101
|
Sun M, Shi G, Zhang X, Kan C, Xie S, Peng W, Liu W, Wang P, Zhang R. Deciphering roles of protein post-translational modifications in IgA nephropathy progression and potential therapy. Aging (Albany NY) 2024; 16:964-982. [PMID: 38175721 PMCID: PMC10817402 DOI: 10.18632/aging.205406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Immunoglobulin A nephropathy (IgAN), one type of glomerulonephritis, displays the accumulation of glycosylated IgA in the mesangium. Studies have demonstrated that both genetics and epigenetics play a pivotal role in the occurrence and progression of IgAN. Post-translational modification (PTM) has been revealed to critically participate in IgAN development and progression because PTM dysregulation results in impaired degradation of proteins that regulate IgAN pathogenesis. A growing number of studies identify that PTMs, including sialylation, o-glycosylation, galactosylation, phosphorylation, ubiquitination and deubiquitination, modulate the initiation and progression of IgAN. Hence, in this review, we discuss the functions and mechanisms of PTMs in regulation of IgAN. Moreover, we outline numerous compounds that govern PTMs and attenuate IgAN progression. Targeting PTMs might be a useful strategy to ameliorate IgAN.
Collapse
Affiliation(s)
- Mengying Sun
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Guojuan Shi
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Xiaohan Zhang
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Chao Kan
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Shimin Xie
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Weixiang Peng
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Wenjun Liu
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang 310018, China
| | - Peter Wang
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang 310018, China
| | - Rui Zhang
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| |
Collapse
|
102
|
Van Espen B, Oo HZ, Collins C, Fazli L, Molinolo A, Yip K, Murad R, Gleave M, Ronai ZA. RNF185 Control of COL3A1 Expression Limits Prostate Cancer Migration and Metastatic Potential. Mol Cancer Res 2024; 22:41-54. [PMID: 37831068 PMCID: PMC10841372 DOI: 10.1158/1541-7786.mcr-23-0512] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
RNF185 is a RING finger domain-containing ubiquitin ligase implicated in ER-associated degradation. Prostate tumor patient data analysis revealed a negative correlation between RNF185 expression and prostate cancer progression and metastasis. Likewise, several prostate cancer cell lines exhibited greater migration and invasion capabilities in culture upon RNF185 depletion. Subcutaneous inoculation of mouse prostate cancer MPC3 cells stably expressing short hairpin RNA against RNF185 into mice resulted in larger tumors and more frequent lung metastases. RNA-sequencing and Ingenuity Pathway Analysis identified wound-healing and cellular movement among the most significant pathways upregulated in RNF185-depleted lines, compared with control prostate cancer cells. Gene Set Enrichment Analyses performed in samples from patients harboring low RNF185 expression and in RNF185-depleted lines confirmed the deregulation of genes implicated in epithelial-to-mesenchymal transition. Among those, COL3A1 was identified as the primary mediator of RNF185's ability to impact migration phenotypes. Correspondingly, enhanced migration and metastasis of RNF185 knockdown (KD) prostate cancer cells were attenuated upon co-inhibition of COL3A1. Our results identify RNF185 as a gatekeeper of prostate cancer metastasis, partly via its control of COL3A1 availability. IMPLICATIONS RNF185 is identified as an important regulator of prostate cancer migration and metastasis, in part due to its regulation of COL3A1. Both RNF185 and COL3A1 may serve as novel markers for prostate tumors.
Collapse
Affiliation(s)
- Benjamin Van Espen
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Htoo Zarni Oo
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Colin Collins
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Ladan Fazli
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Alfredo Molinolo
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Kevin Yip
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Rabi Murad
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Martin Gleave
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| |
Collapse
|
103
|
Gong Y, Dai L. Decoding Ubiquitin Modifications by Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:1-18. [PMID: 39546132 DOI: 10.1007/978-981-97-7288-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Protein ubiquitination is a critical and widely distributed post-translational modification (PTM) involved in the regulation of almost every cellular process and pathway in cells, such as proteostasis, DNA repair, trafficking, and immunity. Mass spectrometry (MS)-based proteomics is a robust tool to decode the complexity of ubiquitin networks by disclosing the proteome-wide ubiquitination sites, the length, linkage and topology of ubiquitin chains, the chemical modification of ubiquitin chains, and the crosstalk between ubiquitination and other PTMs. In this chapter, we discuss the application of MS in the interpretation of the ubiquitin code.
Collapse
Affiliation(s)
- Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
104
|
Ma M, Cao R, Tian Y, Fu X. Ubiquitination and Metabolic Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:47-79. [PMID: 39546135 DOI: 10.1007/978-981-97-7288-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The increasing incidence of metabolic diseases, including obesity, type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD), in the past decade is a serious concern worldwide. Disruption of cellular protein homeostasis has been considered as a crucial contributor to the pathogenesis of metabolic diseases. To maintain protein homeostasis, cells have evolved multiple dynamic and self-regulating quality control processes to adapt new environmental conditions and prevent prolonged damage. Among them, the ubiquitin proteasome system (UPS), the primary proteolytic pathway for degradation of aberrant proteins via ubiquitination, has an essential role in maintaining cellular homeostasis in response to intracellular stress. Correspondingly, accumulating evidences have shown that dysregulation of ubiquitination can aggravate various metabolic derangements in many tissues, including the liver, skeletal muscle, pancreas, and adipose tissue, and is involved in the initiation and progression of diverse metabolic diseases. In this part, we will summarize the role of ubiquitination in the pathogenesis of metabolic diseases, including obesity, T2DM and NAFLD, and discuss its potential as a therapeutic target.
Collapse
Affiliation(s)
- Meilin Ma
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Rong Cao
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Yan Tian
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Xianghui Fu
- State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
105
|
Ray SK, Jayashankar E, Kotnis A, Mukherjee S. Oxidative versus Reductive Stress in Breast Cancer Development and Cellular Mechanism of Alleviation: A Current Perspective with Anti-breast Cancer Drug Resistance. Curr Mol Med 2024; 24:205-216. [PMID: 36892117 DOI: 10.2174/1566524023666230309112751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/10/2023]
Abstract
Redox homeostasis is essential for keeping our bodies healthy, but it also helps breast cancer cells grow, stay alive, and resist treatment. Changes in the redox balance and problems with redox signaling can make breast cancer cells grow and spread and make them resistant to chemotherapy and radiation therapy. Reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and the oxidant defense system are out of equilibrium, which causes oxidative stress. Many studies have shown that oxidative stress can affect the start and spread of cancer by interfering with redox (reduction-oxidation) signaling and damaging molecules. The oxidation of invariant cysteine residues in FNIP1 is reversed by reductive stress, which is brought on by protracted antioxidant signaling or mitochondrial inactivity. This permits CUL2FEM1B to recognize its intended target. After the proteasome breaks down FNIP1, mitochondrial function is restored to keep redox balance and cell integrity. Reductive stress is caused by unchecked amplification of antioxidant signaling, and changes in metabolic pathways are a big part of breast tumors' growth. Also, redox reactions make pathways like PI3K, PKC, and protein kinases of the MAPK cascade work better. Kinases and phosphatases control the phosphorylation status of transcription factors like APE1/Ref-1, HIF-1, AP-1, Nrf2, NF-B, p53, FOXO, STAT, and - catenin. Also, how well anti-breast cancer drugs, especially those that cause cytotoxicity by making ROS, treat patients depends on how well the elements that support a cell's redox environment work together. Even though chemotherapy aims to kill cancer cells, which it does by making ROS, this can lead to drug resistance in the long run. The development of novel therapeutic approaches for treating breast cancer will be facilitated by a better understanding of the reductive stress and metabolic pathways in tumor microenvironments.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh, 462020, India
| | - Erukkambattu Jayashankar
- Department of Pathology & Lab Medicine, All India Institute of Medical Sciences-Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India
| | - Ashwin Kotnis
- Department of Biochemistry, All India Institute of Medical Sciences-Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences-Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India
| |
Collapse
|
106
|
Zhou X, Mahdizadeh SJ, Le Gallo M, Eriksson LA, Chevet E, Lafont E. UFMylation: a ubiquitin-like modification. Trends Biochem Sci 2024; 49:52-67. [PMID: 37945409 DOI: 10.1016/j.tibs.2023.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023]
Abstract
Post-translational modifications (PTMs) add a major degree of complexity to the proteome and are essential controllers of protein homeostasis. Amongst the hundreds of PTMs identified, ubiquitin and ubiquitin-like (UBL) modifications are recognized as key regulators of cellular processes through their ability to affect protein-protein interactions, protein stability, and thus the functions of their protein targets. Here, we focus on the most recently identified UBL, ubiquitin-fold modifier 1 (UFM1), and the machinery responsible for its transfer to substrates (UFMylation) or its removal (deUFMylation). We first highlight the biochemical peculiarities of these processes, then we develop on how UFMylation and its machinery control various intertwined cellular processes and we highlight some of the outstanding research questions in this emerging field.
Collapse
Affiliation(s)
- Xingchen Zhou
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Sayyed J Mahdizadeh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Matthieu Le Gallo
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| | - Elodie Lafont
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
107
|
McNeil JB, Lee SK, Oliinyk A, Raina S, Garg J, Moallem M, Urquhart-Cox V, Fillingham J, Cheung P, Rosonina E. 1,10-phenanthroline inhibits sumoylation and reveals that yeast SUMO modifications are highly transient. EMBO Rep 2024; 25:68-81. [PMID: 38182817 PMCID: PMC10897377 DOI: 10.1038/s44319-023-00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 01/07/2024] Open
Abstract
The steady-state levels of protein sumoylation depend on relative rates of conjugation and desumoylation. Whether SUMO modifications are generally long-lasting or short-lived is unknown. Here we show that treating budding yeast cultures with 1,10-phenanthroline abolishes most SUMO conjugations within one minute, without impacting ubiquitination, an analogous post-translational modification. 1,10-phenanthroline inhibits the formation of the E1~SUMO thioester intermediate, demonstrating that it targets the first step in the sumoylation pathway. SUMO conjugations are retained after treatment with 1,10-phenanthroline in yeast that express a defective form of the desumoylase Ulp1, indicating that Ulp1 is responsible for eliminating existing SUMO modifications almost instantly when de novo sumoylation is inhibited. This reveals that SUMO modifications are normally extremely transient because of continuous desumoylation by Ulp1. Supporting our findings, we demonstrate that sumoylation of two specific targets, Sko1 and Tfg1, virtually disappears within one minute of impairing de novo sumoylation. Altogether, we have identified an extremely rapid and potent inhibitor of sumoylation, and our work reveals that SUMO modifications are remarkably short-lived.
Collapse
Affiliation(s)
- J Bryan McNeil
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Su-Kyong Lee
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Anna Oliinyk
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Sehaj Raina
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Jyoti Garg
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Marjan Moallem
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Verne Urquhart-Cox
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Peter Cheung
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Emanuel Rosonina
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
108
|
Ma Y, Huang L, Zhang Z, Yang P, Chen Q, Zeng X, Tan F, Wang C, Ruan X, Liao X. CD36 promotes tubular ferroptosis by regulating the ubiquitination of FSP1 in acute kidney injury. Genes Dis 2024; 11:449-463. [PMID: 37588197 PMCID: PMC10425750 DOI: 10.1016/j.gendis.2022.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Reactive oxidative species (ROS) production-driven ferroptosis plays a role in acute kidney injury (AKI). However, its exact molecular mechanism is poorly understood. Scavenger receptor CD36 has important roles in oxidizing lipids, lipid accumulation, metabolic syndrome, and insulin resistance in chronic kidney disease, but its roles remain unexplored in AKI. The present study investigated the role and mechanism of CD36 in regulating proximal tubular cell ferroptosis and AKI. The expression of CD36 was found to be significantly up-regulated in AKI renal tissues and correlated with renal function, which might serve as an independent biomarker for AKI patients. Moreover, in adult mice subjected to AKI, deletion of CD36 (CD36-/-) induced tubular cell ROS accumulation, ferroptosis activation, and renal injury. Mechanistically, combining LC-MS/MS, co-IP, and ubiquitination analyses revealed that CD36 could specifically bind to ferroptosis suppressor protein 1 (FSP1) and regulate its ubiquitination at sites K16 and K24, leading to FSP1 degradation and progression of ferroptosis in AKI. The present results emphasize a novel mechanism of CD36 in cisplatin-induced AKI. The discovery of the special CD36 roles in promoting ferroptosis and AKI development by regulating the ubiquitination of FSP1 in proximal tubular cells may be potential therapeutic targets for AKI. Moreover, CD36 may play a key role in the progression of AKI. Therefore, targeting CD36 may provide a promising treatment option for AKI.
Collapse
Affiliation(s)
- Yixin Ma
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Lili Huang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Zheng Zhang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Pengfei Yang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Qingsong Chen
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Xujia Zeng
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Fangyan Tan
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Chunxia Wang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Xiongzhong Ruan
- Centre for Nephrology, Royal Free and University College Medical School, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
- Centre for Lipid Research, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
- Kuanren Laboratory of Translational Lipidology, Centre for Lipid Research, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiaohui Liao
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
- Kuanren Laboratory of Translational Lipidology, Centre for Lipid Research, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
109
|
Guo M, He M, Zhang Y, Liu W, Qi M, Liu Z, Yi G, Deng S, Li Y, Sun X, Zhao L, Chen T, Liu Y. Nucleo-cytoplasmic shuttling of 14-3-3 epsilon carrying hnRNP C promotes autophagy. Cancer Biol Ther 2023; 24:2246203. [PMID: 37599448 PMCID: PMC10443976 DOI: 10.1080/15384047.2023.2246203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
Translocation of 14-3-3 protein epsilon (14-3-3ε) was found to be involved in Triptolide (Tp)-induced inhibition of colorectal cancer (CRC) cell proliferation. However, the form of cell death induced by 14-3-3ε translocation and mechanisms underlying this effect remain unclear. This study employed label-free LC-MS/MS to identify 14-3-3ε-associated proteins in CRC cells treated with or without Tp. Our results confirmed that heterogeneous nuclear ribonucleoproteins C1/C2 (hnRNP C) were exported out of the nucleus by 14-3-3ε and degraded by ubiquitination. The nucleo-cytoplasmic shuttling of 14-3-3ε carrying hnRNP C mediated Tp-induced proliferation inhibition, cell cycle arrest and autophagic processes. These findings have broad implications for our understanding of 14-3-3ε function, provide an explanation for the mechanism of nucleo-cytoplasmic shuttling of hnRNP C and provide new insights into the complex regulation of autophagy.
Collapse
Affiliation(s)
- Manlan Guo
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Minyi He
- Center for Clinical Medical Education, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Zhang
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Oncology, Guizhou Cancer Hospital, Guiyang, Guizhou, China
| | - Weiwen Liu
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
| | - Min Qi
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
| | - Zhifeng Liu
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, Guangzhou, China
| | - Guozhong Yi
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
| | - Shengze Deng
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
| | - Yaomin Li
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
| | - Xuegang Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, Guangzhou, China
| | - Tengxiang Chen
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yawei Liu
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
| |
Collapse
|
110
|
Zhang Y, Xu X, Wang Y, Wang Y, Zhou X, Pan L. Mechanistic insights into the homo-dimerization of HOIL-1L and SHARPIN. Biochem Biophys Res Commun 2023; 689:149239. [PMID: 37976837 DOI: 10.1016/j.bbrc.2023.149239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
HOIL-1L and SHARPIN are two essential regulatory subunits of the linear ubiquitin chain assembly complex (LUBAC), which is the only known E3 ligase complex generating linear ubiquitin chains. In addition to their LUBAC-dependent functions, HOIL-1L and SHARPIN alone play crucial roles in many LUBAC-independent cellular processes. Importantly, deficiency of HOIL-1L or SHARPIN leads to severe disorders in humans or mice. However, the mechanistic bases underlying the multi-functions of HOIL-1L and SHARPIN are still largely unknown. Here, we uncover that HOIL-1L and SHARPIN alone can form homo-dimers through their LTM motifs. We solve two crystal structures of the dimeric LTM motifs of HOIL-1L and SHARPIN, which not only elucidate the detailed molecular mechanism underpinning the dimer formations of HOIL-1L and SHARPIN, but also reveal a general mode shared by the LTM motifs of HOIL-1L and SHARPIN for forming homo-dimer or hetero-dimer. Furthermore, we elucidate that the polyglucosan body myopathy-associated HOIL-1L A18P mutation disturbs the structural folding of HOIL-1L LTM, and disrupts the dimer formation of HOIL-1L. In summary, our study provides mechanistic insights into the homo-dimerization of HOIL-1L and SHARPIN mediated by their LTM motifs, and expands our understandings of the multi-functions of HOIL-1L and SHARPIN as well as the etiology of relevant human disease caused by defective HOIL-1L.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaolong Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yaru Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Yingli Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xindi Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lifeng Pan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
| |
Collapse
|
111
|
Spano D, Catara G. Targeting the Ubiquitin-Proteasome System and Recent Advances in Cancer Therapy. Cells 2023; 13:29. [PMID: 38201233 PMCID: PMC10778545 DOI: 10.3390/cells13010029] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Ubiquitination is a reversible post-translational modification based on the chemical addition of ubiquitin to proteins with regulatory effects on various signaling pathways. Ubiquitination can alter the molecular functions of tagged substrates with respect to protein turnover, biological activity, subcellular localization or protein-protein interaction. As a result, a wide variety of cellular processes are under ubiquitination-mediated control, contributing to the maintenance of cellular homeostasis. It follows that the dysregulation of ubiquitination reactions plays a relevant role in the pathogenic states of human diseases such as neurodegenerative diseases, immune-related pathologies and cancer. In recent decades, the enzymes of the ubiquitin-proteasome system (UPS), including E3 ubiquitin ligases and deubiquitinases (DUBs), have attracted attention as novel druggable targets for the development of new anticancer therapeutic approaches. This perspective article summarizes the peculiarities shared by the enzymes involved in the ubiquitination reaction which, when deregulated, can lead to tumorigenesis. Accordingly, an overview of the main pharmacological interventions based on targeting the UPS that are in clinical use or still in clinical trials is provided, also highlighting the limitations of the therapeutic efficacy of these approaches. Therefore, various attempts to circumvent drug resistance and side effects as well as UPS-related emerging technologies in anticancer therapeutics are discussed.
Collapse
Affiliation(s)
- Daniela Spano
- Institute for Endocrinology and Experimental Oncology “G. Salvatore”, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
112
|
Bi B, Qiu M, Liu P, Wang Q, Wen Y, Li Y, Li B, Li Y, He Y, Zhao J. Protein post-translational modifications: A key factor in colorectal cancer resistance mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194977. [PMID: 37625568 DOI: 10.1016/j.bbagrm.2023.194977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/16/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death. Despite advances in treatment, drug resistance remains a critical impediment. Post-translational modifications (PTMs) regulate protein stability, localization, and activity, impacting vital cellular processes. Recent research has highlighted the essential role of PTMs in the development of CRC resistance. This review summarizes recent advancements in understanding PTMs' roles in CRC resistance, focusing on the latest discoveries. We discuss the functional impact of PTMs on signaling pathways and molecules involved in CRC resistance, progress in drug development, and potential therapeutic targets. We also summarize the primary enrichment methods for PTMs. Finally, we discuss current challenges and future directions, including the need for more comprehensive PTM analysis methods and PTM-targeted therapies. This review identifies potential therapeutic interventions for addressing medication resistance in CRC, proposes prospective therapeutic options, and gives an overview of the function of PTMs in CRC resistance.
Collapse
Affiliation(s)
- Bo Bi
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Miaojuan Qiu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Peng Liu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Qiang Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yingfei Wen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - You Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Binbin Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yongshu Li
- Hubei Normal University, College of Life Sciences Huangshi, Hubei, China.
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Jing Zhao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
113
|
Hunt LC, Pagala V, Stephan A, Xie B, Kodali K, Kavdia K, Wang YD, Shirinifard A, Curley M, Graca FA, Fu Y, Poudel S, Li Y, Wang X, Tan H, Peng J, Demontis F. An adaptive stress response that confers cellular resilience to decreased ubiquitination. Nat Commun 2023; 14:7348. [PMID: 37963875 PMCID: PMC10646096 DOI: 10.1038/s41467-023-43262-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
Ubiquitination is a post-translational modification initiated by the E1 enzyme UBA1, which transfers ubiquitin to ~35 E2 ubiquitin-conjugating enzymes. While UBA1 loss is cell lethal, it remains unknown how partial reduction in UBA1 activity is endured. Here, we utilize deep-coverage mass spectrometry to define the E1-E2 interactome and to determine the proteins that are modulated by knockdown of UBA1 and of each E2 in human cells. These analyses define the UBA1/E2-sensitive proteome and the E2 specificity in protein modulation. Interestingly, profound adaptations in peroxisomes and other organelles are triggered by decreased ubiquitination. While the cargo receptor PEX5 depends on its mono-ubiquitination for binding to peroxisomal proteins and importing them into peroxisomes, we find that UBA1/E2 knockdown induces the compensatory upregulation of other PEX proteins necessary for PEX5 docking to the peroxisomal membrane. Altogether, this study defines a homeostatic mechanism that sustains peroxisomal protein import in cells with decreased ubiquitination capacity.
Collapse
Affiliation(s)
- Liam C Hunt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Department of Biology, Rhodes College, 2000 North Pkwy, Memphis, TN, 38112, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Boer Xie
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kiran Kodali
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Flavia A Graca
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yingxue Fu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
114
|
Xiu M, Bao W, Wang J, Chen J, Li Y, Hai Y. High USP32 expression contributes to cancer progression and is correlated with immune infiltrates in hepatocellular carcinoma. BMC Cancer 2023; 23:1105. [PMID: 37957631 PMCID: PMC10644423 DOI: 10.1186/s12885-023-11617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Ubiquitin-specific protease 32 (USP32) is a highly conserved gene that promotes cancer progression. However, its role in hepatocellular carcinoma (HCC) is not well understood. The aim of this project is to explore the clinical significance and functions of USP32 in HCC. METHODS The expression of USP32 in HCC was evaluated using data from TCGA, GEO, TISCH, tissue microarray, and human HCC samples from our hospital. Survival analysis, PPI analysis and GSEA analysis were performed to evaluate USP32-related clinical significance, key molecules and enrichment pathways. Using the ssGSEA algorithm and TIMER, we investigated the relationships between USP32 and immune infiltrates in the TME. Univariate and multivariate Cox regression analyses were then used to identify key USP32-related immunomodulators and constructed a USP32-related immune prognostic model. Finally, CCK8, transwell and colony formation assays of HCC cells were performed and an HCC nude mouse model was established to verify the oncogenic role of USP32. RESULTS USP32 is overexpressed in HCC and its expression is an independent predictive factor for outcomes of HCC patients. USP32 is associated with pathways related to cell behaviors and cancer signaling, and its expression is significantly correlated with the infiltration of immune cells in the TME. We also successfully constructed a USP32-related immune prognostic model using 5 genes. Wet experiments confirmed that knockdown of USP32 could repress the proliferation, colony formation and migration of HCC cells in vitro and inhibit tumor growth in vivo. CONCLUSION USP32 is highly expressed in HCC and closely correlates with the TME of HCC. It is a potential target for improving the efficacy of chemotherapy and developing new strategies for targeted therapy and immunotherapy in HCC.
Collapse
Affiliation(s)
- Mengxi Xiu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Wenfang Bao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jialin Wang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jingde Chen
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Yanan Hai
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
115
|
Wu W, Lin L, Zhao Y, Li H, Zhang R. Protein modification regulated autophagy in Bombyx mori and Drosophila melanogaster. Front Physiol 2023; 14:1281555. [PMID: 38028759 PMCID: PMC10665574 DOI: 10.3389/fphys.2023.1281555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Post-translational modifications refer to the chemical alterations of proteins following their biosynthesis, leading to changes in protein properties. These modifications, which encompass acetylation, phosphorylation, methylation, SUMOylation, ubiquitination, and others, are pivotal in a myriad of cellular functions. Macroautophagy, also known as autophagy, is a major degradation of intracellular components to cope with stress conditions and strictly regulated by nutrient depletion, insulin signaling, and energy production in mammals. Intriguingly, in insects, 20-hydroxyecdysone signaling predominantly stimulates the expression of most autophagy-related genes while concurrently inhibiting mTOR activity, thereby initiating autophagy. In this review, we will outline post-translational modification-regulated autophagy in insects, including Bombyx mori and Drosophila melanogaster, in brief. A more profound understanding of the biological significance of post-translational modifications in autophagy machinery not only unveils novel opportunities for autophagy intervention strategies but also illuminates their potential roles in development, cell differentiation, and the process of learning and memory processes in both insects and mammals.
Collapse
Affiliation(s)
- Wenmei Wu
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Luobin Lin
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yuntao Zhao
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Huaqin Li
- Guangzhou Xinhua University, Guangzhou, Guangdong, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
116
|
Lemma B, Zhang D, Vamisetti GB, Wentz BG, Suga H, Brik A, Lubkowski J, Fushman D. Mechanism of selective recognition of Lys48-linked polyubiquitin by macrocyclic peptide inhibitors of proteasomal degradation. Nat Commun 2023; 14:7212. [PMID: 37938554 PMCID: PMC10632358 DOI: 10.1038/s41467-023-43025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Post-translational modification of proteins with polyubiquitin chains is a critical cellular signaling mechanism in eukaryotes with implications in various cellular states and processes. Unregulated ubiquitin-mediated protein degradation can be detrimental to cellular homeostasis, causing numerous diseases including cancers. Recently, macrocyclic peptides were developed that selectively target long Lysine-48-linked polyubiquitin chains (tetra-ubiquitin) to inhibit ubiquitin-proteasome system, leading to attenuation of tumor growth in vivo. However, structural determinants of the chain length and linkage selectivity by these cyclic peptides remained unclear. Here, we uncover the mechanism underlying cyclic peptide's affinity and binding selectivity by combining X-ray crystallography, solution NMR, and biochemical studies. We found that the peptide engages three consecutive ubiquitins that form a ring around the peptide and determined requirements for preferential selection of a specific trimer moiety in longer polyubiquitin chains. The structural insights gained from this work will guide the development of next-generation cyclic peptides with enhanced anti-cancer activity.
Collapse
Affiliation(s)
- Betsegaw Lemma
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Di Zhang
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ganga B Vamisetti
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200008, Israel
| | - Bryan G Wentz
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200008, Israel.
| | - Jacek Lubkowski
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - David Fushman
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
117
|
Wang Y, Wang J, He J, Ji B, Pang Z, Wang J, Liu Y, Ren M. Comprehensive analysis of PRPF19 immune infiltrates, DNA methylation, senescence-associated secretory phenotype and ceRNA network in bladder cancer. Front Immunol 2023; 14:1289198. [PMID: 38022515 PMCID: PMC10657824 DOI: 10.3389/fimmu.2023.1289198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background Pre-mRNA processing factor 19 (PRPF19) is an E3 ligase that plays a crucial role in repairing tumor-damaged cells and promoting cell survival. However, the predictive value and biological function of PRPF19 in bladder urothelial carcinoma (BLCA) require further investigation. Methods In this study, we utilized transcriptomic data and bladder cancer tissue microarrays to identify the high expression of PRPF19 in BLCA, suggesting its potential as a prognostic biomarker. To gain a better understanding of the role of PRPF19 in the immune microenvironment of BLCA, we performed single cell analysis and employed the LASSO method. Additionally, we examined the methylation profiles of PRPF19 using the SMART website. Our investigation confirmed the correlation between PRPF19 and BLCA cell senescence and stemness. Furthermore, we constructed a PRPF19-miR-125a-5p-LINC02693-MIR4435-2HG ceRNA network using the ENCORI and miRWALK databases. Results Our comprehensive analysis reveals that PRPF19 can serve as a prognostic marker for BLCA and is significantly associated with various immune-infiltrating cells in BLCA. Moreover, our findings suggest that PRPF19 influences cellular senescence through the regulation of stemness. Finally, we developed a ceRNA network that has the potential to predict the prognosis of BLCA patients. Conclusion We confirmed the prognostic value and multiple biological functions of PRPF19 in BLCA. Furthermore, the specific ceRNA network can be used as a potential therapeutic target for BLCA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - MingHua Ren
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
118
|
Wang K, Fu S, Wu L, Wu J, Wang Y, Xu Y, Zhou X. Rice stripe virus nonstructural protein 3 suppresses plant defence responses mediated by the MEL-SHMT1 module. MOLECULAR PLANT PATHOLOGY 2023; 24:1359-1369. [PMID: 37404045 PMCID: PMC10576177 DOI: 10.1111/mpp.13373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023]
Abstract
Our previous study identified an evolutionarily conserved C4HC3-type E3 ligase, named microtubule-associated E3 ligase (MEL), that regulates broad-spectrum plant resistance against viral, fungal and bacterial pathogens in multiple plant species by mediating serine hydroxymethyltransferase (SHMT1) degradation via the 26S proteasome pathway. In the present study, we found that NS3 protein encoded by rice stripe virus could competitively bind to the MEL substrate recognition site, thereby inhibiting MEL interacting with and ubiquitinating SHMT1. This, in turn, leads to the accumulation of SHMT1 and the repression of downstream plant defence responses, including reactive oxygen species accumulation, mitogen-activated protein kinase pathway activation, and the up-regulation of disease-related gene expression. Our findings shed light on the ongoing arms race between pathogens and demonstrate how a plant virus can counteract the plant defence response.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Rice Biology, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Shuai Fu
- State Key Laboratory of Rice Biology, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Liang Wu
- State Key Laboratory of Rice Biology, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Yi Xu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
119
|
Huang P, Wang Y, Zhang P, Li Q. Ubiquitin-specific peptidase 1: assessing its role in cancer therapy. Clin Exp Med 2023; 23:2953-2966. [PMID: 37093451 DOI: 10.1007/s10238-023-01075-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Reversible protein ubiquitination represents an essential determinator of cellular homeostasis, and the ubiquitin-specific enzymes, particularly deubiquitinases (DUBs), are emerging as promising targets for drug development. DUBs are composed of seven different subfamilies, out of which ubiquitin-specific proteases (USPs) are the largest family with 56 members. One of the well-characterized USPs is USP1, which contributes to several cellular biological processes including DNA damage response, immune regulation, cell proliferation, apoptosis, and migration. USP1 levels and activity are regulated by multiple mechanisms, including transcription regulation, phosphorylation, autocleavage, and proteasomal degradation, ensuring that the cellular function of USP1 is performed in a suitably modulated spatio-temporal manner. Moreover, USP1 with deregulated expression and activity are found in several human cancers, indicating that targeting USP1 is a feasible therapeutic approach in anti-cancer treatment. In this review, we highlight the essential role of USP1 in cancer development and the regulatory landscape of USP1 activity, which might provide novel insights into cancer treatment.
Collapse
Affiliation(s)
- Peng Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- West China Biomedical Big Data Center, Sichuan University, Chengdu, 610041, Sichuan, China
| | - YuHan Wang
- Department of Anorectal, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - PengFei Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- West China Biomedical Big Data Center, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- West China Biomedical Big Data Center, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
120
|
Millrine D, Peter JJ, Kulathu Y. A guide to UFMylation, an emerging posttranslational modification. FEBS J 2023; 290:5040-5056. [PMID: 36680403 PMCID: PMC10952357 DOI: 10.1111/febs.16730] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Ubiquitin Fold Modifier-1 (UFM1) is a ubiquitin-like modifier (UBL) that is posttranslationally attached to lysine residues on substrates via a dedicated system of enzymes conserved in most eukaryotes. Despite the structural similarity between UFM1 and ubiquitin, the UFMylation machinery employs unique mechanisms that ensure fidelity. While physiological triggers and consequences of UFMylation are not entirely clear, its biological importance is epitomized by mutations in the UFMylation pathway in human pathophysiology including musculoskeletal and neurodevelopmental diseases. Some of these diseases can be explained by the increased endoplasmic reticulum (ER) stress and disrupted translational homeostasis observed upon loss of UFMylation. The roles of UFM1 in these processes likely stem from its function at the ER where ribosomes are UFMylated in response to translational stalling. In addition, UFMylation has been implicated in other cellular processes including DNA damage response and telomere maintenance. Hence, the study of UFM1 pathway mechanics and its biological function will reveal insights into fundamental cell biology and is likely to afford new therapeutic opportunities for the benefit of human health. To this end, we herein provide a comprehensive guide to the current state of knowledge of UFM1 biogenesis, conjugation, and function with an emphasis on the underlying mechanisms.
Collapse
Affiliation(s)
- David Millrine
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeUK
| | - Joshua J. Peter
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeUK
| | - Yogesh Kulathu
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
121
|
Abad AT, McNamara AJ, Danthi P. Proteasome activity is required for reovirus entry into cells. J Virol 2023; 97:e0134823. [PMID: 37830819 PMCID: PMC10617490 DOI: 10.1128/jvi.01348-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Due to their limited genetic capacity, viruses are reliant on multiple host systems to replicate successfully. Mammalian orthoreovirus (reovirus) is commonly used as a model system for understanding host-virus interactions. In this study, we identify that the proteasome system, which is critical for cellular protein turnover, affects reovirus entry. Inhibition of the proteasome using a chemical inhibitor blocks reovirus uncoating. Blocking these events reduces subsequent replication of the virus. This work identifies that additional host factors control reovirus entry.
Collapse
Affiliation(s)
- Andrew T. Abad
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
122
|
Wang X, Xu X, Wang Z. The Post-Translational Role of UFMylation in Physiology and Disease. Cells 2023; 12:2543. [PMID: 37947621 PMCID: PMC10648299 DOI: 10.3390/cells12212543] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a newly identified ubiquitin-like protein that has been conserved during the evolution of multicellular organisms. In a similar manner to ubiquitin, UFM1 can become covalently linked to the lysine residue of a substrate via a dedicated enzymatic cascade. Although a limited number of substrates have been identified so far, UFM1 modification (UFMylation) has been demonstrated to play a vital role in a variety of cellular activities, including mammalian development, ribosome biogenesis, the DNA damage response, endoplasmic reticulum stress responses, immune responses, and tumorigenesis. In this review, we summarize what is known about the UFM1 enzymatic cascade and its biological functions, and discuss its recently identified substrates. We also explore the pathological role of UFMylation in human disease and the corresponding potential therapeutic targets and strategies.
Collapse
Affiliation(s)
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China;
| | - Zhifeng Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China;
| |
Collapse
|
123
|
Li J, Krause GJ, Gui Q, Kaushik S, Rona G, Zhang Q, Liang FX, Dhabaria A, Anerillas C, Martindale JL, Vasilyev N, Askenazi M, Ueberheide B, Nudler E, Gorospe M, Cuervo AM, Pagano M. A noncanonical function of SKP1 regulates the switch between autophagy and unconventional secretion. SCIENCE ADVANCES 2023; 9:eadh1134. [PMID: 37831778 PMCID: PMC10575587 DOI: 10.1126/sciadv.adh1134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Intracellular degradation of proteins and organelles by the autophagy-lysosome system is essential for cellular quality control and energy homeostasis. Besides degradation, endolysosomal organelles can fuse with the plasma membrane and contribute to unconventional secretion. Here, we identify a function for mammalian SKP1 in endolysosomes that is independent of its established role as an essential component of the family of SCF/CRL1 ubiquitin ligases. We found that, under nutrient-poor conditions, SKP1 is phosphorylated on Thr131, allowing its interaction with V1 subunits of the vacuolar ATPase (V-ATPase). This event, in turn, promotes V-ATPase assembly to acidify late endosomes and enhance endolysosomal degradation. Under nutrient-rich conditions, SUMOylation of phosphorylated SKP1 allows its binding to and dephosphorylation by the PPM1B phosphatase. Dephosphorylated SKP1 interacts with SEC22B to promote unconventional secretion of the content of less acidified hybrid endosomal/autophagic compartments. Collectively, our study implicates SKP1 phosphorylation as a switch between autophagy and unconventional secretion in a manner dependent on cellular nutrient status.
Collapse
Affiliation(s)
- Jie Li
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gregory J. Krause
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qi Gui
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Feng-Xia Liang
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Avantika Dhabaria
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Biomedical Hosting LLC, 33 Lewis Avenue, Arlington, MA 02474, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
124
|
Xu X, Wang Y, Zhang Y, Wang Y, Yin Y, Peng C, Gong X, Li M, Zhang Y, Zhang M, Tang Y, Zhou X, Liu H, Pan L. Mechanistic insights into the enzymatic activity of E3 ligase HOIL-1L and its regulation by the linear ubiquitin chain binding. SCIENCE ADVANCES 2023; 9:eadi4599. [PMID: 37831767 PMCID: PMC10575588 DOI: 10.1126/sciadv.adi4599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023]
Abstract
Heme-oxidized IRP2 ubiquitin ligase 1 (HOIL-1L) serves as a unique E3 ligase to catalyze the mono-ubiquitination of relevant protein or sugar substrates and plays vital roles in numerous cellular processes in mammals. However, the molecular mechanism underpinning the E3 activity of HOIL-1L and the related regulatory mechanism remain elusive. Here, we report the crystal structure of the catalytic core region of HOIL-1L and unveil the key catalytic triad residues of HOIL-1L. Moreover, we discover that HOIL-1L contains two distinct linear di-ubiquitin binding sites that can synergistically bind to linear tetra-ubiquitin, and the binding of HOIL-1L with linear tetra-ubiquitin can promote its E3 activity. The determined HOIL-1L/linear tetra-ubiquitin complex structure not only elucidates the detailed binding mechanism of HOIL-1L with linear tetra-ubiquitin but also uncovers a unique allosteric ubiquitin-binding site for the activation of HOIL-1L. In all, our findings provide mechanistic insights into the E3 activity of HOIL-1L and its regulation by the linear ubiquitin chain binding.
Collapse
Affiliation(s)
- Xiaolong Xu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yaru Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Yingli Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Xinyu Gong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Miao Li
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Yuchao Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mingfang Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yubin Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xindi Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haobo Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lifeng Pan
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
125
|
Yang H, Liu Y, Yang J, Zhang Q, Wang H, Chen Y, Zhou K. Upregulation of USP25 promotes progression of human diffuse large B-cell lymphoma through blocking the ubiquitinated degradation of MDM2. Biochem Biophys Res Commun 2023; 676:21-29. [PMID: 37480689 DOI: 10.1016/j.bbrc.2023.05.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 07/24/2023]
Abstract
Diffuse large B cell lymphoma (DLBCL) is a type of cancer that originates from abnormal B cells in the lymph nodes or other lymphoid tissues. Dysfunction of deubiquitinases is frequently implicated in malignant progression. This study planned to uncover the biological roles of deubiquitinase USP25 during DLBCL tumorigenesis. In this study we identified USP25 as a novel oncogene which is frequently upregulated in DLBCL and associated with dismal prognosis of patients. Moreover, USP25 silencing was found to inhibit DLBCL growth, migration, while induced an obvious increase in apoptosis in vitro. Meanwhile, USP25 could promote DLBCL tumour growth and lung metastasis in vivo. Mechanistically, the co-immunoprecipitation test provided a mechanistic explanation, showing that USP25 directly interacted with murine double minute 2 (MDM2) and MDM2 protein stability was maintained by USP25 mediated deubiquitination. In addition, overexpression of USP25 with C178A mutation failed to decrease its modification on MDM2 stability. Further mechanism-of-action studies demonstrated that USP25 promoted DLBCL progression via stabilizing MDM2 and consequently decreasing p53 expression. In addition, further analysis showed that the oncogenic effect of USP25 was relied on MDM2-p53 signaling pathway-mediated cell-cycle accelerating. Collective, USP25 was shown to be an important upstream regulator of the MDM2-p53 signaling pathway in DLBCL, and it has the potential to be employed as a novel target gene in the development of new therapeutic applications.
Collapse
Affiliation(s)
- Hua Yang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, PR China; Department of Hematology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| | - Yanyan Liu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, PR China.
| | - Jingyi Yang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, PR China.
| | - Qing Zhang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, PR China.
| | - Haoran Wang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, PR China.
| | - Yu Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Keshu Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
126
|
Hu J, Huang R, Liang C, Wang Y, Wang M, Chen Y, Wu C, Zhang J, Liu Z, Zhao Q, Liu Z, Wang F, Yuan S. TRIM50 Inhibits Gastric Cancer Progression by Regulating the Ubiquitination and Nuclear Translocation of JUP. Mol Cancer Res 2023; 21:1107-1119. [PMID: 37409971 PMCID: PMC10543995 DOI: 10.1158/1541-7786.mcr-23-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/04/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Gastric cancer is one of the most frequent cancers in the world. Emerging clinical data show that ubiquitination system disruptions are likely involved in carcinoma genesis and progression. However, the precise role of ubiquitin (Ub)-mediated control of oncogene products or tumor suppressors in gastric cancer is unknown. Tripartite motif-containing 50 (TRIM50), an E3 ligase, was discovered by high-output screening of ubiquitination-related genes in tissues from patients with gastric cancer to be among the ubiquitination-related enzymes whose expression was most downregulated in gastric cancer. With two different databases, we verified that TRIM50 expression was lower in tumor tissues relative to normal tissues. TRIM50 also suppressed gastric cancer cell growth and migration in vitro and in vivo. JUP, a transcription factor, was identified as a new TRIM50 ubiquitination target by MS and coimmunoprecipitation experiments. TRIM50 increases JUP K63-linked polyubiquitination mostly at the K57 site. We discovered that the K57 site is critical for JUP nuclear translocation by prediction with the iNuLoC website and further studies. Furthermore, ubiquitination of the K57 site limits JUP nuclear translocation, consequently inhibiting the MYC signaling pathway. These findings identify TRIM50 as a novel coordinator in gastric cancer cells, providing a potential target for the development of new gastric cancer treatment strategies. IMPLICATIONS TRIM50 regulates gastric cancer tumor progression, and these study suggest TRIM50 as a new cancer target.
Collapse
Affiliation(s)
- Jiajia Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Runjie Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Chengcai Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yingnan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yanxing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Chenyi Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jinling Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zekun Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zexian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Feng Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shuqiang Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
127
|
Yu X, Xu B, Gao T, Fu X, Jiang B, Zhou N, Gao W, Wu T, Shen C, Huang X, Wu Y, Zheng B. E3 ubiquitin ligase RNF187 promotes growth of spermatogonia via lysine 48-linked polyubiquitination-mediated degradation of KRT36/KRT84. FASEB J 2023; 37:e23217. [PMID: 37738023 DOI: 10.1096/fj.202301120r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Ubiquitination is the most common post-translational modification and is essential for various cellular regulatory processes. RNF187, which is known as RING domain AP1 coactivator-1, is a member of the RING finger family. RNF187 can promote the proliferation and migration of various tumor cells. However, whether it has a similar role in regulating spermatogonia is not clear. This study explored the role and molecular mechanism of RNF187 in a mouse spermatogonia cell line (GC-1). We found that RNF187 knockdown reduced the proliferation and migration of GC-1 cells and promoted their apoptosis. RNF187 overexpression significantly increased the proliferation and migration of GC-1 cells. In addition, we identified Keratin36/Keratin84 (KRT36/KRT84) as interactors with RNF187 by co-immunoprecipitation and mass spectrometry analyses. RNF187 promoted GC-1 cell growth by degrading KRT36/KRT84 via lysine 48-linked polyubiquitination. Subsequently, we found that KRT36 or KRT84 overexpression significantly attenuated proliferation and migration of RNF187-overexpressing GC-1 cells. In summary, our study explored the involvement of RNF187 in regulating the growth of spermatogonia via lysine 48-linked polyubiquitination-mediated degradation of KRT36/KRT84. This may provide a promising new strategy for treating infertility caused by abnormal spermatogonia development.
Collapse
Affiliation(s)
- Xiangling Yu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Bingya Xu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Tingting Gao
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Xu Fu
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Bing Jiang
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Nianchao Zhou
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Wenxin Gao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Tiantian Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
128
|
Wan JX, Wang YQ, Lan SN, Chen L, Feng MQ, Chen X. Research Progress in Function and Regulation of E3 Ubiquitin Ligase SMURF1. Curr Med Sci 2023; 43:855-868. [PMID: 37558865 DOI: 10.1007/s11596-023-2774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 08/11/2023]
Abstract
Smad ubiquitylation regulatory factor 1 (Smurf1) is an important homologous member of E6-AP C-terminus type E3 ubiquitin ligase. Initially, Smurf1 was reportedly involved in the negative regulation of the bone morphogenesis protein (BMP) pathway. After further research, several studies have confirmed that Smurf1 is widely involved in various biological processes, such as bone homeostasis regulation, cell migration, apoptosis, and planar cell polarity. At the same time, recent studies have provided a deeper understanding of the regulatory mechanisms of Smurf1's expression, activity, and substrate selectivity. In our review, a brief summary of recent important biological functions and regulatory mechanisms of E3 ubiquitin ligase Smurf1 is proposed.
Collapse
Affiliation(s)
- Ji-Xi Wan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Qi Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Si-Na Lan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liu Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming-Qian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
129
|
Timms RT, Mena EL, Leng Y, Li MZ, Tchasovnikarova IA, Koren I, Elledge SJ. Defining E3 ligase-substrate relationships through multiplex CRISPR screening. Nat Cell Biol 2023; 25:1535-1545. [PMID: 37735597 PMCID: PMC10567573 DOI: 10.1038/s41556-023-01229-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 08/11/2023] [Indexed: 09/23/2023]
Abstract
Specificity within the ubiquitin-proteasome system is primarily achieved through E3 ubiquitin ligases, but for many E3s their substrates-and in particular the molecular features (degrons) that they recognize-remain largely unknown. Current approaches for assigning E3s to their cognate substrates are tedious and low throughput. Here we developed a multiplex CRISPR screening platform to assign E3 ligases to their cognate substrates at scale. A proof-of-principle multiplex screen successfully performed ~100 CRISPR screens in a single experiment, refining known C-degron pathways and identifying an additional pathway through which Cul2FEM1B targets C-terminal proline. Further, by identifying substrates for Cul1FBXO38, Cul2APPBP2, Cul3GAN, Cul3KLHL8, Cul3KLHL9/13 and Cul3KLHL15, we demonstrate that the approach is compatible with pools of full-length protein substrates of varying stabilities and, when combined with site-saturation mutagenesis, can assign E3 ligases to their cognate degron motifs. Thus, multiplex CRISPR screening will accelerate our understanding of how specificity is achieved within the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Richard T Timms
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Elijah L Mena
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Yumei Leng
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Mamie Z Li
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Iva A Tchasovnikarova
- Wellcome/CRUK Gurdon Institute, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Itay Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
130
|
Apoorva CC, Ananthaneni A, Kumar AJ, Guduru VS, Puneeth HK. Evaluation of USP22 and Ki-67 expression in oral squamous cell carcinoma: An immunohistochemical study. J Oral Maxillofac Pathol 2023; 27:679-684. [PMID: 38304522 PMCID: PMC10829464 DOI: 10.4103/jomfp.jomfp_262_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/13/2023] [Accepted: 09/01/2023] [Indexed: 02/03/2024] Open
Abstract
Background and Aim USP22 is a positive regulator in tumor growth, its depletion leads to cell cycle arrest at G1 phase. USP22 over expression was positively correlated with proteins involved in proliferation and negatively correlated with tumor suppressor protein tumor supprn. Ki-67 expression is associated with USP22 over expression in oral squamous cell carcinoma (OSCC) and also in cervical and prostate cancers. The aim of this study is to evaluate the expression of USP22 and Ki-67 in OSCC by using an immunohistochemical staining procedure. Materials and Methods Immunohistochemistry was used to determine the expression of USP22 protein in 50 archival tissue blocks of histopathologically diagnosed OSCC and 15 normal oral mucosa tissue blocks. The histopathological correlation of USP22 with Ki-67 was done. Results Expression of USP22 and Ki-67 was seen in the nuclei of epithelial cells. Statistical analysis of the mean expression of USP22 in OSCC and normal tissue showed a significant difference (P = 0.000000119). A significant difference was also observed in Ki-67 between OSCC and normal tissue (P = 0.00000086). Correlation test showed a weak correlation (R = 0.19) between USP22 and Ki-67 expression of group 1. Similarly, a weak correlation (R = 0.51) was observed in group 2. Conclusion A statistically significant difference in the expression of USP22 and Ki-67 was observed between normal mucosa and OSCC. It can be used in early diagnosis of OSCC but its use as a prognostic indicator is questionable and should be exemplified with a larger study sample.
Collapse
Affiliation(s)
- Chelikani Chaitra Apoorva
- Department of Oral Pathology, St Joseph Dental College and Hospital, Duggirala, Eluru, Andhra Pradesh, India
| | - Anuradha Ananthaneni
- Department of Oral Pathology, St Joseph Dental College and Hospital, Duggirala, Eluru, Andhra Pradesh, India
| | - A. Jagadeesh Kumar
- Department of Oral Pathology, St Joseph Dental College and Hospital, Duggirala, Eluru, Andhra Pradesh, India
| | - Vijay Srinivas Guduru
- Department of Oral Pathology, St Joseph Dental College and Hospital, Duggirala, Eluru, Andhra Pradesh, India
| | - H K Puneeth
- Department of Oral Pathology, St Joseph Dental College and Hospital, Duggirala, Eluru, Andhra Pradesh, India
| |
Collapse
|
131
|
Gong J, Liu Y, Wang W, He R, Xia Q, Chen L, Zhao C, Gao Y, Shi Y, Bai Y, Liao Y, Zhang Q, Zhu F, Wang M, Li X, Qin R. TRIM21-Promoted FSP1 Plasma Membrane Translocation Confers Ferroptosis Resistance in Human Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302318. [PMID: 37587773 PMCID: PMC10582465 DOI: 10.1002/advs.202302318] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/21/2023] [Indexed: 08/18/2023]
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by excessive accumulation of lipid peroxides, has become a promising strategy in cancer treatment. Cancer cells exploit antioxidant proteins, including Ferroptosis Suppressor Protein 1 (FSP1), to prevent ferroptosis. In this study, it is found that the E3 ubiquitin ligase TRIM21 bound to FSP1 and mediated its ubiquitination on K322 and K366 residues via K63 linkage, which is essential for its membrane translocation and ferroptosis suppression ability. It is further verified the protective role of the TRIM21-FSP1 axis in RSL3-induced ferroptosis in cancer cells and a subcutaneous tumor model. Moreover, TRIM21 is highly expressed in multiple gastrointestinal (GI) tumors, and its expression is further stimulated upon ferroptosis induction in cancer cells and the KPC mouse model. In summary, This study identifies TRIM21 as a negative regulator of ferroptosis through K63 ubiquitination of FSP1, which can serve as a therapeutic target to enhance the chemosensitivity of tumors based on ferroptosis induction.
Collapse
Affiliation(s)
- Jun Gong
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Yuhui Liu
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Wenjia Wang
- Institute of Integrated Traditional Chinese and Western MedicineAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Ruizhi He
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Qilong Xia
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Lin Chen
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Chunle Zhao
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Yang Gao
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Yongkang Shi
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Yu Bai
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Yangwei Liao
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Qi Zhang
- Department of Plastic and Cosmetic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Feng Zhu
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Min Wang
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Xu Li
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Renyi Qin
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| |
Collapse
|
132
|
Jiang Y, Feng Y, Huang J, Huang Z, Tan R, Li T, Chen Z, Tang X, Qiu J, Li C, Chen H, Yang Z. LAD1 promotes malignant progression by diminishing ubiquitin-dependent degradation of vimentin in gastric cancer. J Transl Med 2023; 21:632. [PMID: 37718450 PMCID: PMC10506284 DOI: 10.1186/s12967-023-04401-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/29/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Ladinin-1 (LAD1), an anchoring filament protein, has been associated with several cancer types, including cancers of the colon, lungs, and breast. However, it is still unclear how and why LAD1 causes gastric cancer (GC). METHODS Multiple in vitro and in vivo, functional gains and loss experiments were carried out in the current study to confirm the function of LAD1. Mass spectrometry was used to find the proteins that interact with LAD1. Immunoprecipitation analyses revealed the mechanism of LAD1 involved in promoting aggressiveness. RESULTS The results revealed that the LAD1 was overexpressed in GC tissues, and participants with increased LAD1 expression exhibited poorer disease-free survival (DFS) and overall survival (OS). Functionally, LAD1 promotes cellular invasion, migration, proliferation, and chemoresistance in vivo and in vitro in the subcutaneous patient-and cell-derived xenograft (PDX and CDX) tumor models. Mechanistically, LAD1 competitively bound to Vimentin, preventing it from interacting with the E3 ubiquitin ligase macrophage erythroblast attacher (MAEA), which led to a reduction in K48-linked ubiquitination of Vimentin and an increase in Vimentin protein levels in GC cells. CONCLUSIONS In conclusion, the current investigation indicated that LAD1 has been predicted as a possible prognostic biomarker and therapeutic target for GC due to its ability to suppress Vimentin-MAEA interaction.
Collapse
Affiliation(s)
- Yingming Jiang
- Department of Gastrointestinal Endoscopy, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Yanchun Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Jintuan Huang
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Zhenze Huang
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Rongchang Tan
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Tuoyang Li
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Zijian Chen
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Xiaocheng Tang
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Jun Qiu
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Chujun Li
- Department of Gastrointestinal Endoscopy, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| | - Hao Chen
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| | - Zuli Yang
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| |
Collapse
|
133
|
Long D, Zhang R, Du C, Tong J, Ni Y, Zhou Y, Zuo Y, Liao M. Integrated analysis of the ubiquitination mechanism reveals the specific signatures of tissue and cancer. BMC Genomics 2023; 24:523. [PMID: 37667177 PMCID: PMC10478310 DOI: 10.1186/s12864-023-09583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/13/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Ubiquitination controls almost all cellular processes. The dysregulation of ubiquitination signals is closely associated with the initiation and progression of multiple diseases. However, there is little comprehensive research on the interaction and potential function of ubiquitination regulators (UBRs) in spermatogenesis and cancer. METHODS We systematically characterized the mRNA and protein expression of UBRs across tissues and further evaluated their roles in testicular development and spermatogenesis. Subsequently, we explored the genetic alterations, expression perturbations, cancer hallmark-related pathways, and clinical relevance of UBRs in pan-cancer. RESULTS This work reveals heterogeneity in the expression patterns of UBRs across tissues, and the expression pattern in testis is the most distinct. UBRs are dynamically expressed during testis development, which are critical for normal spermatogenesis. Furthermore, UBRs have widespread genetic alterations and expression perturbations in pan-cancer. The expression of 79 UBRs was identified to be closely correlated with the activity of 32 cancer hallmark-related pathways, and ten hub genes were screened for further clinical relevance analysis by a network-based method. More than 90% of UBRs can affect the survival of cancer patients, and hub genes have an excellent prognostic classification for specific cancer types. CONCLUSIONS Our study provides a comprehensive analysis of UBRs in spermatogenesis and pan-cancer, which can build a foundation for understanding male infertility and developing cancer drugs in the aspect of ubiquitination.
Collapse
Affiliation(s)
- Deyu Long
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, 010070, Hohhot, China
| | - Ruiqi Zhang
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Changjian Du
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Jiapei Tong
- College of Information Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Ni
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yaqi Zhou
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, 010070, Hohhot, China.
| | - Mingzhi Liao
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
134
|
Miao Y, Qian G, Zhang R, Yuan Y, Zuo Y, Ding Y, Li X, Tang Y, Zheng H, Lv H. Linear ubiquitination improves NFAT1 protein stability and facilitates NFAT1 signalling in Kawasaki disease. FEBS J 2023; 290:4224-4237. [PMID: 36779231 DOI: 10.1111/febs.16749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/08/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
NFAT1 is known for its roles in T cell development and activation. So far, the phosphorylation of NFAT1 has been extensively studied, but the other post-translational modifications of NFAT1 remain largely unknown. In this study, we reported that NFAT1 is a linearly ubiquitinated substrate of linear ubiquitin chain assembly complex (LUBAC). LUBAC promoted NFAT1 linear ubiquitination, which in turn inhibited K48-linked polyubiquitination of NFAT1 and therefore increased NFAT1 protein stability. Interestingly, the linear ubiquitination levels of NFAT1 in patients with the Kawasaki disease were upregulated. Further studies demonstrated that the patients with the Kawasaki disease had increased mRNA levels of HOIL-1L. These findings revealed a linearly ubiquitinated substrate of LUBAC and an important biological function of NFAT1 linear ubiquitination in the Kawasaki disease and therefore may provide a novel strategy for the treatment of the Kawasaki disease.
Collapse
Affiliation(s)
- Ying Miao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Renxia Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yukang Yuan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yibo Zuo
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yueyue Ding
- Department of Pediatric Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Xuan Li
- Department of Pediatric Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Yunjia Tang
- Department of Pediatric Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Hui Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
- Department of Pediatric Cardiology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
135
|
Zhang J, Fang S, Rong F, Jia M, Wang Y, Cui H, Hao P. PSMD4 drives progression of hepatocellular carcinoma via Akt/COX2 pathway and p53 inhibition. Hum Cell 2023; 36:1755-1772. [PMID: 37336868 DOI: 10.1007/s13577-023-00935-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
The ubiquitin-dependent proteolytic pathway is crucial for cellular regulation, including control of the cell cycle, differentiation, and apoptosis. Proteasome 26S Subunit Ubiquitin Receptor, Non-ATPase 4, (PSMD4) is a member of the ubiquitin proteasome family that is upregulated in multiple solid tumors, including hepatocellular carcinoma (HCC), and the existence of PSMD4 is associated with unfavorable prognosis. In this study, transcriptome sequencing of HCC tissues and non-tumor hepatic tissues from the public database Cancer Genome Atlas (TGCA) revealed a high expression of PSMD4. Additionally, PSMD4 loss in HCC cells suppressed the tumor development in mouse xenograft model. PSMD4, which is maintained by inflammatory factors secreted from tumor matrix cells, positively mediates cell growth and is associated with Akt/GSK-3β/ cyclooxygenase2 (COX2) pathway activation, inhibition of p53 promoter activity, and increased p53 degradation. However, the domain without the C-terminus (VWA+UIM1/2) sustained the activation of p53 transcription. Thus, our findings suggest that PSMD4 is involved in HCC tumor growth through COX2 expression and p53 downregulation. Therapeutic strategies targeting PSMD4 and its downstream effectors could be used for the treatment of PSMD4-abundant HCC patients.
Collapse
Affiliation(s)
- Jiamin Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China
| | - Shu Fang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China
| | - Fanghao Rong
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China
| | - Miaomiao Jia
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China
| | - Yunpeng Wang
- Department of General Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China.
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China.
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, Hebei, China.
| | - Peipei Hao
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China.
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China.
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, Hebei, China.
| |
Collapse
|
136
|
Yan H, Huang X, Xu J, Zhang Y, Chen J, Xu Z, Li H, Wang Z, Yang X, Yang B, He Q, Luo P. Chloroquine Intervenes Nephrotoxicity of Nilotinib through Deubiquitinase USP13-Mediated Stabilization of Bcl-XL. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302002. [PMID: 37452432 PMCID: PMC10502815 DOI: 10.1002/advs.202302002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Nephrotoxicity has become prominent due to the increase in the clinical use of nilotinib, a second-generation BCR-ABL1 inhibitor in the first-line treatment of Philadelphia chromosome-positive chronic myeloid leukemia. To date, the mechanism of nilotinib nephrotoxicity is still unknown, leading to a lack of clinical intervention strategies. Here, it is found that nilotinib could induce glomerular atrophy, renal tubular degeneration, and kidney fibrosis in an animal model. Mechanistically, nilotinib induces intrinsic apoptosis by specifically reducing the level of BCL2 like 1 (Bcl-XL) in both vascular endothelial cells and renal tubular epithelial cells, as well as in vivo. It is confirmed that chloroquine (CQ) intervenes with nilotinib-induced apoptosis and improves mitochondrial integrity, reactive oxygen species accumulation, and DNA damage by reversing the decreased Bcl-XL. The intervention effect is dependent on the alleviation of the nilotinib-induced reduction in ubiquitin specific peptidase 13 (USP13) and does not rely on autophagy inhibition. Additionally, it is found that USP13 abrogates cell apoptosis by preventing excessive ubiquitin-proteasome degradation of Bcl-XL. In conclusion, the research reveals the molecular mechanism of nilotinib's nephrotoxicity, highlighting USP13 as an important regulator of Bcl-XL stability in determining cell fate, and provides CQ analogs as a clinical intervention strategy for nilotinib's nephrotoxicity.
Collapse
Affiliation(s)
- Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Xiangliang Huang
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Jiangxin Xu
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Ying Zhang
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Jiajia Chen
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Hui Li
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Zeng Wang
- Department of PharmacyZhejiang Cancer HospitalHangzhou310005China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Bo Yang
- Institute of Pharmacology & ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityHangzhou310018China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Department of CardiologySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310009China
| |
Collapse
|
137
|
Suresh K, Mattern M, Goldberg MS, Butt TR. The Ubiquitin Proteasome System as a Therapeutic Area in Parkinson's Disease. Neuromolecular Med 2023; 25:313-329. [PMID: 36739586 DOI: 10.1007/s12017-023-08738-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/28/2023] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder. There are no available therapeutics that slow or halt the progressive loss of dopamine-producing neurons, which underlies the primary clinical symptoms. Currently approved PD drugs can provide symptomatic relief by increasing brain dopamine content or activity; however, the alleviation is temporary, and the effectiveness diminishes with the inevitable progression of neurodegeneration. Discovery and development of disease-modifying neuroprotective therapies has been hampered by insufficient understanding of the root cause of PD-related neurodegeneration. The etiology of PD involves a combination of genetic and environmental factors. Although a single cause has yet to emerge, genetic, cell biological and neuropathological evidence implicates mitochondrial dysfunction and protein aggregation. Postmortem PD brains show pathognomonic Lewy body intraneuronal inclusions composed of aggregated α-synuclein, indicative of failure to degrade misfolded protein. Mutations in the genes that code for α-synuclein, as well as the E3 ubiquitin ligase Parkin, cause rare inherited forms of PD. While many ubiquitin ligases label proteins with ubiquitin chains to mark proteins for degradation by the proteasome, Parkin has been shown to mark dysfunctional mitochondria for degradation by mitophagy. The ubiquitin proteasome system participates in several aspects of the cell's response to mitochondrial damage, affording numerous therapeutic opportunities to augment mitophagy and potentially stop PD progression. This review examines the role and therapeutic potential of such UPS modulators, exemplified by both ubiquitinating and deubiquitinating enzymes.
Collapse
Affiliation(s)
- Kumar Suresh
- Progenra Inc., 271A Great Valley Parkway, Malvern, PA, 19355, USA.
| | - Michael Mattern
- Progenra Inc., 271A Great Valley Parkway, Malvern, PA, 19355, USA
| | - Matthew S Goldberg
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tauseef R Butt
- Progenra Inc., 271A Great Valley Parkway, Malvern, PA, 19355, USA
| |
Collapse
|
138
|
Qi J, Zhang X, Zhang S, Wu S, Lu Y, Li S, Li P, Tan J. P65 mediated UBR4 in exosomes derived from menstrual blood stromal cells to reduce endometrial fibrosis by regulating YAP Ubiquitination. J Nanobiotechnology 2023; 21:305. [PMID: 37644565 PMCID: PMC10463480 DOI: 10.1186/s12951-023-02070-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Intrauterine adhesion (IUA) is a recurrent and refractory reproductive dysfunction disorder for which menstrual blood-derived stromal cells (MenSCs) might be a promising intervention. We reported that administration of MenSCs-derived exosomes (MenSCs-EXO) could achieve similar therapeutic effects to MenSCs transplantation, including alleviating endometrial fibrosis and improving fertility in IUA rats. The mass spectrometry sequencing result suggested that UBR4, a member of the proteasome family, was abundantly enriched in MenSCs-EXO. This study aimed to investigate the key role of UBR4 in MenSCs-EXO for the treatment of IUA and the specific molecular mechanism. RESULTS UBR4 was lowly expressed in the endometrial stromal cells (EndoSCs) of IUA patients. MenSCs-EXO treatment could restore the morphology of IUA endometrium, reduce the extent of fibrosis, and promote endometrial and vascular proliferation. Knockdown of UBR4 in MenSCs did not affect the characteristics of exosomes but attenuated the therapeutic effect of exosomes. UBR4 in MenSCs-EXO could alleviate endometrial fibrosis by boosting YAP ubiquitination degradation and promoting YAP nuclear-cytoplasmic translocation. Moreover, P65 could bind to the UBR4 promoter region to transcriptionally promote the expression level of UBR4 in MenSCs. CONCLUSION Our study clarified that MenSCs-EXO ameliorated endometrial fibrosis in IUA primarily by affecting YAP activity mediated through UBR4, while inflammatory signaling P65 may affect UBR4 expression in MenSCs to enhance MenSCs-EXO therapeutic effects. This revealed a novel mechanism for the treatment of IUA with MenSCs-EXO, proposing a potential option for the clinical treatment of endometrial injury.
Collapse
Affiliation(s)
- Jiarui Qi
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Xudong Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Siwen Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Shanshan Wu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Yimeng Lu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Shuyu Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Pingping Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Jichun Tan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China.
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China.
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
139
|
Kao HW, Lu WL, Ho MR, Lin YF, Hsieh YJ, Ko TP, Danny Hsu ST, Wu KP. Robust Design of Effective Allosteric Activators for Rsp5 E3 Ligase Using the Machine Learning Tool ProteinMPNN. ACS Synth Biol 2023; 12:2310-2319. [PMID: 37556858 DOI: 10.1021/acssynbio.3c00042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
We used the deep learning tool ProteinMPNN to redesign ubiquitin (Ub) as a specific and functionally stimulating/enhancing binder of the Rsp5 E3 ligase. We generated 20 extensively mutated─up to 37 of 76 residues─recombinant Ub variants (UbVs), named R1 to R20, displaying well-folded structures and high thermal stabilities. These UbVs can also form stable complexes with Rsp5, as predicted using AlphaFold2. Three of the UbVs bound to Rsp5 with low micromolar affinity, with R4 and R12 effectively enhancing the Rsp5 activity six folds. AlphaFold2 predicts that R4 and R12 bind to Rsp5's exosite in an identical manner to the Rsp5-Ub template, thereby allosterically activating Rsp5-Ub thioester formation. Thus, we present a virtual solution for rapidly and cost-effectively designing UbVs as functional modulators of Ub-related enzymes.
Collapse
Affiliation(s)
- Hsi-Wen Kao
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Lin Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Fong Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Institute of Biochemical Science, National Taiwan University, Taipei 106, Taiwan
| | - Yun-Jung Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Institute of Biochemical Science, National Taiwan University, Taipei 106, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Institute of Biochemical Science, National Taiwan University, Taipei 106, Taiwan
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashihiroshima 739-8527, Japan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Institute of Biochemical Science, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
140
|
Yan W, Zhong Y, Hu X, Xu T, Zhang Y, Kales S, Qu Y, Talley DC, Baljinnyam B, LeClair CA, Simeonov A, Polster BM, Huang R, Ye Y, Rai G, Henderson MJ, Tao D, Fang S. Auranofin targets UBA1 and enhances UBA1 activity by facilitating ubiquitin trans-thioesterification to E2 ubiquitin-conjugating enzymes. Nat Commun 2023; 14:4798. [PMID: 37558718 PMCID: PMC10412574 DOI: 10.1038/s41467-023-40537-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
UBA1 is the primary E1 ubiquitin-activating enzyme responsible for generation of activated ubiquitin required for ubiquitination, a process that regulates stability and function of numerous proteins. Decreased or insufficient ubiquitination can cause or drive aging and many diseases. Therefore, a small-molecule enhancing UBA1 activity could have broad therapeutic potential. Here we report that auranofin, a drug approved for the treatment of rheumatoid arthritis, is a potent UBA1 activity enhancer. Auranofin binds to the UBA1's ubiquitin fold domain and conjugates to Cys1039 residue. The binding enhances UBA1 interactions with at least 20 different E2 ubiquitin-conjugating enzymes, facilitating ubiquitin charging to E2 and increasing the activities of seven representative E3s in vitro. Auranofin promotes ubiquitination and degradation of misfolded ER proteins during ER-associated degradation in cells at low nanomolar concentrations. It also facilitates outer mitochondrial membrane-associated degradation. These findings suggest that auranofin can serve as a much-needed tool for UBA1 research and therapeutic exploration.
Collapse
Affiliation(s)
- Wenjing Yan
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yongwang Zhong
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Tuan Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yinghua Zhang
- Center for Innovative Biomedical Resources, Biosensor Core, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Stephen Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yanyan Qu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Daniel C Talley
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Christopher A LeClair
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Brian M Polster
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA.
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Program in Oncology, UM Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
141
|
Kobak S. VEXAS syndrome: Current clinical, diagnostic and treatment approaches. Intractable Rare Dis Res 2023; 12:170-179. [PMID: 37662628 PMCID: PMC10468411 DOI: 10.5582/irdr.2023.01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/30/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
VEXAS syndrome, is a hemato-inflammatory chronic disease characterized with predominantly rheumatic and hematologic systemic involvement. It was first described in 2020 by a group of researchers in the United States. VEXAS syndrome is a rare condition that primarily affects adult males and is caused by a mutation in the UBA1 gene located on the X chromosome. Its pathogenesis is related to the somatic mutation affecting methionine-41 (p.Met41) in UBA1, the major E1 enzyme that initiates ubiquitylation. Mutant gene lead to decreased ubiquitination and activated innate immune pathways and systemic inflammation occur. The specific mechanism by which the UBA1 mutation leads to the clinical features of VEXAS syndrome is not yet fully understood. VEXAS is a newly define adult-onset inflammatory syndrome manifested with treatment-refractory fevers, arthritis, chondritis, vasculitis, cytopenias, typical vacuoles in hematopetic precursor cells, neutrophilic cutaneous and pulmonary inflammation. Diagnosing VEXAS syndrome can be challenging due to its rarity and the overlap of symptoms with other inflammatory conditions. Genetic testing to identify the UBA1 gene mutation is essential for definitive diagnosis. Currently, there is no known cure for VEXAS syndrome, and treatment mainly focuses on managing the symptoms. This may involve the use of anti-inflammatory medications, immunosuppressive drugs, and supportive therapies tailored to the individual patient's needs. Due to the recent discovery of VEXAS syndrome, ongoing research is being conducted to better understand its pathogenesis, clinical features, and potential treatment options. In this review article, the clinical, diagnostic and treatment approaches of VEXAS syndrome were evaluated in the light of the latest literature data.
Collapse
Affiliation(s)
- Senol Kobak
- Department of Internal Medicine and Rheumatology, Istinye University Faculty of Medicine, Liv Hospital, WASOG Sarcoidosis Clinic, Istanbul,Turkey
| |
Collapse
|
142
|
Uemura S, Maenohara S, Inoue K, Ogonuki N, Matoba S, Ogura A, Kurumizaka M, Yamagata K, Sharif J, Koseki H, Ueda K, Unoki M, Sasaki H. UHRF1 is essential for proper cytoplasmic architecture and function of mouse oocytes and derived embryos. Life Sci Alliance 2023; 6:e202301904. [PMID: 37225425 PMCID: PMC10209520 DOI: 10.26508/lsa.202301904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023] Open
Abstract
Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is a protein essential for the maintenance of DNA methylation in somatic cells. However, UHRF1 is predominantly localized in the cytoplasm of mouse oocytes and preimplantation embryos, where it may play a role unrelated to the nuclear function. We herein report that oocyte-specific Uhrf1 KO results in impaired chromosome segregation, abnormal cleavage division, and preimplantation lethality of derived embryos. Our nuclear transfer experiment showed that the phenotype is attributable to cytoplasmic rather than nuclear defects of the zygotes. A proteomic analysis of KO oocytes revealed the down-regulation of proteins associated with microtubules including tubulins, which occurred independently of transcriptomic changes. Intriguingly, cytoplasmic lattices were disorganized, and mitochondria, endoplasmic reticulum, and components of the subcortical maternal complex were mislocalized. Thus, maternal UHRF1 regulates the proper cytoplasmic architecture and function of oocytes and preimplantation embryos, likely through a mechanism unrelated to DNA methylation.
Collapse
Affiliation(s)
- Shuhei Uemura
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shoji Maenohara
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kimiko Inoue
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Ibaraki, Japan
| | - Narumi Ogonuki
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Ibaraki, Japan
| | - Shogo Matoba
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Ibaraki, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Ibaraki, Japan
| | - Mayuko Kurumizaka
- Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazuo Yamagata
- Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Faculty of Biology-Oriented Science and Technology, KINDAI University, Wakayama, Japan
| | - Jafar Sharif
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Motoko Unoki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
143
|
Harit K, Bhattacharjee R, Matuschewski K, Becker J, Kalinke U, Schlüter D, Nishanth G. The deubiquitinating enzyme OTUD7b protects dendritic cells from TNF-induced apoptosis by stabilizing the E3 ligase TRAF2. Cell Death Dis 2023; 14:480. [PMID: 37516734 PMCID: PMC10387084 DOI: 10.1038/s41419-023-06014-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/19/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
The cytokine tumor necrosis factor (TNF) critically regulates the intertwined cell death and pro-inflammatory signaling pathways of dendritic cells (DCs) via ubiquitin modification of central effector molecules, but the intrinsic molecular switches deciding on either pathway are incompletely defined. Here, we uncover that the ovarian tumor deubiquitinating enzyme 7b (OTUD7b) prevents TNF-induced apoptosis of DCs in infection, resulting in efficient priming of pathogen-specific CD8+ T cells. Mechanistically, OTUD7b stabilizes the E3 ligase TNF-receptor-associated factor 2 (TRAF2) in human and murine DCs by counteracting its K48-ubiquitination and proteasomal degradation. TRAF2 in turn facilitates K63-linked polyubiquitination of RIPK1, which mediates activation of NF-κB and MAP kinases, IL-12 production, and expression of anti-apoptotic cFLIP and Bcl-xL. We show that mice with DC-specific OTUD7b-deficiency displayed DC apoptosis and a failure to induce CD8+ T cell-mediated brain pathology, experimental cerebral malaria, in a murine malaria infection model. Together, our data identify the deubiquitinating enzyme OTUD7b as a central molecular switch deciding on survival of human and murine DCs and provides a rationale to manipulate DC responses by targeting their ubiquitin network downstream of the TNF receptor pathway.
Collapse
Affiliation(s)
- Kunjan Harit
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - Rituparna Bhattacharjee
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115, Berlin, Germany
| | - Jennifer Becker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
144
|
Asmar AJ, Abrams SR, Hsin J, Collins JC, Yazejian RM, Wu Y, Cho J, Doyle AD, Cinthala S, Simon M, van Jaarsveld RH, Beck DB, Kerosuo L, Werner A. A ubiquitin-based effector-to-inhibitor switch coordinates early brain, craniofacial, and skin development. Nat Commun 2023; 14:4499. [PMID: 37495603 PMCID: PMC10371987 DOI: 10.1038/s41467-023-40223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
The molecular mechanisms that coordinate patterning of the embryonic ectoderm into spatially distinct lineages to form the nervous system, epidermis, and neural crest-derived craniofacial structures are unclear. Here, biochemical disease-variant profiling reveals a posttranslational pathway that drives early ectodermal differentiation in the vertebrate head. The anteriorly expressed ubiquitin ligase CRL3-KLHL4 restricts signaling of the ubiquitous cytoskeletal regulator CDC42. This regulation relies on the CDC42-activating complex GIT1-βPIX, which CRL3-KLHL4 exploits as a substrate-specific co-adaptor to recognize and monoubiquitylate PAK1. Surprisingly, we find that ubiquitylation converts the canonical CDC42 effector PAK1 into a CDC42 inhibitor. Loss of CRL3-KLHL4 or a disease-associated KLHL4 variant reduce PAK1 ubiquitylation causing overactivation of CDC42 signaling and defective ectodermal patterning and neurulation. Thus, tissue-specific restriction of CDC42 signaling by a ubiquitin-based effector-to-inhibitor is essential for early face, brain, and skin formation, revealing how cell-fate and morphometric changes are coordinated to ensure faithful organ development.
Collapse
Affiliation(s)
- Anthony J Asmar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shaun R Abrams
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
- Neural Crest Development & Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jenny Hsin
- Neural Crest Development & Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jason C Collins
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rita M Yazejian
- Neural Crest Development & Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Youmei Wu
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jean Cho
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew D Doyle
- NIDCR Imaging Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samhitha Cinthala
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marleen Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - David B Beck
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Laura Kerosuo
- Neural Crest Development & Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
145
|
Feng C, Zhang L, Chang X, Qin D, Zhang T. Regulation of post-translational modification of PD-L1 and advances in tumor immunotherapy. Front Immunol 2023; 14:1230135. [PMID: 37554324 PMCID: PMC10405826 DOI: 10.3389/fimmu.2023.1230135] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
The immune checkpoint molecules programmed cell death receptor 1 (PD-1) and programmed death ligand 1 (PD-L1) are one of the most promising targets for tumor immunotherapy. PD-L1 is overexpressed on the surface of tumor cells and inhibits T cell activation upon binding to PD⁃1 on the surface of T cells, resulting in tumor immune escape. The therapeutic strategy of targeting PD-1/PD-L1 involves blocking this binding and restoring the tumor-killing effect of immune cells. However, in clinical settings, a relatively low proportion of cancer patients have responded well to PD-1/PD-L1 blockade, and clinical outcomes have reached a bottleneck and no substantial progress has been made. In recent years, PD-L1 post-translation modifications (PTMs) have gradually become a hot topic in the field of PD-L1 research, which will provide new insights to improve the efficacy of current anti-PD-1/PD-L1 therapies. Here, we summarized and discussed multiple PTMs of PD-L1, including glycosylation, ubiquitination, phosphorylation, acetylation and palmitoylation, with a major emphasis on mechanism-based therapeutic strategies (including relevant enzymes and targets that are already in clinical use and that may become drugs in the future). We also summarized the latest research progress of PTMs of PD-L1/PD-1 in regulating immunotherapy. The review provided novel strategies and directions for tumor immunotherapy research based on the PTMs of PD-L1/PD-1.
Collapse
Affiliation(s)
- Chong Feng
- Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lening Zhang
- Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Chang
- Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Dongliang Qin
- Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Tao Zhang
- Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
146
|
Buntenbroich I, Anton V, Perez-Hernandez D, Simões T, Gaedke F, Schauss A, Dittmar G, Riemer J, Escobar-Henriques M. Docking and stability defects in mitofusin highlight the proteasome as a potential therapeutic target. iScience 2023; 26:107014. [PMID: 37416455 PMCID: PMC10320088 DOI: 10.1016/j.isci.2023.107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 04/23/2023] [Accepted: 05/29/2023] [Indexed: 07/08/2023] Open
Abstract
Defects in mitochondrial fusion are at the base of many diseases. Mitofusins power membrane-remodeling events via self-interaction and GTP hydrolysis. However, how exactly mitofusins mediate fusion of the outer membrane is still unclear. Structural studies enable tailored design of mitofusin variants, providing valuable tools to dissect this stepwise process. Here, we found that the two cysteines conserved between yeast and mammals are required for mitochondrial fusion, revealing two novel steps of the fusion cycle. C381 is dominantly required for the formation of the trans-tethering complex, before GTP hydrolysis. C805 allows stabilizing the Fzo1 protein and the trans-tethering complex, just prior to membrane fusion. Moreover, proteasomal inhibition rescued Fzo1 C805S levels and membrane fusion, suggesting a possible application for clinically approved drugs. Together, our study provides insights into how assembly or stability defects in mitofusins might cause mitofusin-associated diseases and uncovers potential therapeutic intervention by proteasomal inhibition.
Collapse
Affiliation(s)
- Ira Buntenbroich
- Institute for Genetics,University of Cologne, Cologne 50931, Germany
| | - Vincent Anton
- Institute for Genetics,University of Cologne, Cologne 50931, Germany
| | - Daniel Perez-Hernandez
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen 1445, Luxembourg
| | - Tânia Simões
- Institute for Genetics,University of Cologne, Cologne 50931, Germany
| | - Felix Gaedke
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen 1445, Luxembourg
| | - Jan Riemer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
- Institute for Biochemistry, University of Cologne, Cologne 50931, Germany
| | - Mafalda Escobar-Henriques
- Institute for Genetics,University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
147
|
Li S, Shi L, Wang Y, Zhang L, Chu S, Li M, Bai J, Zhu W. FBXO22 inhibits proliferation and metastasis of cervical cancer cells by mediating ubiquitination-dependent degradation of GAK. Exp Cell Res 2023:113719. [PMID: 37442264 DOI: 10.1016/j.yexcr.2023.113719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/12/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
Cervical cancer is one of the recognized malignant tumors of female reproductive system. At present, the research and development of biomarkers has attracted increasing attention, and the wide application of clinical cervical cancer screening strategies has significantly reduced its morbidity and mortality. A member of the F-box protein family, FBXO22, is involved in cell cycle, DNA damage repair and many other processes. Dysregulation of FBXO22 plays an important role in the occurrence and development of various tumors, including ovarian cancer, liver cancer and lung cancer. Nevertheless, the effect of FBXO22 in cervical cancer needs further investigation. We found that FBXO22 inhibited cervical cancer cell proliferation, migration and invasion. The results of proteomics studies suggested FBXO22 appears to target the Cyclin G Associated Kinase (GAK) for degradation. The combined results of analysis of cultured cells with altered abundance of FBXO22 by depletion or over-expression in the presence or absence of proteasomal inhibitor, comparison of protein decay rate, as well as cellular ubiquitination, support a hypothesis that FBXO22 mediates the ubiquitin-dependent degradation of GAK. Taken together, our data suggest that FBXO22 has a protective role in cervical cancer.
Collapse
Affiliation(s)
- Shanfeng Li
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lei Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - You Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Gynaecologic Oncology, Shanghai, China
| | - Lanxia Zhang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Weipei Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
148
|
Van Espen B, Oo HZ, Collins C, Fazli L, Molinolo A, Murad R, Gleave M, Ronai ZA. RNF185 control of COL3A1 expression limits prostate cancer migration and metastatic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547118. [PMID: 37425866 PMCID: PMC10327057 DOI: 10.1101/2023.06.29.547118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
RNF185 is a RING finger domain-containing ubiquitin ligase implicated in ER-associated degradation. Prostate tumor patient data analysis revealed a negative correlation between RNF185 expression and prostate cancer progression and metastasis. Likewise, several prostate cancer cell lines exhibited greater migration and invasion capabilities in culture upon RNF185 depletion. Subcutaneous inoculation of mouse prostate cancer MPC3 cells stably expressing shRNA against RNF185 into mice resulted in larger tumors and more frequent lung metastases. RNA-sequencing and Ingenuity Pathway Analysis identified wound healing and cellular movement among the most significant pathways upregulated in RNF185-depleted, compared to control prostate cancer cells. Gene Set Enrichment Analyses performed in samples from patients harboring low RNF185 expression and in RNF185-depleted lines confirmed the deregulation of genes implicated in EMT. Among those, COL3A1 was identified as the primary mediator of RNF185's ability to impact migration phenotypes. Correspondingly, enhanced migration and metastasis of RNF185 KD prostate cancer cells were attenuated upon co-inhibition of COL3A1. Our results identify RNF185 as a gatekeeper of prostate cancer metastasis, partly via its control of COL3A1 availability.
Collapse
|
149
|
Krakowiak A, Pietrasik S. New Insights into Oxidative and Reductive Stress Responses and Their Relation to the Anticancer Activity of Selenium-Containing Compounds as Hydrogen Selenide Donors. BIOLOGY 2023; 12:875. [PMID: 37372159 DOI: 10.3390/biology12060875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Redox balance is important for the homeostasis of normal cells, but also for the proliferation, progression, and survival of cancer cells. Both oxidative and reductive stress can be harmful to cells. In contrast to oxidative stress, reductive stress and the therapeutic opportunities underlying the mechanisms of reductive stress in cancer, as well as how cancer cells respond to reductive stress, have received little attention and are not as well characterized. Therefore, there is recent interest in understanding how selective induction of reductive stress may influence therapeutic treatment and disease progression in cancer. There is also the question of how cancer cells respond to reductive stress. Selenium compounds have been shown to have chemotherapeutic effects against cancer, and their anticancer mechanism is thought to be related to the formation of their metabolites, including hydrogen selenide (H2Se), which is a highly reactive and reducing molecule. Here, we highlight recent reports on the molecular mechanism of how cells recognize and respond to oxidative and reductive stress (1) and the mechanisms through which different types of selenium compounds can generate H2Se (2) and thus selectively affect reductive stress under controlled conditions, which may be important for their anticancer effects.
Collapse
Affiliation(s)
- Agnieszka Krakowiak
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Sylwia Pietrasik
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
150
|
Zheng C, Chen J, Wu Y, Wang X, Lin Y, Shu L, Liu W, Wang P. Elucidating the role of ubiquitination and deubiquitination in osteoarthritis progression. Front Immunol 2023; 14:1217466. [PMID: 37359559 PMCID: PMC10288844 DOI: 10.3389/fimmu.2023.1217466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Osteoarthritis is non-inflammatory degenerative joint arthritis, which exacerbates disability in elder persons. The molecular mechanisms of osteoarthritis are elusive. Ubiquitination, one type of post-translational modifications, has been demonstrated to accelerate or ameliorate the development and progression of osteoarthritis via targeting specific proteins for ubiquitination and determining protein stability and localization. Ubiquitination process can be reversed by a class of deubiquitinases via deubiquitination. In this review, we summarize the current knowledge regarding the multifaceted role of E3 ubiquitin ligases in the pathogenesis of osteoarthritis. We also describe the molecular insight of deubiquitinases into osteoarthritis processes. Moreover, we highlight the multiple compounds that target E3 ubiquitin ligases or deubiquitinases to influence osteoarthritis progression. We discuss the challenge and future perspectives via modulation of E3 ubiquitin ligases and deubiquitinases expression for enhancement of the therapeutic efficacy in osteoarthritis patients. We conclude that modulating ubiquitination and deubiquitination could alleviate the osteoarthritis pathogenesis to achieve the better treatment outcomes in osteoarthritis patients.
Collapse
Affiliation(s)
- Chenxiao Zheng
- Department of Orthopaedics and Traumatology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Jiayi Chen
- Department of Orthopaedics and Traumatology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Yurui Wu
- Department of Orthopaedics and Traumatology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Xiaochao Wang
- Department of Orthopaedics, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yongan Lin
- South China University of Technology, Guangzhou, Guangdong, China
| | - Lilu Shu
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| | - Wenjun Liu
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| | - Peter Wang
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| |
Collapse
|