101
|
Ma Y, Hu J, Zhang N, Dong X, Li Y, Yang B, Tian W, Wang X. Prediction of Candidate Drugs for Treating Pancreatic Cancer by Using a Combined Approach. PLoS One 2016; 11:e0149896. [PMID: 26910401 PMCID: PMC4765895 DOI: 10.1371/journal.pone.0149896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/05/2016] [Indexed: 01/15/2023] Open
Abstract
Pancreatic cancer is the leading cause of death from solid malignancies worldwide. Currently, gemcitabine is the only drug approved for treating pancreatic cancer. Developing new therapeutic drugs for this disease is, therefore, an urgent need. The C-Map project has provided a wealth of gene expression data that can be mined for repositioning drugs, a promising approach to new drug discovery. Typically, a drug is considered potentially useful for treating a disease if the drug-induced differential gene expression profile is negatively correlated with the differentially expressed genes in the target disease. However, many of the potentially useful drugs (PUDs) identified by gene expression profile correlation are likely false positives because, in C-Map, the cultured cell lines to which the drug is applied are not derived from diseased tissues. To solve this problem, we developed a combined approach for predicting candidate drugs for treating pancreatic cancer. We first identified PUDs for pancreatic cancer by using C-Map-based gene expression correlation analyses. We then applied an algorithm (Met-express) to predict key pancreatic cancer (KPC) enzymes involved in pancreatic cancer metabolism. Finally, we selected candidates from the PUDs by requiring that their targets be KPC enzymes or the substrates/products of KPC enzymes. Using this combined approach, we predicted seven candidate drugs for treating pancreatic cancer, three of which are supported by literature evidence, and three were experimentally validated to be inhibitory to pancreatic cancer celllines.
Collapse
Affiliation(s)
- Yanfen Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, P.R. China
- Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi province, P.R. China
| | - Jian Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, P.R. China
| | - Ning Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, P.R. China
- Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi province, P.R. China
| | - Xinran Dong
- Department of Biostatistics and Computational Biology, School of Life Science, Fudan University, Shanghai, China
| | - Ying Li
- Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi province, P.R. China
- SHAANXI Kang Fu Hospital, Xi'an, Shaanxi province, P.R. China
| | - Bo Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, P.R. China
| | - Weidong Tian
- Department of Biostatistics and Computational Biology, School of Life Science, Fudan University, Shanghai, China
| | - Xiaoqin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, P.R. China
| |
Collapse
|
102
|
Itoh K, Akimoto Y, Fuwa TJ, Sato C, Komatsu A, Nishihara S. Mucin-type core 1 glycans regulate the localization of neuromuscular junctions and establishment of muscle cell architecture in Drosophila. Dev Biol 2016; 412:114-127. [PMID: 26896591 DOI: 10.1016/j.ydbio.2016.01.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 12/27/2022]
Abstract
T antigen (Galβ1-3GalNAcα1-Ser/Thr), a core 1 mucin-type O-glycan structure, is synthesized by Drosophila core 1 β1,3-galactosyltrasferase 1 (dC1GalT1) and is expressed in various tissues. We previously reported that dC1GalT1 synthesizes T antigen expressed in hemocytes, lymph glands, and the central nervous system (CNS) and that dC1GalT1 mutant larvae display decreased numbers of circulating hemocytes and excessive differentiation of hematopoietic stem cells in lymph glands. dC1GalT1 mutant larvae have also been shown to have morphological defects in the CNS. However, the functions of T antigen in other tissues remain largely unknown. In this study, we found that glycans contributed to the localization of neuromuscular junction (NMJ) boutons. In dC1GalT1 mutant larvae, NMJs were ectopically formed in the cleft between muscles 6 and 7 and connected with these two muscles. dC1GalT1 synthesized T antigen, which was expressed at NMJs. In addition, we determined the function of mucin-type O-glycans in muscle cells. In dC1GalT1 mutant muscles, myofibers and basement membranes were disorganized. Moreover, ultrastructural defects in NMJs and accumulation of large endosome-like structures within both NMJ boutons and muscle cells were observed in dC1GalT1 mutants. Taken together, these results demonstrated that mucin-type O-glycans synthesized by dC1GalT1 were involved in the localization of NMJ boutons, synaptogenesis of NMJs, establishment of muscle cell architecture, and endocytosis.
Collapse
Affiliation(s)
- Kazuyoshi Itoh
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji-shi, Tokyo 192-8577, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Takashi J Fuwa
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji-shi, Tokyo 192-8577, Japan
| | - Chikara Sato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba-shi, Ibaraki 305-8566, Japan
| | - Akira Komatsu
- Department of Biosciences, Faculty of science and engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya-shi, Tochigi 320-0003, Japan
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji-shi, Tokyo 192-8577, Japan.
| |
Collapse
|
103
|
The Densely O-Glycosylated MUC2 Mucin Protects the Intestine and Provides Food for the Commensal Bacteria. J Mol Biol 2016; 428:3221-3229. [PMID: 26880333 DOI: 10.1016/j.jmb.2016.02.010] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/22/2022]
Abstract
All mucins are highly O-glycosylated by variable glycans depending on species, histoblood group and organ. This makes the intestinal main mucin MUC2 non-degradable by the host digestive system but well by both commensal and pathogenic bacteria. The MUC2 glycans are important for selection of the commensal bacteria and act as a nutritional source for the bacteria; this also helps the host to recover some of the energy spent on constantly renewing the protective mucus layer. Glycosylation is the most diverse and common posttranslational modification of cell surfaces and secreted proteins. N-Glycosylation is most well studied and predictable, whereas O-glycosylation is more diverse and less well understood. O-Glycosylation is also often called mucin-type glycosylation as it is typical for mucins that often have more than 80% of the mass as O-glycans. This review will discuss the mucin-type O-glycosylation and especially the O-glycosylation of human and mice intestinal mucin MUC2 in relation to bacteria and disease.
Collapse
|
104
|
Miura K, Hakamata W, Tanaka A, Hirano T, Nishio T. Discovery of human Golgi β-galactosidase with no identified glycosidase using a QMC substrate design platform for exo-glycosidase. Bioorg Med Chem 2016; 24:1369-75. [PMID: 26875935 DOI: 10.1016/j.bmc.2016.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/28/2016] [Accepted: 02/06/2016] [Indexed: 01/04/2023]
Abstract
Post-translational modifications (PTMs) of proteins play important roles in the physiology of eukaryotes. In the PTMs, non-reversible glycosylations are classified as N-glycosylations and O-glycosylations, and are catalyzed by various glycosidases and glycosyltransferases. However, β-glycosidases are not known to play a role in N- and O-glycan processing, although both glycans provide partial structures as substrates for β-galactosidase and β-N-acetylglucosaminidase in the Golgi apparatus of human cells. We explored human Golgi β-galactosidase using fluorescent substrates based on a quinone methide cleavage (QMC) substrate design platform that was previously developed to image exo-type glycosidases in living cells. As a result, we discovered a novel Golgi β-galactosidase in human cells. It is possible to predict a novel and important function in glycan processing of this β-galactosidase, because various β-galactosyl linkages in N- and O-glycans exist in Golgi apparatus. In addition, these results show that the QMC platform is excellent for imaging exo-type glycosidases.
Collapse
Affiliation(s)
- Kazuki Miura
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Wataru Hakamata
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan.
| | - Ayako Tanaka
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Takako Hirano
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Toshiyuki Nishio
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| |
Collapse
|
105
|
Harada Y, Izumi H, Noguchi H, Kuma A, Kawatsu Y, Kimura T, Kitada S, Uramoto H, Wang KY, Sasaguri Y, Hijioka H, Miyawaki A, Oya R, Nakayama T, Kohno K, Yamada S. Strong expression of polypeptide N-acetylgalactosaminyltransferase 3 independently predicts shortened disease-free survival in patients with early stage oral squamous cell carcinoma. Tumour Biol 2016; 37:1357-68. [PMID: 26296622 PMCID: PMC4841842 DOI: 10.1007/s13277-015-3928-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/12/2015] [Indexed: 01/02/2023] Open
Abstract
The polypeptide N-acetylgalactosaminyltransferase (GalNAc-Ts) family of enzymes regulates the critical initial steps of mucin-type O-glycosylation. Among GalNAc-Ts that may significantly influence cancer biology, thus affecting cell differentiation, adhesion, invasion, and/or metastasis, GalNAc-T3 exhibits a high expression in several human cancers, closely associated with tumor progression and a poor prognosis. However, the expression pattern of GalNAc-T3 in oral squamous cell carcinoma (OSCC) remains obscure. Since postoperative recurrence of even early stage OSCC (ESOSCC) occurs at an early phase, significantly affecting their clinical course and worse outcome, the identification of clinically significant accurate biomarkers is needed. Therefore, we investigated the correlation between the immunohistochemical GalNAc-T3 expression and various clinicopathological characteristics and recurrence using 110 paraffin-embedded tumor samples obtained from patients with surgically resected ESOSCC (T1-2N0). Recurrence was recognized in 37 of 110 (33.6 %) patients. The GalNAc-T3 expression was considered to be strongly positive when 20 % or more of the cancer cells showed positive cytoplasmic staining. Consequently, a strong expression of GalNAc-T3 was observed in 40 patients (36.4 %), showing a close relationship to poor differentiation, the presence of lymphatic and vascular invasion, and recurrence. Univariate and multivariate analyses further demonstrated that the patients with a strong GalNAc-T3+ status had markedly lower disease-free survival (DFS) rates, especially within the first 2 years postoperatively. Therefore, GalNAc-T3 might play a role in the pathogenesis of ESOSCC recurrence, and its immunohistochemical detection potentially predicts a shorter DFS and may be a useful parameter for providing clinical management against ESOSCC in the early postoperative phase.
Collapse
Affiliation(s)
- Yoshikazu Harada
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
- Department of Dentistry and Oral Surgery, University Hospital of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Hirotsugu Noguchi
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Akihiro Kuma
- Department of Second Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yuichiro Kawatsu
- Department of Health Policy and Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Tomoko Kimura
- Department of Health Policy and Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Shohei Kitada
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Hidetaka Uramoto
- Second Department of Surgery, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Ke-Yong Wang
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yasuyuki Sasaguri
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
- Laboratory of Pathology, Fukuoka Wajiro Hospital, Fukuoka, 811-0213, Japan
| | - Hiroshi Hijioka
- Department of Oral and Maxillofacial Surgery, Field of Oral and Maxillofacial Rehabilitation, Advanced Therapeutics Course, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima, 890-8520, Japan
| | - Akihiko Miyawaki
- Department of Dentistry and Oral Surgery, University Hospital of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Ryoichi Oya
- Department of Dentistry and Oral Surgery, University Hospital of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | | | - Sohsuke Yamada
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
- Institute of Pathology, Medical University of Graz, Graz, 8010, Austria.
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria.
| |
Collapse
|
106
|
RNAi-mediated gene silencing of ST6GalNAc I suppresses the metastatic potential in gastric cancer cells. Gastric Cancer 2016; 19:85-97. [PMID: 25532910 DOI: 10.1007/s10120-014-0454-z] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/28/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND ST6GalNAc I is a sialyltransferase controlling the expression of sialyl-Tn antigen (STn), which is overexpressed in several epithelial cancers, including gastric cancer, and is highly correlated with cancer metastasis. However, the functional contribution of ST6GalNAc I to development or progression of gastric cancer remains unclear. In this study, we investigated the effects of suppression of ST6GalNAc I on gastric cancer in vitro and in vivo. METHODS Gastric cancer cell lines were transfected with ST6GalNAc I siRNA and were examined by cell proliferation, migration, and invasion assays. We also evaluated the effect of ST6GalNAc I siRNA treatment in a peritoneal dissemination mouse model. The differences in mRNA levels of selected signaling molecules were analyzed by polymerase chain reaction (PCR) arrays associated with tumor metastasis in MKN45 cells. The signal transducer and activator of transcription 5b (STAT5b) signaling pathways that reportedly regulate the insulin-like growth factor-1 (IGF-1) were analyzed by Western blot. RESULTS ST6GalNAc I siRNA inhibited gastric cancer cell growth, migration, and invasion in vitro. Furthermore, intraperitoneal administration of ST6GalNAc I siRNA- liposome significantly inhibited peritoneal dissemination and prolonged the survival of xenograft model mice with peritoneal dissemination of gastric cancer. PCR array confirmed that suppression of ST6GalNAc I caused a significant reduction in expression of IGF-1 mRNA. Decreased IGF-1 expression in MKN45 cells treated with ST6GalNAc I siRNA was accompanied by reduced phosphorylation of STAT5b. CONCLUSION ST6GalNAc I may regulate the gene expression of IGF-1 through STAT5b activation in gastric cancer cells and may be a potential target for treatment of metastasizing gastric cancer.
Collapse
|
107
|
Development of Monoclonal Antibodies against CMP-N-Acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1 (ST3Gal-I) Recombinant Protein Expressed in E. coli. Biochem Res Int 2015; 2015:767204. [PMID: 26783462 PMCID: PMC4689901 DOI: 10.1155/2015/767204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/21/2015] [Accepted: 11/25/2015] [Indexed: 11/17/2022] Open
Abstract
Aberrant glycosylation is one of the major hallmarks of cancer with altered gene expression signatures of sialyltransferases. ST3Gal-I, a sialyltransferase, is known to play a crucial role in sialylation of T antigen in bladder cancer and it has reported elevated expression in breast carcinogenesis with increased tumor progression stages. The aim of the current study is to develop new monoclonal antibodies (mAbs) against human ST3Gal-I and evaluate their diagnostic potential. We developed a repertoire of stable hybridoma cell lines producing high-affinity IgG antibodies against recombinant human ST3Gal-I, expressed in E. coli BL21-DE3 strain. In order to demonstrate the diagnostic value of the mAbs, various clones were employed for the immunohistochemistry analysis of ST3Gal-I expression in cancerous tissues. Antibodies generated by 7E51C83A10 clone demonstrated a strong and specific fluorescence staining in breast cancer tissue sections and did not exhibit significant background in fibroadenoma sections. In conclusion, the mAbs raised against recombinant ST3Gal-I recognize cellular ST3Gal-I and represent a promising diagnostic tool for the immunodetection of ST3Gal-I expressing cells. Specific-reactivity of clone 7E51C83A10 mAbs towards ST3Gal-I was also confirmed by immunoblotting. Therefore, our observations warrant evaluation of ST3Gal-I as a potential marker for cancer diagnosis at larger scale.
Collapse
|
108
|
Abstract
The Golgi apparatus-complex is a highly dynamic organelle which is considered the "heart" of intracellular transportation. Since its discovery by Camillo Golgi in 1873, who described it as the "black reaction," and despite the enormous volume of publications about Golgi, this apparatus remains one of the most enigmatic of the cytoplasmic organelles. A typical mammalian Golgi consists of a parallel series of flattened, disk-shaped cisternae which align into stacks. The tremendous volume of Golgi-related incoming and outgoing traffic is mediated by different motor proteins, including members of the dynein, kinesin, and myosin families. Yet in spite of the strenuous work it performs, Golgi contrives to maintain its monolithic morphology and orchestration of matrix and residential proteins. However, in response to stress, alcohol, and treatment with many pharmacological drugs over time, Golgi undergoes a kind of disorganization which ranges from mild enlargement to critical scattering. While fragmentation of the Golgi was confirmed in cancer by electron microscopy almost fifty years ago, it is only in recent years that we have begun to understand the significance of Golgi fragmentation in the biology of tumors. Below author would like to focus on how Golgi fragmentation opens the doors for cascades of fatal pathways which may facilitate cancer progression and metastasis. Among the issues addressed will be the most important cancer-specific hallmarks of Golgi fragmentation, including aberrant glycosylation, abnormal expression of the Ras GTPases, dysregulation of kinases, and hyperactivity of myosin motor proteins.
Collapse
Affiliation(s)
- Armen Petrosyan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
109
|
Mihalache A, Delplanque JF, Ringot-Destrez B, Wavelet C, Gosset P, Nunes B, Groux-Degroote S, Léonard R, Robbe-Masselot C. Structural Characterization of Mucin O-Glycosylation May Provide Important Information to Help Prevent Colorectal Tumor Recurrence. Front Oncol 2015; 5:217. [PMID: 26500890 PMCID: PMC4597131 DOI: 10.3389/fonc.2015.00217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/22/2015] [Indexed: 12/18/2022] Open
Abstract
Although colorectal cancer is a preventable and curable disease if early stage tumors are removed, it still represents the second cause of cancer-related death worldwide. Surgical resection is the only curative treatment but once operated the patient is either subjected to adjuvant chemotherapy or not, depending on the invasiveness of the cancer and risks of recurrence. In this context, we investigated, by mass spectrometry (MS), alterations in the repertoire of glycosylation of mucins from colorectal tumors of various stages, grades, and recurrence status. Tumors were also compared with their counterparts in resection margins from the same patients and with healthy controls. The obtained data showed an important decrease in the level of expression of sialylated core 3-based O-glycans in tumors correlated with an increase in sialylated core 1 structures. No correlation was established between stages of the tumor samples and mucin O-glycosylation. However, with the notable exception of sialyl Tn antigens, tumors with recurrence presented a milder alteration of glycosylation profile than tumors without recurrence. These results suggest that mucin O-glycans from tumors with recurrence might mimic a healthier physiological situation, hence deceiving the immune defense system.
Collapse
Affiliation(s)
- Adriana Mihalache
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Lille , Villeneuve d'Ascq , France ; Service d'Anatomie Pathologie, Faculté Libre de Médecine, Hôpital Saint Vincent de Paul, Groupement des Hôpitaux de l'Institut Catholique de Lille , Lille , France
| | - Jean-François Delplanque
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Lille , Villeneuve d'Ascq , France
| | - Bélinda Ringot-Destrez
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Lille , Villeneuve d'Ascq , France
| | - Cindy Wavelet
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Lille , Villeneuve d'Ascq , France
| | - Pierre Gosset
- Service d'Anatomie Pathologie, Faculté Libre de Médecine, Hôpital Saint Vincent de Paul, Groupement des Hôpitaux de l'Institut Catholique de Lille , Lille , France
| | - Bertrand Nunes
- Service Chirurgie Digestive, Faculté Libre de Médecine, Hôpital Saint Philibert, Groupement des Hôpitaux de l'Institut Catholique de Lille , Lille , France
| | - Sophie Groux-Degroote
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Lille , Villeneuve d'Ascq , France
| | - Renaud Léonard
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Lille , Villeneuve d'Ascq , France
| | - Catherine Robbe-Masselot
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Lille , Villeneuve d'Ascq , France
| |
Collapse
|
110
|
Huanna T, Tao Z, Xiangfei W, Longfei A, Yuanyuan X, Jianhua W, Cuifang Z, Manjing J, Wenjing C, Shaochuan Q, Feifei X, Naikang L, Jinchao Z, Chen W. GALNT14 mediates tumor invasion and migration in breast cancer cell MCF-7. Mol Carcinog 2015; 54:1159-71. [PMID: 24962947 DOI: 10.1002/mc.22186] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 04/20/2014] [Accepted: 05/06/2014] [Indexed: 11/10/2022]
Abstract
Aberrant glycosylation is a hallmark of most human cancers and affects many cellular properties, including cell proliferation, apoptosis, differentiation, transformation, migration, invasion, and immune responses. Here, we report that N-acetylgalactosaminyltransferase14 (GALNT14), which mediates the initial step of mucin-type O-glycosylation and is heterogeneously expressed in most breast cancers, plays a critical role in the invasion and migration of breast cancers by regulating the activity of MMP-2 and expression of some EMT genes. We have modulated the expression of GALNT14 by RNAi and overexpression in MCF-7 cells. Overexpression of GALNT14 significantly enhanced cell migration and invasion and promoted the proliferation of breast cancer cells. Knockdown of GALNT14 reduced clonogenicity and attenuates cell migration and cell invasion. The mRNAs for N-cadherin, vimentin, E-cadherin, MMP-2, VEGF, and TGF-β were determined by RT-qPCR involving GALNT14-overexpressing or knockdown MCF-7 cells. Expression profiling revealed the upregulation of N-cadherin, vimentin, MMP-2, VEGF, TGF-β and the downregulation of E-cadherin in GALNT14 overexpressing cells, with the opposite seen in GALNT14 knockdowns. Gelatin zymography analysis further indicated that overexpression of GALNT14 increased MMP-2 activity in MCF-7 cells. Conversely, downregulation of GALNT14 reduced MMP-2 activity. Promoter analysis revealed that GALNT14 stimulates MMP-2 expression through the AP-1-binding site. Western blot analyses showed that knockdown of GALNT14 significantly reduced the expression of an oncoprotein mucin 1 (MUC1). These findings indicate that GALNT14 contributes to breast cancer invasion by altering the cell proliferation, motility, expression levels of EMT genes, and by stimulating MMP-2 activity, suggesting GALNT14 may be a potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Tian Huanna
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
- Basic Medical Institute, Chengde Medical College, Chengde, Hebei, PR China
| | - Zuo Tao
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
| | - Wang Xiangfei
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
| | - An Longfei
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
| | - Xie Yuanyuan
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
| | - Wang Jianhua
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
| | - Zhang Cuifang
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
| | - Jiao Manjing
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
| | - Cao Wenjing
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
| | - Qin Shaochuan
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
| | - Xu Feifei
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
| | - Li Naikang
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
| | - Zhang Jinchao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei, PR China
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, PR China
| | - Wu Chen
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei, PR China
| |
Collapse
|
111
|
Fernandes E, Peixoto A, Neves M, Afonso LP, Santos LL, Ferreira JA. Humoral response against sialyl-Le(a) glycosylated protein species in esophageal cancer: Insights for immunoproteomic studies. Electrophoresis 2015; 36:2902-7. [PMID: 26333169 DOI: 10.1002/elps.201500270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/13/2015] [Accepted: 08/12/2015] [Indexed: 12/18/2022]
Abstract
Esophageal cancers (ECs) show poor prognosis and decreased overall survival due to late diagnosis and ineffective therapeutics, urging the introduction of novel biomarkers to aid disease management. The levels of sialyl-Lewis(a) antigen (sLe(a) ) are frequently increased in digestive tumours, which has been explored in serological non-invasive prognostication (CA19-9 test); however, with low sensitivity and specificity. Autoantibodies against cancer antigens are considered the next generation biomarkers, as they are present in circulation long before tumour-associated proteins. Based on these observations we have mined the serum of EC patients (n = 7) for antibodies against sLe(a) -glycosylated protein species. All EC were positive for sLe(a) , irrespectively of their histological nature but only two patients showed elevated CA19-9. Moreover, IgG titers, with emphasis on IgG1, were elevated in EC patients in comparison to the control group. SLe(a) -glycoproteins were then extracted from tumours of patients with negative CA19-9, isolated by immunoprecipitation and blotted with patients IgG. Autoantibodies against sLe(a) -glycosylated proteins were detected in all cases. Different SLe(a) -glycoproteins were observed for tumours of distinct histological natures, which now require identification and validation in larger patient sets. This preliminary data suggests that antoantibodies against sLe(a) glycosylated proteins hold potential for non-invasive diagnosis in CA19-9 negative cases and sets the rational for future immunoproteomic studies envisaging highly specific EC biomarkers.
Collapse
Affiliation(s)
- Elisabete Fernandes
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar, University of Porto, Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Manuel Neves
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Luís Pedro Afonso
- Department of Pathology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Health School of University of Fernando Pessoa, Porto, Portugal.,Department of Surgical Oncology, Portuguese Institute for Oncology, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Mass Spectrometry Centre, QOPNA, Department of Chemistry of the University of Aveiro, Aveiro, Portugal
| |
Collapse
|
112
|
Mori Y, Akita K, Yashiro M, Sawada T, Hirakawa K, Murata T, Nakada H. Binding of Galectin-3, a β-Galactoside-binding Lectin, to MUC1 Protein Enhances Phosphorylation of Extracellular Signal-regulated Kinase 1/2 (ERK1/2) and Akt, Promoting Tumor Cell Malignancy. J Biol Chem 2015; 290:26125-40. [PMID: 26342075 DOI: 10.1074/jbc.m115.651489] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Indexed: 11/06/2022] Open
Abstract
Both mucin 1 (MUC1) and galectin-3 are known to be overexpressed in various malignant tumors and associated with a poor prognosis. It has been extensively reported that MUC1 is involved in potentiation of growth factor-dependent signal transduction. Because some carbohydrate moieties carried on MUC1 change to preferable ones for binding of galectin-3 in cancer cells, we speculated that MUC1-mediated signaling may occur through direct binding of galectin-3. Immunochemical studies showed that the distribution of galectin-3 coincided with that of MUC1 in various human tumor tissues but not in human nonmalignant tissues, and the level of galectin-3 retained on the surface of various cancer cells paralleled that of MUC1. Treatment of MUC1-expressing cells with galectin-3 induced phosphorylation of ERK1/2 and Akt following enhanced phosphorylation of MUC1 C-terminal domain, consistently promoting tumor cell malignancy. It is also noted that this enhanced phosphorylation occurred independently of EGF receptor-mediated signaling in both EGF receptor- and MUC1-expressing cells, and multivalency of galectin-3 was important for initiation of MUC1-mediated signaling. Expectedly, both silencing of endogenous galectin-3 and treatment with galectin-3 antagonists down-regulated cell proliferation of MUC1-expressing cells. These results suggest that the binding of galectin-3 to MUC1 plays a key role in MUC1-mediated signaling. Thus, constitutive activation of MUC1-mediated signaling in an autocrine/paracrine manner caused by ligation of galectin-3 promotes uncontrolled tumor cell malignancy. This signaling may be another MUC1-mediated pathway and function in parallel with a growth factor-dependent MUC1-mediated signaling pathway.
Collapse
Affiliation(s)
- Yugo Mori
- From the Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Kaoru Akita
- From the Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Masakazu Yashiro
- the Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan, the Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan, and
| | - Tetsuji Sawada
- the Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Kosei Hirakawa
- the Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Takeomi Murata
- the Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | - Hiroshi Nakada
- From the Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan,
| |
Collapse
|
113
|
Chugh S, Gnanapragassam VS, Jain M, Rachagani S, Ponnusamy MP, Batra SK. Pathobiological implications of mucin glycans in cancer: Sweet poison and novel targets. Biochim Biophys Acta Rev Cancer 2015; 1856:211-25. [PMID: 26318196 DOI: 10.1016/j.bbcan.2015.08.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/15/2015] [Accepted: 08/25/2015] [Indexed: 12/13/2022]
Abstract
Mucins are large glycoproteins expressed on the epithelia that provide a protective barrier against harsh insults from toxins and pathogenic microbes. These glycoproteins are classified primarily as being secreted and membrane-bound; both forms are involved in pathophysiological functions including inflammation and cancer. The high molecular weight of mucins is attributed to their large polypeptide backbone that is extensively covered by glycan moieties that modulate the function of mucins and, hence, play an important role in physiological functions. Deregulation of glycosylation machinery during malignant transformation results in altered mucin glycosylation. This review describes the functional implications and pathobiological significance of altered mucin glycosylation in cancer. Further, this review delineates various factors such as glycosyltransferases and tumor microenvironment that contribute to dysregulation of mucin glycosylation during cancer. Finally, this review discusses the scope of mucin glycan epitopes as potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Seema Chugh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Vinayaga S Gnanapragassam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
114
|
Wu Q, Yang L, Liu H, Zhang W, Le X, Xu J. Elevated Expression of N-Acetylgalactosaminyltransferase 10 Predicts Poor Survival and Early Recurrence of Patients with Clear-Cell Renal Cell Carcinoma. Ann Surg Oncol 2015; 22:2446-53. [PMID: 25391266 DOI: 10.1245/s10434-014-4236-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Indexed: 08/30/2023]
Abstract
PURPOSE The aim of this study was to evaluate the potential prognostic significance of N-acetylgalactosaminyltransferase 10 (GALNT10) in patients with clear-cell renal cell carcinoma (ccRCC) after surgical resection. METHODS We retrospectively enrolled 271 patients (202 in the training cohort and 69 in the validation cohort) with ccRCC undergoing nephrectomy at a single institution. Clinicopathologic features, overall survival (OS), and recurrence-free survival (RFS) were recorded. GALNT10 intensities were assessed by immunohistochemistry in the specimens of patients. The Kaplan-Meier method was applied to compare survival curves. Cox regression models were used to analyze the impact of prognostic factors on OS and RFS. Concordance index (C-index) was calculated to assess predictive accuracy. RESULTS In both cohorts, elevated GALNT10 expression in tumor tissues positively correlated with advanced TNM stage. High GALNT10 expression indicated poor survival and early recurrence of patients with ccRCC, particularly with early-stage disease. After backward elimination, GALNT10 expression was identified as an independent adverse prognostic factor for survival and recurrence. The predictive accuracy of TNM, University of California Los Angeles Integrated Staging System, and stage, size, grade, and necrosis prognostic models was improved when GALNT10 expression was added. CONCLUSIONS GALNT10 expression is a potential independent adverse prognostic biomarker for recurrence and survival of patients with ccRCC after nephrectomy.
Collapse
Affiliation(s)
- Qian Wu
- Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
115
|
Detailed characterization of the O-linked glycosylation of the neuropilin-1 c/MAM-domain. Glycoconj J 2015; 33:387-97. [PMID: 26059692 DOI: 10.1007/s10719-015-9602-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/20/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
Abstract
Neuropilins are involved in angiogenesis and neuronal development. The membrane proximal domain of neuropilin-1, called c or MAM domain based on its sequence conservation, has been implicated in neuropilin oligomerization required for its function. The c/MAM domain of human neuropilin-1 has been recombinantly expressed to allow for investigation of its propensity to engage in molecular interactions with other protein or carbohydrate components on a cell surface. We found that the c/MAM domain was heavily O-glycosylated with up to 24 monosaccharide units in the form of disialylated core 1 and core 2 O-glycans. Attachment sites were identified on the chymotryptic c/MAM peptide ETGATEKPTVIDSTIQSEFPTY by electron-transfer dissociation mass spectrometry (ETD-MS/MS). For highly glycosylated species consisting of carbohydrate to about 50 %, useful results could only be obtained upon partial desialylation. ETD-MS/MS revealed a hierarchical order of the initial O-GalNAc addition to the four different glycosylation sites. These findings enable future functional studies about the contribution of the described glycosylations in neuropilin-1 oligomerization and the binding to partner proteins as VEGF or galectin-1.As a spin-off result the sialidase from Clostridium perfringens turned out to discriminate between galactose- and N-acetylgalactosamine-linked sialic acid.
Collapse
|
116
|
Orczyk-Pawiłowicz M, Berghausen-Mazur M, Hirnle L, Kątnik-Prastowska I. O-glycosylation of α-1-acid glycoprotein of human milk is lactation stage related. Breastfeed Med 2015; 10:270-6. [PMID: 26057552 PMCID: PMC4490631 DOI: 10.1089/bfm.2015.0049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Human milk provides a multitude of glycoproteins, including highly glycosylated α-1-acid glycoprotein (AGP), which elicits anti-inflammatory and immunomodulatory properties. The milk AGP glycoforms may provide the breastfed infant with a wide range of biological benefits. Here, we analyzed the reactivity of O-linked sugar-specific lectins with human milk AGP over the process of lactation and compared the results with those of the lactating mother's plasma. MATERIALS AND METHODS Relative amounts of human skim milk AGP O-glycans were analyzed in early colostrum, colostrum, and transitional and mature milk samples of 127 healthy mothers by lectin-AGP enzyme-linked immunosorbent assay using sialyl T (sialyl-α2,3/α2,6 Galβ1,3GalNAc-), asialyl T (Galβ1,3GalNAc-), and Tn (GalNAc-) antigen-specific biotinylated Artocarpus integrifolia (Jacalin), Arachis hypogaea (PNA), and Vicia villosa (VVA) lectins, respectively. RESULTS Milk AGP elicited high expression of Jacalin- and PNA-reactive glycotopes and low expression of VVA-reactive glycotopes, which were absent on plasma AGP of lactating mothers and healthy individuals. The expression of sialyl, asialyl T, and Tn glycotopes of human milk AGP was lactation stage related. The relative amount of Jacalin-reactive AGP glycotope was highest in the colostrum samples and then decreased starting from Day 8 of lactation. In contrast, an increase of the relative amount of PNA-reactive glycotope with milk maturation was observed. The relative amount of VVA-reactive glycotope remained almost constant over the development of lactation. CONCLUSIONS Milk AGP differs from mother's plasma AGP by the presence of O-linked sialylated and asialylated T as well as Tn antigens. The variation of the expression of sialylated and asialylated T and Tn antigens on AGP is associated with milk maturation.
Collapse
Affiliation(s)
| | - Marta Berghausen-Mazur
- 2 1st Department and Clinic of Gynaecology and Obstetrics, Wrocław Medical University , Wrocław, Poland
| | - Lidia Hirnle
- 2 1st Department and Clinic of Gynaecology and Obstetrics, Wrocław Medical University , Wrocław, Poland
| | | |
Collapse
|
117
|
Delivery of a mucin domain enriched in cysteine residues strengthens the intestinal mucous barrier. Sci Rep 2015; 5:9577. [PMID: 25974250 PMCID: PMC4431476 DOI: 10.1038/srep09577] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/26/2015] [Indexed: 12/22/2022] Open
Abstract
A weakening of the gut mucous barrier permits an increase in the access of intestinal luminal contents to the epithelial cells, which will trigger the inflammatory response. In inflammatory bowel diseases, there is an inappropriate and ongoing activation of the immune system, possibly because the intestinal mucus is less protective against the endogenous microflora. General strategies aimed at improving the protection of the intestinal epithelium are still missing. We generated a transgenic mouse that secreted a molecule consisting of 12 consecutive copies of a mucin domain into its intestinal mucus, which is believed to modify the mucus layer by establishing reversible interactions. We showed that the mucus gel was more robust and that mucin O-glycosylation was altered. Notably, the gut epithelium of transgenic mice housed a greater abundance of beneficial Lactobacillus spp. These modifications were associated with a reduced susceptibility of transgenic mice to chemically induced colitis. Furthermore, transgenic mice cleared faster Citrobacter rodentium bacteria which were orally given and mice were more protected against bacterial translocation induced by gavage with adherent–invasive Escherichia coli. Our data show that delivering the mucin CYS domain into the gut lumen strengthens the intestinal mucus blanket which is impaired in inflammatory bowel diseases.
Collapse
|
118
|
Cai H, Palitzsch B, Hartmann S, Stergiou N, Kunz H, Schmitt E, Westerlind U. Antibody induction directed against the tumor-associated MUC4 glycoprotein. Chembiochem 2015; 16:959-67. [PMID: 25755023 DOI: 10.1002/cbic.201402689] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Indexed: 12/15/2022]
Abstract
Mucin glycoproteins are important diagnostic and therapeutic targets for cancer treatment. Although several strategies have been developed to explore anti-tumor vaccines based on MUC1 glycopeptides, only few studies have focused on vaccines directed against the tumor-associated MUC4 glycoprotein. MUC4 is an important tumor marker overexpressed in lung cancer and uniquely expressed in pancreatic ductual adenocarcinoma. The aberrant glycosylation of MUC4 in tumor cells results in an exposure of its peptide backbone and the formation of tumor-associated glycopeptide antigens. Due to the low immunogenicity of these endogenous structures, their conjugation with immune stimulating peptide or protein carriers are required. In this study, MUC4 tandem-repeat glycopeptides were conjugated to the tetanus toxoid and used for vaccination of mice. Immunological evaluations showed that our MUC4-based vaccines induced very strong antigen-specific immune responses. In addition, antibody binding epitope analysis on glycopeptide microarrays, were demonstrating a clear glycosylation site dependence of the induced antibodies.
Collapse
Affiliation(s)
- Hui Cai
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Strasse 6b, 44227 Dortmund (Germany)
| | | | | | | | | | | | | |
Collapse
|
119
|
Bhatia S, Prabhu PN, Benefiel AC, Miller MJ, Chow J, Davis SR, Gaskins HR. Galacto-oligosaccharides may directly enhance intestinal barrier function through the modulation of goblet cells. Mol Nutr Food Res 2015; 59:566-73. [PMID: 25421108 DOI: 10.1002/mnfr.201400639] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 12/24/2022]
Abstract
SCOPE Here we have tested the hypothesis that prebiotic galacto-oligosaccharides (GOS) may enhance mucosal barrier function through direct modulation of goblet cell function. METHODS AND RESULTS Human adenocarcinoma-derived LS174T cells, which exhibit an intestinal goblet cell-like phenotype, were used to examine the non-prebiotic effects of GOS on goblet cell functions. LS174T cells were treated with GOS, and the expression of goblet cell secretory product genes mucin 2 (MUC2), trefoil factor 3 (TFF3), resistin-like molecule beta (RETNLB) and the Golgi-sulfotransferase genes, carbohydrate (N-acetylglucosamine-6-O) sulfotransferase 5 (CHST5) and galactose-3-O-sulfotransferase 2 (GAL3ST2), was determined by real-time quantitative RT-PCR. In addition, the abundance of CHST5, TFF3 and RETNLB was confirmed by Western blot analysis. Following treatment with GOS for 72 h, the expression of MUC2 was significantly upregulated 2-4-fold, CHST5 and RETNLB, 5-7-fold, and TFF3 2-4-fold. Western blot analysis demonstrated increased abundance of RETNLB, TFF3 and CHST5. Addition of the Th2 cytokine IL-13 along with GOS resulted in synergistic induction of RETNLB and CHST5. IL-8 secretion was not affected by GOS treatment, suggesting that the effects of GOS are not mediated through an inflammatory pathway. CONCLUSION Collectively, the data indicate that GOS may enhance mucosal barrier function through direct stimulation of intestinal goblet cells.
Collapse
Affiliation(s)
- Shikha Bhatia
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, IL, USA
| | | | | | | | | | | | | |
Collapse
|
120
|
Wu Q, Liu HO, Liu YD, Liu WS, Pan D, Zhang WJ, Yang L, Fu Q, Xu JJ, Gu JX. Decreased expression of hepatocyte nuclear factor 4α (Hnf4α)/microRNA-122 (miR-122) axis in hepatitis B virus-associated hepatocellular carcinoma enhances potential oncogenic GALNT10 protein activity. J Biol Chem 2015; 290:1170-85. [PMID: 25422324 PMCID: PMC4294483 DOI: 10.1074/jbc.m114.601203] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/16/2014] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-122 (miR-122), a mammalian liver-specific miRNA, has been reported to play crucial roles in the control of diverse aspects of hepatic function and dysfunction, including viral infection and hepatocarcinogenesis. In this study, we explored the clinical significance, transcriptional regulation, and direct target of miR-122 in hepatitis B virus (HBV)-associated hepatocellular carcinoma. Reduced expression of miR-122 in patients with HBV-associated hepatocellular carcinoma was correlated with venous invasion and poor prognosis. Furthermore, UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase-10 (GALNT10) was identified as a bona fide target of miR-122 in hepatoma cells. Ectopic expression and knockdown studies showed that GALNT10 indeed promotes proliferation and apoptosis resistance of hepatoma cells in a glycosyltransferase-dependent manner. Critically, adverse correlation between miR-122 and GALNT10, a poor prognosticator of clinical outcome, was demonstrated in hepatoma patients. Hepatocyte nuclear factor 4α (Hnf4α), a liver-enriched transcription factor that activates miR-122 gene transcription, was suppressed in HBV-infected hepatoma cells. Chromatin immunoprecipitation assay showed significantly reduced association of Hnf4α with the miR-122 promoter in HBV-infected hepatoma cells. Moreover, GALNT10 was found to intensify O-glycosylation following signal activation of the epidermal growth factor receptor. In addition, in a therapeutic perspective, we proved that GALNT10 silencing increases sensitivity to sorafenib and doxorubicin challenge. In summary, our results reveal a novel Hnf4α/miR-122/GALNT10 regulatory pathway that facilitates EGF miR-122 activation and hepatoma growth in HBV-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Qian Wu
- From the Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology and
| | - Hai-Ou Liu
- From the Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology and
| | - Yi-Dong Liu
- From the Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology and
| | - Wei-Si Liu
- From the Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology and
| | - Deng Pan
- From the Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology and
| | - Wei-Juan Zhang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Liu Yang
- From the Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology and
| | - Qiang Fu
- From the Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology and
| | - Jie-Jie Xu
- From the Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology and
| | - Jian-Xin Gu
- From the Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology and
| |
Collapse
|
121
|
Abstract
Glycans on proteins and lipids are known to alter with malignant transformation. The study of these may contribute to the discovery of biomarkers and treatment targets as well as understanding of cancer biology. We here describe the change of glycosylation specifically defining colorectal cancer with view on N-glycans, O-glycans, and glycosphingolipid glycans in colorectal cancer cells and tissues as well as patient sera. Glycan alterations observed in colon cancer include increased β1,6-branching and correlating higher abundance of (poly-)N-acetyllactosamine extensions of N-glycans as well as an increase in (truncated) high-mannose type glycans, while bisected structures decrease. Colorectal cancer-associated O-glycan changes are predominated by reduced expression of core 3 and 4 glycans, whereas higher levels of core 1 glycans, (sialyl) T-antigen, (sialyl) Tn-antigen, and a generally higher density of O-glycans are observed. Specific changes for glycosphingolipid glycans are lower abundances of disialylated structures as well as globo-type glycosphingolipid glycans with exception of Gb3. In general, alterations affecting all discussed glycan types are increased sialylation, fucosylation as well as (sialyl) Lewis-type antigens and type-2 chain glycans. As a consequence, interactions with glycan-binding proteins can be affected and the biological function and cellular consequences of the altered glycosylation with regard to tumorigenesis, metastasis, modulation of immunity, and resistance to antitumor therapy will be discussed. Finally, analytical approaches aiding in the field of glycomics will be reviewed with focus on binding assays and mass spectrometry.
Collapse
Affiliation(s)
- Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands; Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands; Division of BioAnalytical Chemistry, VU University, Amsterdam, The Netherlands
| | - Yoann Rombouts
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
122
|
Ali L, Flowers SA, Jin C, Bennet EP, Ekwall AKH, Karlsson NG. The O-glycomap of lubricin, a novel mucin responsible for joint lubrication, identified by site-specific glycopeptide analysis. Mol Cell Proteomics 2014; 13:3396-409. [PMID: 25187573 PMCID: PMC4256492 DOI: 10.1074/mcp.m114.040865] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/15/2014] [Indexed: 11/06/2022] Open
Abstract
The lubricative, heavily glycosylated mucin-like synovial glycoprotein lubricin has previously been observed to contain glycosylation changes related to rheumatoid and osteoarthritis. Thus, a site-specific investigation of the glycosylation of lubricin was undertaken, in order to further understand the pathological mechanisms involved in these diseases. Lubricin contains an serine/threonine/proline (STP)-rich domain composed of imperfect tandem repeats (EPAPTTPK), the target for O-glycosylation. In this study, using a liquid chromatography-tandem mass spectrometry approach, employing both collision-induced and electron-transfer dissociation fragmentation methods, we identified 185 O-glycopeptides within the STP-rich domain of human synovial lubricin. This showed that adjacent threonine residues within the central STP-rich region could be simultaneously and/or individually glycosylated. In addition to core 1 structures responsible for biolubrication, core 2 O-glycopeptides were also identified, indicating that lubricin glycosylation may have other roles. Investigation of the expression of polypeptide N-acetylgalactosaminyltransferase genes was carried out using cultured primary fibroblast-like synoviocytes, a cell type that expresses lubricin in vivo. This analysis showed high mRNA expression levels of the less understood polypeptide N-acetylgalactosaminyltransferase 15 and 5 in addition to the ubiquitously expressed polypeptide N-acetylgalactosaminyltransferase 1 and 2 genes. This suggests that there is a unique combination of transferase genes important for the O-glycosylation of lubricin. The site-specific glycopeptide analysis covered 82% of the protein sequence and showed that lubricin glycosylation displays both micro- and macroheterogeneity. The density of glycosylation was shown to be high: 168 sites of O-glycosylation, predominately sialylated, were identified. These glycosylation sites were focused in the central STP-rich region, giving the domain a negative charge. The more positively charged lysine and arginine residues in the N and C termini suggest that synovial lubricin exists as an amphoteric molecule. The identification of these unique properties of lubricin may provide insight into the important low-friction lubricating functions of lubricin during natural joint movement.
Collapse
Affiliation(s)
- Liaqat Ali
- From the ‡Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| | - Sarah A Flowers
- From the ‡Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| | - Chunsheng Jin
- From the ‡Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| | - Eric Paul Bennet
- §Department of Odontology, Copenhagen Center for Glycomics, University of Copenhagen, Norre Alle 20, DK-2200 Copenhagen N, Denmark
| | - Anna-Karin H Ekwall
- ¶Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Guldhedsgatan 10A, SE-41346, Gothenburg, Sweden
| | - Niclas G Karlsson
- From the ‡Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden;
| |
Collapse
|
123
|
Yamamoto S, Nagai E, Asada Y, Kinoshita M, Suzuki S. A rapid and highly sensitive microchip electrophoresis of mono- and mucin-type oligosaccharides labeled with 7-amino-4-methylcoumarin. Anal Bioanal Chem 2014; 407:1499-503. [PMID: 25433688 DOI: 10.1007/s00216-014-8363-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 11/25/2022]
Abstract
A selective separation method using a poly(methylmethacrylate) microchip was developed for 7-amino-4-methylcoumarin-labeled saccharides in a crude reaction mixture. In an alkaline borate buffer, saccharide derivatives formed strong anionic borate complexes. These complexes moved from the cathode to the anode in an electric field and were detected near the anode. Excess labeling reagents and other foreign substances remained at the inlet reservoir. A confocal fluorimetric detection system enabled the determination of monosaccharide derivatives with good linearity between at least 5 and 100 nM, corresponding to 50 fmol to 1 pmol per injection. The lower limit of detection (signal-to-noise = 5) was 2 nM. The sensitivity and linear quantitation range were comparable to reported values using fluorometric detection, capillary electrophoresis, or liquid chromatography. Application of the method showed excellent resolution in the analysis of O-linked glycans chemically released from glycoproteins.
Collapse
Affiliation(s)
- Sachio Yamamoto
- Faculty of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Osaka, Japan,
| | | | | | | | | |
Collapse
|
124
|
Reticker-Flynn NE, Bhatia SN. Aberrant glycosylation promotes lung cancer metastasis through adhesion to galectins in the metastatic niche. Cancer Discov 2014; 5:168-81. [PMID: 25421439 PMCID: PMC4367955 DOI: 10.1158/2159-8290.cd-13-0760] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
UNLABELLED Metastasis is the leading cause of cancer-associated deaths. Although dissemination of tumor cells likely occurs early in tumorigenesis, the constituents of the microenvironment play essential rate-limiting roles in determining whether these cells will form clinically relevant tumors. Recent studies have uncovered many molecular factors that contribute to the establishment of a protumorigenic metastatic niche. Here, we demonstrate that galectin-3, whose expression has clinical associations with advanced malignancy and poor outcome, contributes to metastatic niche formation by binding to carbohydrates on metastatic cells. We show that galectin-3 is expressed early during tumorigenesis by both CD11b(+)Gr-1(+) and CD11b(+)Ly-6C(hi) leukocytes. Tumors mobilize these myeloid populations through secretion of soluble factors, including IL6. We find that metastatic cancer cells exhibit elevated presentation of the oncofetal galectin-3 carbohydrate ligand, the Thomsen-Friedenreich antigen, on their surfaces as a result of altered C2GnT2 and St6GalNAc4 glycosyltransferase activity that inhibits further glycosylation of this carbohydrate motif and promotes metastasis. SIGNIFICANCE Although clinical observations of elevated serum galectin-3 levels and altered glycosylation have been associated with malignancy, we identify novel roles for glycosyltransferases in promoting adhesion to galectins in the metastatic niche. This identification of a cytokine-leukocyte-glycosylation axis in metastasis provides mechanistic explanations for clinical associations between malignancy and aberrant glycosylation.
Collapse
Affiliation(s)
- Nathan E Reticker-Flynn
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sangeeta N Bhatia
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts. Howard Hughes Medical Institute, Cambridge, Massachusetts. Division of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
125
|
Liu Y, Liu W, Xu L, Liu H, Zhang W, Zhu Y, Xu J, Gu J. GALNT4 predicts clinical outcome in patients with clear cell renal cell carcinoma. J Urol 2014; 192:1534-41. [PMID: 24769034 DOI: 10.1016/j.juro.2014.04.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE We investigated the clinical significance of GALNT4 expression in patients with clear cell renal cell carcinoma. MATERIALS AND METHODS Enrolled in this study were 104 patients treated with curative nephrectomy at Zhongshan Hospital, Shanghai during 2004. Of the cohort 23 patients died of disease, 33 experienced recurrence and 3 died of another cause. GALNT4 density was assessed by immunohistochemistry in patient specimens. Univariate and multivariate Cox models, and ROC analysis were used to analyze the impact of prognostic factors on overall and relapse-free survival. Kaplan-Meier analysis with the log rank test was done to compare clinical outcomes between subgroups. RESULTS Intratumor GALNT4 expression was significantly lower than peritumor expression. Low GALNT4 expression was associated with poor overall and relapse-free survival (p = 0.001 and 0.004, respectively). Intratumor GALNT4 expression, which negatively correlated with tumor size (p = 0.032), necrosis (p = 0.013) and TNM stage (p = 0.017), was an independent prognostic indicator for overall and relapse-free survival (HR 3.088, p = 0.020 and 2.173, p = 0.047, respectively). Extending the TNM staging system according to GALNT4 expression showed a better prognostic value for overall and relapse-free survival (AUC 0.786, p = 0.029 and 0.761, p = 0.040, respectively). CONCLUSIONS Intratumor GALNT4 expression is a potential independent prognostic factor for overall and relapse-free survival in patients with clear cell renal cell carcinoma. Further external validation and functional analysis should be performed to assess its potential prognostic and therapeutic value in patients with clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Yidong Liu
- Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Weisi Liu
- Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Le Xu
- Department of Urology, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Haiou Liu
- Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Yu Zhu
- Department of Urology, Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Jiejie Xu
- Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China.
| | - Jianxin Gu
- Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
126
|
Hirakawa T, Nasu K, Kai K, Aoyagi Y, Ishii T, Uemura T, Yano M, Narahara H. Wisteria floribunda agglutinin-binding glycan expression is decreased in endometriomata. Reprod Biol Endocrinol 2014; 12:100. [PMID: 25344456 PMCID: PMC4219044 DOI: 10.1186/1477-7827-12-100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/13/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Glycosylation is one of the most common post-translational modifications of eukaryotic proteins and is known to undergo dynamic changes in a wide range of biological processes. To date, however, the glycan expression profiles in endometriosis are largely unknown. The objective of the study was to identify the panel of glycans that were aberrantly expressed in endometriosis, a hormone-dependent disease. METHODS The glycan expression profiles in primary cultured human endometriotic cyst stromal cells (ECSCs) and normal endometrial stromal cells (NESCs) were determined by lectin microarray analysis. Distribution of Wisteria floribunda agglutinin (WFA)-binding glycans in ovarian endometriotic cysts and eutopic proliferative phase endometrium were assessed by lectin histochemistry. The expressions of N-acetylgalactosaminyl transferases that synthesize WFA-binding glycans were evaluated in ECSCs and NESCs. RESULTS We found that the levels of WFA-binding glycans were decreased in ECSCs. Lectin histochemistry revealed that WFA-binding glycans were decreased only in the stromal components of the ovarian endometriotic cysts, but not in the epithelial components, compared to the eutopic proliferative phase endometrium. The expressions of N-acetylgalactosaminyl transferases that synthesize WFA-binding glycans were downregulated in ECSCs. CONCLUSIONS Utilizing lectin microarray analysis and lectin histochemistry, we found that WFA-binding glycans were decreased in endometriosis. The synthetic enzymes of WFA-binding glycans were significantly downregulated in ECSCs. It is suggested that reduced expression of N-glycans with WFA-binding properties on ECSCs is a novel characteristics of endometriosis.
Collapse
Affiliation(s)
- Tomoko Hirakawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi Oita, 879-5593 Japan
| | - Kaei Nasu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi Oita, 879-5593 Japan
- Division of Obstetrics and Gynecology, Support System for Community Medicine, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi Oita, 879-5593 Japan
| | - Kentaro Kai
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi Oita, 879-5593 Japan
| | - Yoko Aoyagi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi Oita, 879-5593 Japan
| | - Terukazu Ishii
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi Oita, 879-5593 Japan
| | - Tetsuya Uemura
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi Oita, 879-5593 Japan
| | - Mitsutake Yano
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi Oita, 879-5593 Japan
| | - Hisashi Narahara
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi Oita, 879-5593 Japan
| |
Collapse
|
127
|
Brockhausen I. Crossroads between Bacterial and Mammalian Glycosyltransferases. Front Immunol 2014; 5:492. [PMID: 25368613 PMCID: PMC4202792 DOI: 10.3389/fimmu.2014.00492] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/23/2014] [Indexed: 11/26/2022] Open
Abstract
Bacterial glycosyltransferases (GT) often synthesize the same glycan linkages as mammalian GT; yet, they usually have very little sequence identity. Nevertheless, enzymatic properties, folding, substrate specificities, and catalytic mechanisms of these enzyme proteins may have significant similarity. Thus, bacterial GT can be utilized for the enzymatic synthesis of both bacterial and mammalian types of complex glycan structures. A comparison is made here between mammalian and bacterial enzymes that synthesize epitopes found in mammalian glycoproteins, and those found in the O antigens of Gram-negative bacteria. These epitopes include Thomsen–Friedenreich (TF or T) antigen, blood group O, A, and B, type 1 and 2 chains, Lewis antigens, sialylated and fucosylated structures, and polysialic acids. Many different approaches can be taken to investigate the substrate binding and catalytic mechanisms of GT, including crystal structure analyses, mutations, comparison of amino acid sequences, NMR, and mass spectrometry. Knowledge of the protein structures and functions helps to design GT for specific glycan synthesis and to develop inhibitors. The goals are to develop new strategies to reduce bacterial virulence and to synthesize vaccines and other biologically active glycan structures.
Collapse
Affiliation(s)
- Inka Brockhausen
- Department of Medicine, Queen's University , Kingston, ON , Canada ; Department of Biomedical and Molecular Sciences, Queen's University , Kingston, ON , Canada
| |
Collapse
|
128
|
Parsons LM, Mizanur RM, Jankowska E, Hodgkin J, O′Rourke D, Stroud D, Ghosh S, Cipollo JF. Caenorhabditis elegans bacterial pathogen resistant bus-4 mutants produce altered mucins. PLoS One 2014; 9:e107250. [PMID: 25296196 PMCID: PMC4189790 DOI: 10.1371/journal.pone.0107250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/13/2014] [Indexed: 11/25/2022] Open
Abstract
Caenorabditis elegans bus-4 glycosyltransferase mutants are resistant to infection by Microbacterium nematophilum, Yersinia pestis and Yersinia pseudotuberculosis and have altered susceptibility to two Leucobacter species Verde1 and Verde2. Our objective in this study was to define the glycosylation changes leading to this phenotype to better understand how these changes lead to pathogen resistance. We performed MALDI-TOF MS, tandem MS and GC/MS experiments to reveal fine structural detail for the bus-4 N- and O-glycan pools. We observed dramatic changes in O-glycans and moderate ones in N-glycan pools compared to the parent strain. Ce core-I glycans, the nematode's mucin glycan equivalent, were doubled in abundance, halved in charge and bore shifts in terminal substitutions. The fucosyl O-glycans, Ce core-II and neutral fucosyl forms, were also increased in abundance as were fucosyl N-glycans. Quantitative expression analysis revealed that two mucins, let-653 and osm-8, were upregulated nearly 40 fold and also revealed was a dramatic increase in GDP-Man 4,6 dehydratease expression. We performed detailed lectin binding studies that showed changes in glycoconjugates in the surface coat, cuticle surface and intestine. The combined changes in cell surface glycoconjugate distribution, increased abundance and altered properties of mucin provide an environment where likely the above pathogens are not exposed to normal glycoconjugate dependent cues leading to barriers to these bacterial infections.
Collapse
Affiliation(s)
- Lisa M. Parsons
- Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, Maryland, United States of America
| | - Rahman M. Mizanur
- Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, Maryland, United States of America
| | - Ewa Jankowska
- Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, Maryland, United States of America
| | - Jonathan Hodgkin
- Genetics Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Delia O′Rourke
- Genetics Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Dave Stroud
- Genetics Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Salil Ghosh
- Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, Maryland, United States of America
| | - John F. Cipollo
- Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
129
|
Liu T, Zhang S, Chen J, Jiang K, Zhang Q, Guo K, Liu Y. The transcriptional profiling of glycogenes associated with hepatocellular carcinoma metastasis. PLoS One 2014; 9:e107941. [PMID: 25232831 PMCID: PMC4169445 DOI: 10.1371/journal.pone.0107941] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/16/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Metastasis is one of the important reasons for the poor prognosis of hepatocellular carcinoma (HCC), abnormal glycosylation plays a pivotal role in HCC metastasis. The goal of this study was to screen and validate the transcriptional profiling of glycogenes associated with HCC metastasis. METHODOLOGY The differentially transcribed glycogenes were screened out by the Human Glycosylation RT2 Profiler PCR Array, and were identified by qRT-PCR in human HCC cell lines and their orthotopic xenograft tumors. Further analyses were performed with K-mean clustering, Gene Ontology (GO) and ingenuity pathways analysis (IPA). Four differentially transcribed glycogenes were validated in clinical cancer specimens by qRT-PCR. RESULTS A total of thirty-three differentially transcribed glycogenes were obtained by comparison the transcription in the metastatic human HCC cell lines (MHCC97L, MHCC97H and HCCLM3) with the transcription in the non-metastatic HCC cell line Hep3B. Seven differentially transcribed glycogenes were selected to further identification in human HCC cell lines and their orthotopic xenograft tumors. According to their trends by K-mean clustering, all of the differentially transcribed glycogenes were classified in six clusters. GO analysis of the differentially transcribed glycogenes described them in biological process, subcellular location and molecular function. Furthermore, the partial regulatory network of the differentially transcribed glycogenes was acquired through the IPA. The transcription levels of galnt3, gcnt3, man1a1, mgat5b in non-metastatic and metastatic HCC clinical cancer specimens showed the same changing trends with the results in human HCC cell lines and their orthotopic xenograft tumors, and the divergent transcription levels of gcnt3 and mgat5b were statistically significant. CONCLUSIONS The transcriptional profiling of glycogenes associated with HCC metastasis was obtained and validated in this study and it might provide novel drug targets and potential biological markers for HCC metastasis.
Collapse
Affiliation(s)
- Tianhua Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai, People’s Republic of China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jie Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Kai Jiang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai, People’s Republic of China
| | - Qinle Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai, People’s Republic of China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
130
|
Granados López AJ, López JA. Multistep model of cervical cancer: participation of miRNAs and coding genes. Int J Mol Sci 2014; 15:15700-33. [PMID: 25192291 PMCID: PMC4200848 DOI: 10.3390/ijms150915700] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/05/2014] [Accepted: 08/13/2014] [Indexed: 12/27/2022] Open
Abstract
Aberrant miRNA expression is well recognized as an important step in the development of cancer. Close to 70 microRNAs (miRNAs) have been implicated in cervical cancer up to now, nevertheless it is unknown if aberrant miRNA expression causes the onset of cervical cancer. One of the best ways to address this issue is through a multistep model of carcinogenesis. In the progression of cervical cancer there are three well-established steps to reach cancer that we used in the model proposed here. The first step of the model comprises the gene changes that occur in normal cells to be transformed into immortal cells (CIN 1), the second comprises immortal cell changes to tumorigenic cells (CIN 2), the third step includes cell changes to increase tumorigenic capacity (CIN 3), and the final step covers tumorigenic changes to carcinogenic cells. Altered miRNAs and their target genes are located in each one of the four steps of the multistep model of carcinogenesis. miRNA expression has shown discrepancies in different works; therefore, in this model we include miRNAs recording similar results in at least two studies. The present model is a useful insight into studying potential prognostic, diagnostic, and therapeutic miRNAs.
Collapse
Affiliation(s)
- Angelica Judith Granados López
- Laboratorio de microRNAs, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, Mexico.
| | - Jesús Adrián López
- Laboratorio de microRNAs, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, Mexico.
| |
Collapse
|
131
|
Aiming at the sweet side of cancer: Aberrant glycosylation as possible target for personalized-medicine. Cancer Lett 2014; 352:102-12. [DOI: 10.1016/j.canlet.2013.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 10/09/2013] [Accepted: 10/09/2013] [Indexed: 01/26/2023]
|
132
|
Dall'Olio F, Malagolini N, Trinchera M, Chiricolo M. Sialosignaling: Sialyltransferases as engines of self-fueling loops in cancer progression. Biochim Biophys Acta Gen Subj 2014; 1840:2752-64. [PMID: 24949982 DOI: 10.1016/j.bbagen.2014.06.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/13/2014] [Accepted: 06/10/2014] [Indexed: 02/03/2023]
|
133
|
Xue J, Laine RA, Matta KL. Enhancing MS(n) mass spectrometry strategy for carbohydrate analysis: A b2 ion spectral library. J Proteomics 2014; 112:224-49. [PMID: 25175058 DOI: 10.1016/j.jprot.2014.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/24/2014] [Accepted: 07/12/2014] [Indexed: 11/24/2022]
Abstract
UNLABELLED Searchable mass spectral libraries for glycans may be enhanced using a B2 ion library. Using a quadrupole ion-trap mass spectrometer, successive fragmentations of sodiated oligosaccharides were carried out in the positive ion mode. In B,Y-type fragmentation, disaccharide B2 ions are generated which correspond to specific glycosidic linkages using progressive MS stages. Fragmentation of "B2 ions" corresponding to glycosidic linkages such as Hex-Fuc, Hex-Hex, Hex-HexNAc, HexNAc-Hex and HexNAc-HexNAc, were systematically studied in low energy CID and collected to form a "B2 library". Linkages produce characteristic fragmentation patterns in the absence of cross-ring fragmentation. Patterns of "B2 ions" rely on relative stability of glycosidic bonds and carbohydrate-metal complexes in the gas phase. MS(n) studies of linear, branched trisaccharides and tetrasaccharides show that isomers for which B2 ion information is not available are rarely a problem in practice by their absence in an isomeric sequence or by their scarcity in nature. This MS strategy for linkage determination of carbohydrates aided by a "B2 library" was developed with a scope for expansion, providing an improved tool for glycomics. We validated this method examining levels of expressed activities of two glycosyl transferases in cancer cell lines: β3(B3GALNT2) and β4GalNAcT(B4GALNT3&4) that generate GalNAcβ3GlcNAcβ and GalNAcβ4GlcNAcβ. BIOLOGICAL SIGNIFICANCE Glycosylation is an important class of the "postranslationome", which includes manifold aspects of post-translational protein modification, affecting protein conformation, providing ligands for protein receptors [1-5], and encoding unique haptenic [6,7] or antigenic markers for oncology [8-11] and other applications. Identification of individual monomeric units, linkages, ring size, branching and anomerity has posed significant challenges to mass spectrometrists. MS(n) is a growing key instrumental method to differentiate among isomers [12]. While the potential isomers in oligosaccharides are impossibly large [12], likely possibilities can be limited by the biological system, including the expressed glycosyl transferases [13-20]. Mass spectra from sequential stages of collision activation (MS(n)) can supply structural details for precise characterization of linkage, monomer ID, substitutions, anomerity and branching [21-25]. There is a fundamental need for high throughput tools in glycomics to complement proteome studies. In that regard, nothing could be more important than searchable spectral library files for structural confirmation. The National Academy of Science (NAS) report (http://glyco.nas.edu) recommends the need of more than 10,000 synthetic structures of carbohydrates to advance the field of glycomics. This study demonstrates that the general reproducibility of ion trap spectra, and energy independence from modes of ionization and collisional activation, make compiling an MS(n) library for carbohydrate identification an achievable research target [26]. We intend to use the new B2 library for carbohydrate differences found on cancers, where we profile the glycosyltransferases to predict classes of potential structures, and use the library for MS identification of the expected cohort of altered structures.
Collapse
Affiliation(s)
- Jun Xue
- Department of Cancer Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Roger A Laine
- Departments of Biological Sciences and Chemistry, Louisiana State University and A&M College, Baton Rouge, LA 70803, USA; TumorEnd, LLC, Louisiana Emerging Technology Center, Baton Rouge, LA 70803, USA.
| | - Khushi L Matta
- Department of Cancer Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA; TumorEnd, LLC, Louisiana Emerging Technology Center, Baton Rouge, LA 70803, USA.
| |
Collapse
|
134
|
Hassinen A, Kellokumpu S. Organizational interplay of Golgi N-glycosyltransferases involves organelle microenvironment-dependent transitions between enzyme homo- and heteromers. J Biol Chem 2014; 289:26937-26948. [PMID: 25135644 DOI: 10.1074/jbc.m114.595058] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glycosylation of proteins and lipids takes place in the Golgi apparatus by the consecutive actions of functionally distinct glycosidases and glycosyltransferases. Current evidence indicates that they function as enzyme homomers and/or heteromers in the living cell. Here we investigate their organizational interplay and show that glycosyltransferase homomers are assembled in the endoplasmic reticulum. Upon transport to the Golgi, the majority of homomers are disassembled to allow the formation of enzyme heteromers between sequentially acting medial-Golgi enzymes GnT-I and GnT-II or trans-Golgi enzymes GalT-I and ST6Gal-I. This transition is driven by the acidic Golgi environment, as it was markedly inhibited by raising Golgi luminal pH with chloroquine. Our FRAP (fluorescence recovery after photobleaching) measurements showed that the complexes remain mobile Golgi membrane constituents that can relocate to the endoplasmic reticulum or to the scattered Golgi mini-stacks upon brefeldin A or nocodazole treatment, respectively. During this relocation, heteromers undergo a reverse transition back to enzyme homomers. These data unveil an unprecedented organizational interplay between Golgi N-glycosyltransferases that involves dynamic and organelle microenvironment-driven transitions between enzyme homomers and heteromers during their trafficking within the early secretory compartments.
Collapse
Affiliation(s)
- Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90220, Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90220, Oulu, Finland.
| |
Collapse
|
135
|
Compagno D, Gentilini LD, Jaworski FM, Pérez IG, Contrufo G, Laderach DJ. Glycans and galectins in prostate cancer biology, angiogenesis and metastasis. Glycobiology 2014; 24:899-906. [PMID: 24939371 DOI: 10.1093/glycob/cwu055] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most common cause of cancer and the sixth leading cause of cancer death among men worldwide. While localized prostate cancer can be cured, advanced and metastatic prostate cancer remains a significant therapeutic challenge. Malignant transformation is associated with important modifications of the cellular glycosylation profile, and it is postulated that these changes have a considerable relevance for tumor biology. Metastasis is a multiphasic process that encompasses angiogenesis, the spread of tumor cells and their growth at distant sites from the primary tumor location. Recognition of glycoconjugates by galectins, among other lectins, plays a fundamental role in the metastatic spread, tumor immune escape and the neovascularization process. Particularly in prostate cancer, both carbohydrates and galectins have been implicated in many cellular processes such as proliferation, apoptosis, migration and invasion. However, a limited number of studies assessed their potential implications in the induction of metastasis in prostate cancer patients or in animal models. Moreover, the role of galectin-glycan interactions in vivo still remains poorly understood; concerted effort should thus be made in order to shed some light on this question. This review summarizes current evidence on both the expression and role of glycans and galectins in prostate cancer, particularly turning our attention to the angiogenic and metastatic processes.
Collapse
Affiliation(s)
- Daniel Compagno
- Structural and Functional Glycomics Laboratory, IQUIBICEN-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucas D Gentilini
- Structural and Functional Glycomics Laboratory, IQUIBICEN-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Felipe M Jaworski
- Structural and Functional Glycomics Laboratory, IQUIBICEN-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ignacio González Pérez
- Structural and Functional Glycomics Laboratory, IQUIBICEN-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Geraldine Contrufo
- Structural and Functional Glycomics Laboratory, IQUIBICEN-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego J Laderach
- Structural and Functional Glycomics Laboratory, IQUIBICEN-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
136
|
Milde-Langosch K, Karn T, Schmidt M, zu Eulenburg C, Oliveira-Ferrer L, Wirtz RM, Schumacher U, Witzel I, Schütze D, Müller V. Prognostic relevance of glycosylation-associated genes in breast cancer. Breast Cancer Res Treat 2014; 145:295-305. [PMID: 24737166 DOI: 10.1007/s10549-014-2949-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/02/2014] [Indexed: 01/05/2023]
Abstract
Glycosylation of cellular proteins has important impact on their stability and functional properties, and glycan structures strongly influence cell adhesion. Many enzymes are involved in glycoconjugate synthesis and degradation, but there is only limited information about their role in breast cancer progression. Therefore, we retrieved RNA expression data of 202 glycosylation genes generated by microarray analysis (Affymetrix HG-U133A) in a cohort of 194 mammary carcinomas with long-term follow-up information. After univariate and multivariate Cox regression analysis, genes with independent prognostic value were identified. These were further analysed by Kaplan-Meier analysis and log-rank tests, and their prognostic value was validated in a second cohort of 200 tumour samples from patients without systemic therapy. In our first cohort, we identified 24 genes with independent prognostic value, coding for sixteen anabolic and eight catabolic enzymes. Functionally, these genes are involved in all important glycosylation pathways, namely O-glycosylation, N-glycosylation, O-fucosylation, synthesis of glycosaminoglycans and glycolipids. Eighteen genes also showed prognostic significance in chemotherapy-treated patients. In the second cohort, six of the 24 relevant genes were of prognostic significance (FUT1, FUCA1, POFUT1, MAN1A1, RPN1 and DPM1), whereas a trend was observed for three additional probesets (GCNT4, ST3GAL6 and UGCG). In a stratified analysis of molecular subtypes combining both cohorts, great differences appeared suggesting a predominant role of N-glycosylation in luminal cancers and O-glycosylation in triple-negative ones. Correlations of gene expression with metastases of various localizations point to a role of glycan structures in organ-specific metastatic spread. Our results indicate that various glycosylation reactions influence progression and metastasis of breast cancer and might thus represent potential therapeutic targets.
Collapse
Affiliation(s)
- Karin Milde-Langosch
- Department of Gynecology, University Hospital Hamburg-Eppendorf, Hamburg, Germany,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Chik JHL, Zhou J, Moh ESX, Christopherson R, Clarke SJ, Molloy MP, Packer NH. Comprehensive glycomics comparison between colon cancer cell cultures and tumours: implications for biomarker studies. J Proteomics 2014; 108:146-62. [PMID: 24840470 DOI: 10.1016/j.jprot.2014.05.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/28/2014] [Accepted: 05/09/2014] [Indexed: 01/27/2023]
Abstract
UNLABELLED Altered glycosylation is commonly observed in colorectal cancer. In vitro models are frequently used to study this cancer but little is known about the differences that may exist between these model cell systems and tumour tissue. We have compared the membrane protein glycosylation of five colorectal cancer cell lines (SW1116, SW480, SW620, SW837, LS174T) with epithelial cells from colorectal tumours using liquid chromatography tandem mass spectrometry. Remarkably, there were five abundant O-glycans in the tumour cells that were undetected in the low-mucin producing cell lines, although two were found in the mucinous LS174T cells. The O-glycans included the well-known glycan cancer marker, sialyl-Tn, which has been associated with mucins. Using qRT-PCR, sialyl-Tn expression was found to be associated with an increase in α2,6-sialyltransferase gene (ST6GALNAC1) and a decrease in core 1 synthase gene (C1GALT1) in LS174T cells. The expression of a subset of mucins (MUC2, MUC6, MUC5B) was also correlated with sialyl-Tn expression in LS174T cells. Overall, the membrane protein glycosylation of the model cell lines was found to differ from each other and from the epithelial cells of tumour tissue. These findings should be noted in the design of biomarker discovery experiments particularly when cell surface targets are being investigated. BIOLOGICAL SIGNIFICANCE The extent of protein glycosylation differences between in vitro cell lines and ex vivo tumours in colorectal cancer research is unknown. Our study expands current knowledge by characterising the membrane protein glycosylation profiles of five different colorectal cancer cell lines and of epithelial cells derived from resected colorectal cancer tumour tissue, using liquid chromatography tandem mass spectrometry. The detailed structural differences found in both N- and O-linked glycan structures on the membrane glycoproteins were determined and correlated with the mRNA expression of the relevant proteins in the cell lines. The glycosylation differences found between cultured cancer cell lines and epithelial cells from tumour tissue have important implications for glycan biomarker discovery.
Collapse
Affiliation(s)
- Jenny H L Chik
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, Australia
| | - Jerry Zhou
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Edward S X Moh
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, Australia
| | | | - Stephen J Clarke
- Department of Medicine, Royal North Shore Hospital, University of Sydney, Australia
| | - Mark P Molloy
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, Australia; Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, Australia.
| |
Collapse
|
138
|
The combination of strong expression of ZNF143 and high MIB-1 labelling index independently predicts shorter disease-specific survival in lung adenocarcinoma. Br J Cancer 2014; 110:2583-92. [PMID: 24736586 PMCID: PMC4021533 DOI: 10.1038/bjc.2014.202] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/06/2014] [Accepted: 03/18/2014] [Indexed: 12/25/2022] Open
Abstract
Background: The transcription factor, zinc finger protein 143 (ZNF143), positively regulates many cell-cycle-related genes. The ZNF143 would show high expression of multiple solid tumours related closely to cancer cell growth, similar to the widely accepted Ki67 (MIB-1) protein, but the underlying mechanisms for ZNF143 remain unclear. We investigated the association of ZNF143 expression with clinicopathological features and prognoses of patients with lung adenocarcinoma. Methods: Expressions of ZNF143 and MIB-1 were immunohistochemically analysed in 183 paraffin-embedded tumour samples of patients with lung adenocarcinoma. The ZNF143 expression was considered to be strong when >30% of the cancer cells demonstrated positive staining. Results: Strong ZNF143+ expression showed a significantly close relationship to pathologically moderate to poor differentiation and highly invasive characteristics. The ZNF143 positivity potentially induced cell growth of lung adenocarcinoma, correlated significantly with high MIB-1 labelling index (⩾10%). Univariate and multivariate analyses demonstrated that both strong ZNF143+ and the high MIB-1 index group have only and significantly worse survival rates. Conclusions: The combination of strong ZNF143 expression and high MIB-1 index potentially predicts high proliferating activity and poor prognosis in patients with lung adenocarcinoma, and may offer a therapeutic target against ZNF143.
Collapse
|
139
|
Kahkhaie KR, Moaven O, Abbaszadegan MR, Montazer M, Gholamin M. Specific MUC1 Splice Variants Are Correlated With Tumor Progression in Esophageal Cancer. World J Surg 2014; 38:2052-7. [DOI: 10.1007/s00268-014-2523-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
140
|
Yabu M, Korekane H, Miyamoto Y. Precise structural analysis of O-linked oligosaccharides in human serum. Glycobiology 2014; 24:542-53. [PMID: 24663386 DOI: 10.1093/glycob/cwu022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
O-glycans are suitable targets as novel and useful tumor markers. The structures of O-glycans in human sera from four healthy controls were precisely analyzed to obtain the reference O-glycan database. O-glycans were prepared from sera by hydrazine treatment followed by fluorescent labeling with aminopyridine and identified using two-dimensional mapping, enzymatic digestion and mass spectrometry (MS) together with methanolysis and the use of newly synthesized sulfated oligosaccharides as standards. O-glycans, present at more than 0.01% of the total O-glycans, were analyzed, and 18 kinds of acidic and 2 kinds of neutral glycans were identified. NeuAcα2-3Galβ1-3N-acetylgalactosamine (GalNAc) (61-64%), NeuAcα2-3Galβ1-3(NeuAcα2-6)GalNAc (15-26%) and Galβ1-3GalNAc (6-14%) were major components while other sialylated glycans, Galβ1-3(NeuAcα2-6)GalNAc, Galβ1-4GlcNAcβ1-6(NeuAcα2-3Galβ1-3)GalNAc and NeuAcα2-3Galβ1-4GlcNAcβ1-6(NeuAcα2-3Galβ1-3)GalNAc were relatively minor components, accounting for ∼1-2%. Very minor glycans accounting for ∼0.01-0.1% of the total include (i) the neutral glycan, Galβ1-4GlcNAcβ1-6(Galβ1-3)GalNAc, (ii) sialylated glycans, having sialyl Tn antigen, agalacto and trisialylated structures, (iii) fucosylated glycans forming blood type H antigen, blood type A antigen, blood type B antigen, Lewis X antigen and sialyl Lewis X antigen and (iv) sulfated glycans, having 6-sulfo and 3'-sulfo structures. Two kinds of clinically applied tumor markers namely sialyl Tn antigen and sialyl Lewis X antigen in healthy controls sera were revealed to be present at ∼0.1-0.2% of the total. However, other markers such as CA19-9 and DU-PAN-2 were not found, suggesting the relative amounts of these glycans to be <0.01%. These detailed O-glycan profiles will help to find novel carbohydrate tumor markers.
Collapse
Affiliation(s)
- Masahiko Yabu
- Department of Immunology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-2 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| | | | | |
Collapse
|
141
|
Kozak RP, Royle L, Gardner RA, Bondt A, Fernandes DL, Wuhrer M. Improved nonreductive O-glycan release by hydrazinolysis with ethylenediaminetetraacetic acid addition. Anal Biochem 2014; 453:29-37. [PMID: 24613257 DOI: 10.1016/j.ab.2014.02.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/23/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
The study of protein O-glycosylation is receiving increasing attention in biological, medical, and biopharmaceutical research. Improved techniques are required to allow reproducible and quantitative analysis of O-glycans. An established approach for O-glycan analysis relies on their chemical release in high yield by hydrazinolysis, followed by fluorescent labeling at the reducing terminus and high-performance liquid chromatography (HPLC) profiling. However, an unwanted degradation known as "peeling" often compromises hydrazinolysis for O-glycan analysis. Here we addressed this problem using low-molarity solutions of ethylenediaminetetraacetic acid (EDTA) in hydrazine for O-glycan release. O-linked glycans from a range of different glycoproteins were analyzed, including bovine fetuin, bovine submaxillary gland mucin, and serum immunoglobulin A (IgA). The data for the O-glycans released by hydrazine with anhydrous EDTA or disodium salt dihydrate EDTA show high yields of the native O-glycans compared with the peeled product, resulting in a markedly increased robustness of the O-glycan profiling method. The presented method for O-glycan release demonstrates significant reduction in peeling and reduces the number of sample handling steps prior to release.
Collapse
Affiliation(s)
| | - Louise Royle
- Ludger, Culham Science Centre, Oxfordshire OX14 3EB, UK
| | | | - Albert Bondt
- Department of Rheumatology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | | | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
142
|
Häuselmann I, Borsig L. Altered tumor-cell glycosylation promotes metastasis. Front Oncol 2014; 4:28. [PMID: 24592356 PMCID: PMC3923139 DOI: 10.3389/fonc.2014.00028] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/29/2014] [Indexed: 12/14/2022] Open
Abstract
Malignant transformation of cells is associated with aberrant glycosylation presented on the cell-surface. Commonly observed changes in glycan structures during malignancy encompass aberrant expression and glycosylation of mucins; abnormal branching of N-glycans; and increased presence of sialic acid on proteins and glycolipids. Accumulating evidence supports the notion that the presence of certain glycan structures correlates with cancer progression by affecting tumor-cell invasiveness, ability to disseminate through the blood circulation and to metastasize in distant organs. During metastasis tumor-cell-derived glycans enable binding to cells in their microenvironment including endothelium and blood constituents through glycan-binding receptors – lectins. In this review, we will discuss current concepts how tumor-cell-derived glycans contribute to metastasis with the focus on three types of lectins: siglecs, galectins, and selectins. Siglecs are present on virtually all hematopoietic cells and usually negatively regulate immune responses. Galectins are mostly expressed by tumor cells and support tumor-cell survival. Selectins are vascular adhesion receptors that promote tumor-cell dissemination. All lectins facilitate interactions within the tumor microenvironment and thereby promote cancer progression. The identification of mechanisms how tumor glycans contribute to metastasis may help to improve diagnosis, prognosis, and aid to develop clinical strategies to prevent metastasis.
Collapse
Affiliation(s)
- Irina Häuselmann
- Zürich Center for Integrative Human Physiology, Institute of Physiology, University of Zürich , Zürich , Switzerland
| | - Lubor Borsig
- Zürich Center for Integrative Human Physiology, Institute of Physiology, University of Zürich , Zürich , Switzerland
| |
Collapse
|
143
|
van Kooyk Y, Kalay H, Garcia-Vallejo JJ. Analytical tools for the study of cellular glycosylation in the immune system. Front Immunol 2013; 4:451. [PMID: 24376449 PMCID: PMC3858669 DOI: 10.3389/fimmu.2013.00451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/28/2013] [Indexed: 12/21/2022] Open
Abstract
It is becoming increasingly clear that glycosylation plays important role in intercellular communication within the immune system. Glycosylation-dependent interactions are crucial for the innate and adaptive immune system and regulate immune cell trafficking, synapse formation, activation, and survival. These functions take place by the cis or trans interaction of lectins with glycans. Classical immunological and biochemical methods have been used for the study of lectin function; however, the investigation of their counterparts, glycans, requires very specialized methodologies that have been extensively developed in the past decade within the Glycobiology scientific community. This mini-review intends to summarize the available technology for the study of glycan biosynthesis, its regulation and characterization for their application to the study of glycans in immunology.
Collapse
Affiliation(s)
- Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center , Amsterdam , Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, VU University Medical Center , Amsterdam , Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center , Amsterdam , Netherlands
| |
Collapse
|
144
|
Matsuo T, Komatsu M, Yoshimaru T, Kiyotani K, Miyoshi Y, Sasa M, Katagiri T. Involvement of B3GALNT2 overexpression in the cell growth of breast cancer. Int J Oncol 2013; 44:427-34. [PMID: 24285400 DOI: 10.3892/ijo.2013.2187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 10/07/2013] [Indexed: 11/06/2022] Open
Abstract
A number of glycosyltransferases have been identified and biologically characterized in cancer cells, yet their exact pathophysiological functions are largely unknown. Here, we report the critical role of β1,3-N-acetylgalactosaminyltransferase II (B3GALNT2), which transfers N-acetylgalactosamine (GalNAc) in a β1,3 linkage to N-acetylglucosamine, in the growth of breast cancer cells. Comprehensive transcriptomics, quantitative PCR and northern blot analyses indicated this molecule to be exclusively upregulated in the majority of breast cancers. Knockdown of B3GALNT2 expression by small interfering RNA attenuated cell growth and induced apoptosis in breast cancer cells. Overexpression of B3GALNT2 in HEK293T cells prompted secretion of the gene product into the culture medium, suggesting that B3GALNT2 is potentially a secreted protein. Furthermore, we demonstrated that B3GALNT2 is N-glycosylated on both Asn-116 and Asn-174 and that this modification is necessary for its secretion in breast cancer cells. Our findings suggest that this molecule represents a promising candidate for the development of a novel therapeutic targeting drug and a potential diagnostic tumor marker for patients with breast cancer, especially TNBC.
Collapse
Affiliation(s)
- Taisuke Matsuo
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima 770-8503, Japan
| | - Masato Komatsu
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima 770-8503, Japan
| | - Tetsuro Yoshimaru
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima 770-8503, Japan
| | - Kazuma Kiyotani
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima 770-8503, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Mitsunori Sasa
- Department of Surgery, Tokushima Breast Care Clinic, Tokushima 770-0052, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima 770-8503, Japan
| |
Collapse
|
145
|
An integrative framework identifies alternative splicing events in colorectal cancer development. Mol Oncol 2013; 8:129-41. [PMID: 24189147 DOI: 10.1016/j.molonc.2013.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/17/2013] [Accepted: 10/08/2013] [Indexed: 12/16/2022] Open
Abstract
Alternative splicing (AS) is a common mechanism which creates diverse RNA isoforms from a single gene, potentially increasing protein variety. Growing evidence suggests that this mechanism is closely related to cancer progression. In this study, whole transcriptome analysis was performed with GeneChip Human exon 1.0 ST Array from 80 samples comprising 23 normal colon mucosa, 30 primary colorectal cancer and 27 liver metastatic specimens from 46 patients, to identify AS events in colorectal cancer progression. Differentially expressed genes and exons were estimated and AS events were reconstructed by combining exon-level analyses with AltAnalyze algorithms and transcript-level estimations (MMBGX probabilistic method). The number of AS genes in the transition from normal colon mucosa to primary tumor was the most abundant, but fell considerably in the next transition to liver metastasis. 206 genes with probable AS events in colon cancer development and progression were identified, that are involved in processes and pathways relevant to tumor biology, as cell-cell and cell-matrix interactions. Several AS events in VCL, CALD1, B3GNT6 and CTHRC1 genes, differentially expressed during tumor development were validated, at RNA and at protein level. Taken together, these results demonstrate that cancer-specific AS is common in early phases of colorectal cancer natural history.
Collapse
|
146
|
Libisch MG, Casás M, Chiribao M, Moreno P, Cayota A, Osinaga E, Oppezzo P, Robello C. GALNT11 as a new molecular marker in chronic lymphocytic leukemia. Gene 2013; 533:270-9. [PMID: 24076351 DOI: 10.1016/j.gene.2013.09.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/17/2013] [Indexed: 01/27/2023]
Abstract
Aberrant mucin O-glycosylation often occurs in different cancers and is characterized by immature expression of simple mucin-type carbohydrates. At present, there are some controversial reports about the Tn antigen (GalNAcα-O-Ser/Thr) expression and there is a great lack of information about the [UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase (GalNAc-Ts)] expression in chronic lymphocytic leukemia (CLL). To gain insight in these issues we evaluated the Tn antigen expression in CLL patient samples using two Tn binding proteins with different fine specificity. We also studied the expression from 14 GalNAc-Ts genes in CLL patients by RT-PCR. Our results have provided additional information about the expression level of the Tn antigen, suggesting that a low density of Tn residues is expressed in CLL cells. We also found that GALNT11 was expressed in CLL cells and normal T cell whereas little or no expression was found in normal B cells. Based on these results, GALNT11 expression was assessed by qPCR in a cohort of 50 CLL patients. We found significant over-expression of GALNT11 in 96% of B-CLL cells when compared to normal B cells. Moreover, we confirmed the expression of this enzyme at the protein level. Finally we found that GALNT11 expression was significantly associated with the mutational status of the immunoglobulin heavy chain variable region (IGHV), [א(2)(1)=18.26; P<0.0001], lipoprotein lipase expression [א(2)(1)=13.72; P=0.0002] and disease prognosis [א(2)(1)=15.49; P<0.0001]. Our evidence suggests that CLL patient samples harbor aberrant O-glycosylation highlighted by Tn antigen expression and that the over-expression of GALNT11 constitutes a new molecular marker for CLL.
Collapse
Affiliation(s)
- M G Libisch
- Molecular Biology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Wang S, Cuesta-Seijo JA, Lafont D, Palcic MM, Vidal S. Design of glycosyltransferase inhibitors: pyridine as a pyrophosphate surrogate. Chemistry 2013; 19:15346-57. [PMID: 24108680 DOI: 10.1002/chem.201301871] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/25/2013] [Indexed: 12/12/2022]
Abstract
A series of ten glycosyltransferase inhibitors has been designed and synthesized by using pyridine as a pyrophosphate surrogate. The series was prepared by conjugation of carbohydrate, pyridine, and nucleoside building blocks by using a combination of glycosylation, the Staudinger-Vilarrasa amide-bond formation, and azide-alkyne click chemistry. The compounds were evaluated as inhibitors of five metal-dependent galactosyltransferases. Crystallographic analyses of three inhibitors complexed in the active site of one of the enzymes confirmed that the pyridine moiety chelates the Mn(2+) ion causing a slight displacement (2 Å) from its original position. The carbohydrate head group occupies a different position than in the natural uridine diphosphate (UDP)-Gal substrate with little interaction with the enzyme.
Collapse
Affiliation(s)
- Shuai Wang
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2, Glycochimie, UMR 5246, CNRS and Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 6922 Villeurbanne (France), Fax: (+33) 472-448-109
| | | | | | | | | |
Collapse
|
148
|
Benito-Alifonso D, Jones RA, Tran AT, Woodward H, Smith N, Galan MC. Synthesis of mucin-type O-glycan probes as aminopropyl glycosides. Beilstein J Org Chem 2013; 9:1867-72. [PMID: 24062854 PMCID: PMC3778329 DOI: 10.3762/bjoc.9.218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/16/2013] [Indexed: 01/18/2023] Open
Abstract
The chemical synthesis of a series of mucin-type oligosaccharide fragments 1-7 containing an α-linked aminopropyl spacer ready for glycoarray attachment is reported. A highly convergent and stereoselective strategy that employs two different orthogonal protected galactosamine building blocks was used to access all of the targets. A tandem deprotection sequence, that did not require chromatography-based purification between steps, was employed to globally unmask all protecting groups and all final targets were isolated in good to excellent yields.
Collapse
Affiliation(s)
- David Benito-Alifonso
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK Fax: (0)1179298611, Tel: (0)1179287654
| | - Rachel A Jones
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK Fax: (0)1179298611, Tel: (0)1179287654
| | - Anh-Tuan Tran
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK Fax: (0)1179298611, Tel: (0)1179287654
| | - Hannah Woodward
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK Fax: (0)1179298611, Tel: (0)1179287654
| | - Nichola Smith
- Novartis Institute for Biomolecular Research, Novartis Horsham Research Centre, Horsham RH12 5AB, UK
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK Fax: (0)1179298611, Tel: (0)1179287654
| |
Collapse
|
149
|
Ju T, Wang Y, Aryal RP, Lehoux SD, Ding X, Kudelka MR, Cutler C, Zeng J, Wang J, Sun X, Heimburg-Molinaro J, Smith DF, Cummings RD. Tn and sialyl-Tn antigens, aberrant O-glycomics as human disease markers. Proteomics Clin Appl 2013; 7:618-31. [PMID: 23857728 DOI: 10.1002/prca.201300024] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 04/24/2013] [Indexed: 12/12/2022]
Abstract
In many different human disorders, the cellular glycome is altered. An interesting but poorly understood alteration occurs in the mucin-type O-glycome, in which there is aberrant expression of the truncated O-glycans Tn (GalNAcα1-Ser/Thr) and its sialylated version sialyl-Tn (STn) (Neu5Acα2,6GalNAcα1-Ser/Thr). Both Tn and STn are tumor-associated carbohydrate antigens and tumor biomarkers, since they are not expressed normally and appear early in tumorigenesis. Moreover, their expression is strongly associated with poor prognosis and tumor metastasis. The Tn and STn antigens are also expressed in other human diseases and disorders, such as Tn syndrome and IgA nephropathy. The major pathological mechanism for expression of the Tn and STn antigens is compromised T-synthase activity, resulting from alteration of the X-linked gene that encodes for Cosmc, a molecular chaperone specifically required for the correct folding of T-synthase to form active enzyme. This review will summarize our current understanding of the Tn and STn antigens in terms of their biochemistry and role in pathology.
Collapse
Affiliation(s)
- Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yingchun Wang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Rajindra P Aryal
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Sylvain D Lehoux
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaokun Ding
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew R Kudelka
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher Cutler
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Junwei Zeng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Jianmei Wang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaodong Sun
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | | | - David F Smith
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
150
|
Matsumoto Y, Zhang Q, Akita K, Nakada H, Hamamura K, Tsuchida A, Okajima T, Furukawa K, Urano T, Furukawa K. Trimeric Tn antigen on syndecan 1 produced by ppGalNAc-T13 enhances cancer metastasis via a complex formation with integrin α5β1 and matrix metalloproteinase 9. J Biol Chem 2013; 288:24264-76. [PMID: 23814067 PMCID: PMC3745370 DOI: 10.1074/jbc.m113.455006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 06/13/2013] [Indexed: 01/12/2023] Open
Abstract
We demonstrated previously that ppGalNAc-T13 (T13), identified as an up-regulated gene with increased metastasis in a DNA microarray, generated trimeric Tn (tTn) antigen (GalNAcα1-Ser/Thr)3 on Syndecan 1 in highly metastatic sublines of Lewis lung cancer. However, it is not known how tTn antigen regulates cancer metastasis. Here, we analyzed the roles of tTn antigen in cancer properties. tTn antigen on Syndecan 1 increased cell adhesion to fibronectin in an integrin-dependent manner. Furthermore, cell adhesion to fibronectin induced phosphorylation of focal adhesion kinase and paxillin in T13-transfectant cells. In the search of Syndecan 1-interacting molecules, it was demonstrated that tTn antigen-carrying Syndecan 1 interacted with integrin α5β1 and matrix metalloproteinase 9 and that these molecules shifted to a glycolipid-enriched microdomain/rafts along with increased metastatic potential in T13-transfectant cells. We also identified a tTn substitution site on Syndecan 1, demonstrating that tTn on Syndecan 1 is essential for the interaction with integrin α5β1 as well as for the reaction with mAb MLS128. These data suggest that high expression of the ppGalNAc-T13 gene generates tTn antigen on Syndecan 1 under reduced expression of GM1, leading to enhanced invasion and metastasis via the formation of a molecular complex consisting of integrin α5β1, Syndecan 1, and MMP-9 in the glycolipid-enriched microdomain/rafts.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Qing Zhang
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Kaoru Akita
- the Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Hiroshi Nakada
- the Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Kazunori Hamamura
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Akiko Tsuchida
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
- the Noguchi Institute, 1-8-1 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Tetsuya Okajima
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Keiko Furukawa
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
- the Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto-cho, Kasugai 487-8501, Japan, and
| | - Takeshi Urano
- the Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Koichi Furukawa
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| |
Collapse
|