101
|
Barbara KE, Willis KA, Haley TM, Deminoff SJ, Santangelo GM. Coiled coil structures and transcription: an analysis of the S. cerevisiae coilome. Mol Genet Genomics 2007; 278:135-47. [PMID: 17476531 DOI: 10.1007/s00438-007-0237-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 03/22/2007] [Indexed: 12/25/2022]
Abstract
The alpha-helical coiled coil is a simple but widespread motif that is an integral feature of many cellular structures. Coiled coils allow monomeric building blocks to form complex assemblages that can serve as molecular motors and springs. Previous parametrically delimited analyses of the distribution of coiled coils in the genomes of diverse organisms, including Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans and Homo sapiens, have identified conserved biological processes that make use of this versatile motif. Here we present a comprehensive inventory of the set of coiled coil proteins in S. cerevisiae by combining multiple coiled coil prediction algorithms with extensive literature curation. Our analysis of this set of proteins, which we call the coilome, reveals a wider role for this motif in transcription than was anticipated, particularly with respect to the category that includes nucleocytoplasmic shuttling factors involved in transcriptional regulation. We also show that the constitutively nuclear yeast transcription factor Gcr1 is homologous to the mammalian transcription factor MLL3, and that two coiled coil domains conserved between these homologs are important for Gcr1 dimerization and function. These data support the hypothesis that coiled coils are required to assemble structures essential for proper functioning of the transcriptional machinery.
Collapse
Affiliation(s)
- Kellie E Barbara
- Mississippi Functional Genomics Network, The University of Southern Mississippi, Hattiesburg, MS, USA
| | | | | | | | | |
Collapse
|
102
|
Nobuhara Y, Kawano S, Kageyama G, Sugiyama D, Saegusa J, Kumagai S. Is SS-A/Ro52 a hydrogen peroxide-sensitive signaling molecule? Antioxid Redox Signal 2007; 9:385-91. [PMID: 17184176 DOI: 10.1089/ars.2006.1480] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SS-A/Ro52 (Ro52) protein is one of the targets of autoantibodies in Sjogren's syndrome and systemic lupus erythematosus. Ro52 structurally belongs to the RING-B-box/coiled-coil family, which appears to carry out diverse functions, but the physiological function of Ro52 remains largely unknown. Here, the authors demonstrate that hydrogen peroxide but not other oxidative stressors induced translocation of Ro52 protein from the cytoplasm to the nucleus and this phenomenon was attenuated by inhibition of MAP kinases, ERK in particular. These findings raise the possibility that SS-A/Ro52 may function as a hydrogen peroxide-selective, oxidative stress-sensitive signaling molecule that is activated via the MAP kinase pathway.
Collapse
Affiliation(s)
- Yumiko Nobuhara
- Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
103
|
Lerner M, Corcoran M, Cepeda D, Nielsen ML, Zubarev R, Pontén F, Uhlén M, Hober S, Grandér D, Sangfelt O. The RBCC gene RFP2 (Leu5) encodes a novel transmembrane E3 ubiquitin ligase involved in ERAD. Mol Biol Cell 2007; 18:1670-82. [PMID: 17314412 PMCID: PMC1855009 DOI: 10.1091/mbc.e06-03-0248] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
RFP2, a gene frequently lost in various malignancies, encodes a protein with RING finger, B-box, and coiled-coil domains that belongs to the RBCC/TRIM family of proteins. Here we demonstrate that Rfp2 is an unstable protein with auto-polyubiquitination activity in vivo and in vitro, implying that Rfp2 acts as a RING E3 ubiquitin ligase. Consequently, Rfp2 ubiquitin ligase activity is dependent on an intact RING domain, as RING deficient mutants fail to drive polyubiquitination in vitro and are stabilized in vivo. Immunopurification and tandem mass spectrometry enabled the identification of several putative Rfp2 interacting proteins localized to the endoplasmic reticulum (ER), including valosin-containing protein (VCP), a protein indispensable for ER-associated degradation (ERAD). Importantly, we also show that Rfp2 regulates the degradation of the known ER proteolytic substrate CD3-delta, but not the N-end rule substrate Ub-R-YFP (yellow fluorescent protein), establishing Rfp2 as a novel E3 ligase involved in ERAD. Finally, we show that Rfp2 contains a C-terminal transmembrane domain indispensable for its localization to the ER and that Rfp2 colocalizes with several ER-resident proteins as analyzed by high-resolution immunostaining. In summary, these data are all consistent with a function for Rfp2 as an ERAD E3 ubiquitin ligase.
Collapse
Affiliation(s)
- Mikael Lerner
- *Department of Oncology/Pathology, Cancercentrum Karolinska, SE-171 76 Stockholm, Sweden
| | - Martin Corcoran
- *Department of Oncology/Pathology, Cancercentrum Karolinska, SE-171 76 Stockholm, Sweden
| | - Diana Cepeda
- *Department of Oncology/Pathology, Cancercentrum Karolinska, SE-171 76 Stockholm, Sweden
| | - Michael L. Nielsen
- Laboratory for Biological and Medical Mass Spectrometry, Uppsala Biomedical Centrum, 751 23 Uppsala, Sweden
| | - Roman Zubarev
- Laboratory for Biological and Medical Mass Spectrometry, Uppsala Biomedical Centrum, 751 23 Uppsala, Sweden
| | - Fredrik Pontén
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden; and
| | - Mathias Uhlén
- Department of Biotechnology, KTH/Alba Nova University Center, SE-106 91 Stockholm, Sweden
| | - Sophia Hober
- Department of Biotechnology, KTH/Alba Nova University Center, SE-106 91 Stockholm, Sweden
| | - Dan Grandér
- *Department of Oncology/Pathology, Cancercentrum Karolinska, SE-171 76 Stockholm, Sweden
| | - Olle Sangfelt
- *Department of Oncology/Pathology, Cancercentrum Karolinska, SE-171 76 Stockholm, Sweden
| |
Collapse
|
104
|
Abstract
The ubiquitin-proteasome system (UPS) is the major nonlysosomal pathway for intracellular protein degradation, generally requiring a covalent linkage of one or more chains of polyubiquitins to the protein intended for degradation. It has become clear that the UPS plays major roles in regulating many cellular processes, including the cell cycle, immune responses, apoptosis, cell signaling, and protein turnover under normal and pathological conditions, as well as in protein quality control by removal of damaged, oxidized, and/or misfolded proteins. This review will present an overview of the structure, biochemistry, and physiology of the UPS with emphasis on its role in the heart, if known. In addition, evidence will be presented supporting the role of certain muscle-specific ubiquitin protein ligases, key regulatory components of the UPS, in regulation of sarcomere protein turnover and cardiomyocyte size and how this might play a role in induction of the hypertrophic phenotype. Moreover, this review will present the evidence suggesting that proteasomal dysfunction may play a role in cardiac pathologies such as myocardial ischemia, congestive heart failure, and myofilament-related and idiopathic-dilated cardiomyopathies, as well as cardiomyocyte loss in the aging heart. Finally, certain pitfalls of proteasome studies will be described with the intent of providing investigators with enough information to avoid these problems. This review should provide current investigators in the field with an up-to-date analysis of the literature and at the same time provide an impetus for new investigators to enter this important and rapidly changing area of research.
Collapse
Affiliation(s)
- Saul R Powell
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
105
|
Nestler M, Martin U, Hortschansky P, Saluz HP, Henke A, Munder T. The zinc containing pro-apoptotic protein siva interacts with the peroxisomal membrane protein pmp22. Mol Cell Biochem 2006; 287:147-55. [PMID: 16683188 DOI: 10.1007/s11010-005-9082-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 11/16/2005] [Indexed: 10/24/2022]
Abstract
Host answers to pathogen attacks define the course of pathogenic events and decide about the fate of the host organism. Infection with coxsackievirus B3 (CVB3) can induce severe myocarditis and pancreatitis. The interplay between host factors and virus components is crucial for the fate of the infected host. As we have shown before, expression of the pro-apoptotic host protein Siva is significantly increased after CVB3 infection, and infected cells are removed by programmed cell death. Analysis of Siva expressed in Escherichia coli revealed that this protein binds three zinc ions, suggesting a rather complex three-dimensional structure. By screening a human heart cDNA library we found a new interaction partner of Siva. The peroxisomal membrane protein PMP22 may be involved in the host response against CVB3. Previous investigations showed that Siva interacts with the cytoplasmic C-terminus of CD27, a member of the tumor necrosis factor receptor group, and transmits an apoptotic signal. With the help of directed two-hybrid assays we determined the N-terminal part of Siva as the binding region for CD27.
Collapse
Affiliation(s)
- Matthias Nestler
- Department of Cell and Molecular Biology, Leibniz-Institute for Natural Product Research and Infection Biology--Hans-Knöll-Institute, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
106
|
Maresca TJ, Niederstrasser H, Weis K, Heald R. Xnf7 contributes to spindle integrity through its microtubule-bundling activity. Curr Biol 2006; 15:1755-61. [PMID: 16213823 DOI: 10.1016/j.cub.2005.08.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 08/17/2005] [Accepted: 08/18/2005] [Indexed: 11/27/2022]
Abstract
Regulation of microtubule dynamics and organization in mitosis by a number of microtubule-associated proteins (MAPs) is required for proper bipolar spindle assembly, yet the precise mechanisms by which many MAPs function are poorly understood. One interesting class of MAPs is known to localize to the nucleus during interphase yet fulfill important spindle functions during mitosis. We have identified Xenopus nuclear factor 7 (Xnf7), a developmental regulator of dorsal-ventral patterning, as a microtubule-binding protein that also associates with the nuclear import receptor importin alpha/beta. Xnf7 localized to interphase nuclei and metaphase spindles both in Xenopus egg extracts and cultured cells. Xnf7-depleted spindles were hypersensitive to microtubule-depolymerizing agents. Functional characterization of Xnf7 revealed that it binds directly to microtubules, exhibits RING-finger-dependent E3-ubiquitin-ligase activity, and has C-terminal-dependent microtubule-bundling activity. The minimal microtubule-bundling domain of Xnf7 was sufficient to rescue the spindle-hypersensitivity phenotype. Thus, we have identified Xnf7 as a nuclear MAP whose microtubule-bundling activity, but not E3-ligase activity, contributes to microtubule organization and spindle integrity. Characterization of the multiple activities of Xnf7 may have implications for understanding human diseases caused by mutations in related proteins.
Collapse
Affiliation(s)
- Thomas J Maresca
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, USA
| | | | | | | |
Collapse
|
107
|
Massiah MA, Simmons BN, Short KM, Cox TC. Solution structure of the RBCC/TRIM B-box1 domain of human MID1: B-box with a RING. J Mol Biol 2006; 358:532-45. [PMID: 16529770 DOI: 10.1016/j.jmb.2006.02.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 01/30/2006] [Accepted: 02/01/2006] [Indexed: 10/25/2022]
Abstract
B-box domains are a defining feature of the tripartite RBCC (RING, B-box, coiled-coil) or TRIM proteins, many of which are E3 ubiquitin ligases. However, little is known about the biological function of B-boxes. In some RBCC/TRIM proteins there is only a single B-box (type 2) domain, while others have both type 1 and type 2 B-box domains in tandem adjacent to their RING domain. These two types of B-boxes share little sequence similarity, except the presence of cysteine and histidine residues: eight in most B-box1 domains and seven in B-box2 domains. We report here the high-resolution solution structure of the first B-box1 domain (from the human RBCC protein, MID1) based on 670 nuclear Overhauser effect (NOE)-derived distance restraints, 12 hydrogen bonds, and 44 dihedral angles. The domain consists of a three-turn alpha-helix, two short beta-strands, and three beta-turns, encompassing Val117 to Pro164, which binds two zinc atoms. One zinc atom is coordinated by cysteine residues 119, 122, 142, 145, while cysteine 134, 137 and histidine 150, 159 coordinate the other. This topology is markedly different from the only other B-box structure reported; that of a type 2 B-box from Xenopus XNF7, which binds a single zinc atom. Of note, the B-box1 structure closely resembles the folds of the RING, ZZ and U-box domains of E3 and E4 ubiquitin enzymes, raising the possibility that the B-box1 domain either has E3 activity itself or enhances the activity of RING type E3 ligases (i.e. confers E4 enzyme activity). The structure of the MID1 B-box1 also reveals two potential protein interaction surfaces. One of these is likely to provide the binding interface for Alpha 4 that is required for the localized turnover of the catalytic subunit of PP2A, the major Ser/Thr phosphatase.
Collapse
Affiliation(s)
- Michael A Massiah
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74075 USA.
| | | | | | | |
Collapse
|
108
|
Miwata K, Chiba T, Horii R, Yamada L, Kubo A, Miyamura D, Satoh N, Satou Y. Systematic analysis of embryonic expression profiles of zinc finger genes in Ciona intestinalis. Dev Biol 2006; 292:546-54. [PMID: 16519883 DOI: 10.1016/j.ydbio.2006.01.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 01/20/2006] [Accepted: 01/21/2006] [Indexed: 11/30/2022]
Abstract
The recent decoding of a number of animal genomes has provided unprecedented information regarding evolution and gene structures, but this information must be supplemented with precise gene annotations and the temporal and spatial expression patterns of individual genes. In the present study, we systematically identified and characterized 566 zinc finger genes in the genome of Ciona intestinalis, an emerging model system for genome-wide studies of development and evolution. Of these genes, 356 genes encoded a potential transcription factor based on putative nucleic acid binding activity or domains of unknown function. We further examined the expression patterns of 225 genes during embryogenesis, and, when considered with a previous study [Imai, K.S., Hino, K., Yagi, K., Satoh, N., Satou, Y., 2004. Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo: towards a comprehensive understanding of gene networks. Development 131, 4047-4058], we have characterized the developmental expression patterns of nearly 85% of the potential zinc finger-containing transcription factors. Overall, zinc finger genes are preferentially maternally expressed with little larval expression during development. The present study provides a valuable reference for genome-wide studies in this species and for future studies wishing to examine zinc finger gene expression patterns in other animals.
Collapse
Affiliation(s)
- Kyoko Miwata
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Durham JT, Brand OM, Arnold M, Reynolds JG, Muthukumar L, Weiler H, Richardson JA, Naya FJ. Myospryn Is a Direct Transcriptional Target for MEF2A That Encodes a Striated Muscle, α-Actinin-interacting, Costamere-localized Protein. J Biol Chem 2006; 281:6841-9. [PMID: 16407236 DOI: 10.1074/jbc.m510499200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The full repertoire of proteins that comprise the striated muscle Z-disc and peripheral structures, such as the costamere, have yet to be discovered. Recent studies suggest that this elaborate protein network, which acts as a structural and signaling center for striated muscle, harbors factors that function as mechanosensors to ensure coordinated contractile activity. Mutations in genes whose products reside in this region often result in skeletal and cardio myopathies, demonstrating the importance of this macromolecular complex in muscle structure and function. Here, we describe the characterization of a direct, downstream target gene for the MEF2A transcription factor encoding a large, muscle-specific protein that localizes to the costamere in striated muscle. This gene, called myospryn, was identified by microarray analysis as a transcript down-regulated in MEF2A knock-out mice. MEF2A knock-out mice develop cardiac failure during the perinatal period with mutant hearts exhibiting several cardiac abnormalities including myofibrillar disarray. Myospryn is the mouse ortholog of a partial human cDNA of unknown function named cardiomyopathy-associated gene 5 (CMYA5). Myospryn is expressed as a single, large transcript of approximately 12 kilobases in adult heart and skeletal muscle with an open reading frame of 3739 amino acids. This protein, belonging to the tripartite motif superfamily of proteins, contains a B-box coiled-coil (BBC), two fibronectin type III (FN3) repeats, and SPRY domains and interacts with the sarcomeric Z-disc protein, alpha-actinin-2. Our findings demonstrate that myospryn functions directly downstream of MEF2A at the costamere in striated muscle potentially playing a role in myofibrillogenesis.
Collapse
Affiliation(s)
- Jennifer T Durham
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Diaz-Griffero F, Li X, Javanbakht H, Song B, Welikala S, Stremlau M, Sodroski J. Rapid turnover and polyubiquitylation of the retroviral restriction factor TRIM5. Virology 2006; 349:300-15. [PMID: 16472833 DOI: 10.1016/j.virol.2005.12.040] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 11/30/2005] [Accepted: 12/16/2005] [Indexed: 10/25/2022]
Abstract
TRIM5alpha and TRIMCyp are retroviral restriction factors that, like other members of the tripartite motif (TRIM) family, contain RING, B-box 2 and coiled-coil domains. We found that both proteins are rapidly turned over, with half-lives of 50-60 min. Polyubiquitylation and rapid degradation of TRIM5alpha depended upon intact RING and B-box 2 domains. A chimera consisting of monkey TRIM5alpha with a RING domain of human TRIM21 exhibited a half-life of 210 min, yet potently restricted human immunodeficiency virus; therefore, rapid turnover of TRIM5alpha is not required for its antiretroviral activity. TRIM5alpha forms cytoplasmic bodies that contain other polyubiquitylated proteins, heat shock proteins and dynein, and thus resemble aggresome precursors. Consistent with this interpretation, proteasomal inhibitors triggered the formation of TRIM5alpha(rh)-containing aggresomes in a microtubule-dependent manner. Thus, TRIM5alpha levels in the cell are maintained by continuous synthesis and rapid proteasome-mediated degradation, imbalances in which result in the formation of pre-aggresomal cytoplasmic bodies.
Collapse
Affiliation(s)
- Felipe Diaz-Griffero
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Wada K, Kamitani T. UnpEL/Usp4 is ubiquitinated by Ro52 and deubiquitinated by itself. Biochem Biophys Res Commun 2006; 342:253-8. [PMID: 16472766 DOI: 10.1016/j.bbrc.2006.01.144] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 01/30/2006] [Indexed: 10/25/2022]
Abstract
The autoantigen Ro52 is an E3 ubiquitin ligase that can ubiquitinate itself (self-ubiquitination). Recently, we showed that UnpEL/Usp4 is an isopeptidase that can deconjugate ubiquitin from self-ubiquitinated Ro52. Here, we showed that UnpEL is ubiquitinated by Ro52 in cooperation with UbcH5B in vitro. We also showed that UnpEL is ubiquitinated by Ro52 in HEK293T cells. Interestingly, a catalytically inactive UnpEL mutant was strongly ubiquitinated by Ro52 in HEK293T cells. These results suggest that wild-type UnpEL is ubiquitinated by Ro52 and deubiquitinated by itself (self-deubiquitination), while mutant UnpEL is ubiquitinated by Ro52 but not deubiquitinated by itself. In conclusion, Ro52 and UnpEL transregulate each other by ubiquitination and deubiquitination.
Collapse
Affiliation(s)
- Keiji Wada
- Department of Cardiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
112
|
Wada K, Tanji K, Kamitani T. Function and subcellular location of Ro52β. Biochem Biophys Res Commun 2006; 340:872-8. [PMID: 16403452 DOI: 10.1016/j.bbrc.2005.12.084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 12/14/2005] [Indexed: 11/23/2022]
Abstract
Autoantigen Ro52alpha was recently identified as an E3 ubiquitin ligase. Its splicing variant Ro52beta, which lacks a leucine zipper, has not been characterized yet. We therefore characterized Ro52beta in contrast to Ro52alpha. Our biochemical assays revealed that both Ro52alpha and Ro52beta function as E3 ubiquitin ligases and self-ubiquitinate in cooperation with UbcH5B in vitro. In addition, both Ro52alpha and Ro52beta are ubiquitinated when overexpressed with ubiquitin in HEK293T cells, suggesting that both function as E3 ligases and self-ubiquitinate in vivo. However, cytological studies revealed that Ro52alpha mainly localizes to the cytoplasmic rod-like structures, whereas Ro52beta diffusely localizes to both the cytoplasm and the nucleus. Since the leucine zipper plays a role in the homodimerization and heterodimerization of Ro52alpha, the dimerization might be required for the localization of Ro52alpha to the rod-like structures. On the basis of these results, Ro52alpha and Ro52beta appear to ubiquitinate their particular substrates at different locations.
Collapse
Affiliation(s)
- Keiji Wada
- Department of Cardiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
113
|
Kanamoto T, Terada K, Yoshikawa H, Furukawa T. Cloning and regulation of the vertebrate homologue oflin-41 that functions as a heterochronic gene inCaenorhabditis elegans. Dev Dyn 2006; 235:1142-9. [PMID: 16477647 DOI: 10.1002/dvdy.20712] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Caenorhabditis elegans gene lin-41 is the one of the heterochronic genes that regulate the timing of many developmental events. MicroRNA let-7 negatively regulates the expression of lin-41 through RNA-RNA interaction on its 3' untranslated region (UTR). Here, we report the isolation of chick and mouse homologues of lin-41 that encode the RBCC-NHL family protein and their expression patterns. C. elegans lin-41 is one of the RBCC-NHL families and the predicted amino acid sequences of isolated two genes encode the same family proteins. Chick and mouse lin-41 expression was also observed in developing limb buds, branchial arches, and tail buds. The 3'UTRs of the mouse and chick lin-41 genes contain multiple let-7 complementary sites. Using luciferase assay, we showed that lin-41 expression can be regulated through let-7 complementary sites.
Collapse
MESH Headings
- 3' Untranslated Regions
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Caenorhabditis elegans/embryology
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans Proteins/chemistry
- Caenorhabditis elegans Proteins/genetics
- Caenorhabditis elegans Proteins/metabolism
- Chick Embryo
- Cloning, Molecular
- Consensus Sequence
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Embryo, Nonmammalian
- Gene Expression Regulation, Developmental
- Genes, Helminth
- Genes, Reporter
- HeLa Cells
- Humans
- In Situ Hybridization
- Luciferases/metabolism
- Mice
- Molecular Sequence Data
- Protein Structure, Tertiary
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Vertebrates/genetics
Collapse
Affiliation(s)
- Takashi Kanamoto
- Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | |
Collapse
|
114
|
Datta S, Hettiarachchi GHCM, Deng XW, Holm M. Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. THE PLANT CELL 2006; 18:70-84. [PMID: 16339850 PMCID: PMC1323485 DOI: 10.1105/tpc.105.038182] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) is an E3 ubiquitin ligase that represses photomorphogenesis in the dark. Therefore, proteins interacting with COP1 could be important regulators of light-dependent development. Here, we identify CONSTANS-LIKE3 (COL3) as a novel interaction partner of COP1. A green fluorescent protein-COL3 fusion protein colocalizes with COP1 to nuclear speckles when transiently expressed in plant cells. This localization requires the B-box domains in COL3, indicating a novel function of this domain. A loss-of-function col3 mutant has longer hypocotyls in red light and in short days. Unlike constans, the col3 mutant flowers early and shows a reduced number of lateral branches in short days. The mutant also exhibits reduced formation of lateral roots. The col3 mutation partially suppresses the cop1 and deetiolated1 (det1) mutations in the dark, suggesting that COL3 acts downstream of both of these repressors. However, the col3 mutation exerts opposing effects on cop1 and det1 in terms of lateral roots and anthocyanin accumulation, suggesting that COL3 also has activities that are independent of COP1 and DET1. In conclusion, we have identified COL3 as a positive regulator of photomorphogenesis that acts downstream of COP1 but can promote lateral root development independently of COP1 and also function as a daylength-sensitive regulator of shoot branching.
Collapse
Affiliation(s)
- Sourav Datta
- Department of Cell and Molecular Biology, Gothenburg University, Sweden
| | | | | | | |
Collapse
|
115
|
Wada K, Kamitani T. Autoantigen Ro52 is an E3 ubiquitin ligase. Biochem Biophys Res Commun 2005; 339:415-21. [PMID: 16297862 DOI: 10.1016/j.bbrc.2005.11.029] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 11/06/2005] [Indexed: 11/21/2022]
Abstract
Anti-Ro/SSA antibodies are classic autoantibodies commonly found in patients with Sjögren's syndrome, a chronic autoimmune disease characterized by dryness of the eyes and mouth. The autoantibodies recognize a RING-finger protein, Ro52, whose function is still unknown. Since many RING-finger proteins have been identified as E3 ubiquitin ligases, this study was designed to determine whether Ro52 functions as an E3 ubiquitin ligase. For this purpose, recombinant Ro52 was purified from bacterial lysate and used to investigate its activity of E3 ubiquitin ligase in vitro. Its enzymatic activity was also tested in HEK293T cells using wild-type Ro52 and its RING-finger mutant. Our results indicated that Ro52 ubiquitinates itself in cooperation with E2 ubiquitin-conjugating enzyme UbcH5B, thereby validating that Ro52 is a RING-finger-type E3 ubiquitin ligase. Importantly, this ubiquitin modification is predominantly monoubiquitination, which does not target Ro52 to the proteasome for degradation.
Collapse
Affiliation(s)
- Keiji Wada
- Department of Cardiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
116
|
Meroni G, Diez-Roux G. TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases. Bioessays 2005; 27:1147-57. [PMID: 16237670 DOI: 10.1002/bies.20304] [Citation(s) in RCA: 569] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The TRIM/RBCC proteins are defined by the presence of the tripartite motif composed of a RING domain, one or two B-box motifs and a coiled-coil region. These proteins are involved in a plethora of cellular processes such as apoptosis, cell cycle regulation and viral response. Consistently, their alteration results in many diverse pathological conditions. The highly conserved modular structure of these proteins suggests that a common biochemical function may underlie their assorted cellular roles. Here, we review recent data indicating that some TRIM/RBCC proteins are implicated in ubiquitination and propose that this large protein family represents a novel class of 'single protein RING finger' ubiquitin E3 ligases.
Collapse
Affiliation(s)
- Germana Meroni
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy.
| | | |
Collapse
|
117
|
Witt SH, Granzier H, Witt CC, Labeit S. MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: towards understanding MURF-dependent muscle ubiquitination. J Mol Biol 2005; 350:713-22. [PMID: 15967462 DOI: 10.1016/j.jmb.2005.05.021] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 05/03/2005] [Accepted: 05/10/2005] [Indexed: 10/25/2022]
Abstract
MURF-1, MURF-2 and MURF-3 are a specific class of RING finger proteins that are expressed in striated muscle tissues. MURF-1 has been suggested to act as an ubiquitin ligase, thereby controlling proteasome-dependent degradation of muscle proteins. Here, we performed yeast two-hybrid (YTH) screens of skeletal muscle cDNA libraries with MURF-1 baits to identify potential myocellular targets of MURF-1-dependent ubiquitination. This identified eight myofibrillar proteins as binding partners of MURF-1: titin, nebulin, the nebulin-related protein NRAP, troponin-I (TnI), troponin-T (TnT), myosin light chain 2 (MLC-2), myotilin and T-cap. YTH mating studies with MURF-1,2,3 baits indicated that these eight myofibrillar proteins are all targeted redundantly by both MURF-1 and MURF-2. Western blot studies on cardiac tissues from wild-type and MURF-1-deficient mice suggested that titin and nebulin were ubiquitinated at similar levels, and MLC-2 and TnI at reduced levels in MURF-1 KO mice. Mapping of the TnI and titin binding sites on MURF-1 peptide scans demonstrated their binding to motifs highly conserved between MURF-1 and MURF-2. Our data are consistent with a model in which MURF-1 and MURF-2 together target a specific set of myofibrillar proteins redundantly, most likely to control their ubiquitination-dependent degradation. Finally, our YTH screens identified the interaction of MURF-1 with 11 enzymes required for ATP/energy production in muscle including the mitochondrial ATP synthase and cytoplasmic creatine kinase. These data raise the possibility that MURF-1 may coordinately regulate the energy metabolism of mitochondrial and cytoplasmic compartments.
Collapse
Affiliation(s)
- Stephanie H Witt
- Institut für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Mannheim, Mannheim 68167, Germany
| | | | | | | |
Collapse
|
118
|
Zheng YH, Peterlin BM. Intracellular immunity to HIV-1: newly defined retroviral battles inside infected cells. Retrovirology 2005; 2:25. [PMID: 15829012 PMCID: PMC1131925 DOI: 10.1186/1742-4690-2-25] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 04/13/2005] [Indexed: 12/19/2022] Open
Abstract
Studies of the human immunodeficiency virus type 1 (HIV-1) continue to enrich eukaryotic biology and immunology. Recent advances have defined factors that function after viral entry and prevent the replication of proviruses in the infected cell. Some of these attack directly viral structures whereas others edit viral genetic material during reverse transcription. Together, they provide strong and immediate intracellular immunity against incoming pathogens. These processes also offer a tantalizing glimpse at basic cellular mechanisms that might restrict the movement of mobile genetic elements and protect the genome.
Collapse
Affiliation(s)
- Yong-Hui Zheng
- Departments of Medicine, Microbiology and Immunology, Rosalind Russell Arthritis Research Center, University of California, San Francisco, San Francisco, CA, 94143-0703, USA
| | - B Matija Peterlin
- Departments of Medicine, Microbiology and Immunology, Rosalind Russell Arthritis Research Center, University of California, San Francisco, San Francisco, CA, 94143-0703, USA
| |
Collapse
|
119
|
Shimizu M, Ichikawa K, Aoki S. Photoperiod-regulated expression of the PpCOL1 gene encoding a homolog of CO/COL proteins in the moss Physcomitrella patens. Biochem Biophys Res Commun 2005; 324:1296-301. [PMID: 15504355 DOI: 10.1016/j.bbrc.2004.09.194] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Indexed: 11/26/2022]
Abstract
The CONSTANS (CO) protein is a critical regulator of the photoperiodic control of flowering in Arabidopsis thaliana and Oryza sativa. We isolated a cDNA PpCOL1 encoding a homolog of the CO/CO-LIKE (COL) family proteins from a cryptogam Physcomitrella patens. The predicted PpCOL1 protein has N-terminal zinc finger and C-terminal CCT domains, which are conserved in the angiosperm CO/COL proteins. Structurally, PpCOL1 is the most closely related to the Group Ia or Ic proteins, which include AtCO and AtCOL1/2, among diverged members of the family. A transient expression assay using GFP showed that the CCT domain of PpCOL1 contains a nuclear-localizing signal. Northern blotting analyses revealed that the PpCOL1 expression is controlled by the circadian clock, and moreover, it is photoperiodically regulated at a gametophore stage when the rate of sporophyte formation is affected by day length. These observations indicate a possible involvement of PpCOL1 as a nuclear factor in the photoperiodic regulation of reproduction of Physcomitrella.
Collapse
Affiliation(s)
- Masashi Shimizu
- Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
120
|
Gissot M, Refour P, Briquet S, Boschet C, Coupé S, Mazier D, Vaquero C. Transcriptome of 3D7 and its gametocyte-less derivative F12 Plasmodium falciparum clones during erythrocytic development using a gene-specific microarray assigned to gene regulation, cell cycle and transcription factors. Gene 2004; 341:267-77. [PMID: 15474309 DOI: 10.1016/j.gene.2004.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2004] [Revised: 06/21/2004] [Accepted: 07/05/2004] [Indexed: 11/19/2022]
Abstract
During the complex life cycle of Plasmodium falciparum, through mosquito and human, the erythrocytic cycle is responsible for malarial disease and transmission. The regulation of events that occur during parasite development, such as proliferation and differentiation, implies a fine control of transcriptional activities that in turn governs the expression profiles of sets of genes. Pathways that underline gametocyte commitment are yet poorly understood even though kinases and transcription factors have been assumed to play a crucial role in this event. In order to understand the molecular mechanisms controlling the variation of gene expression profiles that might participate in early gametocytogenesis, the transcriptome of two clones, 3D7 and its gametocyte-less derivative F12, was compared at five time points of the erythrocytic asexual development. We have used a thematic DNA microarray containing 150 PCR fragments, representative of P. falciparum genes involved in signal transduction, cell cycle and transcriptional regulation. We identified several genes eliciting different expression profiles among which some implicated in gene regulation or encoding putative transcription factors. The differential expression of transcription factor and kinase transcripts observed in the two clones may enlighten genes that might have a role in impairment of the early gametocytogenesis of the F12 clone.
Collapse
Affiliation(s)
- Mathieu Gissot
- INSERM U511, CHU Pitié-Salpêtrière, Université Paris 6, 91 boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | |
Collapse
|
121
|
Martin J, Storgaard M, Andersen CH, Nielsen KK. Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS -like homolog. PLANT MOLECULAR BIOLOGY 2004; 56:159-69. [PMID: 15604735 DOI: 10.1007/s11103-004-2647-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photoperiod and vernalization are the two key environmental factors of the floral induction of perennial ryegrass (Lolium perenne L.). Transition from vegetative to reproductive growth will only occur after an extended vernalization period, followed by an increase in day length and temperature. Here we report on the isolation and characterization of a L. perenne gene (LpCO ) that is homologous to CONSTANS , and which is tightly coupled to the floral inductive long day signal. Like other monocot CO-like proteins, the LpCO contains a zinc finger domain with a non-conserved B-Box2. Although the B-Box2 has been demonstrated to be essential for the function of the Arabidopsis CO (AtCO), LpCO is able to complement the Arabidopsis co-2 mutant, and ectopic expression in Arabidopsis wild type leads to early flowering. The LpCO transcript exhibits diurnal oscillations and is expressed at higher levels during long days.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/radiation effects
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Exons
- Flowers/genetics
- Flowers/growth & development
- Flowers/radiation effects
- Gene Expression Regulation, Developmental/radiation effects
- Gene Expression Regulation, Plant/radiation effects
- Genes, Plant/genetics
- Introns
- Lolium/genetics
- Lolium/growth & development
- Lolium/radiation effects
- Molecular Sequence Data
- Mutation
- Photoperiod
- Phylogeny
- Plant Proteins/genetics
- Plants, Genetically Modified
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Jérome Martin
- Plant Research Department, Risø National Laboratory, Frederiksborgvej 399, P.O. Box 49, Roskilde, 4000, Denmark.
| | | | | | | |
Collapse
|
122
|
Loop T, Leemans R, Stiefel U, Hermida L, Egger B, Xie F, Primig M, Certa U, Fischbach KF, Reichert H, Hirth F. Transcriptional signature of an adult brain tumor in Drosophila. BMC Genomics 2004; 5:24. [PMID: 15090076 PMCID: PMC419699 DOI: 10.1186/1471-2164-5-24] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 04/16/2004] [Indexed: 11/18/2022] Open
Abstract
Background Mutations and gene expression alterations in brain tumors have been extensively investigated, however the causes of brain tumorigenesis are largely unknown. Animal models are necessary to correlate altered transcriptional activity and tumor phenotype and to better understand how these alterations cause malignant growth. In order to gain insights into the in vivo transcriptional activity associated with a brain tumor, we carried out genome-wide microarray expression analyses of an adult brain tumor in Drosophila caused by homozygous mutation in the tumor suppressor gene brain tumor (brat). Results Two independent genome-wide gene expression studies using two different oligonucleotide microarray platforms were used to compare the transcriptome of adult wildtype flies with mutants displaying the adult bratk06028 mutant brain tumor. Cross-validation and stringent statistical criteria identified a core transcriptional signature of bratk06028 neoplastic tissue. We find significant expression level changes for 321 annotated genes associated with the adult neoplastic bratk06028 tissue indicating elevated and aberrant metabolic and cell cycle activity, upregulation of the basal transcriptional machinery, as well as elevated and aberrant activity of ribosome synthesis and translation control. One fifth of these genes show homology to known mammalian genes involved in cancer formation. Conclusion Our results identify for the first time the genome-wide transcriptional alterations associated with an adult brain tumor in Drosophila and reveal insights into the possible mechanisms of tumor formation caused by homozygous mutation of the translational repressor brat.
Collapse
Affiliation(s)
- Thomas Loop
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland
| | - Ronny Leemans
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland
| | - Urs Stiefel
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland
| | - Leandro Hermida
- Biocenter, University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | - Boris Egger
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland
| | - Fukang Xie
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland
| | - Michael Primig
- Biocenter, University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | - Ulrich Certa
- Roche Genetics Pharmaceuticals Division, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | | | - Heinrich Reichert
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland
| | - Frank Hirth
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland
| |
Collapse
|
123
|
Parnis S, Nicoletti C, Ollendorff V, Massey-Harroche D. Enterocytin: A new specific enterocyte marker bearing a B30.2-like domain. J Cell Physiol 2004; 198:441-51. [PMID: 14755549 DOI: 10.1002/jcp.10418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Enterocyte differentiation is correlated to the expression of specific proteins which only a few of them are identified. In this study, we characterize a new marker of enterocyte differentiation using monoclonal antibodies. We showed that small intestinal enterocytes specifically express a new 47 kDa protein named Enterocytin. Expression of this protein increase along the crypt-villus axis and it is concentrated in the terminal web, lateral plasma membrane domain, and nucleus membrane of mature enterocytes. A 1.8-kb cDNA of Enterocytin was isolated by expression cloning from a cDNA library of rabbit small intestine. The amino acid sequence obtained shows an N-terminal region with a coiled-coil structure and a B30.2-like domain in the C-terminus region. By co-transfection and immunoprecipitation procedures on Cos cells, it was observed that the coiled-coil domain is involved in the homodimerization of Enterocytin. In the human intestine, a similar 47 kDa protein was detected, exclusively in the small intestinal enterocytes. In addition, expression of this protein in Caco2 cells is correlated with the state of differentiation of these cells. The restricted expression of Enterocytin in the intestine and its localization in mature cells suggest that it may contribute to the differentiation processes and maintenance of the enterocytic polarity.
Collapse
Affiliation(s)
- Stéphane Parnis
- Institut Méditerranéen de Recherche en Nutrition, Faculté des Sciences de Saint Jérôme, Avenue Escadrille Normandie-Niemen, Marseille cedex, France
| | | | | | | |
Collapse
|
124
|
Hirose S, Nishizumi H, Sakano H. Pub, a novel PU.1 binding protein, regulates the transcriptional activity of PU.1. Biochem Biophys Res Commun 2004; 311:351-60. [PMID: 14592421 DOI: 10.1016/j.bbrc.2003.09.212] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PU.1 is a member of the Ets family of transcription factors and plays critical roles in the development of hematopoietic cells such as macrophages and B cells. To elucidate the molecular mechanism(s) underlying the regulation of PU.1 function, we screened for PU.1 interacting proteins using a yeast two-hybrid approach. As a result, a novel PU.1 binding factor, which we termed Pub, was isolated. The Pub protein has one B-box zinc finger domain, followed by a coiled-coil region and a B30.2-like domain, these features being characteristic of the tripartite motif (TRIM) family of protein. The PEST domain of PU.1 was found to interact with the N-terminal portion of Pub, a region that includes the TRIM which is considered to mediate protein-protein interactions. Northern blot and RT-PCR analyses demonstrated that Pub is predominantly expressed in hematopoietic tissues and cells where PU.1 is also expressed. Using a luciferase-based assay, we showed that Pub inhibited the transcriptional activity of PU.1. Moreover, the B-box zinc finger domain of Pub was critical for this inhibitory activity. These data suggest that Pub may be important in regulating the transcriptional activity of PU.1.
Collapse
Affiliation(s)
- Satoshi Hirose
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
125
|
Kimura F, Suzu S, Nakamura Y, Nakata Y, Yamada M, Kuwada N, Matsumura T, Yamashita T, Ikeda T, Sato K, Motoyoshi K. Cloning and characterization of a novel RING-B-box-coiled-coil protein with apoptotic function. J Biol Chem 2003; 278:25046-25054. [PMID: 12692137 DOI: 10.1074/jbc.m303438200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a novel RING-B-box-coiled-coil (RBCC) protein (MAIR for macrophage-derived apoptosis-inducing RBCC protein) that consists of an N-terminal RING finger, followed by a B-box zinc finger, a coiled-coil domain, and a B30.2 domain. MAIR mRNA was expressed widely in mouse tissues and was induced by macrophage colony-stimulating factor in murine peritoneal and bone marrow macrophages. MAIR protein initially showed a granular distribution predominantly in the cytoplasm. The addition of zinc to transfectants containing MAIR cDNA as part of a heavy metal-inducible vector caused apoptosis of the cells characterized by cell fragmentation; a reduction in mitochondrial membrane potential; activation of caspase-7, -8, and -9, but not caspase-3; and DNA degradation. We also found that the RING finger and coiled-coil domains were required for MAIR activity by analysis with deletion mutants.
Collapse
Affiliation(s)
- Fumihiko Kimura
- Third Department of Internal Medicine, National Defense Medical College, Namiki, Tokorozawa, Saitama 359-8513, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Griffiths S, Dunford RP, Coupland G, Laurie DA. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. PLANT PHYSIOLOGY 2003; 131:1855-67. [PMID: 12692345 PMCID: PMC166942 DOI: 10.1104/pp.102.016188] [Citation(s) in RCA: 327] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Revised: 12/03/2002] [Accepted: 12/12/2002] [Indexed: 05/18/2023]
Abstract
The CO (CONSTANS) gene of Arabidopsis has an important role in the regulation of flowering by photoperiod. CO is part of a gene family with 17 members that are subdivided into three classes, termed Group I to III here. All members of the family have a CCT (CO, CO-like, TOC1) domain near the carboxy terminus. Group I genes, which include CO, have two zinc finger B-boxes near the amino terminus. Group II genes have one B-box, and Group III genes have one B-box and a second diverged zinc finger. Analysis of rice (Oryza sativa) genomic sequence identified 16 genes (OsA-OsP) that were also divided into these three groups, showing that their evolution predates monocot/dicot divergence. Eight Group I genes (HvCO1-HvCO8) were isolated from barley (Hordeum vulgare), of which two (HvCO1 and HvCO2) were highly CO like. HvCO3 and its rice counterpart (OsB) had one B-box that was distantly related to Group II genes and was probably derived by internal deletion of a two B-box Group I gene. Sequence homology and comparative mapping showed that HvCO1 was the counterpart of OsA (Hd1), a major determinant of photoperiod sensitivity in rice. Major genes determining photoperiod response have been mapped in barley and wheat (Triticum aestivum), but none corresponded to CO-like genes. Thus, selection for variation in photoperiod response has affected different genes in rice and temperate cereals. The peptides of HvCO1, HvCO2 (barley), and Hd1 (rice) show significant structural differences from CO, particularly amino acid changes that are predicted to abolish B-box2 function, suggesting an evolutionary trend toward a one-B-box structure in the most CO-like cereal genes.
Collapse
Affiliation(s)
- Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney, United Kingdom
| | | | | | | |
Collapse
|
127
|
Schweiger S, Schneider R. The MID1/PP2A complex: a key to the pathogenesis of Opitz BBB/G syndrome. Bioessays 2003; 25:356-66. [PMID: 12655643 DOI: 10.1002/bies.10256] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Opitz BBB/G syndrome is a monogenic disorder that is characterized by malformations of the ventral midline. Investigations into the underlying genetic defects and the pathobiochemistry of this syndrome have already shed light on the mechanisms of both the physiological and the pathological development of the ventral midline, a complicated multistep process. Moreover, these studies have revealed the ubiquitin-dependent regulation of microtubule-associated phosphatase 2A, a central mechanism in many cellular processes. In this review, we summarize recent findings and speculate upon their implications for both medical and general research.
Collapse
Affiliation(s)
- Susann Schweiger
- Max-Planck-Institute for Molecular Genetics, Ihnestrasse 73, Berlin, Germany.
| | | |
Collapse
|
128
|
Tezel G, Nagasaka T, Shimono Y, Takahashi M. Differential expression of RET finger protein in testicular germ cell tumors. Pathol Int 2002; 52:623-7. [PMID: 12445133 DOI: 10.1046/j.1440-1827.2002.01401.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Testicular germ cell cancer is a common cancer in young adults and its incidence has risen dramatically over the past several decades in Western countries. Because RET finger protein (RFP), which belongs to the large B-box RING finger protein family, has been reported to be expressed in different stages of spermatogenesis, we investigated its expression in testicular germ cell tumors. These comprised 13 pure seminomas, five pure non-seminomatous germ cell tumors (NSGCT) and seven mixed germ cell tumors, four of which contained seminomatous component. In normal adult testis, the expression of RFP was strong in the germ cells, particularly in spermatogonia and primary spermatocytes. RFP immunoreactivity was seen uniformly and specifically in 12 of the 13 pure seminomas examined. It was also detected in seminomatous components of mixed germ cell tumors, whereas pure NSGCT were negative for RFP expression. The expression of RFP in male germ cells and seminomas together with the lack of its expression observed in highly aggressive NSGCT suggested that RFP could be associated with the regulation of germ cell proliferation and/or histological-type of germ cell tumors.
Collapse
Affiliation(s)
- Gaye Tezel
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | |
Collapse
|
129
|
Beer HD, Munding C, Dubois N, Mamie C, Hohl D, Werner S. The estrogen-responsive B box protein: a novel regulator of keratinocyte differentiation. J Biol Chem 2002; 277:20740-9. [PMID: 11919186 DOI: 10.1074/jbc.m111233200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Keratinocyte growth factor (KGF) regulates proliferation, differentiation, migration, and survival of different types of epithelial cells, including keratinocytes of the skin. To gain insight into the mechanisms underlying these multiple functions, we searched for KGF- regulated genes in keratinocytes. Using the differential display reverse transcriptase-PCR technology, we identified the gene encoding the estrogen-responsive B box protein (EBBP) which has as yet not been functionally characterized. The full-length murine and human EBBP cDNAs were cloned and fully sequenced. They were shown to encode 75-kDa proteins, which are mainly localized in the cytoplasm of keratinocytes in vitro and in vivo. In vivo, EBBP was found at high levels in the KGF- and epidermal growth factor-responsive basal keratinocytes of human skin, but the expression was down-regulated in the hyperthickened epithelium of skin wounds. Stable overexpression of EBBP in HaCaT keratinocytes did not affect the proliferation rate of the transfected cells, but enhanced the early differentiation process. These results suggest that the presence of EBBP in basal keratinocytes is important for the differentiation capacity of these cells, and that down-regulation of EBBP expression in a hyperproliferative epithelium is required to maintain the cells in a non-differentiated stage.
Collapse
Affiliation(s)
- Hans-Dietmar Beer
- Institute of Cell Biology, Department of Biology, ETH Zürich, CH-8093 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
130
|
Diamonti AJ, Guy PM, Ivanof C, Wong K, Sweeney C, Carraway KL. An RBCC protein implicated in maintenance of steady-state neuregulin receptor levels. Proc Natl Acad Sci U S A 2002; 99:2866-71. [PMID: 11867753 PMCID: PMC122439 DOI: 10.1073/pnas.052709799] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite numerous recent advances in our understanding of the molecular mechanisms underlying receptor tyrosine kinase down-regulation and degradation in response to growth factor binding, relatively little is known about ligand-independent receptor tyrosine kinase degradation mechanisms. In a screen for proteins that might regulate the trafficking or localization of the ErbB3 receptor, we have identified a tripartite or RBCC (RING, B-box, coiled-coil) protein that interacts with the cytoplasmic tail of the receptor in an activation-independent manner. We have named this protein Nrdp1 for neuregulin receptor degradation protein-1. Northern blotting reveals ubiquitous distribution of Nrdp1 in human adult tissues, but message is particularly prominent in heart, brain, and skeletal muscle. Nrdp1 interacts specifically with the neuregulin receptors ErbB3 and ErbB4 and not with epidermal growth factor receptor or ErbB2. When coexpressed in COS7 cells, Nrdp1 mediates the redistribution of ErbB3 from the cell surface to intracellular compartments and induces the suppression of ErbB3 and ErbB4 receptor levels but not epidermal growth factor receptor or ErbB2 levels. A putative dominant-negative form of Nrdp1 potentiates neuregulin-stimulated Erk1/2 activity in transfected MCF7 breast tumor cells. Our observations suggest that Nrdp1 may act to regulate steady-state cell surface neuregulin receptor levels, thereby influencing the efficiency of neuregulin signaling.
Collapse
Affiliation(s)
- A John Diamonti
- Department of Cell Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
131
|
Frosk P, Weiler T, Nylen E, Sudha T, Greenberg CR, Morgan K, Fujiwara TM, Wrogemann K. Limb-girdle muscular dystrophy type 2H associated with mutation in TRIM32, a putative E3-ubiquitin-ligase gene. Am J Hum Genet 2002; 70:663-72. [PMID: 11822024 PMCID: PMC447621 DOI: 10.1086/339083] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2001] [Accepted: 12/06/2001] [Indexed: 11/03/2022] Open
Abstract
Limb-girdle muscular dystrophy type 2H (LGMD2H) is a mild autosomal recessive myopathy that was first described in the Manitoba Hutterite population. Previous studies in our laboratory mapped the causative gene for this disease to a 6.5-Mb region in chromosomal region 9q31-33, flanked by D9S302 and D9S1850. We have now used additional families and a panel of 26 microsatellite markers to construct haplotypes. Twelve recombination events that reduced the size of the candidate region to 560 kb were identified or inferred. This region is flanked by D9S1126 and D9S737 and contains at least four genes. Exons of these genes were sequenced in one affected individual, and four sequence variations were identified. The families included in our study and 100 control individuals were tested for these variations. On the basis of our results, the mutation in the tripartite-motif-containing gene (TRIM32) that replaces aspartate with asparagine at position 487 appears to be the causative mutation of LGMD2H. All affected individuals were found to be homozygous for D487N, and this mutation was not found in any of the controls. This mutation occurs in an NHL (named after the proteins NCL1, HT2A, and LIN-41) domain at a position that is highly conserved. NHL domains are known to be involved in protein-protein interactions. Although the function of TRIM32 is unknown, current knowledge of the domain structure of this protein suggests that it may be an E3-ubiquitin ligase. If proven, this represents a new pathogenic mechanism leading to muscular dystrophy.
Collapse
Affiliation(s)
- Patrick Frosk
- Departments of Biochemistry and Medical Genetics and Department of Pediatrics and Child Health, University of Manitoba, Winnipeg; and Departments of Human Genetics and Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal
| | - Tracey Weiler
- Departments of Biochemistry and Medical Genetics and Department of Pediatrics and Child Health, University of Manitoba, Winnipeg; and Departments of Human Genetics and Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal
| | - Edward Nylen
- Departments of Biochemistry and Medical Genetics and Department of Pediatrics and Child Health, University of Manitoba, Winnipeg; and Departments of Human Genetics and Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal
| | - Thangirala Sudha
- Departments of Biochemistry and Medical Genetics and Department of Pediatrics and Child Health, University of Manitoba, Winnipeg; and Departments of Human Genetics and Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal
| | - Cheryl R. Greenberg
- Departments of Biochemistry and Medical Genetics and Department of Pediatrics and Child Health, University of Manitoba, Winnipeg; and Departments of Human Genetics and Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal
| | - Kenneth Morgan
- Departments of Biochemistry and Medical Genetics and Department of Pediatrics and Child Health, University of Manitoba, Winnipeg; and Departments of Human Genetics and Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal
| | - T. Mary Fujiwara
- Departments of Biochemistry and Medical Genetics and Department of Pediatrics and Child Health, University of Manitoba, Winnipeg; and Departments of Human Genetics and Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal
| | - Klaus Wrogemann
- Departments of Biochemistry and Medical Genetics and Department of Pediatrics and Child Health, University of Manitoba, Winnipeg; and Departments of Human Genetics and Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal
| |
Collapse
|
132
|
Tezel G, Shimono Y, Murakumo Y, Kawai K, Fukuda T, Iwahashi N, Takahashi M. Role for O-glycosylation of RFP in the interaction with enhancer of polycomb. Biochem Biophys Res Commun 2002; 290:409-14. [PMID: 11779184 DOI: 10.1006/bbrc.2001.6161] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently demonstrated that RFP, which belongs to the large B-box RING finger protein family, interacts with Enhancer of Polycomb 1 (EPC1) and functions as a transcriptional repressor in human cultured cells. In this study, we examined the expression of RFP and EPC1 in mouse tissues by immunoblotting as well as their interaction by a pull-down assay. Both RFP and EPC1 proteins are expressed in several mouse tissues including testis, spleen, thymus, adrenal gland, cerebrum, and cerebellum. In addition, they were coprecipitated from the lysate of mouse testis. Pull-down assays using glutathione S-transferase (GST)-fused EPC1 proteins revealed that RFP is associated with the EPcA, EPcB, and carboxy-terminal (CT) regions of EPC1. Although RFP is highly expressed as 58- and 68-kDa proteins in mouse testis, the EPC1 CT region more strongly interacted with the 68-kDa form than the EPcA or EPcB region. Interaction of the 58-kDa form of RFP with each region was weak compared with that of the 68-kDa form with the EPC1 CT region. Because the 68-kDa form of RFP was almost completely digested with O-glycosidase but not with N-glycosidase, this suggested that O-glycosylation of RFP plays a role in its interaction with the EPC1 CT region that may be responsible for transcriptional repression. In addition, the luciferase reporter gene assay showed that expression of the EPcA region strongly impairs the transcriptional repressive activity of RFP.
Collapse
Affiliation(s)
- Gaye Tezel
- Department of Pathology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | |
Collapse
|