101
|
Chen B, Kim EH, Xu PX. Initiation of olfactory placode development and neurogenesis is blocked in mice lacking both Six1 and Six4. Dev Biol 2008; 326:75-85. [PMID: 19027001 DOI: 10.1016/j.ydbio.2008.10.039] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/20/2008] [Accepted: 10/24/2008] [Indexed: 01/15/2023]
Abstract
Mouse olfactory epithelium (OE) originates from ectodermally derived placode, the olfactory placode that arises at the anterior end of the neural plate. Tissue grafting and recombination experiments suggest that the placode is derived from a common preplacodal domain around the neural plate and its development is directed by signals arising from the underlying mesoderm and adjacent neuroectoderm. In mice, loss of Six1 affects OE morphogenesis but not placode formation. We show here that embryos lacking both Six1 and Six4 failed to form the olfactory placode but the preplacodal region appeared to be specified as judged by the expression of Eya2, which marks the common preplacodal domain, suggesting a synergistic requirement of Six1 and Six4 in patterning the preplacodal ectoderm to a morphologic placode. Our results show that Six1 and Six4 are coexpressed in the preplacodal ectoderm from E8.0. In the olfactory pit, Six4 expression was observed in the peripheral precursors that overlap with Mash1-expressing cells, the early committed neuronal lineage. In contrast, Six1 is highly distributed in the peripheral regions where stem cells reside at E10.5 and it overlaps with Sox2 expression. Both genes are expressed in the basal and apical neuronal progenitors in the OE. Analyses of Six1;Six4 double mutant embryos demonstrated that the slightly thickened epithelium observed in the mutant was not induced for neuronal development. In contrast, in Six1(-/-) embryos, all neuronal lineage markers were initially expressed but the pattern of their expression was altered. Although very few, the pioneer neurons were initially present in the Six1 mutant OE. However, neurogenesis ceased by E12.5 due to markedly increased cell apoptosis and reduced proliferation, thus defining the cellular defects occurring in Six1(-/-) OE that have not been previously observed. Our findings demonstrate that Six1/4 function at the top of early events controlling olfactory placode formation and neuronal development. Our analyses show that the threshold of Six1/4 may be crucial for the expression of olfactory specific genes and that Six1 and Six4 may act synergistically to mediate olfactory placode specification and patterning through Fgf and Bmp signaling pathways.
Collapse
Affiliation(s)
- Binglai Chen
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine of NYU, New York, NY 10029, USA
| | | | | |
Collapse
|
102
|
Schlosser G. Do vertebrate neural crest and cranial placodes have a common evolutionary origin? Bioessays 2008; 30:659-72. [PMID: 18536035 DOI: 10.1002/bies.20775] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Two embryonic tissues-the neural crest and the cranial placodes-give rise to most evolutionary novelties of the vertebrate head. These two tissues develop similarly in several respects: they originate from ectoderm at the neural plate border, give rise to migratory cells and develop into multiple cell fates including sensory neurons. These similarities, and the joint appearance of both tissues in the vertebrate lineage, may point to a common evolutionary origin of neural crest and placodes from a specialized population of neural plate border cells. However, a review of the developmental mechanisms underlying the induction, specification, migration and cytodifferentiation of neural crest and placodes reveals fundamental differences between the tissues. Taken together with insights from recent studies in tunicates and amphioxus, this suggests that neural crest and placodes have an independent evolutionary origin and that they evolved from the neural and non-neural side of the neural plate border, respectively.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, University of Bremen, FB 2, PO Box 33 04 40, 28334 Bremen, Germany.
| |
Collapse
|
103
|
McCabe KL, Bronner-Fraser M. Essential role for PDGF signaling in ophthalmic trigeminal placode induction. Development 2008; 135:1863-74. [PMID: 18417621 DOI: 10.1242/dev.017954] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Much of the peripheral nervous system of the head is derived from ectodermal thickenings, called placodes, that delaminate or invaginate to form cranial ganglia and sense organs. The trigeminal ganglion, which arises lateral to the midbrain, forms via interactions between the neural tube and adjacent ectoderm. This induction triggers expression of Pax3, ingression of placode cells and their differentiation into neurons. However, the molecular nature of the underlying signals remains unknown. Here, we investigate the role of PDGF signaling in ophthalmic trigeminal placode induction. By in situ hybridization, PDGF receptor beta is expressed in the cranial ectoderm at the time of trigeminal placode formation, with the ligand PDGFD expressed in the midbrain neural folds. Blocking PDGF signaling in vitro results in a dose-dependent abrogation of Pax3 expression in recombinants of quail ectoderm with chick neural tube that recapitulate placode induction. In ovo microinjection of PDGF inhibitor causes a similar loss of Pax3 as well as the later placodal marker, CD151, and failure of neuronal differentiation. Conversely, microinjection of exogenous PDGFD increases the number of Pax3+ cells in the trigeminal placode and neurons in the condensing ganglia. Our results provide the first evidence for a signaling pathway involved in ophthalmic (opV) trigeminal placode induction.
Collapse
Affiliation(s)
- Kathryn L McCabe
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
104
|
Fine-grained fate maps for the ophthalmic and maxillomandibular trigeminal placodes in the chick embryo. Dev Biol 2008; 317:174-86. [PMID: 18367162 DOI: 10.1016/j.ydbio.2008.02.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/06/2008] [Accepted: 02/06/2008] [Indexed: 01/19/2023]
Abstract
Vertebrate cranial ectodermal placodes are transient, paired thickenings of embryonic head ectoderm that are crucial for the formation of the peripheral sensory nervous system: they give rise to the paired peripheral sense organs (olfactory organs, inner ears and anamniote lateral line system), as well as the eye lenses, and most cranial sensory neurons. Here, we present the first detailed spatiotemporal fate-maps in any vertebrate for the ophthalmic trigeminal (opV) and maxillomandibular trigeminal (mmV) placodes, which give rise to cutaneous sensory neurons in the ophthalmic and maxillomandibular lobes of the trigeminal ganglion. We used focal DiI and DiO labelling to produce eight detailed fate-maps of chick embryonic head ectoderm over approximately 24 h of development, from 0-16 somites. OpV and mmV placode precursors arise from a partially overlapping territory; indeed, some individual dyespots labelled both opV and mmV placode-derived cells. OpV and mmV placode precursors are initially scattered within a relatively large region of ectoderm adjacent to the neural folds, intermingled both with each other and with future epidermal cells, and with geniculate and otic placode precursors. Although the degree of segregation increases with time, there is no clear border between the opV and mmV placodes even at the 16-somite stage, long after neurogenesis has begun in the opV placode, and when neurogenesis is just beginning in the mmV placode. Finally, we find that occasional cells in the border region between the opV placode and mmV placode express both Pax3 (an opV placode specific marker) and Neurogenin1 (an mmV placode specific marker), suggesting that a few cells are responding to both opV and mmV placode-inducing signals. Overall, our results fill a large gap in our knowledge of the early stages of development of both the opV and mmV placodes, providing an essential framework for subsequent studies of the molecular control of their development.
Collapse
|
105
|
Abstract
Peripheral sensory neurons detect diverse physical stimuli and transmit the information into the CNS. At present, the genetic tools for specifically studying the development, plasticity, and regeneration of the sensory axon projections are limited. We found that the gene encoding Advillin, an actin binding protein that belongs to the gelsolin superfamily, is expressed almost exclusively in peripheral sensory neurons. We next generated a line of knock-in mice in which the start codon of the Advillin is replaced by the gene encoding human placenta alkaline phosphatase (Avil-hPLAP mice). In heterozygous Avil-hPLAP mice, sensory axons, the exquisite sensory endings, as well as the fine central axonal collaterals can be clearly visualized with a simple alkaline phosphatase staining. Using this mouse line, we found that the development of peripheral target innervation and sensory ending formation is an ordered process with specific timing depending on sensory modalities. This is also true for the in-growth of central axonal collaterals into the brainstem and the spinal cord. Our results demonstrate that Avil-hPLAP mouse is a valuable tool for specifically studying peripheral sensory neurons. Functionally, we found that the regenerative axon growth of Advillin-null sensory neurons is significantly shortened and that deletion of Advillin reduces the plasticity of whisker-related barrelettes patterns in the hindbrain.
Collapse
|
106
|
Barembaum M, Bronner-Fraser M. Spalt4 mediates invagination and otic placode gene expression in cranial ectoderm. Development 2008; 134:3805-14. [PMID: 17933791 DOI: 10.1242/dev.02885] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vertebrate placodes are regions of thickened head ectoderm that contribute to paired sensory organs and cranial ganglia. We demonstrate that the transcription factor Spalt4 (also known as Sall4) is broadly expressed in chick preplacodal epiblast and later resolves to otic, lens and olfactory placodes. Ectopic expression of Spalt4 by electroporation is sufficient to induce invagination of non-placodal head ectoderm and prevent neurogenic placodes from contributing to cranial ganglia. Conversely, loss of Spalt4 function in the otic placode results in abnormal otic vesicle development. Intriguingly, Spalt4 appears to initiate a placode program appropriate for the axial level but is not involved in later development of specific placode fates. Fgfs can regulate Spalt4, since implantation of Fgf2 beads into the area opaca induces its expression. The results suggest that Spalt4 is involved in early stages of placode development, initiating cranial ectodermal invagination and region-specific gene regulatory networks.
Collapse
Affiliation(s)
- Meyer Barembaum
- Division of Biology, 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
107
|
McCabe KL, Shiau CE, Bronner-Fraser M. Identification of candidate secreted factors involved in trigeminal placode induction. Dev Dyn 2008; 236:2925-35. [PMID: 17879314 DOI: 10.1002/dvdy.21325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cranial ectodermal placodes are critical for normal development of the peripheral nervous system of the head. However, many aspects of the molecular and tissue interactions involved in their induction have yet to be elucidated. The trigeminal placode is induced by an unidentified secreted factor(s) from the dorsal neural tube. To determine candidates that may be involved in this induction process, we have performed reverse transcriptase-polymerase chain reaction (RT-PCR) and whole-mount in situ hybridization to screen for receptors expressed by uninduced presumptive trigeminal level ectoderm. We have found that receptors for fibroblast growth factors, insulin-like growth factors, platelet-derived growth factors, Sonic hedgehog, the transforming growth factor-beta superfamily, and Wnts all are expressed in patterns consistent with a role in trigeminal placode formation. This RT-PCR screen for candidate receptors expressed in presumptive trigeminal ectoderm is the first systematic screen to identify potential interactions underlying induction of the trigeminal placode and represents a critical step for understanding this complex process.
Collapse
Affiliation(s)
- Kathryn L McCabe
- Division of Biology MC 139-74, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
108
|
Aboitiz F, Montiel J. Co-option of signaling mechanisms from neural induction to telencephalic patterning. Rev Neurosci 2007; 18:311-42. [PMID: 18019612 DOI: 10.1515/revneuro.2007.18.3-4.311] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This article provides an overview of signaling processes during early specification of the anterior neural tube, with special emphasis on the telencephalon. A series of signaling systems based on the action of distinct morphogens acts at different developmental stages, specifying interacting developmental fields that define axes of differentiation in the rostrocaudal and the dorsoventral domains. Interestingly, many of these signaling systems are co-opted for several differentiation processes. This strategy provides a simple and efficient mechanism to generate novel structures in evolution, and may have been especially important in the origin of the telencephalon and the mammalian cerebral cortex. For example, the action of fibroblast growth factor (FGF) secreted in early stages from the anterior neural ridge, but in later stages from the dorsal anterior forebrain, may have been a key factor in the early differentiation of the ventral telencephalon and in the eventual expansion of the mammalian neocortex. Likewise, bone morphogenetic proteins (BMPs) participate at several stages in neural patterning, even if early neural induction consists of the inhibition of the BMP pathway. BMPs, secreted dorsally, interact with FGFs in the frontal aspect of the hemispheres, and with PAX6-dependent signaling sources located laterally, to pattern the dorsal telencephalon. The actions of other morphogens are also described in this context, such as the ventralizing factor SHH, the dorsalizing element GLI3, and other factors related to the dorsomedial telencephalon such as WNTs and EMXs. The main conclusion we draw from this review is the well-known phylogenetic and developmental conservatism of signaling pathways, which in evolution have been applied in different embryological contexts, generating novel interactions between morphogenetic fields and leading to the generation of new morphological structures.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría y Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile.
| | | |
Collapse
|
109
|
Copenhaver PF. How to innervate a simple gut: familiar themes and unique aspects in the formation of the insect enteric nervous system. Dev Dyn 2007; 236:1841-64. [PMID: 17420985 PMCID: PMC3097047 DOI: 10.1002/dvdy.21138] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Like the vertebrate enteric nervous system (ENS), the insect ENS consists of interconnected ganglia and nerve plexuses that control gut motility. However, the insect ENS lies superficially on the gut musculature, and its component cells can be individually imaged and manipulated within cultured embryos. Enteric neurons and glial precursors arise via epithelial-to-mesenchymal transitions that resemble the generation of neural crest cells and sensory placodes in vertebrates; most cells then migrate extensive distances before differentiating. A balance of proneural and neurogenic genes regulates the morphogenetic programs that produce distinct structures within the insect ENS. In vivo studies have also begun to decipher the mechanisms by which enteric neurons integrate multiple guidance cues to select their pathways. Despite important differences between the ENS of vertebrates and invertebrates, common features in their programs of neurogenesis, migration, and differentiation suggest that these relatively simple preparations may provide insights into similar developmental processes in more complex systems.
Collapse
Affiliation(s)
- Philip F Copenhaver
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon 97239, USA.
| |
Collapse
|
110
|
Cvekl A, Duncan MK. Genetic and epigenetic mechanisms of gene regulation during lens development. Prog Retin Eye Res 2007; 26:555-97. [PMID: 17905638 PMCID: PMC2136409 DOI: 10.1016/j.preteyeres.2007.07.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent studies demonstrated a number of links between chromatin structure, gene expression, extracellular signaling and cellular differentiation during lens development. Lens progenitor cells originate from a pool of common progenitor cells, the pre-placodal region (PPR) which is formed from a combination of extracellular signaling between the neural plate, naïve ectoderm and mesendoderm. A specific commitment to the lens program over alternate choices such as the formation of olfactory epithelium or the anterior pituitary is manifested by the formation of a thickened surface ectoderm, the lens placode. Mouse lens progenitor cells are characterized by the expression of a complement of lens lineage-specific transcription factors including Pax6, Six3 and Sox2, controlled by FGF and BMP signaling, followed later by c-Maf, Mab21like1, Prox1 and FoxE3. Proliferation of lens progenitors together with their morphogenetic movements results in the formation of the lens vesicle. This transient structure, comprised of lens precursor cells, is polarized with its anterior cells retaining their epithelial morphology and proliferative capacity, whereas the posterior lens precursor cells initiate terminal differentiation forming the primary lens fibers. Lens differentiation is marked by expression and accumulation of crystallins and other structural proteins. The transcriptional control of crystallin genes is characterized by the reiterative use of transcription factors required for the establishment of lens precursors in combination with more ubiquitously expressed factors (e.g. AP-1, AP-2alpha, CREB and USF) and recruitment of histone acetyltransferases (HATs) CBP and p300, and chromatin remodeling complexes SWI/SNF and ISWI. These studies have poised the study of lens development at the forefront of efforts to understand the connections between development, cell signaling, gene transcription and chromatin remodeling.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
111
|
Repin VS, Saburina IN, Sukhikh GT. Cell biology of fetal tissues and fundamental medicine. Bull Exp Biol Med 2007; 144:108-17. [DOI: 10.1007/s10517-007-0268-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
112
|
Coate TM, Swanson TL, Proctor TM, Nighorn AJ, Copenhaver PF. Eph receptor expression defines midline boundaries for ephrin-positive migratory neurons in the enteric nervous system of Manduca sexta. J Comp Neurol 2007; 502:175-91. [PMID: 17348007 PMCID: PMC1828045 DOI: 10.1002/cne.21260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Eph receptor tyrosine kinases and their ephrin ligands participate in the control of neuronal growth and migration in a variety of contexts, but the mechanisms by which they guide neuronal motility are still incompletely understood. By using the enteric nervous system (ENS) of the tobacco hornworm Manduca sexta as a model system, we have explored whether Manduca ephrin (MsEphrin; a GPI-linked ligand) and its Eph receptor (MsEph) might regulate the migration and outgrowth of enteric neurons. During formation of the Manduca ENS, an identified set of approximately 300 neurons (EP cells) populates the enteric plexus of the midgut by migrating along a specific set of muscle bands forming on the gut, but the neurons strictly avoid adjacent interband regions. By determining the mRNA and protein expression patterns for MsEphrin and the MsEph receptor and by examining their endogenous binding patterns within the ENS, we have demonstrated that the ligand and its receptor are distributed in a complementary manner: MsEphrin is expressed exclusively by the migratory EP cells, whereas the MsEph receptor is expressed by midline interband cells that are normally inhibitory to migration. Notably, MsEphrin could be detected on the filopodial processes of the EP cells that extended up to but not across the midline cells expressing the MsEph receptor. These results suggest a model whereby MsEphrin-dependent signaling regulates the response of migrating neurons to a midline inhibitory boundary, defined by the expression of MsEph receptors in the developing ENS.
Collapse
Affiliation(s)
- Thomas M. Coate
- Department of Cell & Developmental Biology, Oregon Health & Science University, Portland, OR 97239
| | - Tracy L. Swanson
- Department of Cell & Developmental Biology, Oregon Health & Science University, Portland, OR 97239
| | - Thomas M. Proctor
- Center for Research in Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, OR 97239
| | - Alan J. Nighorn
- Program in Neuroscience and Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, AZ 85721
| | - Philip F. Copenhaver
- Department of Cell & Developmental Biology, Oregon Health & Science University, Portland, OR 97239
- *Corresponding author: Philip F. Copenhaver, Dept. of Cell & Developmental Biology L-215, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239. TEL: 503-494-4646; FAX: 503-494-4253;
| |
Collapse
|
113
|
Toro S, Varga ZM. Equivalent progenitor cells in the zebrafish anterior preplacodal field give rise to adenohypophysis, lens, and olfactory placodes. Semin Cell Dev Biol 2007; 18:534-42. [PMID: 17580121 DOI: 10.1016/j.semcdb.2007.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 03/31/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
Embryonic organizing centers secrete signaling molecules that instruct target cells about their position and future identity. Information about cell position in relation to sources of instructive signals and about precursor cell lineages is key to our understanding of developmental processes that restrict cell potency and determine cell fate. We review adenohypophysis, lens, and olfactory placode formation and how gene expression patterns, cell positions, and cell fates in the anterior neural plate and anterior placodal field correlate in zebrafish and other vertebrates. Single cell lineage analysis in zebrafish suggests that the majority of preplacodal cells might be specified for pituitary, lens, or olfactory placode by the end of gastrulation.
Collapse
Affiliation(s)
- Sabrina Toro
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, United States.
| | | |
Collapse
|
114
|
Nechiporuk A, Linbo T, Poss KD, Raible DW. Specification of epibranchial placodes in zebrafish. Development 2007; 134:611-23. [PMID: 17215310 DOI: 10.1242/dev.02749] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In all vertebrates, the neurogenic placodes are transient ectodermal thickenings that give rise to sensory neurons of the cranial ganglia. Epibranchial (EB) placodes generate neurons of the distal facial, glossopharyngeal and vagal ganglia, which convey sensation from the viscera, including pharyngeal endoderm structures, to the CNS. Recent studies have implicated signals from pharyngeal endoderm in the initiation of neurogenesis from EB placodes; however, the signals underlying the formation of placodes are unknown. Here, we show that zebrafish embryos mutant for fgf3 and fgf8 do not express early EB placode markers, including foxi1 and pax2a. Mosaic analysis demonstrates that placodal cells must directly receive Fgf signals during a specific crucial period of development. Transplantation experiments and mutant analysis reveal that cephalic mesoderm is the source of Fgf signals. Finally, both Fgf3 and Fgf8 are sufficient to induce foxi1-positive placodal precursors in wild-type as well as Fgf3-plus Fgf8-depleted embryos. We propose a model in which mesoderm-derived Fgf3 and Fgf8 signals establish both the EB placodes and the development of the pharyngeal endoderm, the subsequent interaction of which promotes neurogenesis. The coordinated interplay between craniofacial tissues would thus assure proper spatial and temporal interactions in the shaping of the vertebrate head.
Collapse
Affiliation(s)
- Alexei Nechiporuk
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420, USA
| | | | | | | |
Collapse
|
115
|
Hong CS, Saint-Jeannet JP. The activity of Pax3 and Zic1 regulates three distinct cell fates at the neural plate border. Mol Biol Cell 2007; 18:2192-202. [PMID: 17409353 PMCID: PMC1877120 DOI: 10.1091/mbc.e06-11-1047] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Xenopus, the neural plate border gives rise to at least three cell populations: the neural crest, the preplacodal ectoderm, and the hatching gland. To understand the molecular mechanisms that regulate the formation of these lineages, we have analyzed the role of two transcription factors, Pax3 and Zic1, which are among the earliest genes activated in response to neural plate border-inducing signals. At the end of gastrulation, Pax3 and Zic1 are coexpressed in the neural crest forming region. In addition, Pax3 is expressed in progenitors of the hatching gland, and Zic1 is detected in the preplacodal ectoderm. Using gain of function and knockdown approaches in whole embryos and animal explants, we demonstrate that Pax3 and Zic1 are necessary and sufficient to promote hatching gland and preplacodal fates, respectively, whereas their combined activity is essential to specify the neural crest. Moreover, we show that by manipulating the levels of Pax3 and Zic1 it is possible to shift fates among these cells. These findings provide novel information on the mechanisms regulating cell fate decisions at the neural plate border.
Collapse
Affiliation(s)
- Chang-Soo Hong
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jean-Pierre Saint-Jeannet
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
116
|
Nikaido M, Doi K, Shimizu T, Hibi M, Kikuchi Y, Yamasu K. Initial specification of the epibranchial placode in zebrafish embryos depends on the fibroblast growth factor signal. Dev Dyn 2007; 236:564-71. [PMID: 17195184 DOI: 10.1002/dvdy.21050] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In vertebrates, cranial sensory ganglia are mainly derived from ectodermal placodes, which are focal thickenings at characteristic positions in the embryonic head. Here, we provide the first description of the early development of the epibranchial placode in zebrafish embryos using sox3 as a molecular marker. By the one-somite stage, we saw a pair of single sox3-expressing domains appear lateral to the future hindbrain. The sox3 domain, which is referred to here as the early lateral placode, is segregated during the early phase of segmentation to form a pax2a-positive medial area and a pax2a-negative lateral area. The medial area subsequently developed to form the otic placode, while the lateral area was further segregated along the anteroposterior axis, giving rise to four sox3-positive subdomains by 26 hr postfertilization. Given their spatial relationship with the expression of the markers for the epibranchial ganglion, as well as their positions and temporal changes, we propose that these four domains correspond to the facial, glossopharyngeal, vagal, and posterior lateral line placodes in an anterior-to-posterior order. The expression of sox3 in the early lateral placode was absent in mutants lacking functional fgf8, while implantation of fibroblast growth factor (FGF) beads restored the sox3 expression. Using SU5402, which inhibits the FGF signal, we were able to demonstrate that formation of both the early lateral domains and later epibranchial placodes depends on the FGF signal operating at the beginning of somitogenesis. Together, these data provide evidence for the essential role of FGF signals in the development of the epibranchial placodes.
Collapse
Affiliation(s)
- Masataka Nikaido
- Department of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama, Japan.
| | | | | | | | | | | |
Collapse
|
117
|
Fgf-dependent otic induction requires competence provided by Foxi1 and Dlx3b. BMC DEVELOPMENTAL BIOLOGY 2007; 7:5. [PMID: 17239227 PMCID: PMC1794237 DOI: 10.1186/1471-213x-7-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 01/19/2007] [Indexed: 01/21/2023]
Abstract
Background The inner ear arises from a specialized set of cells, the otic placode, that forms at the lateral edge of the neural plate adjacent to the hindbrain. Previous studies indicated that fibroblast growth factors (Fgfs) are required for otic induction; in zebrafish, loss of both Fgf3 and Fgf8 results in total ablation of otic tissue. Furthermore, gain-of-function studies suggested that Fgf signaling is not only necessary but also sufficient for otic induction, although the amount of induced ectopic otic tissue reported after misexpression of fgf3 or fgf8 varies among different studies. We previously suggested that Foxi1 and Dlx3b may provide competence to form the ear because loss of both foxi1 and dlx3b results in ablation of all otic tissue even in the presence of a fully functional Fgf signaling pathway. Results Using a transgenic line that allows us to misexpress fgf8 under the control of the zebrafish temperature-inducible hsp70 promoter, we readdressed the role of Fgf signaling and otic competence during placode induction. We find that misexpression of fgf8 fails to induce formation of ectopic otic vesicles outside of the endogenous ear field and has different consequences depending upon the developmental stage. Overexpression of fgf8 from 1-cell to midgastrula stages leads to formation of no or small otic vesicles, respectively. Overexpression of fgf8 at these stages never leads to ectopic expression of foxi1 or dlx3b, contrary to previous studies that indicated that foxi1 is activated by Fgf signaling. Consistent with our results we find that pharmacological inhibition of Fgf signaling has no effect on foxi1 or dlx3b expression, but instead, Bmp signaling activates foxi1, directly and dlx3b, indirectly. In contrast to early activation of fgf8, fgf8 overexpression at the end of gastrulation, when otic induction begins, leads to much larger otic vesicles. We further show that application of a low dose of retinoic acid that does not perturb patterning of the anterior neural plate leads to expansion of foxi1 and to a massive Fgf-dependent otic induction. Conclusion These results provide further support for the hypothesis that Foxi1 and Dlx3b provide competence for cells to respond to Fgf and form an otic placode.
Collapse
|
118
|
Carstens MH. Neural tube programming and the pathogenesis of craniofacial clefts, part II: mesenchyme, pharyngeal arches, developmental fields; and the assembly of the human face. HANDBOOK OF CLINICAL NEUROLOGY 2007; 87:277-339. [PMID: 18809031 DOI: 10.1016/s0072-9752(07)87017-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Michael H Carstens
- Cardinal Glennon Children's Hospital, Saint Louis University, St. Louis, MO 63110, USA.
| |
Collapse
|
119
|
O’Neill P, McCole RB, Baker CVH. A molecular analysis of neurogenic placode and cranial sensory ganglion development in the shark, Scyliorhinus canicula. Dev Biol 2006; 304:156-81. [PMID: 17234174 PMCID: PMC4988491 DOI: 10.1016/j.ydbio.2006.12.029] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 12/11/2006] [Accepted: 12/12/2006] [Indexed: 11/15/2022]
Abstract
In order to gain insight into the evolution of the genetic control of the development of cranial neurogenic placodes and cranial sensory ganglia in vertebrates, we cloned and analysed the spatiotemporal expression pattern of six transcription factor genes in a chondrichthyan, the shark Scyliorhinus canicula (lesser-spotted dogfish/catshark). As in other vertebrates, NeuroD is expressed in all cranial sensory ganglia. We show that Pax3 is expressed in the profundal placode and ganglion, strongly supporting homology between the separate profundal ganglion of elasmobranchs and basal actinopterygians and the ophthalmic trigeminal placode-derived neurons of the fused amniote trigeminal ganglion. We show that Pax2 is a conserved pan-gnathostome marker for epibranchial and otic placodes, and confirm that Phox2b is a conserved pan-gnathostome marker for epibranchial placode-derived neurons. We identify Eya4 as a novel marker for the lateral line system throughout its development, expressed in lateral line placodes, sensory ridges and migrating primordia, neuromasts and electroreceptors. We also identify Tbx3 as a specific marker for lateral line ganglia in shark embryos. We use the spatiotemporal expression pattern of these genes to characterise the development of neurogenic placodes and cranial sensory ganglia in the dogfish, with a focus on the epibranchial and lateral line placodes. Our findings demonstrate the evolutionary conservation across all gnathostomes of at least some of the transcription factor networks underlying neurogenic placode development.
Collapse
Affiliation(s)
| | | | - C. V. H. Baker
- Address for manuscript correspondence: Clare V. H. Baker, Ph.D., Physiology, Development & Neuroscience, Anatomy Building, Downing Street, Cambridge, CB2 3DY, U.K. Tel ++44 (0)1223 333789, Fax ++44 (0)1223 333786.
| |
Collapse
|
120
|
Depew MJ, Simpson CA. 21st century neontology and the comparative development of the vertebrate skull. Dev Dyn 2006; 235:1256-91. [PMID: 16598716 DOI: 10.1002/dvdy.20796] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Classic neontology (comparative embryology and anatomy), through the application of the concept of homology, has demonstrated that the development of the gnathostome (jawed vertebrate) skull is characterized both by a fidelity to the gnathostome bauplan and the exquisite elaboration of final structural design. Just as homology is an old concept amended for modern purposes, so are many of the questions regarding the development of the skull. With due deference to Geoffroy-St. Hilaire, Cuvier, Owen, Lankester et al., we are still asking: How are bauplan fidelity and elaboration of design maintained, coordinated, and modified to generate the amazing diversity seen in cranial morphologies? What establishes and maintains pattern in the skull? Are there universal developmental mechanisms underlying gnathostome autapomorphic structural traits? Can we detect and identify the etiologies of heterotopic (change in the topology of a developmental event), heterochronic (change in the timing of a developmental event), and heterofacient (change in the active capacetence, or the elaboration of capacity, of a developmental event) changes in craniofacial development within and between taxa? To address whether jaws are all made in a like manner (and if not, then how not), one needs a starting point for the sake of comparison. To this end, we present here a "hinge and caps" model that places the articulation, and subsequently the polarity and modularity, of the upper and lower jaws in the context of cranial neural crest competence to respond to positionally located epithelial signals. This model expands on an evolving model of polarity within the mandibular arch and seeks to explain a developmental patterning system that apparently keeps gnathostome jaws in functional registration yet tractable to potential changes in functional demands over time. It relies upon a system for the establishment of positional information where pattern and placement of the "hinge" is driven by factors common to the junction of the maxillary and mandibular branches of the first arch and of the "caps" by the signals emanating from the distal-most first arch midline and the lamboidal junction (where the maxillary branch meets the frontonasal processes). In this particular model, the functional registration of jaws is achieved by the integration of "hinge" and "caps" signaling, with the "caps" sharing at some critical level a developmental history that potentiates their own coordination. We examine the evidential foundation for this model in mice, examine the robustness with which it can be applied to other taxa, and examine potential proximate sources of the signaling centers. Lastly, as developmental biologists have long held that the anterior-most mesendoderm (anterior archenteron roof or prechordal plate) is in some way integral to the normal formation of the head, including the cranial skeletal midlines, we review evidence that the seminal patterning influences on the early anterior ectoderm extend well beyond the neural plate and are just as important to establishing pattern within the cephalic ectoderm, in particular for the "caps" that will yield medial signaling centers known to coordinate jaw development.
Collapse
Affiliation(s)
- Michael J Depew
- Department of Craniofacial Development, King's College London, Guy's Hospital, London Bridge, London, United Kingdom.
| | | |
Collapse
|
121
|
Sun SK, Dee CT, Tripathi VB, Rengifo A, Hirst CS, Scotting PJ. Epibranchial and otic placodes are induced by a common Fgf signal, but their subsequent development is independent. Dev Biol 2006; 303:675-86. [PMID: 17222818 DOI: 10.1016/j.ydbio.2006.12.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 11/30/2006] [Accepted: 12/05/2006] [Indexed: 12/11/2022]
Abstract
The epibranchial placodes are cranial, ectodermal thickenings that give rise to sensory neurons of the peripheral nervous system. Despite their importance in the developing animal, the signals responsible for their induction remain unknown. Using the placodal marker, sox3, we have shown that the same Fgf signaling required for otic vesicle development is required for the development of the epibranchial placodes. Loss of both Fgf3 and Fgf8 is sufficient to block placode development. We further show that epibranchial sox3 expression is unaffected in mutants in which no otic placode forms, where dlx3b and dlx4b are knocked down, or deleted along with sox9a. However, the forkhead factor, Foxi1, is required for both otic and epibranchial placode development. Thus, both the otic and epibranchial placodes form in a common region of ectoderm under the influence of Fgfs, but these two structures subsequently develop independently. Although previous studies have investigated the signals that trigger neurogenesis from the epibranchial placodes, this represents the first demonstration of the signaling events that underlie the formation of the placodes themselves, and therefore, the process that determines which ectodermal cells will adopt a neural fate.
Collapse
Affiliation(s)
- Shun-Kuo Sun
- Children's Brain Tumour Research Centre, Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | | | | | | | | |
Collapse
|
122
|
Donner AL, Lachke SA, Maas RL. Lens induction in vertebrates: Variations on a conserved theme of signaling events. Semin Cell Dev Biol 2006; 17:676-85. [PMID: 17164096 DOI: 10.1016/j.semcdb.2006.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This review provides an overview of our current understanding of signaling mechanisms involved in lens induction, which are presented in context of the major stages of lens induction (competence, bias, inhibition and specification). Although the process of lens induction is generally well conserved, we highlight aspects of induction that vary among species. Finally, this review identifies future challenges in forming an integrated network of signaling pathways involved in lens induction.
Collapse
Affiliation(s)
- Amy L Donner
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
123
|
Donner AL, Episkopou V, Maas RL. Sox2 and Pou2f1 interact to control lens and olfactory placode development. Dev Biol 2006; 303:784-99. [PMID: 17140559 PMCID: PMC3276313 DOI: 10.1016/j.ydbio.2006.10.047] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 10/20/2006] [Accepted: 10/30/2006] [Indexed: 01/06/2023]
Abstract
Sox2, which encodes an SRY-like HMG box transcription factor, is critical for vertebrate development. Sox2 mediates its transcriptional effects through the formation of complexes with specific co-factors, many of which are unknown. In this report, we identify Oct-1, encoded by the Pou2f1 gene, as a co-factor for Sox2 in the context of mouse lens and nasal placode induction. Oct-1, Sox2, and Pax6 are co-expressed during lens and nasal placode induction and during subsequent developmental stages. Genetic combination of Sox2 and Pou2f1 mutant alleles results in impaired induction of the lens placode, an ocular phenotype that includes anophthalmia, and a complete failure of nasal placode induction. These ocular and nasal phenotypes closely resemble those observed in Pax6 null embryos. Moreover, we identify DNA-binding sites that support the cooperative formation of a complex between Sox2 and Oct-1 and mediate Sox2/Oct-1-dependent transactivation of the Pax6 lens ectoderm enhancer in vitro. We demonstrate that the same Sox- and Octamer-binding sites are essential for Pax6 enhancer activity in the lens placode and its derivatives in transgenic mouse embryos. Collectively, these results indicate that Pou2f1, Sox2 and Pax6 are interdependent components of a molecular pathway utilized in both lens and nasal placode induction.
Collapse
Affiliation(s)
- Amy L Donner
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
124
|
Bailey AP, Bhattacharyya S, Bronner-Fraser M, Streit A. Lens Specification Is the Ground State of All Sensory Placodes, from which FGF Promotes Olfactory Identity. Dev Cell 2006; 11:505-17. [PMID: 17011490 DOI: 10.1016/j.devcel.2006.08.009] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 07/15/2006] [Accepted: 08/18/2006] [Indexed: 11/29/2022]
Abstract
The sense organs of the vertebrate head comprise structures as varied as the eye, inner ear, and olfactory epithelium. In the early embryo, these assorted structures share a common developmental origin within the preplacodal region and acquire specific characteristics only later. Here we demonstrate a fundamental similarity in placodal precursors: in the chick all are specified as lens prior to acquiring features of specific sensory or neurogenic placodes. Lens specification becomes progressively restricted in the head ectoderm, initially by FGF and subsequently by signals derived from migrating neural crest cells. We show that FGF8 from the anterior neural ridge is both necessary and sufficient to promote olfactory fate in adjacent ectoderm. Our results reveal that placode precursors share a common ground state as lens and progressive restriction allows the full range of placodal derivatives to form.
Collapse
Affiliation(s)
- Andrew P Bailey
- Department of Craniofacial Development, King's College London, Guy's Campus, London SE1 9RT, United Kingdom
| | | | | | | |
Collapse
|
125
|
Albazerchi A, Stern CD. A role for the hypoblast (AVE) in the initiation of neural induction, independent of its ability to position the primitive streak. Dev Biol 2006; 301:489-503. [PMID: 17010966 DOI: 10.1016/j.ydbio.2006.08.057] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 07/29/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
The mouse anterior visceral endoderm (AVE) has been implicated in embryonic polarity: it helps to position the primitive streak and some have suggested that it might act as a "head organizer", inducing forebrain directly. Here we explore the role of the hypoblast (the chick equivalent of the AVE) in the early steps of neural induction and patterning. We report that the hypoblast can induce a set of very early markers that are later expressed in the nervous system and in the forebrain, but only transiently. Different combinations of signals are responsible for different aspects of this early transient induction: FGF initiates expression of Sox3 and ERNI, retinoic acid can induce Cyp26A1 and only a combination of low levels of FGF8 together with Wnt- and BMP-antagonists can induce Otx2. BMP- and Wnt-antagonists and retinoic acid, in different combinations, can maintain the otherwise transient induction of these markers. However, neither the hypoblast nor any of these factors or combinations thereof can induce the definitive neural marker Sox2 or the formation of a mature neural plate or a forebrain, suggesting that the hypoblast is not a head organizer and that other signals remain to be identified. Interestingly, FGF and retinoids, generally considered as caudalizing factors, are shown here to play a role in the induction of a transient "pre-neural/pre-forebrain" state.
Collapse
Affiliation(s)
- Amanda Albazerchi
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
126
|
Sánchez-Calderón H, Francisco-Morcillo J, Martín-Partido G, Hidalgo-Sánchez M. Fgf19 expression patterns in the developing chick inner ear. Gene Expr Patterns 2006; 7:30-8. [PMID: 16798106 DOI: 10.1016/j.modgep.2006.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/05/2006] [Accepted: 05/16/2006] [Indexed: 01/30/2023]
Abstract
The inner ear is a complex sensorial structure with hearing and balance functions. A key aim of developmental biology is to understand the molecular and cellular mechanisms involved in the induction, patterning and innervation of the vertebrate inner ear. These developmental events could be mediated by the expression of regulating genes, such as the members of the family of Fibroblast Growth Factors (Fgfs). This work reports the detailed spatial and temporal patterns of Fgf19 expression in the developing inner ear from otic cup (stage 14) to 8 embryonic days (stage 34). In the earliest stages, Fgf19 and Fgf8 expressions determine two subdomains within the Fgf10-positive proneural-sensory territory. We show that, from the earliest stages, the Fgf19 expression was detected in the acoustic-vestibular ganglion and the macula utriculi. The Fgf19 gene was also strongly, but transiently, expressed in the macula lagena, whereas the macula neglecta never expressed this gene in the period analysed. The Fgf19 expression was also clearly observed in some borders of various sensory elements. These results could be useful from further investigations into the role of FGF19 in otic patterning.
Collapse
Affiliation(s)
- Hortensia Sánchez-Calderón
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06071 Badajoz, Spain
| | | | | | | |
Collapse
|
127
|
Schlosser G. Induction and specification of cranial placodes. Dev Biol 2006; 294:303-51. [PMID: 16677629 DOI: 10.1016/j.ydbio.2006.03.009] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 12/17/2022]
Abstract
Cranial placodes are specialized regions of the ectoderm, which give rise to various sensory ganglia and contribute to the pituitary gland and sensory organs of the vertebrate head. They include the adenohypophyseal, olfactory, lens, trigeminal, and profundal placodes, a series of epibranchial placodes, an otic placode, and a series of lateral line placodes. After a long period of neglect, recent years have seen a resurgence of interest in placode induction and specification. There is increasing evidence that all placodes despite their different developmental fates originate from a common panplacodal primordium around the neural plate. This common primordium is defined by the expression of transcription factors of the Six1/2, Six4/5, and Eya families, which later continue to be expressed in all placodes and appear to promote generic placodal properties such as proliferation, the capacity for morphogenetic movements, and neuronal differentiation. A large number of other transcription factors are expressed in subdomains of the panplacodal primordium and appear to contribute to the specification of particular subsets of placodes. This review first provides a brief overview of different cranial placodes and then synthesizes evidence for the common origin of all placodes from a panplacodal primordium. The role of various transcription factors for the development of the different placodes is addressed next, and it is discussed how individual placodes may be specified and compartmentalized within the panplacodal primordium. Finally, tissues and signals involved in placode induction are summarized with a special focus on induction of the panplacodal primordium itself (generic placode induction) and its relation to neural induction and neural crest induction. Integrating current data, new models of generic placode induction and of combinatorial placode specification are presented.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, AG Roth, University of Bremen, FB2, 28334 Bremen, Germany.
| |
Collapse
|
128
|
Phillips BT, Kwon HJ, Melton C, Houghtaling P, Fritz A, Riley BB. Zebrafish msxB, msxC and msxE function together to refine the neural-nonneural border and regulate cranial placodes and neural crest development. Dev Biol 2006; 294:376-90. [PMID: 16631154 DOI: 10.1016/j.ydbio.2006.03.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 02/28/2006] [Accepted: 03/01/2006] [Indexed: 11/17/2022]
Abstract
The zebrafish muscle segment homeobox genes msxB, msxC and msxE are expressed in partially overlapping domains in the neural crest and preplacodal ectoderm. We examined the roles of these msx genes in early development. Disrupting individual msx genes causes modest variable defects, whereas disrupting all three produces a reproducible severe phenotype, suggesting functional redundancy. Neural crest differentiation is blocked at an early stage. Preplacodal development begins normally, but placodes arising from the msx expression domain later show elevated apoptosis and are reduced in size. Cell proliferation is normal in these tissues. Unexpectedly, Msx-deficient embryos become ventralized by late gastrulation whereas misexpression of msxB dorsalizes the embryo. These effects appear to involve Distal-less (Dlx) protein activity, as loss of dlx3b and dlx4b suppresses ventralization in Msx-depleted embryos. At the same time, Msx-depletion restores normal preplacodal gene expression to dlx3b-dlx4b mutants. These data suggest that mutual antagonism between Msx and Dlx proteins achieves a balance of function required for normal preplacodal differentiation and placement of the neural-nonneural border.
Collapse
Affiliation(s)
- Bryan T Phillips
- Biology Department, Texas A and M University, College Station, TX 77843-3258, USA
| | | | | | | | | | | |
Collapse
|
129
|
Abstract
The embryonic head is populated by two robust mesenchymal populations, paraxial mesoderm and neural crest cells. Although the developmental histories of each are distinct and separate, they quickly establish intimate relations that are variably important for the histogenesis and morphogenesis of musculoskeletal components of the calvaria, midface and branchial regions. This review will focus first on the genesis and organization within nascent mesodermal and crest populations, emphasizing interactions that probably initiate or augment the establishment of lineages within each. The principal goal is an analysis of the interactions between crest and mesoderm populations, from their first contacts through their concerted movements into peripheral domains, particularly the branchial arches, and continuing to stages at which both the differentiation and the integrated three-dimensional assembly of vascular, connective and muscular tissues is evident. Current views on unresolved or contentious issues, including the relevance of head somitomeres, the processes by which crest cells change locations and constancy of cell-cell relations at the crest-mesoderm interface, are addressed.
Collapse
Affiliation(s)
- Drew M Noden
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca 14853, USA.
| | | |
Collapse
|
130
|
Martin K, Groves AK. Competence of cranial ectoderm to respond to Fgf signaling suggests a two-step model of otic placode induction. Development 2006; 133:877-87. [PMID: 16452090 DOI: 10.1242/dev.02267] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vertebrate craniofacial sensory organs derive from ectodermal placodes early in development. It has been suggested that all craniofacial placodes arise from a common ectodermal domain adjacent to the anterior neural plate, and a number of genes have been recently identified that mark such a 'pre-placodal' domain. However, the functional significance of this pre-placodal domain is still unclear. In the present study, we show that Fgf signaling is necessary and sufficient to directly induce some, but not all, markers of the otic placode in ectoderm taken from the pre-placodal domain. By contrast, ectoderm from outside this domain is not competent to express otic markers in response to Fgfs. Grafting naïve ectoderm into the pre-placodal domain causes upregulation of pre-placodal markers within 8 hours, together with the acquisition of competence to respond to Fgf signaling. This suggests a two-step model of craniofacial placode induction in which ectoderm first acquires pre-placodal region identity, and subsequently differentiates into particular craniofacial placodes under the influence of local inducing signals.
Collapse
Affiliation(s)
- Kareen Martin
- Gonda Department of Cell and Molecular Biology, House Ear Institute, 2100 West 3rd Street, Los Angeles, CA 90057, USA
| | | |
Collapse
|
131
|
Abstract
The inner ear originates from an embryonic ectodermal placode and rapidly develops into a three-dimensional structure (the otocyst) through complex molecular and cellular interactions. Many genes and their products are involved in inner ear induction, organogenesis, and cell differentiation. Retinoic acid (RA) is an endogenous signaling molecule that may play a role during different phases of inner ear development, as shown from pathological observations. To gain insight into the function of RA during inner ear development, we have investigated the spatio-temporal expression patterns of major components of RA signaling pathway, including cellular retinoic acid binding proteins (CRABPs), cellular retinoid binding proteins (CRBPs), retinaldehyde dehydrogenases (RALDHs), catabolic enzymes (CYP26s), and nuclear receptors (RARs). Although the CrbpI, CrabpI, and -II genes are specifically expressed in the inner ear throughout development, loss-of-function studies have revealed that these proteins are dispensable for inner development and function. Several Raldh and Cyp26 gene transcripts are expressed at embryological day (E) 9.0-9.5 in the otocyst and show mainly complementary distributions in the otic epithelium and mesenchyme during following stages. From Western blot, RT-PCR, and in situ hybridization analysis, there is a low expression of Raldhs in the early otocyst at E9, while Cyp26s are strongly expressed. During the following days, there is an up-regulation of Raldhs and a down-regulation for Cyp26s. Specific RA receptor (Rar and Rxr) genes are expressed in the otocyst and during further development of the inner ear. At the otocyst stage, most of the components of the retinoid pathway are present, suggesting that the embryonic inner ear might act as an autocrine system, which is able to synthesize and metabolize RA necessary for its development. We propose a model in which two RA-dependent pathways may control inner ear ontogenesis: one indirect with RA from somitic mesoderm acting to regulate gene expression within the hindbrain neuroepithelium, and another with RA acting directly on the otocyst. Current evidence suggests that RA may regulate several genes involved in mesenchyme-epithelial interactions, thereby controlling inner ear morphogenesis. Our investigations suggest that RA signaling is a critical component not only of embryonic development, but also of postnatal maintenance of the inner ear.
Collapse
Affiliation(s)
- Raymond Romand
- Institut Clinique de la Souris and Institut de Génétique et de Biologie Moléculaire et cellulaire, B.P. 10142, 67404 Illkirch Cedex, France.
| | | | | |
Collapse
|
132
|
Ahrens K, Schlosser G. Tissues and signals involved in the induction of placodal Six1 expression in Xenopus laevis. Dev Biol 2005; 288:40-59. [PMID: 16271713 DOI: 10.1016/j.ydbio.2005.07.022] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 07/15/2005] [Accepted: 07/19/2005] [Indexed: 11/26/2022]
Abstract
Ectodermal placodes, from which many cranial sense organs and ganglia develop, arise from a common placodal primordium defined by Six1 expression. Here, we analyse placodal Six1 induction in Xenopus using microinjections and tissue grafts. We show that placodal Six1 induction occurs during neural plate and neural fold stages. Grafts of anterior neural plate but not grafts of cranial dorsolateral endomesoderm induce Six1 ectopically in belly ectoderm, suggesting that only the neural plate is sufficient for inducing Six1 in ectoderm. However, extirpation of either anterior neural plate or of cranial dorsolateral endomesoderm abolishes placodal Six1 expression indicating that both tissues are required for its induction. Elevating BMP-levels blocks placodal Six1 induction, whereas ectopic sources of BMP inhibitors expand placodal Six1 expression without inducing Six1 ectopically. This suggests that BMP inhibition is necessary but needs to cooperate with additional factors for Six1 induction. We show that FGF8, which is expressed in the anterior neural plate, can strongly induce ectopic Six1 in ventral ectoderm when combined with BMP inhibitors. In contrast, FGF8 knockdown abolishes placodal Six1 expression. This suggests that FGF8 is necessary and together with BMP inhibitors sufficient to induce placodal Six1 expression in cranial ectoderm, implicating FGF8 as a central component in generic placode induction.
Collapse
Affiliation(s)
- Katja Ahrens
- Brain Research Institute, AG Roth, University of Bremen, FB 2, PO Box 33 04 40, 28334 Bremen, Germany
| | | |
Collapse
|
133
|
Nechiporuk A, Linbo T, Raible DW. Endoderm-derived Fgf3 is necessary and sufficient for inducing neurogenesis in the epibranchial placodes in zebrafish. Development 2005; 132:3717-30. [PMID: 16077091 DOI: 10.1242/dev.01876] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrates, epibranchial placodes are transient ectodermal thickenings that contribute sensory neurons to the epibranchial ganglia. These ganglia innervate internal organs and transmit information on heart rate, blood pressure and visceral distension from the periphery to the central nervous system. Despite their importance, the molecular mechanisms that govern the induction and neurogenesis of the epibranchial placodes are only now being elucidated. In this study, we demonstrate that endoderm is required for neurogenesis of the zebrafish epibranchial placodes. Mosaic analyses confirm that endoderm is the source of the neurogenic signal. Using a morpholino knockdown approach, we find that fgf3 is required for the majority of placode cells to undergo neurogenesis. Tissue transplants demonstrate that fgf3 activity is specifically required in the endodermal pouches. Furthermore, ectopic fgf3 expression is sufficient for inducing phox2a-positive neurons in wild-type and endoderm-deficient embryos. Surprisingly, ectodermal foxi1 expression, a marker for the epibranchial placode precursors, is present in both endoderm-deficient embryos and fgf3 morphants, indicating that neither endoderm nor Fgf3 is required for initial placode induction. Based on these findings, we propose a model for epibranchial placode development in which Fgf3 is a major endodermal determinant required for epibranchial placode neurogenesis.
Collapse
Affiliation(s)
- Alexei Nechiporuk
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420, USA
| | | | | |
Collapse
|
134
|
Matsumata M, Uchikawa M, Kamachi Y, Kondoh H. Multiple N-cadherin enhancers identified by systematic functional screening indicate its Group B1 SOX-dependent regulation in neural and placodal development. Dev Biol 2005; 286:601-17. [PMID: 16150435 DOI: 10.1016/j.ydbio.2005.08.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 07/23/2005] [Accepted: 08/01/2005] [Indexed: 10/25/2022]
Abstract
Neural plate and sensory placodes share the expression of N-cadherin and Group B1 Sox genes, represented by Sox2. A 219-kb region of the chicken genome centered by the N-cadherin gene was scanned for neural and placodal enhancers. Random subfragments of 4.5 kb average length were prepared and inserted into tkEGFP reporter vector to construct a library with threefold coverage of the region. Each clone was then transfected into N-cadherin-positive (lens, retina and forebrain) or -negative embryonic cells, or electroporated into early chicken embryos to examine enhancer activity. Enhancers 1-4 active in the CNS/placode derivatives and non-specific Enhancer 5 were identified by transfection, while electroporation of early embryos confirmed enhancers 2-4 as having activity in the early CNS and/or sensory placodes but with unique spatiotemporal specificities. Enhancers 2-4 are dependent on SOX-binding sites, and misexpression of Group B1 Sox genes in the head ectoderm caused ectopic development of placodes expressing N-cadherin, indicating the involvement of Group B1 Sox functions in N-cadherin regulation. Enhancers 1, 2 and 4 correspond to sequence blocks conserved between the chicken and mammalian genomes, but enhancers 3 and 5 are unique to the chicken.
Collapse
Affiliation(s)
- Miho Matsumata
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
135
|
Glenn Northcutt R. The new head hypothesis revisited. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:274-97. [PMID: 16003768 DOI: 10.1002/jez.b.21063] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In 1983, a new theory, the New Head Hypothesis, was generated within the context of the Tunicate Hypothesis of deuterostome evolution. The New Head Hypothesis comprised four claims: (1) neural crest, neurogenic placodes, and muscularized hypomere are unique to vertebrates, (2) the structures derived from these tissues allowed a shift from filter feeding to active predation, (3) the rostral head of vertebrates is a neomorphic unit, and (4) neural crest and neurogenic placodes evolved from the epidermal nerve plexus of ancestral deuterostomes. These claims are re-examined within the context of evolutionary developmental biology. The first may or may not be valid, depending on whether protochordates have these tissues in rudimentary form. Regarding the second, clearly, the elaboration of these tissues in vertebrates is correlated with a shift from filter feeding to active predation. The third claim is clarified, i.e., that the elaboration of the alar portion of the rostral brain and the development of olfactory organs and their associated connective tissues represent a neomorphic unit, which appears to be valid. The fourth is rejected. When the origin of neural crest and neurogenic placodes is examined within the context of developmental biology, it appears they evolved due to the rearrangement of germ layers in the blastulae of the deuterostomes that gave rise to chordates. Deuterostome evolution and the origin of vertebrates are also re-examined in the context of new data from developmental biology and taxonomy. The Tunicate Hypothesis is rejected, and a new version of the Dipleurula Hypothesis is presented.
Collapse
Affiliation(s)
- R Glenn Northcutt
- Neurobiology Unit, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, 92093, USA.
| |
Collapse
|
136
|
Schlosser G. Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:347-99. [PMID: 16003766 DOI: 10.1002/jez.b.21055] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ectodermal placodes comprise the adenohypophyseal, olfactory, lens, profundal, trigeminal, otic, lateral line, and epibranchial placodes. The first part of this review presents a brief overview of placode development. Placodes give rise to a variety of cell types and contribute to many sensory organs and ganglia of the vertebrate head. While different placodes differ with respect to location and derivative cell types, all appear to originate from a common panplacodal primordium, induced at the anterior neural plate border by a combination of mesodermal and neural signals and defined by the expression of Six1, Six4, and Eya genes. Evidence from mouse and zebrafish mutants suggests that these genes promote generic placodal properties such as cell proliferation, cell shape changes, and specification of neurons. The common developmental origin of placodes suggests that all placodes may have evolved in several steps from a common precursor. The second part of this review summarizes our current knowledge of placode evolution. Although placodes (like neural crest cells) have been proposed to be evolutionary novelties of vertebrates, recent studies in ascidians and amphioxus have proposed that some placodes originated earlier in the chordate lineage. However, while the origin of several cellular and molecular components of placodes (e.g., regionalized expression domains of transcription factors and some neuronal or neurosecretory cell types) clearly predates the origin of vertebrates, there is presently little evidence that these components are integrated into placodes in protochordates. A scenario is presented according to which all placodes evolved from an adenohypophyseal-olfactory protoplacode, which may have originated in the vertebrate ancestor from the anlage of a rostral neurosecretory organ (surviving as Hatschek's pit in present-day amphioxus).
Collapse
|
137
|
Baker CVH, Schlosser G. The evolutionary origin of neural crest and placodes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:269-73. [PMID: 16003767 DOI: 10.1002/jez.b.21060] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
138
|
Litsiou A, Hanson S, Streit A. A balance of FGF, BMP and WNT signalling positions the future placode territory in the head. Development 2005; 132:4051-62. [PMID: 16093325 DOI: 10.1242/dev.01964] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sensory nervous system in the vertebrate head arises from two different cell populations: neural crest and placodal cells. By contrast, in the trunk it originates from neural crest only. How do placode precursors become restricted exclusively to the head and how do multipotent ectodermal cells make the decision to become placodes or neural crest? At neural plate stages,future placode cells are confined to a narrow band in the head ectoderm, the pre-placodal region (PPR). Here, we identify the head mesoderm as the source of PPR inducing signals, reinforced by factors from the neural plate. We show that several independent signals are needed: attenuation of BMP and WNT is required for PPR formation. Together with activation of the FGF pathway, BMP and WNT antagonists can induce the PPR in naïve ectoderm. We also show that WNT signalling plays a crucial role in restricting placode formation to the head. Finally, we demonstrate that the decision of multipotent cells to become placode or neural crest precursors is mediated by WNT proteins:activation of the WNT pathway promotes the generation of neural crest at the expense of placodes. This mechanism explains how the placode territory becomes confined to the head, and how neural crest and placode fates diversify.
Collapse
Affiliation(s)
- Anna Litsiou
- Department of Craniofacial Development, Guys Campus, Guys Tower, Floor 27, King's College London, London SE1 9RT, UK
| | | | | |
Collapse
|
139
|
Bassham S, Postlethwait JH. The evolutionary history of placodes: a molecular genetic investigation of the larvacean urochordate Oikopleura dioica. Development 2005; 132:4259-72. [PMID: 16120641 DOI: 10.1242/dev.01973] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The evolutionary origin of vertebrate placodes remains controversial because divergent morphologies in urochordates, cephalochordates and vertebrates make it difficult to recognize organs that are clearly homologous to placode-derived features, including the olfactory organ, adenohypophysis, lens, inner ear, lateral line and cranial ganglia. The larvacean urochordate Oikopleura dioica possesses organs that morphologically resemble the vertebrate olfactory organ and adenohypophysis. We tested the hypothesis that orthologs of these vertebrate placodes exist in a larvacean urochordate by analyzing the developmental expression of larvacean homologs of the placode-marking gene families Eya, Pitx and Six. We conclude that extant chordates inherited olfactory and adenohypophyseal placodes from their last common ancestor, but additional independent proliferation and perhaps loss of placode types probably occurred among the three subphyla of Chordata.
Collapse
Affiliation(s)
- Susan Bassham
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
140
|
Abstract
During neural induction, the embryonic neural plate is specified and set aside from other parts of the ectoderm. A popular molecular explanation is the 'default model' of neural induction, which proposes that ectodermal cells give rise to neural plate if they receive no signals at all, while BMP activity directs them to become epidermis. However, neural induction now appears to be more complex than once thought, and can no longer be fully explained by the default model alone. This review summarizes neural induction events in different species and highlights some unanswered questions about this important developmental process.
Collapse
Affiliation(s)
- Claudio D Stern
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
141
|
Holland LZ. Non-neural ectoderm is really neural: evolution of developmental patterning mechanisms in the non-neural ectoderm of chordates and the problem of sensory cell homologies. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:304-23. [PMID: 15834938 DOI: 10.1002/jez.b.21038] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In chordates, the ectoderm is divided into the neuroectoderm and the so-called non-neural ectoderm. In spite of its name, however, the non-neural ectoderm contains numerous sensory cells. Therefore, the term "non-neural" ectoderm should be replaced by "general ectoderm." At least in amphioxus and tunicates and possibly in vertebrates as well, both the neuroectoderm and the general ectoderm are patterned anterior/posteriorly by mechanisms involving retinoic acid and Hox genes. In amphioxus and tunicates the ectodermal sensory cells, which have a wide range of ciliary and microvillar configurations, are mostly primary neurons sending axons to the CNS, although a minority lack axons. In contrast, vertebrate mechanosensory cells, called hair cells, are all secondary neurons that lack axons and have a characteristic eccentric cilium adjacent to a group of microvilli of graded lengths. It has been highly controversial whether the ectodermal sensory cells in the oral siphons of adult tunicates are homologous to vertebrate hair cells. In some species of tunicates, these cells appear to be secondary neurons, and microvillar and ciliary configurations of some of these cells approach those of vertebrate hair cells. However, none of the tunicate cells has all the characteristics of a hair cell, and there is a high degree of variation among ectodermal sensory cells within and between different species. Thus, similarities between the ectodermal sensory cells of any one species of tunicate and craniate hair cells may well represent convergent evolution rather than homology.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, 92093-0202 USA.
| |
Collapse
|
142
|
Abstract
Sensory placodes are unique domains of thickened ectoderm in the vertebrate head that form important parts of the cranial sensory nervous system, contributing to sense organs and cranial ganglia. They generate many different cell types, ranging from simple lens fibers to neurons and sensory cells. Although progress has been made to identify cell interactions and signaling pathways that induce placodes at precise positions along the neural tube, little is known about how their precursors are specified. Here, we review the evidence that placodes arise from a unique territory, the pre-placodal region, distinct from other ectodermal derivatives. We summarize the cellular and molecular mechanisms that confer pre-placode character and differentiate placode precursors from future neural and neural crest cells. We then examine the events that subdivide the pre-placodal region into individual placodes with distinct identity. Finally, we discuss the hypothesis that pre-placodal cells have acquired a state of "placode bias" that is necessary for their progression to mature placodes and how such bias may be established molecularly.
Collapse
Affiliation(s)
- Andrew P Bailey
- Department of Craniofacial Development Dental Institute at Guy's, King's College and St. Thomas' Hospitals, Guy's Campus London SE1 9RT, United Kingdom
| | | |
Collapse
|