101
|
Hoffmann EK, Schettino T, Marshall WS. The role of volume-sensitive ion transport systems in regulation of epithelial transport. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:29-43. [PMID: 17289411 DOI: 10.1016/j.cbpa.2006.11.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 11/08/2006] [Accepted: 11/23/2006] [Indexed: 11/25/2022]
Abstract
This review focuses on using the knowledge on volume-sensitive transport systems in Ehrlich ascites tumour cells and NIH-3T3 cells to elucidate osmotic regulation of salt transport in epithelia. Using the intestine of the European eel (Anguilla anguilla) (an absorptive epithelium of the type described in the renal cortex thick ascending limb (cTAL)) we have focused on the role of swelling-activated K+- and anion-conductive pathways in response to hypotonicity, and on the role of the apical (luminal) Na+-K+-2Cl- cotransporter (NKCC2) in the response to hypertonicity. The shrinkage-induced activation of NKCC2 involves an interaction between the cytoskeleton and protein phosphorylation events via PKC and myosin light chain kinase (MLCK). Killifish (Fundulus heteroclitus) opercular epithelium is a Cl(-)-secreting epithelium of the type described in exocrine glands, having a CFTR channel on the apical side and the Na+/K+ ATPase, NKCC1 and a K+ channel on the basolateral side. Osmotic control of Cl- secretion across the operculum epithelium includes: (i) hyperosmotic shrinkage activation of NKCC1 via PKC, MLCK, p38, OSR1 and SPAK; (ii) deactivation of NKCC by hypotonic cell swelling and a protein phosphatase, and (iii) a protein tyrosine kinase acting on the focal adhesion kinase (FAK) to set levels of NKCC activity.
Collapse
Affiliation(s)
- E K Hoffmann
- Department of Molecular Biology, The August Krogh Building, University of Copenhagen, Denmark.
| | | | | |
Collapse
|
102
|
Tse WKF, Au DWT, Wong CKC. Effect of osmotic shrinkage and hormones on the expression of Na+/H+ exchanger-1, Na+/K+/2Cl- cotransporter and Na+/K+ -ATPase in gill pavement cells of freshwater adapted Japanese eel, Anguilla japonica. ACTA ACUST UNITED AC 2007; 210:2113-20. [PMID: 17562884 DOI: 10.1242/jeb.004101] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is well-known that gill epithelial cells are important in fish osmoregulation. However, studies on the effect of osmotic stress on the direct cellular responses of the gill epithelial cells are limited. In this paper, we aimed to determine the effects of osmotic hypertonicity, hormones and cellular signaling molecules on the expression of ion transporters in the cultured primary freshwater pavement cells (PVCs), prepared from freshwater-adapted eels (Anguilla japonica). Our data demonstrated that the hypertonic (500 mOsmol l(-1)) treatment of the isolated PVCs induced cell shrinkage, followed by regulatory volume increase (RVI). Application of blockers (i.e. ouabain, bumetanide and EIPA) demonstrated that Na+/K+ -ATPase, Na+/K+/2Cl- cotransporter (NKCC) and Na+/H+ exchanger-1 (NHE-1) were involved in RVI. Western blot analysis of the hypertonic-treated cells revealed a significant induction of NHE-1, NKCC and, alpha and beta subunits of Na+/K+ -ATPase. In nonshrunken cultured PVCs, we found that dexamethasone and dibutyryl cAMP treatments significantly stimulated the expression levels of the three ion transporters. Both prolactin and insulin-like growth factor-1, can only induce the expression of NKCC. The effect of thyroid hormone (T3) and dibutyryl cGMP was negligible. In this study, the induction of ion transporter expression was found to be post-transcriptionally regulated as no significant change in mRNA levels was detected. This observation implies that the regulation is rapid and is probably induced via nongenomic actions.
Collapse
Affiliation(s)
- William K F Tse
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | | |
Collapse
|
103
|
Huang CC, Hall AC, Lim PH. Characterisation of three pathways for osmolyte efflux in human erythroleukemia cells. Life Sci 2007; 81:732-9. [PMID: 17698149 DOI: 10.1016/j.lfs.2007.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 06/22/2007] [Accepted: 07/04/2007] [Indexed: 01/01/2023]
Abstract
Cell volume decrease is a key step during differentiation of erythroid cells. This could arise from membrane transporter activation leading to a loss of cell osmolytes; however, the pathways involved are poorly understood. We have characterised Cl(-)-independent K(+) and (3)H-taurine efflux from the erythroleukemia cell line, K562. K(+) efflux (measured using (86)Rb(+)) from pre-loaded cells subjected to hypo-osmotic challenge demonstrated two phases, a rapid increase in K(+) efflux followed by a smaller slower increase. Swelling-activated taurine efflux only demonstrated a single phase. Both phases of K(+) efflux were significantly (P<0.05) blocked by anion channel inhibitor 5-nitro-2-(3-phenypropylamino)-benzoic acid (NPPB). However the antiestrogen, tamoxifen, only inhibited the slow late phase. The initial rapid phase had a higher IC(50) for NPPB inhibition than the slow phase, and was insensitive to protein kinases inhibitors KN-62, wortmannin and PD98059. For the slow K(+) efflux phase, the IC(50) for NPPB inhibition and the inhibition by KN-62, wortmannin, genistein or PD98059, were very similar to those measured for the hypo-osmotically-activated taurine efflux. With NPPB (100 microM) present, the slow K(+) efflux phase was further significantly decreased by the Ca(2+) chelator BAPTA-AM or by the Ca(2+)-activated K(+) channel blockers clotrimazole and charybdotoxin but not by apamin. Thus, at least 3 Cl(-)-independent pathways are involved: (a) a tamoxifen-sensitive and taurine-permeable anion channel; (b) a tamoxifen-insensitive and taurine-impermeable K(+) efflux pathway; and (c) a subtype of Ca(2+)-activated K(+) channel. Any or all of these could be involved in the cell volume decrease associated with differentiation in K562 cells.
Collapse
Affiliation(s)
- Chiun-Chien Huang
- Department of Physiology, Chung Shan Medical University, Taichung 40203, Taiwan, ROC.
| | | | | |
Collapse
|
104
|
Caplanusi A, Kim KJ, Lariviere E, Van Driessche W, Jans D. Swelling-Activated K+ Efflux and Regulatory Volume Decrease Efficiency in Human Bronchial Epithelial Cells. J Membr Biol 2007; 214:33-41. [PMID: 17546511 DOI: 10.1007/s00232-006-0048-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 11/07/2006] [Indexed: 11/27/2022]
Abstract
This study describes the correlation between cell swelling-induced K+ efflux and volume regulation efficiency evaluated with agents known to modulate ion channel activity and/or intracellular signaling processes in a human bronchial epithelial cell line, 16HBE14o(-1). Cells on permeable filter supports, differentiated into polarized monolayers, were monitored continuously at room temperature for changes in cell height (T(c)), as an index of cell volume, whereas (86)Rb efflux was assessed for K+ channel activity. The sudden reduction in osmolality of both the apical and basolateral perfusates (from 290 to 170 mosmol/kg H(2)O) evoked a rapid increase in cell volume by 35%. Subsequently, the regulatory volume decrease (RVD) restored cell volume almost completely (to 94% of the isosmotic value). The basolateral (86)Rb efflux markedly increased during the hyposmotic shock, from 0.50 +/- 0.03 min(-1) to a peak value of 6.32 +/- 0.07 min(-1), while apical (86)Rb efflux was negligible. Channel blockers, such as GdCl(3) (0.5 mM), quinine (0.5 mM) and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB, 100 microM), abolished the RVD. The protein tyrosine kinase inhibitors tyrphostin 23 (100 microM) and genistein (150 microM) attenuated the RVD. All agents decreased variably the hyposmosis-induced elevation in (86)Rb efflux, whereas NPPB induced a complete block, suggesting a link between basolateral K(+) and Cl(-1) efflux. Forskolin-mediated activation of adenylyl cyclase stimulated the RVD with a concomitant increase in basolateral (86)Rb efflux. These data suggest that the basolateral extrusion of K+ and Cl(-1) from 16HBE14o(-1) cells in response to cell swelling determines RVD efficiency.
Collapse
Affiliation(s)
- Adrian Caplanusi
- Laboratory of Physiology, K. U. Leuven, Campus Gasthuisberg, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
105
|
Liu L, Chen L, Liedtke W, Simon SA. Changes in osmolality sensitize the response to capsaicin in trigeminal sensory neurons. J Neurophysiol 2007; 97:2001-15. [PMID: 17353553 DOI: 10.1152/jn.00887.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Changes in tonicity in the peripheral nervous system can activate nociceptors and produce pain. Under local inflammatory conditions the peripheral terminals of nociceptors are subject to deviations from isotonicity. Previously it was shown that several members of the TRP(V) family of ion channels are responsive to changes in tonicity. Here we explore how changes in tonicity affect TRPV1 receptor-mediated responses to capsaicin in dissociated rat trigeminal ganglion (TG) neurons. Using whole cell patch-clamp and calcium imaging, we found that mild anisotonicity (260 and 348 mOsm/kg for hypotonicity and hypertonicity, respectively) strikingly sensitized the capsaicin-evoked current, I(caps). Confocal immunolocalization studies also revealed a modest anisotonicity-mediated redistribution of TRPV1 toward the plasma membrane of TG neurons. With respect to downstream signaling pathways, tonicity-induced sensitization of I(caps) was dependent on whether hypo- or hypertonic stimuli were applied. Specifically, antagonism of PKA- and PI3K-activated pathways appreciably reduced the hypertonicity-induced sensitization of I(caps), whereas inhibition of PKC-mediated pathways selectively reduced the sensitization produced by hypotonic solutions. In summary, whereas the overall effects of hypo- and hypertonicity resulted in a similar pattern of potentiation of I(caps), intracellular signaling pathways were selective for hypo- versus hypertonicity-induced tuning of capsaicin-activated currents.
Collapse
Affiliation(s)
- Lieju Liu
- 327 Bryan Research Building, 101 Research Drive, Duke University Medical Center, Durham NC 27710, USA.
| | | | | | | |
Collapse
|
106
|
Kobayashi M, Kaido F, Kagawa T, Itagaki S, Hirano T, Iseki K. Preventive effects of bicarbonate on cerivastatin-induced apoptosis. Int J Pharm 2007; 341:181-8. [PMID: 17553641 DOI: 10.1016/j.ijpharm.2007.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Revised: 02/03/2007] [Accepted: 04/07/2007] [Indexed: 10/23/2022]
Abstract
Although HMG-CoA reductase inhibitors such as statins are the most widely used cholesterol-lowering agents, there is a risk of myopathy or rhabdmyolysis occurring in patients taking these drugs. It has been reported that a number of lipophilic statins cause apoptosis in various cells, but it is still not clear whether intracellular acidification is involved in statin-induced apoptosis. There have been few studies aimed at identifying compounds that suppress statin-induced myotoxicity. In the present study, we examined the relationship between cerivastatin-induced apoptosis and intracellular acidification and the effect of bicarbonate on cerivastatin-induced apoptosis using an RD cell line as a model of in vitro skeletal muscle. Cerivastatin reduced the number of viable cells and caused dramatic morphological changes and DNA fragmentation in a concentration-dependent manner. Moreover, cerivastatin-induced apoptosis was associated with intracellular acidification and caspase-9 and -3/7 activation. On the other hand, bicarbonate suppressed cerivastatin-induced pH alteration, caspase activation, morphological change and reduction of cell viability. Accordingly, bicarbonate suppressed statin-induced apoptosis. The strategy to combine statins with bicarbonate can lead to reduction in the chance of the severe adverse events including myopathy or rhabdmyolysis.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Department of Clinical Pharmaceutics & Therapeutics, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | | | | | |
Collapse
|
107
|
Calloe K, Nielsen MS, Grunnet M, Schmitt N, Jorgensen NK. KCNQ channels are involved in the regulatory volume decrease response in primary neonatal rat cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:764-73. [PMID: 17442416 DOI: 10.1016/j.bbamcr.2007.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 02/22/2007] [Accepted: 02/26/2007] [Indexed: 01/15/2023]
Abstract
Cardiomyocytes may experience significant cell swelling during ischemia and reperfusion. Such changes in cardiomyocyte volume have been shown to affect the electrical properties of the heart, possibly leading to cardiac arrhythmia. In the present study the regulatory volume decrease (RVD) response of neonatal rat cardiomyocytes was studied in intact single cells attached to coverslips, i.e. with an intact cytoskeleton. The potential contribution of KCNQ (Kv7) channels to the RVD response and the possible involvement of the F-actin cytoskeleton were investigated. The rate of RVD was significantly inhibited in the presence of the KCNQ channel blocker XE-991 (10 and 100 microM). Electrophysiological experiments confirmed the presence of an XE-991 sensitive current and Western blotting analysis revealed that KCNQ1 channel protein was present in the neonatal rat cardiomyocytes. Hypoosmotic cell swelling changes the structure of the F-actin cytoskeleton, leading to a more rounded cell shape, less pronounced F-actin stress fibers and patches of actin. In the presence of cytochalasin D (1 microM), a potent inhibitor of actin polymerization, the RVD response was strongly reduced, confirming a possible role for an intact F-actin cytoskeleton in linking cell swelling to activation of ion transport in neonatal rat cardiomyocytes.
Collapse
Affiliation(s)
- Kirstine Calloe
- The Danish National Research Foundation Centre for Cardiac Arrhythmia and Department of Biomedical Sciences, The Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|
108
|
Mühling J, Nickolaus KA, Matejec R, Langefeld TW, Harbach H, Engel J, Wolff M, Weismüller K, Fuchs M, Welters ID, Krüll M, Heidt MC, Hempelmann G. Which mechanisms are involved in taurine-dependent granulocytic immune response or amino- and α-keto acid homeostasis? Amino Acids 2007; 34:257-70. [PMID: 17334904 DOI: 10.1007/s00726-007-0497-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
We examined the effects of beta-alanine (taurine analogue and taurine transport antagonist), taurine (regarding its role in neutrophil (PMN) immunonutrition) and taurine combined either with L-NAME (inhibitor of *NO-synthase), SNAP (*NO donor), DON (glutamine-analogue and inhibitor of glutamine-requiring enzymes), DFMO (inhibitor of ornithine-decarboxylase) and beta-alanine on neutrophil amino- and alpha-keto acid profiles or important PMN immune functions in order to establish whether taurine transport-, nitric oxide-, glutamine- or ornithine-dependent mechanisms are involved in any of the taurine-induced effects. According to the present findings, the taurine-mediated effect appears to be based primarily on a modulation of important transmembraneous transport mechanisms and only secondarily on directly or indirectly induced modifications in intragranulocytic amino- and alpha-keto acid homoeostasis or metabolism. Although a direct relation to the parallel observed immunological modifications can only be presumed, these results show very clearly that compositional modifications in the free intragranulocytic amino- and alpha keto-acid pools coinciding with changes in intragranulocytic taurine levels are relevant metabolic determinants that can significantly influence the magnitude and quality of the granulocytic immune response.
Collapse
Affiliation(s)
- J Mühling
- Clinics of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Giessen and Marburg, Justus-Liebig-University Giessen, Giessen, Federal Republic of Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Carrera MP, Antolín I, Martín V, Sainz RM, Mayo JC, Herrera F, García-Santos G, Rodríguez C. Antioxidants do not prevent acrylonitrile-induced toxicity. Toxicol Lett 2007; 169:236-44. [PMID: 17337135 DOI: 10.1016/j.toxlet.2007.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 01/23/2007] [Accepted: 01/24/2007] [Indexed: 01/21/2023]
Abstract
Several reports have recently described that acrylonitrile (ACN) toxicity resides in its capacity for inducing oxidative stress. ACN can be conjugated with glutathione (GSH), diminishing its cellular content, or being metabolized to cyanide. In the present report, we determine the effect of ACN on the viability of primary-cultured astrocytes as well as the oxidative damage generated by ACN by measuring GSH levels in primary cultured astrocytes. We also analyzed whether the ACN (2.5mM) toxicity could be avoided by using antioxidants such as taurine (5mM), N-acetylcysteine (20 mM), trolox (100 microM), estradiol (10 microM) and melatonin (100 nM-1mM). In this cell culture model, antioxidants were not able to prevent ACN-induced cell damage, with the exception of NAC, confirming that only GSH seems to play a key role in ACN-derived toxicity. Additionally, we measured different parameters of oxidative stress such as catalase activity, lipid peroxidation and GSH concentration, as indicators of the potential oxidative stress mediated by the toxicity of ACN, after exposure of Wistar rats to a concentration of 200 ppm ACN for 14 days. At the concentration assayed, we did not find any evidence of oxidative damage in the brain of ACN-treated rats.
Collapse
Affiliation(s)
- M P Carrera
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Facultad de Medicina de la Universidad de Oviedo. c/Julian Clavería, 33006 Oviedo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Tang CH, Lee TH. The effect of environmental salinity on the protein expression of Na+/K+-ATPase, Na+/K+/2Cl- cotransporter, cystic fibrosis transmembrane conductance regulator, anion exchanger 1, and chloride channel 3 in gills of a euryhaline teleost, Tetraodon nigroviridis. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:521-8. [PMID: 17347004 DOI: 10.1016/j.cbpa.2007.01.679] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 01/30/2007] [Accepted: 01/30/2007] [Indexed: 11/29/2022]
Abstract
Chloride transport mechanisms in the gills of the estuarine spotted green pufferfish (Tetraodon nigroviridis) were investigated. Protein abundance of Na(+)/K(+)-ATPase (NKA) and the other four chloride transporters, i.e., Na(+)/K(+)/2Cl(-) cotransporter (NKCC), cystic fibrosis transmembrane conductance regulator (CFTR), Cl(-)/HCO(3)(-) anion exchanger 1 (AE1), and chloride channel 3 (CLC-3) in gills of the seawater- (SW; 35 per thousand) or freshwater (FW)-acclimatized fish were examined by immunoblot analysis. Appropriate negative controls were used to confirm the specificity of the antibodies to the target proteins. The relative protein abundance of NKA was higher (i.e., 2-fold) in gills of the SW group compared to the FW group. NKCC and CFTR were expressed in gills of the SW group but not in the FW group. In contrast, the levels of relative protein abundance of branchial AE1 and CLC-3 in the FW group were 23-fold and 2.7-fold higher, respectively, compared to those of the SW group. This study is first of its kind to provide direct in vivo evidence of the protein expression of CLC-3 in teleostean gills, as well as to examine the simultaneous protein expression of the Cl(-) transporters, especially AE1 and CLC-3 of FW- and SW-acclimatized teleosts. The differential protein expression of NKA, chloride transporters in gills of the FW- and SW-acclimatized T. nigroviridis observed in the present study shows their close relationship to the physiological homeostasis (stable blood osmolality), as well as explains the impressive ionoregulatory ability of this euryhaline species in response to salinity challenges.
Collapse
Affiliation(s)
- C H Tang
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | | |
Collapse
|
111
|
Numata T, Shimizu T, Okada Y. TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. Am J Physiol Cell Physiol 2007; 292:C460-7. [PMID: 16943238 DOI: 10.1152/ajpcell.00367.2006] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stretch- and swelling-activated cation (SSAC) channels play essential roles not only in sensing and transducing external mechanical stresses but also in regulating cell volume in living cells. However, the molecular nature of the SSAC channel has not been clarified. In human epithelial HeLa cells, single-channel recordings in cell-attached and inside-out patches revealed expression of a Mg2+- and Gd3+-sensitive nonselective cation channel that is exquisitely sensitive to membrane stretch. Whole cell recordings revealed that the macroscopic cationic currents exhibit transient receptor potential (TRP) melastatin (TRPM)7-like properties such as outward rectification and sensitivity to Mg2+ and Gd3+. The whole cell cation current was augmented by osmotic cell swelling. RT-PCR and Western blotting demonstrated molecular expression of TRPM7 in HeLa cells. Treatment with small interfering RNA (siRNA) targeted against TRPM7 led to abolition of single stretch-activated cation channel currents and of swelling-activated, whole cell cation currents in HeLa cells. The silencing of TRPM7 by siRNA reduced the rate of cell volume recovery after osmotic swelling. A similar inhibition of regulatory volume decrease was also observed when extracellular Ca2+ was removed or Gd3+ was applied. It is thus concluded that TRPM7 represents the SSAC channel endogenously expressed in HeLa cells and that, by serving as a swelling-induced Ca2+ influx pathway, it plays an important role in cell volume regulation.
Collapse
Affiliation(s)
- Tomohiro Numata
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | | | |
Collapse
|
112
|
Baumgarten CM. Cell volume regulation in cardiac myocytes: a leaky boat gets a new bilge pump. ACTA ACUST UNITED AC 2006; 128:487-9. [PMID: 17074973 PMCID: PMC2151592 DOI: 10.1085/jgp.200609679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Clive M Baumgarten
- Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
113
|
Capó-Aponte JE, Wang Z, Bildin VN, Pokorny KS, Reinach PS. Fate of hypertonicity-stressed corneal epithelial cells depends on differential MAPK activation and p38MAPK/Na-K-2Cl cotransporter1 interaction. Exp Eye Res 2006; 84:361-72. [PMID: 17140565 PMCID: PMC1815383 DOI: 10.1016/j.exer.2006.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 09/17/2006] [Accepted: 10/10/2006] [Indexed: 10/23/2022]
Abstract
The capacity of the corneal epithelium to adapt to hypertonic challenge is dependent on the ability of the cells to upregulate the expression and activity of cell membrane-associated Na-K-2Cl cotransporter1 (NKCC1). Yet, the signaling pathways that control this response during hypertonic stress are still unclear. We studied stress-induced changes in proliferation and survival capacity of SV40-immortalized human (HCEC) and rabbit (RCEC) corneal epithelial cells as a function of (i) the magnitude of the hypertonic challenge, (ii) differential changes in activation of mitogen-activated protein kinase (MAPK), and (iii) the extent of p38MAPK interaction with NKCC1. Cells were incubated in hypertonic (up to 600 mOsm) media for varying time periods up to 24 h. Phosphorylated forms of p44/42, p38, and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) MAPK were immunoprecipitated from cell lysates, and the amount of each activated NKCC1-associated MAPK was evaluated by Western blot/ECL assay. DNA integrity was assessed by electrophoresis in a 2% agarose gel. Cell survival and proliferation were evaluated based on three criteria: protein content, cell count, and the MTT assay. Exposure to media of 325-350 mOsm increased proliferation of HCEC up to 75%, whereas this response was limited to <16% in RCEC. At higher osmolarities, cell proliferation decreased in both species. SAPK/JNK activity increased 150-fold in HCEC and <10-fold in RCEC, while DNA fragmentation occurred only in HCEC. Compared to HCEC, the better RCEC survival rate was associated with higher p38MAPK activity and near complete restoration of p44/42MAPK activity after the first 30 min. In both cell lines, the amount of phospho-NKCC1 that coimmunoprecipitated with phospho-p38MAPK was proportional to the magnitudes of their respective activation levels. However, no such associations occurred between amounts of phosphorylated p44/42MAPK or SAPK/JNK and phospho-NKCC1. Under isotonic conditions, with bumetanide-induced inhibition of RCEC and HCEC NKCC1 activities, p44/42MAPK activity declined by 40 and 60%, respectively. Such declines led to proportional decreases in cell proliferation. Survival of hypertonicity-stressed corneal epithelial cells depends both on p38MAPK activation capacity and the ability of p38MAPK to stimulate NKCC1 activity through protein-protein interaction. The level of NKCC1 activation affects the extent of cell volume recovery and, in turn, epithelial survival capacity.
Collapse
Affiliation(s)
- José E. Capó-Aponte
- Department of Biological Sciences, State University of New York, State College of Optometry, New York, NY 10036, USA
| | - Zheng Wang
- Department of Biological Sciences, State University of New York, State College of Optometry, New York, NY 10036, USA
| | - Victor N. Bildin
- Department of Biological Sciences, State University of New York, State College of Optometry, New York, NY 10036, USA
| | - Kathryn S. Pokorny
- The Institute of Ophthalmology & Visual Science, New Jersey Medical School, University of Medicine & Dentistry, Newark, NJ 07101
| | - Peter S. Reinach
- Department of Biological Sciences, State University of New York, State College of Optometry, New York, NY 10036, USA
- * Corresponding author. Department of Biological Sciences, State University of New York, State College of Optometry, 33West 42 Street, New York, NY 10036, USA. Tel. 917 575 1381, E-mail address: (P.S. Reinach)
| |
Collapse
|
114
|
Klausen TK, Hougaard C, Hoffmann EK, Pedersen SF. Cholesterol modulates the volume-regulated anion current in Ehrlich-Lettre ascites cells via effects on Rho and F-actin. Am J Physiol Cell Physiol 2006; 291:C757-71. [PMID: 16687471 DOI: 10.1152/ajpcell.00029.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The mechanisms controlling the volume-regulated anion current (VRAC) are incompletely elucidated. Here, we investigate the modulation of VRAC by cellular cholesterol and the potential involvement of F-actin, Rho, Rho kinase, and phosphatidylinositol-(4,5)-bisphosphate [PtdIns(4,5)P2] in this process. In Ehrlich-Lettre ascites (ELA) cells, a current with biophysical and pharmacological properties characteristic of VRAC was activated by hypotonic swelling. A 44% increase in cellular cholesterol content had no detectable effects on F-actin organization or VRAC activity. A 47% reduction in cellular cholesterol content increased cortical and stress fiber-associated F-actin content in swollen cells. Cholesterol depletion increased VRAC activation rate and maximal current after a modest (15%), but not after a severe (36%) reduction in extracellular osmolarity. The cholesterol depletion-induced increase in maximal VRAC current was prevented by F-actin disruption using latrunculin B (LB), while the current activation rate was unaffected by LB, but dependent on Rho kinase. Rho activity was decreased by ∼20% in modestly, and ∼50% in severely swollen cells. In modestly swollen cells, this reduction was prevented by cholesterol depletion, which also increased isotonic Rho activity. Thrombin, which stimulates Rho and causes actin polymerization, potentiated VRAC in modestly swollen cells. VRAC activity was unaffected by inclusion of a water-soluble PtdIns(4,5)P2analogue or a PtdIns(4,5)P2-blocking antibody in the pipette, or neomycin treatment to sequester PtdIns(4,5)P2. It is suggested that in ELA cells, F-actin and Rho-Rho kinase modulate VRAC magnitude and activation rate, respectively, and that cholesterol depletion potentiates VRAC at least in part by preventing the hypotonicity-induced decrease in Rho activity and eliciting actin polymerization.
Collapse
Affiliation(s)
- Thomas Kjaer Klausen
- Department of Biochemistry, Institute of Molecular Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
115
|
Le Rouzic P, Ivanov TR, Stanley PJ, Baudoin FMH, Chan F, Pinteaux E, Brown PD, Luckman SM. KCC3 and KCC4 expression in rat adult forebrain. Brain Res 2006; 1110:39-45. [PMID: 16872584 DOI: 10.1016/j.brainres.2006.06.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 06/12/2006] [Accepted: 06/19/2006] [Indexed: 10/24/2022]
Abstract
Potassium chloride ion cotransporters (KCCs) are part of a family of transporters classically described as being involved in cell volume regulation. Recently, KCC2 has been shown to have a role in the development of the inhibitory actions of amine transmitters, whereas KCC3 also plays a fundamental role in the development and function of the central and peripheral nervous system. We have re-assessed the expression of each of the known KCCs in the rat forebrain using RT-PCR and in situ hybridisation histochemistry. As well as confirming the widespread expression of KCC1 and KCC2 throughout the brain, we now show a more restricted expression of KCC3a in the hippocampus, choroid plexus and piriform cortex, as well as KCC4 in the choroid plexus and the suprachiasmatic nucleus of the hypothalamus. The expression of KCC4 in the latter and KCC2 in the lateral hypothalamic and ventromedial hypothalamic nuclei suggests that these cotransporters may have selective roles in neuroendocrine or homeostatic functions. Finally, we demonstrate the existence of a truncated splice variation of KCC3a in the rat that appears to be expressed exclusively in neurons (as is KCC2), whereas the native form of KCC3a and KCC4 appears to be expressed in glial cells.
Collapse
Affiliation(s)
- P Le Rouzic
- Faculty of Life Sciences, Stopford Building, Manchester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Fujii M, Kawai Y, Endoh M, Hossain MN, Nakabayashi K, Ayusawa D. Expression of RAB27B is up-regulated in senescent human cells. Mech Ageing Dev 2006; 127:639-42. [PMID: 16620919 DOI: 10.1016/j.mad.2006.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 03/02/2006] [Accepted: 03/07/2006] [Indexed: 11/20/2022]
Abstract
Immortal SVts8 cells that express thermolabile SV40 T antigen exhibit a senescence-like phenomenon upon inactivation of the T antigen. By using a cDNA subtractive hybridization technique, RAB27B, a member of the RAB GTPase family, was found to be up-regulated in senescent SVts8 cells. The up-regulation of RAB27B depends on the p53 gene. Enhanced expression was also observed in replicative senescence in normal human fibroblasts.
Collapse
Affiliation(s)
- Michihiko Fujii
- Division of Biochemistry, Kihara Institute for Biological Research and Graduate School of Integrated Science, Yokohama City University, Maioka-cho 641-12, Totsuka-ku, Yokohama 244-0813, Japan
| | | | | | | | | | | |
Collapse
|
117
|
Greig JE, Keast D, Palmer TN. Effects of glutamine and ethanol in vitro on lymphocytes from human alcohol abusers and non-abusers. Addict Biol 2006. [DOI: 10.1080/13556210020020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
118
|
Di Ciano-Oliveira C, Thirone ACP, Szászi K, Kapus A. Osmotic stress and the cytoskeleton: the R(h)ole of Rho GTPases. Acta Physiol (Oxf) 2006; 187:257-72. [PMID: 16734763 DOI: 10.1111/j.1748-1716.2006.01535.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hyperosmotic stress initiates a variety of compensatory and adaptive responses, which either serve to restore near-normal volume or remodel and reinforce the cell structure to withstand the physical challenge. The latter response is brought about by the reorganization of the cytoskeleton; however, the underlying mechanisms are not well understood. Recent research has provided major breakthroughs in our knowledge about the link between message and structure, i.e. between signalling and cytoskeletal remodelling, predominantly in the context of cell migration. The major components of this progress are the in-depth characterization of Rho family small GTPases, master regulators of the cytoskeleton, and the discovery of the actin-related protein 2/3 complex, a signalling-sensitive structural element of the actin polymerization machinery. The primary aim of this review is to find the place of these novel and crucial players in osmotically induced (volume-dependent) remodelling of the cytoskeleton. We aim to address three questions: (1) What are the major structural changes in the cytoskeleton under hyperosmotic conditions? (2) Are the Rho family small GTPases (Rho, Rac and Cdc42) regulated by osmotic stress, and if so, by what mechanisms? (3) Are Rho GTPases involved, as mediators, in major adaptive responses, including cytoskeleton rearrangement, changes in ion transport and genetic reprogramming? Our answers will show how fragmentary our current knowledge is in these areas. Therefore, this overview has been written with the hardly disguised intention that it might foster further research in this field by highlighting some intriguing questions.
Collapse
Affiliation(s)
- C Di Ciano-Oliveira
- The St Michael's Hospital Research Institute, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
119
|
Stutzin A, Hoffmann EK. Swelling-activated ion channels: functional regulation in cell-swelling, proliferation and apoptosis. Acta Physiol (Oxf) 2006; 187:27-42. [PMID: 16734740 DOI: 10.1111/j.1748-1716.2006.01537.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell volume regulation is one of the most fundamental homeostatic mechanisms and essential for normal cellular function. At the same time, however, many physiological mechanisms are associated with regulatory changes in cell size meaning that the set point for cell volume regulation is under physiological control. Thus, cell volume is under a tight and dynamic control and abnormal cell volume regulation will ultimately lead to severe cellular dysfunction, including alterations in cell proliferation and cell death. This review describes the different swelling-activated ion channels that participate as key players in the maintenance of normal steady-state cell volume, with particular emphasis on the intracellular signalling pathways responsible for their regulation during hypotonic stress, cell proliferation and apoptosis.
Collapse
Affiliation(s)
- A Stutzin
- Centro de Estudios Moleculares de la Célula and Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | |
Collapse
|
120
|
Candia OA, Alvarez LJ, Zamudio AC. Regulation of water permeability in rabbit conjunctival epithelium by anisotonic conditions. Am J Physiol Cell Physiol 2006; 290:C1168-78. [PMID: 16531568 DOI: 10.1152/ajpcell.00254.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effects of unilateral exposure to anisotonic conditions on diffusional water permeability of the isolated rabbit conjunctiva were determined. A segment of the bulbar-palpebral conjunctiva was mounted between Ussing-type hemichambers under short-circuit conditions. Unidirectional water fluxes ( Jdw) were measured in either direction by adding3H2O to one hemichamber and sampling from the other. Electrical parameters were measured simultaneously. Jdwwere determined under control isosmotic conditions and after introduction of either hyper- or hypotonic solutions against the tear or stromal sides of the preparations. In each of these four separate conditions, the anisotonic medium produced an ∼20–30% reduction in Jdwacross the tissue, with the exception that to obtain such reduction with increased tonicity from the stromal side (medium osmolality increased by adding sucrose), conditions presumptively inhibiting regulatory volume increase mechanisms (e.g., pretreatment with amiloride and bumetanide) were also required. All reductions in Jdwelicited by the various anisotonic conditions were reversible on restoration of control tonicity. In experiments in which preparations were pretreated with the protein cross-linking agent glutaraldehyde, anisotonicity-elicited reductions in Jdwwere not observed. Such reductions were also not observed in the presence of HgCl2, implying the involvement of aquaporins. However, it is possible that the mercurial may be toxic to the epithelium, preventing the tonicity response. Nevertheless, from concomitant changes in transepithelial electrical resistance, as well as [14C]mannitol fluxes, [14C]butanol fluxes, and Arrhenius plots, arguments are presented that the above effects are best explained as a cell-regulated reduction in membrane water permeability that occurs at the level of water-transporting channels. Presumably both apical and basolateral membranes can downregulate their water permeabilities as part of a protective mechanism to help maintain cell volume.
Collapse
Affiliation(s)
- Oscar A Candia
- Department of Ophthalmology, Mount Sinai School of Medicine, 100th St. and 5th Ave., New York, NY 10029, USA.
| | | | | |
Collapse
|
121
|
Haider MA, Schugart RC, Setton LA, Guilak F. A mechano-chemical model for the passive swelling response of an isolated chondron under osmotic loading. Biomech Model Mechanobiol 2006; 5:160-71. [PMID: 16520959 DOI: 10.1007/s10237-006-0026-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 07/01/2005] [Indexed: 10/24/2022]
Abstract
The chondron is a distinct structure in articular cartilage that consists of the chondrocyte and its pericellular matrix (PCM), a narrow tissue region surrounding the cell that is distinguished by type VI collagen and a high glycosaminoglycan concentration relative to the extracellular matrix. We present a theoretical mechano-chemical model for the passive volumetric response of an isolated chondron under osmotic loading in a simple salt solution at equilibrium. The chondrocyte is modeled as an ideal osmometer and the PCM model is formulated using triphasic mixture theory. A mechano-chemical chondron model is obtained assuming that the chondron boundary is permeable to both water and ions, while the chondrocyte membrane is selectively permeable to only water. For the case of a neo-Hookean PCM constitutive law, the model is used to conduct a parametric analysis of cell and chondron deformation under hyper- and hypo-osmotic loading. In combination with osmotic loading experiments on isolated chondrons, model predictions will aid in determination of pericellular fixed charge density and its relative contribution to PCM mechanical properties.
Collapse
Affiliation(s)
- Mansoor A Haider
- Department of Mathematics, North Carolina State University, Box 8205, Raleigh, NC 27695-8205, USA.
| | | | | | | |
Collapse
|
122
|
Pedersen SF, O'Donnell ME, Anderson SE, Cala PM. Physiology and pathophysiology of Na+/H+ exchange and Na+ -K+ -2Cl- cotransport in the heart, brain, and blood. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1-25. [PMID: 16484438 DOI: 10.1152/ajpregu.00782.2005] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maintenance of a stable cell volume and intracellular pH is critical for normal cell function. Arguably, two of the most important ion transporters involved in these processes are the Na+/H+ exchanger isoform 1 (NHE1) and Na+ -K+ -2Cl- cotransporter isoform 1 (NKCC1). Both NHE1 and NKCC1 are stimulated by cell shrinkage and by numerous other stimuli, including a wide range of hormones and growth factors, and for NHE1, intracellular acidification. Both transporters can be important regulators of cell volume, yet their activity also, directly or indirectly, affects the intracellular concentrations of Na+, Ca2+, Cl-, K+, and H+. Conversely, when either transporter responds to a stimulus other than cell shrinkage and when the driving force is directed to promote Na+ entry, one consequence may be cell swelling. Thus stimulation of NHE1 and/or NKCC1 by a deviation from homeostasis of a given parameter may regulate that parameter at the expense of compromising others, a coupling that may contribute to irreversible cell damage in a number of pathophysiological conditions. This review addresses the roles of NHE1 and NKCC1 in the cellular responses to physiological and pathophysiological stress. The aim is to provide a comprehensive overview of the mechanisms and consequences of stress-induced stimulation of these transporters with focus on the heart, brain, and blood. The physiological stressors reviewed are metabolic/exercise stress, osmotic stress, and mechanical stress, conditions in which NHE1 and NKCC1 play important physiological roles. With respect to pathophysiology, the focus is on ischemia and severe hypoxia where the roles of NHE1 and NKCC1 have been widely studied yet remain controversial and incompletely elucidated.
Collapse
Affiliation(s)
- S F Pedersen
- Department of Biochemistry, Institute of Molecular Biology and Physiology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
123
|
Barfield JP, Yeung CH, Cooper TG. Characterization of potassium channels involved in volume regulation of human spermatozoa. ACTA ACUST UNITED AC 2006; 11:891-7. [PMID: 16421215 DOI: 10.1093/molehr/gah208] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fertility depends in part on the ability of the spermatozoon to respond to osmotic challenges by regulating its volume, which may rely on the movement of K+. These experiments were designed to characterize the K+ channels possibly involved in volume regulation of human ejaculated spermatozoa by simultaneously exposing them to a physiological hypo-osmotic challenge and a wide range of K+ channel inhibitors. Regulation of cellular volume, as measured by flow cytometry, was inhibited when spermatozoa were exposed to quinine (QUI; 0.3 mM), 4-aminopyridine (4AP; 4 mM) and clofilium (CLO; 10 microM) which suggests the involvement of voltage-gated K+ channels Kv1.4, Kv1.5 and Kv1.7, acid-sensitive channel TASK2 and the beta-subunit minK (IsK) in regulatory volume decrease (RVD). QUI and 4AP and, to some extent, CLO also induced hyper activation-like motility. A sensitivity of RVD to pH could not be demonstrated in spermatozoa to support the involvement of TASK2 channels. Western blotting indicated the presence of Kv1.5, TASK2, TASK3 and minK channel proteins, but not Kv1.4. Furthermore, Kv1.5, minK and TASK2 were localized to various regions of the spermatozoa. Although Kv1.4, Kv1.7, TASK2 and TASK3 channels may have important roles in human spermatozoa, Kv1.5 and minK appear to be the most likely candidates for human sperm RVD, serving as targets for non-hormonal contraception.
Collapse
Affiliation(s)
- J P Barfield
- Institute of Reproductive Medicine, University of Münster, Münster, Germany
| | | | | |
Collapse
|
124
|
Maallem S, Mutin M, Kwon HM, Tappaz ML. Differential cellular distribution of tonicity-induced expression of transcription factor TonEBP in the rat brain following prolonged systemic hypertonicity. Neuroscience 2006; 137:51-71. [PMID: 16352399 DOI: 10.1016/j.neuroscience.2005.07.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 06/27/2005] [Accepted: 07/01/2005] [Indexed: 12/11/2022]
Abstract
In a previous work performed on cerebral cortex and hippocampus we reported that tonicity-responsive enhancer binding protein (TonEBP), originally identified as a transactivator of osmoprotective genes involved in osmoadaptation of renal cells, was induced in neurons only, but to varying levels, following acute systemic hypertonicity. Whether or not this cellular specificity reflected a unique ability of neurons or a differential time course among brain cells for tonicity-induction of TonEBP was investigated throughout the brain in this study by subjecting the animals to prolonged systemic hypertonicity. In normal rats, TonEBP immunolabeling and TonEBP-mRNA in situ hybridization labeling showed a widespread, uneven and parallel distribution. TonEBP was expressed primarily in the cell nuclei of neurons, where it was heterogeneously distributed in a nucleoplasmic and a granular pool. In rats subjected to prolonged systemic hypertonicity, TonEBP labeling increased in the cell nuclei of neurons only. The tonicity-induced expression of TonEBP for a given cell group of neurons was rather uniform but varied greatly among neuronal cell groups and was positively correlated with the average size of the cell nuclei, as determined by quantitative analysis of digitized images. The detailed distribution of tonicity-induced expression of TonEBP is reported throughout the brain. In normal rats, a very minor proportion of non-neuronal cells, identified as a subset of astrocytes and possibly oligodendrocytes, showed faint nuclear immunolabeling, which however did not increase in hypertonic animals. Ependymocytes, capillary endothelial cells, and microglial cells showed no TonEBP labeling, even in hypertonic animals. Altogether our data indicate that neurons, albeit possibly to a varying extent, are the only brain cells able to use TonEBP-mediated processes for adaptation to a systemic hyperosmotic unbalance.
Collapse
Affiliation(s)
- S Maallem
- Unité INSERM 433, Neurobiologie Experimentale et Physiopathologie, Faculté de Médecine RTH Laennec, Rue Guillaume Paradin, F 69372, Lyon, Cedex 08, France
| | | | | | | |
Collapse
|
125
|
Kerrigan MJP, Hook CSV, Qusous A, Hall AC. Regulatory volume increase (RVI) by in situ and isolated bovine articular chondrocytes. J Cell Physiol 2006; 209:481-92. [PMID: 16897756 DOI: 10.1002/jcp.20758] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metabolism of the matrix by chondrocytes is sensitive to alterations in cell volume that occur, for example, during static loading and osteoarthritis. The ability of chondrocytes to respond to changes in volume could be important, and this study was aimed at testing the hypothesis that chondrocytes can regulate their volume following cell shrinking by regulatory volume increase (RVI). We used single cell fluorescence imaging of in situ bovine articular chondrocytes, cells freshly isolated into 280 or 380 mOsm, or 2-D cultured chondrocytes loaded with calcein or fura-2, to investigate RVI and changes to [Ca2+]i during shrinkage. Following a 42% hyperosmotic challenge, chondrocytes rapidly shrunk, however, only approximately 6% of the in situ or freshly isolated chondrocytes demonstrated RVI. This contrasted with 2D-cultured chondrocytes where approximately 54% of the cells exhibited RVI. The rate of RVI was the same for all preparations. During the 'post-RVD/RVI protocol', approximately 60% of the in situ and freshly isolated chondrocytes demonstrated RVD, but only approximately 5% showed RVI. There was no relationship between [Ca2+]i and RVI either during hyperosmotic challenge, or during RVD suggesting that changes to [Ca2+]i were not required for RVI. Depolymerisation of the actin cytoskeleton by latrunculin, increased RVI by freshly isolated chondrocytes, in a bumetanide-sensitive manner. The results showed that in situ and freshly isolated articular chondrocytes have only limited RVI capacity. However, RVI was stimulated by treating freshly isolated chondrocytes with latrunculin B and following 2D culture of chondrocytes, suggesting that cytoskeletal integrity plays a role in regulating RVI activity which appears to be mediated principally by the Na+ - K+ -2Cl- cotransporter.
Collapse
Affiliation(s)
- Mark J P Kerrigan
- Department of Human and Health Sciences, School of Biosciences, University of Westminster, London, UK
| | | | | | | |
Collapse
|
126
|
Curl CL, Bellair CJ, Harris PJ, Allman BE, Roberts A, Nugent KA, Delbridge LMD. Single Cell Volume Measurement by Quantitative Phase Microscopy (QPM): A Case Study of Erythrocyte Morphology. Cell Physiol Biochem 2006; 17:193-200. [PMID: 16790995 DOI: 10.1159/000094124] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The measurement of the volume of intact, viable cells presents challenging problems in many areas of experimental and diagnostic science involved in the evaluation of cellular morphology, growth and function. This investigation details the implementation of a recently developed quantitative phase microscopy (QPM) method to measure the volume of erythrocytes under a range of osmotic conditions. QPM is a computational approach which utilizes simple bright field optics to generate cell phase maps which, together with knowledge of the cellular refractive index, may be used to measure cellular volume. Rat erythrocytes incubated in imidazole-buffered solutions (22 degrees C) of graded tonicity were analysed using QPM (n=10 cells/group, x63, 0.8 NA objective). Erythrocyte refractive index (1.367) was measured using a combination of phase and morphological data obtained from cells adopting spherical geometry under hypotonic conditions. Phase-computed volume increased with decreasing solution osmolality: 42.8 +/- 2.4, 48.7 +/- 2.3, 62.6 +/- 2.3, 90.8 +/- 7.7 microm3 in solutions of 540, 400, 240, and 170 mosmol/kg respectively. These volume changes were associated with crenated, bi-concave and spherical morphological states associated with increasing tonicity. This investigation demonstrates that QPM is a valid, simple and non-destructive approach for measuring cellular phase properties and volume. QPM cell volume analysis represents a significant advance in viable cell experimental capability and provides for acquisition of 'real-time' data - an option not previously available using other approaches.
Collapse
Affiliation(s)
- Claire L Curl
- Department of Physiology & School of Physics University of Melbourne, Victoria, 3010 (Australia)
| | | | | | | | | | | | | |
Collapse
|
127
|
Klausen TK, Bergdahl A, Hougaard C, Christophersen P, Pedersen SF, Hoffmann EK. Cell cycle-dependent activity of the volume- and Ca2+-activated anion currents in Ehrlich lettre ascites cells. J Cell Physiol 2006; 210:831-42. [PMID: 17111356 DOI: 10.1002/jcp.20918] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent evidence implicates the volume-regulated anion current (VRAC) and other anion currents in control or modulation of cell cycle progression; however, the precise involvement of anion channels in this process is unclear. Here, Cl- currents in Ehrlich Lettre Ascites (ELA) cells were monitored during cell cycle progression, under three conditions: (i) after osmotic swelling (i.e., VRAC), (ii) after an increase in the free intracellular Ca2+ concentration (i.e., the Ca2+-activated Cl- current, CaCC), and (iii) under steady-state isotonic conditions. The maximal swelling-activated VRAC current decreased in G1 and increased in early S phase, compared to that in G0. The isotonic steady-state current, which seems to be predominantly VRAC, also decreased in G1, and increased again in early S phase, to a level similar to that in G0. In contrast, the maximal CaCC current (500 nM free Ca2+ in the pipette), was unaltered from G0 to G1, but decreased in early S phase. A novel high-affinity anion channel inhibitor, the acidic di-aryl-urea NS3728, which inhibited both VRAC and CaCC, attenuated ELA cell growth, suggesting a possible mechanistic link between cell cycle progression and cell cycle-dependent changes in the capacity for conductive Cl- transport. It is suggested that in ELA cells, entrance into the S phase requires an increase in VRAC activity and/or an increased potential for regulatory volume decrease (RVD), and at the same time a decrease in CaCC magnitude.
Collapse
Affiliation(s)
- Thomas Kjaer Klausen
- Department of Biochemistry, Institute for Molecular Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
128
|
Abstract
Astrocyte swelling represents the major factor responsible for the brain edema associated with fulminant hepatic failure (FHF). The edema may be of such magnitude as to increase intracranial pressure leading to brain herniation and death. Of the various agents implicated in the generation of astrocyte swelling, ammonia has had the greatest amount of experimental support. This article reviews mechanisms of ammonia neurotoxicity that contribute to astrocyte swelling. These include oxidative stress and the mitochondrial permeability transition (MPT). The involvement of glutamine in the production of cell swelling will be highlighted. Evidence will be provided that glutamine induces oxidative stress as well as the MPT, and that these events are critical in the development of astrocyte swelling in hyperammonemia.
Collapse
Affiliation(s)
- M D Norenberg
- Veterans Affairs Medical Center, Miami, Florida 33101, USA. mnorenbe@med,miami.edu
| | | | | |
Collapse
|
129
|
Droste MS, Biel SS, Terstegen L, Wittern KP, Wenck H, Wepf R. Noninvasive measurement of cell volume changes by negative staining. JOURNAL OF BIOMEDICAL OPTICS 2005; 10:064017. [PMID: 16409082 DOI: 10.1117/1.2138011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
To maintain the intracellular concentration of ions and small molecules on osmotic challenges, nature has developed highly sophisticated transport systems for regulating water and ion content. An ideal measurement technique for volume changes of cells during osmotic challenges has to fulfil two requirements: it has to be osmotically inert, and it should allow online monitoring of cell volume changes. Here, a simple fluorescence microscopy-based approach is presented. Using fluorescein as a negative stain, it is possible to monitor cell volume changes without affecting the functionality of cell membranes and cell osmolarity. Measurement of Madine-Darby canine kidney (MDCK) cells after hypo- and hyperosmotic challenges reveals the main advantages of this approach: besides providing precise and reproducible quantitative data on reversible cell volume changes, the viability of the cells can be assessed directly by the appearance of stain in the cytoplasm. This becomes evident especially after hypo-osmotic challenge of glutaraldehyde-treated cells, which become leaky after fixation, followed by a massive volume change. This new approach represents a very sensitive measurement technique for cell volume changes resulting from water or ion flux, and thus seems to be an ideal tool for studying cell volume regulatory processes.
Collapse
Affiliation(s)
- Miriam S Droste
- Beiersdorf AG, Research Microscopy, Hamburg, Germany and FB Naturwissenschaftliche Technik, Hochschule für Angewandte Wissenschaften, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
130
|
Nylander-Koski O, Mustonen H, Kiviluoto T, Kivilaakso E. Cell volume regulation during hyperosmotic shrinkage is mediated by Na+/K+-ATPase and Na+-K+-2Cl- cotransporter in Necturus gastrics surface epithelial cells. Dig Dis Sci 2005; 50:2043-9. [PMID: 16240213 DOI: 10.1007/s10620-005-3005-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Accepted: 12/28/2004] [Indexed: 12/09/2022]
Abstract
Cell volume regulation was investigated in gastric surface epithelial cells during hypertonic conditions. Isolated Necturus antral mucosa was perfused on the serosal side with Ringer's solution (pH 7.25, 95%O2/5%CO2) and on the mucosal side successively with 150-500 mM NaCl. Amiloride, ouabain, and bumetanide were used to experimentally inhibit Na+/H+, Na+/K+ ATPase or Na+-K+-2Cl- ion transporters. Intracellular sodium activity and cell volume changes were measured with liquid sensor microelectrodes. The increase in intracellular sodium activity caused by luminal hyperosmolar exposure was mainly due to cell shrinkage. Inhibition of Na+/K+ ATPase or Na+-K+-2Cl- cotransporter increased hyperosmotic cell shrinkage (-52 +/- 5%, -85 +/- 19%, and -77 +/- 9% for control, ouabain, and bumetanide, respectively). Inhibition of Na+/K+ ATPase increased intracellular sodium activity (from 18 +/- 4 to 52 +/- 12 mM). Cell volume regulation in gastric epithelial surface cells during mucosal hyperosmolar exposure is maintained by the basolateral Na+-K+-2Cl- cotransporter, while Na+/K+ ATPase maintains sodium balance, but Na+/H+ antiport seems to have a less important role.
Collapse
Affiliation(s)
- Outi Nylander-Koski
- Department of Surgery, Helsinki University Central Hospital, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | | | | | | |
Collapse
|
131
|
Yang M, Li XL, Xu HY, Sun JB, Mei B, Zheng HF, Piao LH, Xing DG, Li ZL, Xu WX. Role of arachidonic acid in hyposmotic membrane stretch-induced increase in calcium-activated potassium currents in gastric myocytes. Acta Pharmacol Sin 2005; 26:1233-42. [PMID: 16174440 DOI: 10.1111/j.1745-7254.2005.00201.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AIM To study effects of arachidonic acid (AA) and its metabolites on the hyposmotic membrane stretch-induced increase in calcium-activated potassium currents (I(KCa)) in gastric myocytes. METHODS Membrane currents were recorded by using a conventional whole cell patch-clamp technique in gastric myocytes isolated with collagenase. RESULTS Hyposmotic membrane stretch and AA increased both I(K(Ca))) and spontaneous transient outward currents significantly. Exogenous AA could potentiate the hyposmotic membrane stretch-induced increase in I(K(Ca)). The hyposmotic membrane stretch-induced increase in I(K(Ca)) was significantly suppressed by dimethyleicosadienoic acid (100 micromol/L in pipette solution), an inhibitor of phospholipase A2. Nordihydroguaiaretic acid, a lipoxygenase inhibitor, significantly suppressed AA and hyposmotic membrane stretch-induced increases in I(K(Ca)). External calcium-free or gadolinium chloride, a blocker of stretch-activated channels, blocked the AA-induced increase in I(K(Ca)) significantly, but it was not blocked by nicardipine, an L-type calcium channel blocker. Ryanodine, a calcium-induced calcium release agonist, completely blocked the AA-induced increase in I(K(Ca)); however, heparin, a potent inhibitor of inositol triphosphate receptor, did not block the AA-induced increase in I(K(Ca)). CONCLUSION Hyposmotic membrane stretch may activate phospholipase A2, which hydrolyzes membrane phospholipids to ultimately produce AA; AA as a second messenger mediates Ca(2+) influx, which triggers Ca(2+)-induced Ca(2+) release and elicits activation of I(K(Ca)) in gastric antral circular myocytes of the guinea pig.
Collapse
Affiliation(s)
- Meng Yang
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Sumikawa E, Matsumoto Y, Sakemura R, Fujii M, Ayusawa D. Prolonged unbalanced growth induces cellular senescence markers linked with mechano transduction in normal and tumor cells. Biochem Biophys Res Commun 2005; 335:558-65. [PMID: 16083852 DOI: 10.1016/j.bbrc.2005.07.106] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 07/20/2005] [Indexed: 11/30/2022]
Abstract
Cellular senescence is induced by diverse means and hence thought to be mediated by multiple pathways. We show that prolonged unbalanced growth due to retardation of DNA replication elicits a senescence-like phenomenon irrespective of the cell type. In fact, modest inhibition of DNA replication by various means led to cell swelling, cytoskeletal alterations, and irregularly enlarged, flat cell shape. Such cells upregulated senescence-associated genes, and eventually lost division potential. These phenotypes, which define cellular senescence, were virtually reversed by reducing protein synthesis or blocking ERK of the MAP kinase family. These results suggest that cellular senescence is a manifestation of prolonged unbalanced growth linked with mechano transduction and can be prevented by at least two different ways.
Collapse
Affiliation(s)
- Emi Sumikawa
- Kihara Institute for Biological Research and Graduate School of Integrated Science, Yokohama City University, Maioka-cho 641-12, Yokohama 244-0813, Japan
| | | | | | | | | |
Collapse
|
133
|
Bevilacqua E, Bussolati O, Dall'Asta V, Gaccioli F, Sala R, Gazzola GC, Franchi-Gazzola R. SNAT2 silencing prevents the osmotic induction of transport system A and hinders cell recovery from hypertonic stress. FEBS Lett 2005; 579:3376-80. [PMID: 15922329 DOI: 10.1016/j.febslet.2005.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 05/04/2005] [Accepted: 05/04/2005] [Indexed: 11/17/2022]
Abstract
Under hypertonic conditions the induction of SLC38A2/SNAT2 leads to the stimulation of transport system A and to the increase in the cell content of amino acids. In hypertonically stressed human fibroblasts transfection with two siRNAs for SNAT2 suppressed the increase in SNAT2 mRNA and the stimulation of system A transport activity. Under the same condition, the expansion of the intracellular amino acid pool was significantly lowered and cell volume recovery markedly delayed. It is concluded that the up-regulation of SNAT2 is essential for the rapid restoration of cell volume after hypertonic stress.
Collapse
Affiliation(s)
- Elena Bevilacqua
- Sezione di Patologia Generale e Clinica, Dipartimento di Medicina, Sperimentale, Università degli Studi di Parma, Via Volturno 39, 43100 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
134
|
Sugawara S, Sasaki S, Ogawa Y, Hosono M, Nitta K. [Catfish (Silurus asotus) lectin enhances the cytotoxic effects of doxorubicin]. YAKUGAKU ZASSHI 2005; 125:327-34. [PMID: 15738633 DOI: 10.1248/yakushi.125.327] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rhamnose-binding lectins are widely found in fish eggs. However, their biologic effects on cultured cells are still unknown. Since catfish (Silurus asotus) egg lectin (SAL) bound to globotriaosylceramide (Gb3) expressed on the surface of cells, we analyzed the relationship between Gb3 expression and SAL binding in tumor cell lines using Raji, Daudi, ACHN, P388, and K562 cells. Gb3 was highly expressed on Raji cells but not on K562 cells. SAL bound abundantly to Raji cells but not to K562 cells, and SAL binding depended on the amount of Gb3 on the cell surface. SAL caused a reduction in cell size and increased annexin-V binding to and propidium iodide (PI) incorporation into Raji cells. Although this effect on Raji cells might represent damage at the late apoptosis or necrosis stage, SAL-treated Raji cells remained alive. Thus SAL enhanced PI incorporation into Raji cells without induction of cell death. We examined whether the effects of chemotherapeutic agent(s) are influenced by SAL. SAL increased the incorporation of doxorubicin (Dox) into Raji cells and consequently enhanced the cytotoxic effects of Dox. These results indicate that SAL may induce cell permeability without cytotoxity.
Collapse
Affiliation(s)
- Shigeki Sugawara
- Cancer Research Institute, Tohoku Pharmaceutical University, Sendai 981-8558, Japan
| | | | | | | | | |
Collapse
|
135
|
Friis MB, Friborg CR, Schneider L, Nielsen MB, Lambert IH, Christensen ST, Hoffmann EK. Cell shrinkage as a signal to apoptosis in NIH 3T3 fibroblasts. J Physiol 2005; 567:427-43. [PMID: 15975986 PMCID: PMC1474190 DOI: 10.1113/jphysiol.2005.087130] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell shrinkage is a hallmark of the apoptotic mode of programmed cell death, but it is as yet unclear whether a reduction in cell volume is a primary activation signal of apoptosis. Here we studied the effect of an acute elevation of osmolarity (NaCl or sucrose additions, final osmolarity 687 mosmol l(-1)) on NIH 3T3 fibroblasts to identify components involved in the signal transduction from shrinkage to apoptosis. After 1.5 h the activity of caspase-3 started to increase followed after 3 h by the appearance of many apoptotic-like bodies. The caspase-3 activity increase was greatly enhanced in cells expressing a constitutively active G protein, Rac (RacV12A3 cell), indicating that Rac acts upstream to caspase-3 activation. The stress-activated protein kinase, p38, was significantly activated by phosphorylation within 30 min after induction of osmotic shrinkage, the phosphorylation being accelerated in fibroblasts overexpressing Rac. Conversely, the activation of the extracellular signal-regulated kinase (Erk1/2) was initially significantly decreased. Subsequent to activation of p38, p53 was activated through serine-15 phosphorylation, and active p53 was translocated from the cytosol to the nucleus. Inhibition of p38 in Rac cells reduced the activation of both p53 and caspase-3. After 60 min in hypertonic medium the rate constants for K+ and taurine efflux were increased, particular in Rac cells. We suggest the following sequence of events in the cell shrinkage-induced apoptotic response: cellular shrinkage activates Rac, with activation of p38, followed by phosphorylation and nuclear translocation of p53, resulting in permeability increases and caspase-3 activation.
Collapse
Affiliation(s)
- Martin B Friis
- Department of Biochemistry, Institute of Molecular Biology and Physiology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
136
|
Ebner HL, Cordas A, Pafundo DE, Schwarzbaum PJ, Pelster B, Krumschnabel G. Importance of cytoskeletal elements in volume regulatory responses of trout hepatocytes. Am J Physiol Regul Integr Comp Physiol 2005; 289:R877-90. [PMID: 15905223 DOI: 10.1152/ajpregu.00170.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of cytoskeletal elements in volume regulation was studied in trout hepatocytes by investigating changes in F-actin distribution during anisotonic exposure and assessing the impact of cytoskeleton disruption on volume regulatory responses. Hypotonic challenge caused a significant decrease in the ratio of cortical to cytoplasmic F-actin, whereas this ratio was unaffected in hypertonic saline. Disruption of microfilaments with cytochalasin B (CB) or cytochalasin D significantly slowed volume recovery following hypo- and hypertonic exposure in both attached and suspended cells. The decrease of net proton release and the intracellular acidification elicited by hypotonicity were unaltered by CB, whereas the increase of proton release in hypertonic saline was dramatically reduced. Because amiloride almost completely blocked the hypertonic increase of proton release and cytoskeleton disruption diminished the associated increase of intracellular pH (pH(i)), we suggest that F-actin disruption affected Na(+)/H(+) exchanger activity. In line with this, pH(i) recovery after an ammonium prepulse was significantly inhibited in CB-treated cells. The increase of cytosolic Na(+) under hypertonic conditions was not diminished but, rather, enhanced by F-actin disruption, presumably due to inhibited Na(+)-K(+)-ATPase activity and stimulated Na(+) channel activity. The elevation of cytosolic Ca(2+) in hypertonic medium was significantly reduced by CB. Altogether, our results indicate that the F-actin network is of crucial importance in the cellular responses to anisotonic conditions, possibly via interaction with the activity of ion transporters and with signalling cascades responsible for their activation. Disruption of microtubules with colchicine had no effect on any of the parameters investigated.
Collapse
Affiliation(s)
- Hannes L Ebner
- Institut für Zoologie und Limnologie, Leopold Franzens Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
137
|
Marshall WS, Ossum CG, Hoffmann EK. Hypotonic shock mediation by p38 MAPK, JNK, PKC, FAK, OSR1 and SPAK in osmosensing chloride secreting cells of killifish opercular epithelium. ACTA ACUST UNITED AC 2005; 208:1063-77. [PMID: 15767308 DOI: 10.1242/jeb.01491] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hypotonic shock rapidly inhibits Cl(-) secretion by chloride cells, an effect that is osmotic and not produced by NaCl-depleted isosmotic solutions, yet the mechanism for the inhibition and its recovery are not known. We exposed isolated opercular epithelia, mounted in Ussing chambers, to hypotonic shock in the presence of a variety of chemicals: a general protein kinase C (PKC) inhibitor chelerythrine, Gö6976 that selectively blocks PKC alpha and beta subtypes, H-89 that blocks PKA, SB203580 that blocks p38 mitogen-activated protein kinase (MAPK), as well as serine/threonine protein phosphatase (PP1 and 2A) inhibitor okadaic acid, and finally tamoxifen, a blocker of volume-activated anion channels (VSOAC). Chelerythrine has no effect on hypotonic inhibition but blocked the recovery, indicating PKC involvement in stimulation. Gö6976 had little effect, suggesting that PKC alpha and PKC beta subtypes are not involved. H-89 did not block hypotonic inhibition but decreased the recovery, indicating PKA may be involved in the recovery and overshoot (after restoration of isotonic conditions). SB203580 significantly enhanced the decrease in current by hypotonic shock, suggesting an inhibitory role of p38 MAPK in the hypotonic inhibition. Okadaic acid increased the steady state current, slowed the hypotonic inhibition but made the decrease in current larger; also the recovery and overshoot were completely blocked. Hypotonic stress rapidly and transiently increased phosphorylated p38 MAPK (pp38) MAPK (measured by western analysis) by eightfold at 5 min, then more slowly again to sevenfold at 60 min. Hypertonic shock slowly increased p38 by sevenfold at 60 min. Phosphorylated JNK kinase was increased by 40-50% by both hypotonic and hypertonic shock and was still elevated at 30 min in hypertonic medium. By immunoblot analysis it was found that the stress protein kinase (SPAK) and oxidation stress response kinase 1 (OSR1) were present in salt and freshwater acclimated fish with higher expression in freshwater. By immunocytochemistry, SPAK, OSR1 and phosphorylated focal adhesion kinase (pFAK) were colocalized with NKCC at the basolateral membrane. The protein tyrosine kinase inhibitor genistein (100 micromol l(-1)) inhibited Cl(-) secretion that was high, increased Cl(-) secretion that was low and reduced immunocytochemical staining for phosphorylated FAK. We present a model for rapid control of CFTR and NKCC in chloride cells that includes: (1) activation of NKCC and CFTR via cAMP/PKA, (2) activation of NKCC by PKC, myosin light chain kinase (MLCK), p38, OSR1 and SPAK, (3) deactivation of NKCC by hypotonic cell swelling, Ca(2+) and an as yet unidentified protein phosphatase and (4) involvement of protein tyrosine kinase (PTK) acting on FAK to set levels of NKCC activity.
Collapse
Affiliation(s)
- W S Marshall
- Department of Biology, St Francis Xavier University, PO Box 5000 Antigonish, Nova Scotia, Canada B2G 2W5.
| | | | | |
Collapse
|
138
|
Barfield JP, Yeung CH, Cooper TG. The Effects of Putative K+ Channel Blockers on Volume Regulation of Murine Spermatozoa1. Biol Reprod 2005; 72:1275-81. [PMID: 15673604 DOI: 10.1095/biolreprod.104.038448] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Volume regulation is a necessary task for spermatozoa as the osmolarity of female tract fluids is lower than that in the epididymis and because the disruption of it in transgenic mice results in infertility. As the specific mechanisms behind this phenomenon are unknown, spermatozoa from mice were screened for sensitivities to inhibitors known to affect specific channels involved in volume regulation of somatic cells. Spermatozoa from the cauda epididymidis were exposed to physiological hypotonic conditions with and without inhibitor. Flow cytometric forward scatter measurements were taken to indicate relative sperm size at 5 and 75 min of incubation. The presence of quinine (0.8 mM), cadmium (0.2 mM), flecainide (100 microM), 4-aminopyridine (4 mM), barium (1 mM), clofilium (10 microM), and phrixotoxin (100 nM) for 75 min resulted in significantly higher forward scatter values than sperm incubated in medium without an inhibitor. These results imply that channels potentially involved in volume regulation of murine spermatozoa include the voltage-dependent Kv1.4 (also known as KCNA1), Kv1.5 (KCNA5), Kv4.1 (KCND1), Kv4.2 (KCND2), Kv4.3 (KCND3), mink (KCNE1), and acid-sensitive TASK2 (KCNK5) and TASK3 (KCNK9). Western blots confirmed the presence of Kv1.5 and TASK2 proteins in sperm plasma membranes at similar (Kv1.5) or higher (TASK2) molecular weight than in somatic cells. Incubation in a different pH did not reveal acid sensitivity of volume regulation. Volume regulation of spermatozoa may involve novel voltage-gated and pH-sensitive potassium channels, which could be valuable targets for the development of a posttesticular male contraceptive.
Collapse
Affiliation(s)
- J P Barfield
- Institute of Reproductive Medicine of the University, D-48129 Münster, Germany
| | | | | |
Collapse
|
139
|
Galan A, Cervero F. Painful stimuli induce in vivo phosphorylation and membrane mobilization of mouse spinal cord NKCC1 co-transporter. Neuroscience 2005; 133:245-52. [PMID: 15893647 DOI: 10.1016/j.neuroscience.2005.02.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 01/17/2005] [Accepted: 02/12/2005] [Indexed: 10/25/2022]
Abstract
The Na+ --Cl- --K+ isoform 1 (NKCC1) is a co-transporter that increases the intracellular concentration of chloride. NKCC1 plays a critical role in neuronal excitability and it has been recently suggested that it can contribute to hyperalgesic states by modulating the chloride concentration inside nociceptive neurons. In the spinal cord, trafficking of neurotransmitter receptors from the cytosol to the plasma membrane has been demonstrated to contribute to the development of hyperalgesia. However, it is unknown if trafficking of co-transporters can also occur in the nervous system or if it can be induced by painful stimulation. In this study, we have induced referred mechanical hyperalgesia in vivo by intracolonic instillation of capsaicin in mice. Using subcellular fractionation of proteins and cross-linking of membrane proteins we have observed that intracolonic capsaicin induced a 50% increase in NKCC1 in the plasma membrane of lumbosacral spinal cord 90 and 180 min after instillation, in parallel with a similar decrease in the cytosolic fraction. These effects returned to basal levels 6 h after capsaicin treatment. Intracolonic capsaicin also evoked a rapid (10 min) and transient phosphorylation of NKCC1, however, intracolonic saline did not produce significant changes in either NKCC1 trafficking or phosphorylation and none of the treatments induced any alterations of NKCC1 in the thoracic spinal cord. These results suggest that phosphorylation and recruitment of NKCC1 might play a role in referred mechanical hyperalgesia evoked by a painful visceral stimulus. The time course of the effects observed suggests that phosphorylation could contribute to the initial generation of hyperalgesia whereas trafficking could participate in the maintenance of hyperalgesic states observed at longer time points.
Collapse
Affiliation(s)
- A Galan
- Anesthesia Research Unit, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | |
Collapse
|
140
|
Lionetto MG, Giordano ME, De Nuccio F, Nicolardi G, Hoffmann EK, Schettino T. Hypotonicity induced K+ and anion conductive pathways activation in eel intestinal epithelium. ACTA ACUST UNITED AC 2005; 208:749-60. [PMID: 15695766 DOI: 10.1242/jeb.01440] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Control of cell volume is a fundamental and highly conserved physiological mechanism, essential for survival under varying environmental and metabolic conditions. Epithelia (such as intestine, renal tubule, gallbladder and gills) are tissues physiologically exposed to osmotic stress. Therefore, the activation of 'emergency' systems of rapid cell volume regulation is fundamental in their physiology. The aim of the present work was to study the physiological response to hypotonic stress in a salt-transporting epithelium, the intestine of the euryhaline teleost Anguilla anguilla. Eel intestinal epithelium, when symmetrically bathed with Ringer solution, develops a net Cl- current giving rise to a negative transepithelial potential at the basolateral side of the epithelium. The eel intestinal epithelium responded to a hypotonic challenge with a biphasic decrease in the transepithelial voltage (V(te)) and the short circuit current (I(sc)). This electrophysiological response correlated with a regulatory volume decrease (RVD) response, recorded by morphometrical measurement of the epithelium height. Changes in the transepithelial resistance were also observed following the hypotonicity exposure. The electrogenic V(te) and I(sc) responses to hypotonicity resulted from the activation of different K+ and anion conductive pathways on the apical and basolateral membranes of the epithelium: (a) iberiotoxin-sensitive K+ channels on the apical and basolateral membrane, (b) apamin-sensitive K+ channels mainly on the basolateral membrane, (c) DIDS-sensitive anion channels on the apical membrane. The functional integrity of the basal Cl- conductive pathway on the basolateral membrane is also required. The electrophysiological response to hypotonic stress was completely abolished by Ca2+ removal from the Ringer perfusing solution, but was not affected by depletion of intracellular Ca2+ stores by thapsigargin.
Collapse
Affiliation(s)
- M G Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Lecce, Italy
| | | | | | | | | | | |
Collapse
|
141
|
Iwamoto M, Sugino K, Allen RD, Naitoh Y. Cell volume control in Paramecium: factors that activate the control mechanisms. ACTA ACUST UNITED AC 2005; 208:523-37. [PMID: 15671341 DOI: 10.1242/jeb.01417] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A fresh water protozoan Paramecium multimicronucleatum adapted to a given solution was found to swell until the osmotic pressure difference between the cytosol and the solution balanced the cytosolic pressure. The cytosolic pressure was generated as the cell swelled osmotically. When either one or both of these pressures was somehow modified, cell volume would change until a new balance between these pressures was established. A hypothetical osmolyte transport mechanism(s) was presumably activated when the cytosolic pressure exceeded the threshold value of approximately 1.5 x 10(5) Pa as the cell swelled after its subjection to a decreased osmolarity. The cytosolic osmolarity thereby decreased and the volume of the swollen cell resumed its initial value. This corresponds to regulatory volume decrease (RVD). By contrast, another hypothetical osmolyte transport mechanism(s) was activated when the cell shrank after its subjection to an increased osmolarity. The cytosolic osmolarity thereby increased and volume of the shrunken cell resumed its initial value. This corresponds to regulatory volume increase (RVI). The osmolyte transport mechanism responsible for RVD might be activated again when the external osmolarity decreases further, and the cytosolic osmolarity thereby decreases to the next lower level. Similarly, another osmolyte transport mechanism responsible for RVI might be activated again when the external osmolarity increases further, and the cytosolic osmolarity thereby increases to the next higher level. Stepwise changes in the cytosolic osmolarity caused by a gradual change in the adaptation osmolarity found in P. multimicronucleatum is attributable to these osmolyte transport mechanisms. An abrupt change in the amount of fluid discharged from the contractile vacuole seen immediately after changing the external osmolarity reduces an abrupt change in cell volume and thereby protects the cell from the disruption of the plasma membrane by excessive stretch or dehydration during shrinkage.
Collapse
Affiliation(s)
- Masaaki Iwamoto
- Pacific Biomedical Research Center, Snyder Hall 306, University of Hawaii at Manoa, 2538 The Mall, Honolulu, HI 96822, USA
| | | | | | | |
Collapse
|
142
|
Shapiguzov A, Lyukevich AA, Allakhverdiev SI, Sergeyenko TV, Suzuki I, Murata N, Los DA. Osmotic shrinkage of cells of Synechocystis sp. PCC 6803 by water efflux via aquaporins regulates osmostress-inducible gene expression. Microbiology (Reading) 2005; 151:447-455. [PMID: 15699194 DOI: 10.1099/mic.0.27530-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Osmotic stress causes water molecules to efflux from cells through the cytoplasmic membrane. This study reveals that targeted mutation of the aqpZ gene, encoding an aquaporin water channel protein, in the cyanobacterium Synechocystis sp. PCC 6803 prevents the osmotic shrinkage of cells, suggesting that it is the water channel rather than the lipid bilayer that is primarily responsible for water transition through the membrane of this organism. The observations suggest that the aquaporin-mediated shrinkage of the Synechocystis cells plays an important role in changes of gene expression in response to hyperosmotic stress.
Collapse
Affiliation(s)
- Alexey Shapiguzov
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Alexander A Lyukevich
- Department of Regulation Biology, National Institute for Basic Biology, Myodaiji, Okazaki 444-8585, Japan
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Suleyman I Allakhverdiev
- Institute of Basic Biological Problems RAS, Pushchino, Moscow Region 142292, Russia
- Department of Regulation Biology, National Institute for Basic Biology, Myodaiji, Okazaki 444-8585, Japan
| | - Tatiana V Sergeyenko
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Iwane Suzuki
- Department of Molecular Biomechanics, School of Life Science, The Graduate University of Advanced Studies, Myodaiji, Okazaki 444-8585, Japan
- Department of Regulation Biology, National Institute for Basic Biology, Myodaiji, Okazaki 444-8585, Japan
| | - Norio Murata
- Department of Molecular Biomechanics, School of Life Science, The Graduate University of Advanced Studies, Myodaiji, Okazaki 444-8585, Japan
- Department of Regulation Biology, National Institute for Basic Biology, Myodaiji, Okazaki 444-8585, Japan
| | - Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| |
Collapse
|
143
|
Petrunkina AM, Jebe E, Töpfer-Petersen E. Regulatory and necrotic volume increase in boar spermatozoa. J Cell Physiol 2005; 204:508-21. [PMID: 15744775 DOI: 10.1002/jcp.20317] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Spermatozoa of many species initially respond to hypotonicity as perfect osmometers. Thereafter they undergo a regulatory process resulting in a decrease in cell volume, similar to that reported for somatic cells. Regulatory volume increase (RVI), a complementary process which is assumed to occur following initial shrinkage of sperm volume after exposure to a hypertonic medium, has not yet been described in detail for spermatozoa. In this study, we investigated whether spermatozoa are able to regulate their volume after hypertonic stress and whether this ability is maintained in preserved sperm. Cell volume changes were recorded using electronic cell sizing. Sperm response to the ion channels blockers quinidine, tamoxifen, and dydeoxyforskolin, and to protein kinase/phosphatase inhibitors lavendustin, staurosporine, and vanadate was studied to investigate possible mechanisms of RVI. Annexin V staining was used in combination with propidium iodide to determine whether hypertonic stress may induce apoptosis. Overall protein tyrosine phosphorylation under hypertonic conditions was measured via flow cytometry using antiphosphotyrosine antibody. Spermatozoa exposed to hypertonic stress initially responded with an abundant subpopulation according to the perfect osmometer model and recovered their volume from this shrinkage after 20 min. RVI was inhibited by quinidine and tamoxifen, which indicates the involvement of the important cellular ions sodium and chloride in this process. Volume regulatory ability was essentially maintained during storage of liquid semen. However, the response of the sperm population was heterogeneous. A second population raised, containing spermatozoa with larger volumes, which demonstrated irregularities in the volume response with respect to osmotic challenge, ion channel blockers, and storage. Under hypertonic conditions, both protein kinase inhibitors (PKI) led to increased isotonic volumes and to elevated initial relative volumes and subsequent volume decrease. RVI was inhibited by the vanadate. Hypertonic stress did not result in an increase in early apoptotic cells, but produced a shift toward late necrotic cells. Substitution of sodium and chloride by choline and sulfate resulted in decreased isotonic volume of sperm treated with lavendustin. Tyrosine phosphorylation levels were reduced after 20 min under hypertonic conditions. It was concluded that RVI is regulated via a protein tyrosine kinase-dependent pathway, and that dephosphorylation occurs when volume regulation is required. The necrotic volume increase (NVI) is associated with the accumulation of sodium and chloride following uncontrolled opening of the channels. The ability to regulate volume after exposure to hypertonic conditions is important for sperm functionality and can have practical applications in spermatological diagnostics and cryopreservation.
Collapse
Affiliation(s)
- A M Petrunkina
- Institute for Reproductive Medicine, School of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| | | | | |
Collapse
|
144
|
Zhang JJ, Misri S, Adragna NC, Gagnon KBE, Fyffe REW, Lauf PK. Cloning and expression of sheep renal K-CI cotransporter-1. Cell Physiol Biochem 2005; 16:87-98. [PMID: 16121037 DOI: 10.1159/000087735] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2005] [Indexed: 11/19/2022] Open
Abstract
Sheep K-Cl cotransporter-1(shKCC1) cDNA was cloned from kidney by RT-PCR with an open reading frame of 3258 base pairs exhibiting 92%, 90%, 88% and 87% identity with pig, rabbit and human, rat and mouse KCC1 cDNAs, respectively, encoding an approximately 122 kDa polypeptide of 1086-amino acids. Hydropathy analysis reveals the familiar KCC1 topology with 12 transmembrane domains (TMDs) and the hydrophilic NH2-terminal (NTD) and COOH-terminal (CTD) domains both at the cytoplasmic membrane face. However, shKCC1 has two rather than one large extracellular loops (ECL): ECL3 between TMDs 5 and 6, and ECL6, between TMDs 11 and 12. The translated shKCC1 protein differs in 12 amino acid residues from other KCC1s, mainly within the NTD, ECL3, ICL4, ECL6, and CTD. Notably, a tyrosine residue at position 996 replaces aspartic acid conserved in all other species. Human embryonic kidney (HEK293) cells and mouse NIH/3T3 fibroblasts, transiently transfected with shKCCI-cDNA, revealed the glycosylated approximately 150 kDa proteins by Western blots and positive immunofluorescence-staining with polyclonal rabbit anti-ratKCC1 antibodies. ShKCC1 was functionally expressed in NIH/3T3 cells by an elevated basal Cl-dependent K influx measured with Rb as K-congener that was stimulated three-fold by the KCC-activator N-ethylmaleimide.
Collapse
Affiliation(s)
- Jin J Zhang
- Cell Biophysics Group, Department of Pathology, Wright State University, School of Medicine, Dayton, Ohio 45435, USA
| | | | | | | | | | | |
Collapse
|
145
|
Los DA, Murata N. Membrane fluidity and its roles in the perception of environmental signals. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1666:142-57. [PMID: 15519313 DOI: 10.1016/j.bbamem.2004.08.002] [Citation(s) in RCA: 559] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 08/06/2004] [Indexed: 10/26/2022]
Abstract
Poikilothermic organisms are exposed to frequent changes in environmental conditions and their survival depends on their ability to acclimate to such changes. Changes in ambient temperature and osmolarity cause fluctuations in the fluidity of cell membranes. Such fluctuations are considered to be critical to the initiation of the regulatory reactions that ultimately lead to acclimation. The mechanisms responsible for the perception of changes in membrane fluidity have not been fully characterized. However, the analysis of genome-wide gene expression using DNA microarrays has provided a powerful new approach to studies of the contribution of membrane fluidity to gene expression and to the identification of environmental sensors. In this review, we focus on the mechanisms that regulate membrane fluidity, on putative sensors that perceive changes in membrane fluidity, and on the subsequent expression of genes that ensures acclimation to a new set of environmental conditions.
Collapse
Affiliation(s)
- Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | | |
Collapse
|
146
|
Petrunkina AM, Harrison RAP, Ekhlasi-Hundrieser M, Töpfer-Petersen E. Role of volume-stimulated osmolyte and anion channels in volume regulation by mammalian sperm. ACTA ACUST UNITED AC 2004; 10:815-23. [PMID: 15361553 DOI: 10.1093/molehr/gah106] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The ability to maintain cellular volume is an important general physiological function. Swelling induced by hypotonic stress results in the opening of channels, through which ions exit with accompanying water loss (regulatory volume decrease, RVD). RVD has been shown to occur in mammalian sperm, primarily through the opening of quinine-sensitive potassium channels. However, as yet, direct evidence for the participation of anion channels in sperm RVD has been lacking. The chloride channel type ClC-3 is believed to be involved in RVD in other cell types. Using electronic cell sizing for cell volume measurement, the following results were obtained. (i) The anion channel blockers 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), tamoxifen and 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS) increased hypotonic swelling in concentration-dependent fashion, whereas verapamil (P-glycoprotein inhibitor) had little effect. The most potent, NPPB and DIDS, blocked RVD without affecting cell membrane integrity at effective concentrations. (ii) When gramicidin was included to dissipate Na+/K+ gradients, major secondary swelling was observed under hypotonic conditions. This secondary swelling could be reduced by NPPB, and suppressed completely by replacing chloride in the medium with sulphate, an ion which does not pass through chloride channels. It was deduced that the initial hypotonic swelling activated an anion channel through which chloride ions could then enter freely down a concentration gradient, owing to the lack of a counter-gradient of potassium. (iii) Taurine, an osmolyte often involved in RVD, does not appear to play a role in sperm RVD because lengthy preincubation with taurine did not alter sperm RVD response. Our observations provide direct evidence that a chloride channel (possibly ClC-3) is involved in the process of volume regulation in mammalian sperm.
Collapse
Affiliation(s)
- A M Petrunkina
- Institute of Reproductive Medicine, University of Veterinary Medicine Hannover, Foundation, Bünteweg 15, 30559 Hannover, Germany.
| | | | | | | |
Collapse
|
147
|
Arniges M, Vázquez E, Fernández-Fernández JM, Valverde MA. Swelling-activated Ca2+ entry via TRPV4 channel is defective in cystic fibrosis airway epithelia. J Biol Chem 2004; 279:54062-8. [PMID: 15489228 DOI: 10.1074/jbc.m409708200] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vertebrate transient receptor potential cationic channel TRPV4 has been proposed as an osmo- and mechanosensor channel. Studies using knock-out animal models have further emphasized the relevance of the TRPV4 channel in the maintenance of the internal osmotic equilibrium and mechanosensation. However, at the cellular level, there is still one important question to answer: does the TRPV4 channel generate the Ca(2+) signal in those cells undergoing a Ca(2+)-dependent regulatory volume decrease (RVD) response? RVD in human airway epithelia requires the generation of a Ca(2+) signal to activate Ca(2+)-dependent K(+) channels. The RVD response is lost in airway epithelia affected with cystic fibrosis (CF), a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator channel. We have previously shown that the defective RVD in CF epithelia is linked to the lack of swelling-dependent activation of Ca(2+)-dependent K(+) channels. In the present study, we show the expression of TRPV4 in normal human airway epithelia, where it functions as the Ca(2+) entry pathway that triggers the RVD response after hypotonic stress, as demonstrated by TRPV4 antisense experiments. However, cell swelling failed to trigger Ca(2+) entry via TRPV4 channels in CF airway epithelia, although the channel's response to a specific synthetic activator, 4 alpha-phorbol 12,13-didecanoate, was maintained. Furthermore, RVD was recovered in CF airway epithelia treated with 4 alpha-phorbol 12,13-didecanoate. Together, these results suggest that defective RVD in CF airway epithelia might be caused by the absence of a TRPV4-mediated Ca(2+) signal and the subsequent activation of Ca(2+)-dependent K(+) channels.
Collapse
Affiliation(s)
- Maite Arniges
- Laboratori de Fisiologia Molecular, Unitat de Senyalització Cellular, Universitat Pompeu Fabra, C/Dr. Aiguader 80, Barcelona 08003, Spain
| | | | | | | |
Collapse
|
148
|
Kirov SA, Petrak LJ, Fiala JC, Harris KM. Dendritic spines disappear with chilling but proliferate excessively upon rewarming of mature hippocampus. Neuroscience 2004; 127:69-80. [PMID: 15219670 DOI: 10.1016/j.neuroscience.2004.04.053] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 04/21/2004] [Accepted: 04/27/2004] [Indexed: 01/04/2023]
Abstract
More dendritic spine synapses occur on mature neurons in hippocampal slices by 2 h of incubation in vitro, than in perfusion-fixed hippocampus. What conditions initiate this spinogenesis and how rapidly do the spines begin to proliferate on mature neurons? To address these questions, CA1 field of the hippocampus neurons expressing green fluorescent protein in living slices from mature mice were imaged with two-photon microscopy. Spines disappeared and dendrites were varicose immediately after slice preparation in ice-cold artificial cerebrospinal fluid (ACSF). Electron microscopy (EM) revealed disrupted dendritic cytoplasm, enlarged or free-floating postsynaptic densities, and excessive axonal endocytosis. Upon warming dendritic varicosities shrank and spines rapidly reappeared within a few minutes illustrating the remarkable resilience of mature hippocampal neurons in slices. When membrane impermeant sucrose was substituted for NaCl in ACSF dendrites remained spiny at ice-cold temperatures and EM revealed less disruption. Nevertheless, spine number and length increased within 30 min in warm ACSF even when the extracellular calcium concentration was zero and synaptic transmission was blocked. When slices were first recovered for several hours and then chilled in 6 degrees C ACSF many spines disappeared and the dendrites became varicose. Upon re-warming varicosities shrank and spines reemerged in the same position from which they disappeared. In addition, new spines formed and spines were longer suggesting that chilling, not the initial injury from slicing, caused the spines to disappear while re-warming triggered the spine proliferation on mature neurons. The new spines might be a substrate for neuronal recovery of function, when neurons have been chilled or exposed to other traumatic conditions that disrupt ionic homeostasis.
Collapse
Affiliation(s)
- S A Kirov
- Department of Neurosurgery, Human Brain Laboratory, Medical College of Georgia, 1120 15th Street, CB-2607, Augusta, GA 30912, USA.
| | | | | | | |
Collapse
|
149
|
Chao PG, Tang Z, Angelini E, West AC, Costa KD, Hung CT. Dynamic osmotic loading of chondrocytes using a novel microfluidic device. J Biomech 2004; 38:1273-81. [PMID: 15863112 DOI: 10.1016/j.jbiomech.2004.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Revised: 06/14/2004] [Accepted: 06/21/2004] [Indexed: 10/26/2022]
Abstract
Many cells exhibit disparate responses to a mechanical stimulus depending on whether it is applied dynamically or statically. In this context, few studies have examined how cells respond to dynamic changes of the extracellular osmolality. In this study, we hypothesized that the cell size change response of cultured articular chondrocytes would be dependent on the frequency of applied osmotic loading. To test this hypothesis, we developed a novel microfluidic device, to apply hydrostatic pressure-driven dynamic osmotic loading by applying composition modulated flow, adapted from Tang and co-workers. This microfluidic device was used to study osmotic loads of +/-180 mOsm at a frequency up to 0.1 Hz with a constant minimal fluid-shear stress, and permit real-time monitoring of cell responses. Bovine articular chondrocytes were observed to exhibit increasing changes in cell volume with decreasing osmotic loading frequency. When the cell volume response was modeled by an exponential function, chondrocytes exhibited significantly different volume change responses to dynamic osmotic loading at 0.0125 Hz and static osmotic loading applied for a period of four minutes (Delta = +/-180 mOsm relative to the isotonic 360 mOsm). The intracellular calcium response at 0.0125 Hz was also monitored and compared with the response to static loading. Coupled with phenomenological or constitutive models, this novel approach could yield new information regarding cell material properties in response to dynamic loading that may contribute new insights into mechanisms of cellular homeostasis and mechanotransduction.
Collapse
Affiliation(s)
- P Grace Chao
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|
150
|
Abstract
The prime function of aquaporins (AQPs) is generally believed to be that of increasing water flow rates across membranes by raising their osmotic or hydraulic permeability. In addition, this applies to other small solutes of physiological importance. Notable applications of this 'simple permeability hypothesis' (SPH) have been epithelial fluid transport in animals, water exchanges associated with transpiration, growth and stress in plants, and osmoregulation in microbes. We first analyze the need for such increased permeabilities and conclude that in a range of situations at the cellular, subcellular and tissue levels the SPH cannot satisfactorily account for the presence of AQPs. The analysis includes an examination of the effects of the genetic elimination or reduction of AQPs (knockouts, antisense transgenics and null mutants). These either have no effect, or a partial effect that is difficult to explain, and we argue that they do not support the hypothesis beyond showing that AQPs are involved in the process under examination. We assume that since AQPs are ubiquitous, they must have an important function and suggest that this is the detection of osmotic and turgor pressure gradients. A mechanistic model is proposed--in terms of monomer structure and changes in the tetrameric configuration of AQPs in the membrane--for how AQPs might function as sensors. Sensors then signal within the cell to control diverse processes, probably as part of feedback loops. Finally, we examine how AQPs as sensors may serve animal, plant and microbial cells and show that this sensor hypothesis can provide an explanation of many basic processes in which AQPs are already implicated. Aquaporins are molecules in search of a function; osmotic and turgor sensors are functions in search of a molecule.
Collapse
Affiliation(s)
- A E Hill
- The Physiological Laboratory, University of Cambridge, Downing St., Cambridge CB2 3EG, UK.
| | | | | |
Collapse
|