101
|
Zhang C, Feng YG, Tam C, Wang N, Feng Y. Transcriptional Profiling and Machine Learning Unveil a Concordant Biosignature of Type I Interferon-Inducible Host Response Across Nasal Swab and Pulmonary Tissue for COVID-19 Diagnosis. Front Immunol 2021; 12:733171. [PMID: 34880855 PMCID: PMC8647662 DOI: 10.3389/fimmu.2021.733171] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND COVID-19, caused by SARS-CoV-2 virus, is a global pandemic with high mortality and morbidity. Limited diagnostic methods hampered the infection control. Since the direct detection of virus mainly by RT-PCR may cause false-negative outcome, host response-dependent testing may serve as a complementary approach for improving COVID-19 diagnosis. OBJECTIVE Our study discovered a highly-preserved transcriptional profile of Type I interferon (IFN-I)-dependent genes for COVID-19 complementary diagnosis. METHODS Computational language R-dependent machine learning was adopted for mining highly-conserved transcriptional profile (RNA-sequencing) across heterogeneous samples infected by SARS-CoV-2 and other respiratory infections. The transcriptomics/high-throughput sequencing data were retrieved from NCBI-GEO datasets (GSE32155, GSE147507, GSE150316, GSE162835, GSE163151, GSE171668, GSE182569). Mathematical approaches for homological analysis were as follows: adjusted rand index-related similarity analysis, geometric and multi-dimensional data interpretation, UpsetR, t-distributed Stochastic Neighbor Embedding (t-SNE), and Weighted Gene Co-expression Network Analysis (WGCNA). Besides, Interferome Database was used for predicting the transcriptional factors possessing IFN-I promoter-binding sites to the key IFN-I genes for COVID-19 diagnosis. RESULTS In this study, we identified a highly-preserved gene module between SARS-CoV-2 infected nasal swab and postmortem lung tissue regulating IFN-I signaling for COVID-19 complementary diagnosis, in which the following 14 IFN-I-stimulated genes are highly-conserved, including BST2, IFIT1, IFIT2, IFIT3, IFITM1, ISG15, MX1, MX2, OAS1, OAS2, OAS3, OASL, RSAD2, and STAT1. The stratified severity of COVID-19 may also be identified by the transcriptional level of these 14 IFN-I genes. CONCLUSION Using transcriptional and computational analysis on RNA-seq data retrieved from NCBI-GEO, we identified a highly-preserved 14-gene transcriptional profile regulating IFN-I signaling in nasal swab and postmortem lung tissue infected by SARS-CoV-2. Such a conserved biosignature involved in IFN-I-related host response may be leveraged for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yi-Gang Feng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Chiwing Tam
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
102
|
Lévy R, Zhang P, Bastard P, Dorgham K, Melki I, Hadchouel A, Hartoularos GC, Neven B, Castelle M, Roy C, Toin T, Berteloot L, Bizien L, Abid H, Burgard M, Houhou-Fidouh N, Rozenberg F, Jouanguy E, Ye CJ, Gorochov G, Zhang Q, Casanova JL. Monoclonal antibody-mediated neutralization of SARS-CoV-2 in an IRF9-deficient child. Proc Natl Acad Sci U S A 2021; 118:e2114390118. [PMID: 34702736 PMCID: PMC8609338 DOI: 10.1073/pnas.2114390118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 01/22/2023] Open
Abstract
We describe an unvaccinated child at risk for life-threatening COVID-19 due to an inherited deficiency of IRF9, which governs ISGF-3-dependent responses to type I and III interferons (IFN). She was admitted, with a high nasal SARS-CoV-2 load on day 1 of upper respiratory tract infection. She was viremic on day 2 and received casirivimab and imdevimab. Her clinical manifestations and viremia disappeared on days 3 and 4, respectively. Circulating SARS-CoV-2 virus induced the expression of IFN-stimulated genes in leukocytes on day 1, whereas the secretion of blood type I IFNs, which peaked on day 4, did not. Antibody-mediated SARS-CoV-2 neutralization is, therefore, sufficient to overcome a deficiency of antiviral IFNs.
Collapse
Affiliation(s)
- Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children 75015 Paris, France
- Imagine Institute, University of Paris, Paris 75015, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children 75015 Paris, France
- Imagine Institute, University of Paris, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Karim Dorgham
- Sorbonne Université, INSERM, Centre for Immunology and Microbial Infections-Paris, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75013, France
| | - Isabelle Melki
- Imagine Institute, University of Paris, Paris 75015, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
- General Pediatrics, Infectious Disease and Internal Medicine Department, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75019, France
| | - Alice Hadchouel
- Pediatric Pulmonary Department, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
- Institut Necker-Enfants Malades, INSERM U1151, Paris 75015, France
| | | | - Bénédicte Neven
- Imagine Institute, University of Paris, Paris 75015, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Martin Castelle
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Charlotte Roy
- Pediatric Pulmonary Department, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Tom Toin
- Pediatric Pulmonary Department, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Laureline Berteloot
- Pediatric Radiology, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children 75015 Paris, France
- Imagine Institute, University of Paris, Paris 75015, France
| | - Hanène Abid
- Department of Virology, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Marianne Burgard
- Department of Virology, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Nadhira Houhou-Fidouh
- Department of Virology, INSERM, Infection, Antimicrobiens, Modélisation, Evolution, UMR 1137, Bichat-Claude Bernard Hospital, University of Paris, Assistance Publique-Hôpitaux de Paris, Paris F-75018, France
| | - Flore Rozenberg
- Department of Virology, Cochin Hospital, University of Paris, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children 75015 Paris, France
- Imagine Institute, University of Paris, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Chun Jimmie Ye
- Institute for Human Genetics, University of California, San Francisco, CA 94143
- Institute for Human Genetics, University of California, San Francisco, CA 94143
- Departments of Epidemiology and Biostatistics and Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA 94143
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Guy Gorochov
- Sorbonne Université, INSERM, Centre for Immunology and Microbial Infections-Paris, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75013, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children 75015 Paris, France
- Imagine Institute, University of Paris, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children 75015 Paris, France;
- Imagine Institute, University of Paris, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- HHMI, The Rockefeller University, New York, NY 10065
| |
Collapse
|
103
|
Rincon-Arevalo H, Aue A, Ritter J, Szelinski F, Khadzhynov D, Zickler D, Stefanski L, Lino AC, Körper S, Eckardt KU, Schrezenmeier H, Dörner T, Schrezenmeier EV. Altered increase in STAT1 expression and phosphorylation in severe COVID-19. Eur J Immunol 2021; 52:138-148. [PMID: 34676541 PMCID: PMC8646801 DOI: 10.1002/eji.202149575] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
The interferon pathway, a key antiviral defense mechanism, is being considered as a therapeutic target in COVID‐19. Both, substitution of interferon and JAK/STAT inhibition to limit cytokine storms have been proposed. However, little is known about possible abnormalities in STAT signaling in immune cells during SARS‐CoV‐2 infection. We investigated downstream targets of interferon signaling, including STAT1, STAT2, pSTAT1 and 2, and IRF1, 7 and 9 by flow cytometry in 30 patients with COVID‐19, 17 with mild, and 13 with severe infection. We report upregulation of STAT1 and IRF9 in mild and severe COVID‐19 cases, which correlated with the IFN‐signature assessed by Siglec‐1 (CD169) expression on peripheral monocytes. Interestingly, Siglec‐1 and STAT1 in CD14+ monocytes and plasmablasts showed lower expression among severe cases compared to mild cases. Contrary to the baseline STAT1 expression, the phosphorylation of STAT1 was enhanced in severe COVID‐19 cases, indicating a dysbalanced JAK/STAT signaling that fails to induce transcription of interferon stimulated response elements (ISRE). This abnormality persisted after IFN‐α and IFN‐γ stimulation of PBMCs from patients with severe COVID‐19. Data suggest impaired STAT1 transcriptional upregulation among severely infected patients may represent a potential predictive biomarker and would allow stratification of patients for certain interferon‐pathway targeted treatments.
Collapse
Affiliation(s)
- Hector Rincon-Arevalo
- Department of Nephrology and Medical Intensive Care, Charité- Universitätsmedizin Berlin, Berlin, Germany.,Department of Rheumatology and Clinical Immunology, Charité- Universitätsmedizin Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.,Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Arman Aue
- Department of Nephrology and Medical Intensive Care, Charité- Universitätsmedizin Berlin, Berlin, Germany.,Department of Rheumatology and Clinical Immunology, Charité- Universitätsmedizin Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Jacob Ritter
- Department of Rheumatology and Clinical Immunology, Charité- Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Franziska Szelinski
- Department of Rheumatology and Clinical Immunology, Charité- Universitätsmedizin Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Dmytro Khadzhynov
- Department of Nephrology and Medical Intensive Care, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Zickler
- Department of Nephrology and Medical Intensive Care, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Luisa Stefanski
- Department of Rheumatology and Clinical Immunology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Andreia C Lino
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Sixten Körper
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, University Hospital Ulm, Baden-Württemberg, Germany.,Institute of Transfusion Medicine, University of Ulm, Baden-Württemberg, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, University Hospital Ulm, Baden-Württemberg, Germany.,Institute of Transfusion Medicine, University of Ulm, Baden-Württemberg, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology, Charité- Universitätsmedizin Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Eva V Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité- Universitätsmedizin Berlin, Berlin, Germany.,Department of Rheumatology and Clinical Immunology, Charité- Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
104
|
Lopez J, Mommert M, Mouton W, Pizzorno A, Brengel-Pesce K, Mezidi M, Villard M, Lina B, Richard JC, Fassier JB, Cheynet V, Padey B, Duliere V, Julien T, Paul S, Bastard P, Belot A, Bal A, Casanova JL, Rosa-Calatrava M, Morfin F, Walzer T, Trouillet-Assant S. Early nasal type I IFN immunity against SARS-CoV-2 is compromised in patients with autoantibodies against type I IFNs. J Exp Med 2021; 218:e20211211. [PMID: 34357402 PMCID: PMC8352718 DOI: 10.1084/jem.20211211] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
IFN-I and IFN-III immunity in the nasal mucosa is poorly characterized during SARS-CoV-2 infection. We analyze the nasal IFN-I/III signature, namely the expression of ISGF-3-dependent IFN-stimulated genes, in mildly symptomatic COVID-19 patients and show its correlation with serum IFN-α2 levels, which peak at symptom onset and return to baseline from day 10 onward. Moreover, the nasal IFN-I/III signature correlates with the nasopharyngeal viral load and is associated with the presence of infectious viruses. By contrast, we observe low nasal IFN-I/III scores despite high nasal viral loads in a subset of critically ill COVID-19 patients, which correlates with the presence of autoantibodies (auto-Abs) against IFN-I in both blood and nasopharyngeal mucosa. In addition, functional assays in a reconstituted human airway epithelium model of SARS-CoV-2 infection confirm the role of such auto-Abs in abrogating the antiviral effects of IFN-I, but not those of IFN-III. Thus, IFN-I auto-Abs may compromise not only systemic but also local antiviral IFN-I immunity at the early stages of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jonathan Lopez
- Molecular biology core facility, Civils Hospices of Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Marine Mommert
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Civils Hospices of Lyon, Lyon Sud Hospital, Pierre-Bénite, France
- Open Innovation & Partnerships, bioMérieux S.A., Marcy l’Etoile, France
| | - William Mouton
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Civils Hospices of Lyon, Lyon Sud Hospital, Pierre-Bénite, France
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
| | - Andrés Pizzorno
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
| | - Karen Brengel-Pesce
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Civils Hospices of Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Mehdi Mezidi
- Intensive Care Medicine, Croix-Rousse hospital, Claude Bernard Lyon 1 University, Lyon, France
| | - Marine Villard
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
| | - Bruno Lina
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
- Virology laboratory, Institute of Infectious Agents, Laboratory associated with the National Reference Centre for Respiratory Viruses, Civils Hospices of Lyon, Lyon, France
| | - Jean-Christophe Richard
- Intensive Care Medicine, Croix-Rousse hospital, Claude Bernard Lyon 1 University, Lyon, France
| | - Jean-Baptiste Fassier
- Occupational Health and Medicine Department, Hospices Civils de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Institut français des sciences et technologies des transports, de l'aménagement et des reseaux, Unité Mixte de Recherche Epidémiologique et de Surveillance Transport Travail Environnement, UMR T_9405, Lyon University, Lyon, France
| | - Valérie Cheynet
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Civils Hospices of Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Blandine Padey
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
- Signia Therapeutics SAS, Lyon, France
| | - Victoria Duliere
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
- VirNext, Faculty of Medicine RTH Laennec, Claude Bernard Lyon 1 University, Lyon University, Lyon, France
| | - Thomas Julien
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
- VirNext, Faculty of Medicine RTH Laennec, Claude Bernard Lyon 1 University, Lyon University, Lyon, France
| | - Stéphane Paul
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Alexandre Belot
- Open Innovation & Partnerships, bioMérieux S.A., Marcy l’Etoile, France
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
| | - Antonin Bal
- Intensive Care Medicine, Croix-Rousse hospital, Claude Bernard Lyon 1 University, Lyon, France
- Virology laboratory, Institute of Infectious Agents, Laboratory associated with the National Reference Centre for Respiratory Viruses, Civils Hospices of Lyon, Lyon, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, New York, NY
| | - Manuel Rosa-Calatrava
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
- VirNext, Faculty of Medicine RTH Laennec, Claude Bernard Lyon 1 University, Lyon University, Lyon, France
| | - Florence Morfin
- Intensive Care Medicine, Croix-Rousse hospital, Claude Bernard Lyon 1 University, Lyon, France
- Virology laboratory, Institute of Infectious Agents, Laboratory associated with the National Reference Centre for Respiratory Viruses, Civils Hospices of Lyon, Lyon, France
| | - Thierry Walzer
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
| | - Sophie Trouillet-Assant
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
| |
Collapse
|
105
|
Gallucci S, Meka S, Gamero AM. Abnormalities of the type I interferon signaling pathway in lupus autoimmunity. Cytokine 2021; 146:155633. [PMID: 34340046 PMCID: PMC8475157 DOI: 10.1016/j.cyto.2021.155633] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
Type I interferons (IFNs), mostly IFNα and IFNβ, and the type I IFN Signature are important in the pathogenesis of Systemic Lupus Erythematosus (SLE), an autoimmune chronic condition linked to inflammation. Both IFNα and IFNβ trigger a signaling cascade that, through the activation of JAK1, TYK2, STAT1 and STAT2, initiates gene transcription of IFN stimulated genes (ISGs). Noteworthy, other STAT family members and IFN Responsive Factors (IRFs) can also contribute to the activation of the IFN response. Aberrant type I IFN signaling, therefore, can exacerbate SLE by deregulated homeostasis leading to unnecessary persistence of the biological effects of type I IFNs. The etiopathogenesis of SLE is partially known and considered multifactorial. Family-based and genome wide association studies (GWAS) have identified genetic and transcriptional abnormalities in key molecules directly involved in the type I IFN signaling pathway, namely TYK2, STAT1 and STAT4, and IRF5. Gain-of-function mutations that heighten IFNα/β production, which in turn maintains type I IFN signaling, are found in other pathologies like the interferonopathies. However, the distinctive characteristics have yet to be determined. Signaling molecules activated in response to type I IFNs are upregulated in immune cell subsets and affected tissues of SLE patients. Moreover, Type I IFNs induce chromatin remodeling leading to a state permissive to transcription, and SLE patients have increased global and gene-specific epigenetic modifications, such as hypomethylation of DNA and histone acetylation. Epigenome wide association studies (EWAS) highlight important differences between SLE patients and healthy controls in Interferon Stimulated Genes (ISGs). The combination of environmental and genetic factors may stimulate type I IFN signaling transiently and produce long-lasting detrimental effects through epigenetic alterations. Substantial evidence for the pathogenic role of type I IFNs in SLE advocates the clinical use of neutralizing anti-type I IFN receptor antibodies as a therapeutic strategy, with clinical studies already showing promising results. Current and future clinical trials will determine whether drugs targeting molecules of the type I IFN signaling pathway, like non-selective JAK inhibitors or specific TYK2 inhibitors, may benefit people living with lupus.
Collapse
Affiliation(s)
- Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| | - Sowmya Meka
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ana M Gamero
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
106
|
Wüst S, Schad P, Burkart S, Binder M. Comparative Analysis of Six IRF Family Members in Alveolar Epithelial Cell-Intrinsic Antiviral Responses. Cells 2021; 10:2600. [PMID: 34685580 PMCID: PMC8533862 DOI: 10.3390/cells10102600] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Host cell-intrinsic antiviral responses are largely mediated by pattern-recognition receptor (PRR) signaling and the interferon (IFN) system. The IFN regulatory factor (IRF) family of transcription factors takes up a central role in transcriptional regulation of antiviral innate immunity. IRF3 and IRF7 are known to be key players downstream of PRRs mediating the induction of type I and III IFNs. IFN signaling then requires IRF9 for the expression of the full array of interferon stimulated genes (ISGs) ultimately defining the antiviral state of the cell. Other members of the IRF family clearly play a role in mediating or modulating IFN responses, such as IRF1, IRF2 or IRF5, however their relative contribution to mounting a functional antiviral response is much less understood. In this study, we systematically and comparatively assessed the impact of six members of the IRF family on antiviral signaling in alveolar epithelial cells. We generated functional knockouts of IRF1, -2, -3, -5, -7, and -9 in A549 cells, and measured their impact on the expression of IFNs and further cytokines, ISGs and other IRFs, as well as on viral replication. Our results confirmed the vital importance of IRF3 and IRF9 in establishing an antiviral state, whereas IRF1, 5 and 7 were largely dispensable. The previously described inhibitory activity of IRF2 could not be observed in our experimental system.
Collapse
Affiliation(s)
- Sandra Wüst
- Research Group “Dynamics of Viral Infection and the Innate Antiviral Response”, Division F170, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.W.); (P.S.); (S.B.)
| | - Paulina Schad
- Research Group “Dynamics of Viral Infection and the Innate Antiviral Response”, Division F170, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.W.); (P.S.); (S.B.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Sandy Burkart
- Research Group “Dynamics of Viral Infection and the Innate Antiviral Response”, Division F170, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.W.); (P.S.); (S.B.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Marco Binder
- Research Group “Dynamics of Viral Infection and the Innate Antiviral Response”, Division F170, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.W.); (P.S.); (S.B.)
| |
Collapse
|
107
|
Musella M, Galassi C, Manduca N, Sistigu A. The Yin and Yang of Type I IFNs in Cancer Promotion and Immune Activation. BIOLOGY 2021; 10:856. [PMID: 34571733 PMCID: PMC8467547 DOI: 10.3390/biology10090856] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022]
Abstract
Type I Interferons (IFNs) are key regulators of natural and therapy-induced host defense against viral infection and cancer. Several years of remarkable progress in the field of oncoimmunology have revealed the dual nature of these cytokines. Hence, Type I IFNs may trigger anti-tumoral responses, while leading immune dysfunction and disease progression. This dichotomy relies on the duration and intensity of the transduced signaling, the nature of the unleashed IFN stimulated genes, and the subset of responding cells. Here, we discuss the role of Type I IFNs in the evolving relationship between the host immune system and cancer, as we offer a view of the therapeutic strategies that exploit and require an intact Type I IFN signaling, and the role of these cytokines in inducing adaptive resistance. A deep understanding of the complex, yet highly regulated, network of Type I IFN triggered molecular pathways will help find a timely and immune"logical" way to exploit these cytokines for anticancer therapy.
Collapse
Affiliation(s)
- Martina Musella
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Claudia Galassi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Nicoletta Manduca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
108
|
Duncan CJA, Hambleton S. Human Disease Phenotypes Associated with Loss and Gain of Function Mutations in STAT2: Viral Susceptibility and Type I Interferonopathy. J Clin Immunol 2021; 41:1446-1456. [PMID: 34448086 PMCID: PMC8390117 DOI: 10.1007/s10875-021-01118-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022]
Abstract
STAT2 is distinguished from other STAT family members by its exclusive involvement in type I and III interferon (IFN-I/III) signaling pathways, and its unique behavior as both positive and negative regulator of IFN-I signaling. The clinical relevance of these opposing STAT2 functions is exemplified by monogenic diseases of STAT2. Autosomal recessive STAT2 deficiency results in heightened susceptibility to severe and/or recurrent viral disease, whereas homozygous missense substitution of the STAT2-R148 residue is associated with severe type I interferonopathy due to loss of STAT2 negative regulation. Here we review the clinical presentation, pathogenesis, and management of these disorders of STAT2.
Collapse
Affiliation(s)
- Christopher James Arthur Duncan
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Royal Victoria Infirmary, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, NE1 4LP, Newcastle upon Tyne, UK.
| | - Sophie Hambleton
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Great North Children's Hospital, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, NE1 4LP, Newcastle upon Tyne, UK
| |
Collapse
|
109
|
Leviyang S. Interferon stimulated binding of ISRE is cell type specific and is predicted by homeostatic chromatin state. Cytokine X 2021; 3:100056. [PMID: 34409284 PMCID: PMC8361084 DOI: 10.1016/j.cytox.2021.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
IFN stimulated binding of ISRE by ISGF3 is cell specific, particularly for ISRE in enhancer regions. IFN stimulated binding of ISRE in enhancer regions associates with differential expression. The homeostatic, chromatin state of an ISRE is predictive of IFN stimulated binding.
The type I interferon (IFN) signaling pathway involves binding of the transcription factor ISGF3 to IFN-stimulated response elements, ISREs. Gene expression under IFN stimulation is known to vary across cell types, but variation in ISGF3 binding to ISRE across cell types has not been characterized. We examined ISRE binding patterns under IFN stimulation across six cell types using existing ChIPseq datasets. We find that ISRE binding is largely cell specific for ISREs distal to transcription start sites (TSS) and largely conserved across cell types for ISREs proximal to TSS. We show that bound ISRE distal to TSS associate with differential expression of ISGs, although at weaker levels than bound ISRE proximal to TSS. Using existing ATACseq and ChIPseq datasets, we show that the chromatin state of ISRE at homeostasis is cell type specific and is predictive of cell specific, ISRE binding under IFN stimulation. Our results support a model in which the chromatin state of ISRE in enhancer elements is modulated in a cell type specific manner at homeostasis, leading to cell type specific differences in ISRE binding patterns under IFN stimulation.
Collapse
|
110
|
Landau LJB, Fam BSDO, Yépez Y, Caldas-Garcia GB, Pissinatti A, Falótico T, Reales G, Schüler-Faccini L, Sortica VA, Bortolini MC. Evolutionary analysis of the anti-viral STAT2 gene of primates and rodents: Signature of different stages of an arms race. INFECTION GENETICS AND EVOLUTION 2021; 95:105030. [PMID: 34384937 DOI: 10.1016/j.meegid.2021.105030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/24/2021] [Accepted: 08/06/2021] [Indexed: 02/04/2023]
Abstract
STAT2 plays a strategic role in defending viral infection through the signaling cascade involving the immune system initiated after type I interferon release. Many flaviviruses target the inactivation or degradation of STAT2 as a strategy to impair this host's line of defense. Primates are natural reservoirs for a range of disease-causing flaviviruses (e.g., Zika, Dengue, and Yellow Fever virus), while rodents appear less susceptible. We analyzed the STAT2 coding sequence of 28 Rodentia species and 49 Primates species. Original data from 19 Platyrrhini species were sequenced for the SH2 domain of STAT2 and included in the analysis. STAT2 has many sites whose variation can be explained by positive selection, measurement by two methods (PALM indicated 12, MEME 61). Both evolutionary tests significantly marked sites 127, 731, 739, 766, and 780. SH2 is under evolutionary constraint but presents episodic positive selection events within Rodentia: in one of them, a moderately radical change (serine > arginine) at position 638 is found in Peromyscus species, and can be implicated in the difference in susceptibility to flaviviruses within Rodentia. Some other positively selected sites are functional such as 5, 95, 203, 251, 782, and 829. Sites 251 and 287 regulate the signaling mediated by the JAK-STAT2 pathway, while 782 and 829 create a stable tertiary structure of STAT2, facilitating its connection with transcriptional co-activators. Only three positively selected sites, 5, 95, and 203, are recognized members who act on the interface between STAT2 and flaviviruses NS5 protein. We suggested that due to the higher evolutionary rate, rodents are, at this moment, taking some advantage in the battle against infections for some well-known Flaviviridae, in particular when compared to primates. Our results point to dynamics that fit with a molecular evolutionary scenario shaped by a thought-provoking virus-host arms race.
Collapse
Affiliation(s)
- Luane Jandira Bueno Landau
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bibiana Sampaio de Oliveira Fam
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Yuri Yépez
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Barreto Caldas-Garcia
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alcides Pissinatti
- Rio de Janeiro's Primatology Center (RJPC - INEA), Rio de Janeiro, RJ, Brazil
| | - Tiago Falótico
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil
| | - Guillermo Reales
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Genética Médica Populacional, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Lavínia Schüler-Faccini
- Instituto Nacional de Genética Médica Populacional, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Vinicius Albuquerque Sortica
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Cátira Bortolini
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
111
|
Klockmeier K, Silva Ramos E, Raskó T, Martí Pastor A, Wanker EE. Schizophrenia risk candidate protein ZNF804A interacts with STAT2 and influences interferon-mediated gene transcription in mammalian cells. J Mol Biol 2021; 433:167184. [PMID: 34364876 DOI: 10.1016/j.jmb.2021.167184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022]
Abstract
Previously evidence was presented that the single-nucleotide polymorphism rs1344706 located in an intronic region of the ZNF804A gene is associated with reduced transcript levels in fetal brains. This genetic variation in the gene encoding the zinc-finger protein ZNF804A is associated with schizophrenia (SZ) and bipolar disorder. Currently, the molecular and cellular function of ZNF804A is unclear. Here, we generated a high-confidence protein-protein interaction (PPI) network for ZNF804A using a combination of yeast two-hybrid and bioluminescence-based PPI detection assays, directly linking 12 proteins to the disease-associated target protein. Among the top hits was the signal transducer and activator of transcription 2 (STAT2), an interferon-regulated transcription factor. Detailed mechanistic studies revealed that STAT2 binds to the unstructured N-terminus of ZNF804A. This interaction is mediated by multiple short amino acid motifs in ZNF804A but not by the conserved C2H2 zinc-finger domain, which is also located at the N-terminus. Interestingly, investigations in HEK293 cells demonstrated that ZNF804A and STAT2 both co-translocate from the cytoplasm into the nucleus upon interferon (IFN) treatment. Furthermore, a concentration-dependent effect of ZNF804A overproduction on STAT2-mediated gene expression was observed using a luciferase reporter, which is under the control of an IFN-stimulated response element (ISRE). Together these results indicate the formation of ZNF804A:STAT2 protein complex and its translocation from the cytoplasm into the nucleus upon IFN stimulation, suggesting that it may function as a signal transducer that activates IFN-mediated gene expression programs.
Collapse
Affiliation(s)
- Konrad Klockmeier
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), L aboratory for Neuroproteomics, Berlin, Germany
| | - Eduardo Silva Ramos
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), L aboratory for Neuroproteomics, Berlin, Germany
| | - Tamás Raskó
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Laboratory for Mobile DNA, Berlin, Germany
| | - Adrián Martí Pastor
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), L aboratory for Neuroproteomics, Berlin, Germany
| | - Erich E Wanker
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), L aboratory for Neuroproteomics, Berlin, Germany.
| |
Collapse
|
112
|
Feng L, Li W, Wu X, Li X, Yang X, Ran Y, Wu J, Li H. Human Cytomegalovirus UL23 Attenuates Signal Transducer and Activator of Transcription 1 Phosphorylation and Type I Interferon Response. Front Microbiol 2021; 12:692515. [PMID: 34305856 PMCID: PMC8301221 DOI: 10.3389/fmicb.2021.692515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV), the human beta-herpesvirus, can cause severe syndromes among both immunocompromised adult patients and newborns. Type I interferon (IFN-I) exerts an important effect to resist infections caused by viruses such as HCMV, while IFN evasion may serve as a key determining factor for viral dissemination and disease occurrence within hosts. In this study, UL23, a tegument protein of HCMV, was confirmed to be a key factor for negatively regulating the type I IFN immune response. A detailed analysis indicated that the viral UL23 protein increases the IFN-I antiviral resistance during HCMV infections. Furthermore, UL23 was shown to significantly reduce the levels of IFN-stimulated genes (ISGs) and promoter activity of IFN-I-stimulated response element. Mechanically, UL23 was discovered to impair the signal transducer and activator of transcription 1 (STAT1) phosphorylation, although it was not found to affect phosphorylation and expression of STAT2, Janus activated kinase 1, or tyrosine kinase 2, which are associated with IFN-I signal transduction pathway. Additionally, a significantly reduced nuclear expression of STAT1 but not of IFN regulatory factor 9 or STAT2 was observed. Findings of this study indicate that HCMV UL23 is a viral antagonist that acts against the cellular innate immunity and reveal a possible novel effect of UL23 on IFN-I signaling.
Collapse
Affiliation(s)
- Linyuan Feng
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wanwei Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xingyuan Wu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaotian Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaoping Yang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yanhong Ran
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China
| | - Hongjian Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
113
|
Demiroz D, Platanitis E, Bryant M, Fischer P, Prchal-Murphy M, Lercher A, Lassnig C, Baccarini M, Müller M, Bergthaler A, Sexl V, Dolezal M, Decker T. Listeria monocytogenes infection rewires host metabolism with regulatory input from type I interferons. PLoS Pathog 2021; 17:e1009697. [PMID: 34237114 PMCID: PMC8266069 DOI: 10.1371/journal.ppat.1009697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is a food-borne bacterial pathogen. Innate immunity to L. monocytogenes is profoundly affected by type I interferons (IFN-I). Here we investigated host metabolism in L. monocytogenes-infected mice and its potential control by IFN-I. Accordingly, we used animals lacking either the IFN-I receptor (IFNAR) or IRF9, a subunit of ISGF3, the master regulator of IFN-I-induced genes. Transcriptomes and metabolite profiles showed that L. monocytogenes infection induces metabolic rewiring of the liver. This affects various metabolic pathways including fatty acid (FA) metabolism and oxidative phosphorylation and is partially dependent on IFN-I signaling. Livers and macrophages from Ifnar1-/- mice employ increased glutaminolysis in an IRF9-independent manner, possibly to readjust TCA metabolite levels due to reduced FA oxidation. Moreover, FA oxidation inhibition provides protection from L. monocytogenes infection, explaining part of the protection of Irf9-/- and Ifnar1-/- mice. Our findings define a role of IFN-I in metabolic regulation during L. monocytogenes infection. Metabolic differences between Irf9-/- and Ifnar1-/- mice may underlie the different susceptibility of these mice against lethal infection with L. monocytogenes.
Collapse
Affiliation(s)
- Duygu Demiroz
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Ekaterini Platanitis
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Michael Bryant
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Philipp Fischer
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Michaela Prchal-Murphy
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alexander Lercher
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York City, New York, United States of America
| | - Caroline Lassnig
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Manuela Baccarini
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Veronika Sexl
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Marlies Dolezal
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Decker
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
114
|
SCD2-mediated monounsaturated fatty acid metabolism regulates cGAS-STING-dependent type I IFN responses in CD4 + T cells. Commun Biol 2021; 4:820. [PMID: 34188173 PMCID: PMC8242023 DOI: 10.1038/s42003-021-02310-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Host lipid metabolism and viral responses are intimately connected. However, the process by which the acquired immune systems adapts lipid metabolism to meet demands, and whether or not the metabolic rewiring confers a selective advantage to host immunity, remains unclear. Here we show that viral infection attenuates the expression of genes related to lipid metabolism in murine CD4+ T cells, which in turn increases the expression of antiviral genes. Inhibition of the fatty acid synthesis pathway substantially increases the basal expression of antiviral genes via the spontaneous production of type I interferon (IFN). Using a combination of CRISPR/Cas9-mediated genome editing technology and a global lipidomics analysis, we found that the decrease in monounsaturated fatty acid caused by genetic deletion of Scd2 in mice was crucial for the induction of an antiviral response through activation of the cGAS-STING pathway. These findings demonstrate the important relationship between fatty acid biosynthesis and type I IFN responses that enhances the antiviral response. Kanno et al. demonstrate that decreased monounsaturated fatty acid in CD4 + T cells following Scd2 deletion boosts the induction of the antiviral response via activation of the cGAS-STING pathway in mice. This study highlights the important interaction between fatty acid metabolism and the acquired immune response.
Collapse
|
115
|
The Protein Landscape of Chronic Lymphocytic Leukemia (CLL). Blood 2021; 138:2514-2525. [PMID: 34189564 DOI: 10.1182/blood.2020009741] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/09/2021] [Indexed: 11/20/2022] Open
Abstract
Many functional consequences of mutations on tumor phenotypes in chronic lymphocytic leukemia (CLL) are unknown. This may be in part due to a scarcity of information on the proteome of CLL. We profiled the proteome of 117 CLL patient samples with data-independent acquisition mass spectrometry (DIA-MS) and integrated the results with genomic, transcriptomic, ex vivo drug response and clinical outcome data. We found trisomy 12, IGHV mutational status, mutated SF3B1, trisomy 19, del(17)(p13), del(11)(q22.3), mutated DDX3X, and MED12 to influence protein expression (FDR < 5%). Trisomy 12 and IGHV status were the major determinants of protein expression variation in CLL as shown by principal component analysis (1055 and 542 differentially expressed proteins, FDR=5%). Gene set enrichment analyses of CLL with trisomy 12 implicated BCR/PI3K/AKT signaling as a tumor driver. These findings were supported by analyses of protein abundance buffering and protein complex formation, which identified limited protein abundance buffering and an upregulated protein complex involved in BCR, AKT, MAPK and PI3K signaling in trisomy 12 CLL. A survey of proteins associated with trisomy 12/IGHV-independent drug response linked STAT2 protein expression with response to kinase inhibitors including BTK and MEK inhibitors. STAT2 was upregulated in U-CLL, trisomy 12 CLL and required for chemokine/cytokine signaling (interferon response). This study highlights the importance of protein abundance data as a non-redundant layer of information in tumor biology, and provides a protein expression reference map for CLL.
Collapse
|
116
|
MiR-20a-5p Regulates MPP +-Induced Oxidative Stress and Neuroinflammation in HT22 Cells by Targeting IRF9/NF- κB Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6621206. [PMID: 34249133 PMCID: PMC8238586 DOI: 10.1155/2021/6621206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/04/2021] [Indexed: 01/01/2023]
Abstract
Substantial evidence indicates that microRNAs (miRNAs) can be used as biological markers of Parkinson's disease (PD) and contribute to the risk assessment, early diagnosis, and treatment. We aimed to explore the role and potential mechanism of miR-20a-5p on inflammation and oxidative stress in 1-methyl-4-phenyl pyridine ion- (MPP+-) induced HT22 cells. HT22 cells were pretreated with miR-20a-5p mimic and/or pcDNA-IRF9 for 24 h and then treated with MPP+ (0.5 mM) for 24 h. The cell viability and apoptosis were determined using the Cell Counting Kit-8 (CCK-8) and Annexin V FITC/PI staining flow cytometry assay, respectively. The expression and secretion of inflammatory factors and oxidative stress-related factors were detected by enzyme-linked immunosorbent assay (ELISA). The protein expression levels were detected using Western blot analysis. Here, we discovered that MPP+ led to mitochondrial dysfunction, inflammation, and cell damage of HT22 cells, which were alleviated by miR-20a-5p overexpression. We further clarified that interferon regulatory factor 9 (IRF9) was a target gene of miR-20a-5p. IRF9 contributed to MPP+-induced mitochondrial disruption, inflammation, and cell apoptosis. Moreover, IRF9 hindered the improvement of miR-20a-5p overexpression on MPP+-induced neurotoxicity. Furthermore, the decrease of p-P65 level induced by miR-20a-5p mimic was significantly reversed by IRF9 overexpression. These findings demonstrate that miR-20a-5p contributes to MPP+-induced mitochondrial disruption and cell damage, and miR-20a-5p might be a novel therapeutic target for PD.
Collapse
|
117
|
Göder A, Ginter T, Heinzel T, Stroh S, Fahrer J, Henke A, Krämer OH. STAT1 N-terminal domain discriminatively controls type I and type II IFN signaling. Cytokine 2021; 144:155552. [PMID: 34000478 DOI: 10.1016/j.cyto.2021.155552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/10/2021] [Accepted: 04/21/2021] [Indexed: 12/23/2022]
Abstract
The seven signal transducers of transcription (STATs) are cytokine-inducible modular transcription factors. They transmit the stimulation of cells with type I interferons (IFN-α/IFN-β) and type II interferon (IFN-ɣ) into altered gene expression patterns. The N-terminal domain (NTD) of STAT1 is a surface for STAT1/STAT1 homodimer and STAT1/STAT2 heterodimer formation and allows the cooperative DNA binding of STAT1. We investigated whether the STAT1 NTD-mediated dimerization affected the IFN-induced tyrosine phosphorylation of STAT1, its nuclear translocation, STAT1-dependent gene expression, and IFN-dependent antiviral defense. We reconstituted human STAT1-negative and STAT2-negative fibrosarcoma cells with STAT1, NTD-mutated STAT1 (STAT1AA), STAT1 with a mutated DNA-binding domain (DBD), or STAT2. We treated these cells with IFN-α and IFN-ɣ to assess differences between IFN-α-induced STAT1 homo- and heterodimers and IFN-ɣ-induced STAT1 homodimers. Our data demonstrate that IFNs induce the phosphorylation of STAT1 and STAT1AA at Y701 and their nuclear accumulation. We further reveal that STAT1AA can be phosphorylated in response to IFN-α in the absence of STAT2 and that IFN-ɣ-induced STAT1AA can activate gene expression directly. However, STAT1AA largely fails to bind STAT2 and to activate IFN-α-induced expression of endogenous antiviral STAT1/STAT2 target proteins. Congruent herewith, both an intact STAT1 NTD and STAT2 are indispensable to establish an antiviral state with IFN-α. These data provide new insights into the biological importance of the STAT1 NTD.
Collapse
Affiliation(s)
- Anja Göder
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany.
| | - Torsten Ginter
- Center for Molecular Biomedicine (CMB), Institute for Biochemistry, Friedrich-Schiller University Jena, Hans-Knöll Str. 2, 07745 Jena, Germany
| | - Thorsten Heinzel
- Center for Molecular Biomedicine (CMB), Institute for Biochemistry, Friedrich-Schiller University Jena, Hans-Knöll Str. 2, 07745 Jena, Germany.
| | - Svenja Stroh
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany.
| | - Jörg Fahrer
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany.
| | - Andreas Henke
- Section Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany.
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany.
| |
Collapse
|
118
|
Kishimoto K, Wilder CL, Buchanan J, Nguyen M, Okeke C, Hoffmann A, Cheng QJ. High Dose IFN- β Activates GAF to Enhance Expression of ISGF3 Target Genes in MLE12 Epithelial Cells. Front Immunol 2021; 12:651254. [PMID: 33897699 PMCID: PMC8062733 DOI: 10.3389/fimmu.2021.651254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Interferon β (IFN-β) signaling activates the transcription factor complex ISGF3 to induce gene expression programs critical for antiviral defense and host immune responses. It has also been observed that IFN-β activates a second transcription factor complex, γ-activated factor (GAF), but the significance of this coordinated activation is unclear. We report that in murine lung epithelial cells (MLE12) high doses of IFN-β indeed activate both ISGF3 and GAF, which bind to distinct genomic locations defined by their respective DNA sequence motifs. In contrast, low doses of IFN-β preferentially activate ISGF3 but not GAF. Surprisingly, in MLE12 cells GAF binding does not induce nearby gene expression even when strongly bound to the promoter. Yet expression of interferon stimulated genes is enhanced when GAF and ISGF3 are both active compared to ISGF3 alone. We propose that GAF may function as a dose-sensitive amplifier of ISG expression to enhance antiviral immunity and establish pro-inflammatory states.
Collapse
Affiliation(s)
- Kensei Kishimoto
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, United States.,Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, United States
| | - Catera L Wilder
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Justin Buchanan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Minh Nguyen
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Chidera Okeke
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, United States.,Department of Life and Physical Sciences, Fisk University, Nashville, TN, United States
| | - Alexander Hoffmann
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Quen J Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States.,Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
119
|
Quarleri J, Delpino MV. Type I and III IFN-mediated antiviral actions counteracted by SARS-CoV-2 proteins and host inherited factors. Cytokine Growth Factor Rev 2021; 58:55-65. [PMID: 33608189 PMCID: PMC7871890 DOI: 10.1016/j.cytogfr.2021.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 01/18/2023]
Abstract
SARS-CoV-2 is a recently identified coronavirus accountable for the current pandemic disease known as COVID-19. Different patterns of disease progression infer a diverse host immune response, with interferon (IFN) being pivotal. IFN-I and III are produced and released by virus-infected cells during the interplay with SARS-CoV-2, thus establishing an antiviral state in target cells. However, the efficacy of IFN and its role in the possible outcomes of the disease are not yet defined, as it is influenced both by factors inherent to the virus and to the host. The virus exhibits multiple strategies to counteract the innate immune response, including those shared by SARS-CoV and MERS-CoV and other novel ones. Inborn errors in the host may affect IFN-related effector proteins or decrease its levels in plasma upon neutralization by preexistent autoantibodies. This battle between the IFN response triggered upon SARS-CoV-2 infection, its magnitude and timing, and the efficacy of its antiviral tools in dispute against the viral evasion strategies together with the genetic factors of the host, generate a scenario whose fate contributes to defining the severity of COVID-19.
Collapse
Affiliation(s)
- Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS). Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.
| | - M Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
120
|
Budroni V, Versteeg GA. Negative Regulation of the Innate Immune Response through Proteasomal Degradation and Deubiquitination. Viruses 2021; 13:584. [PMID: 33808506 PMCID: PMC8066222 DOI: 10.3390/v13040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid and dynamic activation of the innate immune system is achieved through complex signaling networks regulated by post-translational modifications modulating the subcellular localization, activity, and abundance of signaling molecules. Many constitutively expressed signaling molecules are present in the cell in inactive forms, and become functionally activated once they are modified with ubiquitin, and, in turn, inactivated by removal of the same post-translational mark. Moreover, upon infection resolution a rapid remodeling of the proteome needs to occur, ensuring the removal of induced response proteins to prevent hyperactivation. This review discusses the current knowledge on the negative regulation of innate immune signaling pathways by deubiquitinating enzymes, and through degradative ubiquitination. It focusses on spatiotemporal regulation of deubiquitinase and E3 ligase activities, mechanisms for re-establishing proteostasis, and degradation through immune-specific feedback mechanisms vs. general protein quality control pathways.
Collapse
Affiliation(s)
| | - Gijs A. Versteeg
- Max Perutz Labs, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
121
|
Interferon Regulatory Factor 9 Promotes Lung Cancer Progression via Regulation of Versican. Cancers (Basel) 2021; 13:cancers13020208. [PMID: 33430083 PMCID: PMC7827113 DOI: 10.3390/cancers13020208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Lung cancer is the leading cause of cancer-related deaths worldwide, accounting for more than 1.6 million deaths per year. The tumor microenvironment (TME) has been shown to play a crucial role in tumor progression and metastasis, and transcription factors link TME signaling to oncogenesis. Type I interferons (IFNs) are strong immune modulators that possess antiproliferative and proapoptotic properties. In this study, we investigated the role of the transcription factor interferon regulatory factor 9 (IRF9) in the IFN pathway in lung cancer. We performed in vitro and in vivo experiments to reveal the oncogenic properties of IRF9, which was highly upregulated in lung adenocarcinoma. For the first time, we showed that IRF9 binds to the promoter of the known oncogene versican, regulates its expression, and thereby promotes oncogenic activity. Abstract Transcription factors can serve as links between tumor microenvironment signaling and oncogenesis. Interferon regulatory factor 9 (IRF9) is recruited and expressed upon interferon stimulation and is dependent on cofactors that exert in tumor-suppressing or oncogenic functions via the JAK-STAT pathway. IRF9 is frequently overexpressed in human lung cancer and is associated with decreased patient survival; however, the underlying mechanisms remain to be elucidated. Here, we used stably transduced lung adenocarcinoma cell lines (A549 and A427) to overexpress or knockdown IRF9. Overexpression led to increased oncogenic behavior in vitro, including enhanced proliferation and migration, whereas knockdown reduced these effects. These findings were confirmed in vivo using lung tumor xenografts in nude mice, and effects on both tumor growth and tumor mass were observed. Using RNA sequencing, we identified versican (VCAN) as a novel downstream target of IRF9. Indeed, IRF9 and VCAN expression levels were found to be correlated. We showed for the first time that IRF9 binds at a newly identified response element in the promoter region of VCAN to regulate its transcription. Using an siRNA approach, VCAN was found to enable the oncogenic properties (proliferation and migration) of IRF9 transduced cells, perhaps with CDKN1A involvement. The targeted inhibition of IRF9 in lung cancer could therefore be used as a new treatment option without multimodal interference in microenvironment JAK-STAT signaling.
Collapse
|
122
|
Qiu CC, Kotredes KP, Cremers T, Patel S, Afanassiev A, Slifker M, Gallucci S, Gamero AM. Targeted Stat2 deletion in conventional dendritic cells impairs CTL responses but does not affect antibody production. Oncoimmunology 2020; 10:1860477. [PMID: 33457079 PMCID: PMC7781843 DOI: 10.1080/2162402x.2020.1860477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
STAT2 is a central component of the ISGF3 transcriptional complex downstream of type I interferon (IFN-I) signaling. The significance of in vivo IFN-I/STAT1 signals in cDCs is well-established in the generation of antitumor cytotoxic T cell (CTL) responses. However, the role of STAT2 has remained elusive. Here, we report a clinical correlation between cDC markers and STAT2 associated with better survival in human metastatic melanoma. In a murine tumor transplantation model, targeted Stat2 deletion in CD11c+cDCs enhanced tumor growth unaffected by IFNβ therapy. Furthermore, STAT2 was essential for both, the activation of CD8a+cDCs and CD11b+cDCs and antigen cross-presentation in vivo for the generation of robust T cell killing response. In contrast, STAT2 in CD11c+cDCs was dispensable for stimulating an antigen-specific humoral response, which was impaired in global Stat2 deficient mice. Thus, our studies indicate that STAT2 in cDCs is critical in host IFN-I signals by sculpting CTL responses against tumors.
Collapse
Affiliation(s)
- Connie C Qiu
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Kevin P Kotredes
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Tess Cremers
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Sajan Patel
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Alexandra Afanassiev
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Michael Slifker
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Ana M Gamero
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
123
|
Olmedo-Nieva L, Muñoz-Bello JO, Manzo-Merino J, Lizano M. New insights in Hippo signalling alteration in human papillomavirus-related cancers. Cell Signal 2020; 76:109815. [PMID: 33148514 DOI: 10.1016/j.cellsig.2020.109815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 02/09/2023]
Abstract
The persistent infection with high-risk human papillomavirus (HPV) is an etiologic factor for the development of different types of cancers, mainly attributed to the continuous expression of E6 and E7 HPV oncoproteins, which regulate several cell signalling pathways including the Hippo pathway. It has been demonstrated that E6 proteins promote the increase of the Hippo elements YAP, TAZ and TEAD, at protein level, as well as their transcriptional targets. Also, E6 and E7 oncoproteins promote nuclear YAP localization and a decrease in YAP negative regulators such as MST1, PTPN14 or SOCS6. Interestingly, Hippo signalling components modulate HPV activity, such as TEAD1 and the transcriptional co-factor VGLL1, induce the activation of HPV early and late promoters, while hyperactivation of YAP in specific cells facilitates virus infection by increasing putative HPV receptors and by evading innate immunity. Additionally, alterations in Hippo signalling elements have been found in HPV-related cancers and particularly, the involvement of HPV oncoproteins on the regulation of some of these Hippo components has been also proposed, although the precise mechanisms remain unclear. The present review addresses the recent findings describing the interplay between HPV and Hippo signalling in HPV-related cancers, a fact that highlights the importance of developing more in-depth studies in this field to establish key therapeutic targets.
Collapse
Affiliation(s)
- Leslie Olmedo-Nieva
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - J Omar Muñoz-Bello
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede sur, Mexico City 14330, Mexico
| | - Joaquín Manzo-Merino
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Cátedras CONACyT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico.
| |
Collapse
|
124
|
Fischer K, Tschismarov R, Pilz A, Straubinger S, Carotta S, McDowell A, Decker T. Cutibacterium acnes Infection Induces Type I Interferon Synthesis Through the cGAS-STING Pathway. Front Immunol 2020; 11:571334. [PMID: 33178195 PMCID: PMC7593769 DOI: 10.3389/fimmu.2020.571334] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
Cutibacterium (previously Propionibacterium) acnes is an anaerobic, Gram-positive commensal of the human body. The bacterium has been associated with a variety of diseases, including acne vulgaris, prosthetic joint infections, prostate cancer, and sarcoidosis. The accumulation of C. acnes in diseases such as acne and prostate cancer has been shown to correlate with enhanced inflammation. While the C. acnes-induced proinflammatory axis, via NF-κB and MAPK signaling and inflammasome activation, has been investigated over the last few decades, the potential role of C. acnes in triggering the type I interferon (IFN-I) pathway has not been addressed. Our results show that C. acnes induces the IFN-I signaling axis in human macrophages by triggering the cGAS-STING pathway. In addition, IFN-I signaling induced by C. acnes strongly depends on the adapter protein TRIF in a non-canonical manner; these signaling events occurred in the absence of any detectable intracellular replication of the bacterium. Collectively, our results provide important insight into C. acnes-induced intracellular signaling cascades in human macrophages and suggest IFN-I as a factor in the etiology of C. acnes-induced diseases. This knowledge may be valuable for developing novel therapies targeting C. acnes in diseases where the accumulation of the bacterium leads to an inflammatory pathology.
Collapse
Affiliation(s)
- Katrin Fischer
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter, Vienna, Austria
| | | | - Andreas Pilz
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Susy Straubinger
- Department of Cancer Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Sebastian Carotta
- Department of Cancer Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Andrew McDowell
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Thomas Decker
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
125
|
Selective Interferon Responses of Intestinal Epithelial Cells Minimize Tumor Necrosis Factor Alpha Cytotoxicity. J Virol 2020; 94:JVI.00603-20. [PMID: 32847859 DOI: 10.1128/jvi.00603-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/17/2020] [Indexed: 01/21/2023] Open
Abstract
Interferon (IFN) family cytokines stimulate genes (interferon-stimulated genes [ISGs]) that are integral to antiviral host defense. Type I IFNs act systemically, whereas type III IFNs act preferentially at epithelial barriers. Among barrier cells, intestinal epithelial cells (IECs) are particularly dependent on type III IFN for the control and clearance of virus infection, but the physiological basis of this selective IFN response is not well understood. Here, we confirm that type III IFN treatment elicits robust and uniform ISG expression in neonatal mouse IECs and inhibits the replication of IEC-tropic rotavirus. In contrast, type I IFN elicits a marginal ISG response in neonatal mouse IECs and does not inhibit rotavirus replication. In vitro treatment of IEC organoids with type III IFN results in ISG expression that mirrors the in vivo type III IFN response. However, IEC organoids have increased expression of the type I IFN receptor relative to neonate IECs, and the response of IEC organoids to type I IFN is strikingly increased in magnitude and scope relative to type III IFN. The expanded type I IFN-specific response includes proapoptotic genes and potentiates toxicity triggered by tumor necrosis factor alpha (TNF-α). The ISGs stimulated in common by type I and III IFNs have strong interferon-stimulated response element (ISRE) promoter motifs, whereas the expanded set of type I IFN-specific ISGs, including proapoptotic genes, have weak ISRE motifs. Thus, the preferential responsiveness of IECs to type III IFN in vivo enables selective ISG expression during infection that confers antiviral protection but minimizes disruption of intestinal homeostasis.IMPORTANCE Enteric viral infections are a major cause of gastroenteritis worldwide and have the potential to trigger or exacerbate intestinal inflammatory diseases. Prior studies have identified specialized innate immune responses that are active in the intestinal epithelium following viral infection, but our understanding of the benefits of such an epithelium-specific response is incomplete. Here, we show that the intestinal epithelial antiviral response is programmed to enable protection while minimizing epithelial cytotoxicity that can often accompany an inflammatory response. Our findings offer new insight into the benefits of a tailored innate immune response at the intestinal barrier and suggest how dysregulation of this response could promote inflammatory disease.
Collapse
|
126
|
Ciobanu DA, Poenariu IS, Crînguș LI, Vreju FA, Turcu-Stiolica A, Tica AA, Padureanu V, Dumitrascu RM, Banicioiu-Covei S, Dinescu SC, Boldeanu L, Siloși I, Ungureanu AM, Boldeanu MV, Osiac E, Barbulescu AL. JAK/STAT pathway in pathology of rheumatoid arthritis (Review). Exp Ther Med 2020; 20:3498-3503. [PMID: 32905201 PMCID: PMC7465448 DOI: 10.3892/etm.2020.8982] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is classified as an inflammatory, chronic autoimmune and disabling disease based on the intricate interplay between environmental and genetic factors. With a prevalence ranging from 0.3 to 1%, RA is the most prevalent inflammatory joint disease observed in adults. Disruption of immune tolerance becomes evident when abnormal stimulation of the innate and adaptive immune system occurs. This cascade of events causes persistent joint inflammation, proliferative synovitis and, ultimately, damage of the underlying cartilage as well as the subchondral bone, leading to permanent joint destruction, deformity and subsequent loss of function. With cytokines being the key to a multitude of biological processes, including inflammation, hematopoiesis and overall immune response, one must inevitably look at the main pathways through which a significant number of those molecules exert their function. Janus kinase/signal transducers and activators of transcription (JAK/STATs) represent one such pathway and, recently, JAK inhibitors (JAKinibs) have shown promise in the treatment of several inflammatory diseases, including RA. This narrative review focuses on the intricate signaling pathways involved as well as on the clinical aspects and safety profiles of JAKinibs approved for the treatment of RA.
Collapse
Affiliation(s)
- Dana Alexandra Ciobanu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ioan Sabin Poenariu
- Department of Immunology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Laura-Ioana Crînguș
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Florentin Ananu Vreju
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Adina Turcu-Stiolica
- Department of Pharmacoeconomics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Andrei Adrian Tica
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Vlad Padureanu
- Department of Medical Semiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - Simona Banicioiu-Covei
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Stefan Cristian Dinescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Lidia Boldeanu
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Isabela Siloși
- Department of Immunology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca Marilena Ungureanu
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihail Virgil Boldeanu
- Department of Immunology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Medico Science SRL-Stem Cell Bank Unit, 200690 Craiova, Romania
| | - Eugen Osiac
- Department of Biophysics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Andreea Lili Barbulescu
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
127
|
NS5 Sumoylation Directs Nuclear Responses That Permit Zika Virus To Persistently Infect Human Brain Microvascular Endothelial Cells. J Virol 2020; 94:JVI.01086-20. [PMID: 32699085 DOI: 10.1128/jvi.01086-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022] Open
Abstract
Zika virus (ZIKV) is cytopathic to neurons and persistently infects brain microvascular endothelial cells (hBMECs), which normally restrict viral access to neurons. Despite replicating in the cytoplasm, ZIKV and Dengue virus (DENV) polymerases, NS5 proteins, are predominantly trafficked to the nucleus. We found that a SUMO interaction motif in ZIKV and DENV NS5 proteins directs nuclear localization. However, ZIKV NS5 formed discrete punctate nuclear bodies (NBs), while DENV NS5 was uniformly dispersed in the nucleoplasm. Yet, mutating one DENV NS5 SUMO site (K546R) localized the NS5 mutant to discrete NBs, and NBs formed by the ZIKV NS5 SUMO mutant (K252R) were restructured into discrete protein complexes. In hBMECs, NBs formed by STAT2 and promyelocytic leukemia (PML) protein are present constitutively and enhance innate immunity. During ZIKV infection or NS5 expression, we found that ZIKV NS5 evicts PML from STAT2 NBs, forming NS5/STAT2 NBs that dramatically reduce PML expression in hBMECs and inhibit the transcription of interferon-stimulated genes (ISG). Expressing the ZIKV NS5 SUMO site mutant (K252R) resulted in NS5/STAT2/PML NBs that failed to degrade PML, reduce STAT2 expression, or inhibit ISG induction. Additionally, the K252 SUMOylation site and NS5 nuclear localization were required for ZIKV NS5 to regulate hBMEC cell cycle transcriptional responses. Our data reveal NS5 SUMO motifs as novel NB coordinating factors that distinguish flavivirus NS5 proteins. These findings establish SUMOylation of ZIKV NS5 as critical in the regulation of antiviral ISG and cell cycle responses that permit ZIKV to persistently infect hBMECs.IMPORTANCE ZIKV is a unique neurovirulent flavivirus that persistently infects human brain microvascular endothelial cells (hBMECs), the primary barrier that restricts viral access to neuronal compartments. Here, we demonstrate that flavivirus-specific SIM and SUMO sites determine the assembly of NS5 proteins into discrete nuclear bodies (NBs). We found that NS5 SIM sites are required for NS5 nuclear localization and that SUMO sites regulate NS5 NB complex constituents, assembly, and function. We reveal that ZIKV NS5 SUMO sites direct NS5 binding to STAT2, disrupt the formation of antiviral PML-STAT2 NBs, and direct PML degradation. ZIKV NS5 SUMO sites also transcriptionally regulate cell cycle and ISG responses that permit ZIKV to persistently infect hBMECs. Our findings demonstrate the function of SUMO sites in ZIKV NS5 NB formation and their importance in regulating nuclear responses that permit ZIKV to persistently infect hBMECs and thereby gain access to neurons.
Collapse
|
128
|
Xue BH, Liu Y, Chen H, Sun Y, Yu WL. A novel function of IRF9 in acute pancreatitis by modulating cell apoptosis, proliferation, migration, and suppressing SIRT1-p53. Mol Cell Biochem 2020; 472:125-134. [PMID: 32577948 DOI: 10.1007/s11010-020-03791-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023]
Abstract
Acute pancreatitis (AP) is an inflammatory disease caused by the abnormal activation of pancreatic enzymes in the pancreas, with a considerably high morbidity and mortality. However, the etiological factor and pathogenesis of AP are still unclear. This study was aimed to explore the role and mechanism of interferon regulatory factor 9 (IRF9) in the occurrence of AP and to provide experimental and theoretical foundation for AP diagnosis and treatment. AP model in vitro was established by caerulein-induced group. Small interfering RNA (siRNA) was designed and constructed to silence IRF9 gene. After siRNA transfected and caerulein treated successfully, the expression levels of IRF9, SIRT1, and acetylated p53 (Ac-p53) were determined by qRT-PCR and Western blot. The apoptosis, proliferation, and migration of AR42J cells were checked by flow cytometry, MTT, and transwell assay. Dual-luciferase reporter assay was implemented to validate the regulatory effect of IRF9 on SIRT1. Here, our study showed that the expression of IRF9 and Ac-p53 was increased, SIRT1 was decreased, and cell apoptosis, proliferation, and migration of AR42J cells were increased after caerulein induced. IRF9 gene silencing upregulated SIRT1, downregulated Ac-p53, and inhibited cell apoptosis, proliferation, and migration. Dual-Luciferase reporter assay showed that IRF9 could negatively regulate SIRT1. The potential mechanism was that IRF9 could modulate cell apoptosis, proliferation, migration, and bind the promoter of SIRT1 to repress SIRT1-p53. It hinted that IRF9 showed a novel function in AP by modulating cell apoptosis, proliferation, migration, and suppressing SIRT1-p53. IRF9 might be a good potential treatment target for AP.
Collapse
Affiliation(s)
- Bin-Hua Xue
- Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Yi Liu
- Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Hu Chen
- Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Yun Sun
- Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Wei-Li Yu
- Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| |
Collapse
|
129
|
Wang B, Thurmond S, Zhou K, Sánchez-Aparicio MT, Fang J, Lu J, Gao L, Ren W, Cui Y, Veit EC, Hong H, Evans MJ, O'Leary SE, García-Sastre A, Zhou ZH, Hai R, Song J. Structural basis for STAT2 suppression by flavivirus NS5. Nat Struct Mol Biol 2020; 27:875-885. [PMID: 32778820 PMCID: PMC7554153 DOI: 10.1038/s41594-020-0472-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/25/2020] [Indexed: 11/23/2022]
Abstract
Suppressing cellular signal transducers of transcription 2 (STAT2) is a common strategy viruses use to establish infections, yet the detailed mechanism remains elusive due to lack of structural information of the viral-cellular complex involved. Here, we report the cryo-EM and crystal structures of human STAT2 (hSTAT2) in complex with the non-structural protein 5 (NS5) of Zika virus (ZIKV) and dengue virus (DENV), revealing two-pronged interactions between NS5 and hSTAT2. First, the NS5 methyltransferase and RNA-dependent RNA polymerase (RdRP) domains form a conserved inter-domain cleft harboring the coiled-coil domain of hSTAT2, thus preventing association of hSTAT2 with interferon regulatory factor 9. Second, the NS5 RdRP domain also binds the N-terminal domain of hSTAT2. Disruption of these ZIKV NS5–hSTAT2 interactions compromised NS5-mediated hSTAT2 degradation and interferon suppression, and viral infection under interferon-competent condition. Taken together, these results clarify the mechanism underlying the functional antagonism of STAT2 by both ZIKV and DENV.
Collapse
Affiliation(s)
- Boxiao Wang
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Stephanie Thurmond
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.,Cell, Molecular and Developmental Biology Graduate Program, University of California, Riverside, CA, USA
| | - Kang Zhou
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Maria T Sánchez-Aparicio
- GlobalHealth and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Fang
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Linfeng Gao
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
| | - Wendan Ren
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Yanxiang Cui
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Ethan C Veit
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - HeaJin Hong
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Matthew J Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seán E O'Leary
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Adolfo García-Sastre
- GlobalHealth and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, CA, USA. .,Departement of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA.
| | - Rong Hai
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA. .,Cell, Molecular and Developmental Biology Graduate Program, University of California, Riverside, CA, USA.
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA, USA. .,Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA.
| |
Collapse
|
130
|
Quinn KM, Kartikasari AER, Cooke RE, Koldej RM, Ritchie DS, Plebanski M. Impact of age-, cancer-, and treatment-driven inflammation on T cell function and immunotherapy. J Leukoc Biol 2020; 108:953-965. [PMID: 32678927 DOI: 10.1002/jlb.5mr0520-466r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/16/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Many cancers are predominantly diagnosed in older individuals and chronic inflammation has a major impact on the overall health and immune function of older cancer patients. Chronic inflammation is a feature of aging, it can accelerate disease in many cancers and it is often exacerbated during conventional treatments for cancer. This review will provide an overview of the factors that lead to increased inflammation in older individuals and/or individuals with cancer, as well as those that result from conventional treatments for cancer, using ovarian cancer (OC) and multiple myeloma (MM) as key examples. We will also consider the impact of chronic inflammation on immune function, with a particular focus on T cells as they are key targets for novel cancer immunotherapies. Overall, this review aims to highlight specific pathways for potential interventions that may be able to mitigate the impact of chronic inflammation in older cancer patients.
Collapse
Affiliation(s)
- Kylie M Quinn
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.,Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | | | - Rachel E Cooke
- Australian Cancer Research Foundation (ACRF) Translational Laboratory, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Rachel M Koldej
- Australian Cancer Research Foundation (ACRF) Translational Laboratory, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - David S Ritchie
- Australian Cancer Research Foundation (ACRF) Translational Laboratory, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
131
|
Chen X, Huang J, Lü Y. [High expression of STAT2 in ovarian cancer and its effect on metastasis of ovarian cancer cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:34-41. [PMID: 32376554 DOI: 10.12122/j.issn.1673-4254.2020.01.06] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To investigate the expression of signal transduction and activator of transcription 2 (STAT2) in ovarian cancer and its correlation with the prognosis of ovarian cancer patients and explore the role of STAT2 inregulating metastasis of ovarian cancer cells. METHODS RT-qPCR was performed to detect the expression of STAT2 mRNA in 62 fresh frozen ovarian cancer tissues and 62 normal ovarian tissues; immunohistochemistry was used to detect STAT2 protein expressions in 95 paraffin-embedded ovarian cancer samples and 33 normal ovarian tissues. Kaplan-Meier method was used to analyze the correlation between the expression of STAT2 and the prognosis of the patients. We also examined the relationship between STAT2 and the patients' prognosis by analyzing the data in Kaplan-Meier Plotter database. Western blotting was performed to detect the expression of STAT2 in different ovarian cancer cell lines. In A2780 cells with the highest STAT2 expression, we examined the effects of STAT2 interference on cell migration and invasiveness using Transwell migration assay and on the expressions of the downstream molecule epidermal growth factor receptor (EGFR). RESULTS Ovarian cancer tissues expressed significantly higher levels of STAT2 mRNA than normal ovarian tissue. A high STAT2 mRNA expression was correlated with an advanced FIGO stage. Immunohistochemistry showed that 67.4% of the ovarian cancer samples, as compared with 28.3% of normal ovarian tissues, showed high STAT2 expressions. In ovarian cancer patients, a high expression of STAT2 protein was associated with ascites volume, distant metastasis and FIGO stage (P < 0.05). Survival analysis showed that ovarian cancer patients with a high expression of STAT2 protein had poor overall survival (P=0.021) and progression-free survival (P=0.018). STAT2 was overexpressed in all the ovarian cancer cell lines tested, and A2780 cell lines showed the highest expression. Interference of STAT2 significantly suppressed the migration and invasiveness (P < 0.01) and lowered the expression level of EGFR in A2780 cells. CONCLUSIONS STAT2 is overexpressed in ovarian cancer. A high expression of STAT2 is associated with a poor prognosis of ovarian cancer patients. STAT2 may promote the metastasis of ovarian cancer by enhancing the expression of EGFR.
Collapse
Affiliation(s)
- Xuan Chen
- Department of Obstetrics and Gynecology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 350005, China
| | - Jingying Huang
- Department of Obstetrics and Gynecology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 350005, China
| | - Yuchun Lü
- Department of Obstetrics and Gynecology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 350005, China
| |
Collapse
|
132
|
Muthalagu N, Monteverde T, Raffo-Iraolagoitia X, Wiesheu R, Whyte D, Hedley A, Laing S, Kruspig B, Upstill-Goddard R, Shaw R, Neidler S, Rink C, Karim SA, Gyuraszova K, Nixon C, Clark W, Biankin AV, Carlin LM, Coffelt SB, Sansom OJ, Morton JP, Murphy DJ. Repression of the Type I Interferon Pathway Underlies MYC- and KRAS-Dependent Evasion of NK and B Cells in Pancreatic Ductal Adenocarcinoma. Cancer Discov 2020; 10:872-887. [PMID: 32200350 PMCID: PMC7611248 DOI: 10.1158/2159-8290.cd-19-0620] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 02/07/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
MYC is implicated in the development and progression of pancreatic cancer, yet the precise level of MYC deregulation required to contribute to tumor development has been difficult to define. We used modestly elevated expression of human MYC, driven from the Rosa26 locus, to investigate the pancreatic phenotypes arising in mice from an approximation of MYC trisomy. We show that this level of MYC alone suffices to drive pancreatic neuroendocrine tumors, and to accelerate progression of KRAS-initiated precursor lesions to metastatic pancreatic ductal adenocarcinoma (PDAC). Our phenotype exposed suppression of the type I interferon (IFN) pathway by the combined actions of MYC and KRAS, and we present evidence of repressive MYC-MIZ1 complexes binding directly to the promoters of the genes encodiing the type I IFN regulators IRF5, IRF7, STAT1, and STAT2. Derepression of IFN regulator genes allows pancreatic tumor infiltration by B and natural killer (NK) cells, resulting in increased survival. SIGNIFICANCE: We define herein a novel mechanism of evasion of NK cell-mediated immunity through the combined actions of endogenously expressed mutant KRAS and modestly deregulated expression of MYC, via suppression of the type I IFN pathway. Restoration of IFN signaling may improve outcomes for patients with PDAC.This article is highlighted in the In This Issue feature, p. 747.
Collapse
Affiliation(s)
| | - Tiziana Monteverde
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | - Robert Wiesheu
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Declan Whyte
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Ann Hedley
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Sarah Laing
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Björn Kruspig
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Rosanna Upstill-Goddard
- Wolfson Wohl Translational Cancer Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Robin Shaw
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Sarah Neidler
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Curtis Rink
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Saadia A Karim
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Katarina Gyuraszova
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Colin Nixon
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - William Clark
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Andrew V Biankin
- Wolfson Wohl Translational Cancer Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Leo M Carlin
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Seth B Coffelt
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Owen J Sansom
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Jennifer P Morton
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Daniel J Murphy
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
133
|
Jalkanen J, Pettilä V, Huttunen T, Hollmén M, Jalkanen S. Glucocorticoids inhibit type I IFN beta signaling and the upregulation of CD73 in human lung. Intensive Care Med 2020; 46:1937-1940. [PMID: 32430515 PMCID: PMC7235433 DOI: 10.1007/s00134-020-06086-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2020] [Indexed: 01/14/2023]
Affiliation(s)
| | - Ville Pettilä
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Maija Hollmén
- Medicity Research Laboratory, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- Medicity Research Laboratory, University of Turku, Turku, Finland. .,Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
134
|
Walter KR, Balko JM, Hagan CR. Progesterone receptor promotes degradation of STAT2 to inhibit the interferon response in breast cancer. Oncoimmunology 2020; 9:1758547. [PMID: 32391191 PMCID: PMC7199813 DOI: 10.1080/2162402x.2020.1758547] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Type I (IFNα/β) interferon signaling represents a critical transduction pathway involved in recognition and destruction of nascent tumor cells. Downregulation of this pathway to promote a more immunosuppressed microenvironment contributes to the ability of tumor cells to evade the immune system, a known Hallmark of Cancer. The present study investigates the progesterone receptor (PR), which is expressed in the vast majority of breast cancers, and its ability to inhibit efficient interferon signaling in tumor cells. We have shown that PR can block the interferon signaling cascade by promoting ubiquitination and degradation of STAT2. Targeting STAT2 is critical, as we show that it is an essential protein in inducing transcription of interferon-stimulated genes (ISG); shRNA-mediated knockdown of STAT2 severely abrogates the interferon response in vitro. Importantly, we were able to reverse this inhibition by treating with onapristone, an anti-progestin currently being investigated in breast cancer clinical trials. Additionally, we have found that an interferon-related gene signature (composed of ISGs) is inversely correlated with PR expression in human tumors. We speculate that PR inhibition of interferon signaling may contribute to creating an immunosuppressed microenvironment and reversal of this through anti-progestins may present a novel therapeutic target to promote immune activity within the tumor.
Collapse
Affiliation(s)
- Katherine R Walter
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Justin M Balko
- Departments of Medicine and Pathology, Microbiology, and Immunology, and Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christy R Hagan
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
135
|
Csumita M, Csermely A, Horvath A, Nagy G, Monori F, Göczi L, Orbea HA, Reith W, Széles L. Specific enhancer selection by IRF3, IRF5 and IRF9 is determined by ISRE half-sites, 5' and 3' flanking bases, collaborating transcription factors and the chromatin environment in a combinatorial fashion. Nucleic Acids Res 2020; 48:589-604. [PMID: 31799619 PMCID: PMC6954429 DOI: 10.1093/nar/gkz1112] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 12/28/2022] Open
Abstract
IRF3, IRF5 and IRF9 are transcription factors, which play distinct roles in the regulation of antiviral and inflammatory responses. The determinants that mediate IRF-specific enhancer selection are not fully understood. To uncover regions occupied predominantly by IRF3, IRF5 or IRF9, we performed ChIP-seq experiments in activated murine dendritic cells. The identified regions were analysed with respect to the enrichment of DNA motifs, the interferon-stimulated response element (ISRE) and ISRE half-site variants, and chromatin accessibility. Using a machine learning method, we investigated the predictability of IRF-dominance. We found that IRF5-dominant regions differed fundamentally from the IRF3- and IRF9-dominant regions: ISREs were rare, while the NFKB motif and special ISRE half-sites, such as 5'-GAGA-3' and 5'-GACA-3', were enriched. IRF3- and IRF9-dominant regions were characterized by the enriched ISRE motif and lower frequency of accessible chromatin. Enrichment analysis and the machine learning method uncovered the features that favour IRF3 or IRF9 dominancy (e.g. a tripartite form of ISRE and motifs for NF-κB for IRF3, and the GAS motif and certain ISRE variants for IRF9). This study contributes to our understanding of how IRF members, which bind overlapping sets of DNA sequences, can initiate signal-dependent responses without activating superfluous or harmful programmes.
Collapse
Affiliation(s)
- Mária Csumita
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Attila Csermely
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Fanny Monori
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Loránd Göczi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Hans-Acha Orbea
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Centre Médical Universitaire (CMU), CH-1211 Geneva, Switzerland
| | - Lajos Széles
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| |
Collapse
|
136
|
TYK2 in Tumor Immunosurveillance. Cancers (Basel) 2020; 12:cancers12010150. [PMID: 31936322 PMCID: PMC7017180 DOI: 10.3390/cancers12010150] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022] Open
Abstract
We review the history of the tyrosine kinase 2 (TYK2) as the founding member of the Janus kinase (JAK) family and outline its structure-function relation. Gene-targeted mice and hereditary defects of TYK2 in men have established the biological and pathological functions of TYK2 in innate and adaptive immune responses to infection and cancer and in (auto-)inflammation. We describe the architecture of the main cytokine receptor families associated with TYK2, which activate signal transducers and activators of transcription (STATs). We summarize the cytokine receptor activities with well characterized dependency on TYK2, the types of cells that respond to cytokines and TYK2 signaling-induced cytokine production. TYK2 may drive beneficial or detrimental activities, which we explain based on the concepts of tumor immunoediting and the cancer-immunity cycle in the tumor microenvironment. Finally, we summarize current knowledge of TYK2 functions in mouse models of tumor surveillance. The biology and biochemistry of JAKs, TYK2-dependent cytokines and cytokine signaling in tumor surveillance are well covered in recent reviews and the oncogenic properties of TYK2 are reviewed in the recent Special Issue ‘Targeting STAT3 and STAT5 in Cancer’ of Cancers.
Collapse
|
137
|
Leviyang S, Strawn N, Griva I. Regulation of interferon stimulated gene expression levels at homeostasis. Cytokine 2019; 126:154870. [PMID: 31629105 DOI: 10.1016/j.cyto.2019.154870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 01/12/2023]
Abstract
Interferon stimulated genes (ISGs), a collection of genes important in the early innate immune response, are upregulated in response to stimulation by extracellular type I interferons. The regulation of ISGs has been extensively studied in cells exposed to significant interferon stimulation, but less is known about ISG regulation in homeostatic regimes in which extracellular interferon levels are low. Using a collection of pre-existing, publicly available microarray datasets, we investigated ISG regulation at homeostasis in CD4, pulmonary epithelial, fibroblast and macrophage cells. We used a linear regression model to predict ISG expression levels from regulator expression levels. Our results suggest significant regulation of ISG expression at homeostasis, both through the ISGF3 molecule and through IRF7 and IRF8 associated pathways. We find that roughly 50% of ISGs have expression levels significantly correlated with ISGF3 expression levels at homeostasis, supporting previous results suggesting that homeostatic IFN levels have broad functional consequences. We find that ISG expression levels varied in their correlation with ISGF3, with epithelial and macrophage cells showing more correlation than CD4 and fibroblast cells. Our analysis provides a novel approach for decomposing and quantifying ISG regulation.
Collapse
Affiliation(s)
- Sivan Leviyang
- Department of Mathematics and Statistics, Georgetown University, District of Columbia 20057, USA.
| | - Nate Strawn
- Department of Mathematics and Statistics, Georgetown University, District of Columbia 20057, USA
| | - Igor Griva
- Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
138
|
Kim JJ, Kim KS, Eom J, Lee JB, Seo JY. Viperin Differentially Induces Interferon-Stimulated Genes in Distinct Cell Types. Immune Netw 2019; 19:e33. [PMID: 31720044 PMCID: PMC6829070 DOI: 10.4110/in.2019.19.e33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023] Open
Abstract
Viperin is an IFN-stimulated gene (ISG)-encoded protein that was identified in human primary macrophages treated with IFN-γ and in human primary fibroblasts infected with cytomegalovirus (CMV). This protein plays multiple roles in various cell types. It inhibits viral replication, mediates signaling pathways, and regulates cellular metabolism. Recent studies have shown that viperin inhibits IFN expression in macrophages, while it enhances TLR7 and TLR9-mediated IFN production in plasmacytoid dendritic cells, suggesting that viperin can play different roles in activation of the same pathway in different cell types. Viperin also controls induction of ISGs in macrophages. However, the effect of viperin on induction of ISGs in cell types other than macrophages is unknown. Here, we show that viperin differentially induces ISGs in 2 distinct cell types, macrophages and fibroblasts isolated from wild type and viperin knockout mice. Unlike in bone marrow-derived macrophages (BMDMs), viperin downregulates the expression levels of ISGs such as bone marrow stromal cell antigen-2, Isg15, Isg54, myxovirus resistance dynamin like GTPase 2, and guanylate binding protein 2 in murine embryonic fibroblasts (MEFs) treated with type I or II IFN. However, viperin upregulates expression of these ISGs in both BMDMs and MEFs stimulated with polyinosinic-polycytidylic acid or CpG DNA and infected with murine CMV. The efficiency of viral entry is inversely proportional to the expression levels of ISGs in both cell types. The data indicate that viperin differentially regulates induction of ISGs in a cell type-dependent manner, which might provide different innate immune responses in distinct cell types against infections.
Collapse
Affiliation(s)
- Jeong Jin Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ku Sul Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - John Eom
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Bong Lee
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
139
|
Mariani MK, Dasmeh P, Fortin A, Caron E, Kalamujic M, Harrison AN, Hotea DI, Kasumba DM, Cervantes-Ortiz SL, Mukawera E, Serohijos AWR, Grandvaux N. The Combination of IFN β and TNF Induces an Antiviral and Immunoregulatory Program via Non-Canonical Pathways Involving STAT2 and IRF9. Cells 2019; 8:cells8080919. [PMID: 31426476 PMCID: PMC6721756 DOI: 10.3390/cells8080919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022] Open
Abstract
Interferon (IFN) β and Tumor Necrosis Factor (TNF) are key players in immunity against viruses. Compelling evidence has shown that the antiviral and inflammatory transcriptional response induced by IFNβ is reprogrammed by crosstalk with TNF. IFNβ mainly induces interferon-stimulated genes by the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway involving the canonical ISGF3 transcriptional complex, composed of STAT1, STAT2, and IRF9. The signaling pathways engaged downstream of the combination of IFNβ and TNF remain elusive, but previous observations suggested the existence of a response independent of STAT1. Here, using genome-wide transcriptional analysis by RNASeq, we observed a broad antiviral and immunoregulatory response initiated in the absence of STAT1 upon IFNβ and TNF costimulation. Additional stratification of this transcriptional response revealed that STAT2 and IRF9 mediate the expression of a wide spectrum of genes. While a subset of genes was regulated by the concerted action of STAT2 and IRF9, other gene sets were independently regulated by STAT2 or IRF9. Collectively, our data supports a model in which STAT2 and IRF9 act through non-canonical parallel pathways to regulate distinct pool of antiviral and immunoregulatory genes in conditions with elevated levels of both IFNβ and TNF.
Collapse
Affiliation(s)
- Mélissa K Mariani
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Pouria Dasmeh
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Centre Robert Cedergren en Bioinformatique et Génomique, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Audray Fortin
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Elise Caron
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Mario Kalamujic
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Alexander N Harrison
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Diana I Hotea
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Dacquin M Kasumba
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Sandra L Cervantes-Ortiz
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Espérance Mukawera
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Adrian W R Serohijos
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Centre Robert Cedergren en Bioinformatique et Génomique, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Nathalie Grandvaux
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|