101
|
Ming K, Yuan W, Chen Y, Du H, He M, Hu Y, Wang D, Wu Y, Liu J. PI3KC3-dependent autophagosomes formation pathway is of crucial importance to anti-DHAV activity of Chrysanthemum indicum polysaccharide. Carbohydr Polym 2019; 208:22-31. [DOI: 10.1016/j.carbpol.2018.12.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 01/08/2023]
|
102
|
The Tug-of-War between Plants and Viruses: Great Progress and Many Remaining Questions. Viruses 2019; 11:v11030203. [PMID: 30823402 PMCID: PMC6466000 DOI: 10.3390/v11030203] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 12/19/2022] Open
Abstract
Plants are persistently challenged by various phytopathogens. To protect themselves, plants have evolved multilayered surveillance against all pathogens. For intracellular parasitic viruses, plants have developed innate immunity, RNA silencing, translation repression, ubiquitination-mediated and autophagy-mediated protein degradation, and other dominant resistance gene-mediated defenses. Plant viruses have also acquired diverse strategies to suppress and even exploit host defense machinery to ensure their survival. A better understanding of the defense and counter-defense between plants and viruses will obviously benefit from the development of efficient and broad-spectrum virus resistance for sustainable agriculture. In this review, we summarize the cutting edge of knowledge concerning the defense and counter-defense between plants and viruses, and highlight the unexploited areas that are especially worth investigating in the near future.
Collapse
|
103
|
Jang YJ, Kim JH, Byun S. Modulation of Autophagy for Controlling Immunity. Cells 2019; 8:cells8020138. [PMID: 30744138 PMCID: PMC6406335 DOI: 10.3390/cells8020138] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an essential process that maintains physiological homeostasis by promoting the transfer of cytoplasmic constituents to autophagolysosomes for degradation. In immune cells, the autophagy pathway plays an additional role in facilitating proper immunological functions. Specifically, the autophagy pathway can participate in controlling key steps in innate and adaptive immunity. Accordingly, alterations in autophagy have been linked to inflammatory diseases and defective immune responses against pathogens. In this review, we discuss the various roles of autophagy signaling in coordinating immune responses and how these activities are connected to pathological conditions. We highlight the therapeutic potential of autophagy modulators that can impact immune responses and the mechanisms of action responsible.
Collapse
Affiliation(s)
- Young Jin Jang
- Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanjugun55365, Korea.
| | - Jae Hwan Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
| | - Sanguine Byun
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea.
| |
Collapse
|
104
|
Autophagy Promotes Replication of Influenza A Virus In Vitro. J Virol 2019; 93:JVI.01984-18. [PMID: 30541828 DOI: 10.1128/jvi.01984-18] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
Influenza A virus (IAV) infection could induce autophagosome accumulation. However, the impact of the autophagy machinery on IAV infection remains controversial. Here, we showed that induction of cellular autophagy by starvation or rapamycin treatment increases progeny virus production, while disruption of autophagy using a small interfering RNA (siRNA) and pharmacological inhibitor reduces progeny virus production. Further studies revealed that alteration of autophagy significantly affects the early stages of the virus life cycle or viral RNA synthesis. Importantly, we demonstrated that overexpression of both the IAV M2 and NP proteins alone leads to the lipidation of LC3 to LC3-II and a redistribution of LC3 from the cytosol to punctate vesicles indicative of authentic autophagosomes. Intriguingly, both M2 and NP colocalize and interact with LC3 puncta during M2 or NP transfection alone and IAV infection, leading to an increase in viral ribonucleoprotein (vRNP) export and infectious viral particle formation, which indicates that the IAV-host autophagy interaction plays a critical role in regulating IAV replication. We showed that NP and M2 induce the AKT-mTOR-dependent autophagy pathway and an increase in HSP90AA1 expression. Finally, our studies provided evidence that IAV replication needs an autophagy pathway to enhance viral RNA synthesis via the interaction of PB2 and HSP90AA1 by modulating HSP90AA1 expression and the AKT-mTOR signaling pathway in host cells. Collectively, our studies uncover a new mechanism that NP- and M2-mediated autophagy functions in different stages of virus replication in the pathogenicity of influenza A virus.IMPORTANCE Autophagy impacts the replication cycle of many viruses. However, the role of the autophagy machinery in IAV replication remains unclear. Therefore, we explored the detailed mechanisms utilized by IAV to promote its replication. We demonstrated that IAV NP- and M2-mediated autophagy promotes IAV replication by regulating the AKT-mTOR signaling pathway and HSP90AA1 expression. The interaction of PB2 and HSP90AA1 results in the increase of viral RNA synthesis first; subsequently the binding of NP to LC3 favors vRNP export, and later the interaction of M2 and LC3 leads to an increase in the production of infectious viral particles, thus accelerating viral progeny production. These findings improve our understanding of IAV pathogenicity in host cells.
Collapse
|
105
|
Ray RB, Ray R. Hepatitis C Virus Manipulates Humans as its Favorite Host for a Long-Term Relationship. Hepatology 2019; 69:889-900. [PMID: 30102776 PMCID: PMC6351149 DOI: 10.1002/hep.30214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis C virus (HCV) infection-associated liver disease is a global health problem. HCV often causes silent disease, and eventually progresses to end-stage liver disease. HCV infects hepatocytes; however, initial manifestation of liver disease is mostly displayed in hepatic stellate cells (HSCs), causing fibrosis/cirrhosis, and is believed to occur from inflammation in the liver. It remains unclear why HCV is not spontaneously cleared from infected liver in the majority of individuals and develops chronic infection with progressive liver disease. Direct-acting antivirals (DAAs) show excellent results in controlling viremia, although beneficial consequence in advanced liver disease remains to be understood. In this review, we highlight the current knowledge that has contributed to our understanding of the role of HCV in inflammation, immune evasion, metabolic disorders, liver pathogeneses, and efforts in vaccine development.
Collapse
Affiliation(s)
- Ratna B. Ray
- Department of Pathology, Saint Louis University, Saint Louis, Missouri 63104, USA,Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri 63104, USA
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri 63104, USA
| |
Collapse
|
106
|
Ke PY. Diverse Functions of Autophagy in Liver Physiology and Liver Diseases. Int J Mol Sci 2019; 20:E300. [PMID: 30642133 PMCID: PMC6358975 DOI: 10.3390/ijms20020300] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a catabolic process by which eukaryotic cells eliminate cytosolic materials through vacuole-mediated sequestration and subsequent delivery to lysosomes for degradation, thus maintaining cellular homeostasis and the integrity of organelles. Autophagy has emerged as playing a critical role in the regulation of liver physiology and the balancing of liver metabolism. Conversely, numerous recent studies have indicated that autophagy may disease-dependently participate in the pathogenesis of liver diseases, such as liver hepatitis, steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma. This review summarizes the current knowledge on the functions of autophagy in hepatic metabolism and the contribution of autophagy to the pathophysiology of liver-related diseases. Moreover, the impacts of autophagy modulation on the amelioration of the development and progression of liver diseases are also discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Division of Allergy, Immunology, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| |
Collapse
|
107
|
Khawar MB, Gao H, Li W. Autophagy and Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1206:359-374. [PMID: 31776994 DOI: 10.1007/978-981-15-0602-4_17] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autophagy is a conserved catabolic process that delivers intracellular proteins and organelles to the lysosome for degradation and recycling. Evidences over the past decades have proved that autophagy participates in cell fate decision and also plays a key role in regulating cellular energy and nutrient stores. Lipid droplets (LDs) are the main lipid storage form in living organisms. The process of autophagic degradation of LDs is referred to lipophagy or macrolipophagy. Lipophagy is not only indispensable for the cellular lipid metabolism but also closely associated with several metabolic disorders such as obesity, hepatic steatosis, atherosclerosis, and so on. Here, we summarize recent progress in understanding the molecular mechanisms of lipophagy regulation and the emerging roles of lipophagy in various biological processes and metabolic disorders.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
108
|
Monitoring of Interferon Response Triggered by Cells Infected by Hepatitis C Virus or Other Viruses Upon Cell-Cell Contact. Methods Mol Biol 2019; 1911:319-335. [PMID: 30593636 DOI: 10.1007/978-1-4939-8976-8_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) constitute a unique DC subset specialized in rapid and massive secretion of cytokines, including type I interferon (i.e., IFNα and IFNβ), known to be pivotal for both innate immunity and the onset of adaptive response. The production of type I IFNs by pDCs is primarily induced by the recognition of viral nucleic acids through Toll-like receptor (TLR)-7 and -9 sensors located in the endolysosomal compartment. Importantly, in the context of hepatitis C virus (HCV) infection, pDC type I IFN response is triggered by the sensing of infected cells via physical cell-cell contact. Such a feature is also observed for many genetically distant viruses, including notably viruses of the Retroviridae, Arenaviridae, Flaviviridae, Picornaviridaea, Togaviridae families and observed for various infected cell types. Here, we described a set of experimental methods for the ex vivo studies of the regulation of pDC activation upon physical cell-cell contact with virally infected cells.
Collapse
|
109
|
Ríos-Ocampo WA, Navas MC, Faber KN, Daemen T, Moshage H. The cellular stress response in hepatitis C virus infection: A balancing act to promote viral persistence and host cell survival. Virus Res 2018; 263:1-8. [PMID: 30599163 DOI: 10.1016/j.virusres.2018.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/03/2018] [Accepted: 12/28/2018] [Indexed: 01/14/2023]
Abstract
Oxidative- and endoplasmic reticulum (ER)-stress are common events during hepatitis C virus (HCV) infection and both regulate cell survival and determine clinical outcome. In response to intrinsic and extrinsic cellular stress, different adaptive mechanisms have evolved in hepatocytes to restore cellular homeostasis like the anti-oxidant response, the unfolded protein response (UPR) and the integrated stress response (ISR). In this review, we focus on the cellular stress response in the context of acute and chronic HCV infection. The mechanisms of induction and modulation of oxidative- and ER-stress are reviewed and analyzed from both perspectives: viral persistence and cell survival. Besides, we delve into the activation of the eIF2α/ATF4 pathway and selective autophagy induction; pathways involved in the elimination of harmful viral proteins after oxidative stress induction. For this, the negative role of autophagy upon HCV infection or negative regulation of viral replication is analyzed. Finally, we hypothesize that the cellular stress response in hepatocytes plays a major role for HCV control thus acting as an important host-factor for virus clearance during the early stages of HCV infection.
Collapse
Affiliation(s)
- W Alfredo Ríos-Ocampo
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Grupo Gastrohepatología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.
| | - María-Cristina Navas
- Grupo Gastrohepatología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Toos Daemen
- Department Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
110
|
Ke PY. The Multifaceted Roles of Autophagy in Flavivirus-Host Interactions. Int J Mol Sci 2018; 19:ijms19123940. [PMID: 30544615 PMCID: PMC6321027 DOI: 10.3390/ijms19123940] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily conserved cellular process in which intracellular components are eliminated via lysosomal degradation to supply nutrients for organelle biogenesis and metabolic homeostasis. Flavivirus infections underlie multiple human diseases and thus exert an immense burden on public health worldwide. Mounting evidence indicates that host autophagy is subverted to modulate the life cycles of flaviviruses, such as hepatitis C virus, dengue virus, Japanese encephalitis virus, West Nile virus and Zika virus. The diverse interplay between autophagy and flavivirus infection not only regulates viral growth in host cells but also counteracts host stress responses induced by viral infection. In this review, we summarize the current knowledge on the role of autophagy in the flavivirus life cycle. We also discuss the impacts of virus-induced autophagy on the pathogeneses of flavivirus-associated diseases and the potential use of autophagy as a therapeutic target for curing flavivirus infections and related human diseases.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| |
Collapse
|
111
|
Salinomycin ameliorates oxidative hepatic damage through AMP-activated protein kinase, facilitating autophagy. Toxicol Appl Pharmacol 2018; 360:141-149. [DOI: 10.1016/j.taap.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/13/2018] [Accepted: 10/01/2018] [Indexed: 01/11/2023]
|
112
|
Mori H, Fukuhara T, Ono C, Tamura T, Sato A, Fauzyah Y, Wada M, Okamoto T, Noda T, Yoshimori T, Matsuura Y. Induction of selective autophagy in cells replicating hepatitis C virus genome. J Gen Virol 2018; 99:1643-1657. [DOI: 10.1099/jgv.0.001161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Hiroyuki Mori
- 1Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Takasuke Fukuhara
- 1Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Chikako Ono
- 1Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Tomokazu Tamura
- 1Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Asuka Sato
- 1Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Yuzy Fauzyah
- 1Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Masami Wada
- 1Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
- †Present address: Division of Virology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Toru Okamoto
- 1Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Takeshi Noda
- 2Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Tamotsu Yoshimori
- 3Department of Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Yoshiharu Matsuura
- 1Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
113
|
Abdoli M, Abdoli A, Aryan E, Meshkat Z. Autophagy induction plays time-dependent role in viral load of HCV infected Huh7.5 cell line. IUBMB Life 2018; 71:41-44. [PMID: 30290082 DOI: 10.1002/iub.1913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022]
Abstract
Autophagy provides an initial membranous platform for incoming hepatitis C virus (HCV) RNA translation and immune evasion. Once HCV replication is established, this infrastructure will be unnecessary for translation of HCV RNA progeny. So, the autophagy plays key role in the replication and immune pathogenesis of HCV virus. The aim of this study was to study the effect of autophagy induction in Huh7.5 cell on virus titer. The Huh7.5 cell was transfected with recombinant pcDNA-Beclin1. The autophagy induction was evaluated via microtubule associated protein 1 light chain 3 staining as autophagy formation marker using flow cytometry. The HCV (JFH1) was inoculated 12-h post-transfection. Next, to evaluate the viral load, viral RNA was extracted after 24 and 48 h and virus titer was calculated using real-time PCR. The result of the current study shows that the induction of autophagy before virus infection was able to enhance virus yield from 4 × 103 copies/mL to 1 × 104 copies/mL at 24-h post-infection, but reduced viral load after 48 h up to 6 × 103 copies/mL. The study of cross-talk between autophagy and HCV may bring new hope for human intervention and treatment of HCV. Also, it opens new avenue to improve virus cultivation in cell culture and understanding HCV and host cell responses. © 2018 IUBMB Life, 71(1):41-44, 2019.
Collapse
Affiliation(s)
- Mohsen Abdoli
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 13169-43551, Iran
| | - Ehsan Aryan
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
114
|
LC3B is not recruited along with the autophagy elongation complex (ATG5-12/16L1) at HCV replication site and is dispensable for viral replication. PLoS One 2018; 13:e0205189. [PMID: 30286180 PMCID: PMC6171931 DOI: 10.1371/journal.pone.0205189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) infection is known to induce autophagosome accumulation as observed by the typical punctate cytoplasmic distribution of LC3B-II in infected cells. Previously, we showed that viral RNA-dependent RNA polymerase (NS5B) interacts with ATG5, a major component of the autophagy elongation complex that is involved in the formation of double-membrane vesicles (DMV), and demonstrated that the autophagy elongation complex (ATG5-12/16L1) but not LC3B is required for proper membranous web formation. In this study, the colocalization and in situ interaction of all HCV replicase components with the constituent of the autophagy elongation complex and LC3B were analyzed. The results clearly show the recruitment of the elongation complex to the site of viral replication. Using in situ proximity ligation assay, we show that ATG5, but not ATG16L1, interacts with several HCV replicase components suggesting that the recruitment is directed via the ATG5-12 conjugate. Interestingly, no E3-like conjugation activity of ATG5-12/16L1 can be detected at the at HCV replication site since LC3B-II is not found along with the elongation complex at the site of viral replication. In agreement with this result, no sign of in situ interaction of LC3B with the replicase components is observed. Finally, using dominant negative forms of ATG proteins, we demonstrate that ATG5-12 conjugate, but not LC3-II formation, is critical for viral replication. Altogether, these findings suggest that although HCV needs the elongation complex for its replication, it has developed a mechanism to avoid canonical LC3-II accumulation at viral replication site.
Collapse
|
115
|
Robinson M, Schor S, Barouch-Bentov R, Einav S. Viral journeys on the intracellular highways. Cell Mol Life Sci 2018; 75:3693-3714. [PMID: 30043139 PMCID: PMC6151136 DOI: 10.1007/s00018-018-2882-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/01/2018] [Accepted: 07/19/2018] [Indexed: 12/24/2022]
Abstract
Viruses are obligate intracellular pathogens that are dependent on cellular machineries for their replication. Recent technological breakthroughs have facilitated reliable identification of host factors required for viral infections and better characterization of the virus-host interplay. While these studies have revealed cellular machineries that are uniquely required by individual viruses, accumulating data also indicate the presence of broadly required mechanisms. Among these overlapping cellular functions are components of intracellular membrane trafficking pathways. Here, we review recent discoveries focused on how viruses exploit intracellular membrane trafficking pathways to promote various stages of their life cycle, with an emphasis on cellular factors that are usurped by a broad range of viruses. We describe broadly required components of the endocytic and secretory pathways, the Endosomal Sorting Complexes Required for Transport pathway, and the autophagy pathway. Identification of such overlapping host functions offers new opportunities to develop broad-spectrum host-targeted antiviral strategies.
Collapse
Affiliation(s)
- Makeda Robinson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stanford Schor
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
| | - Rina Barouch-Bentov
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
116
|
Mingorance L, Castro V, Ávila-Pérez G, Calvo G, Rodriguez MJ, Carrascosa JL, Pérez-del-Pulgar S, Forns X, Gastaminza P. Host phosphatidic acid phosphatase lipin1 is rate limiting for functional hepatitis C virus replicase complex formation. PLoS Pathog 2018; 14:e1007284. [PMID: 30226904 PMCID: PMC6161900 DOI: 10.1371/journal.ppat.1007284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/28/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection constitutes a significant health burden worldwide, because it is a major etiologic agent of chronic liver disease, cirrhosis and hepatocellular carcinoma. HCV replication cycle is closely tied to lipid metabolism and infection by this virus causes profound changes in host lipid homeostasis. We focused our attention on a phosphatidate phosphate (PAP) enzyme family (the lipin family), which mediate the conversion of phosphatidate to diacylglycerol in the cytoplasm, playing a key role in triglyceride biosynthesis and in phospholipid homeostasis. Lipins may also translocate to the nucleus to act as transcriptional regulators of genes involved in lipid metabolism. The best-characterized member of this family is lipin1, which cooperates with lipin2 to maintain glycerophospholipid homeostasis in the liver. Lipin1-deficient cell lines were generated by RNAi to study the role of this protein in different steps of HCV replication cycle. Using surrogate models that recapitulate different aspects of HCV infection, we concluded that lipin1 is rate limiting for the generation of functional replicase complexes, in a step downstream primary translation that leads to early HCV RNA replication. Infection studies in lipin1-deficient cells overexpressing wild type or phosphatase-defective lipin1 proteins suggest that lipin1 phosphatase activity is required to support HCV infection. Finally, ultrastructural and biochemical analyses in replication-independent models suggest that lipin1 may facilitate the generation of the membranous compartment that contains functional HCV replicase complexes. Hepatitis C virus (HCV) infection is an important biomedical problem worldwide because it causes severe liver disease and cancer. Although immunological events are major players in HCV pathogenesis, interference with host cell metabolism contribute to HCV-associated pathologies. HCV utilizes resources of the cellular lipid metabolism to strongly modify subcellular compartments, using them as platforms for replication and infectious particle assembly. In particular, HCV induces the formation of a “membranous web” that hosts the viral machinery dedicated to the production of new copies of the viral genome. This lipid-rich structure provides an optimized platform for viral genome replication and hides new viral genomes from host´s antiviral surveillance. In this study, we have identified a cellular protein, lipin1, involved in the production of a subset of cellular lipids, as a rate-limiting factor for HCV infection. Our results indicate that the enzymatic activity of lipin1 is required to build the membranous compartment dedicated to viral genome replication. Lipin1 is probably contributing to the formation of the viral replication machinery by locally providing certain lipids required for an optimal membranous environment. Based on these results, interfering with lipin1 capacity to modify lipids may therefore constitute a potential strategy to limit HCV infection.
Collapse
Affiliation(s)
- Lidia Mingorance
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - Victoria Castro
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - Ginés Ávila-Pérez
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - Gema Calvo
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - María Josefa Rodriguez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - José L. Carrascosa
- Department of Macromolecular Structures, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - Sofía Pérez-del-Pulgar
- Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Consorcio Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universitat de Barcelona, Barcelona (Spain)
| | - Xavier Forns
- Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Consorcio Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universitat de Barcelona, Barcelona (Spain)
| | - Pablo Gastaminza
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
- Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Consorcio Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universitat de Barcelona, Barcelona (Spain)
- * E-mail:
| |
Collapse
|
117
|
Alcohol-induced autophagy via upregulation of PIASy promotes HCV replication in human hepatoma cells. Cell Death Dis 2018; 9:898. [PMID: 30185779 PMCID: PMC6123814 DOI: 10.1038/s41419-018-0845-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
Abstract
Both alcohol and hepatitis C virus (HCV) infection could induce cellular autophagy in liver cells, which is considered to be essential for productive HCV replication. However, whether alcohol-induced autophagy is involved in the pathogenesis of HCV infection is still poorly understood. Alcohol treatment could induce autophagy in Huh7 cells (a hepatoma cell line that supports HCV JFH-1 replication), evidenced by the increase of LC3B-II levels, the conversion of LC3B-I to LC3B-II, and the formation of GFP-LC3 puncta as well as the decrease of p62 level in alcohol-treated cells compared with control cells. Alcohol treatment also significantly increased PIASy (a member of the PIAS family) expression, which can act as a SUMO (small ubiquitin-like modifier protein) E3 ligase to regulate a broader range of cellular processes including autophagy. Overexpression or the silencing expression of PIASy in alcohol-treated Huh7 cells could increase or decrease autophagic activation caused by alcohol treatment, respectively, and thus affect HCV replication correspondingly. In the absence of alcohol, overexpression or silencing expression of PIASy increase or decrease the level of cellular autophagy, judged by the changes of LC3B-II and p62 levels in the presence or absence of chloroquine (CQ), a lysosome inhibitor. More importantly, in the presence of 3-methyladenine (3-MA), an inhibitor in the early stage of autophagy, the effects of overexpression or silencing expression of PIASy on HCV replication were largely blocked. Furthermore, PIASy could selectively drive the accumulation of SUMO1-conjugated proteins, along with upregulation of the expression of several important autophagy factors, including ATG7 and ATG5–ATG12. In conclusion, alcohol promotes HCV replication through activation of autophagy in Huh7 cells, which partly attributes to its induction of PIASy expression. PIASy-enhanced accumulation of SUMO1-conjugated proteins may contribute to its inducing effect of autophagy. Our findings provide a novel mechanism for the action of alcohol-promoting HCV replication in the context of cellular autophagy.
Collapse
|
118
|
Khan M, Imam H, Siddiqui A. Subversion of cellular autophagy during virus infection: Insights from hepatitis B and hepatitis C viruses. LIVER RESEARCH 2018; 2:146-156. [PMID: 31803515 PMCID: PMC6892584 DOI: 10.1016/j.livres.2018.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autophagy is a self-eating process, in which the damaged or excessed cell organelles and misfolded protein aggregates are removed from the cellular microenvironment. Autophagy is generally thought of as a pro-survival mechanism which is not only important for balancing energy supply at times of nutrient deprivation but also in the removal of various stress stimuli to ensure homeostasis. In addition to the target materials of "self" origin, autophagy can also eliminate intracellular pathogens and acts as a defense mechanism to curb infections. In addition, autophagy is linked to the host cell's innate immune response. However, viruses have evolved various strategies to manipulate and overtake host cell machinery to establish productive replication and maintain infectious process. In fact, replication of many viruses has been found to be autophagy-dependent and suppression of autophagy can potentially affect the viral replication. Thus, autophagy can either serve as an anti-viral defense mechanism or a pro-viral process that supports viral replication. Hepatitis B virus (HBV) and hepatitis C virus (HCV) are known to co-opt cellular autophagy process as a pro-viral tool. Both viruses also induce mitophagy, which contributes to the establishment of chronic hepatitis. This review focuses on the roles of autophagy and mitophagy in the chronic liver disease pathogenesis associated with HBV and HCV infections.
Collapse
|
119
|
Transduction with Lentiviral Vectors Altered the Expression Profile of Host MicroRNAs. J Virol 2018; 92:JVI.00503-18. [PMID: 29997205 DOI: 10.1128/jvi.00503-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/22/2018] [Indexed: 01/07/2023] Open
Abstract
RNA interference (RNAi) is widely used in gene knockdown analysis and as a tool to screen host genes involved in viral infection. Owing to the limitations of transducing cells with synthetic small interfering RNAs (siRNAs), lentiviral short hairpin RNA (shRNA) vectors are more widely used. However, we found that stable transduction with lentiviral shRNA vectors inhibited hepatitis C virus (HCV) propagation in human hepatoma cells. We found by microRNA (miRNA) microarray analysis that this inhibition was induced by the alteration of host miRNA expression. In addition to one miRNA (miR-196b-5p) previously reported to be involved in HCV infection, other miRNAs (miR-216a-5p, -216b-5p, 217, and -30b-5p) were found to influence HCV infection in this study. Further studies suggested that this effect was independent of the transcription of shRNAs. The lentiviral vector itself and the integration site of the lentiviral vector might determine the change in miRNA expression. Moreover, the upregulation of JUN contributed to the dysregulation of miR-216a-5p, -216b-5p, and -217 in stably transduced cells. Although the changes in miRNA expression were beneficial for inhibiting HCV infection in our study, this off-target effect should be considered when transduction with lentiviral vectors is performed for other purposes, especially in therapy.IMPORTANCE We found that stable transduction with lentiviral shRNA was able to nonspecifically inhibit HCV infection by the dysregulation of host miRNAs. Previous studies showed that the overexpression of shRNAs oversaturated the host miRNA pathways to inhibit HCV infection. In contrast, the miRNA machinery was not affected in our study. Knockout studies suggested that the nonspecific effect was independent of the transcription of shRNAs. The lentiviral vector itself and the integration sites in the host genome determined the changes in miRNAs. Stable transduction with lentiviral vectors was able to increase the expression of JUN, which in turn upregulated miR-216a-5p, miR-216b-5p, and miR-217. miR-216a-5p and miR-216b-5p might inhibit HCV by suppressing the host autophagic machinery. Our study suggested a novel nonspecific effect of lentiviral vectors, and this side effect should be considered when transduction with lentiviral vectors is performed for other purposes, especially in therapy.
Collapse
|
120
|
Bosc D, Vezenkov L, Bortnik S, An J, Xu J, Choutka C, Hannigan AM, Kovacic S, Loo S, Clark PGK, Chen G, Guay-Ross RN, Yang K, Dragowska WH, Zhang F, Go NE, Leung A, Honson NS, Pfeifer TA, Gleave M, Bally M, Jones SJ, Gorski SM, Young RN. A new quinoline-based chemical probe inhibits the autophagy-related cysteine protease ATG4B. Sci Rep 2018; 8:11653. [PMID: 30076329 PMCID: PMC6076261 DOI: 10.1038/s41598-018-29900-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 07/17/2018] [Indexed: 01/06/2023] Open
Abstract
The cysteine protease ATG4B is a key component of the autophagy machinery, acting to proteolytically prime and recycle its substrate MAP1LC3B. The roles of ATG4B in cancer and other diseases appear to be context dependent but are still not well understood. To help further explore ATG4B functions and potential therapeutic applications, we employed a chemical biology approach to identify ATG4B inhibitors. Here, we describe the discovery of 4-28, a styrylquinoline identified by a combined computational modeling, in silico screening, high content cell-based screening and biochemical assay approach. A structure-activity relationship study led to the development of a more stable and potent compound LV-320. We demonstrated that LV-320 inhibits ATG4B enzymatic activity, blocks autophagic flux in cells, and is stable, non-toxic and active in vivo. These findings suggest that LV-320 will serve as a relevant chemical tool to study the various roles of ATG4B in cancer and other contexts.
Collapse
Affiliation(s)
- D Bosc
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Inserm, Institut Pasteur de Lille, U1177 Drugs & Molecules for Living Systems, Université de Lille, F-59000, Lille, France
| | - L Vezenkov
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 15 avenue Charles Flahault, 34093, Montpellier, France
| | - S Bortnik
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, Canada
| | - J An
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | - J Xu
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - C Choutka
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - A M Hannigan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | - S Kovacic
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - S Loo
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - P G K Clark
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - G Chen
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - R N Guay-Ross
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - K Yang
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - W H Dragowska
- Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | - F Zhang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - N E Go
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | - A Leung
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | - N S Honson
- Centre for Drug Research and Development, 2405 Wesbrook Mall - 4th Floor, Vancouver, BC, V6T 1Z3, Canada
| | - T A Pfeifer
- Centre for Drug Research and Development, 2405 Wesbrook Mall - 4th Floor, Vancouver, BC, V6T 1Z3, Canada
| | - M Gleave
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - M Bally
- Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | - S J Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - S M Gorski
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada.
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, Canada.
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - R N Young
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
121
|
Inoue J, Ninomiya M, Shimosegawa T, McNiven MA. Cellular Membrane Trafficking Machineries Used by the Hepatitis Viruses. Hepatology 2018; 68:751-762. [PMID: 29331069 DOI: 10.1002/hep.29785] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/21/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Abstract
While the life cycles of hepatitis viruses (A, B, C, D, and E) have been modestly characterized, recent intensive studies have provided new insights. Because these viruses "hijack" the membrane trafficking of the host cell machinery during replicative propagation, it is essential to determine and understand these specific cellular pathways. Hepatitis B virus (HBV) and hepatitis C virus are well known as leading causes of liver cirrhosis and hepatocellular carcinoma. While substantial inroads toward treating hepatitis C virus patients have recently been made, patients with HBV continue to require lifelong treatment, which makes a thorough understanding of the HBV life cycle essential. Importantly, these viruses have been observed to "hijack" the secretory and endocytic membrane trafficking machineries of the hepatocyte. These can include the canonical clathrin-mediated endocytic process that internalizes virus through cell surface receptors. While these receptors are encoded by the host genome for normal hepatocellular functions, they also exhibit virus-specific recognition. Further, functions provided by the multivesicular body, which include endosomal sorting complexes required for transport, are now known to envelope a variety of different hepatitis viruses. In this review, we summarize the recent findings regarding the cellular membrane trafficking machineries used by HBV in the context of other hepatitis viruses. (Hepatology 2018; 00:000-000).
Collapse
Affiliation(s)
- Jun Inoue
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masashi Ninomiya
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mark A McNiven
- Department of Biochemistry and Molecular Biology and Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, MN
| |
Collapse
|
122
|
Kim JY, Ou JHJ. Regulation of Apolipoprotein E Trafficking by Hepatitis C Virus-Induced Autophagy. J Virol 2018; 92:e00211-18. [PMID: 29695434 PMCID: PMC6026764 DOI: 10.1128/jvi.00211-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/20/2018] [Indexed: 01/02/2023] Open
Abstract
Apolipoprotein E (ApoE) plays an important role in the maturation and infectivity of hepatitis C virus (HCV). By analyzing the subcellular localization of ApoE in Huh7 hepatoma cells that harbored an HCV subgenomic RNA replicon, we found that ApoE colocalized with autophagosomes. This colocalization was marginally detected in HCV-infected cells, apparently due to the depletion of ApoE by HCV, as treatment with bafilomycin A1 (BafA1), a vacuolar ATPase inhibitor that inhibits autophagic protein degradation, partially restored the ApoE level and enhanced its colocalization with autophagosomes in HCV-infected cells. The role of HCV-induced autophagy in the degradation of ApoE was further supported by the observations that nutrient starvation, which induces autophagic protein degradation, led to the loss of ApoE in HCV subgenomic RNA replicon cells and that the knockdown of ATG7, a protein essential for the formation of autophagic vacuoles, increased the ApoE level in cells with productive HCV replication. Interestingly, the inhibition of autophagy by ATG7 knockdown reduced the colocalization of ApoE with the HCV E2 envelope protein and the HCV titers released from cells. In contrast, the treatment of cells with BafA1 enhanced the colocalization of ApoE and HCV E2 and increased both intracellular and extracellular HCV titers. These results indicated that autophagy played an important role in the trafficking of ApoE in HCV-infected cells. While it led to autophagic degradation of ApoE, it also promoted the interaction between ApoE and HCV E2 to enhance the production of infectious progeny viral particles.IMPORTANCE Hepatitis C virus (HCV) is one of the most important human pathogens. Its virion is associated with apolipoprotein E (ApoE), which enhances its infectivity. HCV induces autophagy to enhance its replication. In this report, we demonstrate that autophagy plays an important role in the trafficking of ApoE in HCV-infected cells. This leads to the degradation of ApoE by autophagy. However, if the autophagic protein degradation is inhibited, ApoE is stabilized and colocalized with autophagosomes. This leads to its enhanced colocalization with the HCV E2 envelope protein and increased production of infectious progeny viral particles. If autophagy is inhibited by suppressing the expression of ATG7, a gene essential for the formation of autophagosomes, the colocalization of ApoE with E2 is reduced, resulting in the reduction of progeny viral titers. These results indicate an important role of autophagy in the transport of ApoE to promote the production of infectious HCV particles.
Collapse
Affiliation(s)
- Ja Yeon Kim
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
123
|
Abdoli A, Alirezaei M, Mehrbod P, Forouzanfar F. Autophagy: The multi-purpose bridge in viral infections and host cells. Rev Med Virol 2018; 28:e1973. [PMID: 29709097 PMCID: PMC7169200 DOI: 10.1002/rmv.1973] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/03/2018] [Accepted: 02/09/2018] [Indexed: 02/06/2023]
Abstract
Autophagy signaling pathway is involved in cellular homeostasis, developmental processes, cellular stress responses, and immune pathways. The aim of this review is to summarize the relationship between autophagy and viruses. It is not possible to be fully comprehensive, or to provide a complete "overview of all viruses". In this review, we will focus on the interaction of autophagy and viruses and survey how human viruses exploit multiple steps in the autophagy pathway to help viral propagation and escape immune response. We discuss the role that macroautophagy plays in cells infected with hepatitis C virus, hepatitis B virus, rotavirus gastroenteritis, immune cells infected with human immunodeficiency virus, and viral respiratory tract infections both influenza virus and coronavirus.
Collapse
Affiliation(s)
- Asghar Abdoli
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| | - Mehrdad Alirezaei
- Department of Immunology and Microbial ScienceThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Parvaneh Mehrbod
- Influenza and Other Respiratory Viruses Dept.Pasteur Institute of IranTehranIran
| | - Faezeh Forouzanfar
- University of Strasbourg, EA7292, DHPIInstitute of Parasitology and Tropical Pathology StrasbourgFrance
| |
Collapse
|
124
|
Human cytomegalovirus infection-induced autophagy was associated with the biological behavioral changes of human umbilical vein endothelial cell (HUVEC). Biomed Pharmacother 2018; 102:938-946. [DOI: 10.1016/j.biopha.2018.03.156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/09/2023] Open
|
125
|
Perot BP, Boussier J, Yatim N, Rossman JS, Ingersoll MA, Albert ML. Autophagy diminishes the early interferon-β response to influenza A virus resulting in differential expression of interferon-stimulated genes. Cell Death Dis 2018; 9:539. [PMID: 29748576 PMCID: PMC5945842 DOI: 10.1038/s41419-018-0546-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
Influenza A virus (IAV) infection perturbs metabolic pathways such as autophagy, a stress-induced catabolic pathway that crosstalks with cellular inflammatory responses. However, the impact of autophagy perturbation on IAV gene expression or host cell responses remains disputed. Discrepant results may be a reflection of in vivo studies using cell-specific autophagy-related (Atg) gene-deficient mouse strains, which do not delineate modification of developmental programmes from more proximal effects on inflammatory response. In vitro experiments can be confounded by gene expression divergence in wild-type cultivated cell lines, as compared to those experiencing long-term absence of autophagy. With the goal to investigate cellular processes within cells that are competent or incompetent for autophagy, we generated a novel experimental cell line in which autophagy can be restored by ATG5 protein stabilization in an otherwise Atg5-deficient background. We confirmed that IAV induced autophagosome formation and p62 accumulation in infected cells and demonstrated that perturbation of autophagy did not impact viral infection or replication in ATG5-stablized cells. Notably, the induction of interferon-stimulated genes (ISGs) by IAV was diminished when cells were autophagy competent. We further demonstrated that, in the absence of ATG5, IAV-induced interferon-β (IFN-β) expression was increased as compared to levels in autophagy-competent lines, a mechanism that was independent of IAV non-structural protein 1. In sum, we report that induction of autophagy by IAV infection reduces ISG expression in infected cells by limiting IFN-β expression, which may benefit viral replication and spread.
Collapse
Affiliation(s)
- Brieuc P Perot
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France.,Inserm 1223, Paris, France.,Ecole Doctorale Physiologie, Physiopathologie et Thérapeutique, Université Pierre et Marie Curie (Université Paris 6), Paris, France
| | - Jeremy Boussier
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France.,Inserm 1223, Paris, France.,International Group for Data Analysis, Institut Pasteur, Paris, France.,Ecole Doctorale Frontières du Vivant, Université Paris Diderot, Paris, France
| | - Nader Yatim
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France.,Inserm 1223, Paris, France
| | | | - Molly A Ingersoll
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France. .,Inserm 1223, Paris, France.
| | - Matthew L Albert
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France. .,Inserm 1223, Paris, France. .,Department of Cancer Immunology, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
126
|
mTORC1 Negatively Regulates the Replication of Classical Swine Fever Virus Through Autophagy and IRES-Dependent Translation. iScience 2018; 3:87-101. [PMID: 30428332 PMCID: PMC6137324 DOI: 10.1016/j.isci.2018.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/06/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
Classical swine fever virus (CSFV) can utilize diverse host signaling pathways for its replication; however, the cross talk between mammalian target of rapamycin (mTOR) and CSFV remains unknown. Here, we describe the potential role of mTOR complex 1 (mTORC1) in promoting CSFV replication via virus-induced hypophosphorylation of the Akt/mTORC1/S6 pathway, especially at an early stage of viral infection. Conversely, activation of mTORC1 inhibited the replication of CSFV. Furthermore, we revealed the underlying mechanisms of mTORC1 pathway in mediating CSFV replication; in addition, our data also showed that CSFV-induced transient inhibition of mTORC1 elicited a negative feedback activation of PI3K/Akt/mTORC1pathway, likely contributing to maintain the dynamic balance between viral replication and host cell survival. This study has provided strong evidence showing how CSFV utilizes mTORC1 pathway for viral replication at an early stage in the viral replicative cycle and how the mTORC1 rescues itself by eliciting a feedback loop to limit viral replication and maintain cell survival. Akt/mTORC1 pathway negatively regulates the replication of CSFV CSFV induces autophagy for viral replication in an mTORC1/ULK1-dependent manner CSFV enhances the translation of viral proteins in an mTORC1/S6K1/eIF3-dependent manner Feedback activation of Akt/mTORC1 equilibrates viral replication and cell survival
Collapse
|
127
|
Li YC, Zhang MQ, Zhang JP. Opposite Effects of Two Human ATG10 Isoforms on Replication of a HCV Sub-genomic Replicon Are Mediated via Regulating Autophagy Flux in Zebrafish. Front Cell Infect Microbiol 2018; 8:109. [PMID: 29670865 PMCID: PMC5893791 DOI: 10.3389/fcimb.2018.00109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/19/2018] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a host mechanism for cellular homeostatic control. Intracellular stresses are symptoms of, and responses to, dysregulation of the physiological environment of the cell. Alternative gene transcription splicing is a mechanism potentially used by a host to respond to physiological or pathological challenges. Here, we aimed to confirm opposite effects of two isoforms of the human autophagy-related protein ATG10 on an HCV subgenomic replicon in zebrafish. A liver-specific HCV subreplicon model was established and exhibited several changes in gene expression typically induced by HCV infection, including overexpression of several HCV-dependent genes (argsyn, leugpcr, rasgbd, and scaf-2), as well as overexpression of several ER stress related genes (atf4, chop, atf6, and bip). Autophagy flux was blocked in the HCV model. Our results indicated that the replication of the HCV subreplicon was suppressed via a decrease in autophagosome formation caused by the autophagy inhibitor 3MA, but enhanced via dysfunction in the lysosomal degradation caused by another autophagy inhibitor CQ. Human ATG10, a canonical isoform in autophagy, facilitated the amplification of the HCV-subgenomic replicon via promoting autophagosome formation. ATG10S, a non-canonical short isoform of the ATG10 protein, promoted autophagy flux, leading to lysosomal degradation of the HCV-subgenomic replicon. Human ATG10S may therefore inhibit HCV replication, and may be an appropriate target for future antiviral drug screening.
Collapse
Affiliation(s)
- Yu-Chen Li
- Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miao-Qing Zhang
- Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Pu Zhang
- Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
128
|
Mastrodonato V, Morelli E, Vaccari T. How to use a multipurpose SNARE: The emerging role of Snap29 in cellular health. Cell Stress 2018; 2:72-81. [PMID: 31225470 PMCID: PMC6551745 DOI: 10.15698/cst2018.04.130] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Despite extensive study, regulation of membrane trafficking is incompletely understood. In particular, the specific role of SNARE (Soluble NSF Attachment REceptor) proteins for distinct trafficking steps and their mechanism of action, beyond the core function in membrane fusion, are still elusive. Snap29 is a SNARE protein related to Snap25 that gathered a lot of attention in recent years. Here, we review the study of Snap29 and its emerging involvement in autophagy, a self eating process that is key to cell adaptation to changing environments, and in other trafficking pathways. We also discuss Snap29 role in synaptic transmission and in cell division, which might extend the repertoire of SNARE-mediated functions. Finally, we present evidence connecting Snap29 to human disease, highlighting the importance of Snap29 function in tissue development and homeostasis.
Collapse
Affiliation(s)
| | - Elena Morelli
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Italy
| |
Collapse
|
129
|
Hepatitis B Virus Subverts the Autophagy Elongation Complex Atg5-12/16L1 and Does Not Require Atg8/LC3 Lipidation for Viral Maturation. J Virol 2018; 92:JVI.01513-17. [PMID: 29367244 DOI: 10.1128/jvi.01513-17] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/12/2018] [Indexed: 12/23/2022] Open
Abstract
Previous studies indicated that hepatitis B virus (HBV) stimulates autophagy to favor its production. To understand how HBV co-opts autophagy as a proviral machinery, we studied the roles of key autophagy proteins in HBV-replicating liver cell cultures. RNA interference-mediated silencing of Atg5, Atg12, and Atg16L1, which promote autophagophore expansion and LC3 membrane conjugation, interfered with viral core/nucleocapsid (NC) formation/stability and strongly diminished virus yields. Concomitantly, the core/NC membrane association and their sorting to envelope-positive compartments were perturbed. A close inspection of the HBV/autophagy cross talk revealed that the virus depended on Atg12 covalently conjugated to Atg5. In support of this finding, HBV required the E2-like enzymes Atg10 and Atg3, which catalyze or facilitate Atg5-12 conjugation, respectively. Atg10 and Atg3 knockdowns decreased HBV production, while Atg3 overexpression increased virus yields. Mapping analyses demonstrated that the HBV core protein encountered the Atg5-12/16L1 complex via interaction with the intrinsically disordered region of the Atg12 moiety that is dispensable for autophagy function. The role of Atg12 in HBV replication was confirmed by its incorporation into virions. Although the Atg5-12/16L1 complex and Atg3 are essential for LC3 lipidation and, thus, for autophagosome maturation and closure, HBV propagation did not require LC3. Silencing of LC3B, the most abundant LC3 isoform, did not inhibit but rather augmented virus production. Similar augmenting effects were obtained upon overexpression of a dominant negative mutant of Atg4B that blocked the lipid conjugation of the LC3 isoforms and their GABARAP paralogues. Together, our data indicate that HBV subverts early, nondegradative autophagy components as assembly scaffolds, thereby concurrently avoiding autophagosomal destruction.IMPORTANCE Infections with the hepatitis B virus (HBV), an enveloped pararetrovirus, cause about 1 million deaths per year, as current therapies rarely achieve a cure. Understanding the HBV life cycle and concomitant host cell interactions is instrumental to develop new antiviral concepts. Here, we proceeded to dissect the roles of the autophagy machinery in virus propagation. By using RNA interference and overexpression studies in HBV-replicating cell lines, we identified the autophagic Atg5-12/16L1 elongation complex along with Atg10 and Atg3 to be an essential scaffold for HBV nucleocapsid assembly/stability. Deficits in Atg5-12/16L1 and Atg10/Atg3, which normally drive autophagophore membrane expansion, strongly impaired progeny virus yields. HBV gained access to Atg5-12/16L1 via interaction of its core protein with the Atg12 moiety of the complex. In contrast, subsequent autophagosome maturation and closure events were unnecessary for HBV replication, as evidenced by inhibition of Atg8/LC3 conjugation. Interfering with the HBV/Atg12 cross talk may be a tool for virus control.
Collapse
|
130
|
Morozov VA, Lagaye S. Hepatitis C virus: Morphogenesis, infection and therapy. World J Hepatol 2018; 10:186-212. [PMID: 29527256 PMCID: PMC5838439 DOI: 10.4254/wjh.v10.i2.186] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/11/2018] [Accepted: 02/07/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver diseases including liver cirrhosis and hepatocellular carcinoma. Approximately 3% of the world population is infected with HCV. Thus, HCV infection is considered a public healthy challenge. It is worth mentioning, that the HCV prevalence is dependent on the countries with infection rates around 20% in high endemic countries. The review summarizes recent data on HCV molecular biology, the physiopathology of infection (immune-mediated liver damage, liver fibrosis and lipid metabolism), virus diagnostic and treatment. In addition, currently available in vitro, ex vivo and animal models to study the virus life cycle, virus pathogenesis and therapy are described. Understanding of both host and viral factors may in the future lead to creation of new approaches in generation of an efficient therapeutic vaccine.
Collapse
Affiliation(s)
- Vladimir Alexei Morozov
- Center for HIV and Retrovirology, Department of Infectious Diseases, Robert Koch Institute, Berlin 13353, Germany
| | - Sylvie Lagaye
- Department of Immunology, Institut Pasteur, INSERM U1223, Paris 75015, France
| |
Collapse
|
131
|
Qian G, Liu D, Hu J, Gan F, Hou L, Zhai N, Chen X, Huang K. SeMet attenuates OTA-induced PCV2 replication promotion by inhibiting autophagy by activating the AKT/mTOR signaling pathway. Vet Res 2018; 49:15. [PMID: 29439710 PMCID: PMC5812231 DOI: 10.1186/s13567-018-0508-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is recognized as the causative agent of porcine circovirus-associated diseases. PCV2 replication could be promoted by low doses of ochratoxin A (OTA) as in our previous study and selenium has been shown to attenuate PCV2 replication. However, the underlying mechanism remains unclear. The aim of the study was to investigate the effects of selenomethionine (SeMet), the major component of organic selenium, on OTA-induced PCV2 replication promotion and its potential mechanism. The present study demonstrates that OTA could promote PCV2 replication as measured by cap protein expression, viral titer, viral DNA copies and the number of infected cells. In addition, OTA could activate autophagy as indicated by up-regulated light chain 3 (LC3)-II and autophagy-related protein 5 expressions and autophagosome formation. Further, OTA could down-regulate p-AKT and p-mTOR expressions and OTA-induced autophagy was inhibited when insulin was applied. SeMet at 2, 4 and 6 μM had significant inhibiting effects against OTA-induced PCV2 replication promotion. Furthermore, SeMet could attenuate OTA-induced autophagy and up-regulate OTA-induced p-AKT and p-mTOR expression inhibition. Rapamycin, an inhibitor of AKT/mTOR, could reverse the effects of SeMet on OTA-induced autophagy and the PCV2 replication promotion. In conclusion, SeMet could block OTA-induced PCV2 replication promotion by inhibiting autophagy by activating the AKT/mTOR pathway. Therefore, SeMet supplementation could be an effective prophylactic strategy against PCV2 infections and autophagy may be a potential marker to develop novel anti-PCV2 drugs.
Collapse
Affiliation(s)
- Gang Qian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Junfa Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Nianhui Zhai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China. .,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China. .,Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
132
|
Subramanian G, Kuzmanovic T, Zhang Y, Peter CB, Veleeparambil M, Chakravarti R, Sen GC, Chattopadhyay S. A new mechanism of interferon's antiviral action: Induction of autophagy, essential for paramyxovirus replication, is inhibited by the interferon stimulated gene, TDRD7. PLoS Pathog 2018; 14:e1006877. [PMID: 29381763 PMCID: PMC5806901 DOI: 10.1371/journal.ppat.1006877] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/09/2018] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
The interferon (IFN) system represents the first line of defense against a wide range of viruses. Virus infection rapidly triggers the transcriptional induction of IFN-β and IFN Stimulated Genes (ISGs), whose protein products act as viral restriction factors by interfering with specific stages of virus life cycle, such as entry, transcription, translation, genome replication, assembly and egress. Here, we report a new mode of action of an ISG, IFN-induced TDRD7 (tudor domain containing 7) inhibited paramyxovirus replication by inhibiting autophagy. TDRD7 was identified as an antiviral gene by a high throughput screen of an ISG shRNA library for blocking IFN’s protective effect against Sendai virus (SeV) replication. The antiviral activity of TDRD7 against SeV, human parainfluenza virus 3 and respiratory syncytial virus was confirmed by its genetic ablation or ectopic expression in several types of mouse and human cells. TDRD7’s antiviral action was mediated by its ability to inhibit autophagy, a cellular catabolic process which was robustly induced by SeV infection and required for its replication. Mechanistic investigation revealed that TDRD7 interfered with the activation of AMP-dependent kinase (AMPK), an enzyme required for initiating autophagy. AMPK activity was required for efficient replication of several paramyxoviruses, as demonstrated by its genetic ablation or inhibition of its activity by TDRD7 or chemical inhibitors. Therefore, our study has identified a new antiviral ISG with a new mode of action. The antiviral functions of interferons (IFNs) are mediated by the IFN-induced proteins, encoded by the IFN Stimulated Genes (ISGs). Because ISGs are virus-specific, we performed a high throughput genetic screen to identify novel antiviral ISGs against Sendai virus (SeV), a respirovirus of the Paramyxoviridae family. Our screen isolated a small subset of anti-SeV ISGs, among which we focused on a novel ISG, Tudor domain containing 7 (TDRD7). The antiviral activity of TDRD7 was confirmed by genetic ablation of the endogenous, and the ectopic expression of the exogenous, TDRD7 in human and mouse cell types. Investigation of the mechanism of antiviral action revealed that TDRD7 inhibited ‘virus-induced autophagy’, which was required for the replication of SeV. Autophagy, a cellular catabolic process, was robustly induced by SeV infection, and was inhibited by TDRD7. TDRD7 interfered with the ‘induction’ step of autophagy by inhibiting the activation of AMP-dependent Kinase (AMPK). AMPK is a multifunctional metabolic kinase, which was activated by SeV infection, and its activity was required for virus replication. Genetic ablation and inhibition of AMPK activity by physiological (TDRD7) or chemical (Compound C) inhibitors strongly attenuated SeV replication. The anti-AMPK activity of TDRD7 was capable of inhibiting other members of Paramyxoviridae family, human parainfluenza virus type 3 and respiratory syncytial virus. Therefore, our study uncovered a new antiviral mechanism of IFN by inhibiting the activation of autophagy-inducing kinase AMPK.
Collapse
Affiliation(s)
- Gayatri Subramanian
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH, United States of America
| | - Teodora Kuzmanovic
- Department of Immunology, Lerner Research Institute, Cleveland, OH, United States of America
| | - Ying Zhang
- Department of Immunology, Lerner Research Institute, Cleveland, OH, United States of America
| | - Cara Beate Peter
- Department of Surgery, University of Toledo College of Medicine, Toledo, OH, United States of America
| | - Manoj Veleeparambil
- Department of Immunology, Lerner Research Institute, Cleveland, OH, United States of America
| | - Ritu Chakravarti
- Department of Surgery, University of Toledo College of Medicine, Toledo, OH, United States of America
| | - Ganes C. Sen
- Department of Immunology, Lerner Research Institute, Cleveland, OH, United States of America
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH, United States of America
- Department of Immunology, Lerner Research Institute, Cleveland, OH, United States of America
- * E-mail:
| |
Collapse
|
133
|
Sun P, Zhang S, Qin X, Chang X, Cui X, Li H, Zhang S, Gao H, Wang P, Zhang Z, Luo J, Li Z. Foot-and-mouth disease virus capsid protein VP2 activates the cellular EIF2S1-ATF4 pathway and induces autophagy via HSPB1. Autophagy 2018; 14:336-346. [PMID: 29166823 PMCID: PMC5902195 DOI: 10.1080/15548627.2017.1405187] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) can result in economical destruction of cloven-hoofed animals. FMDV infection has been reported to induce macroautophagy/autophagy; however, the precise molecular mechanisms of autophagy induction and effect of FMDV capsid protein on autophagy remain unknown. In the present study, we report that FMDV infection induced a complete autophagy process in the natural host cells of FMDV, and inhibition of autophagy significantly decreased FMDV production, suggesting that FMDV-induced autophagy facilitates viral replication. We found that the EIF2S1-ATF4 pathway was activated and the AKT-MTOR signaling pathway was inhibited by FMDV infection. We also observed that ultraviolet (UV)-inactivated FMDV can induce autophagy. Importantly, our work provides the first piece of evidence that expression of FMDV capsid protein VP2 can induce autophagy through the EIF2S1-ATF4-AKT-MTOR cascade, and we found that VP2 interacted with HSPB1 (heat shock protein family B [small] member 1) and activated the EIF2S1-ATF4 pathway, resulting in autophagy and enhanced FMDV replication. In addition, we show that VP2 induced autophagy in a variety of mammalian cell lines and decreased aggregates of a model mutant HTT (huntingtin) polyglutamine expansion protein (HTT103Q). Overall, our results demonstrate that FMDV capsid protein VP2 induces autophagy through interaction with HSPB1 and activation of the EIF2S1-ATF4 pathway.
Collapse
Affiliation(s)
- Peng Sun
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , Gansu , China.,b Department of Cell Biology, School of Life Sciences , Lanzhou University , Lanzhou , Gansu , China
| | - Shumin Zhang
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , Gansu , China
| | - Xiaodong Qin
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , Gansu , China
| | - Xingni Chang
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , Gansu , China
| | - Xiaorui Cui
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , Gansu , China
| | - Haitao Li
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , Gansu , China
| | - Shuaijun Zhang
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , Gansu , China
| | - Huanhuan Gao
- b Department of Cell Biology, School of Life Sciences , Lanzhou University , Lanzhou , Gansu , China
| | - Penghua Wang
- c Department of Microbiology and Immunology , New York Medical College, Valhalla , New York , USA
| | - Zhidong Zhang
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , Gansu , China
| | - Jianxun Luo
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , Gansu , China
| | - Zhiyong Li
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , Gansu , China
| |
Collapse
|
134
|
Abstract
Macroautophagy, hereafter autophagy, is a catabolic process that is important for maintaining cellular homeostasis. It can also be used by cells to remove intracellular microbial pathogens. However, the studies on hepatitis C virus (HCV) in recent years indicated that this virus could regulate this cellular pathway and use it to enhance its replication. HCV could temporally control the autophagic flux and use the autophagic membranes for the assembly of its RNA replication complex. In this report, we will discuss the biogenesis of autophagosomes induced by HCV and how HCV uses this autophagic pathway for its RNA replication.
Collapse
Affiliation(s)
- Linya Wang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
135
|
Dionicio CL, Peña F, Constantino-Jonapa LA, Vazquez C, Yocupicio-Monroy M, Rosales R, Zambrano JL, Ruiz MC, Del Angel RM, Ludert JE. Dengue virus induced changes in Ca 2+ homeostasis in human hepatic cells that favor the viral replicative cycle. Virus Res 2017; 245:17-28. [PMID: 29269104 DOI: 10.1016/j.virusres.2017.11.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/09/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023]
Abstract
The role of Ca2+ during dengue virus (DENV) replication is unknown; thus, changes in Ca2+ homeostasis in DENV infected human hepatic HepG2 and Huh-7 cells were analyzed. Infected HepG2 cells, but not Huh-7 cells, showed a significant increase in plasma membrane permeability to Ca2+, while both cell lines showed marked reduced levels of Ca2+ stored in the endoplasmic reticulum. While the expression levels of STIM1 and ORAI1 showed no changes, STIM1 and ORAI1 were shown to co-localized in infected cells, indicating activation of the store-operated Ca2+ entry (SOCE) pathway. Finally, manipulation in the infected cells of the intra and extracellular Ca2+ levels by chelators (BAPTA-AM and EGTA), SOC inhibitor (SKF96365), IP3 Receptor antagonist (2APB) or increase of extracellular [Ca2+], significantly reduced DENV yield, but not vesicular stomatitis virus yield, used as a control. These results show that DENV infection alters cell Ca2+ homeostasis and that such changes favor viral replication.
Collapse
Affiliation(s)
- Cinthia L Dionicio
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - Franshelle Peña
- Center for Biochemistry and Biophysics, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Luis A Constantino-Jonapa
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - Carlos Vazquez
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - Martha Yocupicio-Monroy
- Genomic Sciences Graduate School, Autonomous University of the City of Mexico (UACM), Mexico
| | - Romel Rosales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - José Luis Zambrano
- Center for Microbiology and Cell Biology, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Marie Christine Ruiz
- Center for Biochemistry and Biophysics, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Rosa M Del Angel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - Juan E Ludert
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico.
| |
Collapse
|
136
|
Both cytopathic and non-cytopathic bovine viral diarrhea virus (BVDV) induced autophagy at a similar rate. Vet Immunol Immunopathol 2017; 193-194:1-9. [DOI: 10.1016/j.vetimm.2017.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 01/07/2023]
|
137
|
Zhao JZ, Xu LM, Liu M, Zhang ZY, Yin JS, Liu HB, Lu TY. Autophagy induced by infectious hematopoietic necrosis virus inhibits intracellular viral replication and extracellular viral yields in epithelioma papulosum cyprini cell line. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:88-94. [PMID: 28760360 DOI: 10.1016/j.dci.2017.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Infectious hematopoietic necrosis virus (IHNV) is a common pathogen that causes severe disease in the salmonid aquaculture industry. Recent work demonstrated that autophagy plays an important role in pathogen invasion by activating innate and adaptive immunity. This study investigated the relationship between IHNV and autophagy in epithelioma papulosum cyprini cells. The electron microscopy results show that IHNV infection can induce typical autophagosomes which are representative structures of autophagy activation. The punctate accumulation of green fluorescence-tagged microtubule-associate protein 1 light chain 3 (LC3) and the protein conversion from LC3-I to LC3-II were respectively confirmed by confocal fluorescence microscopy and western blotting. Furthermore, the effects of autophagy on IHNV replication were also clarified by altering the autophagy pathway. The results showed that rapamycin induced autophagy can inhibit both intracellular viral replication and extracellular viral yields, while autophagy inhibitor produced the opposite results. These findings demonstrated that autophagy plays an antiviral role during IHNV infection.
Collapse
Affiliation(s)
- Jing-Zhuang Zhao
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Li-Ming Xu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Miao Liu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Zhen-Yu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Jia-Sheng Yin
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Hong-Bai Liu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Tong-Yan Lu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| |
Collapse
|
138
|
Zhang J, Lan Y, Sanyal S. Modulation of Lipid Droplet Metabolism-A Potential Target for Therapeutic Intervention in Flaviviridae Infections. Front Microbiol 2017; 8:2286. [PMID: 29234310 PMCID: PMC5712332 DOI: 10.3389/fmicb.2017.02286] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
Lipid droplets (LDs) are endoplasmic reticulum (ER)-related dynamic organelles that store and regulate fatty acids and neutral lipids. They play a central role in cellular energy storage, lipid metabolism and cellular homeostasis. It has become evident that viruses have co-evolved in order to exploit host lipid metabolic pathways. This is especially characteristic of the Flaviviridae family, including hepatitis C virus (HCV) and several flaviviruses. Devoid of an appropriate lipid biosynthetic machinery of their own, these single-strand positive-sense RNA viruses can induce dramatic changes in host metabolic pathways to establish a favorable environment for viral multiplication and acquire essential components to facilitate their assembly and traffic. Here we have reviewed the current knowledge on the intracellular life cycle of those from the Flaviviridae family, with particular emphasis on HCV and dengue virus (DENV), and their association with the biosynthesis and metabolism of LDs, with the aim to identify potential antiviral targets for development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Jingshu Zhang
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Yun Lan
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Sumana Sanyal
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
139
|
Abstract
The cellular degradative pathway of autophagy has a fundamental role in immunity. Here, we review the function of autophagy and autophagy proteins in inflammation. We discuss how the autophagy machinery controls the burden of infectious agents while simultaneously limiting inflammatory pathologies, which often involves processes that are distinct from conventional autophagy. Among the newly emerging processes we describe are LC3-associated phagocytosis and targeting by autophagy proteins, both of which require many of the same proteins that mediate conventional autophagy. We also discuss how autophagy contributes to differentiation of myeloid and lymphoid cell types, coordinates multicellular immunity, and facilitates memory responses. Together, these functions establish an intimate link between autophagy, mucosal immunity, and chronic inflammatory diseases. Finally, we offer our perspective on current challenges and barriers to translation.
Collapse
Affiliation(s)
- Yu Matsuzawa-Ishimoto
- Kimmel Center for Biology and Medicine at the Skirball Institute and.,Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; ,
| | - Seungmin Hwang
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA;
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute and.,Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; ,
| |
Collapse
|
140
|
Yeganeh B, Ghavami S, Rahim MN, Klonisch T, Halayko AJ, Coombs KM. Autophagy activation is required for influenza A virus-induced apoptosis and replication. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:364-378. [PMID: 29108912 DOI: 10.1016/j.bbamcr.2017.10.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 01/07/2023]
Abstract
Autophagy and apoptosis are two major interconnected host cell responses to viral infection, including influenza A virus (IAV). Thus, delineating these events could facilitate the development of better treatment options and provide an effective anti-viral strategy for controlling IAV infection. We used A549 cells and mouse embryonic fibroblasts (MEF) to study the role of virus-induced autophagy and apoptosis, the cross-talk between both pathways, and their relation to IAV infection [ATCC strain A/Puerto Rico/8/34(H1N1) (hereafter; PR8)]. PR8-infected and mock-infected cells were analyzed by immunoblotting, immunofluorescence confocal microscopy, electron microscopy and flow cytometry (FACS). We found that PR8 infection simultaneously induced autophagy and apoptosis in A549 cells. Autophagy was associated with Bax and Bak activation, intrinsic caspase cleavage and subsequent PARP-1 and BID cleavage. Both Bax knockout (KO) and Bax/Bak double knockout MEFs displayed inhibition of virus-induced cytopathology and cell death and diminished virus-mediated caspase activation, suggesting that virus-induced apoptosis is Bax/Bak-dependent. Biochemical inhibition of autophagy induction with 3-methyladenine blocked both virus replication and apoptosis pathways. These effects were replicated using autophagy-refractory Atg3 KO and Atg5 KO cells. Taken together, our data indicate that PR8 infection simultaneously induces autophagy and Bax/caspase-dependent apoptosis, with autophagy playing a role to support PR8 replication, in part, by modulating virus-induced apoptosis.
Collapse
Affiliation(s)
- B Yeganeh
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada; Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - S Ghavami
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada; Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Md N Rahim
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - T Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - A J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada; Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - K M Coombs
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada; Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada; Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
141
|
Wang J, Song D, Liu Y, Lu G, Yang S, Liu L, Gao Z, Ma L, Guo Z, Zhang C, Wang H, Yang B. HLA-DMB restricts human T-cell leukemia virus type-1 (HTLV-1) protein expression via regulation of ATG7 acetylation. Sci Rep 2017; 7:14416. [PMID: 29089548 PMCID: PMC5663917 DOI: 10.1038/s41598-017-14882-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022] Open
Abstract
The roles of autophagy in viral infection are complicated. While autophagy has been shown to function in host antiviral defense by eliminating intracellular viruses and regulating adaptive immunity, several viruses have evolved molecular mechanisms to get benefits from it. The deltaretrovirus human T-cell leukemia virus type-1 (HTLV-1) has been reported to profit its replication from enhancing autophagosome accumulation. Here, we reported that HLA-DMB (generally referred to here as DMB), the beta chain of the non-classical MHC-II protein HLA-DM, had strong expression in HTLV-1-transformed T-cell lines and could be induced in Hela, PMA-differentiated THP1 (PMA-THP1) or primary human monocytes by HTLV-1 infection. Immunoblot and real-time PCR assays demonstrated that overexpression of DMB decreased HTLV-1 protein expression while the knockdown of DMB increased HTLV-1 protein expression. Immunoblot and confocal microscopy assays indicated that overexpression of DMB decreased HTLV-1 induced autophagosome accumulation while the knockdown of DMB yielded the opposite effects. Coimmunoprecipitation and immunoprecipitation experiments suggested DMB interacted with autophagy-related gene (ATG) 7 and increased the acetylation of ATG7. Taken together, these results suggested DMB modulated HTLV-1 protein expression through regulation of autophagosome accumulation and our findings suggested a new mechanism by which the host cells defended against HTLV-1 infection.
Collapse
Affiliation(s)
- Jie Wang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
- Henan Key Laboratory of immunology and targeted drugs, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
- Xinxiang assegai medical laboratory institute, Xinxiang, 453003, China
| | - Di Song
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
- Henan Key Laboratory of immunology and targeted drugs, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
- Xinxiang assegai medical laboratory institute, Xinxiang, 453003, China
| | - Yanzi Liu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Guangjian Lu
- Clinical Laboratory, the First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan Province, China
| | - Shuai Yang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Lu Liu
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Zhitao Gao
- Department of Immunology/Department of Bio-therapeutic, Institute of Basic Medicine, School of Life Sciences, PLA Medical School, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Lingling Ma
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Zhixiang Guo
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Chenguang Zhang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Hui Wang
- Henan Key Laboratory of immunology and targeted drugs, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
| | - Bo Yang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
- Henan Key Laboratory of immunology and targeted drugs, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
- Xinxiang assegai medical laboratory institute, Xinxiang, 453003, China.
| |
Collapse
|
142
|
Cevik O, Li D, Baljinnyam E, Manvar D, Pimenta EM, Waris G, Barnes BJ, Kaushik-Basu N. Interferon regulatory factor 5 (IRF5) suppresses hepatitis C virus (HCV) replication and HCV-associated hepatocellular carcinoma. J Biol Chem 2017; 292:21676-21689. [PMID: 29079574 DOI: 10.1074/jbc.m117.792721] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/23/2017] [Indexed: 01/08/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a major risk factor for the development of chronic liver disease. The disease typically progresses from chronic HCV to fibrosis, cirrhosis, hepatocellular carcinoma (HCC), and death. Chronic inflammation associated with HCV infection is implicated in cirrhosis and HCC, but the molecular players and signaling pathways contributing to these processes remain largely unknown. Interferon regulatory factor 5 (IRF5) is a molecule of interest in HCV-associated HCC because it has critical roles in virus-, Toll-like receptor (TLR)-, and IFN-induced signaling pathways. IRF5 is also a tumor suppressor, and its expression is dysregulated in several human cancers. Here, we present first evidence that IRF5 expression and signaling are modulated during HCV infection. Using HCV infection of human hepatocytes and cells with autonomously replicating HCV RNA, we found that levels of IRF5 mRNA and protein expression were down-regulated. Of note, reporter assays indicated that IRF5 re-expression inhibited HCV protein translation and RNA replication. Gene expression analysis revealed significant differences in the expression of cancer pathway mediators and autophagy proteins rather than in cytokines between IRF5- and empty vector-transfected HCV replicon cells. IRF5 re-expression induced apoptosis via loss in mitochondrial membrane potential, down-regulated autophagy, and inhibited hepatocyte cell migration/invasion. Analysis of clinical HCC specimens supports a pathologic role for IRF5 in HCV-induced HCC, as IRF5 expression was down-regulated in livers from HCV-positive versus HCV-negative HCC patients or healthy donor livers. These results identify IRF5 as an important suppressor of HCV replication and HCC pathogenesis.
Collapse
Affiliation(s)
- Ozge Cevik
- From the Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103.,the Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey 58140
| | - Dan Li
- From the Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103.,Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, New Jersey 07103.,the Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
| | - Erdene Baljinnyam
- From the Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103
| | - Dinesh Manvar
- From the Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103
| | - Erica M Pimenta
- From the Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103.,Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, New Jersey 07103
| | - Gulam Waris
- the Rosalind Franklin University of Medicine and Science, Chicago, Illinois 60064, and
| | - Betsy J Barnes
- From the Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103, .,Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, New Jersey 07103.,the Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
| | - Neerja Kaushik-Basu
- From the Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103, .,the Infectious Diseases and Microbiology Integrated Review Group, National Institutes of Health Center for Scientific Review, Bethesda, Maryland 20892
| |
Collapse
|
143
|
Wang L, Kim JY, Liu HM, Lai MMC, Ou JHJ. HCV-induced autophagosomes are generated via homotypic fusion of phagophores that mediate HCV RNA replication. PLoS Pathog 2017; 13:e1006609. [PMID: 28931085 PMCID: PMC5621699 DOI: 10.1371/journal.ppat.1006609] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/29/2017] [Accepted: 08/26/2017] [Indexed: 12/21/2022] Open
Abstract
Hepatitis C virus (HCV) induces autophagy to promote its replication, including its RNA replication, which can take place on double-membrane vesicles known as autophagosomes. However, how HCV induces the biogenesis of autophagosomes and how HCV RNA replication complex may be assembled on autophagosomes were largely unknown. During autophagy, crescent membrane structures known as phagophores first appear in the cytoplasm, which then progress to become autophagosomes. By conducting electron microscopy and in vitro membrane fusion assay, we found that phagophores induced by HCV underwent homotypic fusion to generate autophagosomes in a process dependent on the SNARE protein syntaxin 7 (STX7). Further analyses by live-cell imaging and fluorescence microscopy indicated that HCV-induced phagophores originated from the endoplasmic reticulum (ER). Interestingly, comparing with autophagy induced by nutrient starvation, the progression of phagophores to autophagosomes induced by HCV took significantly longer time, indicating fundamental differences in the biogenesis of autophagosomes induced by these two different stimuli. As the knockdown of STX7 to inhibit the formation of autophagosomes did not affect HCV RNA replication, and purified phagophores could mediate HCV RNA replication, the assembly of the HCV RNA replication complex on autophagosomes apparently took place during the formative stage of phagophores. These findings provided important information for understanding how HCV controlled and modified this important cellular pathway for its own replication. Autophagy is a catabolic process that is important for maintaining cellular homeostasis. During autophagy, crescent membrane structures known as phagophores first appear in the cytoplasm, which then expand to form enclosed double-membrane vesicles known as autophagosomes. It has been shown that hepatitis C virus (HCV) induces autophagy and uses autophagosomal membranes for its RNA replication. In this report, we studied the biogenesis pathway of HCV-induced autophagosomes and demonstrated that phagophores induced by HCV originated from the endoplasmic reticulum and undergo homotypic fusion to generate autophagosomes, and that the HCV RNA replication complex is assembled on phagophores prior to the formation of autophagosomes. These findings provided important information for understanding how an RNA virus controls this important cellular pathway for its replication.
Collapse
Affiliation(s)
- Linya Wang
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America
| | - Ja Yeon Kim
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America
| | - Helene Minyi Liu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Michael M. C. Lai
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America
- Research Center for Emerging Viruses, China Medical University Hospital and China Medical University, Taichung, Taiwan
| | - Jing-hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
144
|
Dual Roles of Two Isoforms of Autophagy-related Gene ATG10 in HCV-Subgenomic replicon Mediated Autophagy Flux and Innate Immunity. Sci Rep 2017; 7:11250. [PMID: 28900156 PMCID: PMC5595887 DOI: 10.1038/s41598-017-11105-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/16/2017] [Indexed: 12/25/2022] Open
Abstract
Autophagy and immune response are two defense systems that human-body uses against viral infection. Previous studies documented that some viral mechanisms circumvented host immunity mechanisms and hijacked autophagy for its replication and survival. Here, we focus on interactions between autophagy mechanism and innate-immune-response in HCV-subgenomic replicon cells to find a mechanism linking the two pathways. We report distinct effects of two autophagy-related protein ATG10s on HCV-subgenomic replication. ATG10, a canonical long isoform in autophagy process, can facilitate HCV-subgenomic replicon amplification by promoting autophagosome formation and by combining with and detaining autophagosomes in cellular periphery, causing impaired autophagy flux. ATG10S, a non-canonical short isoform of ATG10 proteins, can activate expression of IL28A/B and immunity genes related to viral ds-RNA including ddx-58, tlr-3, tlr-7, irf-3 and irf-7, and promote autophagolysosome formation by directly combining and driving autophagosomes to perinuclear region where lysosomes gather, leading to lysosomal degradation of HCV-subgenomic replicon in HepG2 cells. ATG10S also can suppress infectious HCV virion replication in Huh7.5 cells. Another finding is that IL28A protein directly conjugates ATG10S and helps autophagosome docking to lysosomes. ATG10S might be a new host factor against HCV replication, and as a target for screening chemicals with new anti-virus mechanisms.
Collapse
|
145
|
Yuan S, Zhang ZW, Li ZL. Trehalose May Decrease the Transmission of Zika Virus to the Fetus by Activating Degradative Autophagy. Front Cell Infect Microbiol 2017; 7:402. [PMID: 28932709 PMCID: PMC5592200 DOI: 10.3389/fcimb.2017.00402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/25/2017] [Indexed: 01/14/2023] Open
Affiliation(s)
- Shu Yuan
- College of Resources, Sichuan Agricultural UniversityChengdu, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural UniversityChengdu, China
| | - Zi-Lin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Medical University of the Air ForceXi'an, China
| |
Collapse
|
146
|
Medvedev R, Ploen D, Spengler C, Elgner F, Ren H, Bunten S, Hildt E. HCV-induced oxidative stress by inhibition of Nrf2 triggers autophagy and favors release of viral particles. Free Radic Biol Med 2017; 110:300-315. [PMID: 28673615 DOI: 10.1016/j.freeradbiomed.2017.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 02/07/2023]
Abstract
Viruses are known to exploit the autophagic machinery for their own benefit. In case of the hepatitis C virus autophagy is induced. As autophagy serves as a degradation pathway to maintain cellular homeostasis, it is activated in response to cellular stress such as elevated levels of reactive oxygen species (ROS). Elevated levels of ROS trigger phosphorylation of the autophagic adaptor protein p62 on Ser349 (pS[349] p62) that is involved in the induction of autophagy. Consequently, pS[349] p62 binds with a higher affinity to Keap1 thereby releasing Nrf2 from the complex with Keap1. Although the released Nrf2 should induce as a heterodimer with the sMaf proteins the expression of Nrf2/ARE-dependent genes, in HCV-positive cells no activation of cytoprotective genes occurs even though elevated amounts of pS[349] p62 are present. In HCV-positive cells, free Nrf2 is trapped via delocalized sMaf proteins at the replicon complexes on the cytoplasmic face of the ER and is therefore prevented from its entry into the nucleus. Scavenging of ROS leads to decreased levels of pS[349] p62 and impaired induction of autophagy. Both, inhibition of autophagy and scavenging of ROS result in decreased amounts of released viral particles. Taken together, these data identify an intricate mechanism of HCV-dependent inhibition of Nrf2/ARE-mediated gene expression which counteracts pS[349] p62-induced activation of Nrf2. Thereby elevated ROS-levels are preserved that in turn activate autophagy to favor HCV particle release.
Collapse
Affiliation(s)
- Regina Medvedev
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, D-63225 Langen, Germany
| | - Daniela Ploen
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, D-63225 Langen, Germany
| | - Catrina Spengler
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, D-63225 Langen, Germany
| | - Fabian Elgner
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, D-63225 Langen, Germany
| | - Huimei Ren
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, D-63225 Langen, Germany
| | - Sarah Bunten
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, D-63225 Langen, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, D-63225 Langen, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Gießen-Marburg-Langen, Germany.
| |
Collapse
|
147
|
Pu J, Wu S, Xie H, Li Y, Yang Z, Wu X, Huang X. miR-146a Inhibits dengue-virus-induced autophagy by targeting TRAF6. Arch Virol 2017; 162:3645-3659. [PMID: 28825144 PMCID: PMC7086938 DOI: 10.1007/s00705-017-3516-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 07/18/2017] [Indexed: 12/28/2022]
Abstract
During dengue virus (DENV) infection, the virus manipulates different cellular pathways to assure productive replication, including autophagy. However, it remains unclear how this autophagic process is regulated. Here, we have demonstrated a novel role for the microRNA miR-146a in negatively regulating the cellular autophagic pathway in DENV-infected A549 cells and THP-1 cells. Overexpression of miR-146a significantly blocked DENV2-induced autophagy, and LNA-mediated inhibition of miR-146a counteracted these effects. Moreover, co-overexpression of TRAF6, a target of miR-146a, significantly reversed the inhibitory effect of miR-146a on autophagy. Notably, treatment with recombinant IFN-β fully restored the autophagic activity in TRAF6-silenced cells. Furthermore, our data showed that, in DENV2-infected A549 cells, autophagy promoted a pro-inflammatory response to significantly increase TNF-α and IL-6 production. Taken together, our results define a novel role for miR-146a as a negative regulator of DENV-induced autophagy and identify TRAF6 as a key target of this microRNA in modulating the DENV-autophagy interaction.
Collapse
Affiliation(s)
- Jieying Pu
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Siyu Wu
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Heping Xie
- Department of Traditional Chinese Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuye Li
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Zhicong Yang
- Guangzhou Center for Disease Control and Prevention, 1 Qide Road, Guangzhou, 510440, China
| | - Xinwei Wu
- Guangzhou Center for Disease Control and Prevention, 1 Qide Road, Guangzhou, 510440, China.
| | - Xi Huang
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| |
Collapse
|
148
|
Hepatitis C Virus-Induced Autophagy and Host Innate Immune Response. Viruses 2017; 9:v9080224. [PMID: 28805674 PMCID: PMC5580481 DOI: 10.3390/v9080224] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/04/2017] [Accepted: 08/11/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a catabolic process that is important for maintaining cellular homeostasis. This pathway in hepatocytes is stimulated and controlled by the hepatitis C virus (HCV)—upon infection—to promote its own replication. HCV induces autophagy indirectly and directly through different mechanisms and temporally controls the autophagic flux. This enables the virus to maximize its replication and attenuate the innate immune responses that it activates. In this review, we discuss the relationship between HCV and autophagy, and the crosstalk between HCV-induced autophagy and host innate immune responses.
Collapse
|
149
|
Reciprocal antagonism between the netrin-1 receptor uncoordinated-phenotype-5A (UNC5A) and the hepatitis C virus. Oncogene 2017; 36:6712-6724. [PMID: 28783179 DOI: 10.1038/onc.2017.271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV) infection is a leading cause of hepatocellular carcinoma (HCC), mainly through cirrhosis induction, spurring research for a deeper understanding of HCV versus host interactions in cirrhosis. The present study investigated crosstalks between HCV infection and UNC5A, a netrin-1 dependence receptor that is inactivated in cancer. UNC5A and HCV parameters were monitored in patients samples (n=550) as well as in in vitro. In patients, UNC5A mRNA expression is significantly decreased in clinical HCV(+) specimens irrespective of the viral genotype, but not in (HBV)(+) liver biopsies, as compared to uninfected samples. UNC5A mRNA is downregulated in F2 (3-fold; P=0.009), in F3 (10-fold, P=0.0004) and more dramatically so in F4/cirrhosis (44-fold; P<0.0001) histological stages of HCV(+) hepatic lesions compared to histologically matched HCV(-) tissues. UNC5A transcript was found strongly downregulated in HCC samples (33-fold; P<0.0001) as compared with non-HCC samples. In vivo, association of UNC5A transcripts with polyribosomes is decreased by 50% in HCV(+) livers. Consistent results were obtained in vitro showing HCV-dependent depletion of UNC5A in HCV-infected hepatocyte-like cells and in primary human hepatocytes. Using luciferase reporter constructs, HCV cumulatively decreased UNC5A transcription from the UNC5 promoter and translation in a UNC5A 5'UTR-dependent manner. Proximity ligation assays, kinase assays, as well as knockdown and forced expression experiments identified UNC5A as capable of impeding autophagy and promoting HCV restriction through specific impact on virion infectivity, in a cell death-independent and DAPK-related manner. In conclusion, while the UNC5A dependence receptor counteracts HCV persistence through regulation of autophagy in a DAPK-dependent manner, it is dramatically decreased in all instances in HCC samples, and specifically by HCV in cirrhosis. Such data argue for the evaluation of the implication of UNC5A in liver carcinogenesis.
Collapse
|
150
|
Lai JKF, Sam IC, Verlhac P, Baguet J, Eskelinen EL, Faure M, Chan YF. 2BC Non-Structural Protein of Enterovirus A71 Interacts with SNARE Proteins to Trigger Autolysosome Formation. Viruses 2017; 9:E169. [PMID: 28677644 PMCID: PMC5537661 DOI: 10.3390/v9070169] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/19/2017] [Accepted: 06/28/2017] [Indexed: 12/27/2022] Open
Abstract
Viruses have evolved unique strategies to evade or subvert autophagy machinery. Enterovirus A71 (EV-A71) induces autophagy during infection in vitro and in vivo. In this study, we report that EV-A71 triggers autolysosome formation during infection in human rhabdomyosarcoma (RD) cells to facilitate its replication. Blocking autophagosome-lysosome fusion with chloroquine inhibited virus RNA replication, resulting in lower viral titres, viral RNA copies and viral proteins. Overexpression of the non-structural protein 2BC of EV-A71 induced autolysosome formation. Yeast 2-hybrid and co-affinity purification assays showed that 2BC physically and specifically interacted with a N-ethylmaleimide-sensitive factor attachment receptor (SNARE) protein, syntaxin-17 (STX17). Co-immunoprecipitation assay further showed that 2BC binds to SNARE proteins, STX17 and synaptosome associated protein 29 (SNAP29). Transient knockdown of STX17, SNAP29, and microtubule-associated protein 1 light chain 3B (LC3B), crucial proteins in the fusion between autophagosomes and lysosomes) as well as the lysosomal-associated membrane protein 1 (LAMP1) impaired production of infectious EV-A71 in RD cells. Collectively, these results demonstrate that the generation of autolysosomes triggered by the 2BC non-structural protein is important for EV-A71 replication, revealing a potential molecular pathway targeted by the virus to exploit autophagy. This study opens the possibility for the development of novel antivirals that specifically target 2BC to inhibit formation of autolysosomes during EV-A71 infection.
Collapse
Affiliation(s)
- Jeffrey K F Lai
- Department of Medical Microbiology, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Pauline Verlhac
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France.
- INSERM, U1111, 69007 Lyon, France.
- CNRS, UMR5308, 69007 Lyon, France.
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France.
- Université Lyon 1, Centre International de Recherche en Infectiologie, 69365 Lyon, France.
| | - Joël Baguet
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France.
- INSERM, U1111, 69007 Lyon, France.
- CNRS, UMR5308, 69007 Lyon, France.
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France.
- Université Lyon 1, Centre International de Recherche en Infectiologie, 69365 Lyon, France.
| | - Eeva-Liisa Eskelinen
- Department of Biosciences, Division of Biochemistry and Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| | - Mathias Faure
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France.
- INSERM, U1111, 69007 Lyon, France.
- CNRS, UMR5308, 69007 Lyon, France.
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France.
- Université Lyon 1, Centre International de Recherche en Infectiologie, 69365 Lyon, France.
- Institut Universitaire de France, 75231 Paris, France.
- Equipe labellisée Fondation pour la Recherche Médicale FRM, 75007 Paris, France.
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|