101
|
Abstract
The proteins SKI and SnoN are implicated in processes as diverse as differentiation, transformation and tumor progression. Until recently, SKI was solely viewed as a nuclear protein with a principal function of inhibiting TGF-beta signaling through its association with the Smad proteins. However, new studies suggest that SKI plays additional roles not only inside but also outside the nucleus. In normal melanocytes and primary non-invasive melanomas, SKI localizes predominantly in the nucleus, whereas in primary invasive melanomas SKI displays both nuclear and cytoplasmic localization. Intriguingly, metastatic melanoma tumors display nuclear and cytoplasmic or predominantly cytoplasmic SKI distribution. Cytoplasmic SKI is functional, as it associates with Smad3 and prevents its nuclear localization mediated by TGF-beta. SKI can also function as a transcriptional activator, targeting the beta -catenin pathway and activating MITF and NrCAM, two proteins involved in survival, migration and invasion. Intriguingly, SKI appears to live a dual life, one as a tumor suppressor and another as a transforming protein. Loss of one copy of mouse ski increases susceptibility to tumorigenesis in mice, whereas its overexpression is associated with cancer progression of human melanoma, esophageal, breast and colon. The molecular reasons for such dramatic change in SKI function appear to result from new acquired activities. In this review, we discuss the mechanisms by which SKI regulates crucial pathways involved in the progression of human malignant melanoma.
Collapse
Affiliation(s)
- Jon A Reed
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | |
Collapse
|
102
|
Williams TM, Williams ME, Heaton JH, Gelehrter TD, Innis JW. Group 13 HOX proteins interact with the MH2 domain of R-Smads and modulate Smad transcriptional activation functions independent of HOX DNA-binding capability. Nucleic Acids Res 2005; 33:4475-84. [PMID: 16087734 PMCID: PMC1183491 DOI: 10.1093/nar/gki761] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions with co-factors provide a means by which HOX proteins exert specificity. To identify candidate protein interactors of HOXA13, we created and screened an E11.5–E12.5, distal limb bud yeast two-hybrid prey library. Among the interactors, we isolated the BMP-signaling effector Smad5, which interacted with the paralogous HOXD13 but not with HOXA11 or HOXA9, revealing unique interaction capabilities of the AbdB-like HOX proteins. Using deletion mutants, we determined that the MH2 domain of Smad5 is necessary for HOXA13 interaction. This is the first report demonstrating an interaction between HOX proteins and the MH2 domain of Smad proteins. HOXA13 and HOXD13 also bind to other BMP and TGF-β/Activin-regulated Smad proteins including Smad1 and Smad2, but not Smad4. Furthermore, HOXD13 could be co-immunoprecipitated with Smad1 from cells. Expression of HOXA13, HOXD13 or a HOXD13 homeodomain mutant (HOXD13IQN>AAA) antagonized TGF-β-stimulated transcriptional activation of the pAdtrack-3TP-Lux reporter vector in Mv1Lu cells as well as the Smad3/Smad4-activated pTRS6-E1b promoter in Hep3B cells. Finally, using mammalian one-hybrid assay, we show that transcriptional activation by a GAL4/Smad3-C-terminus fusion protein is specifically inhibited by HOXA13. Our results identify a new co-factor for HOX group 13 proteins and suggest that HOX proteins may modulate Smad-mediated transcriptional activity through protein–protein interactions without the requirement for HOX monomeric DNA-binding capability.
Collapse
Affiliation(s)
| | | | - Joanne H. Heaton
- Department of Human Genetics, University of MichiganAnn Arbor, MI, USA
| | | | - Jeffrey W. Innis
- Department of Human Genetics, University of MichiganAnn Arbor, MI, USA
- Department of Pediatrics, University of MichiganAnn Arbor, MI, USA
- To whom correspondence should be addressed. Tel: +1 734 647 3817; Fax: +1 734 763 3784;
| |
Collapse
|
103
|
Marcelain K, Hayman MJ. The Ski oncoprotein is upregulated and localized at the centrosomes and mitotic spindle during mitosis. Oncogene 2005; 24:4321-9. [PMID: 15806149 DOI: 10.1038/sj.onc.1208631] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ski is an oncoprotein that represses transforming growth factor-beta and nuclear receptor signaling. Despite evidence that relates increased Ski protein levels directly with tumor progression in human cells, the signaling pathways that regulate Ski expression are mostly unidentified. Here we show that the Ski protein levels vary throughout the cell cycle, being lowest at G0/G1. This reduction in Ski protein levels results from proteosomal degradation as suggested by in vivo ubiquitination of Ski and the effects of proteosomal inhibitors. In contrast, an upregulation of the Ski protein was observed in cells going through mitosis. At this stage, we also found that Ski is phosphorylated. In vitro and in vivo data suggest that the phosphorylation of Ski in mitosis is carried out by the main kinase controlling the progression of mitosis, namely cdc2/cyclinB. Interestingly, immunofluorescence experiments, supported by biochemical data, show not only an increase in the Ski protein levels, but also a dramatic redistribution of Ski to the centrosomes and mitotic spindle throughout mitosis. Studies to date on Ski have focused on its role as a transcriptional regulator. However, Ski's increased level and specific relocalization during mitosis suggest that Ski might play a distinct role during this particular phase of the cell cycle.
Collapse
Affiliation(s)
- Katherine Marcelain
- Department of Molecular Genetics and Microbiology, SUNY at Stony Brook, Stony Brook, NY 11794-5222, USA
| | | |
Collapse
|
104
|
Muñoz-Sanjuán I, Brivanlou AH. Induction of ectopic olfactory structures and bone morphogenetic protein inhibition by Rossy, a group XII secreted phospholipase A2. Mol Cell Biol 2005; 25:3608-19. [PMID: 15831466 PMCID: PMC1084286 DOI: 10.1128/mcb.25.9.3608-3619.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The secreted phospholipases A(2) (sPLA(2)s) comprise a family of small secreted proteins with the ability to catalyze the generation of bioactive lipids through glycophospholipid hydrolysis. Recently, a large number of receptor proteins and extracellular binding partners for the sPLA(2)s have been identified, suggesting that these secreted factors might exert a subset of their broad spectrum of biological activities independently of their enzymatic activity. Here, we describe an activity for the sPLA(2) group XII (sPLA(2)-gXII) gene during Xenopus laevis early development. In the ectoderm, sPLA(2)-gXII acts as a neural inducer by blocking bone morphogenetic protein (BMP) signaling. Gain of function in embryos leads to ectopic neurogenesis and to the specification of ectopic olfactory sensory structures, including olfactory bulb and sensory epithelia. This activity is conserved in the Drosophila melanogaster, Xenopus, and mammalian orthologs and appears to be independent of the lipid hydrolytic activity. Because of its effect on olfactory neurogenesis, we have renamed this gene Rossy, in homage to the Spanish actress Rossy de Palma. We present evidence that Rossy/sPLA(2)-gXII can inhibit the transcriptional activation of BMP direct-target gene reporters in Xenopus and mouse P19 embryonic carcinoma cells through the loss of DNA-binding activity of activated Smad1/4 complexes. Collectively, these data represent the first evidence for signaling cross talk between a secreted phospholipase A(2) and the BMP/transforming growth factor beta pathways and identify Rossy/sPLA(2)-gXII as the only factor thus far described which is sufficient to induce anterior sensory neural structures during vertebrate development.
Collapse
Affiliation(s)
- Ignacio Muñoz-Sanjuán
- Laboratory of Vertebrate Embryology, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
105
|
Greene RM, Pisano MM. Recent advances in understanding transforming growth factor beta regulation of orofacial development. Hum Exp Toxicol 2005; 24:1-12. [PMID: 15727050 DOI: 10.1191/0960327105ht492oa] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Members of the transforming growth factor (TGF) family have emerged as critical contributors to the choreography of cellular and tissue interactions underlying morphogenesis of the orofacial region. The TGFs beta, and their downstream effector molecules, the Smads, play a pivotal role in normal as well as abnormal development of first branchial arch structures. Components of the TGFbeta signal transduction machinery are discussed in relation to regulation of transcription, cell division and tissue differentiation in developing orofacial tissue, as evidence for a functional linkage between the TGFbeta and retinoic acid signal transduction pathways during orofacial development.
Collapse
Affiliation(s)
- Robert M Greene
- University of Louisville Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, ULSD, Louisville, KY 40292, USA.
| | | |
Collapse
|
106
|
Warner DR, Greene RM, Pisano MM. Interaction between Smad 3 and Dishevelled in murine embryonic craniofacial mesenchymal cells. Orthod Craniofac Res 2005; 8:123-30. [PMID: 15888125 DOI: 10.1111/j.1601-6343.2005.00319.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To determine the in vivo interaction between Smad 3 and Dishevelled-1. DESIGN Cell culture transfection followed by immunoprecipitation with specific antibodies. SETTING AND SAMPLE POPULATION The Department of Molecular, Cellular, and Craniofacial Biology, Birth Defects Center, University of Louisville. EXPERIMENTAL VARIABLE Overexpression of myc-Smad 3. OUTCOME MEASURE Western blotting of anti-Dishevelled immunoprecipitates for Smad 3. RESULTS Smad 3 and Dishevelled isoforms-1, -2, and -3 all bind Smad 3 in glutathione-S-transferase (GST) pull-down assays and Smad 3 binds to Dishevelled-1 in vivo. Stimulation of the transforming growth factor beta (TGFbeta) pathway leads to increased binding of Smad 3 and Dishevelled-1 in vivo. CONCLUSION Smad 3 binds all three known isoforms of Dishevelled and binds Dishevelled 1 in vivo. TGFbeta signaling modulates the interaction between Smad 3 and Dishevelled-1.
Collapse
Affiliation(s)
- D R Warner
- Department of Molecular, Cellular, and Craniofacial Biology, University of Louisville Birth Defects Center, Louisville, KY 40292, USA
| | | | | |
Collapse
|
107
|
Heavey PM, McKenna D, Rowland IR. Colorectal cancer and the relationship between genes and the environment. Nutr Cancer 2005; 48:124-41. [PMID: 15231447 DOI: 10.1207/s15327914nc4802_2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC) is a significant cause of morbidity and mortality in developed countries, with both genetic and environmental factors contributing to the etiology and progression of the disease. Several risk factors have been identified, including positive family history, red meat intake, smoking, and alcohol intake. Protective factors include vegetables, calcium, hormone replacement therapy, folate, nonsteroidal anti-inflammatory drugs, and physical activity. The interaction between these environmental factors, in particular diet and genes, is an area of growing interest. Currently, oncogenes, tumor suppressor genes, and mismatch repair genes are believed to play an essential role in colorectal carcinogenesis. When considering the genetics of CRC, only 10% of cases are inherited and only 2-6% can be ascribed to the highly penetrant genes, such as APC, hMLH and hMSH2. Lower penetrance genes combined with a Western-style diet contribute to the majority of sporadic CRCs. The purpose of this article is to give a brief overview of the epidemiologic studies that have been conducted and present the major findings. Here, we examine the molecular events in CRC, with particular focus on the interaction between genes and environment, and review the most current research in this area.
Collapse
Affiliation(s)
- Patricia M Heavey
- Northern Ireland Center for Diet and Health, Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland BT52 1SA.
| | | | | |
Collapse
|
108
|
Wilson JJ, Malakhova M, Zhang R, Joachimiak A, Hegde RS. Crystal structure of the dachshund homology domain of human SKI. Structure 2005; 12:785-92. [PMID: 15130471 DOI: 10.1016/j.str.2004.02.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 02/11/2004] [Accepted: 02/11/2004] [Indexed: 11/28/2022]
Abstract
The nuclear protooncoprotein SKI negatively regulates transforming growth factor-beta (TGF-beta) signaling in cell growth and differentiation. It directly interacts with the Smads and, by various mechanisms, represses the transcription of TGF-beta-responsive genes. SKI is a multidomain protein that includes a domain bearing high sequence similarity with the retinal determination protein Dachshund (the Dachshund homology domain, DHD). The SKI-DHD has been implicated in SMAD-2/3, N-CoR, SKIP, and PML-RARalpha binding. The 1.65 A crystal structure of the Dachshund homology domain of human SKI is reported here. The SKI-DHD adopts a mixed alpha/beta structure which includes features found in the forkhead/winged-helix family of DNA binding proteins, although SKI-DHD is not a DNA binding domain. Residues that form a contiguous surface patch on SKI-DHD are conserved within the Ski/Sno family and with Dachshund, suggesting that this domain may mediate intermolecular interactions common to these proteins.
Collapse
Affiliation(s)
- Jeffrey J Wilson
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
109
|
Bales E, Mills L, Milam N, McGahren-Murray M, Bandyopadhyay D, Chen D, Reed JA, Timchenko N, van den Oord JJ, Bar-Eli M, Keyomarsi K, Medrano EE. The Low Molecular Weight Cyclin E Isoforms Augment Angiogenesis and Metastasis of Human Melanoma Cells In vivo. Cancer Res 2005. [DOI: 10.1158/0008-5472.692.65.3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Immunohistochemical analysis has consistently shown that cyclin E is up-regulated in human malignant melanomas in vivo. Here we analyzed such expression in more detail and show that cyclin E is overexpressed and present in low molecular weight (LMW) isoforms in metastatic melanoma and in a subset of primary invasive melanoma tumor tissues, but not in benign nevi. Human metastatic melanoma cell lines, but not normal melanocytes, also expressed the LMW cyclin E forms. The biological significance of these findings was established by showing that overexpression of two LMW cyclin E forms named cyclin E truncated 1 [cyclinE(T1)] and cyclin E truncated 2 [cyclinE(T2)] in a low tumorigenic and non-metastatic primary cutaneous melanoma cell line generated angiogenic tumors with prominent perineural invasion compared with full-length cyclin E. In addition, cyclin E(T1)– and cyclin E(T2)–expressing melanoma cells displayed a dramatic increase in the incidence and number of metastases in an experimental lung metastasis assay. Together, these results indicate that the LMW cyclin E forms are functional and likely act as regulators of human melanoma tumor progression and invasion.
Collapse
Affiliation(s)
| | | | - Nancy Milam
- 6Experimental Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas; and
| | - Mollianne McGahren-Murray
- 6Experimental Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas; and
| | | | - Dahu Chen
- 1Huffington Center on Aging; Departments of
| | - Jon A. Reed
- 4Pathology, Baylor College of Medicine; Departments of
| | | | - Joost J. van den Oord
- 7Laboratory of Morphology and Molecular Pathology, University Hospitals, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Khandan Keyomarsi
- 6Experimental Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas; and
| | - Estela E. Medrano
- 1Huffington Center on Aging; Departments of
- 2Molecular and Cellular Biology,
- 3Dermatology, and
| |
Collapse
|
110
|
Pan D, Estévez-Salmerón LD, Stroschein SL, Zhu X, He J, Zhou S, Luo K. The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the transforming growth factor-{beta} superfamily of cytokines. J Biol Chem 2005; 280:15992-6001. [PMID: 15647271 DOI: 10.1074/jbc.m411234200] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smad proteins are critical intracellular mediators of the transforming growth factor-beta, bone morphogenic proteins (BMPs), and activin signaling. Upon ligand binding, the receptor-associated R-Smads are phosphorylated by the active type I receptor serine/threonine kinases. The phosphorylated R-Smads then form heteromeric complexes with Smad4, translocate into the nucleus, and interact with various transcription factors to regulate the expression of downstream genes. Interaction of Smad proteins with cellular partners in the cytoplasm and nucleus is a critical mechanism by which the activities and expression of the Smad proteins are modulated. Here we report a novel step of regulation of the R-Smad function at the inner nuclear membrane through a physical interaction between the integral inner nuclear membrane protein MAN1 and R-Smads. MAN1, through the RNA recognition motif, associates with R-Smads but not Smad4 at the inner nuclear membrane in a ligand-independent manner. Overexpression of MAN1 results in inhibition of R-Smad phosphorylation, heterodimerization with Smad4 and nuclear translocation, and repression of transcriptional activation of the TGFbeta, BMP2, and activin-responsive promoters. This repression of TGFbeta, BMP2, and activin signaling is dependent on the MAN1-Smad interaction because a point mutation that disrupts this interaction abolishes the transcriptional repression by MAN1. Thus, MAN1 represents a new class of R-Smad regulators and defines a previously unrecognized regulatory step at the nuclear periphery.
Collapse
Affiliation(s)
- Deng Pan
- Department of Molecular and Cell Biology, University of California, Berkeley and Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Ueki N, Zhang L, Hayman MJ. Ski negatively regulates erythroid differentiation through its interaction with GATA1. Mol Cell Biol 2005; 24:10118-25. [PMID: 15542823 PMCID: PMC529047 DOI: 10.1128/mcb.24.23.10118-10125.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ski oncoprotein dramatically affects cell growth, differentiation, and/or survival. Recently, Ski was shown to act in distinct signaling pathways including those involving nuclear receptors, transforming growth factor beta, and tumor suppressors. These divergent roles of Ski are probably dependent on Ski's capacity to bind multiple partners with disparate functions. In particular, Ski alters the growth and differentiation program of erythroid progenitor cells, leading to malignant leukemia. However, the mechanism underlying this important effect has remained elusive. Here we show that Ski interacts with GATA1, a transcription factor essential in erythropoiesis. Using a Ski mutant deficient in GATA1 binding, we show that this Ski-GATA1 interaction is critical for Ski's ability to repress GATA1-mediated transcription and block erythroid differentiation. Furthermore, the repression of GATA1-mediated transcription involves Ski's ability to block DNA binding of GATA1. This finding is in marked contrast to those in previous reports on the mechanism of repression by Ski, which have described a model involving the recruitment of corepressors into DNA-bound transcription complexes. We propose that Ski cooperates in the process of transformation in erythroid cells by interfering with GATA1 function, thereby contributing to erythroleukemia.
Collapse
Affiliation(s)
- Nobuhide Ueki
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | | | | |
Collapse
|
112
|
Wang Z, Dooley TP, Curto EV, Davis RL, VandeBerg JL. Cross-species application of cDNA microarrays to profile gene expression using UV-induced melanoma in Monodelphis domestica as the model system. Genomics 2004; 83:588-99. [PMID: 15028282 DOI: 10.1016/j.ygeno.2003.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 10/07/2003] [Indexed: 11/18/2022]
Abstract
This study established the utility of cross-species application of the cDNA microarray technique for investigating differential gene expression. Using both total RNA and mRNA samples recovered from two opossum cell lines derived from UVB-induced melanoma, we analyzed expression of ca. 4400 genes on the human DermArray DNA microarrays. The signals generated on the DermArrays were clear, strong, and reproducible. A cDNA dot blot consisting of differentially expressed genes representative of different functional clusters was used to validate the DermArray results. We also cloned a Monodelphis gene, keratin 18 (KRT18), and characterized its expression patterns in tumor samples of different progression stages. Up-regulated expression was observed for the KRT18 gene in advanced melanomas, a finding consistent with the DermArray analysis. These results provide evidence that cross-species application of cDNA microarrays is a useful strategy for investigating gene expression patterns in animal models for which species-specific cDNA microarrays are not available.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Genetics, Southwest Foundation for Biomedical Research, 7620 NW Loop 410, San Antonio, TX 78227-5301, USA.
| | | | | | | | | |
Collapse
|
113
|
Richter A, Yeager ME, Zaiman A, Cool CD, Voelkel NF, Tuder RM. Impaired transforming growth factor-beta signaling in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 2004; 170:1340-8. [PMID: 15361368 DOI: 10.1164/rccm.200311-1602oc] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mutations in transforming growth factor-beta family receptor-II, bone morphogenetic protein receptor-2, and activin-like kinase-1 have been associated with pulmonary hypertension. In the present study, we determined that pulmonary arteries in normal lungs and in lungs of patients with emphysema and idiopathic pulmonary arterial hypertension comparably expressed transforming growth factor-beta receptors I and II, Smad(1, 5, 8), Smad2, Smad3, Smad4, phosphorylated Smad(1, 5, 8), and phosphorylated Smad2 (the latter two both indicative of active in vivo signaling) in endothelial cells, as assessed by immunohistochemistry and quantitative morphometry. Medial or intimal smooth muscle cells had weak or absent expression of these molecules. In clear contrast to endothelial cell expression in pulmonary arteries and in endothelial cells lining incipient vessels within plexiform lesions of hypertensive lungs, endothelial cells present in the core of the lesions lacked expression of all examined members of the signaling molecules. These findings were made irrespective of the mutation status of bone morphogenetic protein receptor-2 in hypertensive patients. Our findings suggest that pulmonary artery endothelial cells in both normal and severely hypertensive lungs have active transforming growth factor-beta family signaling, and that loss of signaling might contribute to the abnormal growth of endothelial cells in plexiform lesions in idiopathic pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Amy Richter
- Division of Cardiopulmonary Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
114
|
Garcia M, Fernandez-Garcia NI, Rivas V, Carretero M, Escamez MJ, Gonzalez-Martin A, Medrano EE, Volpert O, Jorcano JL, Jimenez B, Larcher F, Del Rio M. Inhibition of Xenografted Human Melanoma Growth and Prevention of Metastasis Development by Dual Antiangiogenic/Antitumor Activities of Pigment Epithelium-Derived Factor. Cancer Res 2004; 64:5632-42. [PMID: 15313901 DOI: 10.1158/0008-5472.can-04-0230] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human melanoma mortality is associated with the growth of metastasis in selected organs including the lungs, liver, and brain. In this study, we examined the consequences of overexpression of pigment epithelium-derived factor (PEDF), a neurotrophic factor and potent angiogenesis inhibitor, on both melanoma primary tumor growth and metastasis development. PEDF overexpression by melanoma cells greatly inhibited subcutaneous tumor formation and completely prevented lung and liver metastasis in immunocompromised mice after tail vein injection of metastatic human melanoma cell lines. Whereas the effects of PEDF on primary tumor xenografts appear mostly associated with inhibition of the angiogenic tumor response, abrogation of melanoma metastasis appears to depend on direct PEDF effects on both migration and survival of melanoma cells. PEDF-mediated inhibition of melanoma metastases could thus have a major impact on existing therapies for melanoma.
Collapse
Affiliation(s)
- Marta Garcia
- Project on Damage, Repair and Tissue Engineering CIEMAT and Fundación M. Botin, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Macdonald M, Wan Y, Wang W, Roberts E, Cheung TH, Erickson R, Knuesel MT, Liu X. Control of cell cycle-dependent degradation of c-Ski proto-oncoprotein by Cdc34. Oncogene 2004; 23:5643-53. [PMID: 15122324 DOI: 10.1038/sj.onc.1207733] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is known that excess amounts of Ski, or any member of its proto-oncoprotein family, causes disruption of the transforming growth factor beta signal transduction pathway, thus causing oncogenic transformation of cells. Previous studies indicate that Ski is a relatively unstable protein whose expression levels can be regulated by ubiquitin-mediated proteolysis. Here, we investigate the mechanism by which the stability of Ski is regulated. We show that the steady-state levels of Ski protein are controlled post-translationally by cell cycle-dependent proteolysis, wherein Ski is degraded during the interphase of the cell cycle but is relatively stable during mitosis. Furthermore, we demonstrate that the ubiquitin-conjugating enzyme Cdc34 mediates cell cycle-dependent Ski degradation both in vitro and in vivo. Overexpression of dominant-negative Cdc34 stabilizes Ski and enhances its ability to antagonize TGF-beta signaling. Our data suggest that regulated proteolysis of Ski is one of the key mechanisms that control the threshold levels of this proto-oncoprotein, and thus prevents epithelial cells from becoming TGF-beta resistant.
Collapse
Affiliation(s)
- Mara Macdonald
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309, USA
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Atanasoski S, Notterpek L, Lee HY, Castagner F, Young P, Ehrengruber MU, Meijer D, Sommer L, Stavnezer E, Colmenares C, Suter U. The Protooncogene Ski Controls Schwann Cell Proliferation and Myelination. Neuron 2004; 43:499-511. [PMID: 15312649 DOI: 10.1016/j.neuron.2004.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 06/29/2004] [Accepted: 07/28/2004] [Indexed: 01/11/2023]
Abstract
Schwann cell proliferation and subsequent differentiation to nonmyelinating and myelinating cells are closely linked processes. Elucidating the molecular mechanisms that control these events is key to the understanding of nerve development, regeneration, nerve-sheath tumors, and neuropathies. We define the protooncogene Ski, an inhibitor of TGF-beta signaling, as an essential component of the machinery that controls Schwann cell proliferation and myelination. Functional Ski overexpression inhibits TGF-beta-mediated proliferation and prevents growth-arrested Schwann cells from reentering the cell cycle. Consistent with these findings, myelinating Schwann cells upregulate Ski during development and remyelination after injury. Myelination is blocked in myelin-competent cultures derived from Ski-deficient animals, and genes encoding myelin components are downregulated in Ski-deficient nerves. Conversely, overexpression of Ski in Schwann cells causes an upregulation of myelin-related genes. The myelination-regulating transcription factor Oct6 is involved in a complex modulatory relationship with Ski. We conclude that Ski is a crucial signal in Schwann cell development and myelination.
Collapse
Affiliation(s)
- Suzana Atanasoski
- Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
McKarns SC, Schwartz RH, Kaminski NE. Smad3 is essential for TGF-beta 1 to suppress IL-2 production and TCR-induced proliferation, but not IL-2-induced proliferation. THE JOURNAL OF IMMUNOLOGY 2004; 172:4275-84. [PMID: 15034041 DOI: 10.4049/jimmunol.172.7.4275] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-beta1 is essential to maintain T cell homeostasis, as illustrated by multiorgan inflammation in mice deficient in TGF-beta1 signaling. Despite the physiological importance, the mechanisms that TGF-beta1 uses to regulate T cell expansion remain poorly understood. TGF-beta1 signals through transmembrane receptor serine/threonine kinases to activate multiple intracellular effector molecules, including the cytosolic signaling transducers of the Smad protein family. We used Smad3(-/-) mice to investigate a role for Smad3 in IL-2 production and proliferation in T cells. Targeted disruption of Smad3 abrogated TGF-beta1-mediated inhibition of anti-CD3 plus anti-CD28-induced steady state IL-2 mRNA and IL-2 protein production. CFSE labeling demonstrated that TGF-beta1 inhibited entry of wild-type anti-CD3 plus anti-CD28-stimulated cells into cycle cell, and this inhibition was greatly attenuated in Smad3(-/-) T cells. In contrast, disruption of Smad3 did not affect TGF-beta1-mediated inhibition of IL-2-induced proliferation. These results demonstrate that TGF-beta1 signals through Smad3-dependent and -independent pathways to inhibit T cell proliferation. The inability of TGF-beta1 to inhibit TCR-induced proliferation of Smad3(-/-) T cells suggests that IL-2 is not the primary stimulus driving expansion of anti-CD3 plus anti-CD28-stimulated T cells. Thus, we establish that TGF-beta1 signals through multiple pathways to suppress T cell proliferation.
Collapse
MESH Headings
- Animals
- Cell Division/genetics
- Cell Division/immunology
- Cells, Cultured
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Gene Deletion
- Growth Inhibitors/physiology
- Interleukin-2/antagonists & inhibitors
- Interleukin-2/metabolism
- Interleukin-2/physiology
- Lymphocyte Activation/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphorylation
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/biosynthesis
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction/immunology
- Smad2 Protein
- Smad3 Protein
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Trans-Activators/deficiency
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Transforming Growth Factor beta/physiology
- Transforming Growth Factor beta1
Collapse
Affiliation(s)
- Susan C McKarns
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA.
| | | | | |
Collapse
|
118
|
Abstract
Ski and SnoN are unique proto-oncoproteins in that they can induce both oncogenic transformation and terminal muscle differentiation when expressed at high levels. Recent studies using in vitro and in vivo approaches have begun to unravel the complex roles of Ski and SnoN in tumorigenesis and embryonic development. The identification of Ski and SnoN as important negative regulators of signal transduction by the transforming growth factor-beta superfamily of cytokines provides a valuable molecular basis for the complex functions of Ski and SnoN.
Collapse
Affiliation(s)
- Kunxin Luo
- Life Sciences Division, Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 237 Hildebrand Hall, Mail code 3206, Berkeley, CA 94720-3206, USA.
| |
Collapse
|
119
|
Abstract
The Ski protein has been proposed to serve as a corepressor for Smad4 to maintain a transforming growth factor-beta (TGF-beta)-responsive promoter at a repressed, basal level. However, there have been no reports so far that it indeed acts on a natural promoter. We have previously cloned the human Smad7 promoter and shown that it contains the 8-base pair palindromic Smad-binding element (SBE) necessary for TGF-beta induction. In this report, we have characterized the negative regulation of Smad7 promoter basal activity by Ski. We show that Ski inhibits the Smad7 promoter basal activity in a SBE-dependent manner. Mutation of the SBE abrogates the inhibitory effect of Ski on the Smad7 promoter. Moreover, mutation of the SBE increases the Smad7 promoter basal activity. Using the chromatin immunoprecipitation assay, we further show that Ski together with Smad4 binds to the endogenous Smad7 promoter. Finally, we show that RNAi knockdown of Ski increases Smad7 reporter gene activity in transient transfection assays as well as elevating the endogenous level of Smad7 mRNA. Taken together, our results provide the first evidence that Ski is indeed a corepressor for Smad4, which can inhibit a natural TGF-beta responsive gene at the basal state.
Collapse
Affiliation(s)
- Natalia G Denissova
- Center for Advanced Biotechnology and Medicine, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 679 Hoes Land, Piscataway, NJ 08854, USA
| | | |
Collapse
|
120
|
MacDonald PN, Dowd DR, Zhang C, Gu C. Emerging insights into the coactivator role of NCoA62/SKIP in Vitamin D-mediated transcription. J Steroid Biochem Mol Biol 2004; 89-90:179-86. [PMID: 15225769 DOI: 10.1016/j.jsbmb.2004.03.097] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
NCoA62/SKIP was discovered as a nuclear protein that interacts with the Vitamin D receptor (VDR) and the SKI oncoprotein. NCoA62/SKIP expresses properties consistent with other nuclear receptor transcriptional coactivator proteins. For example, NCoA62/SKIP interacts selectively with the VDR-RXR heterodimer, it forms a ternary complex with liganded VDR and steroid receptor coactivator (SRC) proteins, and it synergizes with SRCs to augment 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)]- and VDR-activated transcription. Chromatin immunoprecipitation studies show that NCoA62/SKIP is recruited in a 1,25-(OH)(2)D(3)-dependent manner to native Vitamin D responsive gene promoters and it enters these promoter complexes after VDR and SRC entry. This suggests that NCoA62/SKIP functions at a distal step in the transactivation process. Recent studies indicate that NCoA62/SKIP is a component of the spliceosome machinery and interacts with important splicing factors such as prp8 and the U5 200kDa helicase. Functional studies also support an involvement of NCoA62/SKIP in mRNA splicing. Collectively, these data suggest a pivotal role for NCoA62/SKIP in coupling transcriptional regulation by VDR to RNA splicing. They further solidify an important role for VDR/NR-interactors downstream of the transcription process in determining the overall response of Vitamin D and steroid hormone regulated genes.
Collapse
Affiliation(s)
- Paul N MacDonald
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
121
|
Wang S, Hirschberg R. Bone morphogenetic protein-7 signals opposing transforming growth factor beta in mesangial cells. J Biol Chem 2004; 279:23200-6. [PMID: 15047707 DOI: 10.1074/jbc.m311998200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bone morphogenetic protein-7 (BMP7) is expressed in adult kidney and reduces renal fibrogenesis when given exogenously to rodents with experimental chronic nephropathies. In mesangial cells that regulate glomerular fibrosis in vivo, BMP7 inhibits transforming growth factor beta (TGF-beta)-driven fibrogenesis, primarily by preventing the TGF-beta-dependent down-regulation of matrix degradation and up-regulation of PAI-1. The signals and mechanisms of the BMP7 opposition to actions of TGF-beta are unknown. Here we show in mesangial cells that BMP7 reduces nuclear accumulation of Smad3 and blocks the transcriptional up-regulation of the TGF-beta/Smad3 target, CAGA-lux. Smad5 knock-down impairs the ability of BMP7 to interfere with the activation of CAGA-lux and the accumulation of PAI-1 by TGF-beta indicating that Smad5 is required. Smad5 knock-down also reduces the rise in Smad6 upon BMP7. Forced expression of smad5 (found to be the preferred BMP7-induced receptor-activated Smad signal in mesangial cells) or of smad6 mimics BMP7 in opposing the increase in transcriptional activation of PAI-1 and its secretion upon TGF-beta. This suggests a model for the BMP7-induced opposition to TGF-beta-dependent mesangial fibrogenesis requiring Smad5; the model involves the inhibitory Smad6 downstream of Smad5 as well as reduced availability of Smad3 in the nucleus. BMP7 does not require signaling through Erk1/2, p38, or JNK and does not utilize the TGF-beta transcriptional co-repressors Ski or SnoN in mesangial cells. These studies provide first insights into mechanisms through which BMP7 opposes TGF-beta-induced glomerular fibrogenesis.
Collapse
Affiliation(s)
- Shinong Wang
- Harbor-UCLA Research and Education Institute, UCLA, Torrance, California 90502, USA
| | | |
Collapse
|
122
|
Ingham RJ, Gish G, Pawson T. The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene 2004; 23:1972-84. [PMID: 15021885 DOI: 10.1038/sj.onc.1207436] [Citation(s) in RCA: 409] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuronal precursor cell-expressed developmentally downregulated 4 (Nedd4) is the prototypical protein in a family of E3 ubiquitin ligases that have a common domain architecture. They are comprised of a catalytic C-terminal HECT domain and N-terminal C2 domain and WW domains responsible for cellular localization and substrate recognition. These proteins are found throughout eukaryotes and regulate diverse biological processes through the targeted degradation of proteins that generally have a PPxY motif for WW domain recognition, and are found in the nucleus and at the plasma membrane. Whereas the yeast Saccharomyces cerevisiae uses a single protein, Rsp5p, to carry out these functions, evolution has provided higher eukaryotes with several related Nedd4 proteins that appear to have specialized roles. In this review we discuss how knowledge of individual domain function has provided insight into the physiological roles of the Nedd4 proteins and describe recent results that suggest discrete functions for individual family members.
Collapse
Affiliation(s)
- Robert J Ingham
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada M5G 1X5.
| | | | | |
Collapse
|
123
|
Frederick JP, Liberati NT, Waddell DS, Shi Y, Wang XF. Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element. Mol Cell Biol 2004; 24:2546-59. [PMID: 14993291 PMCID: PMC355825 DOI: 10.1128/mcb.24.6.2546-2559.2004] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Revised: 05/20/2003] [Accepted: 12/19/2003] [Indexed: 12/15/2022] Open
Abstract
Smad proteins are the most well-characterized intracellular effectors of the transforming growth factor beta (TGF-beta) signal. The ability of the Smads to act as transcriptional activators via TGF-beta-induced recruitment to Smad binding elements (SBE) within the promoters of TGF-beta target genes has been firmly established. However, the elucidation of the molecular mechanisms involved in TGF-beta-mediated transcriptional repression are only recently being uncovered. The proto-oncogene c-myc is repressed by TGF-beta, and this repression is required for the manifestation of the TGF-beta cytostatic program in specific cell types. We have shown that Smad3 is required for both TGF-beta-induced repression of c-myc and subsequent growth arrest in keratinocytes. The transcriptional repression of c-myc is dependent on direct Smad3 binding to a novel Smad binding site, termed a repressive Smad binding element (RSBE), within the TGF-beta inhibitory element (TIE) of the c-myc promoter. The c-myc TIE is a composite element, comprised of an overlapping RSBE and a consensus E2F site, that is capable of binding at least Smad3, Smad4, E2F-4, and p107. The RSBE is distinct from the previously defined SBE and may partially dictate, in conjunction with the promoter context of the overlapping E2F site, whether the Smad3-containing complex actively represses, as opposed to transactivates, the c-myc promoter.
Collapse
Affiliation(s)
- Joshua P Frederick
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
124
|
|
125
|
Fukuchi M, Nakajima M, Fukai Y, Miyazaki T, Masuda N, Sohda M, Manda R, Tsukada K, Kato H, Kuwano H. Increased expression of c-Ski as a co-repressor in transforming growth factor-beta signaling correlates with progression of esophageal squamous cell carcinoma. Int J Cancer 2004; 108:818-24. [PMID: 14712482 DOI: 10.1002/ijc.11651] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Transforming growth factor-beta (TGF-beta) regulates cell growth inhibition, and inactivation of the TGF-beta signaling pathway contributes to tumor development. In our previous study, altered expression of TGF-beta, TGF-beta-specific receptors and Smad4 was shown to correlate with tumor progression in esophageal squamous cell carcinoma (SCC). These components, however, were maintained normally in some patients with esophageal SCC. In our study, the mechanism by which aggressive esophageal SCC maintains these components was investigated, with particular emphasis on the participation of c-Ski and SnoN as transcriptional co-repressors in TGF-beta signaling. Immunohistochemistry for c-Ski and SnoN was carried out on surgical specimens obtained from 80 patients with esophageal SCC. The expression of c-Ski and SnoN was also studied in 6 established cell lines derived from esophageal SCC and compared to an immortalized human esophageal cell line by Western blotting. High levels of expression of c-Ski, detected immunohistologically, were found to correlate with depth of invasion (p = 0.0080) and pathologic stage (p = 0.0447). There was, however, no significant correlation between expression of SnoN and clinicopathologic characteristics. A significant correlation between c-Ski and TGF-beta expression was observed. Moreover, in patients with TGF-beta negative expression, the survival rates of patients with c-Ski positive expression were significantly lower than those of patients with c-Ski negative expression (p = 0.0486). c-Ski was expressed at a high level in 5 of 6 cell lines derived from esophageal SCC compared to immortalized esophageal keratinocytes. Furthermore, the cyclin-dependent kinase (CDK) inhibitor, p21 that was up-regulated by TGF-beta signaling was expressed at a low level in the 5 cell lines. The expression of c-Ski protein as a transcriptional co-repressor in TGF-beta signaling seems to be correlated with tumor progression of esophageal SCC.
Collapse
Affiliation(s)
- Minoru Fukuchi
- Department of Surgery I, Gunma University Faculty of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Lin X, Liang YY, Sun B, Liang M, Shi Y, Brunicardi FC, Shi Y, Feng XH. Smad6 recruits transcription corepressor CtBP to repress bone morphogenetic protein-induced transcription. Mol Cell Biol 2004; 23:9081-93. [PMID: 14645520 PMCID: PMC309600 DOI: 10.1128/mcb.23.24.9081-9093.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Smad6 and Smad7 are inhibitory Smads induced by transforming growth factor beta-Smad signal transduction pathways in a negative-feedback mechanism. Previously it has been thought that inhibitory Smads bind to the type I receptor and block the phosphorylation of receptor-activated Smads, thereby inhibiting the initiation of Smad signaling. Conversely, few studies have suggested the possible nuclear functions of inhibitory Smads. Here, we present compelling evidence demonstrating that Smad6 repressed bone morphogenetic protein-induced Id1 transcription through recruiting transcriptional corepressor C-terminal binding protein (CtBP). A consensus CtBP-binding motif, PLDLS, was identified in the linker region of Smad6. Our findings show that mutation in the motif abolished the Smad6 binding to CtBP and subsequently its repressor activity of transcription. We conclude that the nuclear functions and physical interaction of Smad6 and CtBP provide a novel mechanism for the transcriptional regulation by inhibitory Smads.
Collapse
Affiliation(s)
- Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Room 131D, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Takeda M, Mizuide M, Oka M, Watabe T, Inoue H, Suzuki H, Fujita T, Imamura T, Miyazono K, Miyazawa K. Interaction with Smad4 is indispensable for suppression of BMP signaling by c-Ski. Mol Biol Cell 2003; 15:963-72. [PMID: 14699069 PMCID: PMC363053 DOI: 10.1091/mbc.e03-07-0478] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
c-Ski is a transcriptional corepressor that interacts strongly with Smad2, Smad3, and Smad4 but only weakly with Smad1 and Smad5. Through binding to Smad proteins, c-Ski suppresses signaling of transforming growth factor-beta (TGF-beta) as well as bone morphogenetic proteins (BMPs). In the present study, we found that a mutant of c-Ski, termed c-Ski (ARPG) inhibited TGF-beta/activin signaling but not BMP signaling. Selectivity was confirmed in luciferase reporter assays and by determination of cellular responses in mammalian cells (BMP-induced osteoblastic differentiation of C2C12 cells and TGF-beta-induced epithelial-to-mesenchymal transdifferentiation of NMuMG cells) and Xenopus embryos. The ARPG mutant recruited histone deacetylases 1 (HDAC1) to the Smad3-Smad4 complex but not to the Smad1/5-Smad4 complex. c-Ski (ARPG) was unable to interact with Smad4, and the selective loss of suppression of BMP signaling by c-Ski (ARPG) was attributed to the lack of Smad4 binding. We also found that c-Ski interacted with Smad3 or Smad4 without disrupting Smad3-Smad4 heteromer formation. c-Ski (ARPG) would be useful for selectively suppressing TGF-beta/activin signaling.
Collapse
Affiliation(s)
- Masafumi Takeda
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
da Graca LS, Zimmerman KK, Mitchell MC, Kozhan-Gorodetska M, Sekiewicz K, Morales Y, Patterson GI. DAF-5 is a Ski oncoprotein homolog that functions in a neuronal TGF beta pathway to regulate C. elegans dauer development. Development 2003; 131:435-46. [PMID: 14681186 DOI: 10.1242/dev.00922] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An unconventional TGF beta superfamily pathway plays a crucial role in the decision between dauer diapause and reproductive growth. We have studied the daf-5 gene, which, along with the daf-3 Smad gene, is antagonized by upstream receptors and receptor-regulated Smads. We show that DAF-5 is a novel member of the Sno/Ski superfamily that binds to DAF-3 Smad, suggesting that DAF-5, like Sno/Ski, is a regulator of transcription in a TGF beta superfamily signaling pathway. However, we present evidence that DAF-5 is an unconventional Sno/Ski protein, because DAF-5 acts as a co-factor, rather than an antagonist, of a Smad protein. We show that expressing DAF-5 in the nervous system rescues a daf-5 mutant, whereas muscle or hypodermal expression does not. Previous work suggested that DAF-5 and DAF-3 function in pharyngeal muscle to regulate gene expression, but our analysis of regulation of a pharynx specific promoter suggests otherwise. We present a model in which DAF-5 and DAF-3 control the production or release of a hormone from the nervous system by either regulating the expression of biosynthetic genes or by altering the connectivity or the differentiated state of neurons.
Collapse
Affiliation(s)
- Li S da Graca
- Department of Biochemistry and Molecular Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
129
|
Harada J, Kokura K, Kanei-Ishii C, Nomura T, Khan MM, Kim Y, Ishii S. Requirement of the co-repressor homeodomain-interacting protein kinase 2 for ski-mediated inhibition of bone morphogenetic protein-induced transcriptional activation. J Biol Chem 2003; 278:38998-9005. [PMID: 12874272 DOI: 10.1074/jbc.m307112200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple co-repressors such as N-CoR/SMRT, mSin3, and the c-ski proto-oncogene product (c-Ski) mediate the transcriptional repression induced by Mad and the thyroid hormone receptor by recruiting the histone deacetylase complex. c-Ski also binds directly to Smad proteins, which are transcriptional activators in the transforming growth factor-beta (TGF-beta)/bone morphogenetic protein (BMP) signaling pathways, and inhibits TGF-beta/BMP-induced transcriptional activation. However, it remains unknown whether other co-repressor(s) are also involved with Ski in the negative regulation of the TGF-beta/BMP signaling pathways. Here, we report that the co-repressor homeodomain-interacting protein kinase 2 (HIPK2) directly binds to both c-Ski and Smad1. HIPK2 efficiently inhibited Smad1/4-induced transcription from the Smad site-containing promoter. A dominant negative form of HIPK2, in which the ATP binding motif in the kinase domain and the putative phosphorylation sites were mutated, enhanced Smad1/4-dependent transcription and the BMP-induced expression of alkaline phosphatase. Furthermore, the c-Ski-induced inhibition of the Smad1/4-dependent transcription was suppressed by a dominant negative form of HIPK2. The HIPK2 co-repressor activity may be regulated by an uncharacterized HIPK2 kinase. These results indicate that HIPK2, together with c-Ski, plays an important role in the negative regulation of BMP-induced transcriptional activation.
Collapse
Affiliation(s)
- Jun Harada
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | |
Collapse
|
130
|
Wu K, Yang Y, Wang C, Davoli MA, D'Amico M, Li A, Cveklova K, Kozmik Z, Lisanti MP, Russell RG, Cvekl A, Pestell RG. DACH1 inhibits transforming growth factor-beta signaling through binding Smad4. J Biol Chem 2003; 278:51673-84. [PMID: 14525983 DOI: 10.1074/jbc.m310021200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vertebrate homologues of Drosophila dachsund, DACH1 and DACH2, have been implicated as important regulatory genes in development. DACH1 plays a role in retinal and pituitary precursor cell proliferation and DACH2 plays a specific role in myogenesis. DACH proteins contain a domain (DS domain) that is conserved with the proto-oncogenes Ski and Sno. Since the Ski/Sno proto-oncogenes repress AP-1 and SMAD signaling, we hypothesized that DACH1 might play a similar cellular function. Herein, DACH1 was found to be expressed in breast cancer cell lines and to inhibit transforming growth factor-beta (TGF-beta)-induced apoptosis. DACH1 repressed TGF-beta induction of AP-1 and Smad signaling in gene reporter assays and repressed endogenous TGF-beta-responsive genes by microarray analyses. DACH1 bound to endogenous NCoR and Smad4 in cultured cells and DACH1 co-localized with NCoR in nuclear dotlike structures. NCoR enhanced DACH1 repression, and the repression of TGF-beta-induced AP-1 or Smad signaling by DACH1 required the DACH1 DS domain. The DS domain of DACH was sufficient for NCoR binding at a Smad4-binding site. Smad4 was required for DACH1 repression of Smad signaling. In Smad4 null HTB-134 cells, DACH1 inhibited the activation of SBE-4 reporter activity induced by Smad2 or Smad3 only in the presence of Smad4. DACH1 participates in the negative regulation of TGF-beta signaling by interacting with NCoR and Smad4.
Collapse
Affiliation(s)
- Kongming Wu
- Lombardi Cancer Center, Department of Oncology, Georgetown University, Washington, D. C. 20057, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Imoto S, Sugiyama K, Muromoto R, Sato N, Yamamoto T, Matsuda T. Regulation of transforming growth factor-beta signaling by protein inhibitor of activated STAT, PIASy through Smad3. J Biol Chem 2003; 278:34253-8. [PMID: 12815042 DOI: 10.1074/jbc.m304961200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Smads proteins play a key role in the intracellular signaling of the transforming growth factor (TGF)-beta family of growth factors, which exhibits a diverse set of cellular responses, including cell proliferation and differentiation. In particular, Smad7 acts as an antagonist of TGF-beta signaling, which could determine the intensity or duration of its signaling cascade. In this study we identified a protein inhibitor of activated STAT (signal transducers and activators of transcription), PIASy, as a novel interaction partner of Smad7 by yeast two-hybrid screening using the MH2 domain of Smad7 as bait. The association of Smad7 and PIASy was confirmed using co-expressed tagged proteins in 293T cells. Moreover, we found that other Smads including Smad3 also associated with PIASy through its MH2 domain, and PIASy suppressed TGF-beta-mediated activation of Smad3. PIASy also stimulated the sumoylation of Smad3 in vivo. Furthermore, endogenous PIASy expression was induced by TGF-beta in Hep3B cells. These findings provide the first evidence that a PIAS family protein, PIASy, associates with Smads and involves the regulation of TGF-beta signaling using the negative feedback loop.
Collapse
Affiliation(s)
- Seiyu Imoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku Kita 12 Nishi 6, Sapporo 060-0812, Japan
| | | | | | | | | | | |
Collapse
|
132
|
Ueki N, Hayman MJ. Direct interaction of Ski with either Smad3 or Smad4 is necessary and sufficient for Ski-mediated repression of transforming growth factor-beta signaling. J Biol Chem 2003; 278:32489-92. [PMID: 12857746 DOI: 10.1074/jbc.c300276200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oncoprotein Ski represses transforming growth factor (TGF)-beta signaling in an N-CoR-independent manner. However, the molecular mechanism(s) underlying this event has not been elucidated. Here, we identify an additional domain in Ski that mediates interaction with Smad3 which is important for this repression. This domain is distinct from the previously reported N-terminal Smad3 binding domain in Ski. Individual alanine substitution of several residues in the domain significantly affected Ski-Smad3 interaction. Furthermore, combined mutations within this domain, together with those in the previously identified Smad3 binding domain, can completely abolish the interaction of Ski with Smad3, while mutation in each domain alone retained partial interaction. By introducing those mutations that abolish direct interaction with Smad3 or Smad4 individually, or in combination, we show that interaction of Ski with either Smad3 or Smad4 is sufficient for Ski-mediated repression of TGF-beta signaling. Furthermore our results clearly demonstrate that Ski does not disrupt Smad3-Smad4 heteromer formation, and recruitment of Ski to the Smad3/4 complex through binding to either Smad3 or Smad4 is both necessary and sufficient for repression.
Collapse
Affiliation(s)
- Nobuhide Ueki
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794-5222, USA
| | | |
Collapse
|
133
|
He J, Tegen SB, Krawitz AR, Martin GS, Luo K. The transforming activity of Ski and SnoN is dependent on their ability to repress the activity of Smad proteins. J Biol Chem 2003; 278:30540-7. [PMID: 12764135 DOI: 10.1074/jbc.m304016200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The regulation of cell growth and differentiation by transforming growth factor-beta (TGF-beta) is mediated by the Smad proteins. In the nucleus, the Smad proteins are negatively regulated by two closely related nuclear proto-oncoproteins, Ski and SnoN. When overexpressed, Ski and SnoN induce oncogenic transformation of chicken embryo fibroblasts. However, the mechanism of transformation by Ski and SnoN has not been defined. We have previously reported that Ski and SnoN interact directly with Smad2, Smad3, and Smad4 and repress their ability to activate TGF-beta target genes through multiple mechanisms. Because Smad proteins are tumor suppressors, we hypothesized that the ability of Ski and SnoN to inactivate Smad function may be responsible for their transforming activity. Here, we show that the receptor regulated Smad proteins (Smad2 and Smad3) and common mediator Smad (Smad4) bind to different regions in Ski and SnoN. Mutation of both regions, but not each region alone, markedly impaired the ability of Ski and SnoN to repress TGF-beta-induced transcriptional activation and cell cycle arrest. Moreover, when expressed in chicken embryo fibroblasts, mutant Ski or SnoN defective in binding to the Smad proteins failed to induce oncogenic transformation. These results suggest that the ability of Ski and SnoN to repress the growth inhibitory function of the Smad proteins is required for their transforming activity. This may account for the resistance to TGF-beta-induced growth arrest in some human cancer cell lines that express high levels of Ski or SnoN.
Collapse
Affiliation(s)
- Jun He
- Life Sciences Division, Lawrence Berkeley National Laboratory, CA 94720-3206, USA
| | | | | | | | | |
Collapse
|
134
|
Pearson-White S, McDuffie M. Defective T-cell activation is associated with augmented transforming growth factor Beta sensitivity in mice with mutations in the Sno gene. Mol Cell Biol 2003; 23:5446-59. [PMID: 12861029 PMCID: PMC165712 DOI: 10.1128/mcb.23.15.5446-5459.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proto-oncogene Sno has been shown to be a negative regulator of transforming growth factor beta (TGF-beta) signaling in vitro, using overexpression and artificial reporter systems. To examine Sno function in vivo, we made two targeted deletions at the Sno locus: a 5' deletion, with reduced Sno protein (hypomorph), and an exon 1 deletion removing half the protein coding sequence, in which Sno protein is undetectable in homozygotes (null). Homozygous Sno hypomorph and null mutant mice are viable without gross developmental defects. We found that Sno mRNA is constitutively expressed in normal thymocytes and splenic T cells, with increased expression 1 h following T-cell receptor ligation. Although thymocyte and splenic T-cell populations appeared normal in mutant mice, T-cell proliferation in response to activating stimuli was defective in both mutant strains. This defect could be reversed by incubation with either anti-TGF-beta antibodies or exogenous interleukin-2 (IL-2). Together, these findings suggest that Sno-dependent suppression of TGF-beta signaling is required for upregulation of growth factor production and normal T-cell proliferation following receptor ligation. Indeed, both IL-2 and IL-4 levels are reduced in response to anti-CD3 epsilon stimulation of mutant T cells, and transfected Sno activated an IL-2 reporter system in non-T cells. Mutant mouse embryo fibroblasts also exhibited a reduced cell proliferation rate that could be reversed by administration of anti-TGF-beta. Our data provide strong evidence that Sno is a significant negative regulator of antiproliferative TGF-beta signaling in both T cells and other cell types in vivo.
Collapse
Affiliation(s)
- S Pearson-White
- Department of Microbiology, Health Sciences Center, University of Virginia Medical Center, Jordan Hall, Box 800734, Room 7034, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
135
|
Prunier C, Pessah M, Ferrand N, Seo SR, Howe P, Atfi A. The oncoprotein Ski acts as an antagonist of transforming growth factor-beta signaling by suppressing Smad2 phosphorylation. J Biol Chem 2003; 278:26249-57. [PMID: 12732634 DOI: 10.1074/jbc.m304459200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphorylation of Smad2 and Smad3 by the transforming growth factor (TGF)-beta-activated receptor kinases and their subsequent heterodimerization with Smad4 and translocation to the nucleus form the basis for a model how Smad proteins work to transmit TGF-beta signals. The transcriptional activity of Smad2-Smad4 or Smad3-Smad4 complexes can be limited by the corepressor Ski, which is believed to interact with Smad complexes on TGF-beta-responsive promoters and represses their ability to activate TGF-beta target genes by assembling on DNA a repressor complex containing histone deacetylase. Here we show that Ski can block TGF-beta signaling by interfering with the phosphorylation of Smad2 and Smad3 by the activated TGF-beta type I receptor. Furthermore, we demonstrate that overexpression of Ski induces the assembly of Smad2-Smad4 and Smad3-Smad4 complexes independent of TGF-beta signaling. The ability of Ski to engage Smad proteins in nonproductive complexes provides new insights into the molecular mechanism used by Ski for disabling TGF-beta signaling.
Collapse
Affiliation(s)
- Celine Prunier
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
136
|
Ueki N, Hayman MJ. Signal-dependent N-CoR requirement for repression by the Ski oncoprotein. J Biol Chem 2003; 278:24858-64. [PMID: 12716897 DOI: 10.1074/jbc.m303447200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oncoprotein Ski represses transforming growth factor-beta (TGF-beta) and nuclear receptor signaling. To achieve this, Ski has been proposed to recruit the corepressor N-CoR to either the TGF-beta-regulated Smad transcription factors or nuclear receptors. Here we define the role of the Ski/N-CoR interaction in Ski-mediated repression of TGF-beta and vitamin D signaling. We show that Ski can negatively regulate vitamin D-mediated transcription by directly interacting with the vitamin D receptor. More importantly, a Ski single point mutant lacking N-CoR binding revealed that the Ski/N-CoR interaction is essential for repression of vitamin D signaling, but, surprisingly, not TGF-beta signaling. Thus, Ski modulates transcription in either an N-CoR-dependent or -independent manner depending on the signaling pathways targeted.
Collapse
Affiliation(s)
- Nobuhide Ueki
- Department of Molecular Genetics and Microbiology, Stony Brook University, New York 11794-5222, USA.
| | | |
Collapse
|
137
|
Kokura K, Kim H, Shinagawa T, Khan MM, Nomura T, Ishii S. The Ski-binding protein C184M negatively regulates tumor growth factor-beta signaling by sequestering the Smad proteins in the cytoplasm. J Biol Chem 2003; 278:20133-9. [PMID: 12646588 DOI: 10.1074/jbc.m210855200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ski is a transcriptional co-repressor and is involved in the negative regulation of tumor growth factor-beta (TGF-beta) signaling. To understand more fully the role of Ski in TGF-beta signaling, we searched for novel Ski-interacting proteins. The identified C184M protein consists of 189 amino acids and contains the leucine-rich region. An association between Ski and C184M involving the leucine-rich region of C184M and the C-terminal coiled-coil motif of Ski was confirmed by glutathione S-transferase pull-down and immunoprecipitation assays. The C184M protein is located in the cytosol, and the C184M and Ski signals are co-localized in the cytoplasm when C184M was co-expressed with Ski in CV-1 cells. The cytoplasmic C184M-Ski complex inhibited the nuclear translocation of Smad2. Consistent with this, the activity of promoter containing the Smad-binding sites was repressed by C184M, and the TGF-beta-induced growth inhibition of mink lung Mv1Lu cells was attenuated by the ectopic expression of C184M. Thus, C184M inhibits TGF-beta signaling in concert with Ski. In hepatocytes, which express significant levels of C184M, the Ski signals were found only in the cytoplasm, supporting the notion that C184M forms a complex with Ski in the cytosol.
Collapse
Affiliation(s)
- Kenji Kokura
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Ibaraki 305-0074, Japan
| | | | | | | | | | | |
Collapse
|
138
|
Medrano EE. Repression of TGF-beta signaling by the oncogenic protein SKI in human melanomas: consequences for proliferation, survival, and metastasis. Oncogene 2003; 22:3123-9. [PMID: 12793438 DOI: 10.1038/sj.onc.1206452] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Transforming growth factor-beta (TGF-beta ) has dual and paradoxical functions as a tumor suppressor and promoter of tumor progression and metastasis. TGF-Ji-mediated growth inhibition is gradually lost during melanoma tumor progression, but there are no measurable defects at the receptor level. Furthermore, melanoma cells release high levels of TGF-beta to the microenvironment, which upon activation induces matrix deposition, angiogenesis, survival, and transition to more aggressive phenotypes. The SKI and SnoN protein family associate with and repress the activity of Smad2, Smad3, and Smad4, three members of the TGF-fl signaling pathway. SKI also facilitates cell-cycle progression by targeting the RB pathway by at least two ways: it directly associates with RB and represses its activity when expressed at high levels, and indirectly, it represses Smad-mediated induction of p21(Waf-1) This results in increased CDK2 activity, RB phosphorylation,and inactivation. Therefore, high levels of SKI result in lesions to the RB pathway in a manner similar to p16 (INK4a) loss. SKI mRNA and protein levels dramatically increase during human melanoma tumor progression. In addition,the SKI protein shifts from nuclear localization in intraepidermal melanoma cells to nuclear and cytoplasmic in invasive and metastatic melanomas. Here, I discuss the basis for repression of intracellular TGF-beta signaling by SKI, some additional activities of this protein, and propose that by disrupting multiple tumor suppressor pathways, SKI functions as a melanoma oncogene.
Collapse
Affiliation(s)
- Estela E Medrano
- Departments of Molecural and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
139
|
Abstract
Skeletal homeostasis is determined by systemic hormones and local factors. Bone morphogenetic proteins (BMP) are unique because they induce the differentiation of mesenchymal cells toward cells of the osteoblastic lineage and also enhance the differentiated function of the osteoblast. However, the activity of BMPs needs to be tempered by intracellular and extracellular antagonists. BMPs bind to specific receptors and signal by phosphorylating the cytoplasmic proteins mothers against decapentaplegic (Smad) 1 and 5, which form heterodimers with Smad 4, and after nuclear translocation regulate transcription. BMP antagonists can be categorized as pseudoreceptors that compete with signaling receptors, inhibitory Smads that block signaling, intracellular binding proteins that bind Smad 1 and 5, and factors that induce ubiquitination and proteolysis of signaling Smads. In addition, a large number of extracellular proteins that bind BMPs and prevent their binding to signaling receptors have emerged. They are the components of the Spemann organizer, noggin, chordin, and follistatin, members of the Dan/Cerberus family, and twisted gastrulation. The antagonists tend to be specific for BMPs and are regulated by BMPs, indicating the existence and need of local feedback mechanisms to temper BMP cellular activities.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA.
| | | | | |
Collapse
|
140
|
Warner DR, Pisano MM, Roberts EA, Greene RM. Identification of three novel Smad binding proteins involved in cell polarity. FEBS Lett 2003; 539:167-73. [PMID: 12650946 DOI: 10.1016/s0014-5793(03)00155-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A yeast two-hybrid screen was utilized to identify novel Smad 3 binding proteins expressed in developing mouse orofacial tissue. Three proteins (Erbin, Par-3, and Dishevelled) were identified that share several similar structural and functional characteristics. Each contains at least one PDZ domain and all have been demonstrated to play a role in the establishment and maintenance of cell polarity. In GST (glutathione S-transferase) pull-down assays, Erbin, Par-3, and Dishevelled bound strongly to the isolated MH2 domain of Smad 3, with weaker binding to a full-length Smad 3 protein. Failure of Erbin, Par-3, and Dishevelled to bind to a Smad 3 mutant protein that was missing the MH2 domain confirms that the binding site resides within the MH2 domain. Erbin, Par-3, and Dishevelled also interacted with the MH2 domains of other Smads, suggesting broad Smad binding specificity. Dishevelled and Erbin mutant proteins, in which the PDZ domain was removed, still retained their ability to bind Smad 3, albeit with lower affinity. While transforming growth factor beta (TGFbeta) has been suggested to alter cell polarity through a Smad-independent mechanism involving activation of members of the RhoA family of GTP binding proteins, the observation that Smads can directly interact with proteins involved in cell polarity, as shown in the present report, suggests an additional means by which TGFbeta could alter cell polarity via a Smad-dependent signaling mechanism.
Collapse
Affiliation(s)
- Dennis R Warner
- University of Louisville Birth Defects Center, Department of Molecular, Cellular, and Craniofacial Biology, University of Louisville School of Dentistry, 501 South Preston Street, Suite 301, Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|
141
|
Warner DR, Pisano MM, Greene RM. Nuclear convergence of the TGFbeta and cAMP signal transduction pathways in murine embryonic palate mesenchymal cells. Cell Signal 2003; 15:235-42. [PMID: 12464395 DOI: 10.1016/s0898-6568(02)00082-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transforming growth factors beta (TGFbeta) and cyclic AMP (cAMP) both participate in growth and differentiation of the developing mammalian secondary palate and elicit similar biological responses. Cross-talk between these two signal transduction pathways in cells derived from the embryonic palate has been demonstrated previously. In the present study, we have examined nuclear convergence of these signalling pathways at the level of transcriptional complex formation. Biotinylated oligonucleotides encoding a consensus Smad binding element (SBE), or a cyclic AMP response element (CRE), were mixed with cell extracts from murine embryonic palate mesenchymal (MEPM) cells that were treated with either TGFbeta or forskolin. Protein-oligonucleotide complexes were precipitated with streptavidin-agarose, and analysed by Western blotting to identify proteins in the complex bound to each consensus oligonucleotide. TGFbeta treatment of MEPM cells increased the levels of phosphorylated Smad2, phosphorylated cAMP response element binding protein (CREB), and the coactivator, CREB binding protein (CBP), that were part of a complex bound to the SBE. Treatment of cells with forskolin, a stimulator of adenylate cyclase, increased the amount of phosphorylated CREB and CBP, but not the amount of phosphorylated Smad2 bound in a complex to the SBE. Additionally, the presence of the co-repressors, c-Ski and SnoN, was demonstrated as part of a complex bound to the SBE (but not the CRE). Amounts of c-Ski and SnoN found in the SBE-containing complex increased in response to either TGFbeta or forskolin. These results demonstrate that phosphorylated CREB forms a complex with the co-activator CBP, phosphorylated Smad2 and the co-repressors c-Ski and SnoN on a consensus SBE. This suggests cooperative regulation of genes with SBE-containing promoters by the cAMP and TGFbeta signalling pathways in the developing palate.
Collapse
Affiliation(s)
- D R Warner
- University of Louisville Birth Defects Center, Department of Molecular, Cellular, and Craniofacial Biology, University of Louisville School of Dentistry, 501 South Preston Street, Suite 301, Louisville, KY 40292, USA.
| | | | | |
Collapse
|
142
|
Mizuide M, Hara T, Furuya T, Takeda M, Kusanagi K, Inada Y, Mori M, Imamura T, Miyazawa K, Miyazono K. Two short segments of Smad3 are important for specific interaction of Smad3 with c-Ski and SnoN. J Biol Chem 2003; 278:531-6. [PMID: 12426322 DOI: 10.1074/jbc.c200596200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
c-Ski and SnoN are transcriptional co-repressors that inhibit transforming growth factor-beta signaling through interaction with Smad proteins. Among receptor-regulated Smads, c-Ski and SnoN bind more strongly to Smad2 and Smad3 than to Smad1. Here, we show that c-Ski and SnoN bind to the "SE" sequence in the C-terminal MH2 domain of Smad3, which is exposed on the N-terminal upper side of the toroidal structure of the MH2 oligomer. The "QPSMT" sequence, located in the vicinity of SE, supports the interaction with c-Ski and SnoN. Sequences similar to SE and QPSMT are found in Smad2, but not in Smad1. The N-terminal MH1 domain and linker region of Smad3 protrude from the N-terminal upper side of the MH2 oligomer toroid. Smurf2 induces ubiquitin-dependent degradation of SnoN, since it appears to be located close to SnoN through binding to the linker region of Smad2. In contrast, transcription factors Mixer and FoxH3 (FAST1) bind to the bottom side of the Smad3 MH2 toroid; therefore, c-Ski does not affect the interaction of Smads with these transcription factors. Our findings thus demonstrate the stoichiometry of how multiple molecules can associate with the Smad oligomers and how the Smad-interacting proteins functionally interact with each other.
Collapse
Affiliation(s)
- Masafumi Mizuide
- Department of Biochemistry, The Cancer Institute of the Japanese Foundation for Cancer Research (JFCR), Tokyo 170-8455, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Rishikof DC, Ricupero DA, Kuang PP, Liu H, Goldstein RH. Interleukin-4 regulates connective tissue growth factor expression in human lung fibroblasts. J Cell Biochem 2002; 85:496-504. [PMID: 11967989 DOI: 10.1002/jcb.10144] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transforming growth factor-beta (TGF-beta) and interleukin-4 (IL-4) have fibrogenic properties and induce extracellular matrix production in a variety of lung diseases. Connective tissue growth factor (CTGF) is a matrix signaling molecule stimulated by TGF-beta that in part mediates alpha1(I) collagen mRNA expression. In these studies, the regulation of CTGF expression by IL-4 in human lung fibroblasts was examined. Following 6 h of stimulation with IL-4, basal CTGF mRNA levels were unchanged as assessed by Northern blot analysis. However, IL-4 attenuated the TGF-beta-stimulated induction of CTGF mRNA expression by 50%. This effect was selective because IL-4 did not affect fibronectin or alpha1(I) collagen mRNA expression induced by TGF-beta. Experiments employing the transcriptional inhibitor actinomycin D suggest that IL-4 did not affect the stability of the CTGF mRNA. Transient transfection assays with 3TP-Lux, a luciferase gene controlled by a TGF-beta inducible promoter, and with a CTGF promoter construct indicate that IL-4 interfered with the TGF-beta-induced transcriptional activation of the CTGF gene.
Collapse
Affiliation(s)
- David C Rishikof
- The Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | |
Collapse
|
144
|
Kang HY, Huang KE, Chang SY, Ma WL, Lin WJ, Chang C. Differential modulation of androgen receptor-mediated transactivation by Smad3 and tumor suppressor Smad4. J Biol Chem 2002; 277:43749-56. [PMID: 12226080 DOI: 10.1074/jbc.m205603200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Smad proteins have been demonstrated to be key components in the transforming growth factor beta signaling cascade. Here we demonstrate that Smad4, together with Smad3, can interact with the androgen receptor (AR) in the DNA-binding and ligand-binding domains, which may result in the modulation of 5alpha-dihydrotestosterone-induced AR transactivation. Interestingly, in the prostate PC3 and LNCaP cells, addition of Smad3 can enhance AR transactivation, and co-transfection of Smad3 and Smad4 can then repress AR transactivation in various androgen response element-promoter reporter assays as well as Northern blot and reverse transcription-PCR quantitation assays with prostate-specific antigen mRNA expression. In contrast, in the SW480.C7 cells, lacking endogenous functional Smad4, the influence of Smad3 on AR transactivation is dependent on the various androgen response element-promoters. The influence of Smad3/Smad4 on the AR transactivation may involve the acetylation since the treatment of trichostatin A or sodium butyrate can reverse Smad3/Smad4-repressed AR transactivation and Smad3/Smad4 complex can also decrease the acetylation level of AR. Together, these results suggest that the interactions between AR, Smad3, and Smad4 may result in the differential regulation of the AR transactivation, which further strengthens their roles in the prostate cancer progression.
Collapse
Affiliation(s)
- Hong-Yo Kang
- Center for Menopause and Reproductive Medicine Research, Chang Gung University/Memorial Hospital, Kaohsiung, Taiwan 833
| | | | | | | | | | | |
Collapse
|
145
|
Wu JW, Krawitz AR, Chai J, Li W, Zhang F, Luo K, Shi Y. Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGF-beta signaling. Cell 2002; 111:357-67. [PMID: 12419246 DOI: 10.1016/s0092-8674(02)01006-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Ski family of nuclear oncoproteins represses TGF-beta signaling through interactions with the Smad proteins. The crystal structure of the Smad4 binding domain of human c-Ski in complex with the MH2 domain of Smad4 reveals specific recognition of the Smad4 L3 loop region by a highly conserved interaction loop (I loop) from Ski. The Ski binding surface on Smad4 significantly overlaps with that required for binding of the R-Smads. Indeed, Ski disrupts the formation of a functional complex between the Co- and R-Smads, explaining how it could lead to repression of TGF-beta, activin, and BMP responses. Intriguingly, the structure of the Ski fragment, stabilized by a bound zinc atom, resembles the SAND domain, in which the corresponding I loop is responsible for DNA binding.
Collapse
Affiliation(s)
- Jia Wei Wu
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | |
Collapse
|
146
|
Macias-Silva M, Li W, Leu JI, Crissey MAS, Taub R. Up-regulated transcriptional repressors SnoN and Ski bind Smad proteins to antagonize transforming growth factor-beta signals during liver regeneration. J Biol Chem 2002; 277:28483-90. [PMID: 12023281 DOI: 10.1074/jbc.m202403200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) functions as an antiproliferative factor for hepatocytes. However, for unexplained reasons, hepatocytes become resistant to TGF-beta signals and can proliferate despite the presence of TGF-beta during liver regeneration. TGF-beta is up-regulated during liver regeneration, although it is not known whether it is active or latent. TGF-beta activity may be examined by assessing Smad activation, a downstream signaling pathway. Smad pathway activation during liver regeneration induced by partial hepatectomy or CC4 injury was examined by assessing the levels of phospho-Smad2 and Smad2-Smad4 complexes. We found that Smad proteins were slightly activated in quiescent liver, but that their activation was further enhanced in regenerating liver. Interestingly, TGF-beta/Smad pathway inhibitors (SnoN and Ski) were up-regulated during regeneration, and notably, SnoN was induced mainly in hepatocytes. SnoN and Ski are transcriptional repressors that may render some cells resistant to TGF-beta via binding Smad proteins. Complexes between SnoN, Ski, and the activated Smad proteins were detected from 2 to 120 h during the major proliferative phase in regenerating liver. Inhibitory complexes decreased after liver mass restitution (5-15 days), suggesting that persistently activated Smad proteins might participate in returning the liver to a quiescent state. Our data show that active TGF-beta/Smad signals are present during regeneration and suggest that SnoN/Ski induction might explain hepatocyte resistance to TGF-beta during the proliferative phase.
Collapse
Affiliation(s)
- Marina Macias-Silva
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
147
|
Qin BY, Lam SS, Correia JJ, Lin K. Smad3 allostery links TGF-beta receptor kinase activation to transcriptional control. Genes Dev 2002; 16:1950-63. [PMID: 12154125 PMCID: PMC186427 DOI: 10.1101/gad.1002002] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Smad3 transduces the signals of TGF-betas, coupling transmembrane receptor kinase activation to transcriptional control. The membrane-associated molecule SARA (Smad Anchor for Receptor Activation) recruits Smad3 for phosphorylation by the receptor kinase. Upon phosphorylation, Smad3 dissociates from SARA and enters the nucleus, in which its transcriptional activity can be repressed by Ski. Here, we show that SARA and Ski recognize specifically the monomeric and trimeric forms of Smad3, respectively. Thus, trimerization of Smad3, induced by phosphorylation, simultaneously activates the TGF-beta signal by driving Smad3 dissociation from SARA and sets up the negative feedback mechanism by Ski. Structural models of the Smad3/SARA/receptor kinase complex and Smad3/Ski complex provide insights into the molecular basis of regulation.
Collapse
Affiliation(s)
- Bin Y Qin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
148
|
Cao W, Mattagajasingh SN, Xu H, Kim K, Fierlbeck W, Deng J, Lowenstein CJ, Ballermann BJ. TIMAP, a novel CAAX box protein regulated by TGF-beta1 and expressed in endothelial cells. Am J Physiol Cell Physiol 2002; 283:C327-37. [PMID: 12055102 DOI: 10.1152/ajpcell.00442.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Representational difference analysis of the glomerular endothelial cell response to transforming growth factor-beta1 (TGF-beta1) revealed a novel gene, TIMAP (TGF-beta-inhibited membrane-associated protein), which contains 10 exons and maps to human chromosome 20.q11.22. By Northern blot, TIMAP mRNA is highly expressed in all cultured endothelial and hematopoietic cells. The frequency of the TIMAP SAGE tag is much greater in endothelial cell SAGE databases than in nonendothelial cells. Immunofluorescence studies of rat tissues show that anti-TIMAP antibodies localize to vascular endothelium. TGF-beta1 represses TIMAP through a protein synthesis- and histone deacetylase-dependent process. The TIMAP protein contains five ankyrin repeats, a protein phosphatase-1 (PP1)-interacting domain, a COOH-terminal CAAX box, a domain arrangement similar to that of MYPT3, and a PP1 inhibitor. A green fluorescent protein-TIMAP fusion protein localized to the plasma membrane in a CAAX box-dependent fashion. Hence, TIMAP is a novel gene highly expressed in endothelial and hematopoietic cells and regulated by TGF-beta1. On the basis of its domain structure, TIMAP may serve a signaling function, potentially through interaction with PP1.
Collapse
Affiliation(s)
- Wangsen Cao
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Kim SS, Zhang RG, Braunstein SE, Joachimiak A, Cvekl A, Hegde RS. Structure of the retinal determination protein Dachshund reveals a DNA binding motif. Structure 2002; 10:787-95. [PMID: 12057194 DOI: 10.1016/s0969-2126(02)00769-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Dachshund proteins are essential components of a regulatory network controlling cell fate determination. They have been implicated in eye, limb, brain, and muscle development. These proteins cannot be assigned to any recognizable structural or functional class based on amino acid sequence analysis. The 1.65 A crystal structure of the most conserved domain of human DACHSHUND is reported here. The protein forms an alpha/beta structure containing a DNA binding motif similar to that found in the winged helix/forkhead subgroup of the helix-turn-helix family. This unexpected finding alters the previously proposed molecular models for the role of Dachshund in the eye determination pathway. Furthermore, it provides a rational framework for future mechanistic analyses of the Dachshund proteins in several developmental contexts.
Collapse
Affiliation(s)
- Seung-Sup Kim
- Structural Biology Program, Skirball Institute, New York University Medical Center, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
150
|
Shinagawa T, Nomura T, Colmenares C, Ohira M, Nakagawara A, Ishii S. Increased susceptibility to tumorigenesis of ski-deficient heterozygous mice. Oncogene 2001; 20:8100-8. [PMID: 11781823 DOI: 10.1038/sj.onc.1204987] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2001] [Revised: 09/12/2001] [Accepted: 09/18/2001] [Indexed: 01/07/2023]
Abstract
The c-ski proto-oncogene product (c-Ski) acts as a co-repressor and binds to other co-repressors N-CoR/SMRT and mSin3A which form a complex with histone deacetylase (HDAC). c-Ski mediates the transcriptional repression by a number of repressors, including nuclear hormone receptors and Mad. c-Ski also directly binds to, and recruits the HDAC complex to Smads, leading to inhibition of tumor growth factor-beta (TGF-beta) signaling. This is consistent with the function of ski as an oncogene. Here we show that loss of one copy of c-ski increases susceptibility to tumorigenesis in mice. When challenged with a chemical carcinogen, c-ski heterozygous mice showed an increased level of tumor formation relative to wild-type mice. In addition, c-ski-deficient mouse embryonic fibroblasts (MEFs) had increased proliferative capacity, whereas overexpression of c-Ski suppressed the proliferation. Furthermore, the introduction of activated Ki-ras into c-ski-deficient MEFs resulted in neoplastic transformation. These findings demonstrate that c-ski acts as a tumor suppressor in some types of cells. The level of cdc25A mRNA, which is down regulated by two tumor suppressor gene products, Rb and Mad, was upregulated in c-ski-deficient MEFs, whereas it decreased by overexpressing c-Ski in MEFs. This is consistent with the fact that c-Ski acts as a co-repressor of Mad and Rb. These results support the view that the decreased activities of Mad and Rb in ski-deficient cells at least partly contribute to enhanced proliferation and susceptibility to tumorigenesis. Human c-ski gene was mapped to a region close to the p73 tumor suppressor gene at the 1p36.3 locus, which is already known to contain multiple uncharacterized tumor suppressor genes.
Collapse
Affiliation(s)
- T Shinagawa
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, and CREST (Core Research for Evolutionary Science and Technology) Research Project of JST (Japan Science & Technology Corporation), 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | |
Collapse
|