101
|
Miele E, Di Giannatale A, Crocoli A, Cozza R, Serra A, Castellano A, Cacchione A, Cefalo MG, Alaggio R, De Pasquale MD. Clinical, Genetic, and Prognostic Features of Adrenocortical Tumors in Children: A 10-Year Single-Center Experience. Front Oncol 2020; 10:554388. [PMID: 33178583 PMCID: PMC7593337 DOI: 10.3389/fonc.2020.554388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background and Aims: Pediatric adrenocortical tumors (ACTs) are very rare endocrine neoplasms in childhood. In this study, we performed a retrospective analysis of children with ACT treated at our institution by examining clinical and genetic disease features, treatment strategies, and outcomes. Methods: We retrospectively analyzed a cohort of 13 children treated at the Bambino Gesù Children's Hospital from November 2010 to March 2020. Results: The median age at diagnosis was 17 months (range = 0–82 months). The female: male ratio was 3.3/1. Mixed symptomatology (>1 hormone abnormality) was the most common presentation (46.1%). In three cases, the tumor was detected during prenatal or perinatal echographic screening. All patients presented with localized disease at diagnosis and underwent total adrenalectomy. Six patients were identified as having malignancies according to the Wieneke scoring system, five benign, and two undetermined. Seven patients underwent mitotane adjuvant therapy for 12 months. There was metastatic disease in three patients, with no correlation with age or Wieneke score. The most common sites of metastases were the liver and lungs. Metastatic patients were treated with surgery (n = 2), mitotane (n = 1), chemotherapy (n = 2) associated with anti-EGFR (n = 1), or immunotherapy with anti-PD1 (pembrolizumab) (n = 1); two patients achieved complete disease remission. Overall 2- and 5-year survival rates were 100%, with a median follow-up of 5 years (range = 2–9.5 years). Two- and 5-year disease free survival was 76.9 and 84.6%, respectively (95% confidence interval = −66.78–114.76 months). All patients are alive, 12 without disease, and one with stable disease. Genetic analyses showed TP53 germline mutations in six of eight patients analyzed (five inherited, one de novo). One patient had Beckwith–Wiedemann syndrome, with mosaic paternal uniparental disomy of chromosome 11, in both neoplastic and healthy adrenal tissue. Conclusion: We report the cases of 13 patients treated for ACT, including 12 aged <4 years at diagnosis, with a relative short time from symptoms onset. Our cohort experienced an excellent prognosis. TP53 mutation was found in 75% of tested patients (6/8) confirming the need to perform genetic tests and familial counseling in this disease.
Collapse
Affiliation(s)
- Evelina Miele
- Department of Paediatric Haematology/Oncology Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Di Giannatale
- Department of Paediatric Haematology/Oncology Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandro Crocoli
- Department of Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Raffaele Cozza
- Department of Paediatric Haematology/Oncology Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Annalisa Serra
- Department of Paediatric Haematology/Oncology Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Aurora Castellano
- Department of Paediatric Haematology/Oncology Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonella Cacchione
- Department of Paediatric Haematology/Oncology Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Giuseppina Cefalo
- Department of Paediatric Haematology/Oncology Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Alaggio
- Department of Laboratories, Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Debora De Pasquale
- Department of Paediatric Haematology/Oncology Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
102
|
Wang R, Yamada T, Kita K, Taniguchi H, Arai S, Fukuda K, Terashima M, Ishimura A, Nishiyama A, Tanimoto A, Takeuchi S, Ohtsubo K, Yamashita K, Yamano T, Yoshimura A, Takayama K, Kaira K, Taniguchi Y, Atagi S, Uehara H, Hanayama R, Matsumoto I, Han X, Matsumoto K, Wang W, Suzuki T, Yano S. Transient IGF-1R inhibition combined with osimertinib eradicates AXL-low expressing EGFR mutated lung cancer. Nat Commun 2020; 11:4607. [PMID: 32929081 PMCID: PMC7490421 DOI: 10.1038/s41467-020-18442-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Drug tolerance is the basis for acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) including osimertinib, through mechanisms that still remain unclear. Here, we show that while AXL-low expressing EGFR mutated lung cancer (EGFRmut-LC) cells are more sensitive to osimertinib than AXL-high expressing EGFRmut-LC cells, a small population emerge osimertinib tolerance. The tolerance is mediated by the increased expression and phosphorylation of insulin-like growth factor-1 receptor (IGF-1R), caused by the induction of its transcription factor FOXA1. IGF-1R maintains association with EGFR and adaptor proteins, including Gab1 and IRS1, in the presence of osimertinib and restores the survival signal. In AXL-low-expressing EGFRmut-LC cell-derived xenograft and patient-derived xenograft models, transient IGF-1R inhibition combined with continuous osimertinib treatment could eradicate tumors and prevent regrowth even after the cessation of osimertinib. These results indicate that optimal inhibition of tolerant signals combined with osimertinib may dramatically improve the outcome of EGFRmut-LC.
Collapse
MESH Headings
- Acrylamides/pharmacology
- Acrylamides/therapeutic use
- Aged, 80 and over
- Aniline Compounds/pharmacology
- Aniline Compounds/therapeutic use
- Animals
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Survival/drug effects
- ErbB Receptors/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Hepatocyte Nuclear Factor 3-alpha/metabolism
- Humans
- Imidazoles/pharmacology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Male
- Mice
- Models, Biological
- Mutation/genetics
- Phosphorylation/drug effects
- Proto-Oncogene Proteins/metabolism
- Pyrazines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Up-Regulation/drug effects
- Axl Receptor Tyrosine Kinase
Collapse
Affiliation(s)
- Rong Wang
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tadaaki Yamada
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Kenji Kita
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hirokazu Taniguchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Sachiko Arai
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Koji Fukuda
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Minoru Terashima
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University Kanazawa, Kanazawa, Japan
| | - Akihiko Ishimura
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University Kanazawa, Kanazawa, Japan
| | - Akihiro Nishiyama
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Azusa Tanimoto
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shinji Takeuchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Koshiro Ohtsubo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kaname Yamashita
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Tomoyoshi Yamano
- Department of Immunology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Akihiro Yoshimura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kyoichi Kaira
- Department of Respiratory Medicine, Comprehensive Cancer Center, International Medical Center, Saitama Medical University, Hidaka, Japan
| | - Yoshihiko Taniguchi
- Department of Thoracic Oncology, National Hospital Organization Kinki-chuo Chest Medical Center, Sakai, Japan
| | - Shinji Atagi
- Department of Thoracic Oncology, National Hospital Organization Kinki-chuo Chest Medical Center, Sakai, Japan
| | - Hisanori Uehara
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Rikinari Hanayama
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
- Department of Immunology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Isao Matsumoto
- Department of Thoracic, Cardiovascular and General Surgery, Kanazawa University, Kanazawa, Japan
| | - Xujun Han
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kunio Matsumoto
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Tumor Microenvironment Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Wei Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University Kanazawa, Kanazawa, Japan
- Tumor Microenvironment Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
103
|
Chehade M, Bullock M, Glover A, Hutvagner G, Sidhu S. Key MicroRNA's and Their Targetome in Adrenocortical Cancer. Cancers (Basel) 2020; 12:E2198. [PMID: 32781574 PMCID: PMC7465134 DOI: 10.3390/cancers12082198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
Adrenocortical Carcinoma (ACC) is a rare but aggressive malignancy with poor prognosis and limited response to available systemic therapies. Although complete surgical resection gives the best chance for long-term survival, ACC has a two-year recurrence rate of 50%, which poses a therapeutic challenge. High throughput analyses focused on characterizing the molecular signature of ACC have revealed specific micro-RNAs (miRNAs) that are associated with aggressive tumor phenotypes. MiRNAs are small non-coding RNA molecules that regulate gene expression by inhibiting mRNA translation or degrading mRNA transcripts and have been generally implicated in carcinogenesis. This review summarizes the current insights into dysregulated miRNAs in ACC tumorigenesis, their known functions, and specific targetomes. In addition, we explore the possibility of particular miRNAs to be exploited as clinical biomarkers in ACC and as potential therapeutics.
Collapse
Affiliation(s)
- Marthe Chehade
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; (M.C.); (M.B.); (A.G.)
- Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, Sydney, NSW 2065, Australia
| | - Martyn Bullock
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; (M.C.); (M.B.); (A.G.)
- Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, Sydney, NSW 2065, Australia
| | - Anthony Glover
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; (M.C.); (M.B.); (A.G.)
- Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, Sydney, NSW 2065, Australia
- Endocrine Surgery Unit, Royal North Shore Hospital, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, St. Leonards, Sydney, NSW 2007, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Stan Sidhu
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; (M.C.); (M.B.); (A.G.)
- Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, Sydney, NSW 2065, Australia
- Endocrine Surgery Unit, Royal North Shore Hospital, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, St. Leonards, Sydney, NSW 2007, Australia
| |
Collapse
|
104
|
Ardolino L, Hansen A, Ackland S, Joshua A. Advanced Adrenocortical Carcinoma (ACC): a Review with Focus on Second-Line Therapies. HORMONES & CANCER 2020; 11:155-169. [PMID: 32303972 PMCID: PMC10355245 DOI: 10.1007/s12672-020-00385-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Advanced adrenocortical cancer (ACC) is a rare, highly aggressive malignancy, which typically has a poor prognosis. In advanced ACC, the overall trend is toward a short PFS interval following first-line systemic therapy, highlighting a clear need for improved second-/third-line treatment strategies. We conducted a review of the literature and relevant scientific guidelines related to systemic therapy for advanced ACC. Public indexes including PubMed/MEDLINE were searched. Treatment selection in the second-line setting is based on small phase 2 trials, case reports, and pre-clinical evidence. The best data available for initial second-line therapy selection supports the use of gemcitabine and capecitabine (G + C) or streptozotocin (S), both with or without mitotane. G + C is becoming increasingly recommended based on phase 2 clinical trial data in patients of good PS, due to the inferred superior PFS and OS from non-comparative trials. Alternatively, streptozotocin was better tolerated than EDP + M in the FIRM-ACT study and remains an option when warranted. Beyond this, further treatment approaches should be tailored to individual patient characteristics, utilizing a mixture of systemic therapies, local therapies, and enrolment in clinical trials where available. Additionally, the role of molecular stratification, predictive biomarkers, and immune checkpoint inhibitors in specific individuals, such as Lynch syndrome, is evolving and may become increasingly utilized in clinical practice. Advanced ACC necessitates a multidisciplinary approach and is best managed in a specialist center. Although there is no one definitive second-line treatment strategy, there are some favorable approaches, which require further validation in larger clinical trials.
Collapse
Affiliation(s)
- Luke Ardolino
- The Kinghorn Cancer Centre, St. Vincent's Hospital, Sydney, NSW, Australia.
| | - Aaron Hansen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Stephen Ackland
- Calvary Mater Newcastle Hospital, University of Newcastle, Newcastle, NSW, Australia
| | - Anthony Joshua
- The Kinghorn Cancer Centre, St. Vincent's Hospital, Sydney, NSW, Australia
- St. Vincent's Clinical School, UNSW, Sydney, NSW, Australia
| |
Collapse
|
105
|
Darabi S, Braxton DR, Eisenberg BL, Demeure MJ. Molecular genomic profiling of adrenocortical cancers in clinical practice. Surgery 2020; 169:138-144. [PMID: 32709489 DOI: 10.1016/j.surg.2020.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/01/2020] [Accepted: 05/21/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND At presentation, 21% to 49% of patients with adrenocortical cancer have metastases. Standard chemotherapy has a 23% response rate. We assessed whether next generation sequencing could elucidate additional treatment options in refractory adrenocortical cancer. METHODS Retrospective analysis using a commercial, 592-gene DNA-based panel was performed of next generation sequencing data from 94 adrenocortical cancer tumors profiled for clinical care. We compared our data to the adrenocortical cancer database of The Cancer Genome Atlas containing survival data. We evaluated mutations, indels, amplifications, tumor mutation burden, microsatellite instability, and programmed death-ligand 1 protein expression. RESULTS Our cohort included 54 primary neoplasms and 40 metastatic lesions. The most frequently mutated genes were TP53 (36%) and CTNNB1 (19%). Low prevalence mutations were noted in 37 genes including DNA damage repair genes in 15 samples. High tumor mutation burden was seen in 3 patients, and programmed death-ligand 1 was positive in 12. Potential targets to Food and Drug Administration-approved drugs were seen in 16% of cases. CONCLUSION DNA sequencing panel tests may identify therapeutic options for some patients with adrenocortical cancer. TP53 and mutations were associated with an adverse outcome. An expanded repertoire of drugs and, perhaps, more expansive multi-omic sequencing are needed to advance the treatment of adrenocortical cancer.
Collapse
Affiliation(s)
- Sourat Darabi
- Hoag Family Cancer Institute, Precision Medicine Program, Newport Beach, CA
| | - David R Braxton
- Hoag Family Cancer Institute, Precision Medicine Program, Newport Beach, CA
| | - Burton L Eisenberg
- Hoag Family Cancer Institute, Precision Medicine Program, Newport Beach, CA; University of Southern California, Los Angeles, CA
| | - Michael J Demeure
- Hoag Family Cancer Institute, Precision Medicine Program, Newport Beach, CA; Translational Genomics Research Institution, Phoenix, AZ.
| |
Collapse
|
106
|
Leong D, Nyantoro M, Shedzad H, Robins P, Henley D, Ryan S, Nguyen H, Lisewski D. Management of adrenocortical carcinoma in Western Australia: a perspective over 14 years. ANZ J Surg 2020; 91:62-67. [PMID: 32627365 DOI: 10.1111/ans.16111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/24/2020] [Accepted: 06/07/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Adrenocortical carcinoma is a rare but aggressive form of endocrine neoplasm that confers a poor prognosis. To date, the only Australian data published is from New South Wales. This paper describes our experience in Western Australia with a focus on surgical approach and outcomes. METHODS A retrospective study of patients treated for adrenocortical carcinoma in Western Australia over 14 years was performed. RESULTS Over the 14-year period, a total of 33 patients underwent surgery for adrenocortical carcinoma. Resection outcomes were superior in an open en bloc approach with an 85% R0 margin (P = 0.007). Local recurrence rates were lowest in an open en bloc approach (11%) compared to laparoscopic (75%). Multivariate analysis showed that an en bloc resection is highly correlated with an R0 resection (P < 0.05) and significantly associated with lower (odds ratio = 0.06) local recurrence (P = 0.009). Higher volume surgeons (>5 cases) had lower operative times and blood loss. Compliance with mitotane was significantly improved with close monitoring of levels. The European Network for the Study of Adrenal Tumours (ENSAT) stage at presentation was most predictive of long-term survival with 100% of stage I patients alive compared to 53% of stage II, 25% of stage III and 17% of stage IV patients at the end of the follow-up period. CONCLUSION An open en bloc approach with a low threshold for multi-visceral resection performed by high volume surgeons have improved outcomes in local recurrence, operative times and blood loss.
Collapse
Affiliation(s)
- David Leong
- Department of Endocrine Surgery, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Munyaradzi Nyantoro
- Department of General Surgery, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Hira Shedzad
- Department of Endocrine Surgery, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Peter Robins
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - David Henley
- Department of Endocrine Surgery, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.,Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| | - Simon Ryan
- Department of Endocrine Surgery, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Hieu Nguyen
- Department of Endocrine Surgery, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Dean Lisewski
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia.,Department of Endocrine Surgery, Fiona Stanley Hospital, Perth, Western Australia, Australia
| |
Collapse
|
107
|
Zhou X, Chen N, Xu H, Zhou X, Wang J, Fang X, Zhang Y, Li Y, Yang J, Wang X. Regulation of Hippo-YAP signaling by insulin-like growth factor-1 receptor in the tumorigenesis of diffuse large B-cell lymphoma. J Hematol Oncol 2020; 13:77. [PMID: 32546241 PMCID: PMC7298789 DOI: 10.1186/s13045-020-00906-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background Hippo-Yes-associated protein (YAP) signaling is a key regulator of organ size and tumorigenesis, yet the underlying molecular mechanism is still poorly understood. At present, the significance of the Hippo-YAP pathway in diffuse large B-cell lymphoma (DLBCL) is ill-defined. Methods The expression of YAP in DLBCL was determined in public database and clinical specimens. The effects of YAP knockdown, CRISPR/Cas9-mediated YAP deletion, and YAP inhibitor treatment on cell proliferation and the cell cycle were evaluated both in vitro and in vivo. RNA sequencing was conducted to detect dysregulated RNAs in YAP-knockout DLBCL cells. The regulatory effects of insulin-like growth factor-1 receptor (IGF-1R) on Hippo-YAP signaling were explored by targeted inhibition and rescue experiments. Results High expression of YAP was significantly correlated with disease progression and poor prognosis. Knockdown of YAP expression suppressed cell proliferation and induced cell cycle arrest in DLBCL cells. Verteporfin (VP), a benzoporphyrin derivative, exerted an anti-tumor effect by regulating the expression of YAP and the downstream target genes, CTGF and CYR61. In vitro and in vivo studies revealed that deletion of YAP expression with a CRISPR/Cas9 genome editing system significantly restrained tumor growth. Moreover, downregulation of IGF-1R expression led to a remarkable decrease in YAP expression. In contrast, exposure to IGF-1 promoted YAP expression and reversed the inhibition of YAP expression induced by IGF-1R inhibitors. Conclusions Our study highlights the critical role of YAP in the pathogenesis of DLBCL and uncovers the regulatory effect of IGF-1R on Hippo-YAP signaling, suggesting a novel therapeutic strategy for DLBCL.
Collapse
Affiliation(s)
- Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Na Chen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Hongzhi Xu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xiaoming Zhou
- Department of Science and Education, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Jianhong Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Juan Yang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Key Laboratory for Kidney Regeneration of Shandong Province, Jinan, 250021, Shandong, China.
| |
Collapse
|
108
|
Abstract
The insulin and insulin-like growth factor (IGF) family of proteins are part of a complex network that regulates cell proliferation and survival. While this system is undoubtedly important in prenatal development and postnatal cell growth, members of this family have been implicated in several different cancer types. Increased circulating insulin and IGF ligands have been linked to increased risk of cancer incidence. This observation has led to targeting the IGF system as a therapeutic strategy in a number of cancers. This chapter aims to describe the well-characterized biology of the IGF1R system, outline the rationale for targeting this system in cancer, summarize the clinical data as it stands, and discuss where we can go from here.
Collapse
|
109
|
Miller KC, Chintakuntlawar AV, Hilger C, Bancos I, Morris JC, Ryder M, Smith CY, Jenkins SM, Bible KC. Salvage Therapy With Multikinase Inhibitors and Immunotherapy in Advanced Adrenal Cortical Carcinoma. J Endocr Soc 2020; 4:bvaa069. [PMID: 32666013 PMCID: PMC7326479 DOI: 10.1210/jendso/bvaa069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Background Median overall survival is 12 to 15 months in patients with metastatic adrenal cortical carcinoma (ACC). Etoposide, doxorubicin, and cisplatin with or without the adrenolytic agent mitotane is considered the best first-line approach in this context, but has limited activity and no curative potential; additional salvage therapeutic options are needed. Methods Fifteen total patients with recurrent/metastatic ACC were treated with single-agent multikinase inhibitors (MKI) (n = 8), single-agent PD-1 inhibition (n = 8), or cytotoxic chemotherapy plus PD-1 inhibition (n = 4) at our institution as later-line systemic therapies in efforts to palliate disease and attempt to achieve a therapeutic response when not otherwise possible using standard approaches. Results Two of 8 patients (25%) treated with single-agent MKI achieved a partial response (PR), including 1 PR lasting 23.5 months. Another 3 patients (38%) had stable disease (SD); median progression-free survival (PFS) with single-agent MKI was 6.4 months (95% confidence interval [CI] 0.8—not reached). On the other hand, 2 of 12 patients (17%) treated with PD-1 inhibitors (either alone or in combination with cytotoxic chemotherapy) attained SD or better, with 1 patient (8%) achieving a PR; median PFS was 1.4 months (95% CI 0.6-2.7). Conclusions Our single-institution experience suggests that select ACC patients respond to late-line MKI or checkpoint inhibition despite resistance to cytotoxic agents. These treatments may be attractive to ACC patients with limited other therapeutic options. The use of MKI and immunotherapy in ACC warrants prospective investigation emphasizing parallel correlative studies to identify biomarkers that predict for response.
Collapse
Affiliation(s)
| | | | - Crystal Hilger
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, US
| | - Irina Bancos
- Division of Endocrinology, Mayo Clinic, Rochester, MN, US
| | - John C Morris
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, US.,Division of Endocrinology, Mayo Clinic, Rochester, MN, US
| | - Mabel Ryder
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, US.,Division of Endocrinology, Mayo Clinic, Rochester, MN, US
| | - Carin Y Smith
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, US
| | - Sarah M Jenkins
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, US
| | - Keith C Bible
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, US
| |
Collapse
|
110
|
Hua H, Kong Q, Yin J, Zhang J, Jiang Y. Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy. J Hematol Oncol 2020; 13:64. [PMID: 32493414 PMCID: PMC7268628 DOI: 10.1186/s13045-020-00904-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factors (IGFs) play important roles in mammalian growth, development, aging, and diseases. Aberrant IGFs signaling may lead to malignant transformation and tumor progression, thus providing the rationale for targeting IGF axis in cancer. However, clinical trials of the type I IGF receptor (IGF-IR)-targeted agents have been largely disappointing. Accumulating evidence demonstrates that the IGF axis not only promotes tumorigenesis, but also confers resistance to standard treatments. Furthermore, there are diverse pathways leading to the resistance to IGF-IR-targeted therapy. Recent studies characterizing the complex IGFs signaling in cancer have raised hope to refine the strategies for targeting the IGF axis. This review highlights the biological activities of IGF-IR signaling in cancer and the contribution of IGF-IR to cytotoxic, endocrine, and molecular targeted therapies resistance. Moreover, we update the diverse mechanisms underlying resistance to IGF-IR-targeted agents and discuss the strategies for future development of the IGF axis-targeted agents.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Yin
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
111
|
Brown TC, Nicolson NG, Man J, Gibson CE, Stenman A, Juhlin CC, Korah R, Carling T. Recurrent Amplification of the Osmotic Stress Transcription Factor NFAT5 in Adrenocortical Carcinoma. J Endocr Soc 2020; 4:bvaa060. [PMID: 32587934 PMCID: PMC7304660 DOI: 10.1210/jendso/bvaa060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/20/2020] [Indexed: 11/19/2022] Open
Abstract
Tumorigenesis requires mitigation of osmotic stress and the transcription factor nuclear factor of activated T cells 5 (NFAT5) coordinates this response by inducing transcellular transport of ions and osmolytes. NFAT5 modulates in vitro behavior in several cancer types, but a potential role of NFAT5 in adrenocortical carcinoma (ACC) has not been studied. A discovery cohort of 28 ACCs was selected for analysis. Coverage depth analysis of whole-exome sequencing reads assessed NFAT5 copy number alterations in 19 ACCs. Quantitative real-time PCR measured NFAT5 mRNA expression levels in 11 ACCs and 23 adrenocortical adenomas. Immunohistochemistry investigated protein expression in representative adrenal samples. The Cancer Genome Atlas database was analyzed to corroborate NFAT5 findings from the discovery cohort and to test whether NFAT5 expression correlated with ion/osmolyte channel and regulatory protein expression patterns in ACC. NFAT5 was amplified in 10 ACCs (52.6%) and clustered in the top 6% of all amplified genes. mRNA expression levels were 5-fold higher compared with adrenocortical adenomas (P < 0.0001) and NFAT5 overexpression had a sensitivity and specificity of 81.8% and 82.7%, respectively, for malignancy. Increased protein expression and nuclear localization occurred in representative ACCs. The Cancer Genome Atlas analysis demonstrated concomitant NFAT5 amplification and overexpression (P < 0.0001) that correlated with increased expression of sodium/myo-inositol transporter SLC5A3 (r2 = 0.237, P < 0.0001) and 14 other regulatory proteins (P < 0.05) previously shown to interact with NFAT5. Amplification and overexpression of NFAT5 and associated osmotic stress response related genes may play an important role adrenocortical tumorigenesis.
Collapse
Affiliation(s)
- Taylor C Brown
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Norman G Nicolson
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, Connecticut
| | - Jianliang Man
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, Connecticut
| | - Courtney E Gibson
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, Connecticut
| | - Adam Stenman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Reju Korah
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, Connecticut
| | - Tobias Carling
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
112
|
Ettaieb M, Kerkhofs T, van Engeland M, Haak H. Past, Present and Future of Epigenetics in Adrenocortical Carcinoma. Cancers (Basel) 2020; 12:cancers12051218. [PMID: 32414074 PMCID: PMC7281315 DOI: 10.3390/cancers12051218] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 02/01/2023] Open
Abstract
DNA methylation profiling has been suggested a reliable technique to distinguish between benign and malignant adrenocortical tumors, a process which with current diagnostic methods remains challenging and lacks diagnostic accuracy of borderline tumors. Accurate distinction between benign and malignant adrenal tumors is of the essence, since ACC is a rare but aggressive endocrine disease with an annual incidence of about 2.0 cases per million people per year. The estimated five-year overall survival rate for ACC patients is <50%. However, available treatment regimens are limited, in which a radical surgical resection is the only curable option. Nevertheless, up to 85% of patients with radical resection show recurrence of the local disease often with concurrent metastases. Adrenolytic therapy with mitotane, administered alone or in combination with cytotoxic agents, is currently the primary (palliative) treatment for patients with advanced ACC and is increasingly used in adjuvant setting to prevent recurrence. Prognostic stratification is important in order to individualize adjuvant therapies. On April 1, 2020, there were 7404 publications on adrenocortical carcinoma (adrenocortical carcinoma) OR adrenocortical carcinoma [MeSH Terms]) OR adrenal cortex cancer[MeSH Terms]) OR adrenal cortical carcinoma [MeSH Terms]) OR adrenal cortex neoplasm [MeSH Terms]) OR adrenocortical cancer [MeSH Terms]), yet the underlying pathophysiology and characteristics of ACC is not fully understood. Knowledge on epigenetic alterations in the process of adrenal tumorigenesis is rapidly increasing and will add to a better understanding of the pathogenesis of ACC. DNA methylation profiling has been heralded as a promising method in the prognostication of ACC. This review summarizes recent findings on epigenetics of ACC and its role in diagnosis, prognosis and therapeutic strategies.
Collapse
Affiliation(s)
- Madeleine Ettaieb
- Department of Internal Medicine, Division of Endocrinology, Maxima Medical Center, 5631 Eindhoven/Veldhoven, The Netherlands;
- Correspondence:
| | - Thomas Kerkhofs
- Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Center, 6229 Maastricht, The Netherlands;
| | - Manon van Engeland
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 Maastricht, The Netherlands;
| | - Harm Haak
- Department of Internal Medicine, Division of Endocrinology, Maxima Medical Center, 5631 Eindhoven/Veldhoven, The Netherlands;
- Department of Internal Medicine, Division of General Internal Medicine, Maastricht University Medical Center, 6229 Maastricht, The Netherlands
- Department of Health Services Research and CAPHRI School for Public Health and Primary Care, Maastricht University Medical Center, 6229 Maastricht, The Netherlands
| |
Collapse
|
113
|
Kroiss M, Megerle F, Kurlbaum M, Zimmermann S, Wendler J, Jimenez C, Lapa C, Quinkler M, Scherf-Clavel O, Habra MA, Fassnacht M. Objective Response and Prolonged Disease Control of Advanced Adrenocortical Carcinoma with Cabozantinib. J Clin Endocrinol Metab 2020; 105:5695965. [PMID: 31900481 PMCID: PMC8204945 DOI: 10.1210/clinem/dgz318] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/30/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Objective response of advanced adrenocortical carcinoma (ACC) to mitotane and cytotoxic chemotherapy regimen is only ~20% and early tumor progression is frequent. Previous clinical trials with oral multikinase inhibitors were negative, which has been attributed in part to inadvertent drug interaction with mitotane. Cabozantinib (CABO) is an inhibitor of c-MET, vascular endothelial growth factor receptor 2, AXL, and RET and approved for advanced kidney cancer, liver carcinoma after previous sorafenib, and medullary thyroid carcinoma. OBJECTIVE To investigate the clinical efficacy and safety of CABO monotherapy in ACC patients. DESIGN Retrospective cohort study. SETTING Three referral centers for ACC (Germany, United States). RESULTS Sixteen patients (13 female) with progressive ACC received CABO after previous mitotane in 15/16 and 3 (median, range 0-8) further systemic treatments. Prior CABO therapy, mitotane was discontinued in all patients. Mitotane plasma concentration was <2 mg/L in 7/16 patients and discontinued >12 months in 6 additional patients before CABO use. In 4/5 cases with available plasma samples, CABO concentration was in the expected steady-state range. Adverse events of grade 1/2 and 3 were observed in 13 and 3 patients, respectively, and consistent with the known safety profile of CABO. Best response was partial response in 3, stable disease in 5, and progressive disease in 8 patients. Median progression-free and overall survival was 16 and 58 weeks, respectively. CONCLUSION CABO monotherapy appears to be safe and effective as a monotherapy in advanced ACC after failing prior treatments. Therefore, prospective investigation of CABO in ACC patients is warranted.
Collapse
Affiliation(s)
- Matthias Kroiss
- Dept. of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Germany
- Core Unit Clinical Mass Spectrometry, University Hospital Würzburg, University of Würzburg, Germany
- Correspondence and Reprint Requests: Matthias Kroiss, MD, PhD, University Hospital of Würzburg, Dept. of Internal Medicine I, Division of Endocrinology and Diabetes, Oberdürrbacher Str. 6, 97080 Würzburg, Germany. E-mail:
| | - Felix Megerle
- Dept. of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, Germany
| | - Max Kurlbaum
- Dept. of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, Germany
- Core Unit Clinical Mass Spectrometry, University Hospital Würzburg, University of Würzburg, Germany
| | - Sebastian Zimmermann
- Core Unit Clinical Mass Spectrometry, University Hospital Würzburg, University of Würzburg, Germany
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Germany
| | - Julia Wendler
- Dept. of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, Germany
| | - Camilo Jimenez
- The University of Texas MD Anderson Cancer Center, Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, Houston, Texas, USA
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, University of Würzburg, Germany
| | - Marcus Quinkler
- Charité University Medicine and Endokrinologie in Charlottenburg, Berlin, Germany
| | | | - Mouhammed Amir Habra
- The University of Texas MD Anderson Cancer Center, Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, Houston, Texas, USA
| | - Martin Fassnacht
- Dept. of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Germany
| |
Collapse
|
114
|
Altieri B, Ronchi CL, Kroiss M, Fassnacht M. Next-generation therapies for adrenocortical carcinoma. Best Pract Res Clin Endocrinol Metab 2020; 34:101434. [PMID: 32622829 DOI: 10.1016/j.beem.2020.101434] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Almost one decade ago, etoposide, doxorubicin, cisplatin and mitotane (EDP-M) has been established as first-line systemic therapy of metastatic adrenocortical carcinoma (ACC). Although heterogeneous, the prognosis of advanced stage ACC is still poor and novel treatments are urgently needed. This article provides a short summary of current systemic ACC treatment and provides a comprehensive overview of new therapeutic approaches that have been investigated in the past years, including drugs targeting the IGF pathway, tyrosine kinase inhibitors, radionuclide treatment, and immunotherapy. The results of most of these trials were disappointing and we will discuss possible reasons why these drugs failed (e.g. drug interactions with mitotane, disease heterogeneity with exceptional responses in very few patients, and resistance mechanisms to immunotherapy). We then will present potential new drug targets that have emerged from many molecular studies (e.g. wnt/β-catenin, cyclin-dependent kinases, PARP1) that may be the foundation of next-generation therapies of ACC.
Collapse
Affiliation(s)
- Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany.
| | - Cristina L Ronchi
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany; Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
| | - Matthias Kroiss
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany; Comprehensive Cancer Mainfranken, University of Würzburg, Würzburg, Germany; Central Laboratory, University Hospital Würzburg, Würzburg, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany; Comprehensive Cancer Mainfranken, University of Würzburg, Würzburg, Germany; Central Laboratory, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
115
|
von Mehren M, George S, Heinrich MC, Schuetze SM, Yap JT, Yu JQ, Abbott A, Litwin S, Crowley J, Belinsky M, Janeway KA, Hornick JL, Flieder DB, Chugh R, Rink L, Van den Abbeele AD. Linsitinib (OSI-906) for the Treatment of Adult and Pediatric Wild-Type Gastrointestinal Stromal Tumors, a SARC Phase II Study. Clin Cancer Res 2020; 26:1837-1845. [PMID: 31792037 PMCID: PMC7856429 DOI: 10.1158/1078-0432.ccr-19-1069] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/03/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Most gastrointestinal stromal tumors (GIST) have activating mutations of KIT, PDGFRA, or uncommonly BRAF. Fifteen percent of adult and 85% of pediatric GISTs are wild type (WT), commonly having high expression of IGF-1R and loss of succinate dehydrogenase (SDH) complex function. We tested the efficacy of linsitinib, an oral TKI IGF-1R inhibitor, in patients with WT GIST. PATIENTS AND METHODS A multicenter phase II trial of linsitinib was conducted. The primary endpoint was objective response rate. Secondary endpoints were clinical benefit rate: complete response, partial response, and stable disease (SD) ≥ 9 months, and quantitative 2[18F]fluoro-2-deoxy-D-glucose (FDG) metabolic response (MR) at week 8. Serum levels for glucose, insulin, IGF-1R ligand IGF1, and binding proteins were obtained to explore correlations to patient outcomes and FDG-PET results. RESULTS Twenty patients were accrued in a 6-month period. Grade 3-4 toxicities possibly related to linsitinib were uncommon (8.5%). No objective responses were seen. Clinical benefit rate (CBR) at 9 months was 40%. Intense FDG uptake was observed at baseline, with partial MR of 12% and stable metabolic disease of 65% at week 8; these patients had RECIST 1.1 SD as their best response. Progression-free survival (PFS) and overall survival Kaplan-Meier estimates at 9 months were 52% and 80%, respectively. SDHA/B loss determined by IHC was seen in 35% and 88% of cases, respectively. CONCLUSIONS Linsitinib is well tolerated in patients with WT GIST. Although the 9-month CBR was 40%, and PFS at 9 months was 52%, no objective responses were observed. Rapid accrual to this study demonstrates that clinical trials of experimental agents in selected subtypes of GIST are feasible.
Collapse
Affiliation(s)
| | | | - Michael C Heinrich
- Portland VA Health Care System and OHSU Knight Cancer Institute, Portland, Oregon
| | | | - Jeffrey T Yap
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Jain Q Yu
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | | | - John Crowley
- Cancer Research and Biostatistics, Seattle, Washington
| | | | | | - Jason L Hornick
- Harvard Medical School, Boston, Massachusetts
- Brigham Health, Boston, Massachusetts
| | | | - Rashmi Chugh
- University of Michigan, Ann Arbor, Michigan
- Sarcoma Alliance for Research through Collaboration, Ann Arbor, Michigan
| | - Lori Rink
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Annick D Van den Abbeele
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Brigham Health, Boston, Massachusetts
| |
Collapse
|
116
|
Weigand I, Schreiner J, Röhrig F, Sun N, Landwehr LS, Urlaub H, Kendl S, Kiseljak-Vassiliades K, Wierman ME, Angeli JPF, Walch A, Sbiera S, Fassnacht M, Kroiss M. Active steroid hormone synthesis renders adrenocortical cells highly susceptible to type II ferroptosis induction. Cell Death Dis 2020; 11:192. [PMID: 32184394 PMCID: PMC7078189 DOI: 10.1038/s41419-020-2385-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/17/2022]
Abstract
Conditions of impaired adrenal function and tissue destruction, such as in Addison's disease, and treatment resistance of adrenocortical carcinoma (ACC) necessitate improved understanding of the pathophysiology of adrenal cell death. Due to relevant oxidative processes in the adrenal cortex, our study investigated the role of ferroptosis, an iron-dependent cell death mechanism and found high adrenocortical expression of glutathione peroxidase 4 (GPX4) and long-chain-fatty-acid CoA ligase 4 (ACSL4) genes, key factors in the initiation of ferroptosis. By applying MALDI mass spectrometry imaging to normal and neoplastic adrenocortical tissue, we detected high abundance of arachidonic and adrenic acid, two long chain polyunsaturated fatty acids which undergo peroxidation during ferroptosis. In three available adrenal cortex cell models (H295R, CU-ACC1 and CU-ACC-2) a high susceptibility to GPX4 inhibition with RSL3 was documented with EC50 values of 5.7 × 10-8, 8.1 × 10-7 and 2.1 × 10-8 M, respectively, while all non-steroidogenic cells were significantly less sensitive. Complete block of GPX4 activity by RSL3 led to ferroptosis which was completely reversed in adrenal cortex cells by inhibition of steroidogenesis with ketoconazole but not by blocking the final step of cortisol synthesis with metyrapone. Mitotane, the only approved drug for ACC did not induce ferroptosis, despite strong induction of lipid peroxidation in ACC cells. Together, this report is the first to demonstrate extraordinary sensitivity of adrenal cortex cells to ferroptosis dependent on their active steroid synthetic pathways. Mitotane does not induce this form of cell death in ACC cells.
Collapse
Affiliation(s)
- Isabel Weigand
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Jochen Schreiner
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Florian Röhrig
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum Munich, German Research Center for Environmental Health (GmbH), Oberschleißheim, Germany
| | - Laura-Sophie Landwehr
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Hanna Urlaub
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Sabine Kendl
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Katja Kiseljak-Vassiliades
- University of Colorado School of Medicine, Division of Endocrinology, Aurora, CO, USA
- Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA
| | - Margaret E Wierman
- University of Colorado School of Medicine, Division of Endocrinology, Aurora, CO, USA
- Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA
| | | | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum Munich, German Research Center for Environmental Health (GmbH), Oberschleißheim, Germany
| | - Silviu Sbiera
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Martin Fassnacht
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
- Central Laboratory, University Hospital Würzburg, Würzburg, Germany
| | - Matthias Kroiss
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany.
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
117
|
The IGF-II-Insulin Receptor Isoform-A Autocrine Signal in Cancer: Actionable Perspectives. Cancers (Basel) 2020; 12:cancers12020366. [PMID: 32033443 PMCID: PMC7072655 DOI: 10.3390/cancers12020366] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/18/2022] Open
Abstract
Insulin receptor overexpression is a common event in human cancer. Its overexpression is associated with a relative increase in the expression of its isoform A (IRA), a shorter variant lacking 11 aa in the extracellular domain, conferring high affinity for the binding of IGF-II along with added intracellular signaling specificity for this ligand. Since IGF-II is secreted by the vast majority of malignant solid cancers, where it establishes autocrine stimuli, the co-expression of IGF-II and IRA in cancer provides specific advantages such as apoptosis escape, growth, and proliferation to those cancers bearing such a co-expression pattern. However, little is known about the exact role of this autocrine ligand–receptor system in sustaining cancer malignant features such as angiogenesis, invasion, and metastasis. The recent finding that the overexpression of angiogenic receptor kinase EphB4 along with VEGF-A is tightly dependent on the IGF-II/IRA autocrine system independently of IGFIR provided new perspectives for all malignant IGF2omas (those aggressive solid cancers secreting IGF-II). The present review provides an updated view of the IGF system in cancer, focusing on the biology of the autocrine IGF-II/IRA ligand–receptor axis and supporting its underscored role as a malignant-switch checkpoint target.
Collapse
|
118
|
Wang G, Huang Y, Yang F, Tian X, Wang K, Liu L, Fan Y, Li X, Li L, Shi B, Hao Y, Xia C, Nie Q, Xin Y, Shi Z, Ma L, Xu D, Liu C. High expression of SMYD3 indicates poor survival outcome and promotes tumour progression through an IGF-1R/AKT/E2F-1 positive feedback loop in bladder cancer. Aging (Albany NY) 2020; 12:2030-2048. [PMID: 32007952 PMCID: PMC7041758 DOI: 10.18632/aging.102718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Abstract
The AKT/mTOR pathway is critical for bladder cancer (BC) pathogenesis and is hyper-activated during BC progression. In the present study, we identified a novel positive feedback loop involving oncogenic factors histone methyltransferase SMYD3, insulin-like growth factor-1 receptor (IGF-1R), AKT, and E2F-1. SMYD3 expression was significantly up-regulated in BC tumors and positively associated with histological grade, lymph node metastasis, and shorter patient survival. Depletion of SMYD3 inhibited BC cell proliferation, colony formation, migration, invasion, and xenograft tumor growth. Mechanistically, SMYD3 inhibition led to the diminished AKT/mTOR signaling activity, thereby triggering deleterious effects on BC cells. Furthermore, SMYD3 directly activates the expression of IGF-1R, a critical activator of AKT in BC, by inducing hyper-methylation of histone H3-K4 and subsequent chromatin remodeling in the IGF-1R promoter region. On the other hand, E2F-1, a downstream factor of the AKT pathway, binds to the E2F-1 binding motifs at the SMYD3 promoter and consequently induces SMYD3 transcription and expression. Thus, SMYD3/IGF-1R/AKT/E2F-1 forms a positive feedback loop leading to the hyper-activated AKT signaling. Our findings provide not only profound insights into SMYD3-mediated oncogenic activity but also present a unique avenue for treating BC by directly disrupting this signaling circuit.
Collapse
Affiliation(s)
- Guoliang Wang
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Yi Huang
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Feilong Yang
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Xiaojun Tian
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Kun Wang
- Department of Urology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Lab for Cancer Prevention and Therapy, Tianjin, China
| | - Li Liu
- School of Nursing, Beijing University of Chinese Medicine, Beijing, China
| | - Yidong Fan
- Department of Urology, Shandong University Qilu Hospital, Jinan, China
| | - Xiaofeng Li
- Department of Urology, Shandong University Qilu Hospital, Jinan, China
| | - Luchao Li
- Department of Urology, Shandong University Qilu Hospital, Jinan, China
| | - Benkang Shi
- Department of Urology, Shandong University Qilu Hospital, Jinan, China
| | - Yichang Hao
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Chuanyou Xia
- Department of Medicine, Bioclinicum and Centre for Molecular Medicine, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Qingsheng Nie
- Department of Urology, The Central Hospital of Zibo, Zibo, China
| | - Yue Xin
- Department of Urology, Chifeng University Second Hospital, Chifeng, China
| | - Zhenfeng Shi
- Department of Urology, The People's Hospital of Xinjiang Uyghur Autonomous Region, Xinjiang, China
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Dawei Xu
- Department of Medicine, Bioclinicum and Centre for Molecular Medicine, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden.,Karolinska Institute-Shandong University Collaborative Laboratory for Cancer and Stem Cell Research, Jinan, China
| | - Cheng Liu
- Department of Urology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
119
|
Asban A, Patel AJ, Reddy S, Wang T, Balentine CJ, Chen H. Cancer of the Endocrine System. ABELOFF'S CLINICAL ONCOLOGY 2020:1074-1107.e11. [DOI: 10.1016/b978-0-323-47674-4.00068-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
120
|
Liang R, Weigand I, Lippert J, Kircher S, Altieri B, Steinhauer S, Hantel C, Rost S, Rosenwald A, Kroiss M, Fassnacht M, Sbiera S, Ronchi CL. Targeted Gene Expression Profile Reveals CDK4 as Therapeutic Target for Selected Patients With Adrenocortical Carcinoma. Front Endocrinol (Lausanne) 2020; 11:219. [PMID: 32373071 PMCID: PMC7176906 DOI: 10.3389/fendo.2020.00219] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/26/2020] [Indexed: 12/29/2022] Open
Abstract
Adrenocortical carcinomas (ACC) are aggressive tumors with a heterogeneous prognosis and limited therapeutic options for advanced stages. This study aims to identify novel drug targets for a personalized treatment in ACC. RNA was isolated from 40 formalin-fixed paraffin-embedded ACC samples. We evaluated gene expression of 84 known cancer drug targets by reverse transcriptase quantitative real time-PCR and calculated fold change using 5 normal adrenal glands as reference (overexpression by fold change >2.0). The most promising candidate cyclin-dependent kinase 4 (CDK4) was investigated at protein level in 104 ACC samples and tested by in vitro experiments in two ACC cell lines (NCI-H295R and MUC1). The most frequently overexpressed genes were TOP2A (100% of cases, median fold change = 16.5), IGF2 (95%, fold change = 52.9), CDK1 (80%, fold change = 6.7), CDK4 (62%, fold change = 2.6), PLK4 (60%, fold change = 2.8), and PLK1 (52%, fold change = 2.3). CDK4 was chosen for functional validation, as it is actionable by approved CDK4/6-inhibitors (e.g., palbociclib). Nuclear immunostaining of CDK4 significantly correlated with mRNA expression (R = 0.52, P < 0.005). We exposed both NCI-H295R and MUC1 cell lines to palbociclib and found a concentration- and time-dependent reduction of cell viability, which was more pronounced in the NCI-H295R cells in line with higher CDK4 expression. Furthermore, we tested palbociclib in combination with insulin-like growth factor 1/insulin receptor inhibitor linsitinib showing an additive effect. In conclusion, we demonstrate that RNA profiling is useful to discover potential drug targets and that CDK4/6 inhibitors are promising candidates for treatment of selected patients with ACC.
Collapse
Affiliation(s)
- Raimunde Liang
- Division of Endocrinology and Diabetology, Department of Internal Medicine, University Hospital of Wuerzburg, Würzburg, Germany
| | - Isabel Weigand
- Division of Endocrinology and Diabetology, Department of Internal Medicine, University Hospital of Wuerzburg, Würzburg, Germany
| | - Juliane Lippert
- Division of Endocrinology and Diabetology, Department of Internal Medicine, University Hospital of Wuerzburg, Würzburg, Germany
- Institute of Human Genetics, University of Wuerzburg, Würzburg, Germany
| | - Stefan Kircher
- Institute of Pathology, University of Wuerzburg, Würzburg, Germany
| | - Barbara Altieri
- Division of Endocrinology and Diabetology, Department of Internal Medicine, University Hospital of Wuerzburg, Würzburg, Germany
- Department of Clinical Medicine and Surgery, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Sonja Steinhauer
- Division of Endocrinology and Diabetology, Department of Internal Medicine, University Hospital of Wuerzburg, Würzburg, Germany
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Simone Rost
- Institute of Human Genetics, University of Wuerzburg, Würzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Wuerzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital of Wuerzburg, Würzburg, Germany
| | - Matthias Kroiss
- Division of Endocrinology and Diabetology, Department of Internal Medicine, University Hospital of Wuerzburg, Würzburg, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetology, Department of Internal Medicine, University Hospital of Wuerzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital of Wuerzburg, Würzburg, Germany
| | - Silviu Sbiera
- Division of Endocrinology and Diabetology, Department of Internal Medicine, University Hospital of Wuerzburg, Würzburg, Germany
| | - Cristina L. Ronchi
- Division of Endocrinology and Diabetology, Department of Internal Medicine, University Hospital of Wuerzburg, Würzburg, Germany
- Institute of Metabolism and System Research (IMSR), University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Cristina L. Ronchi ;
| |
Collapse
|
121
|
Disease-free interval and tumor functional status can be used to select patients for resection/ablation of liver metastases from adrenocortical carcinoma: insights from a multi-institutional study. HPB (Oxford) 2020; 22:169-175. [PMID: 31447392 PMCID: PMC7948253 DOI: 10.1016/j.hpb.2019.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/15/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adrenocortical carcinoma (ACC) is an aggressive malignancy that frequently metastasizes to the liver. Given the limitations of systemic therapy in this setting, we sought to determine characteristics associated with a two-fold increase in survival with resection/ablation compared to that reported with chemotherapy alone (∼12 months). METHODS Patients who underwent resection/ablation at our institutions for ACC liver metastases were identified. Those who survived 12-24 months after metastasectomy were excluded, as the aim was to characterize patients who most clearly benefited from these procedures. Clinicopathologic and treatment characteristics were assessed for associations with survival. RESULTS Sixty-two patients met inclusion criteria, of whom 44 survived >24 months and 18 survived <12 months. Patients with extended survival were less likely to have functioning tumors (p = 0.047), had fewer liver metastases (p = 0.047), and a longer disease-free interval (DFI) (median 17.6 vs 2.3 months, p < 0.0001). On multivariable analysis, DFI (OR = 1.33, 95% CI = 1.12-1.58) and non-functioning tumor (OR = 0.13, 95% CI = 0.13-0.56) were independently associated with prolonged survival. CONCLUSION Metastasectomy/ablation should be considered for patients with ACC liver metastases. DFI and tumor functional status may be useful in selecting optimal candidates for these procedures.
Collapse
|
122
|
Zhang J, Yu Z, You G. Insulin-like growth factor 1 modulates the phosphorylation, expression, and activity of organic anion transporter 3 through protein kinase A signaling pathway. Acta Pharm Sin B 2020; 10:186-194. [PMID: 31993315 PMCID: PMC6977015 DOI: 10.1016/j.apsb.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/10/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022] Open
Abstract
Organic anion transporter 3 (OAT3) plays a vital role in removing a broad variety of anionic drugs from kidney, thus avoiding their possible toxicity in the body. In the current study, we investigated the role of insulin-like growth factor 1 (IGF-1) in the regulation of OAT3. We showed that IGF-1 induced a dose- and time-dependent increase in OAT3 transport activity, which correlated well with an increase in OAT3 expression. The IGF-1-induced increase in OAT3 expression was blocked by protein kinase A (PKA) inhibitor H89. Moreover, IGF-1 induced an increase in OAT3 phosphorylation, which was also blocked by H89. These data suggest that the IGF-1 modulation of OAT3 occurred through PKA signaling pathway. To further confirm the involvement of PKA, we treated OAT3-expressing cells with PKA activator Bt2-cAMP, followed by examining OAT activity and phosphorylation. We showed that OAT3 activity and phosphorylation were much enhanced in Bt2-cAMP-treated cells as compared to that in control cells. Finally, linsitinib, an anticancer drug that blocks the IGF-1 receptor, abrogated IGF-1-stimulated OAT3 transport activity. In conclusion, our study demonstrated that IGF-1 regulates OAT3 expression and transport activity through PKA signaling pathway, possibly by phosphorylating the transporter.
Collapse
|
123
|
Lang J, Capasso A, Jordan KR, French JD, Kar A, Bagby SM, Barbee J, Yacob BW, Head LS, Tompkins KD, Freed BM, Somerset H, Clark TJ, Pitts TM, Messersmith WA, Eckhardt SG, Wierman ME, Leong S, Kiseljak-Vassiliades K. Development of an Adrenocortical Cancer Humanized Mouse Model to Characterize Anti-PD1 Effects on Tumor Microenvironment. J Clin Endocrinol Metab 2020; 105:5568436. [PMID: 31513709 PMCID: PMC7947837 DOI: 10.1210/clinem/dgz014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/28/2019] [Accepted: 09/05/2019] [Indexed: 01/11/2023]
Abstract
CONTEXT Although the development of immune checkpoint inhibitors has transformed treatment strategies of several human malignancies, research models to study immunotherapy in adrenocortical carcinoma (ACC) are lacking. OBJECTIVE To explore the effect of anti-PD1 immunotherapy on the alteration of the immune milieu in ACC in a newly generated preclinical model and correlate with the response of the matched patient. DESIGN, SETTING, AND INTERVENTION To characterize the CU-ACC2-M2B patient-derived xenograft in a humanized mouse model, evaluate the effect of a PD-1 inhibitor therapy, and compare it with the CU-ACC2 patient with metastatic disease. RESULTS Characterization of the CU-ACC2-humanized cord blood-BALB/c-Rag2nullIl2rγnullSirpaNOD model confirmed ACC origin and match with the original human tumor. Treatment of the mice with pembrolizumab demonstrated significant tumor growth inhibition (60%) compared with controls, which correlated with increased tumor infiltrating lymphocyte activity, with an increase of human CD8+ T cells (P < 0.05), HLA-DR+ T cells (P < 0.05) as well as Granzyme B+ CD8+ T cells (<0.001). In parallel, treatment of the CU-ACC2 patient, who had progressive disease, demonstrated a partial response with 79% to 100% reduction in the size of target lesions, and no new sites of metastasis. Pretreatment analysis of the patient's metastatic liver lesion demonstrated abundant intratumoral CD8+ T cells by immunohistochemistry. CONCLUSIONS Our study reports the first humanized ACC patient-derived xenograft mouse model, which may be useful to define mechanisms and biomarkers of response and resistance to immune-based therapies, to ultimately provide more personalized care for patients with ACC.
Collapse
Affiliation(s)
- Julie Lang
- Department of Immunology & Microbiology, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anna Capasso
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kimberly R Jordan
- Department of Immunology & Microbiology, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jena D French
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Adwitiya Kar
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Stacey M Bagby
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jacob Barbee
- Department of Immunology & Microbiology, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Betelehem W Yacob
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lia S Head
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kenneth D Tompkins
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Brian M Freed
- Department of Immunology & Microbiology, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hilary Somerset
- Department of Pathology, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Toshimasa J Clark
- Department of Radiology, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Todd M Pitts
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Wells A Messersmith
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - S Gail Eckhardt
- Dell Medical School, University of Texas at Austin, Austin, Texas
| | - Margaret E Wierman
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
- Research Service Veterans Affairs Medical Center, Denver, Colorado
| | - Stephen Leong
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado
- Research Service Veterans Affairs Medical Center, Denver, Colorado
- Correspondence and Reprint Requests: Katja Kiseljak-Vassiliades, DO, Endocrinology MS8106, University of Colorado School of Medicine, 12801 East 17th Ave, RC1 South, Aurora, CO 80045. E-mail:
| |
Collapse
|
124
|
Carneiro BA, Konda B, Costa RB, Costa RLB, Sagar V, Gursel DB, Kirschner LS, Chae YK, Abdulkadir SA, Rademaker A, Mahalingam D, Shah MH, Giles FJ. Nivolumab in Metastatic Adrenocortical Carcinoma: Results of a Phase 2 Trial. J Clin Endocrinol Metab 2019; 104:6193-6200. [PMID: 31276163 DOI: 10.1210/jc.2019-00600] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/01/2019] [Indexed: 02/13/2023]
Abstract
CONTEXT Systemic treatment of metastatic adrenocortical carcinoma (ACC) remains limited to chemotherapy and mitotane. Preliminary evidence suggesting that antitumor immune responses can be elicited in ACC has fostered interest in checkpoint inhibitors such as anti-PD-1 nivolumab. OBJECTIVE The primary endpoint was objective response rate according to the response evaluation criteria in solid tumors. Secondary endpoints were progression-free survival (PFS), overall survival, and safety. DESIGN Single-arm, multicenter, phase 2 clinical trial with two-stage design. SETTING Comprehensive cancer center. PATIENTS Ten adult patients with metastatic ACC previously treated with platinum-based chemotherapy and/or mitotane as well as patients who declined front-line chemotherapy. INTERVENTION Nivolumab (240 mg) IV every 2 weeks. RESULTS Ten patients with metastatic ACC were enrolled between March and December 2016. The median number of doses of nivolumab administered was two. Three patients only received one treatment [one died of disease progression, one discontinued due to adverse events (AEs), one withdrew after beginning treatment]. The median PFS was 1.8 months. The median follow-up was 4.5 months (range, 0.1 to 25.6 months). Two patients had stable disease for a duration of 48 and 11 weeks, respectively. One patient had an unconfirmed partial response but discontinued the study due to an AE. Most AEs were grade 1/2. The most common grade 3/4 treatment-related AEs were aspartate aminotransferase and alanine aminotransferase elevations, mucositis, and odynophagia. CONCLUSION Nivolumab demonstrated modest antitumor activity in patients with advanced ACC. The nivolumab safety profile was consistent with previous clinical experience without any unexpected AEs in this population.
Collapse
Affiliation(s)
- Benedito A Carneiro
- Developmental Therapeutics Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Bhavana Konda
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Rubens B Costa
- Developmental Therapeutics Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Ricardo L B Costa
- Developmental Therapeutics Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Vinay Sagar
- Developmental Therapeutics Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Demirkan B Gursel
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Young Kwang Chae
- Developmental Therapeutics Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Sarki A Abdulkadir
- Developmental Therapeutics Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alfred Rademaker
- Department of Preventive Medicine, Northwestern University, Chicago, Illinois
| | - Devalingam Mahalingam
- Developmental Therapeutics Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Manisha H Shah
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Francis J Giles
- Developmental Therapeutics Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| |
Collapse
|
125
|
Werner H, Sarfstein R, Bruchim I. Investigational IGF1R inhibitors in early stage clinical trials for cancer therapy. Expert Opin Investig Drugs 2019; 28:1101-1112. [PMID: 31731883 DOI: 10.1080/13543784.2019.1694660] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: The insulin-like growth factors (IGFs) are a family of secreted peptide hormones with important roles in different cellular and organism functions. The biological activities of the IGFs are mediated by the IGF1 receptor (IGF1R), a cell surface, tyrosine kinase-containing heterotetramer that is linked to numerous cytoplasmic signaling cascades. The IGF1R displays potent antiapoptotic, pro-survival capacities and plays a key role in malignant transformation. Research has identified the IGF1R as a candidate therapeutic target in cancer.Areas covered: We offer a synopsis of ongoing efforts to target the IGF axis for therapeutic purposes. Our review includes a digest of early experimental work that led to the identification of IGF1R as a candidate therapeutic target in oncology.Expert opinion: Targeting of the IGF axis has yielded disappointing results in phase III trials, but it is important to learn from this to improve future trials in a rational manner. The potential of anti-IGF1R antibodies and small molecular weight inhibitors, alone or in combination with chemotherapy or other biological agents, should be investigated further in randomized studies. Moreover, the implementation of predictive biomarkers for patient selection will improve the outcome of future trials. Emerging personalized medicine could have a major impact on IGF1R targeting.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv, Israel
| | - Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilan Bruchim
- Gynecologic Oncology Division, Hillel Yaffe Medical Center, Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
126
|
Haslam A, Prasad V. When is crossover desirable in cancer drug trials and when is it problematic? Ann Oncol 2019; 29:1079-1081. [PMID: 29648572 PMCID: PMC5961160 DOI: 10.1093/annonc/mdy116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- A Haslam
- Division of Hematology Oncology, Knight Cancer Institute
| | - V Prasad
- Division of Hematology Oncology, Knight Cancer Institute; Department of Public Health and Preventive Medicine; Center for Health Care Ethics, Oregon Health & Science University, Portland, USA.
| |
Collapse
|
127
|
Raj N, Zheng Y, Kelly V, Katz SS, Chou J, Do RKG, Capanu M, Zamarin D, Saltz LB, Ariyan CE, Untch BR, O'Reilly EM, Gopalan A, Berger MF, Olino K, Segal NH, Reidy-Lagunes DL. PD-1 Blockade in Advanced Adrenocortical Carcinoma. J Clin Oncol 2019; 38:71-80. [PMID: 31644329 DOI: 10.1200/jco.19.01586] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Adrenocortical carcinomas (ACC) are rare and aggressive malignancies with limited treatment options. This study was undertaken to evaluate the immunogenicity of ACC. PATIENTS AND METHODS Patients with advanced ACC were enrolled in a phase II study to evaluate the clinical activity of pembrolizumab 200 mg every 3 weeks, without restriction on prior therapy. The primary end point was objective response rate. Efficacy was correlated with tumor programmed death-ligand 1 expression, microsatellite-high and/or mismatch repair deficient (MSI-H/MMR-D) status, and somatic and germline genomic correlates. RESULTS We enrolled 39 patients with advanced ACC and herein report after a median follow-up of 17.8 months (range, 5.4 months to 34.7 months). The objective response rate to pembrolizumab was 23% (nine patients; 95% CI, 11% to 39%), and the disease control rate was 52% (16 patients; 95% CI, 33% to 69%). The median duration of response was not reached (lower 95% CI, 4.1 months). Two of six patients with MSI-H/MMR-D tumors responded. The other seven patients with objective responses had microsatellite stable tumors. The median progression-free survival was 2.1 months (95% CI, 2.0 months to 10.7 months), and the median overall survival was 24.9 months (95% CI, 4.2 months to not reached). Thirteen percent of patients (n = 5) had treatment-related grade 3 or 4 adverse events. Tumor programmed death-ligand 1 expression and MSI-H/MMR-D status were not associated with objective response. CONCLUSION MSI-H/MMR-D tumors, for which pembrolizumab is a standard therapy, are more common in ACC than has been recognized. In advanced ACC that is microsatellite stable, pembrolizumab provided clinically meaningful and durable antitumor activity with a manageable safety profile.
Collapse
Affiliation(s)
- Nitya Raj
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Youyun Zheng
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Seth S Katz
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joanne Chou
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | | | - Brian R Untch
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | - Neil H Segal
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
128
|
Phase I Study of IGF-Methotrexate Conjugate in the Treatment of Advanced Tumors Expressing IGF-1R. Am J Clin Oncol 2019; 42:862-869. [DOI: 10.1097/coc.0000000000000611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
129
|
Kruger DT, Alexi X, Opdam M, Schuurman K, Voorwerk L, Sanders J, van der Noort V, Boven E, Zwart W, Linn SC. IGF-1R pathway activation as putative biomarker for linsitinib therapy to revert tamoxifen resistance in ER-positive breast cancer. Int J Cancer 2019; 146:2348-2359. [PMID: 31490549 PMCID: PMC7065127 DOI: 10.1002/ijc.32668] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/26/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022]
Abstract
Preclinical studies indicate that activated IGF-1R can drive endocrine resistance in ER-positive (ER+) breast cancer, but its clinical relevance is unknown. We studied the effect of IGF-1R signaling on tamoxifen benefit in patients and we searched for approaches to overcome IGF-1R-mediated tamoxifen failure in cell lines. Primary tumor blocks from postmenopausal ER+ breast cancer patients randomized between adjuvant tamoxifen versus nil were recollected. Immunohistochemistry for IGF-1R, p-IGF-1R/InsR, p-ERα(Ser118), p-ERα(Ser167) and PI3K/MAPK pathway proteins was performed. Multivariate Cox models were employed to assess tamoxifen efficacy. The association between p-IGF-1R/InsR and PI3K/MAPK pathway activation in MCF-7 and T47D cells was analyzed with Western blots. Cell proliferation experiments were performed under various growth-stimulating and -inhibiting conditions. Patients with ER+, IGF-1R-positive breast cancer without p-IGF-1R/InsR staining (n = 242) had tamoxifen benefit (HR 0.41, p = 0.0038), while the results for p-IGF-1R/InsR-positive patients (n = 125) were not significant (HR 0.95, p = 0.3). High p-ERα(Ser118) or p-ERα(Ser167) expression was associated with less tamoxifen benefit. In MCF-7 cells, IGF-1R stimulation increased phosphorylation of PI3K/MAPK proteins and ERα(Ser167) regardless of IGF-1R overexpression. This could be abrogated by the dual IGF-1R/InsR inhibitor linsitinib, but not by the IGF-IR-selective antibody 1H7. In MCF-7 and T47D cells, stimulation of the IGF-1R/InsR pathway resulted in cell proliferation regardless of tamoxifen. Abrogation of cell growth was regained by addition of linsitinib. In conclusion, p-IGF-1R/InsR positivity in ER+ breast cancer is associated with reduced benefit from adjuvant tamoxifen in postmenopausal patients. In cell lines, stimulation rather than overexpression of IGF-1R is driving tamoxifen resistance to be abrogated by linsitinib.
Collapse
Affiliation(s)
- Dinja T Kruger
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam/Cancer Center Amsterdam, Amsterdam, The Netherlands.,Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Xanthippi Alexi
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mark Opdam
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karianne Schuurman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Leonie Voorwerk
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Vincent van der Noort
- Division of Biometrics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Epie Boven
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam/Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sabine C Linn
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Medical Oncology, The National Cancer Institute, Amsterdam, The Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
130
|
Kar A, Zhang Y, Yacob BW, Saeed J, Tompkins KD, Bagby SM, Pitts TM, Somerset H, Leong S, Wierman ME, Kiseljak-Vassiliades K. Targeting PDZ-binding kinase is anti-tumorigenic in novel preclinical models of ACC. Endocr Relat Cancer 2019; 26:765-778. [PMID: 31325906 PMCID: PMC6938568 DOI: 10.1530/erc-19-0262] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Abstract
Adrenocortical carcinoma (ACC) is an aggressive orphan malignancy with less than 35% 5-year survival and 75% recurrence. Surgery remains the primary therapy and mitotane, an adrenolytic, is the only FDA-approved drug with wide-range toxicities and poor tolerability. There are no targeted agents available to date. For the last three decades, H295R cell line and its xenograft were the only available preclinical models. We recently developed two new ACC patient-derived xenograft mouse models and corresponding cell lines (CU-ACC1 and CU-ACC2) to advance research in the field. Here, we have utilized these novel models along with H295R cells to establish the mitotic PDZ-binding kinase (PBK) as a promising therapeutic target. PBK is overexpressed in ACC samples and correlates with poor survival. We show that PBK is regulated by FOXM1 and targeting PBK via shRNA decreased cell proliferation, clonogenicity and anchorage-independent growth in ACC cell lines. PBK silencing inhibited pAkt, pp38MAPK and pHistone H3 altering the cell cycle. Therapeutically, targeting PBK with the small-molecule inhibitor HITOPK032 phenocopied PBK-specific modulation of pAkt and pHistone H3, but also induced apoptosis via activation of JNK. Consistent with in vitro findings, treatment of CU-ACC1 PDXs with HITOPK032 significantly reduced tumor growth by 5-fold (P < 0.01). Treated tumor tissues demonstrated increased rates of apoptosis and JNK activation, with decreased pAkt and Histone H3 phosphorylation, consistent with effects observed in ACC cell lines. Together these studies elucidate the mechanism of PBK in ACC tumorigenesis and establish the potential therapeutic potential of HITOPK032 in ACC patients.
Collapse
Affiliation(s)
- Adwitiya Kar
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Yu Zhang
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Betelehem W. Yacob
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Jordan Saeed
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Kenneth D. Tompkins
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Stacey M. Bagby
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Todd M. Pitts
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Hilary Somerset
- Department of Pathology, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Stephen Leong
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Margaret E. Wierman
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
- Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
- Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045
| |
Collapse
|
131
|
Are we failing in treatment of adrenocortical carcinoma? Lights and shadows of molecular signatures. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coemr.2019.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
132
|
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy with a poor prognosis. ACC is capable of secreting excess adrenocortical hormones, which can compound morbidity and compromise clinical outcomes. By the time most ACCs are diagnosed, there is usually locoregional or metastatic disease. Surgery is the most important treatment to offer possibility of cure or prolong survival. Several adjuvant therapies are used depending on grade and stage of the tumor and other patient-related factors. This review provides an overview of treatment approaches for ACC, highlighting evidence to support each treatment and acknowledging where more data and research are needed to improve care.
Collapse
Affiliation(s)
- Anand Vaidya
- Division of Endocrinology Diabetes, and Hypertension, Department of Medicine, Center for Adrenal Disorders, Brigham and Women's Hospital, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| | - Matthew Nehs
- Brigham and Women's Hospital, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Department of Surgery, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Kerry Kilbridge
- Brigham and Women's Hospital, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Department of Surgery, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
133
|
Habra MA, Stephen B, Campbell M, Hess K, Tapia C, Xu M, Rodon Ahnert J, Jimenez C, Lee JE, Perrier ND, Boraddus RR, Pant S, Subbiah V, Hong DS, Zarifa A, Fu S, Karp DD, Meric-Bernstam F, Naing A. Phase II clinical trial of pembrolizumab efficacy and safety in advanced adrenocortical carcinoma. J Immunother Cancer 2019; 7:253. [PMID: 31533818 PMCID: PMC6751592 DOI: 10.1186/s40425-019-0722-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Background Adrenocortical carcinoma (ACC) is a rare malignancy without good treatment options. There are limited data about the use of immunotherapy in ACC. We investigated the efficacy and safety of pembrolizumab in patients with metastatic ACC. Methods This is a pre-specified cohort of a single-center, investigator-initiated, phase II clinical trial using pembrolizumab monotherapy in patients with rare malignancies. Patients must have had prior treatment fail in the past 6 months before study enrollment. Patients were enrolled from August 2016 to October 2018. Follow-up data were updated as of March 26, 2019. Patients received 200 mg pembrolizumab intravenously every 3 weeks without concomitant oncologic therapy. The primary endpoint was non-progression rate (NPR) at 27 weeks. Other endpoints included adverse events, tumor responses measured independently by objective radiologic criteria, and select immunological markers. Results Sixteen patients with ACC (including eight women [50%]) were included in this cohort. Ten patients (63%) had evidence of hormonal overproduction (seven had cortisol-producing ACC). Non-progression rate at 27 weeks was evaluable in 14 patients, one patient was lost to follow-up, and one patient left the study because of an adverse event. Five of 14 patients were alive and progression-free at 27 weeks (non-progression rate at 27 weeks was 36, 95% confidence interval 13–65%). Of the 14 patients evaluable for imaging response by immune-related Response Evaluation Criteria in Solid Tumors, two had a partial response (including one with cortisol-producing ACC), seven had stable disease (including three with cortisol-producing ACC), and five had progressive disease, representing an objective response rate of 14% (95% confidence interval 2–43%). Of those who had stable disease, six had disease stabilization that lasted ≥4 months. Severe treatment-related adverse events (≥grade 3) were seen in 2 of 16 patients (13%) and resulted in one patient discontinuing study participation. All studied tumor specimens (14/14) were negative for programmed cell death ligand-1 expression. Thirteen of 14 tumor specimens (93%) were microsatellite-stable. Eight of 14 patients (57%) had a high tumor-infiltrating lymphocyte score on immunohistochemistry staining. Conclusions Single-agent pembrolizumab has modest efficacy as a salvage therapy in ACC regardless of the tumor’s hormonal function, microsatellite instability status, or programmed cell death ligand-1 status. Treatment was well tolerated in most study participants, with a low rate of severe adverse events. Trial registration ClinicalTrials.gov identifier: NCT02721732, Registered March 29, 2016.
Collapse
Affiliation(s)
- Mouhammed Amir Habra
- Department of Endocrine Neoplasia and Hormonal Disorders, Unit 1461, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Bettzy Stephen
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Matthew Campbell
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Kenneth Hess
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Coya Tapia
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Mingxuan Xu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, Unit 1461, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Nancy D Perrier
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Russell R Boraddus
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Shubham Pant
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Abdulrazzak Zarifa
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Daniel D Karp
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| |
Collapse
|
134
|
Sun N, Kunzke T, Sbiera S, Kircher S, Feuchtinger A, Aichler M, Herterich S, Ronchi CL, Weigand I, Schlegel N, Waldmann J, Candida Villares Fragoso M, Whitsett TG, Gill AJ, Fassnacht M, Walch A, Kroiss M. Prognostic Relevance of Steroid Sulfation in Adrenocortical Carcinoma Revealed by Molecular Phenotyping Using High-Resolution Mass Spectrometry Imaging. Clin Chem 2019; 65:1276-1286. [PMID: 31492715 DOI: 10.1373/clinchem.2019.306043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Adrenocortical carcinoma (ACC) is a rare tumor with variable prognosis even within the same tumor stage. Cancer-related sex hormones and their sulfated metabolites in body fluids can be used as tumor markers. The role of steroid sulfation in ACC has not yet been studied. MALDI mass spectrometry imaging (MALDI-MSI) is a novel tool for tissue-based chemical phenotyping. METHODS We performed phenotyping of formalin-fixed, paraffin-embedded tissue samples from 72 ACC by MALDI-MSI at a metabolomics level. RESULTS Tumoral steroid hormone metabolites-estradiol sulfate [hazard ratio (HR) 0.26; 95% CI, 0.10-0.69; P = 0.005] and estrone 3-sulfate (HR 0.22; 95% CI, 0.07-0.63; P = 0.003)-were significantly associated with prognosis in Kaplan-Meier analyses and after multivariable adjustment for age, tumor stage, and sex (HR 0.29; 95% CI, 0.11-0.79; P = 0.015 and HR 0.30; 95% CI, 0.10-0.91; P = 0.033, respectively). Expression of sulfotransferase SULT2A1 was associated with prognosis to a similar extent and was validated to be a prognostic factor in two published data sets. We discovered the presence of estradiol-17β 3,17-disulfate (E2S2) in a subset of tumors with particularly poor overall survival. Electron microscopy revealed novel membrane-delimited organelles in only these tumors. By applying cluster analyses of metabolomic data, 3 sulfation-related phenotypes exhibited specific metabolic features unrelated to steroid metabolism. CONCLUSIONS MALDI-MSI provides novel insights into the pathophysiology of ACC. Steroid hormone sulfation may be used for prognostication and treatment stratification. Sulfation-related metabolic reprogramming may be of relevance also in conditions beyond the rare ACC and can be directly investigated by the use of MALDI-MSI.
Collapse
Affiliation(s)
- Na Sun
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany;
| | - Thomas Kunzke
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany;
| | - Silviu Sbiera
- Department of Internal Medicine, Division of Endocrinology and Diabetology, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Kircher
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sabine Herterich
- Central Laboratory, University Hospital Würzburg, Würzburg, Germany
| | - Cristina L Ronchi
- Department of Internal Medicine, Division of Endocrinology and Diabetology, University Hospital Würzburg, Würzburg, Germany.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Isabel Weigand
- Department of Internal Medicine, Division of Endocrinology and Diabetology, University Hospital Würzburg, Würzburg, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Vascular, and Paediatric Surgery, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | | | | | | | - Anthony J Gill
- Royal North Shore Hospital and The University of Sydney, Sydney, Australia
| | - Martin Fassnacht
- Department of Internal Medicine, Division of Endocrinology and Diabetology, University Hospital Würzburg, Würzburg, Germany.,Central Laboratory, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Kroiss
- Department of Internal Medicine, Division of Endocrinology and Diabetology, University Hospital Würzburg, Würzburg, Germany; .,Central Laboratory, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| |
Collapse
|
135
|
Abstract
Adrenocortical carcinoma (ACC) is an aggressive and rare neoplasm that originates in the cortex of the adrenal gland. The disease is associated with heterogeneous but mostly poor outcomes and lacks effective pharmaceutical treatment options. Multi-omics studies have defined the landscape of molecular alterations in ACC. Specific molecular signatures can be detected in body fluids, potentially enabling improved diagnostic applications for patients with adrenal tumours. Importantly, pan-molecular data sets further reveal a spectrum within ACC, with three major subgroups that have different disease outcomes. These new subgroups have value as prognostic biomarkers. Research has revealed that the p53-RB and the WNT-β-catenin pathways are common disease drivers in ACC. However, these pathways remain difficult to target by therapeutic interventions. Instead, a unique characteristic of ACC is steroidogenic differentiation, which has emerged as a potential treatment target, with several agents undergoing preclinical or clinical investigations. Finally, a large proportion of ACC tumours have genetic profiles that are associated with promising therapeutic responsiveness in other cancers. All these opportunities now await translation from the laboratory into the clinical setting, thereby offering a real potential of improved survival outcomes and increased quality of life for patients with this serious condition.
Collapse
Affiliation(s)
- Joakim Crona
- Department of Medical Sciences, Uppsala Universitet, Uppsala, Sweden.
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zurich, Zurich, Switzerland.
| |
Collapse
|
136
|
De Martino MC, Feelders RA, Pivonello C, Simeoli C, Papa F, Colao A, Pivonello R, Hofland LJ. The role of mTOR pathway as target for treatment in adrenocortical cancer. Endocr Connect 2019; 8:R144-R156. [PMID: 31398711 PMCID: PMC6733361 DOI: 10.1530/ec-19-0224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 12/23/2022]
Abstract
Adrenocortical carcinomas (ACCs) are rare tumors with scant treatment options for which new treatments are required. The mTOR pathway mediates the intracellular signals of several growth factors, including the insulin-like growth factors (IGFs), and therefore represents a potential attractive pathway for the treatment of several malignancies including ACCs. Several mTOR inhibitors, including sirolimus, temsirolimus and everolimus, have been clinically developed. This review summarizes the results of the studies evaluating the expression of the mTOR pathway components in ACCs, the effects of the mTOR inhibitors alone or in combination with other drugs in preclinical models of ACCs and the early experience with the use of these compounds in the clinical setting. The mTOR pathway seems a potential target for treatment of patients with ACC, but further investigation is still required to define the potential role of mTOR inhibitors alone or in combination with other drugs in the treatment of ACC patients.
Collapse
Affiliation(s)
- Maria Cristina De Martino
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Naples, Italy
| | - Richard A Feelders
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Naples, Italy
| | - Chiara Simeoli
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Naples, Italy
| | - Fortuna Papa
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Naples, Italy
| | - Leo J Hofland
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
137
|
Abstract
Adrenocortical carcinoma (ACC) is an uncommon and heterogeneous disease and may present differently in children and adults. Management of ACC is dependent on disease stage and complete surgical resection is the only potentially curative treatment. The first and most extensively used adrenocortical cancer cell line, as model system to examine mechanisms controlling normal and pathologic function of adrenal cortex, was initially isolated in 1980. Although NCI-H295 maintained steroid capabilities and adrenocortical characteristics, the lack of new cell lines and animal models of ACC has hampered the progress and development of new therapies. In this review we provide description of cellular and patient-derived tumor xenograft (PDTX) models of ACC generated for the elucidation of the underlying pathogenic mechanisms and preclinical functional studies for this aggressive disease.
Collapse
|
138
|
Metastatic Adrenocortical Carcinoma: a Single Institutional Experience. Discov Oncol 2019; 10:161-167. [PMID: 31468469 DOI: 10.1007/s12672-019-00367-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy with limited data to guide the management of metastatic disease. The optimal treatment strategies and outcomes of patients with metastatic ACC remain areas of active interest. We retrospectively reviewed patients with ACC who were treated with systemic therapy between January 1997 and October 2016 at The Ohio State University Comprehensive Cancer Center. Kaplan-Meier and Cox proportional hazards regression models were used for survival analysis. We identified 65 patients diagnosed with ACC during the given time period, and 36 patients received systemic therapy for distant metastatic disease. Median age at diagnosis was 50 (range 28-87). Median overall survival (OS) from time of diagnosis of ACC was 27 months (95% CI 19.6-39.3), and median OS from time of systemic treatment for metastatic disease was 18.7 months (95% CI 9.3-26.0). Clinical characteristics at time of initiation of systemic therapy were assessed, and presence of bone metastases (p = 0.66), ascites (p = 0.19), lung metastases (p = 0.12), liver metastases (p = 0.47), as well as hormonal activity of tumor (p = 0.19), were not prognostic for survival. Six patients with liver metastases treated with systemic therapy who received liver-directed therapy with either transarterial chemoembolization (TACE) or selective internal radiation therapy (SIRT) had longer survival than those who did not (p = 0.011). Our data expands the knowledge of clinical characteristics and outcomes of patients with ACC and suggests a possible role for incorporating liver-directed therapies for patients with hepatic metastases.
Collapse
|
139
|
Osher E, Macaulay VM. Therapeutic Targeting of the IGF Axis. Cells 2019; 8:E895. [PMID: 31416218 PMCID: PMC6721736 DOI: 10.3390/cells8080895] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/04/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022] Open
Abstract
The insulin like growth factor (IGF) axis plays a fundamental role in normal growth and development, and when deregulated makes an important contribution to disease. Here, we review the functions mediated by ligand-induced IGF axis activation, and discuss the evidence for the involvement of IGF signaling in the pathogenesis of cancer, endocrine disorders including acromegaly, diabetes and thyroid eye disease, skin diseases such as acne and psoriasis, and the frailty that accompanies aging. We discuss the use of IGF axis inhibitors, focusing on the different approaches that have been taken to develop effective and tolerable ways to block this important signaling pathway. We outline the advantages and disadvantages of each approach, and discuss progress in evaluating these agents, including factors that contributed to the failure of many of these novel therapeutics in early phase cancer trials. Finally, we summarize grounds for cautious optimism for ongoing and future studies of IGF blockade in cancer and non-malignant disorders including thyroid eye disease and aging.
Collapse
Affiliation(s)
- Eliot Osher
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
140
|
Abstract
Adrenocortical carcinoma (ACC) is a rare, aggressive, and frequently deadly cancer. Up to 75% of all patients will eventually develop metastatic disease, and our current medical therapies for ACC provide limited - if any - survival benefit. These statistics highlight a crucial need for novel approaches. Recent studies performing comprehensive molecular profiling on ACC have illuminated that ACC is comprised of three clinically distinct molecular subtypes, bearing differential regulation of cell cycle, epigenetics, Wnt/β-catenin signaling, PKA signaling, steroidogenesis and immune cell biology. Furthermore, these studies have spurred the development of molecular subtype-based biomarkers, contextualized outcomes of recent clinical trials, and advanced our understanding of the underlying biology of adrenocortical homeostasis and cancer. In this review, we describe these findings and their implications for new strategies to apply targeted therapies to ACC.
Collapse
|
141
|
Vella V, Malaguarnera R, Nicolosi ML, Morrione A, Belfiore A. Insulin/IGF signaling and discoidin domain receptors: An emerging functional connection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118522. [PMID: 31394114 DOI: 10.1016/j.bbamcr.2019.118522] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
Abstract
The insulin/insulin-like growth factor system (IIGFs) plays a fundamental role in the regulation of prenatal and postnatal growth, metabolism and homeostasis. As a consequence, dysregulation of this axis is associated with growth disturbance, type 2 diabetes, chronic inflammation and tumor progression. A functional crosstalk between IIGFs and discoidin domain receptors (DDRs) has been recently discovered. DDRs are non-integrin collagen receptors that canonically undergo slow and long-lasting autophosphorylation after binding to fibrillar collagen. While both DDR1 and DDR2 functionally interact with IIGFs, the crosstalk with DDR1 is so far better characterized. Notably, the IIGFs-DDR1 crosstalk presents a feed-forward mechanism, which does not require collagen binding, thus identifying novel non-canonical action of DDR1. Further studies are needed to fully explore the role of this IIGFs-DDRs functional loop as potential target in the treatment of inflammatory and neoplastic disorders.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | | | - Maria Luisa Nicolosi
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Andrea Morrione
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy.
| |
Collapse
|
142
|
Sai E, Miwa Y, Takeyama R, Kojima S, Ueno T, Yashiro M, Seto Y, Mano H. Identification of candidates for driver oncogenes in scirrhous-type gastric cancer cell lines. Cancer Sci 2019; 110:2643-2651. [PMID: 31222839 PMCID: PMC6676123 DOI: 10.1111/cas.14111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
Scirrhous‐type gastric cancer (SGC) is one of the most intractable cancer subtypes in humans, and its therapeutic targets have been rarely identified to date. Exploration of somatic mutations in the SGC genome with the next‐generation sequencers has been hampered by markedly increased fibrous tissues. Thus, SGC cell lines may be useful resources for searching for novel oncogenes. Here we have conducted whole exome sequencing and RNA sequencing on 2 SGC cell lines, OCUM‐8 and OCUM‐9. Interestingly, most of the mutations thus identified have not been reported. In OCUM‐8 cells, a novel CD44‐IGF1R fusion gene is discovered, the protein product of which ligates the amino‐terminus of CD44 to the transmembrane and tyrosine‐kinase domains of IGF1R. Furthermore, both CD44 and IGF1R are markedly amplified in the OCUM‐8 genome and abundantly expressed. CD44‐IGF1R has a transforming ability, and the suppression of its kinase activity leads to rapid cell death of OCUM‐8. To the best of our knowledge, this is the first report describing the transforming activity of IGF1R fusion genes. However, OCUM‐9 seems to possess multiple oncogenic events in its genome. In particular, a novel BORCS5‐ETV6 fusion gene is identified in the OCUM‐9 genome. BORCS5‐ETV6 possesses oncogenic activity, and suppression of its message partially inhibits cell growth. Prevalence of these novel fusion genes among SGC awaits further investigation, but we validate the significance of cell lines as appropriate reagents for detailed genomic analyses of SGC.
Collapse
Affiliation(s)
- Eirin Sai
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshiyuki Miwa
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Reina Takeyama
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Shinya Kojima
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Toshihide Ueno
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Masakazu Yashiro
- Department of Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Mano
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| |
Collapse
|
143
|
A phase II study of the orally administered negative enantiomer of gossypol (AT-101), a BH3 mimetic, in patients with advanced adrenal cortical carcinoma. Invest New Drugs 2019; 37:755-762. [PMID: 31172443 DOI: 10.1007/s10637-019-00797-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023]
Abstract
Background Adrenal cortical carcinoma (ACC) is a rare cancer with treatment options of limited efficacy, and poor prognosis if metastatic. AT-101 is a more potent inhibitor of B cell lymphoma 2 family apoptosis-related proteins than its racemic form, gossypol, which showed preliminary clinical activity in ACC. We thus evaluated the efficacy of AT-101 in patients with advanced ACC. Methods Patients with histologically confirmed metastatic, recurrent, or primarily unresectable ACC were treated with AT-101 (20 mg/day orally, 21 days out of 28-day cycles) until disease progression and/or prohibitive toxicity. The primary endpoint was objective response rate, wherein a Response Evaluation Criteria In Solid Tumors (RECIST) partial response rate of 25% would be considered promising and 10% not, with a Type I error of 10% and 90% power. In a 2-stage design, 2 responses were required of the first 21 assessable subjects to warrant complete accrual of 44 patients. Secondary endpoints included safety, progression-free survival and overall survival. Results This study accrued 29 patients between 2009 and 2011; median number of cycles was 2. Seven percent experienced grade 4 toxicity including cardiac troponin elevations and hypokalemia. None of the first 21 patients attained RECIST partial response; accordingly, study therapy was deemed ineffective and the trial was permanently closed. Conclusions AT-101 had no meaningful clinical activity in this study in patients with advanced ACC, but demonstrated feasibility of prospective therapeutic clinical trials in this rare cancer.
Collapse
|
144
|
De Martino MC, van Koetsveld PM, Feelders RA, de Herder WW, Dogan F, Janssen JAMJL, Hofste Op Bruinink D, Pivonello C, Waaijers AM, Colao A, de Krijger RR, Pivonello R, Hofland LJ. IGF and mTOR pathway expression and in vitro effects of linsitinib and mTOR inhibitors in adrenocortical cancer. Endocrine 2019; 64:673-684. [PMID: 30838516 PMCID: PMC6551351 DOI: 10.1007/s12020-019-01869-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/12/2019] [Indexed: 01/18/2023]
Abstract
PURPOSE The IGF and mTOR-pathways are considered as potential targets for therapy in patients with adrenocortical carcinoma (ACC). This study aims to describe the IGF pathway in ACC and to explore the response to the combined treatment with the IGF1R/IR inhibitor linsitinib, and mTOR inhibitors (sirolimus and everolimus) in in vitro models of ACC. METHODS The protein expression level of IGF2, IGF1R and IGF2R was evaluated by immunohistochemistry in 17 human ACCs and the mRNA expression level of IGF1, IGF2, IGF1R, IR isoforms A and B, IGF2R, IGF-Binding-Proteins[IGFBP]-1, 2, 3 and 6 was evaluated by RT-qPCR in 12 samples. In H295R and HAC15 ACC cell lines the combined effects of linsitinib and sirolimus or everolimus on cell survival were evaluated. RESULTS A high protein expression of IGF2, IGF1R and IGF2R was observed in 82, 65 and 100% of samples, respectively. A high relative expression of IGF2 mRNA was found in the majority of samples. The mRNA levels of the IRA were higher than that of IRB and IGF1R in the majority of samples (75%). Linsitinib inhibits cell growth in the H295R and HAC15 cell lines and, combined with sirolimus or everolimus, linsitinib showed a significant additive effect. CONCLUSIONS In addition to IGF2 and IGF1R, ACC express IGF2R, IRA and several IGFBPs, suggesting that the interplay between the different components of the IGF pathway in ACC could be more complex than previously considered. The addition of mTOR inhibitors to linsitinib may have stronger antiproliferative effects than linsitinib alone.
Collapse
Affiliation(s)
- Maria Cristina De Martino
- Department of Internal Medicine, Division Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Naples, Italy
| | - Peter M van Koetsveld
- Department of Internal Medicine, Division Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Richard A Feelders
- Department of Internal Medicine, Division Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wouter W de Herder
- Department of Internal Medicine, Division Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Fadime Dogan
- Department of Internal Medicine, Division Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joseph A M J L Janssen
- Department of Internal Medicine, Division Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Davine Hofste Op Bruinink
- Department of Internal Medicine, Division Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Naples, Italy
| | - A Marlijn Waaijers
- Department of Internal Medicine, Division Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Naples, Italy
| | - Ronald R de Krijger
- Departments of Pathology, Erasmus Medical Center, Rotterdam, and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Naples, Italy
| | - Leo J Hofland
- Department of Internal Medicine, Division Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
145
|
Calabrese A, Basile V, Puglisi S, Perotti P, Pia A, Saba L, Berchialla P, Porpiglia F, Veltri A, Volante M, Reimondo G, Berruti A, Terzolo M. Adjuvant mitotane therapy is beneficial in non-metastatic adrenocortical carcinoma at high risk of recurrence. Eur J Endocrinol 2019; 180:387-396. [PMID: 30991359 DOI: 10.1530/eje-18-0923] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/16/2019] [Indexed: 01/13/2023]
Abstract
Objective Many patients with adrenocortical carcinoma (ACC) suffer from tumor recurrence despite radical surgery. Evidence on the post-operative use of mitotane is controversial and no predictors of response are available. We aimed to assess whether adjuvant mitotane treatment may prolong survival in patients with non-metastatic ACC following complete resection and whether ACC patients at high risk of recurrence may benefit from treatment. Design and methods We retrospectively reviewed data from 152 non-metastatic ACC patients followed at the San Luigi Gonzaga Hospital: 100 patients were treated with adjuvant mitotane and 52 patients were left untreated following surgery. We assessed a number of potential predictive factors of recurrence and death. Mitotane effect was explored stratifying patients by staging (stage I-II vs stage III), hormone secretion (yes vs no) and Ki67 index. Results The non-treated group had a higher risk of recurrence (HR: 2.79, 95%CI: 1.58-4.91; P < 0.001) than mitotane-treated group, while overall survival was not significantly different between groups. Hormone secretion, elevated Weiss score and elevated Ki67 index confer a higher risk of both recurrence and death and stage III ACC of death. Adjuvant mitotane treatment reduced significantly the risk of death in patients with elevated Ki67 index (P = 0.005) and in patients with stage III ACC (P = 0.02). Conclusions Adjuvant mitotane may prolong recurrence-free survival in radically resected ACC patients with acceptable toxicity and may also prolong overall survival in a subgroup of ACC patients at high risk of recurrence.
Collapse
Affiliation(s)
- A Calabrese
- Internal Medicine, Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - V Basile
- Internal Medicine, Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - S Puglisi
- Internal Medicine, Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - P Perotti
- Internal Medicine, Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - A Pia
- Internal Medicine, Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - L Saba
- Internal Medicine, Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - P Berchialla
- Statistical Unit, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
| | - F Porpiglia
- Urology, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - A Veltri
- Radiology, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - M Volante
- Pathology, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - G Reimondo
- Internal Medicine, Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - A Berruti
- Oncology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health Medical, ASST-Spedali Civili, University of Brescia, Brescia, Italy
| | - M Terzolo
- Internal Medicine, Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| |
Collapse
|
146
|
Wang X, Zhou N, Xiao Y, Zhu W, Bai C, Zhao L. Metastatic Adrenal Cortical Carcinoma Responding to Octreotide: A Case Report. Oncologist 2019; 24:e793-e797. [PMID: 31073023 DOI: 10.1634/theoncologist.2018-0855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 11/17/2022] Open
Abstract
Advanced adrenocortical carcinoma (ACC) is an aggressive disease with poor prognosis, and the current therapeutic options, such as mitotane or platinum-based chemotherapy regimens, often offer limited efficacy. Here, we present the first report, to the author's knowledge, of metastatic ACC with positive octreoscan scintigraphy that was successfully treated with octreotide long-acting release (LAR). A patient with metastatic ACC who showed poor tolerance to mitotane received octreotide LAR because of positive octreoscan scintigraphy. She obtained major partial response to the somatostatin analog. Interestingly, the expression of somatostatin receptor 2 from the previous local recurrence lesion was negative. The next-generation sequencing-based circulating tumor DNA analysis in the patient was performed and failed to identify any alterations. These findings suggest that octreotide LAR may be a good option for the treatment of metastatic ACC in selected patients.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Na Zhou
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yu Xiao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wenjia Zhu
- Departments of Nuclear Medicine and Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Chunmei Bai
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Lin Zhao
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
147
|
Brown TC, Nicolson NG, Stenman A, Juhlin CC, Gibson CE, Callender GG, Korah R, Carling T. Insulin-Like Growth Factor and SLC12A7 Dysregulation: A Novel Signaling Hallmark of Non-Functional Adrenocortical Carcinoma. J Am Coll Surg 2019; 229:305-315. [PMID: 31034883 DOI: 10.1016/j.jamcollsurg.2019.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/11/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Insulin-like growth factor (IGF) dysregulation and gene copy number variations (CNV) are hallmarks of adrenocortical carcinoma (ACC). The contribution of IGF CNVs in adrenal carcinogenesis has not been studied previously. In addition, studies demonstrating an association between SLC12A7 gene amplifications and enhanced metastatic behavior in ACC, as well as reported IGF-SLC12A7 signaling interactions in other cancers, suggest a potential IGF-SLC12A7 signaling circuitry in ACC. Here we investigate the potential complicity of IGF-SLC12A7 signaling in ACC. STUDY DESIGN Insulin-like growth factor CNVs were determined by whole-exome sequencing analysis in an exploratory cohort of ACC. Quantitative polymerase chain reaction methods determined IGF1 and IGF2 expression levels and were evaluated for correlation with SLC12A7 expression and tumor characteristics. Insulin-like growth factor CNVs and expression patterns were compared with The Cancer Genome Atlas. In vitro studies determined the relationship of IGF and SLC12A7 co-expression in 2 ACC cell lines, SW-13 and NCI-H295R. Immunohistochemistry assessed IGF1 receptor (IGF1R) activation. RESULTS The IGF1 gene was amplified in 9 of 19 ACC samples, similar to findings in The Cancer Genome Atlas database. The IGF1 overexpression was observed in 5 samples and was associated with SLC12A7 overexpression and non-functional, early-stage tumors (p < 0.05). In contrast, IGF2 overexpression was associated with larger tumors (p < 0.05). In vitro IGF treatment of ACC cell lines did not stimulate SLC12A7 expression, and endogenous overexpression and silencing of SLC12A7 significantly altered IGF1 and IGF1R expression without impacting other IGFs. The IGF1R activation was associated with IGF1 overexpression in ACC tumor samples. CONCLUSIONS These findings indicate that IGF1 overexpression, caused in part by gene amplifications, is correlated with SLC12A7 overexpression in non-functional, early-stage ACCs, suggesting a potentially targeted IGF1-SLC12A7 therapeutic opportunity for these tumors.
Collapse
Affiliation(s)
- Taylor C Brown
- Department of Surgery and Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT
| | - Norman G Nicolson
- Department of Surgery and Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT
| | - Adam Stenman
- Department of Oncology-Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska University Hospital, Stockholm, Sweden; Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Courtney E Gibson
- Department of Surgery and Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT
| | - Glenda G Callender
- Department of Surgery and Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT
| | - Reju Korah
- Department of Surgery and Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT
| | - Tobias Carling
- Department of Surgery and Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
148
|
McCabe MJ, Pinese M, Chan CL, Sheriff N, Thompson TJ, Grady J, Wong M, Gauthier MEA, Puttick C, Gayevskiy V, Hajdu E, Wong SQ, Barrett W, Earls P, Lukeis R, Cheng YY, Lin RCY, Thomas DM, Watkins DN, Dinger ME, McCormack AI, Cowley MJ. Genomic stratification and liquid biopsy in a rare adrenocortical carcinoma (ACC) case, with dual lung metastases. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a003764. [PMID: 30936196 PMCID: PMC6549567 DOI: 10.1101/mcs.a003764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
Adrenocortical carcinoma is a rare malignancy with a poor prognosis and few treatment options. Molecular characterization of this cancer remains limited. We present a case of an adrenocortical carcinoma (ACC) in a 37-yr-old female, with dual lung metastases identified 1 yr following commencement of adjuvant mitotane therapy. As standard therapeutic regimens are often unsuccessful in ACC, we undertook a comprehensive genomic study into this case to identify treatment options and monitor disease progress. We performed targeted and whole-genome sequencing of germline, primary tumor, and both metastatic tumors from this patient and monitored recurrence over 2 years using liquid biopsy for ctDNA and steroid hormone measurements. Sequencing revealed the primary and metastatic tumors were hyperhaploid, with extensive loss of heterozygosity but few structural rearrangements. Loss-of-function mutations were identified in MSH2, TP53, RB1, and PTEN, resulting in tumors with mismatch repair signatures and microsatellite instability. At the cellular level, tumors were populated by mitochondria-rich oncocytes. Longitudinal ctDNA mutation and hormone profiles were unable to detect micrometastatic disease, consistent with clinical indicators of disease remission. The molecular signatures in our ACC case suggested immunotherapy in the event of disease progression; however, the patient remains free of cancer. The extensive molecular analysis presented here could be applied to other rare and/or poorly stratified cancers to identify novel or repurpose existing therapeutic options, thereby broadly improving diagnoses, treatments, and prognoses.
Collapse
Affiliation(s)
- Mark J McCabe
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,Hormones and Cancer Group, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,Faculty of Medicine, St Vincent's Clinical School, UNSW Australia, Sydney, New South Wales 2010, Australia
| | - Mark Pinese
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Chia-Ling Chan
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Nisa Sheriff
- Hormones and Cancer Group, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,Department of Endocrinology, St Vincent's Hospital, Sydney, New South Wales 2010, Australia
| | - Tanya J Thompson
- Hormones and Cancer Group, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - John Grady
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Marie Wong
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Marie-Emilie A Gauthier
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Clare Puttick
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Velimir Gayevskiy
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Elektra Hajdu
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Stephen Q Wong
- Molecular and Translational Genomics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Wade Barrett
- Department of Anatomical Pathology, St Vincent's Hospital, Sydney, New South Wales 2010, Australia
| | - Peter Earls
- Department of Anatomical Pathology, St Vincent's Hospital, Sydney, New South Wales 2010, Australia
| | - Robyn Lukeis
- Department of Anatomical Pathology, St Vincent's Hospital, Sydney, New South Wales 2010, Australia
| | - Yuen Y Cheng
- Asbestos Diseases Research Institute, The University of Sydney, Sydney, New South Wales 2139, Australia
| | - Ruby C Y Lin
- Asbestos Diseases Research Institute, The University of Sydney, Sydney, New South Wales 2139, Australia.,Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, New South Wales 2145, Australia
| | - David M Thomas
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - D Neil Watkins
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Marcel E Dinger
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,Faculty of Medicine, St Vincent's Clinical School, UNSW Australia, Sydney, New South Wales 2010, Australia
| | - Ann I McCormack
- Hormones and Cancer Group, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,Faculty of Medicine, St Vincent's Clinical School, UNSW Australia, Sydney, New South Wales 2010, Australia.,Department of Endocrinology, St Vincent's Hospital, Sydney, New South Wales 2010, Australia
| | - Mark J Cowley
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,Faculty of Medicine, St Vincent's Clinical School, UNSW Australia, Sydney, New South Wales 2010, Australia.,Computational Biology Group, Children's Cancer Institute, Kensington, New South Wales 2031, Australia
| |
Collapse
|
149
|
Abstract
PURPOSE OF REVIEW Adrenocortical carcinoma (ACC) is a rare endocrine malignancy typically with poor prognosis. This review aims to summarize the current knowledge regarding the clinical management of ACC. RECENT FINDINGS Surgery remains the cornerstone for localized ACC management. In more advanced cases, debulking surgery when feasible can help with hormonal control and may allow the initiation of systemic therapy. Over the last few years, our understanding of ACC molecular pathogenesis has expanded with no significant change in treatment options. Platinum-based chemotherapy is the gold standard in metastatic ACC despite suboptimal efficacy. Tyrosine kinase inhibitor use did not result in meaningful benefit in ACC patients. Multiple clinical trials are currently exploring the role of immunotherapy in ACC. Despite the remarkable improvement in our understanding of the molecular signature and pathways in ACC, this knowledge did not yield a major breakthrough in management of advanced ACC. Multi-institutional and international collaborations are needed to identify promising treatments and new therapeutic targets to improve the care of ACC patients.
Collapse
Affiliation(s)
- Sina Jasim
- Division of Endocrinology, Metabolism and Lipid Research, Washington University, in St. Louis, School of Medicine, 660 S. Euclid Ave., Campus Box 8127, St. Louis, MO, 63110, USA
| | - Mouhammed Amir Habra
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1461, Houston, TX, 77030, USA.
| |
Collapse
|
150
|
Pittaway JFH, Guasti L. Pathobiology and genetics of adrenocortical carcinoma. J Mol Endocrinol 2019; 62:R105-R119. [PMID: 30072419 DOI: 10.1530/jme-18-0122] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/02/2018] [Indexed: 12/28/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy with an incidence worldwide of 0.7-2.0 cases/million/year. Initial staging is the most important factor in determining prognosis. If diagnosed early, complete surgical resection +/- adjuvant treatment can lead to 5-year survival of up to 80%. However, often it is diagnosed late and in advanced disease, 5-year survival is <15% with a high recurrence rate even after radical surgery. The mainstay of adjuvant treatment is with the drug mitotane. Mitotane has a specific cytotoxic effect on steroidogenic cells of the adrenal cortex, but despite this, progression through treatment is common. Developments in genetic analysis in the form of next-generation sequencing, aided by bioinformatics, have enabled high-throughput molecular characterisation of these tumours. This, in addition to a better appreciation of the processes of physiological, homeostatic self-renewal of the adrenal cortex, has furthered our understanding of the pathogenesis of this malignancy. In this review, we have detailed the pathobiology and genetic alterations in adrenocortical carcinoma by integrating current understanding of homeostasis and self-renewal in the normal adrenal cortex with molecular profiling of tumours from recent genetic analyses. Improved understanding of the mechanisms involved in self-renewal and stem cell hierarchy in normal human adrenal cortices, together with the identification of cell populations likely to be co-opted by oncogenic mutations, will enable further progress in the definition of the molecular pathways involved in the pathogenesis of ACC. The combination of these advances eventually will lead to the development of novel, effective and personalised strategies to eradicate molecularly annotated ACCs.
Collapse
Affiliation(s)
- James F H Pittaway
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|