPK substrates can contribute to MAPK specificity. Further characterization of one of these new substrates confirmed that At1g80180.1 was phosphorylated in planta in a MAPK-dependent manner. Phenotypic analyses of Arabidopsis expressing phosphorylation site mutant forms of At1g80180.1 showed clustered stomata and higher stomatal index in cotyledons expressing the phosphomimetic form of At1g80180.1, providing a link between this new MAPK substrate and the defined role for MPK3 and MPK6 in stomatal patterning.
Collapse
Affiliation(s)
- Carolin Sörensson
- Department of Biology, Lund University, Box 117, SE-221 00 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Singh R, Lee MO, Lee JE, Choi J, Park JH, Kim EH, Yoo RH, Cho JI, Jeon JS, Rakwal R, Agrawal GK, Moon JS, Jwa NS. Rice mitogen-activated protein kinase interactome analysis using the yeast two-hybrid system. PLANT PHYSIOLOGY 2012; 160:477-87. [PMID: 22786887 PMCID: PMC3440221 DOI: 10.1104/pp.112.200071] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/08/2012] [Indexed: 05/03/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades support the flow of extracellular signals to intracellular target molecules and ultimately drive a diverse array of physiological functions in cells, tissues, and organisms by interacting with other proteins. Yet, our knowledge of the global physical MAPK interactome in plants remains largely fragmented. Here, we utilized the yeast two-hybrid system and coimmunoprecipitation, pull-down, bimolecular fluorescence complementation, subcellular localization, and kinase assay experiments in the model crop rice (Oryza sativa) to systematically map what is to our knowledge the first plant MAPK-interacting proteins. We identified 80 nonredundant interacting protein pairs (74 nonredundant interactors) for rice MAPKs and elucidated the novel proteome-wide network of MAPK interactors. The established interactome contains four membrane-associated proteins, seven MAP2Ks (for MAPK kinase), four MAPKs, and 59 putative substrates, including 18 transcription factors. Several interactors were also validated by experimental approaches (in vivo and in vitro) and literature survey. Our results highlight the importance of OsMPK1, an ortholog of tobacco (Nicotiana benthamiana) salicyclic acid-induced protein kinase and Arabidopsis (Arabidopsis thaliana) AtMPK6, among the rice MAPKs, as it alone interacts with 41 unique proteins (51.2% of the mapped MAPK interaction network). Additionally, Gene Ontology classification of interacting proteins into 34 functional categories suggested MAPK participation in diverse physiological functions. Together, the results obtained essentially enhance our knowledge of the MAPK-interacting protein network and provide a valuable research resource for developing a nearly complete map of the rice MAPK interactome.
Collapse
Affiliation(s)
- Raksha Singh
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Mi-Ok Lee
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Jae-Eun Lee
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Jihyun Choi
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Ji Hun Park
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Eun Hye Kim
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Ran Hee Yoo
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Jung-Il Cho
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Jong-Seong Jeon
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Randeep Rakwal
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Ganesh Kumar Agrawal
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Jae Sun Moon
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | | |
Collapse
|
130
|
Li L, Li Y, Zhang L, Xu C, Su T, Ren D, Yang H. Sucrose induces rapid activation of CfSAPK, a mitogen-activated protein kinase, in Cephalostachyum fuchsianum Gamble cells. PLANT, CELL & ENVIRONMENT 2012; 35:1428-1439. [PMID: 22376201 DOI: 10.1111/j.1365-3040.2012.02500.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sucrose was recently demonstrated to function as a molecular signal. However, sucrose-specific sensing and signalling pathways remain largely undefined. Here, we show that Cephalostachyum fuchsianum sucrose-activated protein kinase (CfSAPK) is transiently and specifically activated by sucrose in C. fuchsianum Gamble suspension cells. The result suggested that CfSAPK participates in a sucrose-signalling pathway. CfSAPK was partially purified from sucrose-treated cells and further analysed. Kinase activity assays revealed that CfSAPK preferentially used myelin basic protein (MBP) as substrate in vitro and strongly phosphorylate MBP threonine residue(s) and weakly phosphorylated MBP serine residue(s). Of the divalent cations tested, Mg(2+) was required for CfSAPK activation. Phosphatase treatment of CfSAPK abolished its kinase activity, indicating that phosphorylation is required for CfSAPK activation. Seven internal tryptic peptides identified from CfSAPK matched mitogen-activated protein kinases (MAPKs) in plants. CfSAPK cDNA was cloned using RT-PCR and rapid amplification of cDNA ends (RACE). CfSAPK cDNA encodes a 382-amino acid protein with a calculated molecular mass of 43,466.9 Da. The CfSAPK protein contains all 11 conserved kinase subdomains found in other Ser/Thr kinases. The amino acids sequence of CfSAPK is highly homologous to group A MAPKs in monocotyledon plants.
Collapse
Affiliation(s)
- Lubin Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | | | | | | | | | | | | |
Collapse
|
131
|
|
132
|
Kohorn BD, Kohorn SL, Todorova T, Baptiste G, Stansky K, McCullough M. A dominant allele of Arabidopsis pectin-binding wall-associated kinase induces a stress response suppressed by MPK6 but not MPK3 mutations. MOLECULAR PLANT 2012; 5:841-51. [PMID: 22155845 PMCID: PMC3399699 DOI: 10.1093/mp/ssr096] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The plant cell wall is composed of a matrix of cellulose fibers, flexible pectin polymers, and an array of assorted carbohydrates and proteins. The receptor-like Wall-Associated Kinases (WAKs) of Arabidopsis bind pectin in the wall, and are necessary both for cell expansion during development and for a response to pathogens and wounding. Mitogen Activated Protein Kinases (MPKs) form a major signaling link between cell surface receptors and both transcriptional and enzyme regulation in eukaryotes, and Arabidopsis MPK6 and MPK3 indeed have important roles in development and the response to stress and pathogens. A dominant allele of WAK2 requires kinase activity and activates a stress response that includes an increased ROS accumulation and the up-regulation of numerous genes involved in pathogen resistance, wounding, and cell wall biogenesis. This dominant allele requires a functional pectin binding and kinase domain, indicating that it is engaged in a WAK signaling pathway. A null mutant of the major plasma membrane ROS-producing enzyme complex, rbohd/f does not suppress the WAK2cTAP-induced phenotype. A mpk6, but not a mpk3, null allele is able to suppress the effects of this dominant WAK2 mutation, thus distinguishing MPK3 and MPK6, whose activity previously was thought to be redundant. Pectin activation of gene expression is abated in a wak2-null, but is tempered by the WAK-dominant allele that induces elevated basal stress-related transcript levels. The results suggest a mechanism in which changes to the cell wall can lead to a large change in cellular responses and help to explain how pathogens and wounding can have general effects on growth.
Collapse
|
133
|
Dombrowski JE, Martin RC. Abiotic stresses activate a MAPkinase in the model grass species Lolium temulentum. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:915-919. [PMID: 22472075 DOI: 10.1016/j.jplph.2012.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 05/31/2023]
Abstract
Forage and turf grasses are utilized in diverse environments that expose them to a variety of abiotic stresses, however very little is known concerning the perception or molecular responses to these various stresses. In the model grass species Lolium temulentum, a 46kDa mitogen-activated protein kinase (MAPK) was activated in the leaf within 10min of exposing the roots to salt stress. When plants were subjected cold stress, no significant activation of the MAPK was observed. However, the 46kDa MAPK was rapidly activated in the leaves of plants within 3min of exposure to heat stress. Previously, mechanical wounding has been shown to rapidly activate a 46kDa and a 44kDa MAPK in L. temulentum. The wound activation of the MAPKs was delayed and diminished in plants undergoing cold treatment. In plants subjected simultaneously to 40°C and wounding, the activation of the 46kDa MAPK was enhanced. However if plants were subjected to heat and cold stress for more than 2h or exposed to 300mM NaCl for 24h prior to wounding, the wound activation of the 46kDa and a 44kDa MAPKs were significantly inhibited. These results suggest that the 46kDa MAPK plays a role in the response to various environmental stimuli.
Collapse
Affiliation(s)
- James E Dombrowski
- USDA-ARS National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331, USA.
| | | |
Collapse
|
134
|
Zhang L, Li Y, Lu W, Meng F, Wu CA, Guo X. Cotton GhMKK5 affects disease resistance, induces HR-like cell death, and reduces the tolerance to salt and drought stress in transgenic Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3935-51. [PMID: 22442420 PMCID: PMC3388830 DOI: 10.1093/jxb/ers086] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/22/2012] [Accepted: 02/26/2012] [Indexed: 05/17/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are involved in various processes from plant growth and development to biotic and abiotic stress responses. MAPK kinases (MAPKKs), which link MAPKs and MAPKK kinases (MAPKKKs), play crucial roles in MAPK cascades to mediate a variety of stress responses in plants. However, few MAPKKs have been functionally characterized in cotton (Gossypium hirsutum). In this study, a novel gene, GhMKK5, from cotton belonging to the group C MAPKKs was isolated and characterized. The expression of GhMKK5 can be induced by pathogen infection, abiotic stresses, and multiple defence-related signal molecules. The overexpression of GhMKK5 in Nicotiana benthamiana enhanced the plants' resistance to the bacterial pathogen Ralstonia solanacearum by elevating the expression of pathogen resistance (PR) genes, including PR1a, PR2, PR4, PR5, and NPR1, but increased the plants' sensitivity to the oomycete pathogen Phytophthora parasitica var. nicotianae Tucker. Importantly, GhMKK5-overexpressing plants displayed markedly elevated expression of reactive oxygen species-related and cell death marker genes, such as NtRbohA and NtCDM, and resulted in hypersensitive response (HR)-like cell death characterized by the accumulation of H(2)O(2). Furthermore, it was demonstrated that GhMKK5 overexpression in plants reduced their tolerance to salt and drought stresses, as determined by statistical analysis of seed germination, root length, leaf water loss, and survival rate. Drought obviously accelerated the cell death phenomenon in GhMKK5-overexpressing plants. These results suggest that GhMKK5 may play an important role in pathogen infection and the regulation of the salt and drought stress responses in plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Xingqi Guo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| |
Collapse
|
135
|
Atkinson NJ, Urwin PE. The interaction of plant biotic and abiotic stresses: from genes to the field. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3523-43. [PMID: 22467407 DOI: 10.1093/jxb/ers100] [Citation(s) in RCA: 785] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant responses to different stresses are highly complex and involve changes at the transcriptome, cellular, and physiological levels. Recent evidence shows that plants respond to multiple stresses differently from how they do to individual stresses, activating a specific programme of gene expression relating to the exact environmental conditions encountered. Rather than being additive, the presence of an abiotic stress can have the effect of reducing or enhancing susceptibility to a biotic pest or pathogen, and vice versa. This interaction between biotic and abiotic stresses is orchestrated by hormone signalling pathways that may induce or antagonize one another, in particular that of abscisic acid. Specificity in multiple stress responses is further controlled by a range of molecular mechanisms that act together in a complex regulatory network. Transcription factors, kinase cascades, and reactive oxygen species are key components of this cross-talk, as are heat shock factors and small RNAs. This review aims to characterize the interaction between biotic and abiotic stress responses at a molecular level, focusing on regulatory mechanisms important to both pathways. Identifying master regulators that connect both biotic and abiotic stress response pathways is fundamental in providing opportunities for developing broad-spectrum stress-tolerant crop plants.
Collapse
Affiliation(s)
- Nicky J Atkinson
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | | |
Collapse
|
136
|
Massoud K, Barchietto T, Le Rudulier T, Pallandre L, Didierlaurent L, Garmier M, Ambard-Bretteville F, Seng JM, Saindrenan P. Dissecting phosphite-induced priming in Arabidopsis infected with Hyaloperonospora arabidopsidis. PLANT PHYSIOLOGY 2012; 159:286-98. [PMID: 22408091 PMCID: PMC3375965 DOI: 10.1104/pp.112.194647] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phosphite (Phi), a phloem-mobile oxyanion of phosphorous acid (H(3)PO(3)), protects plants against diseases caused by oomycetes. Its mode of action is unclear, as evidence indicates both direct antibiotic effects on pathogens as well as inhibition through enhanced plant defense responses, and its target(s) in the plants is unknown. Here, we demonstrate that the biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) exhibits an unusual biphasic dose-dependent response to Phi after inoculation of Arabidopsis (Arabidopsis thaliana), with characteristics of indirect activity at low doses (10 mm or less) and direct inhibition at high doses (50 mm or greater). The effect of low doses of Phi on Hpa infection was nullified in salicylic acid (SA)-defective plants (sid2-1, NahG) and in a mutant impaired in SA signaling (npr1-1). Compromised jasmonate (jar1-1) and ethylene (ein2-1) signaling or abscisic acid (aba1-5) biosynthesis, reactive oxygen generation (atrbohD), or accumulation of the phytoalexins camalexin (pad3-1) and scopoletin (f6'h1-1) did not affect Phi activity. Low doses of Phi primed the accumulation of SA and Pathogenesis-Related protein1 transcripts and mobilized two essential components of basal resistance, Enhanced Disease Susceptibility1 and Phytoalexin Deficient4, following pathogen challenge. Compared with inoculated, Phi-untreated plants, the gene expression, accumulation, and phosphorylation of the mitogen-activated protein kinase MPK4, a negative regulator of SA-dependent defenses, were reduced in plants treated with low doses of Phi. We propose that Phi negatively regulates MPK4, thus priming SA-dependent defense responses following Hpa infection.
Collapse
|
137
|
Bethke G, Pecher P, Eschen-Lippold L, Tsuda K, Katagiri F, Glazebrook J, Scheel D, Lee J. Activation of the Arabidopsis thaliana mitogen-activated protein kinase MPK11 by the flagellin-derived elicitor peptide, flg22. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:471-80. [PMID: 22204645 DOI: 10.1094/mpmi-11-11-0281] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mitogen-activated protein kinases (MAPK) mediate cellular signal transduction during stress responses, as well as diverse growth and developmental processes in eukaryotes. Pathogen infection or treatments with conserved pathogen-associated molecular patterns (PAMPs) such as the bacterial flagellin-derived flg22 peptide are known to activate three Arabidopsis thaliana MAPK: MPK3, MPK4, and MPK6. Several stresses, including flg22 treatment, are known to increase MPK11 expression but activation of MPK11 has not been shown. Here, we show that MPK11 activity can, indeed, be increased through flg22 elicitation. A small-scale microarray for profiling defense-related genes revealed that cinnamyl alcohol dehyrogenase 5 requires MPK11 for full flg22-induced expression. An mpk11 mutant showed increased flg22-mediated growth inhibition but no altered susceptibility to Pseudomonas syringae, Botrytis cinerea, or Alternaria brassicicola. In mpk3, mpk6, or mpk4 backgrounds, MPK11 is required for embryo or seed development or general viability. Although this developmental deficiency in double mutants and the lack of or only subtle mpk11 phenotypes suggest functional MAPK redundancies, comparison with the paralogous MPK4 reveals distinct functions. Taken together, future investigations of MAPK roles in stress signaling should include MPK11 as a fourth PAMP-activated MAPK.
Collapse
Affiliation(s)
- Gerit Bethke
- Leibniz Institute of Plant Biochemistry, Stress and Developmental Biology, Weinberg 3, D-06120 Halle, Germany
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Signal convergence through the lenses of MAP kinases: paradigms of stress and hormone signaling in plants. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1207-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
139
|
Hettenhausen C, Baldwin IT, Wu J. Silencing MPK4 in Nicotiana attenuata enhances photosynthesis and seed production but compromises abscisic acid-induced stomatal closure and guard cell-mediated resistance to Pseudomonas syringae pv tomato DC3000. PLANT PHYSIOLOGY 2012; 158:759-76. [PMID: 22147519 PMCID: PMC3271765 DOI: 10.1104/pp.111.190074] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/05/2011] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) play pivotal roles in development and environmental interactions in eukaryotes. Here, we studied the function of a MAPK, NaMPK4, in the wild tobacco species Nicotiana attenuata. The NaMPK4-silenced N. attenuata (irNaMPK4) attained somewhat smaller stature, delayed senescence, and greatly enhanced stomatal conductance and photosynthetic rate, especially during late developmental stages. All these changes were associated with highly increased seed production. Using leaf epidermal peels, we demonstrate that guard cell closure in irNaMPK4 was strongly impaired in response to abscisic acid and hydrogen peroxide, and consistently, irNaMPK4 plants transpired more water and wilted sooner than did wild-type plants when they were deprived of water. We show that NaMPK4 plays an important role in the guard cell-mediated defense against a surface-deposited bacterial pathogen, Pseudomonas syringae pv tomato (Pst) DC3000; in contrast, when bacteria directly entered leaves by pressure infiltration, NaMPK4 was found to be less important in the resistance to apoplast-located Pst DC3000. Moreover, we show that salicylic acid was not involved in the defense against PstDC3000 in wild-type and irNaMPK4 plants once it had entered leaf tissue. Finally, we provide evidence that NaMPK4 functions differently from AtMPK4 and AtMPK11 in Arabidopsis (Arabidopsis thaliana), despite their sequence similarities, suggesting a complex functional divergence of MAPKs in different plant lineages. This work highlights the multifaceted functions of NaMPK4 in guard cells and underscores its role in mediating various ecologically important traits.
Collapse
Affiliation(s)
| | | | - Jianqiang Wu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
140
|
Komis G, Illés P, Beck M, Šamaj J. Microtubules and mitogen-activated protein kinase signalling. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:650-7. [PMID: 21839668 DOI: 10.1016/j.pbi.2011.07.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 07/01/2011] [Accepted: 07/14/2011] [Indexed: 05/08/2023]
Abstract
Subcellular signalling by mitogen-activated protein kinases (MAPKs) was originally regarded as a means to regulate microtubule (MT) organization and dynamics, but with time MAPKs were assigned to broader roles concerning biotic and abiotic signal transductions. MAPKs, which regulate a broad spectrum of substrates including transcription factors and cytoskeletal proteins, belong to complex MAPK cascades, which are mainly involved in plant development and in plant stress responses. The fact that single MAPK can be regulated by more than a single MAPKKK/MAPKK pair make MAPK signalling modules versatile tools in the regulation of microtubule organization. Until recently, the best-studied MAPK module implicated in cytoskeletal regulation is the NACK-PQR pathway in tobacco (Nicotiana tabacum). Homologues of each constituent of this pathway were also discovered in Arabidopsis thaliana. So far, direct phosphorylation of tubulins by MAPKs has not been shown. However, the first MAPK-related substrate involved in the regulation of MT dynamics to have been identified is MT-associated protein MAP65-1.
Collapse
Affiliation(s)
- George Komis
- Institute of General Botany, University of Athens, GR-15784, Greece.
| | | | | | | |
Collapse
|
141
|
Kong X, Sun L, Zhou Y, Zhang M, Liu Y, Pan J, Li D. ZmMKK4 regulates osmotic stress through reactive oxygen species scavenging in transgenic tobacco. PLANT CELL REPORTS 2011; 30:2097-104. [PMID: 21735232 DOI: 10.1007/s00299-011-1116-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/18/2011] [Accepted: 06/23/2011] [Indexed: 05/27/2023]
Abstract
Mitogen-activated protein kinase kinase (MAPKKs) are important components of MAPK cascades, which are universal signal transduction modules and play important role in regulating both plant development and biotic or abiotic stress responses. In this study, we identified the group C MAPKK gene, ZmMKK4, in maize (Zea mays L.). Overexpression of ZmMKK4 in tobacco enhanced tolerance to osmotic stress by increased proline content and antioxidant enzyme (POD) activities compared with wild-type plants. RT-PCR revealed that one peroxidase (POX) gene, NtPOX1, was higher in ZmMKK4-overexpressing plants than in the wild-type plants. In addition, the accumulation of reactive oxygen species (ROS) in ZmMKK4-overexpressing plants is much less than that of wild-type plants. These results suggest that ZmMKK4 may be involved in ROS signaling. Taken together, these results indicate that ZmMKK4 is a positive regulator of osmotic stress by regulating scavenging of ROS in plants.
Collapse
Affiliation(s)
- Xiangpei Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
142
|
Zeng Q, Sritubtim S, Ellis BE. AtMKK6 and AtMPK13 are required for lateral root formation in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2011; 6:1436-9. [PMID: 21904115 PMCID: PMC3256364 DOI: 10.4161/psb.6.10.17089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 05/18/2023]
Abstract
The mitogen-activated protein (MAP) kinase cascades are important signaling components that mediate various biological pathwaysin all eukaryotic cells. In our recent publication,1 we identified AtMPK4 as one of the downstream targets of AtMKK6 that is required for executing male-specific meiotic cytokinesis. Here we provide evidence that another target, AtMPK13, is developmentally co-expressed with AtMKK6 in Arabidopsis, and both AtMPK13 and AtMKK6 display high Promoter::GUS activity in the primary root tips and at the lateral root primordia. Partial suppression of either AtMKK6 or AtMPK13 expression significantly reduces the number of lateral roots in the transgenic lines, suggesting that the AtMKK6-AtMPK13 module positively regulates lateral root formation.
Collapse
Affiliation(s)
- Qingning Zeng
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC Canada
| | | | | |
Collapse
|
143
|
Tena G, Boudsocq M, Sheen J. Protein kinase signaling networks in plant innate immunity. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:519-29. [PMID: 21704551 PMCID: PMC3191242 DOI: 10.1016/j.pbi.2011.05.006] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 05/28/2011] [Accepted: 05/30/2011] [Indexed: 05/18/2023]
Abstract
In plants and animals, innate immunity is triggered through pattern recognition receptors (PRRs) in response to microbe-associated molecular patterns (MAMPs) to provide the first line of inducible defense. Plant receptor protein kinases (RPKs) represent the main plasma membrane PRRs perceiving diverse MAMPs. RPKs also recognize secondary danger-inducible plant peptides and cell-wall signals. Both types of RPKs trigger rapid and convergent downstream signaling networks controlled by calcium-activated PKs and mitogen-activated PK (MAPK) cascades. These PK signaling networks serve specific and overlapping roles in controlling the activities and synthesis of a plethora of transcription factors (TFs), enzymes, hormones, peptides and antimicrobial chemicals, contributing to resistance against bacteria, oomycetes and fungi.
Collapse
Affiliation(s)
- Guillaume Tena
- Department of Genetics, Harvard Medical School, Massachusetts General Hospital, MA 02114, USA
| | | | | |
Collapse
|
144
|
Heinrich M, Baldwin IT, Wu J. Two mitogen-activated protein kinase kinases, MKK1 and MEK2, are involved in wounding- and specialist lepidopteran herbivore Manduca sexta-induced responses in Nicotiana attenuata. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4355-65. [PMID: 21610019 PMCID: PMC3153688 DOI: 10.1093/jxb/err162] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 04/14/2011] [Accepted: 04/25/2011] [Indexed: 05/18/2023]
Abstract
In a wild tobacco plant, Nicotiana attenuata, two mitogen-activated protein kinases (MAPKs), salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK), play central roles in modulating herbivory-induced phytohormone and anti-herbivore secondary metabolites. However, the identities of their upstream MAPK kinases (MAPKKs) were elusive. Ectopic overexpression studies in N. benthamiana and N. tabacum suggested that two MAPKKs, MKK1 and MEK2, may activate SIPK and WIPK. The homologues of MKK1 and MEK2 were cloned in N. attenuata (NaMKK1 and NaMEK2) and a virus-induced gene silencing approach was used to knock-down the transcript levels of these MAPKK genes. Plants silenced in NaMKK1 and NaMEK2 were treated with wounding or simulated herbivory by applying the oral secretions of the specialist herbivore Manduca sexta to wounds. MAPK activity assay indicated that after wounding or simulated herbivory NaMKK1 is not required for the phosphorylation of NaSIPK and NaWIPK; in contrast, NaMEK2 and other unknown MAPKKs are important for simulated herbivory-elicited activation of NaSIPK and NaWIPK, and after wounding NaMEK2 probably does not activate NaWIPK but plays a minor role in activating NaSIPK. Consistently, NaMEK2 and certain other MAPKKs, but not NaMKK1, are needed for wounding- and simulated herbivory-elicited accumulation of jasmonic acid (JA), JA-isoleucine, and ethylene. Furthermore, both NaMEK2 and NaMKK1 regulate the levels of trypsin proteinase inhibitors. The findings underscore the complexity of MAPK signalling pathways and highlight the importance of MAPKKs in regulating wounding- and herbivory-induced responses.
Collapse
Affiliation(s)
| | | | - Jianqiang Wu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, D-07745 Jena, Germany
| |
Collapse
|
145
|
Park HC, Song EH, Nguyen XC, Lee K, Kim KE, Kim HS, Lee SM, Kim SH, Bae DW, Yun DJ, Chung WS. Arabidopsis MAP kinase phosphatase 1 is phosphorylated and activated by its substrate AtMPK6. PLANT CELL REPORTS 2011; 30:1523-31. [PMID: 21455789 DOI: 10.1007/s00299-011-1064-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 05/08/2023]
Abstract
Arabidopsis MAP kinase phosphatase 1 (AtMKP1) is a member of the mitogen-activated protein kinase (MPK) phosphatase family, which negatively regulates AtMPKs. We have previously shown that AtMKP1 is regulated by calmodulin (CaM). Here, we examined the phosphorylation of AtMKP1 by its substrate AtMPK6. Intriguingly, AtMKP1 was phosphorylated by AtMPK6, one of AtMKP1 substrates. Four phosphorylation sites were identified by phosphoamino acid analysis, TiO(2) chromatography and mass spectrometric analysis. Site-directed mutation of these residues in AtMKP1 abolished the phosphorylation by AtMPK6. In addition, AtMKP1 interacted with AtMPK6 as demonstrated by the yeast two-hybrid system. Finally, the phosphatase activity of AtMKP1 increased approximately twofold following phosphorylation by AtMPK6. By in-gel kinase assays, we showed that AtMKP1 could be rapidly phosphorylated by AtMPK6 in plants. Our results suggest that the catalytic activity of AtMKP1 in plants can be regulated not only by Ca(2+)/CaM, but also by its physiological substrate, AtMPK6.
Collapse
Affiliation(s)
- Hyeong Cheol Park
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Kong X, Pan J, Zhang M, Xing X, Zhou Y, Liu Y, Li D, Li D. ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. PLANT, CELL & ENVIRONMENT 2011; 34:1291-303. [PMID: 21477122 DOI: 10.1111/j.1365-3040.2011.02329.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are signalling modules that transduce extracellular signalling to a range of cellular responses. Plant MAPK cascades have been implicated in development and stress response. In this study, we isolated a novel group C MAPKK gene, ZmMKK4, from maize. Northern blotting analysis revealed that the ZmMKK4 transcript expression was up-regulated by cold, high salt and exogenous H(2)O(2,) but down-regulated by exogenous abscisic acid (ABA). Over-expression of ZmMKK4 in Arabidopsis conferred tolerance to cold and salt stresses by increased germination rate, lateral root numbers, plant survival rate, chlorophyll, proline and soluble sugar contents, and antioxidant enzyme [peroxidase (POD), catalase (CAT)] activities compared with control plants. Furthermore, ZmMKK4 enhanced a 37 kDa kinase activity after cold and salt stresses. RT-PCR analysis revealed that the transcript levels of stress-responsive transcription factors and functional genes were higher in ZmMKK4-over-expressing plants than in control plants. In addition, ZmMKK4 protein is localized in the nucleus. Taken together, these results indicate that ZmMKK4 is a positive regulator of salt and cold tolerance in plants.
Collapse
Affiliation(s)
- Xiangpei Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Mithoe SC, Menke FLH. Phosphoproteomics perspective on plant signal transduction and tyrosine phosphorylation. PHYTOCHEMISTRY 2011; 72:997-1006. [PMID: 21315387 DOI: 10.1016/j.phytochem.2010.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/25/2010] [Accepted: 12/06/2010] [Indexed: 05/14/2023]
Abstract
Plants and animal cells use intricate signaling pathways to respond to a diverse array of stimuli. These stimuli include signals from environment, such as biotic and abiotic stress signals, as well as cell-to-cell signaling required for pattern formation during development. The transduction of the signal often relies on the post-translational modification (PTM) of proteins. Protein phosphorylation in eukaryotic cells is considered to be a central mechanism for regulation and cellular signaling. The classic view is that phosphorylation of serine (Ser) and threonine (Thr) residues is more abundant, whereas tyrosine (Tyr) phosphorylation is less frequent. This review provides an overview of the progress in the plant phosphoproteomics field and how this progress has lead to a re-evaluation of the relative contribution of tyrosine phosphorylation to the plant phosphoproteome. In relation to this appreciated contribution of tyrosine phosphorylation we also discuss some of the recent progress on the role of tyrosine phosphorylation in plant signal transduction.
Collapse
Affiliation(s)
- Sharon C Mithoe
- Department of Biology, Molecular Genetics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
148
|
Schäfer M, Fischer C, Meldau S, Seebald E, Oelmüller R, Baldwin IT. Lipase activity in insect oral secretions mediates defense responses in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:1520-34. [PMID: 21546453 PMCID: PMC3135923 DOI: 10.1104/pp.111.173567] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/28/2011] [Indexed: 05/18/2023]
Abstract
How plants perceive herbivory is not yet well understood. We investigated early responses of the model plant Arabidopsis (Arabidopsis thaliana) to attack from the generalist grasshopper herbivore, Schistocerca gregaria (Caelifera). When compared with wounding alone, S. gregaria attack and the application of grasshopper oral secretions (GS) to puncture wounds elicited a rapid accumulation of various oxylipins, including 13-hydroperoxy octadecatrienoic acid, 12-oxo-phytodienoic acid (OPDA), jasmonic acid, and jasmonic acid-isoleucine. Additionally, GS increased cytosolic calcium levels, mitogen-activated protein kinase (MPK3 and MPK6) activity, and ethylene emission but not the accumulation of hydrogen peroxide. Although GS contain caeliferin A16:0, a putative elicitor of caeliferan herbivores, treatment with pure, synthetic caeliferin A16:0 did not induce any of the observed responses. With mutant plants, we demonstrate that the observed changes in oxylipin levels are independent of MPK3 and MPK6 activity but that MPK6 is important for the GS-induced ethylene release. Biochemical and pharmacological analyses revealed that the lipase activity of GS plays a central role in the GS-induced accumulation of oxylipins, especially OPDA, which could be fully mimicked by treating puncture wounds only with a lipase from Rhizopus arrhizus. GS elicitation increased the levels of OPDA-responsive transcripts. Because the oral secretions of most insects used to study herbivory-induced responses in Arabidopsis rapidly elicit similar accumulations of OPDA, we suggest that lipids containing OPDA (arabidopsides) play an important role in the activation of herbivory-induced responses.
Collapse
|
149
|
Hadwiger JA, Nguyen HN. MAPKs in development: insights from Dictyostelium signaling pathways. Biomol Concepts 2011; 2:39-46. [PMID: 21666837 DOI: 10.1515/bmc.2011.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mitogen activated protein kinases (MAPKs) play important roles in the development of eukaryotic organisms through the regulation of signal transduction pathways stimulated by external signals. MAPK signaling pathways have been associated with the regulation of cell growth, differentiation, and chemotaxis, indicating MAPKs contribute to a diverse set of developmental processes. In most eukaryotes, the diversity of external signals is likely to far exceed the diversity of MAPKs, suggesting that multiple signaling pathways might share MAPKs. Do different signaling pathways converge before MAPK function or can MAPKs maintain signaling specificity through interactions with specific proteins? The genetic and biochemical analysis of MAPK pathways in simple eukaryotes such as Dictyostelium offers opportunities to investigate functional specificity of MAPKs in G protein-mediated signal transduction pathways. This review considers the regulation and specificity of MAPK function in pathways that control Dictyostelium growth and development.
Collapse
Affiliation(s)
- Jeffrey A Hadwiger
- Department of Microbiology and Molecular Genetics Oklahoma State University 74078-3020, USA
| | | |
Collapse
|
150
|
Abstract
Major progress has been made in unravelling of regulatory mechanisms in eukaryotic cells. Modification of target protein properties by reversible phosphorylation events has been found to be one of the most prominent cellular control processes in all organisms. The phospho-status of a protein is dynamically controlled by protein kinases and counteracting phosphatases. Therefore, monitoring of kinase and phosphatase activities, identification of specific phosphorylation sites, and assessment of their functional significance are of crucial importance to understand development and homeostasis. Recent advances in the area of molecular biology and biochemistry, for instance, mass spectrometry-based phosphoproteomics or fluorescence spectroscopical methods, open new possibilities to reach an unprecidented depth and a proteome-wide understanding of phosphorylation processes in plants and other species. In addition, the growing number of model species allows now deepening evolutionary insights into signal transduction cascades and the use of kinase/phosphatase systems. Thus, this is the age where we move from an understanding of the structure and function of individual protein modules to insights how these proteins are organized into pathways and networks. In this introductory chapter, we briefly review general definitions, methodology, and current concepts of the molecular mechanisms of protein kinase function as a foundation for this methods book. We briefly review biochemistry and structural biology of kinases and provide selected examples for the role of kinases in biological systems.
Collapse
|