101
|
Kumar A, Srivastava K, Kumar SR, Puri SK, Chauhan PMS. Synthesis of new 4-aminoquinolines and quinoline-acridine hybrids as antimalarial agents. Bioorg Med Chem Lett 2010; 20:7059-63. [PMID: 20951034 DOI: 10.1016/j.bmcl.2010.09.107] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
Despite emergence of resistance to CQ and other 4-aminoquinoline drugs in most of the endemic regions, research findings provide considerable support that there is still significant potential to discover new affordable, safe, and efficacious 4-aminoquinoline antimalarials. In present study, new side chain modified 4-aminoquinoline derivatives and quinoline-acridine hybrids were synthesized and evaluated in vitro against NF 54 strain of Plasmodium falciparum. Among the evaluated compounds, compound 17 (MIC=0.125 μg/mL) was equipotent to standard drug CQ (MIC=0.125 μg/mL) and compound 21 (MIC=0.031 μg/mL) was four times more potent than CQ. Compound 17 showed the curative response to all the treated swiss mice infected with CQ-resistant N-67 strain of Plasmodium yoelii at the doses 50 mg/kg and 25 mg/kg for four days by intraperitoneal route and was found to be orally active at the dose of 100 mg/kg for four days. The promising antimalarial potency of compound 17 highlights the significance of exploring the privileged 4-aminoquinoline class for new antimalarials.
Collapse
Affiliation(s)
- Ashok Kumar
- Division of Medicinal & Process Chemistry, Central Drug Research Institute, Lucknow, India
| | | | | | | | | |
Collapse
|
102
|
Wang F, Krai P, Deu E, Bibb B, Lauritzen C, Pedersen J, Bogyo M, Klemba M. Biochemical characterization of Plasmodium falciparum dipeptidyl aminopeptidase 1. Mol Biochem Parasitol 2010; 175:10-20. [PMID: 20833209 DOI: 10.1016/j.molbiopara.2010.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/17/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
Abstract
Dipeptidyl aminopeptidase 1 (DPAP1) is an essential food vacuole enzyme with a putative role in hemoglobin catabolism by the erythrocytic malaria parasite. Here, the biochemical properties of DPAP1 have been investigated and compared to those of the human ortholog cathepsin C. To facilitate the characterization of DPAP1, we have developed a method for the production of purified recombinant DPAP1 with properties closely resembling those of the native enzyme. Like cathepsin C, DPAP1 is a chloride-activated enzyme that is most efficient in catalyzing amide bond hydrolysis at acidic pH values. The monomeric quaternary structure of DPAP1 differs from the homotetrameric structure of cathepsin C, which suggests that tetramerization is required for a cathepsin C-specific function. The S1 and S2 subsite preferences of DPAP1 and cathepsin C were profiled with a positional scanning synthetic combinatorial library. The S1 preferences bore close similarity to those of other C1-family cysteine peptidases. The S2 subsites of both DPAP1 and cathepsin C accepted aliphatic hydrophobic residues, proline, and some polar residues, yielding a distinct specificity profile. DPAP1 efficiently catalyzed the hydrolysis of several fluorogenic dipeptide substrates; surprisingly, however, a potential substrate with a P2-phenylalanine residue was instead a competitive inhibitor. Together, our biochemical data suggest that DPAP1 accelerates the production of amino acids from hemoglobin by bridging the gap between the endopeptidase and aminopeptidase activities of the food vacuole. Two reversible cathepsin C inhibitors potently inhibited both recombinant and native DPAP1, thereby validating the use of recombinant DPAP1 for future inhibitor discovery and characterization.
Collapse
Affiliation(s)
- Flora Wang
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Huthmacher C, Hoppe A, Bulik S, Holzhütter HG. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis. BMC SYSTEMS BIOLOGY 2010; 4:120. [PMID: 20807400 PMCID: PMC2941759 DOI: 10.1186/1752-0509-4-120] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 08/31/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed. RESULTS Here, we present a computational analysis of the metabolism of Plasmodium falciparum, the deadliest malaria pathogen. We assembled a compartmentalized metabolic model and predicted life cycle stage specific metabolism with the help of a flux balance approach that integrates gene expression data. Predicted metabolite exchanges between parasite and host were found to be in good accordance with experimental findings when the parasite's metabolic network was embedded into that of its host (erythrocyte). Knock-out simulations identified 307 indispensable metabolic reactions within the parasite. 35 out of 57 experimentally demonstrated essential enzymes were recovered and another 16 enzymes, if additionally the assumption was made that nutrient uptake from the host cell is limited and all reactions catalyzed by the inhibited enzyme are blocked. This predicted set of putative drug targets, shown to be enriched with true targets by a factor of at least 2.75, was further analyzed with respect to homology to human enzymes, functional similarity to therapeutic targets in other organisms and their predicted potency for prophylaxis and disease treatment. CONCLUSIONS The results suggest that the set of essential enzymes predicted by our flux balance approach represents a promising starting point for further drug development.
Collapse
Affiliation(s)
- Carola Huthmacher
- Institute of Biochemistry, Charité, Monbijoustraße 2, 10117 Berlin, Germany
| | - Andreas Hoppe
- Institute of Biochemistry, Charité, Monbijoustraße 2, 10117 Berlin, Germany
| | - Sascha Bulik
- Institute of Biochemistry, Charité, Monbijoustraße 2, 10117 Berlin, Germany
| | | |
Collapse
|
104
|
Mauritz JMA, Esposito A, Tiffert T, Skepper JN, Warley A, Yoon YZ, Cicuta P, Lew VL, Guck JR, Kaminski CF. Biophotonic techniques for the study of malaria-infected red blood cells. Med Biol Eng Comput 2010; 48:1055-63. [PMID: 20661776 DOI: 10.1007/s11517-010-0668-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/11/2010] [Indexed: 12/23/2022]
Abstract
Investigation of the homeostasis of red blood cells upon infection by Plasmodium falciparum poses complex experimental challenges. Changes in red cell shape, volume, protein, and ion balance are difficult to quantify. In this article, we review a wide range of optical techniques for quantitative measurements of critical homeostatic parameters in malaria-infected red blood cells. Fluorescence lifetime imaging and tomographic phase microscopy, quantitative deconvolution microscopy, and X-ray microanalysis, are used to measure haemoglobin concentration, cell volume, and ion contents. Atomic force microscopy is briefly reviewed in the context of these optical methodologies. We also describe how optical tweezers and optical stretchers can be usefully applied to empower basic malaria research to yield diagnostic information on cell compliance changes upon malaria infection. The combined application of these techniques sheds new light on the detailed mechanisms of malaria infection providing potential for new diagnostic or therapeutic approaches.
Collapse
Affiliation(s)
- Jakob M A Mauritz
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Abstract
This chapter summarizes recent developments in the design, synthesis, and structure–activity relationship studies of organometallic antimalarials. It begins with a general introduction to malaria and the biology of the parasite Plasmodium falciparum, with a focus on the heme detoxification system. Then, a number of metal complexes from the literature are reported for their antiplasmodial activity. The second half of the chapter deals with the serendipitous discovery of ferroquine, its mechanism(s) of action, and the failure to induce a resistance. Last, but not least, we suggest that the bioorganometallic approach offers the potential for the design of novel therapeutic agents.
Collapse
|
106
|
Exploiting the therapeutic potential of Plasmodium falciparum solute transporters. Trends Parasitol 2010; 26:284-96. [DOI: 10.1016/j.pt.2010.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 03/02/2010] [Accepted: 03/05/2010] [Indexed: 01/16/2023]
|
107
|
Downstream effects of haemoglobinase inhibition in Plasmodium falciparum-infected erythrocytes. Mol Biochem Parasitol 2010; 173:81-7. [PMID: 20478341 DOI: 10.1016/j.molbiopara.2010.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 04/28/2010] [Accepted: 05/08/2010] [Indexed: 12/22/2022]
Abstract
Blood-stage malarial parasites (Plasmodium falciparum) digest large quantities of host haemoglobin during their asexual development in erythrocytes. The haemoglobin digestion pathway, involving a succession of cleavages by various peptidases, appears to be essential for parasite development and has received much attention as an antimalarial drug target. A variety of peptidase inhibitors that have potent antimalarial activity are believed to inhibit and/or kill parasites by blocking haemoglobin digestion. It has not however been established how such a blockage might lead to parasite death. The answer to this question should lie in identifying the affected physiological function, but the purpose of excess haemoglobin digestion by P. falciparum has for many years been the subject of debate. The process was traditionally believed to be nutritional until Lew et al. [Blood 2003;101:4189-94] suggested that it is linked to volume control of the infected erythrocyte and is necessary to prevent premature osmotic lysis of the host cell. Their model predicts that sufficient inhibition of haemoglobin degradation should result in premature haemolysis. In this study we examined the downstream effects of reduced haemoglobin digestion on osmoprotection and nutrition. We found that inhibitors of haemoglobinases (plasmepsins, falcipains and aminopeptidases) did not cause premature haemolysis. The inhibitors did however block parasite development and this effect corresponded to a strong inhibition of protein synthesis. The effect on protein synthesis (i) occurred at inhibitor concentrations and times of exposure that were relevant to parasite growth inhibition, (ii) was observed with different chemical classes of inhibitor, and (iii) was synergistic when a plasmepsin and a falcipain inhibitor were combined, reflecting the well-established antimalarial synergism of the combination. Taken together, the results suggest that the likely primary downstream effect of inhibition of haemoglobin degradation is amino acid depletion, leading to blockade of protein synthesis, and that the parasite probably degrades globin for nutritional purposes.
Collapse
|
108
|
Moles P, Oliva M, Sánchez-González A, Safont VS. A topological study of the decomposition of 6,7,8-trioxabicyclo[3.2.2]nonane induced by Fe(II): modeling the artemisinin reaction with heme. J Phys Chem B 2010; 114:1163-73. [PMID: 20028005 DOI: 10.1021/jp910207z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a theoretical study on the electronic and topological aspects of the reaction of dihydrated Fe(OH)(2) with 6,7,8-trioxabicyclo[3.2.2]nonane, as a model for the reaction of heme with artemisinin. A comparison is made with the reaction of dihydrated ferrous hydroxide with O(2), as a model for the heme interaction with oxygen. We found that dihydrated Fe(OH)(2) reacts more efficiently with the artemisinin model than with O(2). This result suggests that artemisinin instead of molecular oxygen would interact with heme, disrupting its detoxification process by avoiding the initial heme to hemin oxidation, and killing in this way the malaria parasite. The ELF and AIM theories provide support for such a conclusion, which further clarifies our understanding on how artemisinin acts as an antimalarial agent.
Collapse
Affiliation(s)
- Pamela Moles
- Departament de Química Física i Analítica, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castelló, Spain
| | | | | | | |
Collapse
|
109
|
Radfar A, Méndez D, Moneriz C, Linares M, Marín-García P, Puyet A, Diez A, Bautista JM. Synchronous culture of Plasmodium falciparum at high parasitemia levels. Nat Protoc 2009; 4:1899-915. [DOI: 10.1038/nprot.2009.198] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
110
|
Ragheb D, Bompiani K, Dalal S, Klemba M. Evidence for catalytic roles for Plasmodium falciparum aminopeptidase P in the food vacuole and cytosol. J Biol Chem 2009; 284:24806-15. [PMID: 19574214 DOI: 10.1074/jbc.m109.018424] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metalloenzyme aminopeptidase P catalyzes the hydrolysis of amino acids from the amino termini of peptides with a prolyl residue in the second position. The human malaria parasite Plasmodium falciparum expresses a homolog of aminopeptidase P during its asexual intraerythrocytic cycle. P. falciparum aminopeptidase P (PfAPP) shares with mammalian cytosolic aminopeptidase P a three-domain, homodimeric organization and is most active with Mn(II) as the cofactor. A distinguishing feature of PfAPP is a 120-amino acid amino-terminal extension that appears to be removed from the mature protein. PfAPP is present in the food vacuole and cytosol of the parasite, a distribution that suggests roles in vacuolar hemoglobin catabolism and cytosolic peptide turnover. To evaluate the plausibility of these putative functions, the stability and kinetic properties of recombinant PfAPP were evaluated at the acidic pH of the food vacuole and at the near-neutral pH of the cytosol. PfAPP exhibited high stability at 37 degrees C in the pH range 5.0-7.5. In contrast, recombinant human cytosolic APP1 was unstable and formed a high molecular weight aggregate at acidic pH. At both acidic and slightly basic pH values, PfAPP efficiently hydrolyzed the amino-terminal X-Pro bond of the nonapeptide bradykinin and of two globin pentapeptides that are potential in vivo substrates. These results provide support for roles for PfAPP in peptide catabolism in both the food vacuole and the cytosol and suggest that PfAPP has evolved a dual distribution in response to the metabolic needs of the intraerythrocytic parasite.
Collapse
Affiliation(s)
- Daniel Ragheb
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|
111
|
Lead, ALAD and Malaria – Response to comment by Ingvar Bergdahl. Int J Hyg Environ Health 2009. [DOI: 10.1016/j.ijheh.2008.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
112
|
Discovery of dual function acridones as a new antimalarial chemotype. Nature 2009; 459:270-3. [PMID: 19357645 DOI: 10.1038/nature07937] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 02/25/2009] [Indexed: 11/08/2022]
Abstract
Preventing and delaying the emergence of drug resistance is an essential goal of antimalarial drug development. Monotherapy and highly mutable drug targets have each facilitated resistance, and both are undesirable in effective long-term strategies against multi-drug-resistant malaria. Haem remains an immutable and vulnerable target, because it is not parasite-encoded and its detoxification during haemoglobin degradation, critical to parasite survival, can be subverted by drug-haem interaction as in the case of quinolines and many other drugs. Here we describe a new antimalarial chemotype that combines the haem-targeting character of acridones, together with a chemosensitizing component that counteracts resistance to quinoline antimalarial drugs. Beyond the essential intrinsic characteristics common to deserving candidate antimalarials (high potency in vitro against pan-sensitive and multi-drug-resistant Plasmodium falciparum, efficacy and safety in vivo after oral administration, inexpensive synthesis and favourable physicochemical properties), our initial lead, T3.5 (3-chloro-6-(2-diethylamino-ethoxy)-10-(2-diethylamino-ethyl)-acridone), demonstrates unique synergistic properties. In addition to 'verapamil-like' chemosensitization to chloroquine and amodiaquine against quinoline-resistant parasites, T3.5 also results in an apparently mechanistically distinct synergism with quinine and with piperaquine. This synergy, evident in both quinoline-sensitive and quinoline-resistant parasites, has been demonstrated both in vitro and in vivo. In summary, this innovative acridone design merges intrinsic potency and resistance-counteracting functions in one molecule, and represents a new strategy to expand, enhance and sustain effective antimalarial drug combinations.
Collapse
|
113
|
Mauritz JMA, Esposito A, Ginsburg H, Kaminski CF, Tiffert T, Lew VL. The homeostasis of Plasmodium falciparum-infected red blood cells. PLoS Comput Biol 2009; 5:e1000339. [PMID: 19343220 PMCID: PMC2659444 DOI: 10.1371/journal.pcbi.1000339] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 02/24/2009] [Indexed: 11/21/2022] Open
Abstract
The asexual reproduction cycle of Plasmodium falciparum, the parasite responsible for severe malaria, occurs within red blood cells. A merozoite invades a red cell in the circulation, develops and multiplies, and after about 48 hours ruptures the host cell, releasing 15–32 merozoites ready to invade new red blood cells. During this cycle, the parasite increases the host cell permeability so much that when similar permeabilization was simulated on uninfected red cells, lysis occurred before ∼48 h. So how could infected cells, with a growing parasite inside, prevent lysis before the parasite has completed its developmental cycle? A mathematical model of the homeostasis of infected red cells suggested that it is the wasteful consumption of host cell hemoglobin that prevents early lysis by the progressive reduction in the colloid-osmotic pressure within the host (the colloid-osmotic hypothesis). However, two critical model predictions, that infected cells would swell to near prelytic sphericity and that the hemoglobin concentration would become progressively reduced, remained controversial. In this paper, we are able for the first time to correlate model predictions with recent experimental data in the literature and explore the fine details of the homeostasis of infected red blood cells during five model-defined periods of parasite development. The conclusions suggest that infected red cells do reach proximity to lytic rupture regardless of their actual volume, thus requiring a progressive reduction in their hemoglobin concentration to prevent premature lysis. The parasite Plasmodium falciparum is responsible for severe malaria in humans. The 48 hour asexual reproduction cycle of the parasite within red blood cells is responsible for the symptoms in this disease. Within this period, the parasite causes massive changes in the host red cell, increasing some metabolic activities hundredfold, making it leaky to many nutrients and waste products, and consuming most of the cell's hemoglobin, far more than it needs for its own metabolism. The challenge that we faced was to explain how the infected cell maintained its integrity throughout such a violent cycle. Seeking clues, we developed a mathematical model of an infected cell in which we encoded our current knowledge and understanding of the complex processes that control cell homeostasis. We present here for the first time a detailed description of the model and a critical analysis of its predictions in relation to the available experimental evidence. The results support the view that host-cell integrity is maintained by the progressive reduction in the hemoglobin concentration within the host cell, resulting in a reduced rate and extent of swelling.
Collapse
Affiliation(s)
- Jakob M. A. Mauritz
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alessandro Esposito
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Hagai Ginsburg
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
- School of Advanced Optical Technologies, Max-Planck-Research Group, Division III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Teresa Tiffert
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Virgilio L. Lew
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
114
|
Jurgelenaite R, Dijkstra TMH, Kocken CHM, Heskes T. Gene regulation in the intraerythrocytic cycle of Plasmodium falciparum. ACTA ACUST UNITED AC 2009; 25:1484-91. [PMID: 19336444 DOI: 10.1093/bioinformatics/btp179] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MOTIVATION To date, there is little knowledge about one of the processes fundamental to the biology of Plasmodium falciparum, gene regulation including transcriptional control. We use noisy threshold models to identify regulatory sequence elements explaining membership to a gene expression cluster where each cluster consists of genes active during the part of the developmental cycle inside a red blood cell. Our approach is both able to capture the combinatorial nature of gene regulation and to incorporate uncertainty about the functionality of putative regulatory sequence elements. RESULTS We find a characteristic pattern where the most common motifs tend to be absent upstream of genes active in the first half of the cycle and present upstream of genes active in the second half. We find no evidence that motif's score, orientation, location and multiplicity improves prediction of gene expression. Through comparative genome analysis, we find a list of potential transcription factors and their associated motifs. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Rasa Jurgelenaite
- Institute for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
115
|
Olszewski KL, Morrisey JM, Wilinski D, Burns JM, Vaidya AB, Rabinowitz JD, Llinás M. Host-parasite interactions revealed by Plasmodium falciparum metabolomics. Cell Host Microbe 2009; 5:191-9. [PMID: 19218089 PMCID: PMC2737466 DOI: 10.1016/j.chom.2009.01.004] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 12/19/2008] [Accepted: 01/22/2009] [Indexed: 01/25/2023]
Abstract
Intracellular pathogens have devised mechanisms to exploit their host cells to ensure their survival and replication. The malaria parasite Plasmodium falciparum relies on an exchange of metabolites with the host for proliferation. Here we describe a mass spectrometry-based metabolomic analysis of the parasite throughout its 48 hr intraerythrocytic developmental cycle. Our results reveal a general modulation of metabolite levels by the parasite, with numerous metabolites varying in phase with the developmental cycle. Others differed from uninfected cells irrespective of the developmental stage. Among these was extracellular arginine, which was specifically converted to ornithine by the parasite. To identify the biochemical basis for this effect, we disrupted the plasmodium arginase gene in the rodent malaria model P. berghei. These parasites were viable but did not convert arginine to ornithine. Our results suggest that systemic arginine depletion by the parasite may be a factor in human malarial hypoargininemia associated with cerebral malaria pathogenesis.
Collapse
Affiliation(s)
- Kellen L. Olszewski
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics Princeton University, Princeton, NJ 08544, USA
| | - Joanne M. Morrisey
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Daniel Wilinski
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics Princeton University, Princeton, NJ 08544, USA
| | - James M. Burns
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Akhil B. Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Joshua D. Rabinowitz
- Department of Chemistry & Lewis-Sigler Institute for Integrative Genomics Princeton University, Princeton, NJ 08544
| | - Manuel Llinás
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
116
|
Esposito A, Tiffert T, Mauritz JMA, Schlachter S, Bannister LH, Kaminski CF, Lew VL. FRET imaging of hemoglobin concentration in Plasmodium falciparum-infected red cells. PLoS One 2008; 3:e3780. [PMID: 19023444 PMCID: PMC2582953 DOI: 10.1371/journal.pone.0003780] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 10/28/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND During its intraerythrocytic asexual reproduction cycle Plasmodium falciparum consumes up to 80% of the host cell hemoglobin, in large excess over its metabolic needs. A model of the homeostasis of falciparum-infected red blood cells suggested an explanation based on the need to reduce the colloid-osmotic pressure within the host cell to prevent its premature lysis. Critical for this hypothesis was that the hemoglobin concentration within the host cell be progressively reduced from the trophozoite stage onwards. METHODOLOGY/PRINCIPAL FINDINGS The experiments reported here were designed to test this hypothesis by direct measurements of the hemoglobin concentration in live, infected red cells. We developed a novel, non-invasive method to quantify the hemoglobin concentration in single cells, based on Förster resonance energy transfer between hemoglobin molecules and the fluorophore calcein. Fluorescence lifetime imaging allowed the quantitative mapping of the hemoglobin concentration within the cells. The average fluorescence lifetimes of uninfected cohorts was 270+/-30 ps (mean+/-SD; N = 45). In the cytoplasm of infected cells the fluorescence lifetime of calcein ranged from 290+/-20 ps for cells with ring stage parasites to 590+/-13 ps and 1050+/-60 ps for cells with young trophozoites and late stage trophozoite/early schizonts, respectively. This was equivalent to reductions in hemoglobin concentration spanning the range from 7.3 to 2.3 mM, in line with the model predictions. An unexpected ancillary finding was the existence of a microdomain under the host cell membrane with reduced calcein quenching by hemoglobin in cells with mature trophozoite stage parasites. CONCLUSIONS/SIGNIFICANCE The results support the predictions of the colloid-osmotic hypothesis and provide a better understanding of the homeostasis of malaria-infected red cells. In addition, they revealed the existence of a distinct peripheral microdomain in the host cell with limited access to hemoglobin molecules indicating the concentration of substantial amounts of parasite-exported material.
Collapse
Affiliation(s)
- Alessandro Esposito
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
117
|
Lamarque M, Tastet C, Poncet J, Demettre E, Jouin P, Vial H, Dubremetz JF. Food vacuole proteome of the malarial parasite Plasmodium falciparum. Proteomics Clin Appl 2008; 2:1361-74. [PMID: 21136929 DOI: 10.1002/prca.200700112] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Indexed: 11/08/2022]
Abstract
The Plasmodium falciparum food vacuole (FV) is a lysosome-like organelle where erythrocyte hemoglobin digestion occurs. It is a favorite target in the development of antimalarials. We have used a tandem mass spectrometry approach to investigate the proteome of an FV-enriched fraction and identified 116 proteins. The electron microscopy analysis and the Western blot data showed that the major component of the fraction was the FV and, as expected, the majority of previously known FV markers were recovered. Of particular interest, several proteins involved in vesicle-mediated trafficking were identified, which are likely to play a key role in FV biogenesis and/or FV protein trafficking. Recovery of parasite surface proteins lends support to the cytostomal pathway of hemoglobin ingestion as a FV trafficking route. We have identified 32 proteins described as hypothetical in the databases. This insight into FV protein content provides new clues towards understanding the biological function of this organelle in P. falciparum.
Collapse
Affiliation(s)
- Mauld Lamarque
- Dynamique Moléculaire des Interactions Membranaires CNRS UMR 5235, Université Montpellier II, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
118
|
de Villiers KA, Marques HM, Egan TJ. The crystal structure of halofantrine-ferriprotoporphyrin IX and the mechanism of action of arylmethanol antimalarials. J Inorg Biochem 2008; 102:1660-7. [PMID: 18508124 DOI: 10.1016/j.jinorgbio.2008.04.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 03/12/2008] [Accepted: 04/11/2008] [Indexed: 10/22/2022]
Abstract
The crystal structure of the complex formed between the antimalarial drug halofantrine and ferriprotoporphyrin IX (Fe(III)PPIX) has been determined by single crystal X-ray diffraction. The structure shows that halofantrine coordinates to the Fe(III) center through its alcohol functionality in addition to pi-stacking of the phenanthrene ring over the porphyrin. The length of the Fe(III)-O bond is consistent with an alkoxide and not an alcohol coordinating group. The iron porphyrin is five coordinate and monomeric. Changes in the electronic spectrum of Fe(III)PPIX upon addition of halofantrine base in acetonitrile solution are almost identical to those observed upon addition of quinidine free base in the same solvent. This suggests homologous binding. Molecular mechanics modeling of Fe(III)PPIX complexes of quinidine, quinine, 9-epiquinine and 9-epiquinidine based on this homology suggests that the antimalarially active quinidine and quinine can readily adopt conformations that permit formation of an intramolecular salt bridge between the protonated quinuclidine tertiary amino group and unprotonated heme propionate group, while the inactive epimers 9-epiquinidine and 9-epiquinine have to adopt high energy conformations in order to accommodate such salt bridge formation. We propose that salt bridge formation may interrupt formation of the hemozoin precursor dimer formed during the heme detoxification pathway and so account for the strong activity of the two active isomers.
Collapse
Affiliation(s)
- Katherine A de Villiers
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | | | | |
Collapse
|
119
|
Haemozoin formation. Mol Biochem Parasitol 2008; 157:127-36. [DOI: 10.1016/j.molbiopara.2007.11.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/05/2007] [Accepted: 11/06/2007] [Indexed: 11/18/2022]
|
120
|
Sherman IW. References. ADVANCES IN PARASITOLOGY 2008. [DOI: 10.1016/s0065-308x(08)00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
121
|
Dalal S, Klemba M. Roles for two aminopeptidases in vacuolar hemoglobin catabolism in Plasmodium falciparum. J Biol Chem 2007; 282:35978-87. [PMID: 17895246 DOI: 10.1074/jbc.m703643200] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the erythrocytic stage of its life cycle, the human malaria parasite Plasmodium falciparum catabolizes large quantities of host-cell hemoglobin in an acidic organelle, the food vacuole. A current model for the catabolism of globin-derived oligopeptides invokes peptide transport out of the food vacuole followed by hydrolysis to amino acids by cytosolic aminopeptidases. To test this model, we have examined the roles of four parasite aminopeptidases during the erythrocytic cycle. Localization of tagged aminopeptidases, coupled with biochemical analysis of enriched food vacuoles, revealed the presence of amino acid-generating pathways in the food vacuole as well as the cytosol. Based on the localization data and in vitro assays, we propose a specific role for one of the plasmodial enzymes, aminopeptidase P, in the catabolism of proline-containing peptides in both the vacuole and the cytosol. We establish an apparent requirement for three of the four aminopeptidases (including the two food vacuole enzymes) for efficient parasite proliferation. To gain insight into the impact of aminopeptidase inhibition on parasite development, we examined the effect of the presence of amino acids in the culture medium of the parasite on the toxicity of the aminopeptidase inhibitor bestatin. The ability of bestatin to block parasite replication was only slightly affected when 19 of 20 amino acids were withdrawn from the medium, indicating that exogenous amino acids cannot compensate for the loss of aminopeptidase activity. Together, these results support the development of aminopeptidase inhibitors as novel chemotherapeutics directed against malaria.
Collapse
Affiliation(s)
- Seema Dalal
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
122
|
Li X, Chen H, Jeong JJ, Chishti AH. BDA-410: a novel synthetic calpain inhibitor active against blood stage malaria. Mol Biochem Parasitol 2007; 155:26-32. [PMID: 17583361 PMCID: PMC1993804 DOI: 10.1016/j.molbiopara.2007.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 04/24/2007] [Accepted: 05/10/2007] [Indexed: 11/21/2022]
Abstract
Falcipains, the papain-family cysteine proteases of the Plasmodium falciparum, are potential drug targets for malaria parasite. Pharmacological inhibition of falcipains can block the hydrolysis of hemoglobin, parasite development, and egress, suggesting that falcipains play a key role at the blood stage of parasite life cycle. In the present study, we evaluated the anti-malarial effects of BDA-410, a novel cysteine protease inhibitor as a potential anti-malarial drug. Recombinant falcipain (MBP-FP-2B) and P. falciparum trophozoite extract containing native falcipains were used for enzyme inhibition studies in vitro. The effect of BDA-410 on the malaria parasite development in vitro as well as its anti-malarial activity in vivo was evaluated using the Plasmodium chabaudi infection rodent model. The 50% inhibitory concentrations of BDA-410 were determined to be 628 and 534nM for recombinant falcipain-2B and parasite extract, respectively. BDA-410 inhibited the malaria parasite growth in vitro with an IC(50) value of 173nM causing irreversible damage to the intracellular parasite. In vivo, the BDA-410 delayed the progression of malaria infection significantly using a mouse model of malaria pathogenesis. The characterization of BDA-410 as a potent inhibitor of P. falciparum cysteine proteases, and the demonstration of its efficacy in blocking parasite growth both in vitro and in vivo assays identifies BDA-410 is an important lead compound for the development of novel anti-malarial drugs.
Collapse
Affiliation(s)
- Xuerong Li
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Huiqing Chen
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jong-Jin Jeong
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Athar H. Chishti
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
123
|
Frosch T, Koncarevic S, Zedler L, Schmitt M, Schenzel K, Becker K, Popp J. In Situ Localization and Structural Analysis of the Malaria Pigment Hemozoin. J Phys Chem B 2007; 111:11047-56. [PMID: 17718555 DOI: 10.1021/jp071788b] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Raman microspectroscopy was applied for an in situ localization of the malaria pigment hemozoin in Plasmodium falciparum-infected erythrocytes. The Raman spectra (lambdaexc=633 nm) of hemozoin show very intense signals with a very good signal-to-noise ratio. These in situ Raman signals of hemozoin were compared to Raman spectra of extracted hemozoin, of the synthetic analogue beta-hematin, and of hematin and hemin. beta-Hematin was synthesized according to the acid-catalyzed dehydration of hematin and the anhydrous dehydrohalogenation of hemin which lead to good crystals with lengths of about 5-30 microm. The Raman spectra (lambdaexc=1064 nm) of hemozoin and beta-hematin show almost identical behaviors, while some low wavenumber modes might be used to distinguish between the morphology of differently synthesized beta-hematin samples. The intensity pattern of the resonance Raman spectra (lambdaexc=568 nm) of hemozoin and beta-hematin differ significantly from those of hematin and hemin. The most striking difference is an additional band at 1655 cm(-1) which was only observed in the spectra of hemozoin and beta-hematin and cannot be seen in the spectra of hematin and hemin. Raman spectra of the beta-hematin dimer were calculated ab initio (DFT) for the first time and used for an assignment of the experimentally derived Raman bands. The calculated atomic displacements provide valuable insight into the most important molecular vibrations of the hemozoin dimer. With help from these DFT calculations, it was possible to assign the Raman band at 1655 cm(-1) to a mode located at the propionic acid side chain, which links the hemozoin dimers to each other. The Raman band at 1568 cm(-1), which has been shown to be influenced by an attachment of the antimalarial drug chloroquine in an earlier study, could be assigned to a C=C stretching mode spread across one of the porphyrin rings and is therefore expected to be influenced by a pi-pi-stacking to the drug.
Collapse
Affiliation(s)
- Torsten Frosch
- Institut für Physikalische Chemie, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, D-07743 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
124
|
Teuscher F, Lowther J, Skinner-Adams TS, Spielmann T, Dixon MWA, Stack CM, Donnelly S, Mucha A, Kafarski P, Vassiliou S, Gardiner DL, Dalton JP, Trenholme KR. The M18 aspartyl aminopeptidase of the human malaria parasite Plasmodium falciparum. J Biol Chem 2007; 282:30817-26. [PMID: 17720817 DOI: 10.1074/jbc.m704938200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A member of the M18 family of aspartyl aminopeptidases is expressed by all intra-erythrocytic stages of the human malaria parasite Plasmodium falciparum (PfM18AAP), with highest expression levels in rings. Functionally active recombinant enzyme, rPfM18AAP, and native enzyme in cytosolic extracts of malaria parasites are 560-kDa octomers that exhibit optimal activity at neutral pH and require the presence of metal ions to maintain enzymatic activity and stability. Like the human aspartyl aminopeptidase, the exopeptidase activity of PfM18AAP is exclusive to N-terminal acidic amino acids, glutamate and aspartate, making this enzyme of particular interest and suggesting that it may function alongside the malaria cytosolic neutral aminopeptidases in the release of amino acids from host hemoglobin-derived peptides. Whereas immunocytochemical studies using transgenic P. falciparum parasites show that PfM18AAP is expressed in the cytosol, immunoblotting experiments revealed that the enzyme is also trafficked out of the parasite into the surrounding parasitophorous vacuole. Antisense-mediated knockdown of PfM18AAP results in a lethal phenotype as a result of significant intracellular damage and validates this enzyme as a target at which novel antimalarial drugs could be directed. Novel phosphinic derivatives of aspartate and glutamate showed modest inhibition of rPfM18AAP but did not inhibit malaria growth in culture. However, we were able to draw valuable observations concerning the structure-activity relationship of these inhibitors that can be employed in future inhibitor optimization studies.
Collapse
Affiliation(s)
- Franka Teuscher
- Malaria Biology Laboratory, The Queensland Institute of Medical Research, 300 Herston Rd, Herston, Brisbane, Queensland 4006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Bonilla JA, Bonilla TD, Yowell CA, Fujioka H, Dame JB. Critical roles for the digestive vacuole plasmepsins ofPlasmodium falciparumin vacuolar function. Mol Microbiol 2007; 65:64-75. [PMID: 17581121 DOI: 10.1111/j.1365-2958.2007.05768.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Knockout mutants of Plasmodium falciparum lacking pfpm1, pfpm2 and pfhap (triple-PM KO), and mutants lacking all four digestive vacuole (DV) plasmepsins (pfpm4, pfpm1, pfpm2 and pfhap; quadruple-PM KO), were prepared by double cross-over integration effecting chromosomal deletions of up to 14.6 kb. The triple-PM KO was similar to the parental line (3D7) in growth rate, morphology and sensitivity to proteinase inhibitors. The quadruple-PM KO showed a significantly slower rate of growth in standard medium, which manifested as delayed schizont maturation accompanied by reduced formation of haemozoin. In amino acid-limited medium, the reduction in growth rate of the quadruple-PM KO was pronounced. The sensitivity of both the triple- and quadruple-PM KOs to six different HIV aspartic proteinase inhibitors was comparable to that of 3D7, thus establishing that the DV plasmepsins were not the primary targets of the antimalarial activity of these clinically important compounds. Electron microscopic analysis revealed the presence of multilamellar bodies resembling ceroid in the DV of the quadruple-PM KO, and intermediates of the autophagic pathway accumulated as determined by Western blot analysis. Thus, the DV plasmepsins, although not essential, contribute significantly to the fitness of the parasite and are required for efficient degradation of endosomal vesicles delivered to the DV.
Collapse
Affiliation(s)
- J Alfredo Bonilla
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | |
Collapse
|
126
|
Chemaly SM, Chen CT, van Zyl RL. Naturally occurring cobalamins have antimalarial activity. J Inorg Biochem 2007; 101:764-73. [PMID: 17343914 DOI: 10.1016/j.jinorgbio.2007.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 12/14/2006] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
The acquisition of resistance by malaria parasites towards existing antimalarials has necessitated the development of new chemotherapeutic agents. The effect of vitamin B(12) derivatives on the formation of beta-haematin (synthetic haemozoin) was determined under conditions similar to those in the parasitic food vacuole (using chloroquine, a known inhibitor of haemozoin formation for comparison). Adenosylcobalamin (Ado-cbl), methylcobalamin (CH(3)-cbl) and aquocobalamin (H(2)O-cbl) were approximately forty times more effective inhibitors of beta-haematin formation than chloroquine, cyanocobalamin (CN-cbl) was slightly more inhibitory than chloroquine, while dicyanocobinamide had no effect. It is proposed that the cobalamins exert their inhibitory effect on beta-haematin formation by pi-interactions of their corrin ring with the Fe(III)-protoporphyrin ring and by hydrogen-bonding using their 5,6-dimethylbenzimidazole/ribose/sugar side-chain. The antimalarial activity for the cobalamins (Ado-cbl>CH(3)-cbl>H(2)O-cbl>CN-cbl) was found to be less than that for chloroquine or quinine. Ado-cbl, CH(3)-cbl and CN-cbl do not accumulate in the parasite food vacuole by pH trapping, but H(2)O-cbl does. Unlike humans, the malaria parasite has only one enzyme that uses cobalamin as a cofactor, namely methionine synthase, which is important for growth and metabolism. Thus cobalamins in very small amounts are necessary for Plasmodium falciparum growth but in larger amounts they display antimalarial properties.
Collapse
Affiliation(s)
- Susan M Chemaly
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | | | | |
Collapse
|
127
|
Koncarevic S, Bogumil R, Becker K. SELDI-TOF-MS analysis of chloroquine resistant and sensitivePlasmodium falciparum strains. Proteomics 2007; 7:711-21. [PMID: 17295353 DOI: 10.1002/pmic.200600552] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The resistance of the malarial parasite Plasmodium falciparum to chloroquine represents an emerging problem since neither mode of drug action nor mechanisms of resistance are fully elucidated. We describe a protein expression profiling approach by SELDI-TOF-MS as a useful tool for studying the proteome of malarial parasites. Reproducible and complex protein profiles of the P. falciparum strains K1, Dd2, HB3 and 3D7 were measured on four array types. Hierarchical clustering led to a clear separation of the two major subgroups "resistant" and "sensitive" as well as of the four parasite strains. Our study delivers sets of regulated proteins derived from extensive comparative analyses of 64 P. falciparum protein profiles. A group of 12 peaks reflecting proteome changes under chloroquine treatment and a set of 10 potential chloroquine resistance markers were defined. Three of these regulated peaks were preparatively enriched, purified and identified. They were shown to represent the plasmodial EXP-1 protein, also called circumsporozoite-related antigen, as well as the alpha- and beta- (delta-) chains of human hemoglobin.
Collapse
Affiliation(s)
- Sasa Koncarevic
- Interdisciplinary Research Center, Giessen University, Giessen, Germany
| | | | | |
Collapse
|
128
|
Stack CM, Lowther J, Cunningham E, Donnelly S, Gardiner DL, Trenholme KR, Skinner-Adams TS, Teuscher F, Grembecka J, Mucha A, Kafarski P, Lua L, Bell A, Dalton JP. Characterization of the Plasmodium falciparum M17 Leucyl Aminopeptidase. J Biol Chem 2007; 282:2069-80. [PMID: 17107951 DOI: 10.1074/jbc.m609251200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amino acids generated from the catabolism of hemoglobin by intra-erythrocytic malaria parasites are not only essential for protein synthesis but also function in maintaining an osmotically stable environment, and creating a gradient by which amino acids that are rare or not present in hemoglobin are drawn into the parasite from host serum. We have proposed that a Plasmodium falciparum M17 leucyl aminopeptidase (PfLAP) generates and regulates the internal pool of free amino acids and therefore represents a target for novel antimalarial drugs. This enzyme has been expressed in insect cells as a functional 320-kDa homo-hexamer that is optimally active at neutral or alkaline pH, is dependent on metal ions for activity, and exhibits a substrate preference for N-terminally exposed hydrophobic amino acids, particularly leucine. PfLAP is produced by all stages in the intra-erythrocytic developmental cycle of malaria but was most highly expressed by trophozoites, a stage at which hemoglobin degradation and parasite protein synthesis are elevated. The enzyme was located by immunohistochemical methods and by transfecting malaria cells with a PfLAP-green fluorescent protein construct, to the cytosolic compartment of the cell at all developmental stages, including segregated merozoites. Amino acid dipeptide analogs, such as bestatin and its derivatives, are potent inhibitors of the protease and also block the growth of P. falciparum malaria parasites in culture. This study provides a biochemical basis for the antimalarial activity of aminopeptidase inhibitors. Availability of functionally active recombinant PfLAP, coupled with a simple enzymatic readout, will aid medicinal chemistry and/or high throughput approaches for the future design/discovery of new antimalarial drugs.
Collapse
Affiliation(s)
- Colin M Stack
- Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, Level 6, Building 4, Corner of Thomas and Harris Street, Ultimo, Sydney, New South Wales 2007, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Bonilla JA, Moura PA, Bonilla TD, Yowell CA, Fidock DA, Dame JB. Effects on growth, hemoglobin metabolism and paralogous gene expression resulting from disruption of genes encoding the digestive vacuole plasmepsins of Plasmodium falciparum. Int J Parasitol 2006; 37:317-27. [PMID: 17207486 DOI: 10.1016/j.ijpara.2006.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/07/2006] [Accepted: 11/14/2006] [Indexed: 11/16/2022]
Abstract
Four of the plasmepsins of Plasmodium falciparum are localised in the digestive vacuole (DV) of the asexual blood stage parasite (PfPM1, PfPM2, PfPM4 and PfHAP), and each of these aspartic proteinases has been successfully targeted by gene disruption. This study describes further characterisation of the single-plasmepsin knockout mutants, and the creation and characterisation of double-plasmepsin knockout mutants lacking complete copies of pfpm2 and pfpm1 or pfhap and pfpm2. Double-plasmepsin knockout mutants were created by transfecting pre-existing knockout mutants with a second plasmid knockout construct. PCR and Southern blot analysis demonstrate the integration of a large concatamer of each plasmid construct into the targeted gene. All mutants have been characterised to assess the involvement of the DV plasmepsins in sustaining growth during the asexual blood stage. Analyses reaffirmed that knockout mutants Deltapfpm1 and Deltapfpm4 had lower replication rates in the asexual erythrocytic stage than the parental line (Dd2), but double-plasmepsin knockout mutants lacking intact copies of either pfpm2 and pfpm1, or pfpm2 and pfhap, had normal growth rates compared with Dd2. The amount of crystalline hemozoin produced per parasite during the asexual cycle was measured in each single-plasmepsin knockout to estimate the effect of each DV plasmepsin on hemoglobin digestion. Only Deltapfpm4 had a statistically significant reduction in hemozoin accumulation, indicating that hemoglobin digestion was impaired in this mutant. In the single-plasmepsin knockouts, no statistically significant differences were found in the steady state levels of mRNA from the remaining intact DV plasmepsin genes. Disruption of a DV plasmepsin gene does not affect the accumulation of mRNA encoding the remaining paralogous plasmepsins, and Western blot analysis confirmed that the accumulation of the paralogous plasmepsins in each knockout mutant was similar among all clones examined.
Collapse
Affiliation(s)
- J Alfredo Bonilla
- Department of Infectious Diseases and Pathology, University of Florida, PO Box 110880, 2015 SW 16th Ave., Gainesville, FL 32611-0880, USA
| | | | | | | | | | | |
Collapse
|
130
|
Krugliak M, Ginsburg H. The evolution of the new permeability pathways in Plasmodium falciparum—infected erythrocytes—a kinetic analysis. Exp Parasitol 2006; 114:253-8. [PMID: 16707126 DOI: 10.1016/j.exppara.2006.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Revised: 03/28/2006] [Accepted: 03/29/2006] [Indexed: 10/24/2022]
Abstract
Malaria parasites demonstrably increase the permeability of the membrane of the erythrocyte in which they develop and propagate. New permeability pathways (NPPs) generated by parasite activity and identified in the erythrocyte membrane are held responsible for these changes. Here, we present a novel analysis of hemolysis curves of infected cells in iso-osmotic solutions of solutes that penetrate selectively into infected cells, as a function of parasite development. The analysis yields three parameters: the t(1/2) of lysis (reciprocally related to permeability), the maximal lysis, and a parameter that expresses the variation of the cell population. Different developmental stages of the parasite were obtained either by sampling synchronized cultures with time or by the fractionation of asynchronous cultures on a Percoll-sorbitol density gradient. While the results confirm previous reports on the stage-dependent evolution of NPPs, they also reveal that the evolution of NPPs is not synchronous: NPPs evolve differentially throughout the ring stage and only at the mid-trophozoite stage they are fully deployed in the majority of the infected cells, but not in all. This leads to desynchronization in the culture and to less than the maximal possible rate of multiplication.
Collapse
Affiliation(s)
- Miriam Krugliak
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
131
|
Liu J, Istvan ES, Gluzman IY, Gross J, Goldberg DE. Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems. Proc Natl Acad Sci U S A 2006; 103:8840-5. [PMID: 16731623 PMCID: PMC1470969 DOI: 10.1073/pnas.0601876103] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Indexed: 11/18/2022] Open
Abstract
Degradation of host hemoglobin by the human malaria parasite Plasmodium falciparum is a massive metabolic process. What role this degradation plays and whether it is essential for parasite survival have not been established, nor have the roles of the various degradative enzymes been clearly defined. We report that P. falciparum can grow in medium containing a single amino acid (isoleucine, the only amino acid missing from human hemoglobin). In this medium, growth of hemoglobin-degrading enzyme gene knockout lines (missing falcipain-2 and plasmepsins alone or in combination) is impaired. Blockade of plasmepsins with the potent inhibitor pepstatin A has a minimal effect on WT parasite growth but kills falcipain-2 knockout parasites at low concentrations and is even more potent on falcipain-2, plasmepsin I and IV triple knockout parasites. We conclude that: (i) hemoglobin degradation is necessary for parasite survival; (ii) hemoglobin degradation is sufficient to supply most of the parasite's amino acid requirements; (iii) external amino acid acquisition and hemoglobin digestion are partially redundant nutrient pathways; (iv) hemoglobin degradation uses dual protease families with overlapping function; and (v) hemoglobin-degrading plasmepsins are not promising drug targets.
Collapse
Affiliation(s)
- Jun Liu
- Howard Hughes Medical Institute, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8230, St. Louis, MO 63110
| | - Eva S. Istvan
- Howard Hughes Medical Institute, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8230, St. Louis, MO 63110
| | - Ilya Y. Gluzman
- Howard Hughes Medical Institute, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8230, St. Louis, MO 63110
| | - Julia Gross
- Howard Hughes Medical Institute, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8230, St. Louis, MO 63110
| | - Daniel E. Goldberg
- Howard Hughes Medical Institute, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8230, St. Louis, MO 63110
| |
Collapse
|
132
|
Scholl PF, Tripathi AK, Sullivan DJ. Bioavailable iron and heme metabolism in Plasmodium falciparum. Curr Top Microbiol Immunol 2006; 295:293-324. [PMID: 16265896 DOI: 10.1007/3-540-29088-5_12] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Iron metabolism is essential for cell function and potentially toxic because iron can catalyze oxygen radical production. Malaria-attributable anemia and iron deficiency anemia coincide as being treatable diseases in the developing world. In absolute amounts, more than 95% of Plasmodium metal biochemistry occurs in the acidic digestive vacuole where heme released from hemoglobin catabolism forms heme crystals. The antimalarial quinolines interfere with crystallization. Despite the completion of the Plasmodium genome, many 'gene gaps' exist in components of the metal pathways described in mammalian or yeast cells. Present evidence suggests that parasite bioavailable iron originates from a labile erythrocyte cytosolic pool rather than from abundant heme iron. Indeed the parasite has to make its own heme within two separate organelles, the mitochondrion and the apicomplast. Paradoxically, despite the abundance of iron within the erythrocyte, iron chelators are cytocidal to the Plasmodium parasite. Hemozoin has become a sensitive biomarker for laser desorption mass spectrometry detection of Plasmodium infection in both mice and humans.
Collapse
Affiliation(s)
- P F Scholl
- Department of Environmental Health Sciences, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
133
|
Abstract
Hemoglobin degradation by Plasmodium is a massive catabolic process within the parasite food vacuole that is important for the organism's survival in its host erythrocyte. A proteolytic pathway is responsible for generating amino acids from hemoglobin. Each of the enzymes involved has its own peculiarities to be exploited for development of antimalarial agents that will starve the parasite or result in build-up of toxic intermediates. There are a number of unanswered questions concerning the cell biology, biochemistry and metabolic roles of this crucial pathway.
Collapse
Affiliation(s)
- D E Goldberg
- Howard Hughes Medical Institute, Department of Medicine, Washington University, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| |
Collapse
|
134
|
Moore LR, Fujioka H, Williams PS, Chalmers JJ, Grimberg B, Zimmerman P, Zborowski M. Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis. FASEB J 2006; 20:747-9. [PMID: 16461330 PMCID: PMC3728832 DOI: 10.1096/fj.05-5122fje] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During intra-erythrocytic development, malaria trophozoites digest hemoglobin, which leads to parasite growth and asexual replication while accumulating toxic heme. To avoid death, the parasite synthesizes insoluble hemozoin crystals in the digestive vacuole through polymerization of beta-hematin dimers. In the process, the heme is converted to a high-spin ferriheme whose magnetic properties were studied as early as 1936 by Pauling et al. Here, by magnetophoretic cell motion analysis, we provide evidence for a graduated increase of live cell magnetic susceptibility with developing blood-stage parasites, compatible with the increase in hemozoin content and the mechanism used by P. falciparum to avoid heme toxicity. The measured magnetophoretic mobility of the erythrocyte infected with a late-stage schizont form was m = 2.94 x 10(-6) mm3 s/kg, corresponding to the net volume magnetic susceptibility (relative to water) of Deltachi = 1.80 x 10(-6), significantly higher than that of the oxygenated erythrocyte (-0.18x10(-6)) but lower than that of the fully deoxygenated erythrocyte (3.33x10(-6)). The corresponding fraction of hemoglobin converted to hemozoin, calculated based on the known magnetic susceptibilities of hemoglobin heme and hemozoin ferriheme, was 0.50, in agreement with the published biochemical and crystallography data. Magnetophoretic analysis of live erythrocytes could become significant for antimalarial drug susceptibility and resistance determination.
Collapse
Affiliation(s)
- Lee R. Moore
- Department of Biomedical Engineering Lerner Research Institute The Cleveland Clinic Foundation, Cleveland, Ohio
| | - Hisashi Fujioka
- Institute of Pathology Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - P. Stephen Williams
- Department of Biomedical Engineering Lerner Research Institute The Cleveland Clinic Foundation, Cleveland, Ohio
| | - Jeffrey J. Chalmers
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Brian Grimberg
- The Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Peter Zimmerman
- The Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Maciej Zborowski
- Department of Biomedical Engineering Lerner Research Institute The Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
135
|
Hayward R, Saliba KJ, Kirk K. The pH of the digestive vacuole of Plasmodium falciparum is not associated with chloroquine resistance. J Cell Sci 2006; 119:1016-25. [PMID: 16492710 DOI: 10.1242/jcs.02795] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chloroquine resistance in the human malaria parasite, Plasmodium falciparum, arises from decreased accumulation of the drug in the ;digestive vacuole' of the parasite, an acidic compartment in which chloroquine exerts its primary toxic effect. It has been proposed that changes in the pH of the digestive vacuole might underlie the decreased accumulation of chloroquine by chloroquine-resistant parasites. In this study we have investigated the digestive vacuole pH of a chloroquine-sensitive and a chloroquine-resistant strain of P. falciparum, using a range of dextran-linked pH-sensitive fluorescent dyes. The estimated digestive vacuole pH varied with the concentration and pK(a) of the dye, ranging from approximately 3.7-6.5. However, at low dye concentrations the estimated digestive vacuole pH of both the chloroquine-resistant and chloroquine-sensitive strains converged in the range 4.5-4.9. The results suggest that there is no significant difference in digestive vacuole pH of chloroquine-sensitive and chloroquine-resistant parasites, and that digestive vacuole pH does not play a primary role in chloroquine resistance.
Collapse
Affiliation(s)
- Rhys Hayward
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra ACT 0200, Australia
| | | | | |
Collapse
|
136
|
Kirk K, Martin RE, Bröer S, Howitt SM, Saliba KJ. Plasmodium permeomics: membrane transport proteins in the malaria parasite. Curr Top Microbiol Immunol 2005; 295:325-56. [PMID: 16265897 DOI: 10.1007/3-540-29088-5_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Membrane transport proteins are integral membrane proteins that mediate the passage across the membrane bilayer of specific molecules and/or ions. Such proteins serve a diverse range of physiological roles, mediating the uptake of nutrients into cells, the removal of metabolic wastes and xenobiotics (including drugs), and the generation and maintenance of transmembrane electrochemical gradients. In this chapter we review the present state of knowledge of the membrane transport mechanisms underlying the cell physiology of the intraerythrocytic malaria parasite and its host cell, considering in particular physiological measurements on the parasite and parasitized erythrocyte, the annotation of transport proteins in the Plasmodium genome, and molecular methods used to analyze transport protein function.
Collapse
Affiliation(s)
- K Kirk
- School of Biochemistry and Molecular Biology, The Australian National University, 0200 Canberra, ACT, Australia.
| | | | | | | | | |
Collapse
|
137
|
Gardiner DL, Trenholme KR, Skinner-Adams TS, Stack CM, Dalton JP. Overexpression of leucyl aminopeptidase in Plasmodium falciparum parasites. Target for the antimalarial activity of bestatin. J Biol Chem 2005; 281:1741-5. [PMID: 16286469 DOI: 10.1074/jbc.m508955200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Malaria aminopeptidases are important in the generation and regulation of free amino acids that are used in protein anabolism and for maintaining osmotic stability within the infected erythrocyte. The intraerythrocytic development of malaria parasites is blocked when the activity of aminopeptidases is specifically inhibited by reagents such as bestatin. One of the major aminopeptidases of malaria parasites is a leucyl aminopeptidase of the M17 family. We reasoned that, when this enzyme was the target of bestatin inhibition, its overexpression in malaria cells would lead to a reduced sensitivity to the inhibitor. To address this supposition, transgenic Plasmodium falciparum parasites overexpressing the leucyl aminopeptidase were generated by transfection with a plasmid that housed the full-length gene. Transgenic parasites expressed a 65-kDa protein close to the predicted molecule size of 67.831 kDa for the introduced leucyl aminopeptidase, and immunofluorescence studies localized the protein to the cytosol, the location of the native enzyme. The product of the transgene was shown to be functionally active with cytosolic extracts of transgenic parasites exhibiting twice the leucyl aminopeptidase activity compared with wild-type parasites. In vitro inhibitor sensitivity assays demonstrated that the transgenic parasites were more resistant to bestatin (EC50 64 microM) compared with the parent parasites (EC50 25 microM). Overexpression of genes in malaria parasites would have general application in the identification and validation of targets for antimalarial drugs.
Collapse
Affiliation(s)
- Donald L Gardiner
- Malaria Biology Laboratory, The Australian Centre for International and Tropical Health and Nutrition, Queensland Institute of Medical Research, 300 Herston Road, Herston, Brisbane QLD 4029, Australia
| | | | | | | | | |
Collapse
|
138
|
Cooper RA, Papakrivos J, Lane KD, Fujioka H, Lingelbach K, Wellems TE. PfCG2, a Plasmodium falciparum protein peripherally associated with the parasitophorous vacuolar membrane, is expressed in the period of maximum hemoglobin uptake and digestion by trophozoites. Mol Biochem Parasitol 2005; 144:167-76. [PMID: 16183150 DOI: 10.1016/j.molbiopara.2005.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 07/03/2005] [Accepted: 07/14/2005] [Indexed: 10/25/2022]
Abstract
A Plasmodium falciparum gene closely linked to the chloroquine resistance locus encodes PfCG2, a predicted 320-330kDa protein. In the parasitized erythrocyte, PfCG2 expression rises sharply in the trophozoite stage and is detected in electron-dense patches along the parasitophorous vacuolar membrane (PVM), in the cytoplasm and in the digestive vacuole (DV). Results of extraction and partitioning experiments show that PfCG2 is a peripheral membrane protein. Exposure of trophozoite-infected erythrocytes to trypsin-containing buffer after streptolysin O permeabilization indicates that PfCG2 is exposed to the erythrocyte cytosol at the outer face of the PVM. PfCG2 is highly susceptible to hydrolysis by aspartic and cysteine proteases and shows dose-dependent accumulation in the presence of protease inhibitors. These results suggest that PfCG2 is delivered from the outside face of the PVM to the DV, where it is broken down by parasite proteases. PfCG2 interacts with erythrocyte cytoplasm and may be associated with processes of hemoglobin uptake and digestion by erythrocytic-stage parasites.
Collapse
Affiliation(s)
- Roland A Cooper
- Laboratory of Malaria and Vector Research, Twinbrook III, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | | | | | | | | | | |
Collapse
|
139
|
Martin RE, Henry RI, Abbey JL, Clements JD, Kirk K. The 'permeome' of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum. Genome Biol 2005; 6:R26. [PMID: 15774027 PMCID: PMC1088945 DOI: 10.1186/gb-2005-6-3-r26] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 12/31/2004] [Accepted: 01/28/2005] [Indexed: 11/24/2022] Open
Abstract
Bioinformatic and expression analyses attribute putative functions to transporters and channels encoded by the Plasmodium falciparum genome. The malaria parasite has substantially more membrane transport proteins than previously thought. Background The uptake of nutrients, expulsion of metabolic wastes and maintenance of ion homeostasis by the intraerythrocytic malaria parasite is mediated by membrane transport proteins. Proteins of this type are also implicated in the phenomenon of antimalarial drug resistance. However, the initial annotation of the genome of the human malaria parasite Plasmodium falciparum identified only a limited number of transporters, and no channels. In this study we have used a combination of bioinformatic approaches to identify and attribute putative functions to transporters and channels encoded by the malaria parasite, as well as comparing expression patterns for a subset of these. Results A computer program that searches a genome database on the basis of the hydropathy plots of the corresponding proteins was used to identify more than 100 transport proteins encoded by P. falciparum. These include all the transporters previously annotated as such, as well as a similar number of candidate transport proteins that had escaped detection. Detailed sequence analysis enabled the assignment of putative substrate specificities and/or transport mechanisms to all those putative transport proteins previously without. The newly-identified transport proteins include candidate transporters for a range of organic and inorganic nutrients (including sugars, amino acids, nucleosides and vitamins), and several putative ion channels. The stage-dependent expression of RNAs for 34 candidate transport proteins of particular interest are compared. Conclusion The malaria parasite possesses substantially more membrane transport proteins than was originally thought, and the analyses presented here provide a range of novel insights into the physiology of this important human pathogen.
Collapse
Affiliation(s)
- Rowena E Martin
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
| | - Roselani I Henry
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
| | - Janice L Abbey
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
| | - John D Clements
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
- Division of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia
| | - Kiaran Kirk
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
140
|
Huber SM, Duranton C, Lang F. Patch-clamp analysis of the "new permeability pathways" in malaria-infected erythrocytes. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 246:59-134. [PMID: 16164967 DOI: 10.1016/s0074-7696(05)46003-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intraerythrocytic amplification of the malaria parasite Plasmodium falciparum induces new pathways of solute permeability in the host cell's membrane. These pathways play a pivotal role in parasite development by supplying the parasite with nutrients, disposing of the parasite's metabolic waste and organic osmolytes, and adapting the host's electrolyte composition to the parasite's needs. The "new permeability pathways" allow the fast electrogenic diffusion of ions and thus can be analyzed by patch-clamp single-channel or whole-cell recording. By employing these techniques, several ion-channel types with different electrophysiological profiles have been identified in P. falciparum-infected erythrocytes; they have also been identified in noninfected cells. This review discusses a possible contribution of these channels to the new permeability pathways on the one hand and their supposed functions in noninfected erythrocytes on the other.
Collapse
Affiliation(s)
- Stephan M Huber
- Department of Physiology, Eberhard-Karls-University, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
141
|
Rasoloson D, Shi L, Chong C, Kafsack B, Sullivan D. Copper pathways in Plasmodium falciparum infected erythrocytes indicate an efflux role for the copper P-ATPase. Biochem J 2004; 381:803-11. [PMID: 15125686 PMCID: PMC1133890 DOI: 10.1042/bj20040335] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 04/19/2004] [Accepted: 05/05/2004] [Indexed: 02/06/2023]
Abstract
Copper, like iron, is a transition metal that can generate oxygen radicals by the Fenton reaction. The Plasmodium parasite invades an erythrocyte host cell containing 20 microM copper, of which 70% is contained in the Cu/Zn SOD (cuprozinc superoxide dismutase). In the present study, we follow the copper pathways in the Plasmodium-infected erythrocyte. Metal-determination analysis shows that the total copper content of Percoll-purified trophozoite-stage-infected erythrocytes is 66% that of uninfected erythrocytes. This decrease parallels the decrease seen in Cu/Zn SOD levels in parasite-infected erythrocytes. Neocuproine, an intracellular copper chelator, arrests parasites at the ring-to-trophozoite stage transition and also specifically decreases intraparasitic levels of Cu/Zn SOD and catalase. Up to 150 microM BCS (2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolinedisulphonic acid), an extracellular copper chelator, has no effect on parasite growth. We characterized a single copy PfCuP-ATPase (Plasmodium falciparum copper P-ATPase) transporter, which, like the Crypto-sporidium parvum copper P-ATPase, has a single copper-binding domain: 'Met-Xaa-Cys-Xaa-Xaa-Cys'. Recombinant expression of the N-terminal metal-binding domain reveals that the protein specifically binds reduced copper. Transcription of the PfCuP-ATPase gene is the highest at late ring stage/early trophozoite, and is down-regulated in the presence of neocuproine. Immunofluorescence and electron microscopy indicate the transporter to be both in the parasite and on the erythrocyte membrane. Both the decrease in total copper and the location of the PfCuP-ATPase gene indicate a copper-efflux pathway from the infected erythrocyte.
Collapse
Affiliation(s)
- Dominique Rasoloson
- *The Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, U.S.A
| | - Lirong Shi
- *The Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, U.S.A
| | - Curtis R. Chong
- †Medical Scientist Training Program, Department of Pharmacology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, U.S.A
| | - Bjorn F. Kafsack
- *The Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, U.S.A
| | - David J. Sullivan
- *The Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, U.S.A
- To whom correspondence should be addressed (e-mail )
| |
Collapse
|
142
|
McMillan PJ, Stimmler LM, Foth BJ, McFadden GI, Müller S. The human malaria parasite Plasmodium falciparum possesses two distinct dihydrolipoamide dehydrogenases. Mol Microbiol 2004; 55:27-38. [PMID: 15612914 DOI: 10.1111/j.1365-2958.2004.04398.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Plasmodium falciparum genome contains genes encoding three alpha-ketoacid dehydrogenase multienzyme complexes (KADHs) that have central metabolic functions. The parasites possess two distinct genes encoding dihydrolipoamide dehydrogenases (LipDH), which are indispensable subunits of KADHs. This situation is reminiscent of that in plants, where two distinct LipDHs are found in mitochondria and chloroplasts, respectively, that are part of the organelle-specific KADHs. In this study, we show by reverse transcription polymerase chain reaction (RT-PCR) that the genes encoding subunits of all three KADHs, including both LipDHs, are transcribed during the erythrocytic development of P. falciparum. Protein expression of mitochondrial LipDH and mitochondrial branched chain alpha-ketoacid dihydrolipoamide transacylase in these parasite stages was confirmed by Western blotting. The localization of the two LipDHs to the parasite's apicoplast and mitochondrion, respectively, was shown by expressing the LipDH N-terminal presequences fused to green fluorescent protein in erythrocytic stages of P. falciparum and by immunofluorescent colocalization with organelle-specific markers. Biochemical characterization of recombinantly expressed mitochondrial LipDH revealed that the protein has kinetic and physicochemical characteristics typical of these flavo disulphide oxidoreductases. We propose that the mitochondrial LipDH is part of the mitochondrial alpha-ketoglutarate dehydrogenase and branched chain alpha-ketoacid dehydrogenase complexes and that the apicoplast LipDH is an integral part of the pyruvate dehydrogenase complex which occurs only in the apicoplast in P. falciparum.
Collapse
Affiliation(s)
- Paul J McMillan
- Institute of Biomedical and Life Sciences, Infection and Immunity, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | |
Collapse
|
143
|
Omara-Opyene AL, Moura PA, Sulsona CR, Bonilla JA, Yowell CA, Fujioka H, Fidock DA, Dame JB. Genetic disruption of the Plasmodium falciparum digestive vacuole plasmepsins demonstrates their functional redundancy. J Biol Chem 2004; 279:54088-96. [PMID: 15491999 DOI: 10.1074/jbc.m409605200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The digestive vacuole plasmepsins PfPM1, PfPM2, PfPM4, and PfHAP (a histoaspartic proteinase) are 4 aspartic proteinases among 10 encoded in the Plasmodium falciparum malarial genome. These have been hypothesized to initiate and contribute significantly to hemoglobin degradation, a catabolic function essential to the survival of this intraerythrocytic parasite. Because of their perceived significance, these plasmepsins have been proposed as potential targets for antimalarial drug development. To test their essentiality, knockout constructs were prepared for each corresponding gene such that homologous recombination would result in two partial, nonfunctional gene copies. Disruption of each gene was achieved, as confirmed by PCR, Southern, and Northern blot analyses. Western and two-dimensional gel analyses revealed the absence of mature or even truncated plasmepsins corresponding to the disrupted gene. Reduced growth rates were observed with PfPM1 and PfPM4 knockouts, indicating that although these plasmepsins are not essential, they are important for parasite development. Abnormal mitochondrial morphology also appeared to accompany loss of PfPM2, and an abundant accumulation of electron-dense vesicles in the digestive vacuole was observed upon disruption of PfPM4; however, those phenotypes only manifested in about a third of the disrupted cells. The ability to compensate for loss of individual plasmepsin function may be explained by close similarity in the structure and active site of these four vacuolar enzymes. Our data imply that drug discovery efforts focused on vacuolar plasmepsins must incorporate measures to develop compounds that can inhibit two or more of this enzyme family.
Collapse
Affiliation(s)
- A Levi Omara-Opyene
- Department of Pathobiology, University of Florida, Gainesville, Florida 32611-0880, USA
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Hoppe HC, van Schalkwyk DA, Wiehart UIM, Meredith SA, Egan J, Weber BW. Antimalarial quinolines and artemisinin inhibit endocytosis in Plasmodium falciparum. Antimicrob Agents Chemother 2004; 48:2370-8. [PMID: 15215083 PMCID: PMC434207 DOI: 10.1128/aac.48.7.2370-2378.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endocytosis is a fundamental process of eukaryotic cells and fulfills numerous functions, most notably, that of macromolecular nutrient uptake. Malaria parasites invade red blood cells and during their intracellular development endocytose large amounts of host cytoplasm for digestion in a specialized lysosomal compartment, the food vacuole. In the present study we have examined the effects of artemisinin and the quinoline drugs chloroquine and mefloquine on endocytosis in Plasmodium falciparum. By using novel assays we found that mefloquine and artemisinin inhibit endocytosis of macromolecular tracers by up to 85%, while the latter drug also leads to an accumulation of undigested hemoglobin in the parasite. During 5-h incubations, chloroquine inhibited hemoglobin digestion but had no other significant effect on the endocytic pathway of the parasite, as assessed by electron microscopy, the immunofluorescence localization of hemoglobin, and the distribution of fluorescent and biotinylated dextran tracers. By contrast, when chloroquine was added to late ring stage parasites, followed by a 12-h incubation, macromolecule endocytosis was inhibited by more than 40%. Moreover, there is an accumulation of transport vesicles in the parasite cytosol, possibly due to a disruption in vacuole-vesicle fusion. This fusion block is not observed with mefloquine, artemisinin, quinine, or primaquine but is mimicked by the vacuole alkalinizing agents ammonium chloride and monensin. These results are discussed in the light of present theories regarding the mechanisms of action of the antimalarials and highlight the potential use of drugs in manipulating and studying the endocytic pathway of malaria parasites.
Collapse
Affiliation(s)
- Heinrich C Hoppe
- Division of Pharmacology, University of Cape Town Medical School, Groote Schuur Hospital Old Building, Observatory, Cape Town 7925, South Africa.
| | | | | | | | | | | |
Collapse
|
145
|
Klemba M, Gluzman I, Goldberg DE. A Plasmodium falciparum dipeptidyl aminopeptidase I participates in vacuolar hemoglobin degradation. J Biol Chem 2004; 279:43000-7. [PMID: 15304495 DOI: 10.1074/jbc.m408123200] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intraerythrocytic growth of the human malaria parasite Plasmodium falciparum requires the catabolism of large amounts of host cell hemoglobin. Endoproteolytic digestion of hemoglobin to short oligopeptides occurs in an acidic organelle called the food vacuole. How amino acids are generated from these peptides is not well understood. To gain insight into this process, we have studied a plasmodial ortholog of the lysosomal exopeptidase cathepsin C. The plasmodial enzyme dipeptidyl aminopeptidase 1 (DPAP1) was enriched from parasite extract by two different approaches and was shown to possess hydrolytic activity against fluorogenic dipeptide substrates. To localize DPAP1 we created a transgenic parasite line expressing a chromosomally encoded DPAP1-green fluorescent protein fusion. Green fluorescent protein fluorescence was observed in the food vacuole of live transgenic parasites, and anti-DPAP1 antibody labeled the food vacuole in parasite cryosections. Together these data implicate DPAP1 in the generation of dipeptides from hemoglobin-derived oligopeptides. To assess the significance of DPAP1, we attempted to ablate DPAP1 activity from blood stage parasites by truncating the chromosomal DPAP1-coding sequence. The inability to disrupt the coding sequence indicates that DPAP1 is important for asexual proliferation. The proenzyme form of DPAP1 was found to accumulate in the parasitophorous vacuole of mature parasites. This observation suggests a trafficking route for DPAP1 through the parasitophorous vacuole to the food vacuole.
Collapse
Affiliation(s)
- Michael Klemba
- Department of Medicine, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
146
|
Krungkrai SR, Prapunwattana P, Horii T, Krungkrai J. Orotate phosphoribosyltransferase and orotidine 5'-monophosphate decarboxylase exist as multienzyme complex in human malaria parasite Plasmodium falciparum. Biochem Biophys Res Commun 2004; 318:1012-8. [PMID: 15147974 DOI: 10.1016/j.bbrc.2004.04.124] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Indexed: 11/26/2022]
Abstract
Plasmodium falciparum, the causative agent of the most lethal form of human malaria, totally depends on de novo pyrimidine biosynthetic pathway. Orotate phosphoribosyltransferase (OPRT) and orotidine 5'-monophosphate decarboxylase (OMPDC), the fifth and sixth enzymes in the pathway catalyzing formation of uridine 5'-monophosphate (UMP), remain largely uncharacterized in the protozoan parasite. In this study, we achieved purification of OPRT and OMPDC to near homogeneity from P. falciparum cultivated in vitro. The OPRT and OMPDC activities were co-eluted in all chromatographic columns during purification, suggesting the purified proteins exist as a multienzyme complex with a molecular mass of 140+/-8 kDa and contain two subunits each of OPRT and OMPDC. Monomeric forms of OPRT and OMPDC had molecular masses of 32+/-3 and 38+/-3 kDa, respectively, in agreement with those of proteins predicted from P. falciparum genome database. Interestingly, kinetic parameters and inhibitory constants of both OPRT and OMPDC activities were found to be different to those of the bifunctional human red cell UMP synthase. Our evidence provides the first example of OPRT and OMPDC existing as a multienzyme complex.
Collapse
Affiliation(s)
- Sudaratana R Krungkrai
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Rama 4 Road, Bangkok 10330, Thailand
| | | | | | | |
Collapse
|
147
|
Iyer JK, Shi L, Shankar AH, Sullivan DJ. Zinc protoporphyrin IX binds heme crystals to inhibit the process of crystallization in Plasmodium falciparum. Mol Med 2004; 9:175-82. [PMID: 14571325 PMCID: PMC1430826 DOI: 10.2119/2003-00010.sullivan] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intraerythrocytic Plasmodium falciparum parasite converts most of host hemoglobin heme into a nontoxic heme crystal. Erythrocyte zinc protoporphyrin IX, normally present at 0.5 microM, which is a ratio of 1:40,000 hemes, can elevate 10-fold in some of the anemias associated with malaria disease protection. This work examines a binding mechanism for zinc protoporphyrin IX inhibition of heme crystallization similar to the antimalarial quinolines. Zinc protoporphyrin IX neither forms crystals alone nor extends on preformed heme crystals. Inhibition of both seed heme crystal formation and crystal extension occurs with an inhibitory concentration (IC)50 of 5 microM. Field emission in-lens scanning electron microscopy depicts the transition and inhibition of heme monomer aggregates to heme crystals with and without seeding of preformed hemozoin templates. In vitro zinc protoporphyrin IX, like the quinolines, binds to heme crystals in a saturable, specific, pH, and time-dependent manner. The ratio at saturation is approximately 1 zinc protoporphyrin IX per 250 hemes of the crystal. Unlike the quinolines, zinc protoporphyrin IX binds measurably in the absence of heme. Isolated ring and trophozoite stage parasites have an elevated zinc protoporphyrin IX to heme ratio 6 to 10 times that in the erythrocyte cytosol, which also corresponds to elevated ratios found in heme crystals purified from Plasmodium parasites. This work implicates protection from malaria by a mechanism where elevated zinc protoporphyrin IX in anemic erythrocytes binds to heme crystals to inhibit further crystallization. In endemic malaria areas, severe iron deficiency anemia should be treated with antimalarials along with iron replenishment.
Collapse
Affiliation(s)
- Jayasree K Iyer
- The W Harry Feinstone Department of Molecular Microbiology and Immunology, Department of International Health, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Lirong Shi
- The W Harry Feinstone Department of Molecular Microbiology and Immunology, Department of International Health, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Anuraj H Shankar
- The W Harry Feinstone Department of Molecular Microbiology and Immunology, Department of International Health, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - David J Sullivan
- The W Harry Feinstone Department of Molecular Microbiology and Immunology, Department of International Health, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
- Address correspondence and reprint requests to David J Sullivan, Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205. Phone: 410-614-1562; fax: 410-955-0105; e-mail:
| |
Collapse
|
148
|
Allen RJW, Kirk K. Cell volume control in the Plasmodium-infected erythrocyte. Trends Parasitol 2004; 20:7-10; discussion 10-1. [PMID: 14700581 DOI: 10.1016/j.pt.2003.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Richard J W Allen
- School of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | |
Collapse
|
149
|
Lew VL, Macdonald L, Ginsburg H, Krugliak M, Tiffert T. Excess haemoglobin digestion by malaria parasites: a strategy to prevent premature host cell lysis. Blood Cells Mol Dis 2004; 32:353-9. [PMID: 15121091 DOI: 10.1016/j.bcmd.2004.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Indexed: 10/26/2022]
Abstract
To understand the osmotic stability of a Plasmodium falciparum-infected red blood cell, whose membrane permeability becomes highly increased during parasite growth, we developed an integrated mathematical model of the homeostasis of an infected red cell. The model encoded the known time courses of red cell membrane permeabilisation and of haemoglobin digestion, as well as alternative options for parasite volume growth. Model simulations revealed that excess haemoglobin digestion, by reducing the colloid-osmotic pressure within the host red cell, is essential to preserve the osmotic stability of the infected cell for the duration of the parasite asexual cycle. We present here experimental tests of the model predictions and discuss the available evidence in the context of the interpretations provided by the model.
Collapse
Affiliation(s)
- Virgilio L Lew
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | | | | | | | | |
Collapse
|
150
|
Fitch CD. Ferriprotoporphyrin IX, phospholipids, and the antimalarial actions of quinoline drugs. Life Sci 2004; 74:1957-72. [PMID: 14967191 DOI: 10.1016/j.lfs.2003.10.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 10/04/2003] [Indexed: 11/23/2022]
Abstract
Two subclasses of quinoline antimalarial drugs are used clinically. Both act on the endolysosomal system of malaria parasites, but in different ways. Treatment with 4-aminoquinoline drugs, such as chloroquine, causes morphologic changes and hemoglobin accumulation in endocytic vesicles. Treatment with quinoline-4-methanol drugs, such as quinine and mefloquine, also causes morphologic changes, but does not cause hemoglobin accumulation. In addition, chloroquine causes undimerized ferriprotoporphyrin IX (ferric heme) to accumulate whereas quinine and mefloquine do not. On the contrary, treatment with quinine or mefloquine prevents and reverses chloroquine-induced accumulation of hemoglobin and undimerized ferriprotoporphyrin IX. This difference is of particular interest since there is convincing evidence that undimerized ferriprotoporphyrin IX in malaria parasites would interact with and serve as a target for chloroquine. According to the ferriprotoporphyrin IX interaction hypothesis, chloroquine would bind to undimerized ferriprotoporphyrin IX, delay its detoxification, cause it to accumulate, and allow it to exert its intrinsic biological toxicities. The ferriprotoporphyrin IX interaction hypothesis appears to explain the antimalarial action of chloroquine, but a drug target in addition to ferriprotoporphyrin IX is suggested by the antimalarial actions of quinine and mefloquine. This article summarizes current knowledge of the role of ferriprotoporphyrin IX in the antimalarial actions of quinoline drugs and evaluates the currently available evidence in support of phospholipids as a second target for quinine, mefloquine and, possibly, the chloroquine-ferriprotoporphyrin IX complex.
Collapse
Affiliation(s)
- Coy D Fitch
- Department of Internal Medicine, School of Medicine, Saint Louis University Health Sciences Center, 1402 South Grand Boulevard, St. Louis, MO 63104, USA.
| |
Collapse
|