101
|
Tanno S, Yanagawa N, Habiro A, Koizumi K, Nakano Y, Osanai M, Mizukami Y, Okumura T, Testa JR, Kohgo Y. Serine/threonine kinase AKT is frequently activated in human bile duct cancer and is associated with increased radioresistance. Cancer Res 2004; 64:3486-90. [PMID: 15150102 DOI: 10.1158/0008-5472.can-03-1788] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The prognosis for patients with bile duct cancer (BDC) remains poor. Although BDC cells are essentially radioresistant, recent reports have suggested that radiation therapy, in addition to its palliative role in the management of BDC, may improve patient survival. A better understanding of the mechanisms that lead to cellular radioresistance may assist in the development of more effective BDC therapies based on radiotherapy in combination with radiosensitizing agents. The serine/threonine kinase AKT/protein kinase B, a downstream effector of phosphatidylinositol 3'-kinase, is a well-characterized kinase that is known to play a critical role in antiapoptotic signaling pathways. In this investigation, we sought to clarify the role of AKT signaling in the radioresistance in BDC cells. First, to examine whether activated AKT is expressed in BDCs, tumor specimens were obtained from 19 consecutive BDC cases. Immunohistochemical staining using an anti-phosphorylated-AKT antibody showed that phosphorylated (activated) AKT was expressed in cancer cells but not in neighboring normal mucosa in 16 cases (84.2%). Next, to evaluate the role of AKT activation in the regulation of BDC cell radiosensitivity, clonogenic assays were performed using the phosphatidylinositol 3'-kinase inhibitor LY294002 with and without irradiation. LY294002 inhibited AKT activation in BDC cells and, on irradiation, decreased clonogenic survival in a radiation dose-dependent manner. Only a small decrease in cell viability was observed in cells exposed to LY294002. Expression of constitutively active AKT in BDC cells resulted in decreased radiosensitivity, whereas a dominant-negative AKT increased radiosensitivity. Furthermore, constitutively active AKT also inhibited radiation-induced apoptosis. Collectively, these results indicate that activated AKT in BDC cells is associated with radioresistance and suggest that pharmacological or genetic modulation of AKT activity may have important therapeutic implications in BDC patients treated with radiation.
Collapse
Affiliation(s)
- Satoshi Tanno
- Third Department of Internal Medicine, Asahikawa Medical College, Asahikawa, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Rogoff HA, Pickering MT, Frame FM, Debatis ME, Sanchez Y, Jones S, Kowalik TF. Apoptosis associated with deregulated E2F activity is dependent on E2F1 and Atm/Nbs1/Chk2. Mol Cell Biol 2004; 24:2968-77. [PMID: 15024084 PMCID: PMC371110 DOI: 10.1128/mcb.24.7.2968-2977.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The retinoblastoma protein (Rb)/E2F pathway links cellular proliferation control to apoptosis and is critical for normal development and cancer prevention. Here we define a transcription-mediated pathway in which deregulation of E2F1 by ectopic E2F expression or Rb inactivation by E7 of human papillomavirus type 16 signals apoptosis by inducing the expression of Chk2, a component of the DNA damage response. E2F1- and E7-mediated apoptosis are compromised in cells from patients with the related disorders ataxia telangiectasia and Nijmegen breakage syndrome lacking functional Atm and Nbs1 gene products, respectively. Both Atm and Nbs1 contribute to Chk2 activation and p53 phosphorylation following deregulation of normal Rb growth control. E2F2, a related E2F family member that does not induce apoptosis, also activates Atm, resulting in phosphorylation of p53. However, we found that the key commitment step in apoptosis induction is the ability of E2F1, and not E2F2, to upregulate Chk2 expression. Our results suggest that E2F1 plays a central role in signaling disturbances in the Rb growth control pathway and, by upregulation of Chk2, may sensitize cells to undergo apoptosis.
Collapse
Affiliation(s)
- Harry A Rogoff
- Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Siu WY, Lau A, Arooz T, Chow JP, Ho HT, Poon RY. Topoisomerase poisons differentially activate DNA damage checkpoints through ataxia-telangiectasia mutated–dependent and –independent mechanisms. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.621.3.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Camptothecin and Adriamycin are clinically important inhibitors for topoisomerase (Topo) I and Topo II, respectively. The ataxia-telangiectasia mutated (ATM) product is essential for ionizing radiation-induced DNA damage responses, but the role of ATM in Topo poisons-induced checkpoints remains unresolved. We found that distinct mechanisms are involved in the activation of different cell cycle checkpoints at different concentrations of Adriamycin and camptothecin. Adriamycin promotes the G1 checkpoint through activation of the p53-p21CIP1/WAF1 pathway and decrease of pRb phosphorylation. Phosphorylation of p53(Ser20) after Adriamycin treatment is ATM dependent, but is not required for the full activation of p53. The G1 checkpoint is dependent on ATM at low doses but not at high doses of Adriamycin. In contrast, the Adriamycin-induced G2 checkpoint is independent on ATM but sensitive to caffeine. Adriamycin inhibits histone H3(Ser10) phosphorylation through inhibitory phosphorylation of CDC2 at low doses and down-regulation of cyclin B1 at high doses. The camptothecin-induced intra-S checkpoint is partially dependent on ATM, and is associated with inhibitory phosphorylation of cyclin-dependent kinase 2 and reduction of BrdUrd incorporation after mid-S phase. Finally, apoptosis associated with high doses of Adriamycin or camptothecin is not influenced by the absence of ATM. These data indicate that the involvement of ATM following treatment with Topo poisons differs extensively with dosage and for different cell cycle checkpoints.
Collapse
Affiliation(s)
- Wai Yi Siu
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Anita Lau
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Talha Arooz
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jeremy P.H. Chow
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Horace T.B. Ho
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Randy Y.C. Poon
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
104
|
Kondo T, Kobayashi M, Tanaka J, Yokoyama A, Suzuki S, Kato N, Onozawa M, Chiba K, Hashino S, Imamura M, Minami Y, Minamino N, Asaka M. Rapid degradation of Cdt1 upon UV-induced DNA damage is mediated by SCFSkp2 complex. J Biol Chem 2004; 279:27315-9. [PMID: 15102855 DOI: 10.1074/jbc.m314023200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdt1 is a licensing factor for DNA replication, the function of which is tightly controlled to maintain genome integrity. Previous studies have indicated that the cell cycle-dependent degradation of Cdt1 is triggered at S phase to prevent re-replication. In this study, we found that Cdt1 is degraded upon DNA damage induced by either UV treatment or gamma-irradiation (IR). Although the IR-triggered degradation of Cdt1 was caffeine-insensitive, the UV-triggered degradation of Cdt1 was caffeine-sensitive. This indicates that the cells treated with UV utilize the checkpoint pathway, which differs from that triggered by IR. A recent study has suggested that Cdt1 is phosphorylated, ubiquitylated, and degraded at the G(1)/S boundary in the normal cell cycle. Treatment with MG132, a proteasome inhibitor, inhibited the degradation of Cdt1 and resulted in the accumulation of the phosphorylated form of Cdt1 after UV treatment. In the case of UV treatment, phosphorylation of Cdt1 induced the recruitment of Cdt1 to a SCF(Skp2) complex. Moreover, ectopic overexpression of Cdt1 after UV treatment interfered the inhibition of DNA synthesis. These results indicate that Cdt1 is a target molecule of the cell cycle checkpoint in UV-induced DNA damage.
Collapse
Affiliation(s)
- Takeshi Kondo
- Department of Gastroenterology and Hematology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Nabetani A, Yokoyama O, Ishikawa F. Localization of hRad9, hHus1, hRad1, and hRad17 and caffeine-sensitive DNA replication at the alternative lengthening of telomeres-associated promyelocytic leukemia body. J Biol Chem 2004; 279:25849-57. [PMID: 15075340 DOI: 10.1074/jbc.m312652200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Telomere maintenance is essential for continued cell proliferation. Although most cells accomplish this by activating telomerase, a subset of immortalized tumors and cell lines do so in a telomerase-independent manner, a process called alternative lengthening of telomeres (ALT). DNA recombination has been shown to be involved in ALT, but the precise mechanisms remain unknown. A fraction of cells in a given ALT population contain a unique nuclear structure called APB (ALT-associated promyelocytic leukemia (PML) body), which is characterized by the presence of telomeric DNA in the PML body. Here we describe that hRad9, hHus1, and hRad1, which form a DNA clamp complex that is associated with DNA damage, as well as its clamp loader, hRad17, are constitutive components of APB. Phosphorylated histone H2AX (gamma-H2AX), a molecular marker of double-strand breaks (DSBs), also colocalizes with some APBs. The results suggest that telomeric DNAs at APBs are recognized as DSBs. PML staining and fluorescence in situ hybridization analyses of mitotic ALT cells revealed that telomeric DNAs present at APBs are of both extrachromosomal and native telomere origins. Furthermore, we demonstrated that DNA synthesis occurs at APBs and is significantly inhibited by caffeine, an inhibitor of phosphatidylinositol 3-kinase-related kinases. Taken together, we suggest that telomeric DNAs at APBs are recognized and processed as DSBs, leading to telomeric DNA synthesis and thereby contributing to telomere maintenance in ALT cells.
Collapse
Affiliation(s)
- Akira Nabetani
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto 606-8502
| | | | | |
Collapse
|
106
|
Vassin VM, Wold MS, Borowiec JA. Replication protein A (RPA) phosphorylation prevents RPA association with replication centers. Mol Cell Biol 2004; 24:1930-43. [PMID: 14966274 PMCID: PMC350552 DOI: 10.1128/mcb.24.5.1930-1943.2004] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian replication protein A (RPA) undergoes DNA damage-dependent phosphorylation at numerous sites on the N terminus of the RPA2 subunit. To understand the functional significance of RPA phosphorylation, we expressed RPA2 variants in which the phosphorylation sites were converted to aspartate (RPA2(D)) or alanine (RPA2(A)). Although RPA2(D) was incorporated into RPA heterotrimers and supported simian virus 40 DNA replication in vitro, the RPA2(D) mutant was selectively unable to associate with replication centers in vivo. In cells containing greatly reduced levels of endogenous RPA2, RPA2(D) again did not localize to replication sites, indicating that the defect in supporting chromosomal DNA replication is not due to competition with the wild-type protein. Use of phosphospecific antibodies demonstrated that endogenous hyperphosphorylated RPA behaves similarly to RPA2(D). In contrast, under DNA damage or replication stress conditions, RPA2(D), like RPA2(A) and wild-type RPA2, was competent to associate with DNA damage foci as determined by colocalization with gamma-H2AX. We conclude that RPA2 phosphorylation prevents RPA association with replication centers in vivo and potentially serves as a marker for sites of DNA damage.
Collapse
Affiliation(s)
- Vitaly M Vassin
- Department of Biochemistry and New York University Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
107
|
Wang H, Boecker W, Wang H, Wang X, Guan J, Thompson LH, Nickoloff JA, Iliakis G. Caffeine inhibits homology-directed repair of I-SceI-induced DNA double-strand breaks. Oncogene 2004; 23:824-34. [PMID: 14737117 DOI: 10.1038/sj.onc.1207168] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We recently reported that two Chinese hamster mutants deficient in the RAD51 paralogs XRCC2 and XRCC3 show reduced radiosensitization after treatment with caffeine, thus implicating homology-directed repair (HDR) of DNA double-strand breaks (DSBs) in the mechanism of caffeine radiosensitization. Here, we investigate directly the effect of caffeine on HDR initiated by DSBs induced by a rare cutting endonuclease (I-SceI) into one of two direct DNA repeats. The results demonstrate a strong inhibition by caffeine of HDR in wild-type cells, and a substantial reduction of this effect in HDR-deficient XRCC3 mutant cells. Inhibition of HDR and cell radiosensitization to killing shows similar dependence on caffeine concentration suggesting a cause-effect relationship between these effects. UCN-01, a kinase inhibitor that effectively abrogates checkpoint activation in irradiated cells, has only a small effect on HDR, indicating that similar to radiosensitization, inhibition of checkpoint signaling is not sufficient for HDR inhibition. Recombination events occurring during treatment with caffeine are characterized by rearrangements reminiscent to those previously reported for the XRCC3 mutant, and immunofluorescence microscopy demonstrates significantly reduced formation of IR-specific RAD51 foci after caffeine treatment. In summary, our results identify inhibition of HDR as a significant contributor to caffeine radiosensitization.
Collapse
Affiliation(s)
- Huichen Wang
- Department of Radiation Oncology of Kimmel Cancer Center, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Ismail IH, Mårtensson S, Moshinsky D, Rice A, Tang C, Howlett A, McMahon G, Hammarsten O. SU11752 inhibits the DNA-dependent protein kinase and DNA double-strand break repair resulting in ionizing radiation sensitization. Oncogene 2004; 23:873-82. [PMID: 14661061 DOI: 10.1038/sj.onc.1207303] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss of the DNA-dependent protein kinase (DNA-PK) results in increased sensitivity to ionizing radiation due to inefficient repair of DNA double-strand breaks. Overexpression of DNA-PK in tumor cells conversely results in resistance to ionizing radiation. It is therefore possible that inhibition of DNA-PK will enhance the preferential killing of tumor cells by radiotherapy. Available inhibitors of DNA-PK, like wortmannin, are cytotoxic and stop the cell cycle because they inhibit phoshatidylinositol-3-kinases at 100-fold lower concentrations required to inhibit DNA-PK. In an effort to develop a specific DNA-PK inhibitor, we have characterized SU11752, from a three-substituted indolin-2-ones library. SU11752 and wortmannin were equally potent inhibitors of DNA-PK. In contrast, inhibition of the phoshatidylinositol-3-kinase p110gamma required 500-fold higher concentration of SU11752. Thus, SU11752 was a more selective inhibitor of DNA-PK than wortmannin. Inhibition kinetics and a direct assay for ATP binding showed that SU11752 inhibited DNA-PK by competing with ATP. SU11752 inhibited DNA double-strand break repair in cells and gave rise to a five-fold sensitization to ionizing radiation. At concentrations of SU11752 that inhibited DNA repair, cell cycle progression was still normal and ATM kinase activity was not inhibited. We conclude that SU11752 defines a new class of drugs that may serve as a starting point for the development of specific DNA-PK inhibitors.
Collapse
Affiliation(s)
- Ismail Hassan Ismail
- Department of Clinical Chemistry, Göteborg University, Sahlgrenska University Hospital, Göteborg 41345, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Benko Z, Fenyvesvolgyi C, Pesti M, Sipiczki M. The transcription factor Pap1/Caf3 plays a central role in the determination of caffeine resistance in Schizosaccharomyces pombe. Mol Genet Genomics 2004; 271:161-70. [PMID: 14758541 DOI: 10.1007/s00438-003-0967-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2003] [Accepted: 12/02/2003] [Indexed: 01/28/2023]
Abstract
We previously identified four nuclear genes (caf1+-caf4+) in Schizosaccharomyces pombe, mutations in which confer resistance to caffeine and brefeldin A. caf1+, caf2+ and caf4+ were sequenced and found to be identical to the multidrug-resistance/stress-response genes hba1, crm1 and trr1, respectively. Here we show that caf3 is allelic to pap1, which encodes an AP-1-like transcription factor. The allele associated with caffeine resistance, caf3-89, contains a single-nucleotide exchange that results in a Leu-->Ser exchange in the NES (nuclear export signal) domain of the gene product. Due to this alteration, the modified protein can not be exported from the nucleus back into the cytoplasm, and thus accumulates in the nucleus. The activity of pap1/caf3 is shown to be necessary for manifestation of the caffeine resistance caused by mutations in the genes hba1/caf1 and crm1/caf2. We also cloned two genes that confer caffeine resistance when carried on a multicopy plasmid. One of them turned out to be a truncated allele of pad1/bfr2/sks1, which codes for a subunit of the 26 S proteosome. The putative product of the other gene, designated caf5, has a structure highly similar to that of MFS permeases. It contains two groups of six transmembrane spanning domains each, with the conserved motifs WRW, PET and GAIGGPVLGP in the fifth and sixth domains. These results are all consistent with our earlier hypothesis, which suggested that the caf genes are functionally interlinked in a complex detoxification mechanism. caf5 and pad1 may also encode parts of this mechanism.
Collapse
Affiliation(s)
- Z Benko
- Department of Genetics, University of Debrecen, PO Box 56, H-4010 Debrecen, Hungary
| | | | | | | |
Collapse
|
110
|
Bomgarden RD, Yean D, Yee MC, Cimprich KA. A novel protein activity mediates DNA binding of an ATR-ATRIP complex. J Biol Chem 2004; 279:13346-53. [PMID: 14724280 DOI: 10.1074/jbc.m311098200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The function of the ATR (ataxia-telangiectasia mutated and Rad3-related)-ATRIP (ATR-interacting protein) protein kinase complex is central to the cellular response to replication stress and DNA damage. In order to better understand the function of this complex, we have studied its interaction with DNA. We find that both ATR and ATRIP associate with chromatin in vivo, and they exist as a large molecular weight complex that can bind single-stranded (ss)DNA cellulose in vitro. Although replication protein A (RPA) is sufficient for the recruitment of ATRIP to ssDNA, we show that a distinct ATR-ATRIP complex is able to bind to DNA with lower affinity in the absence of RPA. In this latter complex, we show that neither ATR nor ATRIP are able to bind DNA individually, nor do they bind DNA in a cooperative manner. However, the addition of HeLa nuclear extract is able to reconstitute the DNA binding of both ATR and ATRIP, suggesting the requirement for an additional protein activity. We also show that ATR is necessary for ATRIP to bind DNA in this low affinity mode and to form a large DNA binding complex. These observations suggest that there are at least two in vitro ATR-ATRIP DNA binding complexes, one which binds DNA with high affinity in an RPA-dependent manner and a second, which binds DNA with lower affinity in an RPA-independent manner but which requires an as of yet unidentified protein.
Collapse
Affiliation(s)
- Ryan D Bomgarden
- Department of Molecular Pharmacology, Stanford University, Stanford, California 94305-5441, USA
| | | | | | | |
Collapse
|
111
|
Shinozaki T, Nota A, Taya Y, Okamoto K. Functional role of Mdm2 phosphorylation by ATR in attenuation of p53 nuclear export. Oncogene 2004; 22:8870-80. [PMID: 14654783 DOI: 10.1038/sj.onc.1207176] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mdm2 oncoprotein plays a major role in inhibiting the p53 tumor suppressor protein. Here, we investigate phosphorylation of Mdm2 at serine 407 (S407). S407 is phosphorylated in cells after treatment with camptothecin (CPT) or hydroxyurea, inhibitors of DNA replication. S407 phosphorylation after CPT treatment is induced upon cell cycle arrest during S phase and prevented if entry into S phase of cell cycle is blocked. We found that a major kinase responsible for S407 phosphorylation is ATR, a DNA damage checkpoint protein that induces cell cycle arrest and promotes DNA repair in response to impaired DNA replication; induction of S407 phosphorylation is enhanced after expression of wild-type ATR, while it is inhibited by a dominant-negative form of ATR. Further, S407 is specifically phosphorylated by ATR in vitro. Substitution of S407 with aspartate (S407D), but not with alanine (S407A), promotes nuclear localization of p53. Taken together, our data indicate that S407 phosphorylation of Mdm2 by ATR reduces Mdm2-dependent export of p53 from nuclei to cytoplasm.
Collapse
Affiliation(s)
- Tomomi Shinozaki
- National Cancer Center Research Institute, Radiobiology Division, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | |
Collapse
|
112
|
Florensa R, Bachs O, Agell N. ATM/ATR-independent inhibition of cyclin B accumulation in response to hydroxyurea in nontransformed cell lines is altered in tumour cell lines. Oncogene 2004; 22:8283-92. [PMID: 14614452 DOI: 10.1038/sj.onc.1207159] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The DNA replication checkpoint is an inhibitory pathway ensuring that mitosis occurs only after completion of DNA synthesis. Its function may be relevant to the stability of the genome. The essential elements of this checkpoint are ATM/ATR kinases that indirectly lead to the phosphorylation and inhibition of the mitosis-promoting factor (Cdc2/cyclin B1). The function of this checkpoint was analysed in diverse nontransformed and tumour-derived cell lines. All cell lines tested arrested mitosis entry when DNA synthesis was inhibited by hydroxyurea (HU) treatment. But, unlike what has been described in yeast and Xenopus, in normal rat kidney (NRK) cells and NIH 3T3 fibroblasts, the arrest induced by HU treatment was not abrogated by caffeine, an ATM and ATR inhibitor. This indicated the presence of an ATM/ATR-independent response to DNA synthesis inhibition in these nontransformed mammalian cell lines. Interestingly, the behaviour of different tumour cell lines after caffeine treatment varied. While SW480, NP29, NP18 and HeLa cells did not enter mitosis in the presence of caffeine after HU treatment, in CaCo2, DLD1, HCT116 and HT29 caffeine abrogated the checkpoint response. In nontransformed cell lines, lack of cyclin B1 accumulation was observed when DNA synthesis was inhibited. This response was not abrogated by caffeine. In the tumour cell lines, a good correlation between the ability to arrest cell cycle when DNA synthesis was inhibited in the presence of caffeine and the lack of cyclin B1 accumulation was observed. Thus, there is an ATM/ATR-independent checkpoint response that leads to a decrease in cyclin B1 accumulation. However, this response is not functional in some tumour cell lines. Using inhibitors of p38alpha and beta, Mek1, 2 and p53-/- knocked-out fibroblasts, we showed that these proteins were also not involved in this particular checkpoint response. Lack of cyclin B1 accumulation after DNA synthesis inhibition in NRK cells was not due to increased degradation of the protein, but correlated with a decrease in mRNA accumulation.
Collapse
Affiliation(s)
- Roger Florensa
- Departament de Biologia Cel.lular i Anatomia Patològica, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | |
Collapse
|
113
|
Das KC, Dashnamoorthy R. Hyperoxia activates the ATR-Chk1 pathway and phosphorylates p53 at multiple sites. Am J Physiol Lung Cell Mol Physiol 2004; 286:L87-97. [PMID: 12959929 DOI: 10.1152/ajplung.00203.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperoxia has been shown to cause DNA damage resulting in growth arrest of cells in p53-dependent, as well as p53-independent, pathways. Although H2O2 and other peroxides have been shown to induce ataxia telangiectasia-mutated (ATM)-dependent p53 phosphorylation in response to DNA damage, the signal transduction mechanisms in response to hyperoxia are currently unknown. Here we demonstrate that hyperoxia phosphorylates the Ser15 residue of p53 independently of ATM. Hyperoxia phosphorylated p53 (Ser15) in DNA-dependent protein kinase null (DNA-PK-/-) cells, indicating that it may not depend on DNA-PK for phosphorylation of p53 (Ser15). We show that Ser37 and Ser392 residues of p53 are also phosphorylated in an ATM-independent manner in hyperoxia. In contrast, H2O2 did not phosphorylate Ser37 in either ATM+/+ or ATM-/- cells. Furthermore, H2O2 failed to phosphorylate Ser15 in ATM-/- cells. Additionally, overexpression of kinase-inactive ATM-and-Rad3-related (ATR) in HEK293T cells diminished Ser15, Ser37, and Ser392 phosphorylation compared with vector-only transfected cells. In contrast, wild-type ATR overexpression did not diminish Ser15, Ser37, or Ser392 phosphorylation. We also show that checkpoint kinase 1 (Chk1) is phosphorylated on Ser345 in response to hyperoxia, which could be inhibited by caffeine or wortmannin, potent inhibitors of phosphoinositide 3-kinase-related kinases. Hyperoxia also phosphorylated Chk1 in ATM+/+ as well as in ATM-/- cells, demonstrating an ATM-independent mechanism in Chk1 phosphorylation. Together, our data suggest that hyperoxia activates the ATR-Chk1 pathway and phosphorylates p53 at multiple sites in an ATM-independent manner, which is different from other forms of oxidative stress such as H2O2 or UV light.
Collapse
Affiliation(s)
- Kumuda C Das
- Department of Molecular Biology, University of Texas Health Center at Tyler, 11937 US Hwy 271, Tyler, TX 75708, USA.
| | | |
Collapse
|
114
|
Böhm L, Roos WP, Serafin AM. Inhibition of DNA repair by Pentoxifylline and related methylxanthine derivatives. Toxicology 2003; 193:153-60. [PMID: 14599774 DOI: 10.1016/s0300-483x(03)00294-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The methylxanthine drug Pentoxifylline is reviewed for new properties which have emerged only relatively recently and for which clinical applications can be expected. After a summary on the established systemic effects of Pentoxifylline on the microcirculation and reduction of tumour anoxia, the role of the drug in the treatment of vasoocclusive disorders, cerebral ischemia, infectious diseases, septic shock and acute respiratory distress, the review focuses on another level of drug action which is based on in vitro observations in a variety of cell lines. Pentoxifylline and the related drug Caffeine are known radiosensitizers especially in p53 mutant cells. The explanation that the drug abrogates the G2 block and shortens repair in G2 by promoting early entry into mitosis is not anymore tenable because enhancement of radiotoxicity requires presence of the drug during irradiation and fails when the drug is added after irradiation at the G2 maximum. Repair assays by measurement of recovery ratios and by delayed plating experiments indeed strongly suggested a role in repair which is now confirmed for Pentoxifylline by constant field gel electrophoresis (CFGE) measurements and for Pentoxifylline and for Caffeine by use of a variety of repair mutants. The picture now emerging shows that Caffeine and Pentoxifylline inhibit homologous recombination by targeting members of the PIK kinase family (ATM and ATR) which facilitate repair in G2. Pentoxifylline induced repair inhibition between irradiation dose fractions to counter interfraction repair has been successfully applied in a model for stereotactic surgery. Another realistic avenue of application of Pentoxifylline in tumour therapy comes from experiments which show that repair events in G2 can be targeted directly by addition of cytotoxic drugs and Pentoxifylline at the G2 maximum. Under these conditions massive dose enhancement factors of up to 80 have been observed suggesting that it may be possible to realise dramatic improvements to tumour growth control in the clinic.
Collapse
Affiliation(s)
- Lothar Böhm
- Department of Pharmacology, Faculty of Health Sciences, University of Stellenbosch, P.O. Box 19063, 7505 Tygerberg, South Africa.
| | | | | |
Collapse
|
115
|
Parra-Palau JL, Scheper GC, Wilson ML, Proud CG. Features in the N and C termini of the MAPK-interacting kinase Mnk1 mediate its nucleocytoplasmic shuttling. J Biol Chem 2003; 278:44197-204. [PMID: 12949082 DOI: 10.1074/jbc.m302398200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic initiation factor eIF4E binds to the 5'-cap structure of the mRNA and also to the molecular scaffold protein eIF4G. eIF4E is a phosphoprotein, and the kinases that act on it have been identified as the MAPK-interacting kinases Mnk1 and Mnk2. Mnk1/2 also bind to the scaffold protein eIF4G. The N-terminal region of Mnk1 has previously been shown to bind to importin alpha, a component of the nuclear transport machinery, although Mnk1 itself is cytoplasmic. Here we identify a CRM1-type nuclear export motif in the C-terminal part of Mnk1. Substitution of hydrophobic residues in this motif results in Mnk1 becoming nuclear. This has allowed us to study the features of Mnk1 that are involved in its transport to the nucleus. This process requires part, but not all, of a polybasic region near the N terminus of Mnk1. Residues required for nuclear transport are also required for its interaction with importin alpha. This polybasic region also serves a second function in that it is required for the binding of Mnk1 to eIF4G, although the residues involved in this interaction are not identical to those involved in the binding of Mnk1 to importin alpha. Interaction of Mnk1 with eIF4G promotes the phosphorylation of eIF4E. Mutations that reduce the binding of Mnk1 to eIF4G in vivo and in vitro also decrease the ability of Mnk1 to enhance eIF4E phosphorylation in vivo, underlining the importance of the eIF4G-Mnk1 interaction in this process.
Collapse
Affiliation(s)
- Josep-Lluis Parra-Palau
- Division of Molecular Physiology, Faculty of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, United Kingdom
| | | | | | | |
Collapse
|
116
|
Joerges C, Kuntze I, Herzinger T, Herzinge T. Induction of a caffeine-sensitive S-phase cell cycle checkpoint by psoralen plus ultraviolet A radiation. Oncogene 2003; 22:6119-28. [PMID: 13679850 DOI: 10.1038/sj.onc.1206613] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Induction of interstrand crosslinks (ICLs) in chromosomal DNA is considered a major reason for the antiproliferative effect of psoralen plus ultraviolet A (PUVA). It is unclear as to whether PUVA-induced cell cycle arrest is caused by ICLs mechanically stalling replication forks or by triggering cell cycle checkpoints. Cell cycle checkpoints serve to maintain genomic stability by halting cell cycle progression to prevent replication of damaged DNA templates or segregation of broken chromosomes. Here, we show that HaCaT keratinocytes treated with PUVA arrest with S-phase DNA content. Cells that had completed DNA replication were not perturbed by PUVA and passed through mitosis. Cells treated with PUVA during G1-phase continued traversing G1 until arresting in early S-phase. PUVA induced rapid phosphorylation of the Chk1 checkpoint kinase at Ser345 and a concomitant decrease in Cdc25A levels. Chk1 phosphorylation, decrease of Cdc25 A levels and S-phase arrest were abolished by caffeine, demonstrating that active checkpoint signaling rather than passive mechanical blockage by ICLs causes the PUVA-induced replication arrest. Overexpression of Cdc25A only partially overrode the S-phase arrest, suggesting that additional signaling events implement PUVA-induced S-phase arrest.
Collapse
Affiliation(s)
- Christoph Joerges
- Klinik und Poliklinik für Dermatologie und Allergologie, Ludwig-Maximilians-University, Frauenlobstr. 9-11, D-80337 Munich, Germany
| | | | | | | |
Collapse
|
117
|
Chen K, Albano A, Ho A, Keaney JF. Activation of p53 by oxidative stress involves platelet-derived growth factor-beta receptor-mediated ataxia telangiectasia mutated (ATM) kinase activation. J Biol Chem 2003; 278:39527-33. [PMID: 12890678 DOI: 10.1074/jbc.m304423200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of the p53 tumor suppressor protein is a critical event in the up-regulation and activation of p53 during cellular stress. In this study, we characterized the signaling pathway linking oxidative stress to p53 through the platelet-derived growth factor beta (PDGF beta) receptor and the ataxia telangiectasia mutated (ATM) kinase. In response to H2O2, we observed phosphorylation of p53 specifically at serine 15, but not serine 9, 20, or 392. Phosphorylation of Ser-15 was correlated with enhanced induction and functional activation of p53 manifest as transcription of the p53 target p21CIP/WAF. We found that H2O2 induced phosphorylation of the PDGF beta receptor and increased ATM kinase activity, two events integral to p53 activation as either AG1433 (a PDGF beta receptor inhibitor) or caffeine (an ATM kinase inhibitor) inhibited Ser-15 phosphorylation. Similarly, p53 activation by H2O2 was inhibited by kinase-inactive forms of the PDGF beta receptor or ATM. Inhibition of ATM kinase had no effect on H2O2-induced PDGF beta receptor tyrosine phosphorylation, whereas PDGF beta receptor suppression with RNA interference impaired H2O2-induced ATM activation, indicating that ATM lies downstream to the PDGF beta receptor in this signaling cascade. Functionally, inhibition of the PDGF beta receptor abrogated the inhibition of cell proliferation, and promotion of apoptosis due to H2O2 treatment. Thus, these data link PDGF beta receptor transactivation to H2O2-induced p53 phosphorylation and suggest a functional role for growth factor receptors in modulation of p53 function.
Collapse
Affiliation(s)
- Kai Chen
- Evans Memorial Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
118
|
Cortez D. Caffeine inhibits checkpoint responses without inhibiting the ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases. J Biol Chem 2003; 278:37139-45. [PMID: 12847089 DOI: 10.1074/jbc.m307088200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) kinases regulate cell cycle checkpoints by phosphorylating multiple substrates including the CHK1 and -2 protein kinases and p53. Caffeine has been widely used to study ATM and ATR signaling because it inhibits these kinases in vitro and overcomes cell cycle checkpoint responses in vivo. Thus, caffeine has been thought to overcome the checkpoint through its ability to prevent phosphorylation of ATM and ATR substrates. Surprisingly, I have found that multiple ATM-ATR substrates including CHK1 and -2 are hyperphosphorylated in cells treated with caffeine and genotoxic agents such as hydroxyurea or ionizing radiation. ATM autophosphorylation in cells is also increased when caffeine is used in combination with inhibitors of replication suggesting that ATM activity is not inhibited in vivo by caffeine. Furthermore, CHK1 hyperphosphorylation induced by caffeine in combination with hydroxyurea is ATR-dependent suggesting that ATR activity is stimulated by caffeine. Finally, the G2/M checkpoint in response to ionizing radiation or hydroxyurea is abrogated by caffeine treatment without a corresponding decrease in ATM-ATR-dependent signaling. This data suggests that although caffeine is an inhibitor of ATM-ATR kinase activity in vitro, it can block checkpoints without inhibiting ATM-ATR activation in vivo.
Collapse
Affiliation(s)
- David Cortez
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, USA.
| |
Collapse
|
119
|
McLaughlin F, Finn P, La Thangue NB. The cell cycle, chromatin and cancer: mechanism-based therapeutics come of age. Drug Discov Today 2003; 8:793-802. [PMID: 12946642 DOI: 10.1016/s1359-6446(03)02792-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tumour cells grow and divide in an uncontrolled fashion. Recent advances in the cell cycle have uncovered new mechanisms that integrate growth and division with chromatin and gene expression control. Small-molecule drugs that target key enzyme classes involved in these pathways, the cyclin-dependent kinases (Cdk) in the cell cycle and histone deacetylases (HDAC) in chromatin control, have entered clinical studies, with emerging clinical efficacy. These new mechanism-based approaches could provide significant improvements over many current chemotherapeutics.
Collapse
Affiliation(s)
- Fiona McLaughlin
- TopoTarget Prolifix, 87a Milton Park, Abingdon, Oxon, UK OX14 4RY
| | | | | |
Collapse
|
120
|
Jones RE, Chapman JR, Puligilla C, Murray JM, Car AM, Ford CC, Lindsay HD. XRad17 is required for the activation of XChk1 but not XCds1 during checkpoint signaling in Xenopus. Mol Biol Cell 2003; 14:3898-910. [PMID: 12972573 PMCID: PMC196587 DOI: 10.1091/mbc.e03-03-0138] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Revised: 04/30/2003] [Accepted: 04/30/2003] [Indexed: 12/31/2022] Open
Abstract
The DNA damage/replication checkpoints act by sensing the presence of damaged DNA or stalled replication forks and initiate signaling pathways that arrest cell cycle progression. Here we report the cloning and characterization of Xenopus orthologues of the RFCand PCNA-related checkpoint proteins. XRad17 shares regions of homology with the five subunits of Replication factor C. XRad9, XRad1, and XHus1 (components of the 9-1-1 complex) all show homology to the DNA polymerase processivity factor PCNA. We demonstrate that these proteins associate with chromatin and are phosphorylated when replication is inhibited by aphidicolin. Phosphorylation of X9-1-1 is caffeine sensitive, but the chromatin association of XRad17 and the X9-1-1 complex after replication block is unaffected by caffeine. This suggests that the X9-1-1 complex can associate with chromatin independently of XAtm/XAtr activity. We further demonstrate that XRad17 is essential for the chromatin binding and checkpoint-dependent phosphorylation of X9-1-1 and for the activation of XChk1 when the replication checkpoint is induced by aphidicolin. XRad17 is not, however, required for the activation of XCds1 in response to dsDNA ends.
Collapse
Affiliation(s)
- Rhiannon E Jones
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN19RQ, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
121
|
Goudelock DM, Jiang K, Pereira E, Russell B, Sanchez Y. Regulatory interactions between the checkpoint kinase Chk1 and the proteins of the DNA-dependent protein kinase complex. J Biol Chem 2003; 278:29940-7. [PMID: 12756247 DOI: 10.1074/jbc.m301765200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Checkpoints are biochemical pathways that provide cells a mechanism to detect DNA damage and respond by arresting the cell cycle to allow DNA repair. The conserved checkpoint kinase, Chk1, regulates mitotic progression in response to DNA damage by blocking the activation of Cdk1/cyclin B. In this study, we investigate the regulatory interaction between Chk1 and members of the Atm family of kinases and the functional role of the C-terminal non-catalytic domains of Chk1. Chk1 stimulates the kinase activity of DNA-PK (protein kinase) complexes, which leads to increased phosphorylation of p53 on Ser-15 and Ser-37. In addition, Chk1 stimulates DNA-PK-dependent end-joining reactions in vitro. We also show that Chk1 protein complexes bind to single-stranded DNA and DNA ends. These results indicate a connection between components that regulate the checkpoint pathways and DNA-PK complex proteins, which have a role in the repair of double strand breaks.
Collapse
Affiliation(s)
- Dawn Marie Goudelock
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA
| | | | | | | | | |
Collapse
|
122
|
Lindström MS, Wiman KG. Myc and E2F1 induce p53 through p14ARF-independent mechanisms in human fibroblasts. Oncogene 2003; 22:4993-5005. [PMID: 12902982 DOI: 10.1038/sj.onc.1206659] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
p19ARF is induced in response to oncogene activation or during cellular senescence in mouse embryo fibroblasts, triggering p53-dependent and p53-independent cell cycle arrest and apoptosis. We have studied the involvement of human p14ARF as a regulator of p53 activity in normal human skin fibroblasts (NHFs) or WI38 lung embryonic fibroblasts expressing conditional Myc or E2F1 estrogen receptor fusion proteins. Both Myc and E2F1 activation rapidly induced p53 phosphorylation at Ser-15, p53 protein accumulation, and upregulation of the p53 target genes MDM2 and p21. Activation of E2F1 induced p14ARF mRNA and protein levels. In contrast, Myc activation did not induce any significant increase in p14ARF mRNA or protein levels in neither NHFs nor WI38 fibroblasts within 48 h. Myc and E2F1 induced p53 and cell cycle arrest even after silencing of p14ARF using short-interfering RNA. Treatment with the ATM/ATR kinase inhibitor caffeine prevented p53 accumulation upon activation of Myc or E2F1. Our results indicate that p53 phosphorylation, but not p14ARF, plays a major role for the induction of p53 in response to Myc and E2F1 activation in normal human fibroblasts.
Collapse
Affiliation(s)
- Mikael S Lindström
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), R8:04, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | | |
Collapse
|
123
|
Balczon R, Wilson M, Bhatnagar YM. Analysis of detached human kinetochores. Chromosoma 2003; 112:96-102. [PMID: 12883946 DOI: 10.1007/s00412-003-0248-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2002] [Revised: 06/23/2003] [Accepted: 06/26/2003] [Indexed: 10/26/2022]
Abstract
A method has recently been established for inducing the physical detachment of kinetochores from chromosomes in human HeLa cells, and was used in the studies reported here to investigate the organization and function of dissociated HeLa kinetochores. Immunofluorescence labeling demonstrated that the detached HeLa kinetochores were relatively intact, with the number of detached kinetochores being only moderately more than the diploid number of chromosomes in HeLa cells. In addition, the detached kinetochores could be labeled with antibodies specific for the inner kinetochore plate, outer kinetochore, and subjacent centromeric heterochromatin. A functional assay demonstrated that detached kinetochores retained the capacity to activate the spindle checkpoint, leading to metaphase arrest. Analysis of kinetochore DNA indicated that it consisted primarily of DNA fragments of 130-160 kb in size, while the remainder of the chromosomes were sheared into much smaller fragments during the kinetochore detachment event. Further analysis of kinetochore DNA indicated that it was first cleaved into high molecular weight DNA (>200 kb) fragments during the initial stages of the kinetochore detachment process, and then underwent further maturation following nuclear envelope breakdown to give rise to the 130-160 kb fragment in detached kinetochores. Collectively, these data indicate that detached human kinetochores will be a useful system for investigating the organization, assembly, and function of human kinetochores.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Cell Biology and Neuroscience, The University of South Alabama, Mobile, AL 36688, USA.
| | | | | |
Collapse
|
124
|
Rocha S, Campbell KJ, Perkins ND. p53- and Mdm2-independent repression of NF-kappa B transactivation by the ARF tumor suppressor. Mol Cell 2003; 12:15-25. [PMID: 12887889 DOI: 10.1016/s1097-2765(03)00223-5] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
One mechanism by which a cell affords protection from the transforming effects of oncogenes is via the action of the tumor suppressor, ARF, which activates p53 by inactivating Mdm2. Many oncogenes have also been shown to activate the transcription factor NF-kappa B, which can contribute toward the malignant phenotype in many ways, including an ability to antagonize p53. Here we find that ARF inhibits NF-kappa B function and its antiapoptotic activity independent of Mdm2 and p53. ARF represses the transcriptional activation domain of the NF-kappa B family member RelA by inducing its association with the histone deacetylase, HDAC1. Further, we show that the response of NF-kappa B to the oncogene Bcr-Abl is determined by the ARF status of the cell. These results reveal an important function of ARF that can regulate the NF-kappa B response to oncogene activation.
Collapse
Affiliation(s)
- Sonia Rocha
- School of Life Sciences, Division of Gene Regulation and Expression, MSI/WTB Complex, Dow Street, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom
| | | | | |
Collapse
|
125
|
Foss EJ. Is Rad9p upstream or downstream from Mec1p? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:347-51. [PMID: 12760049 DOI: 10.1101/sqb.2000.65.347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- E J Foss
- Division of Human Biology, C3-168, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| |
Collapse
|
126
|
Nishijima H, Nishitani H, Saito N, Nishimoto T. Caffeine mimics adenine and 2'-deoxyadenosine, both of which inhibit the guanine-nucleotide exchange activity of RCC1 and the kinase activity of ATR. Genes Cells 2003; 8:423-35. [PMID: 12694532 DOI: 10.1046/j.1365-2443.2003.00644.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Both caffeine and the inactivation of RCC1, the guanine-nucleotide exchange factor (GEF) of Ran, induce premature chromatin condensation (PCC) in hamster BHK21 cells arrested in the S-phase, suggesting that RCC1 is a target for caffeine. RESULTS Caffeine inhibited the Ran-GEF activity of RCC1 by preventing the binary complex formation of Ran-RCC1. Inhibition of the Ran-GEF activity of RCC1 by caffeine and its derivatives was correlated with their ability to induce PCC. Since caffeine is a derivative of xanthine, the bases and nucleosides were screened for their ability to inhibit RCC1. Adenine, adenosine, and all of the 2'-deoxynucleosides inhibited the Ran-GEF activity of RCC1; however, only adenine and 2'-deoxyadenosine (2'-dA) induced PCC. A factor(s) other than RCC1, should therefore be involved in PCC-induction. We found that both adenine and 2'-dA, but none of the other 2'-deoxynucleosides, inhibited the kinase activity of ATR, similar to that of caffeine. The ATR pathway was also abrogated by the inactivation of RCC1 in tsBN2 cells. CONCLUSION The effect of caffeine on cell-cycle control mimics the biological effect of adenine and 2'-dA, both of which inhibit ATR. dATP, a final metabolite of adenine and 2'-dA, is suggested to inhibit ATR, resulting in PCC.
Collapse
Affiliation(s)
- Hitoshi Nishijima
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
127
|
Daniel R, Kao G, Taganov K, Greger JG, Favorova O, Merkel G, Yen TJ, Katz RA, Skalka AM. Evidence that the retroviral DNA integration process triggers an ATR-dependent DNA damage response. Proc Natl Acad Sci U S A 2003; 100:4778-83. [PMID: 12679521 PMCID: PMC153632 DOI: 10.1073/pnas.0730887100] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Caffeine is an efficient inhibitor of cellular DNA repair, likely through its effects on ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related) kinases. Here, we show that caffeine treatment causes a dose-dependent reduction in the total amount of HIV-1 and avian sarcoma virus retroviral vector DNA that is joined to host DNA in the population of infected cells and also in the number of transduced cells. These changes were observed at caffeine concentrations that had little or no effect on overall cell growth, synthesis, and nuclear import of the viral DNA, or the activities of the viral integrase in vitro. Substantial reductions in the amount of host-viral-joined DNA in the infected population, and in the number of transductants, were also observed in the presence of a dominant-negative form of the ATR protein, ATRkd. After infection, a significant fraction of these cells undergoes cell death. In contrast, retroviral transduction is not impeded in ATM-deficient cells, and addition of caffeine leads to the same reduction that was observed in ATM-proficient cells. These results suggest that activity of the ATR kinase, but not the ATM kinase, is required for successful completion of the viral DNA integration process and/or survival of transduced cells. Components of the cellular DNA damage repair response may represent potential targets for antiretroviral drug development.
Collapse
Affiliation(s)
- René Daniel
- Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Minemoto Y, Uchida S, Ohtsubo M, Shimura M, Sasagawa T, Hirata M, Nakagama H, Ishizaka Y, Yamashita K. Loss of p53 induces M-phase retardation following G2 DNA damage checkpoint abrogation. Arch Biochem Biophys 2003; 412:13-9. [PMID: 12646262 DOI: 10.1016/s0003-9861(03)00010-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most cell lines that lack functional p53 protein are arrested in the G2 phase of the cell cycle due to DNA damage. When the G2 checkpoint is abrogated, these cells are forced into mitotic catastrophe. A549 lung adenocarcinoma cells, in which p53 was eliminated with the HPV16 E6 gene, exhibited efficient arrest in the G2 phase when treated with adriamycin. Administration of caffeine to G2-arrested cells induced a drastic change in cell phenotype, the nature of which depended on the status of p53. Flow cytometric and microscopic observations revealed that cells that either contained or lacked p53 resumed their cell cycles and entered mitosis upon caffeine treatment. However, transit to the M phase was slower in p53-negative cells than in p53-positive cells. Consistent with these observations, CDK1 activity was maintained at high levels, along with stable cyclin B1, in p53-negative cells. The addition of butyrolactone I, which is an inhibitor of CDK1 and CDK2, to the p53-negative cells reduced the floating round cell population and induced the disappearance of cyclin B1. These results suggest a relationship between the p53 pathway and the ubiquitin-mediated degradation of mitotic cyclins and possible cross-talk between the G2-DNA damage checkpoint and the mitotic checkpoint.
Collapse
Affiliation(s)
- Yuzuru Minemoto
- Department of Life Science, Graduate School of Natural Science and Technology, General Education Hall, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Wang X, Zalcenstein A, Oren M. Nitric oxide promotes p53 nuclear retention and sensitizes neuroblastoma cells to apoptosis by ionizing radiation. Cell Death Differ 2003; 10:468-76. [PMID: 12719724 DOI: 10.1038/sj.cdd.4401181] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nitric oxide (NO) is a potent activator of the p53 tumor suppressor protein. However, the mechanisms underlying p53 activation by NO have not been fully elucidated. We previously reported that a rapid downregulation of Mdm2 by NO may contribute to the early phase of p53 activation. Here we show that NO promotes p53 nuclear retention and inhibits Mdm2-mediated p53 nuclear export. NO induces phosphorylation of p53 on serine 15, which does not require ATM but rather appears to depend on the ATM-related ATR kinase. An ATR-kinase dead mutant or caffeine, which blocks the kinase activity of ATR, effectively abolishes the ability of NO to cause p53 nuclear retention, concomitant with its inhibition of p53 serine 15 phosphorylation. Of note, NO enhances markedly the ability of low-dose ionizing radiation to elicit apoptotic killing of neuroblastoma cells expressing cytoplasmic wild-type p53. These findings imply that, through augmenting p53 nuclear retention, NO can sensitize tumor cells to p53-dependent apoptosis. Thus, NO donors may potentially increase the efficacy of radiotherapy for treatment of certain types of cancer.
Collapse
Affiliation(s)
- X Wang
- 1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
130
|
Wang X, Wang H, Iliakis G, Wang Y. Caffeine-induced radiosensitization is independent of nonhomologous end joining of DNA double-strand breaks. Radiat Res 2003; 159:426-32. [PMID: 12600246 DOI: 10.1667/0033-7587(2003)159[0426:ciriio]2.0.co;2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
After exposure to ionizing radiation, proliferating cells actively slow down progression through the cell cycle through the activation of checkpoints to provide time for repair. Two major complementary DNA double-strand break (DSB) repair pathways exist in mammalian cells, homologous recombination repair (HRR) and nonhomologous end joining (NHEJ). The relationship between checkpoint activation and these two types of DNA DSB repair pathways is not clear. Caffeine, as a nonspecific inhibitor of ATM and ATR, abolishes multi-checkpoint responses and sensitizes cells to radiation-induced killing. However, it remains unknown which DNA repair process, NHEJ or HRR, or both, is affected by caffeine-abolished checkpoint responses. We report here that caffeine abolishes the radiation-induced G(2)-phase checkpoint and efficiently sensitizes both NHEJ-proficient and NHEJ-deficient mammalian cells to radiation-induced killing without affecting NHEJ. Our results indicate that caffeine-induced radiosensitization occurs by affecting an NHEJ-independent process, possibly HRR.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Radiation Oncology, Kimmel Cancer Center of Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
131
|
Hideshima T, Mitsiades C, Akiyama M, Hayashi T, Chauhan D, Richardson P, Schlossman R, Podar K, Munshi NC, Mitsiades N, Anderson KC. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 2003; 101:1530-4. [PMID: 12393500 DOI: 10.1182/blood-2002-08-2543] [Citation(s) in RCA: 449] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently shown that proteasome inhibitor PS-341 induces apoptosis in drug-resistant multiple myeloma (MM) cells, inhibits binding of MM cells in the bone marrow microenvironment, and inhibits cytokines mediating MM cell growth, survival, drug resistance, and migration in vitro. PS-341 also inhibits human MM cell growth and prolongs survival in a SCID mouse model. Importantly, PS-341 has achieved remarkable clinical responses in patients with refractory relapsed MM. We here demonstrate molecular mechanisms whereby PS-341 mediates anti-MM activity by inducing p53 and MDM2 protein expression; inducing the phosphorylation (Ser15) of p53 protein; activating c-Jun NH(2)-terminal kinase (JNK), caspase-8, and caspase-3; and cleaving the DNA protein kinase catalytic subunit, ATM, and MDM2. Inhibition of JNK activity abrogates PS-341-induced MM cell death. These studies identify molecular targets of PS-341 and provide the rationale for the development of second-generation, more targeted therapies.
Collapse
Affiliation(s)
- Teru Hideshima
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Clay-Farrace L, Pelizon C, Santamaria D, Pines J, Laskey RA. Human replication protein Cdc6 prevents mitosis through a checkpoint mechanism that implicates Chk1. EMBO J 2003; 22:704-12. [PMID: 12554670 PMCID: PMC140731 DOI: 10.1093/emboj/cdg046] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In yeasts, the replication protein Cdc6/Cdc18 is required for the initiation of DNA replication and also for coupling S phase with the following mitosis. In metazoans a role for Cdc6 has only been shown in S phase entry. Here we provide evidence that human Cdc6 (HuCdc6) also regulates the onset of mitosis, as overexpression of HuCdc6 in G(2) phase cells prevents entry into mitosis. This block is abolished when HuCdc6 is expressed together with a constitutively active Cyclin B/CDK1 complex or with Cdc25B or Cdc25C. An inhibitor of Chk1 kinase activity, UCN-01, overcomes the HuCdc6 mediated G(2) arrest indicating that HuCdc6 blocks cells in G(2) phase via a checkpoint pathway involving Chk1. When HuCdc6 is overexpressed in G(2), we detected phosphorylation of Chk1. Thus, HuCdc6 can trigger a checkpoint response, which could ensure that all DNA is replicated before mitotic entry. We also present evidence that the ability of HuCdc6 to block mitosis may be regulated by its phosphorylation.
Collapse
Affiliation(s)
- Lorena Clay-Farrace
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, Wellcome/Cancer Research UK Institute, Tennis Court Road, Cambridge CB2 1QR, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Corresponding author e-mail:
| | - Cristina Pelizon
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, Wellcome/Cancer Research UK Institute, Tennis Court Road, Cambridge CB2 1QR, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Corresponding author e-mail:
| | - David Santamaria
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, Wellcome/Cancer Research UK Institute, Tennis Court Road, Cambridge CB2 1QR, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Corresponding author e-mail:
| | - Jonathon Pines
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, Wellcome/Cancer Research UK Institute, Tennis Court Road, Cambridge CB2 1QR, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Corresponding author e-mail:
| | - Ronald A. Laskey
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, Wellcome/Cancer Research UK Institute, Tennis Court Road, Cambridge CB2 1QR, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Corresponding author e-mail:
| |
Collapse
|
133
|
O'Reilly MA, Staversky RJ, Finkelstein JN, Keng PC. Activation of the G2 cell cycle checkpoint enhances survival of epithelial cells exposed to hyperoxia. Am J Physiol Lung Cell Mol Physiol 2003; 284:L368-75. [PMID: 12388347 DOI: 10.1152/ajplung.00299.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species produced during hyperoxia damage DNA, inhibit proliferation in G1- through p53-dependent activation of p21(Cip1/WAF1/Sdi1), and kill cells. Because checkpoint activation protects cells from genotoxic stress, we investigated cell proliferation and survival of the murine type II epithelial cell line MLE15 during hyperoxia. These cells were chosen for study because they express Simian large and small-T antigens, which transform cells in part by disrupting the p53-dependent G1 checkpoint. Cell counts, 5-bromo-2'-deoxyuridine labeling, and flow cytometry revealed that hyperoxia slowed cell cycle progression after one replication, resulting in a pronounced G2 arrest by 72 h. Addition of caffeine, which inactivates the G2 checkpoint, diminished the percentage of hyperoxic cells in G2 and increased the percentage in sub-G1 and G1. Abrogation of the G2 checkpoint was associated with enhanced oxygen-induced DNA strand breaks and cell death. Caffeine did not affect DNA integrity or viability of cells exposed to room air. Similarly, caffeine abrogated the G2 checkpoint in hyperoxic A549 epithelial cells and enhanced oxygen-induced toxicity. These data indicate that hyperoxia rapidly inhibits proliferation after one cell cycle and that the G2 checkpoint is critical for limiting DNA damage and cell death.
Collapse
Affiliation(s)
- Michael A O'Reilly
- Department of Pediatrics, Box 850, School of Medicine and Dentistry, The University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | | | |
Collapse
|
134
|
Porta M, Ayude D, Alguacil J, Jariod M. Exploring environmental causes of altered ras effects: fragmentation plus integration? Mol Carcinog 2003; 36:45-52. [PMID: 12557259 DOI: 10.1002/mc.10093] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutations in ras genes are the most common abnormality of oncogenes in human cancer and a major example of activation by point mutation. Experimental and epidemiological studies support the notion that Ki-ras activation and expression may be chemically related. We discuss the potential role of several environmental compounds in the induction or promotion of ras mutations in humans, with a focus on exocrine pancreatic cancer, the human tumor with the highest prevalence at diagnosis of Ki-ras mutations. Organochlorine compounds, organic solvents, and coffee compounds may play an indirect role in causing Ki-ras mutations, rather than as direct inducers of the mutations. Although for some organochlorine compounds the induction of point mutations in ras oncogenes cannot be excluded, it seems more likely that the effects of these compounds are mediated through nongenomic or indirectly genotoxic mechanisms of action. Organic solvents also may act via enzymatic induction of ras mutagens or by providing a proliferation advantage to ras-mutated cell clones. In exocrine pancreatic cancer, caffeine, other coffee compounds, or other factors with which coffee drinking is associated could modulate Ki-ras activation by interfering with DNA repair, cell-cycle checkpoints, and apoptosis. Asbestos, cigarette smoking, and some dietary factors also may be involved in the initiation or the promotion of Ki-ras mutations in lung and colon cancers. Further development of the mechanistic scenarios proposed here could contribute to a meaningful integration of biological, clinical, and environmental knowledge on the causes of altered ras effects.
Collapse
Affiliation(s)
- Miquel Porta
- Institut Municipal d'Investigació Médica, Barcelona, Spain
| | | | | | | |
Collapse
|
135
|
Weiss RS, Leder P, Vaziri C. Critical role for mouse Hus1 in an S-phase DNA damage cell cycle checkpoint. Mol Cell Biol 2003; 23:791-803. [PMID: 12529385 PMCID: PMC140711 DOI: 10.1128/mcb.23.3.791-803.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2002] [Revised: 09/30/2002] [Accepted: 11/01/2002] [Indexed: 01/31/2023] Open
Abstract
Mouse Hus1 encodes an evolutionarily conserved DNA damage response protein. In this study we examined how targeted deletion of Hus1 affects cell cycle checkpoint responses to genotoxic stress. Unlike hus1(-) fission yeast (Schizosaccharomyces pombe) cells, which are defective for the G(2)/M DNA damage checkpoint, Hus1-null mouse cells did not inappropriately enter mitosis following genotoxin treatment. However, Hus1-deficient cells displayed a striking S-phase DNA damage checkpoint defect. Whereas wild-type cells transiently repressed DNA replication in response to benzo(a)pyrene dihydrodiol epoxide (BPDE), a genotoxin that causes bulky DNA adducts, Hus1-null cells maintained relatively high levels of DNA synthesis following treatment with this agent. However, when treated with DNA strand break-inducing agents such as ionizing radiation (IR), Hus1-deficient cells showed intact S-phase checkpoint responses. Conversely, checkpoint-mediated inhibition of DNA synthesis in response to BPDE did not require NBS1, a component of the IR-responsive S-phase checkpoint pathway. Taken together, these results demonstrate that Hus1 is required specifically for one of two separable mammalian checkpoint pathways that respond to distinct forms of genome damage during S phase.
Collapse
Affiliation(s)
- Robert S Weiss
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
136
|
Kleijn M, Scheper GC, Wilson ML, Tee AR, Proud CG. Localisation and regulation of the eIF4E-binding protein 4E-BP3. FEBS Lett 2002; 532:319-23. [PMID: 12482586 DOI: 10.1016/s0014-5793(02)03694-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cap-binding protein eIF4E-binding protein 3 (4E-BP3) was identified some years ago, but its properties have not been investigated in detail. In this report, we investigated the regulation and localisation of 4E-BP3. We show that 4E-BP3 is present in the nucleus as well as in the cytoplasm in primary T cells, HEK293 cells and HeLa cells. 4E-BP3 was associated with eIF4E in both cell compartments. Furthermore, 4E-BP3/eIF4E association in the cytoplasm was regulated by serum or interleukin-2 starvation in the different cell types. Rapamycin did not affect the association of eIF4E with 4E-BP3 in the cytoplasm or in the nucleus.
Collapse
Affiliation(s)
- Miranda Kleijn
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK.
| | | | | | | | | |
Collapse
|
137
|
Roos-Mattjus P, Vroman BT, Burtelow MA, Rauen M, Eapen AK, Karnitz LM. Genotoxin-induced Rad9-Hus1-Rad1 (9-1-1) chromatin association is an early checkpoint signaling event. J Biol Chem 2002; 277:43809-12. [PMID: 12228248 DOI: 10.1074/jbc.m207272200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rad17, Rad1, Hus1, and Rad9 are key participants in checkpoint signaling pathways that block cell cycle progression in response to genotoxins. Biochemical and molecular modeling data predict that Rad9, Hus1, and Rad1 form a heterotrimeric complex, dubbed 9-1-1, which is loaded onto chromatin by a complex of Rad17 and the four small replication factor C (RFC) subunits (Rad17-RFC) in response to DNA damage. It is unclear what checkpoint proteins or checkpoint signaling events regulate the association of the 9-1-1 complex with DNA. Here we show that genotoxin-induced chromatin binding of 9-1-1 does not require the Rad9-inducible phosphorylation site (Ser-272). Although we found that Rad9 undergoes an additional phosphatidylinositol 3-kinase-related kinase (PIKK)-dependent posttranslational modification, we also show that genotoxin-triggered 9-1-1 chromatin binding does not depend on the catalytic activity of the PIKKs ataxia telangiectasia-mutated (ATM), ataxia telangiectasia and Rad3-related (ATR), or DNA-PK. Additionally, 9-1-1 chromatin binding does not require DNA replication, suggesting that the complex can be loaded onto DNA in response to DNA structures other than stalled DNA replication forks. Collectively, these studies demonstrate that 9-1-1 chromatin binding is a proximal event in the checkpoint signaling cascade.
Collapse
Affiliation(s)
- Pia Roos-Mattjus
- Department of Biochemistry and Molecular Biology, Mayo Graduate School, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
138
|
Noguchi K, Fukazawa H, Murakami Y, Uehara Y. Nek11, a new member of the NIMA family of kinases, involved in DNA replication and genotoxic stress responses. J Biol Chem 2002; 277:39655-65. [PMID: 12154088 DOI: 10.1074/jbc.m204599200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication and genotoxic stresses activate various checkpoint-associated protein kinases, and checkpoint dysfunction often leads to cell lethality. Here, we have identified new members of the mammalian NIMA family of kinases, termed Nek11L and Nek11S (NIMA-related kinase 11 Long and Short isoform) as novel DNA replication/damage stresses-responsive kinases. Molecular cloning and biochemical studies showed that the catalytic domain of Nek11 is most similar to Nek4 and Nek3, and substrate specificity of Nek11L is distinguishable from those of NIMA and Nek2. The expression of nek11L mRNA increased through S to G(2)/M phase, and subcellular localization of Nek11 protein altered between interphase and prometaphase, suggesting multiple roles of Nek11. We found an activation of Nek11 kinase activity when cells were treated with various DNA-damaging agents and replication inhibitors, and this activation of Nek11 was suppressed by caffeine in HeLaS3 cells. The transient expression of wild-type Nek11L enhanced the aphidicolin-induced S-phase arrest, whereas the aphidicolin-induced S-phase arrest was reduced in the U2OS cell lines expressing kinase-negative Nek11L (K61R), and these cells were more sensitive to aphidicolin-induced cell lethality. Collectively, these results suggest that Nek11 has a role in the S-phase checkpoint downstream of the caffeine-sensitive pathway.
Collapse
Affiliation(s)
- Kohji Noguchi
- Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | |
Collapse
|
139
|
Vaze MB, Pellicioli A, Lee SE, Ira G, Liberi G, Arbel-Eden A, Foiani M, Haber JE. Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol Cell 2002; 10:373-85. [PMID: 12191482 DOI: 10.1016/s1097-2765(02)00593-2] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In Saccharomyces strains in which homologous recombination is delayed sufficiently to activate the DNA damage checkpoint, Rad53p checkpoint kinase activity appears 1 hr after DSB induction and disappears soon after completion of repair. Cells lacking Srs2p helicase fail to recover even though they apparently complete DNA repair; Rad53p kinase remains activated. srs2Delta cells also fail to adapt when DSB repair is prevented. The recovery defect of srs2Delta is suppressed in mec1Delta strains lacking the checkpoint or when DSB repair occurs before checkpoint activation. Permanent preanaphase arrest of srs2Delta cells is reversed by the addition of caffeine after cells have arrested. Thus, in addition to its roles in recombination, Srs2p appears to be needed to turn off the DNA damage checkpoint.
Collapse
Affiliation(s)
- Moreshwar B Vaze
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Sohn TA, Bansal R, Su GH, Murphy KM, Kern SE. High-throughput measurement of the Tp53 response to anticancer drugs and random compounds using a stably integrated Tp53-responsive luciferase reporter. Carcinogenesis 2002; 23:949-57. [PMID: 12082016 DOI: 10.1093/carcin/23.6.949] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human Tp53 is normally a short-lived protein. Tp53 protein is stabilized and levels are increased in response to a variety of cellular stresses, including those induced by genotoxic anticancer drugs and environmental exposures. To engineer an efficient assay based on this property, we constructed and integrated a Tp53-specific reporter system into human cancer cells, termed p53R cells. We tested a range of conventional chemotherapeutic agents as well as over 16 000 diverse small compounds. Ionizing radiation and two-thirds of conventional chemotherapeutic agents, but only 0.2% of diverse compounds activated Tp53 activity by two-fold or greater, consistent with the presumptive genotoxic activation of Tp53 function. Cytotoxicity was independent of TP53 genetic status when paired, syngeneic wild-type TP53 and TP53-null cells in culture were treated with compounds that activated Tp53. From the unbiased survey of random compounds, Tp53 activation was strongly induced by an analog of AMSA, an investigational anti-cancer agent. Tp53 was also strongly induced by an N-oxide of quinoline and by dabequine, an experimental antimalarial evaluated in humans; dabequine was reported to be negative in other screens of mutagenicity and clastogenicity but carcinogenic in animal studies. Further exploration of antimalarial compounds identified the common medicinals chloroquine, quinacrine, and amodiaquine as Tp53-inducers. Flavonoids are known to have DNA topoisomerase activity, a Tp53-inducing activity that is confirmed in the assay. A reported clinical association of Tp53 immunopositive colorectal cancers with use of the antihypertensive agents was extended by the demonstration of hydralazine and nifedipine as Tp53-inducers. p53R cells represent an efficient Tp53 functional assay to identify chemicals and other agents with interesting biologic properties, including genotoxicity. This assay may have utility in the identification of novel chemotherapeutic agents, as an adjunct in the pharmaceutical optimization of lead compounds, in the exploration of environmental exposures, and in chemical probing of the Tp53 pathway.
Collapse
Affiliation(s)
- Taylor A Sohn
- Department of Surgery, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
141
|
Unsal-Kaçmaz K, Makhov AM, Griffith JD, Sancar A. Preferential binding of ATR protein to UV-damaged DNA. Proc Natl Acad Sci U S A 2002; 99:6673-8. [PMID: 12011431 PMCID: PMC124461 DOI: 10.1073/pnas.102167799] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ATR protein is a member of the phosphoinositide 3-kinase-related kinase family and plays an important role in UV-induced DNA damage checkpoint response. Its role as a signal transducer in cell cycle checkpoint is well established, but it is currently unclear whether ATR functions as a damage sensor as well. Here we have purified the ATR protein and investigated its interaction with DNA by using biochemical analysis and electron microscopy. We find that ATR is a DNA-binding protein with higher affinity to UV-damaged than undamaged DNA. In addition, damaged DNA stimulates the kinase activity of ATR to a significantly higher level than undamaged DNA. Our data suggest that ATR may function as an initial sensor in the DNA damage checkpoint response.
Collapse
Affiliation(s)
- Keziban Unsal-Kaçmaz
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
142
|
Abstract
The Lcd1p/Mec1p complex is crucial for normal S phase progression and for signaling DNA damage. We show that Lcd1p/Ddc2p and Mec1p in cell extracts bind to DNA ends. Although Lcd1p binds DNA independently of Mec1p, recruitment of Mec1p to DNA requires Lcd1p. DNA binding by Lcd1p is also independent of Rad9p, Rad17p, and Rad24p. Recombinant Lcd1p binds DNA, and this is impaired by Lcd1p mutations that abrogate its in vivo functions. Furthermore, Mec1p is recruited to cdc13-induced DNA damage and HO endonuclease-induced double-strand breaks in vivo. This requires Lcd1p, and recruitment of Lcd1p/Mec1p to cdc13-induced damage is abolished by Lcd1p mutations that abrogate its in vivo functions. Recruitment of Lcd1p to these lesions is independent of Mec1p and Rad9p/Rad24p. Thus, recruitment of Mec1p to DNA lesions by Lcd1p is crucial for the DNA damage response.
Collapse
Affiliation(s)
- John Rouse
- Wellcome Trust and Cancer Research UK, Institute of Cancer and Developmental Biology, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | | |
Collapse
|
143
|
Tee AR, Proud CG. Caspase cleavage of initiation factor 4E-binding protein 1 yields a dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif. Mol Cell Biol 2002; 22:1674-83. [PMID: 11865047 PMCID: PMC135612 DOI: 10.1128/mcb.22.6.1674-1683.2002] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic initiation factor 4E (eIF4E) binding proteins (4E-BPs) regulate the assembly of initiation complexes required for cap-dependent mRNA translation. 4E-BP1 undergoes insulin-stimulated phosphorylation, resulting in its release from eIF4E, allowing initiation complex assembly. 4E-BP1 undergoes caspase-dependent cleavage in cells undergoing apoptosis. Here we show that cleavage occurs after Asp24, giving rise to the N-terminally truncated polypeptide Delta4E-BP1, which possesses the eIF4E-binding site and all the known phosphorylation sites. Delta4E-BP1 binds to eIF4E and fails to become sufficiently phosphorylated upon insulin stimulation to bring about its release from eIF4E. Therefore, Delta4E-BP1 acts as a potent inhibitor of cap-dependent translation. Using a mutagenesis approach, we identify a novel regulatory motif of four amino acids (RAIP) which lies within the first 24 residues of 4E-BP1 and which is necessary for efficient phosphorylation of 4E-BP1. This motif is conserved among sequences of 4E-BP1 and 4E-BP2 but is absent from 4E-BP3. Insulin increased the phosphorylation of 4E-BP3 but not sufficiently to cause its release from eIF4E. However, a chimeric protein that was generated by replacing the N terminus of 4E-BP3 with the N-terminal sequence of 4E-BP1 (containing this RAIP motif) underwent a higher degree of phosphorylation and was released from eIF4E. This suggests that the N-terminal sequence of 4E-BP1 is required for optimal regulation of 4E-BPs by insulin.
Collapse
Affiliation(s)
- Andrew R Tee
- Division of Molecular Physiology, School of Life Sciences, Medical Sciences Institute, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | | |
Collapse
|
144
|
Nghiem P, Park PK, Kim Ys YS, Desai BN, Schreiber SL. ATR is not required for p53 activation but synergizes with p53 in the replication checkpoint. J Biol Chem 2002; 277:4428-34. [PMID: 11711532 DOI: 10.1074/jbc.m106113200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATR (ataxia telangiectasia and Rad-3-related) is a protein kinase required for survival after DNA damage. A critical role for ATR has been hypothesized to be the regulation of p53 and other cell cycle checkpoints. ATR has been shown to phosphorylate p53 at Ser(15), and this damage-induced phosphorylation is diminished by expression of a catalytically inactive (ATR-kd) mutant. p53 function could not be examined directly in prior studies of ATR, however, because p53 was mutant or because cells expressed the SV40 large T antigen that blocks p53 function. To test the interactions of ATR and p53 directly we generated human U2OS cell lines inducible for either wild-type or kinase-dead ATR that also have an intact p53 pathway. Indeed, ATR-kd expression sensitized these cells to DNA damage and caused a transient decrease in damage-induced serine 15 phosphorylation of p53. However, we found that the effects of ATR-kd expression do not result in blocking the response of p53 to DNA damage. Specifically, prior ATR-kd expression had no effect on DNA damage-induced p53 protein up-regulation, p53-DNA binding, p21 mRNA up-regulation, or G(1) arrest. Instead of promoting survival via p53 regulation, we found that ATR protects cells by delaying the generation of mitotic phosphoproteins and inhibiting premature chromatin condensation after DNA damage or hydroxyurea. Although p53 inhibition (by E6 or MDM2 expression) had little effect on premature chromatin condensation, when combined with ATR-kd expression there was a marked loss of the replication checkpoint. We conclude that ATR and p53 can function independently but that loss of both leads to synergistic disruption of the replication checkpoint.
Collapse
Affiliation(s)
- Paul Nghiem
- Department of Chemistry, Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
145
|
Mårtensson S, Hammarsten O. DNA-dependent protein kinase catalytic subunit. Structural requirements for kinase activation by DNA ends. J Biol Chem 2002; 277:3020-9. [PMID: 11700303 DOI: 10.1074/jbc.m106711200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA-dependent protein kinase (DNA-PK) is a DNA end-activated protein kinase composed of a catalytic subunit, DNA-PKcs, and a DNA binding subunit, Ku, that is involved in repair of DNA double-stranded breaks (DSBs). We have previously shown that DNA-PKcs interacts with single-stranded DNA (ssDNA) ends with a separate ssDNA binding site to be activated for its kinase activity. Here, the properties of the ssDNA binding site were examined by using DNA fragments with modified ssDNA extensions. DNA fragments with a wide range of ssDNA modifictations activated DNA-PKcs, indicating a relaxed specificity for the chemical structure of terminal nucleotides of a DSB. Methyl substitution of the phosphate backbone impaired kinase activation but not binding, indicating that interaction with the DNA backbone was involved in kinase activation. Experiments with RNA and RNA/DNA hybrid fragments suggested that the discrimination between RNA and DNA ends resides in the double-stranded DNA binding function of DNA-PKcs. DNA fragments exposing only one ssDNA end activated DNA-PKcs poorly, suggesting that DNA-PKcs distinguishes between DSBs and ssDNA breaks by simultaneous interaction with two ssDNA ends. These properties potentially explain how DNA-PKcs can be specifically activated by DSBs but still recognize the diverse chemical structures exposed when DSBs are introduced by ionizing radiation.
Collapse
Affiliation(s)
- Susanne Mårtensson
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg University, SE-413 45 Gothenburg, Sweden
| | | |
Collapse
|
146
|
Kai T, Matsunaga R, Eguchi M, Kamiya H, Kasai H, Suzuki M, Izuta S. An oxidized nucleotide affects DNA replication through activation of protein kinases in Xenopus egg lysates. Nucleic Acids Res 2002; 30:569-73. [PMID: 11788720 PMCID: PMC99820 DOI: 10.1093/nar/30.2.569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To elucidate the response to oxidative stress in eukaryotic cells, the effect of an oxidized nucleotide, 8-oxo-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP), generated from dGTP with an active oxygen, on DNA synthesis was studied using a cell-free DNA replication system derived from Xenopus egg lysates with a single-stranded DNA template. Amounts of newly synthesized DNA were reduced according to the increasing concentration of 8-oxo-dGTP. Pulse labeling analysis revealed that 8-oxo-dGTP could delay DNA synthesis by reducing the rate of chain elongation. This delay was recovered by addition of a protein kinase inhibitor, staurosporine or bisindolylmaleimide I. These results indicate that a staurosporine- or bisindolylmaleimide I-sensitive protein kinase, such as a protein kinase C family member, may contribute to the delay of DNA synthesis by 8-oxo-dGTP. UV-irradiated single-stranded DNA also caused a delay of DNA synthesis on the undamaged template in the lysates. However, this delay was not recovered by staurosporine or bisindolylmaleimide I. Therefore, the mechanism of delay of DNA synthesis by 8-oxo-dGTP may be different from that by UV lesions. This is the first report that demonstrates an effect of an oxidized nucleotide on DNA replication in eukaryotes.
Collapse
Affiliation(s)
- Toshinori Kai
- Graduate School of Science and Technology, Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
147
|
Jha MN, Bamburg JR, Bernstein BW, Bedford JS. Caffeine eliminates gamma-ray-induced G2-phase delay in human tumor cells but not in normal cells. Radiat Res 2002; 157:26-31. [PMID: 11754638 DOI: 10.1667/0033-7587(2002)157[0026:cegrig]2.0.co;2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It has been known for many years that caffeine reduces or eliminates the G2-phase cell cycle delay normally seen in human HeLa cells or Chinese hamster ovary (CHO) cells after exposure to X or gamma rays. In light of our recent demonstration of a consistent difference between human normal and tumor cells in a G2-phase checkpoint response in the presence of microtubule-active drugs, we examined the effect of caffeine on the G2-phase delays after exposure to gamma rays for cells of three human normal cell lines (GM2149, GM4626, AG1522) and three human tumor cell lines (HeLa, MCF7, OVGI). The G2-phase delays after a dose of 1 Gy were similar for all six cell lines. In agreement with the above-mentioned reports for HeLa and CHO cells, we also observed that the G2-phase delays were eliminated by caffeine in the tumor cell lines. In sharp contrast, caffeine did not eliminate or even reduce the gamma-ray-induced G2-phase delays in any of the human normal cell lines. Since caffeine has several effects in cells, including the inhibition of cAMP and cGMP phosphodiesterases, as well as causing a release of Ca(++) from intracellular stores, we evaluated the effects of other drugs affecting these processes on radiation-induced G2-phase delays in the tumor cell lines. Drugs that inhibit cAMP or cGMP phosphodiesterases did not eliminate the radiation-induced G2-phase delay either separately or in combination. The ability of caffeine to eliminate radiation-induced G2-phase delay was, however, partially reduced by ryanodine and eliminated by thapsigargin, both of which can modulate intracellular calcium, but by different mechanisms. To determine if caffeine was acting through the release of calcium from intracellular stores, calcium was monitored in living cells using a fluorescent calcium indicator, furaII, before and after the addition of caffeine. No calcium release was seen after the addition of caffeine in either OVGI tumor cells or GM2149 normal cells, even though a large calcium release was measured in parallel experiments with ciliary neurons. Thus it is likely that caffeine is eliminating the radiation-induced G2-phase delay through a Ca(++)-independent mechanism, such as the inhibition of a cell cycle-regulating kinase.
Collapse
Affiliation(s)
- Mitra N Jha
- Department of Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523-1673, USA
| | | | | | | |
Collapse
|
148
|
Shann YJ, Hsu MT. Cloning and characterization of liver-specific isoform of Chk1 gene from rat. J Biol Chem 2001; 276:48863-70. [PMID: 11687578 DOI: 10.1074/jbc.m108253200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated and characterized an isoform of protein kinase Chk1 gene from rat liver and a rat liver cDNA library by 5'-rapid amplification of cDNA ends. The gene (Cil) contains the C-terminal region of the Chk1 gene, but the 5'-end is derived from a sequence in the intron of Chk1 preceding the C-terminal domain by differential RNA splicing. The kinase domain of Chk1 gene is absent in this isoform. Tissue RNA and protein blot analyses indicated that Cil was specifically expressed only in rat liver, and its expression increased with liver development. Expression of Cil was found to be reduced in three rat hepatoma cell lines examined. A promoter trap experiment suggested that a promoter was located in the intron preceding the C-terminal domain of Chk1, and transcription from this novel promoter generated the new 5' noncoding exon of Cil. Thus Cil was generated by both alternate promoter usage and differential RNA splicing. UV irradiation induced caffeine-sensitive phosphorylation of both Chk1 and Cil at Ser-345 in Chk1 and its equivalent site in Cil, implying a role for ATR kinase in the phosphorylation of both proteins. We demonstrated the interaction between the kinase domain of Chk1 and Cil using a yeast two-hybrid assay and pull-down technique. In contrast to the effect of Chk1, Cil was found to decrease the transactivating function of p53, and the S63A mutation of Cil abolished this effect. These results suggest that Cil may serve as a dominant negative competitor of Chk1 as suggested previously.
Collapse
Affiliation(s)
- Y J Shann
- Institute of Biochemistry, National Yang-Ming University, 112, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
149
|
van Vugt MA, Smits VA, Klompmaker R, Medema RH. Inhibition of Polo-like kinase-1 by DNA damage occurs in an ATM- or ATR-dependent fashion. J Biol Chem 2001; 276:41656-60. [PMID: 11514540 DOI: 10.1074/jbc.m101831200] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polo-like kinases play multiple roles in different phases of mitosis. We have recently shown that the mammalian polo-like kinase, Plk1, is inhibited in response to DNA damage and that this inhibition may lead to cell cycle arrests at multiple points in mitosis. Here we have investigated the role of the checkpoint kinases ATM (ataxia telangiectasia mutated) and ATR (ATM- and Rad3-related) in DNA damage-induced inhibition of Plk1. We show that inhibition of Plk1 kinase activity is efficiently blocked by the radio-sensitizing agent caffeine. Using ATM(-/-) cells we show that under certain circumstances, inhibition of Plk1 by DNA-damaging agents critically depends on ATM. In addition, we show that UV radiation also causes inhibition of Plk1, and we present evidence that this inhibition is mediated by ATR. Taken together, our data demonstrate that ATM and ATR can regulate Plk1 kinase activity in response to a variety of DNA-damaging agents.
Collapse
Affiliation(s)
- M A van Vugt
- Department of Molecular Biology, H-8, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
150
|
Thakur M, Wernick M, Collins C, Limoli CL, Crowley E, Cleaver JE. DNA polymerase eta undergoes alternative splicing, protects against UV sensitivity and apoptosis, and suppresses Mre11-dependent recombination. Genes Chromosomes Cancer 2001; 32:222-35. [PMID: 11579462 DOI: 10.1002/gcc.1186] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Polymerase eta (pol eta) is a low-fidelity DNA polymerase that is the product of the gene, POLH, associated with the human XP variant disorder in which there is an extremely high level of solar-induced skin carcinogenesis. The complete human genomic sequence spans about 40 kb containing 10 coding exons and a cDNA of 2.14 kb; exon I is untranslated and is 6 kb upstream from the first coding exon. Using bacterial artificial chromosomes (BACs), the gene was mapped to human chromosome band 6p21 and mouse band 17D. The gene is expressed in most tissues, except for very low or undetectable levels in peripheral lymphocytes, fetal spleen, and adult muscle; exon II, however, is frequently spliced out in normal cells and in almost half the transcripts in the testis and fetal liver. Expression of POLH in a multicopy episomal vector proved nonviable, suggesting that overexpression is toxic. Expression from chromosomally integrated linear copies using either an EF1-alpha or CMV promoter was functional, resulting in cell lines with low or high levels of pol eta protein, respectively. Point mutations in the center of the gene and in a C-terminal cysteine and deletion of exon II resulted in inactivation, but addition of a terminal 3 amino acid C-terminal tag, or an N- or C-terminal green fluorescent protein, had no effect on function. A low level of expression of pol eta eliminated hMre11 recombination and partially restored UV survival, but did not prevent UV-induced apoptosis, which required higher levels of expression. Polymerase eta is therefore involved in S-phase checkpoint and signal transduction pathways that lead to arrest in S, apoptosis, and recombination. In normal cells, the predominant mechanism of replication of UV damage involves pol eta-dependent bypass, and Mre11-dependent recombination that acts is a secondary, backup mechanism when cells are severely depleted of pol eta.
Collapse
Affiliation(s)
- M Thakur
- UCSF Comprehensive Cancer Center, University of California, San Francisco, California 94115, USA
| | | | | | | | | | | |
Collapse
|