101
|
TM6SF2/PNPLA3/MBOAT7 Loss-of-Function Genetic Variants Impact on NAFLD Development and Progression Both in Patients and in In Vitro Models. Cell Mol Gastroenterol Hepatol 2021; 13:759-788. [PMID: 34823063 PMCID: PMC8783129 DOI: 10.1016/j.jcmgh.2021.11.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS The I148M Patatin-like Phospholipase Domain-containing 3 (PNPLA3), the rs641738 in the Membrane bound O-acyltransferase domain containing 7-transmembrane channel-like 4 (MBOAT7-TMC4) locus, and the E167K Transmembrane 6 Superfamily Member 2 (TM6SF2) polymorphisms represent the main predisposing factors to nonalcoholic fatty liver disease (NAFLD) development and progression. We previously generated a full knockout of MBOAT7 in HepG2 cells (MBOAT7-/-), homozygous for I148M PNPLA3. Therefore, we aimed to investigate the synergic impact of the 3 at-risk variants on liver injury and hepatocellular carcinoma (HCC) in a large cohort of NAFLD patients, and create in vitro models of genetic NAFLD by silencing TM6SF2 in both HepG2 and MBOAT7-/- cells. METHODS NAFLD patients (n = 1380), of whom 121 had HCC, were stratified with a semiquantitative score ranging from 0 to 3 according to the number of PNPLA3, TM6SF2, and MBOAT7 at-risk variants. TM6SF2 was silenced in HepG2 (TM6SF2-/-) and MBOAT7-/- (MBOAT7-/-TM6SF2-/-) through Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). RESULTS In NAFLD patients, the additive weight of these mutations was associated with liver disease severity and an increased risk of developing HCC. In HepG2 cells, TM6SF2 silencing altered lipid composition and induced the accumulation of microvesicular lipid droplets (LDs), whereas the MBOAT7-/-TM6SF2-/- cells showed a mixed microvesicular/macrovesicular pattern of LDs. TM6SF2 deletion strongly affected endoplasmic reticulum and mitochondria ultrastructures, thus increasing endoplasmic reticulum/oxidative stress. The mitochondrial number was increased in both TM6SF2-/- and MBOAT7-/-TM6SF2-/- models, suggesting an unbalancing in mitochondrial dynamics, and the silencing of both MBOAT7 and TM6SF2 impaired mitochondrial activity with a shift toward anaerobic glycolysis. MBOAT7-/-TM6SF2-/- cells also showed the highest proliferation rate. Finally, the re-overexpression of MBOAT7 and/or TM6SF2 reversed the metabolic and tumorigenic features observed in the compound knockout model. CONCLUSIONS The co-presence of the 3 at-risk variants impacts the NAFLD course in both patients and experimental models, affecting LD accumulation, mitochondrial functionality, and metabolic reprogramming toward HCC.
Collapse
|
102
|
Fan Y, Wolford BN, Lu H, Liang W, Sun J, Zhou W, Rom O, Mahajan A, Surakka I, Graham SE, Liu Z, Kim H, Ramdas S, Fritsche LG, Nielsen JB, Gabrielsen ME, Hveem K, Yang D, Song J, Garcia-Barrio MT, Zhang J, Liu W, Zhang K, Willer CJ, Chen YE. Type 2 diabetes sex-specific effects associated with E167K coding variant in TM6SF2. iScience 2021; 24:103196. [PMID: 34746691 PMCID: PMC8554487 DOI: 10.1016/j.isci.2021.103196] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/31/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
The rs58542926C >T (E167K) variant of the transmembrane 6 superfamily member 2 gene (TM6SF2) is associated with increased risks for nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D). Nevertheless, the role of the TM6SF2 rs58542926 variant in glucose metabolism is poorly understood. We performed a sex-stratified analysis of the association between the rs58542926C >T variant and T2D in multiple cohorts. The E167K variant was significantly associated with T2D, especially in males. Using an E167K knockin (KI) mouse model, we found that male but not the female KI mice exhibited impaired glucose tolerance. As an ER membrane protein, TM6SF2 was found to interact with inositol-requiring enzyme 1 α (IRE1α), a primary ER stress sensor. The male Tm6sf2 KI mice exhibited impaired IRE1α signaling in the liver. In conclusion, the E167K variant of TM6SF2 is associated with glucose intolerance primarily in males, both in humans and mice.
Collapse
Affiliation(s)
- Yanbo Fan
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Vontz Center, 3125 Eden Avenue, Cincinnati, OH45267, USA
| | - Brooke N. Wolford
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI48109, USA
| | - Haocheng Lu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Wenying Liang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Jinjian Sun
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI48109, USA
| | - Oren Rom
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA71103, USA
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ida Surakka
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Sarah E. Graham
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Hyunbae Kim
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201, USA
| | - Shweta Ramdas
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Lars G. Fritsche
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jonas B. Nielsen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Maiken Elvestad Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Dongshan Yang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Jun Song
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Minerva T. Garcia-Barrio
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201, USA
| | - Cristen J. Willer
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Y. Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, NCRC Bldg 26, Rm 361S, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| |
Collapse
|
103
|
Martín-Campos JM. Genetic Determinants of Plasma Low-Density Lipoprotein Cholesterol Levels: Monogenicity, Polygenicity, and "Missing" Heritability. Biomedicines 2021; 9:biomedicines9111728. [PMID: 34829957 PMCID: PMC8615680 DOI: 10.3390/biomedicines9111728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Changes in plasma low-density lipoprotein cholesterol (LDL-c) levels relate to a high risk of developing some common and complex diseases. LDL-c, as a quantitative trait, is multifactorial and depends on both genetic and environmental factors. In the pregenomic age, targeted genes were used to detect genetic factors in both hyper- and hypolipidemias, but this approach only explained extreme cases in the population distribution. Subsequently, the genetic basis of the less severe and most common dyslipidemias remained unknown. In the genomic age, performing whole-exome sequencing in families with extreme plasma LDL-c values identified some new candidate genes, but it is unlikely that such genes can explain the majority of inexplicable cases. Genome-wide association studies (GWASs) have identified several single-nucleotide variants (SNVs) associated with plasma LDL-c, introducing the idea of a polygenic origin. Polygenic risk scores (PRSs), including LDL-c-raising alleles, were developed to measure the contribution of the accumulation of small-effect variants to plasma LDL-c. This paper discusses other possibilities for unexplained dyslipidemias associated with LDL-c, such as mosaicism, maternal effect, and induced epigenetic changes. Future studies should consider gene-gene and gene-environment interactions and the development of integrated information about disease-driving networks, including phenotypes, genotypes, transcription, proteins, metabolites, and epigenetics.
Collapse
Affiliation(s)
- Jesús Maria Martín-Campos
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau (IR-HSCSP)-Biomedical Research Institute Sant Pau (IIB-Sant Pau), C/Sant Quintí 77-79, 08041 Barcelona, Spain
| |
Collapse
|
104
|
Meroni M, Longo M, Tria G, Dongiovanni P. Genetics Is of the Essence to Face NAFLD. Biomedicines 2021; 9:1359. [PMID: 34680476 PMCID: PMC8533437 DOI: 10.3390/biomedicines9101359] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the commonest cause of chronic liver disease worldwide. It is closely related to obesity, insulin resistance (IR) and dyslipidemia so much so it is considered the hepatic manifestation of the Metabolic Syndrome. The NAFLD spectrum extends from simple steatosis to nonalcoholic steatohepatitis (NASH), a clinical condition which may progress up to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). NAFLD is a complex disease whose pathogenesis is shaped by both environmental and genetic factors. In the last two decades, several heritable modifications in genes influencing hepatic lipid remodeling, and mitochondrial oxidative status have been emerged as predictors of progressive hepatic damage. Among them, the patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M, the Transmembrane 6 superfamily member 2 (TM6SF2) p.E167K and the rs641738 membrane bound-o-acyltransferase domain-containing 7 (MBOAT7) polymorphisms are considered the most robust modifiers of NAFLD. However, a forefront frontier in the study of NAFLD heritability is to postulate score-based strategy, building polygenic risk scores (PRS), which aggregate the most relevant genetic determinants of NAFLD and biochemical parameters, with the purpose to foresee patients with greater risk of severe NAFLD, guaranteeing the most highly predictive value, the best diagnostic accuracy and the more precise individualized therapy.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milano, Italy
| | - Giada Tria
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| |
Collapse
|
105
|
Pott J, Gadin J, Theusch E, Kleber ME, Delgado GE, Kirsten H, Hauck SM, Burkhardt R, Scharnagl H, Krauss RM, Loeffler M, März W, Thiery J, Silveira A, Vant Hooft FM, Scholz M. Meta-GWAS of PCSK9 levels detects two novel loci at APOB and TM6SF2. Hum Mol Genet 2021; 31:999-1011. [PMID: 34590679 PMCID: PMC8947322 DOI: 10.1093/hmg/ddab279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/15/2022] Open
Abstract
Background Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key player in lipid metabolism, as it degrades low-density lipoprotein (LDL) receptors from hepatic cell membranes. So far, only variants of the PCSK9 gene locus were found to be associated with PCSK9 levels. Here we aimed to identify novel genetic loci that regulate PCSK9 levels and how they relate to other lipid traits. Additionally, we investigated to what extend the causal effect of PCSK9 on coronary artery disease (CAD) is mediated by low-density lipoprotein–cholesterol (LDL–C). Methods and Results We performed a genome-wide association study meta-analysis of PCSK9 levels in up to 12 721 samples of European ancestry. The estimated heritability was 10.3%, which increased to 12.6% using only samples from patients without statin treatment. We successfully replicated the known PCSK9 hit consisting of three independent signals. Interestingly, in a study of 300 African Americans, we confirmed the locus with a different PCSK9 variant. Beyond PCSK9, our meta-analysis detected three novel loci with genome-wide significance. Co-localization analysis with cis-eQTLs and lipid traits revealed biologically plausible candidate genes at two of them: APOB and TM6SF2. In a bivariate Mendelian Randomization analysis, we detected a strong effect of PCSK9 on LDL-C, but not vice versa. LDL-C mediated 63% of the total causal effect of PCSK9 on CAD. Conclusion Our study identified novel genetic loci with plausible candidate genes affecting PCSK9 levels. Ethnic heterogeneity was observed at the PCSK9 locus itself. Although the causal effect of PCSK9 on CAD is mainly mediated by LDL-C, an independent direct effect also occurs.
Collapse
Affiliation(s)
- Janne Pott
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany.,LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jesper Gadin
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital Solna, Sweden
| | - Elizabeth Theusch
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Graciela E Delgado
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany.,LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core and Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ralph Burkhardt
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig.,Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Ronald M Krauss
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA.,Department of Medicine, University of California San Francisco, Oakland, CA, USA
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany.,LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.,SYNLAB Academy, SYNALB Holding Deutschland GmbH, Mannheim, Germany
| | - Joachim Thiery
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig.,Faculty of Medicine, Kiel University, Kiel, Germany
| | - Angela Silveira
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital Solna, Sweden
| | - Ferdinand M Vant Hooft
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital Solna, Sweden
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany.,LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
106
|
Pant A, Chen Y, Kuppa A, Du X, Halligan BD, Speliotes EK. Perturbation of TM6SF2 Expression Alters Lipid Metabolism in a Human Liver Cell Line. Int J Mol Sci 2021; 22:9758. [PMID: 34575933 PMCID: PMC8471112 DOI: 10.3390/ijms22189758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is caused by excess lipid accumulation in hepatocytes. Genome-wide association studies have identified a strong association of NAFLD with non-synonymous E167K amino acid mutation in the transmembrane 6 superfamily member 2 (TM6SF2) protein. The E167K mutation reduces TM6SF2 stability, and its carriers display increased hepatic lipids and lower serum triglycerides. However, the effects of TM6SF2 on hepatic lipid metabolism are not completely understood. We overexpressed wild-type or E167K variant of TM6SF2 or knocked down TM6SF2 expression in lipid-treated Huh-7 cells and used untargeted lipidomic analysis, RNAseq transcriptome analysis, and fluorescent imaging to determine changes in hepatic lipid metabolism. Both TM6SF2 knockdown and E167K overexpression increased hepatic lipid accumulation, while wild-type overexpression decreased acylglyceride levels. We also observed lipid chain remodeling for acylglycerides by TM6SF2 knockdown, leading to a relative increase in species with shorter, more saturated side chains. RNA-sequencing revealed differential expression of several lipid metabolizing genes, including genes belonging to AKR1 family and lipases, primarily in cells with TM6SF2 knockdown. Taken together, our data show that overexpression of TM6SF2 gene or its loss-of-function changes hepatic lipid species composition and expression of lipid metabolizing genes. Additionally, our data further confirms a loss-of-function effect for the E167K variant.
Collapse
Affiliation(s)
- Asmita Pant
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI 48109, USA; (A.P.); (Y.C.); (A.K.); (X.D.); (B.D.H.)
| | - Yue Chen
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI 48109, USA; (A.P.); (Y.C.); (A.K.); (X.D.); (B.D.H.)
| | - Annapurna Kuppa
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI 48109, USA; (A.P.); (Y.C.); (A.K.); (X.D.); (B.D.H.)
| | - Xiaomeng Du
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI 48109, USA; (A.P.); (Y.C.); (A.K.); (X.D.); (B.D.H.)
| | - Brian D. Halligan
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI 48109, USA; (A.P.); (Y.C.); (A.K.); (X.D.); (B.D.H.)
| | - Elizabeth K. Speliotes
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI 48109, USA; (A.P.); (Y.C.); (A.K.); (X.D.); (B.D.H.)
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
107
|
Jiang X, Qian H, Ding WX. New Glance at the Role of TM6SF2 in Lipid Metabolism and Liver Cancer. Hepatology 2021; 74:1141-1144. [PMID: 33826777 DOI: 10.1002/hep.31851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaoxiao Jiang
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Hui Qian
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
108
|
Ghidini M, Ramai D, Facciorusso A, Singh J, Tai W, Rijavec E, Galassi B, Grossi F, Indini A. Metabolic disorders and the risk of cholangiocarcinoma. Expert Rev Gastroenterol Hepatol 2021; 15:999-1007. [PMID: 34423721 DOI: 10.1080/17474124.2021.1946393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
Introduction: Cholangiocarcinoma (CCA) is a malignancy which arises from the biliary epithelium. Carcinogenesis of CCA is mainly linked to aberrant glucose metabolism and creation of an immunosuppressive environment around normal biliary epithelium. The incidence of CCA is higher in the East due to Opisthorchis viverrini, an endemic liver fluke. CCA has also be attributed to genetic, metabolic, and lifestyle risk factors.Areas covered: Differences in epidemiological risk factors are associated with varying phenotypes of CCA. Metabolic risk factors include diabetes, obesity, nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH), dyslipidemia, and metabolic syndrome. Inherited metabolic risk factors include Wilson's disease and hemochromatosis. Metabolic disease is associated with a higher risk of CCA, with higher risk for the intrahepatic form. In this review, the authors provide an overview of available evidence regarding metabolic conditions associated with the development of CCA.Expert opinion: Metabolic disease is associated with a higher risk of intrahepatic CCA compared to its extrahepatic or hilar counterpart. As rates of obesity and metabolic syndrome increase, particularly in the West, it is conceivable that the incidence of CCA will also rise in the next years.
Collapse
Affiliation(s)
- Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daryl Ramai
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, New York, USA
| | - Antonio Facciorusso
- Section of Gastroenterology, Department of Medical Sciences, University of Foggia, Foggia, Italy
| | - Jameel Singh
- Department of Internal Medicine, Mather Hospital, Northwell Health, Port Jefferson, New York, USA
| | - Waqqas Tai
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, New York, USA
| | - Erika Rijavec
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Galassi
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Grossi
- Department of Medicine and Surgery, Medical Oncology Unit, ASST Sette Laghi, Varese, Italy
| | - Alice Indini
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
109
|
Newberry EP, Hall Z, Xie Y, Molitor EA, Bayguinov PO, Strout GW, Fitzpatrick JA, Brunt EM, Griffin JL, Davidson NO. Liver-Specific Deletion of Mouse Tm6sf2 Promotes Steatosis, Fibrosis, and Hepatocellular Cancer. Hepatology 2021; 74:1203-1219. [PMID: 33638902 PMCID: PMC8390580 DOI: 10.1002/hep.31771] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/17/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Human transmembrane 6 superfamily 2 (TM6SF2) variant rs58542926 is associated with NAFLD and HCC. However, conflicting reports in germline Tm6sf2 knockout mice suggest no change or decreased very low density lipoprotein (VLDL) secretion and either unchanged or increased hepatic steatosis, with no increased fibrosis. We generated liver-specific Tm6Sf2 knockout mice (Tm6 LKO) to study VLDL secretion and the impact on development and progression of NAFLD. APPROACH AND RESULTS Two independent lines of Tm6 LKO mice exhibited spontaneous hepatic steatosis. Targeted lipidomic analyses showed increased triglyceride species whose distribution and abundance phenocopied findings in mice with liver-specific deletion of microsomal triglyceride transfer protein. The VLDL triglyceride secretion was reduced with small, underlipidated particles and unchanged or increased apolipoprotein B. Liver-specific adeno-associated viral, serotype 8 (AAV8) rescue using either wild-type or mutant E167K-Tm6 reduced hepatic steatosis and improved VLDL secretion. The Tm6 LKO mice fed a high milk-fat diet for 3 weeks exhibited increased steatosis and fibrosis, and those phenotypes were further exacerbated when mice were fed fibrogenic, high fat/fructose diets for 20 weeks. In two models of HCC, either neonatal mice injected with streptozotocin (NASH/STAM) and high-fat fed or with diethylnitrosamine injection plus fibrogenic diet feeding, Tm6 LKO mice exhibited increased steatosis, greater tumor burden, and increased tumor area versus Tm6 flox controls. Additionally, diethylnitrosamine-injected and fibrogenic diet-fed Tm6 LKO mice administered wild-type Tm6 or E167K-mutant Tm6 AAV8 revealed significant tumor attenuation, with tumor burden inversely correlated with Tm6 protein levels. CONCLUSIONS Liver-specific Tm6sf2 deletion impairs VLDL secretion, promoting hepatic steatosis, fibrosis, and accelerated development of HCC, which was mitigated with AAV8- mediated rescue.
Collapse
Affiliation(s)
- Elizabeth P. Newberry
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Zoe Hall
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Yan Xie
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Elizabeth A. Molitor
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Peter O. Bayguinov
- Washington University Center for Cellular Imaging, Washington University in Saint Louis, St. Louis, MO 63130
| | - Gregory W. Strout
- Washington University Center for Cellular Imaging, Washington University in Saint Louis, St. Louis, MO 63130
| | - James A.J. Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University in Saint Louis, St. Louis, MO 63130
- Departments of Cell Biology & Physiology and Neuroscience, Washington University School of Medicine, Louis, St. Louis, MO 63130
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130
| | - Elizabeth M. Brunt
- Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Julian L. Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Nicholas O. Davidson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
110
|
Kim DS, Gloyn AL, Knowles JW. Genetics of Type 2 Diabetes: Opportunities for Precision Medicine: JACC Focus Seminar. J Am Coll Cardiol 2021; 78:496-512. [PMID: 34325839 PMCID: PMC8328195 DOI: 10.1016/j.jacc.2021.03.346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/30/2022]
Abstract
Type 2 diabetes (T2D) is highly prevalent and is a strong contributor for cardiovascular disease. However, there is significant heterogeneity in disease pathogenesis and the risk of complications. Enormous progress has been made in our ability to catalog genetic variation associated with T2D risk and variation in disease-relevant quantitative traits. These discoveries hold the potential to shed light on tractable targets and pathways for safe and effective therapeutic development, but the promise of precision medicine has been slow to be realized. Recent studies have identified subgroups of individuals with differential risk for intermediate phenotypes (eg, lipid levels, fasting insulin, body mass index) that contribute to T2D risk, helping to account for the observed clinical heterogeneity. These "partitioned genetic risk scores" not only have the potential to identify patients at greatest risk of cardiovascular disease and rapid disease progression, but also could aid patient stratification bridging the gap toward precision medicine for T2D.
Collapse
Affiliation(s)
- Daniel Seung Kim
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Anna L Gloyn
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA; Stanford Diabetes Research Center, Stanford University, Stanford, California, USA
| | - Joshua W Knowles
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Stanford Diabetes Research Center, Stanford University, Stanford, California, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, California, USA.
| |
Collapse
|
111
|
Sliz E, Shin J, Syme C, Patel Y, Parker N, Richer L, Gaudet D, Bennett S, Paus T, Pausova Z. A variant near DHCR24 associates with microstructural properties of white matter and peripheral lipid metabolism in adolescents. Mol Psychiatry 2021; 26:3795-3805. [PMID: 31900429 PMCID: PMC7332371 DOI: 10.1038/s41380-019-0640-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022]
Abstract
Visceral adiposity has been associated with altered microstructural properties of white matter in adolescents. Previous evidence suggests that circulating phospholipid PC(16:0/2:0) may mediate this association. To investigate the underlying biology, we performed a genome-wide association study (GWAS) of the shared variance of visceral fat, PC(16:0/2:0), and white matter microstructure in 872 adolescents from the Saguenay Youth Study. We further studied the metabolomic profile of the GWAS-lead variant in 931 adolescents. Visceral fat and white matter microstructure were assessed with magnetic resonance imaging. Circulating metabolites were quantified with serum lipidomics and metabolomics. We identified a genome-wide significant association near DHCR24 (Seladin-1) encoding a cholesterol-synthesizing enzyme (rs588709, p = 3.6 × 10-8); rs588709 was also associated nominally with each of the three traits (white matter microstructure: p = 2.1 × 10-6, PC(16:0/2:0): p = 0.005, visceral fat: p = 0.010). We found that the metabolic profile associated with rs588709 resembled that of a TM6SF2 variant impacting very low-density lipoprotein (VLDL) secretion and was only partially similar to that of a HMGCR variant. This suggests that the effect of rs588709 on VLDL lipids may arise due to altered phospholipid rather than cholesterol metabolism. The rs588709 was also nominally associated with circulating concentrations of omega-3 fatty acids in interaction with visceral fat and PC(16:0/2:0), and these fatty acid measures showed robust associations with white matter microstructure. Overall, the present study provides evidence that the DHCR24 locus may link peripheral metabolism to brain microstructure, an association with implications for cognitive impairment.
Collapse
Affiliation(s)
- Eeva Sliz
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
- Center for Life-Course Health Research and Computational Medicine, Faculty of Medicine, University of Oulu, and Biocenter Oulu, Oulu, Finland
| | - Jean Shin
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Catriona Syme
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Yash Patel
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Nadine Parker
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Louis Richer
- Department of Health Sciences, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Daniel Gaudet
- Clinical Lipidology and rare lipid disorders Unit, Community Genetic Medicine Center, Department of Medicine, Université de Montréal, ECOGENE-21, Chicoutimi, QC, Canada
| | - Steffany Bennett
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
112
|
Heeren J, Scheja L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol Metab 2021; 50:101238. [PMID: 33892169 PMCID: PMC8324684 DOI: 10.1016/j.molmet.2021.101238] [Citation(s) in RCA: 344] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease, or as recently proposed 'metabolic-associated fatty liver disease' (MAFLD), is characterized by pathological accumulation of triglycerides and other lipids in hepatocytes. This common disease can progress from simple steatosis to steatohepatitis, and eventually end-stage liver diseases. MAFLD is closely related to disturbances in systemic energy metabolism, including insulin resistance and atherogenic dyslipidemia. SCOPE OF REVIEW The liver is the central organ in lipid metabolism by secreting very low density lipoproteins (VLDL) and, on the other hand, by internalizing fatty acids and lipoproteins. This review article discusses recent research addressing hepatic lipid synthesis, VLDL production, and lipoprotein internalization as well as the lipid exchange between adipose tissue and the liver in the context of MAFLD. MAJOR CONCLUSIONS Liver steatosis in MAFLD is triggered by excessive hepatic triglyceride synthesis utilizing fatty acids derived from white adipose tissue (WAT), de novo lipogenesis (DNL) and endocytosed remnants of triglyceride-rich lipoproteins. In consequence of high hepatic lipid content, VLDL secretion is enhanced, which is the primary cause of complex dyslipidemia typical for subjects with MAFLD. Interventions reducing VLDL secretory capacity attenuate dyslipidemia while they exacerbate MAFLD, indicating that the balance of lipid storage versus secretion in hepatocytes is a critical parameter determining disease outcome. Proof of concept studies have shown that promoting lipid storage and energy combustion in adipose tissues reduces hepatic lipid load and thus ameliorates MAFLD. Moreover, hepatocellular triglyceride synthesis from DNL and WAT-derived fatty acids can be targeted to treat MAFLD. However, more research is needed to understand how individual transporters, enzymes, and their isoforms affect steatosis and dyslipidemia in vivo, and whether these two aspects of MAFLD can be selectively treated. Processing of cholesterol-enriched lipoproteins appears less important for steatosis. It may, however, modulate inflammation and consequently MAFLD progression.
Collapse
Affiliation(s)
- Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
113
|
Pafili K, Roden M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol Metab 2021; 50:101122. [PMID: 33220492 PMCID: PMC8324683 DOI: 10.1016/j.molmet.2020.101122] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) comprises hepatic alterations with increased lipid accumulation (steatosis) without or with inflammation (nonalcoholic steatohepatitis, NASH) and/or fibrosis in the absence of other causes of liver disease. NAFLD is developing as a burgeoning health challenge, mainly due to the worldwide obesity and diabetes epidemics. SCOPE OF REVIEW This review summarizes the knowledge on the pathogenesis underlying NAFLD by focusing on studies in humans and on hypercaloric nutrition, including effects of saturated fat and fructose, as well as adipose tissue dysfunction, leading to hepatic lipotoxicity, abnormal mitochondrial function, and oxidative stress, and highlights intestinal dysbiosis. These mechanisms are discussed in the context of current treatments targeting metabolic pathways and the results of related clinical trials. MAJOR CONCLUSIONS Recent studies have provided evidence that certain conditions, for example, the severe insulin-resistant diabetes (SIRD) subgroup (cluster) and the presence of an increasing number of gene variants, seem to predispose for excessive risk of NAFLD and its accelerated progression. Recent clinical trials have been frequently unsuccessful in halting or preventing NAFLD progression, perhaps partly due to including unselected cohorts in later stages of NAFLD. On the basis of this literature review, this study proposed screening in individuals with the highest genetic or acquired risk of disease progression, for example, the SIRD subgroup, and developing treatment concepts targeting the earliest pathophysiolgical alterations, namely, adipocyte dysfunction and insulin resistance.
Collapse
Affiliation(s)
- Kalliopi Pafili
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Michael Roden
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
114
|
Dongiovanni P, Paolini E, Corsini A, Sirtori CR, Ruscica M. Nonalcoholic fatty liver disease or metabolic dysfunction-associated fatty liver disease diagnoses and cardiovascular diseases: From epidemiology to drug approaches. Eur J Clin Invest 2021; 51:e13519. [PMID: 33583033 DOI: 10.1111/eci.13519] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND A consensus of experts has proposed to replace the term nonalcoholic fatty liver disease (NAFLD), whose global prevalence is 25%, with metabolic dysfunction-associated fatty liver disease (MAFLD), to describe more appropriately the liver disease related to metabolic derangements. MAFLD is closely intertwined with type 2 diabetes, obesity, dyslipidaemia, all linked to a rise in the risk of cardiovascular disease (CVDs). Since controversy still stands on whether or not NAFLD/MAFLD raises the odds of CVD, the present review aims to evaluate the impact of NAFLD/MAFLD aetiologies on CV health and the potential correction by dietary and drug approaches. RESULTS Epidemiological studies indicate that NAFLD raises risk of fatal or non-fatal CVD events. NAFLD patients have a higher prevalence of arterial plaques and stiffness, coronary calcification, and endothelial dysfunction. Although genetic and environmental factors strongly contribute to NAFLD pathogenesis, a Mendelian randomization analysis indicated that the PNPLA3 genetic variant leading to NAFLD may not be causally associated with CVD risk. Among other genetic variants related to NAFLD, TM6SF2 appears to be protective, whereas MBOAT7 may favour venous thromboembolism. CONCLUSIONS NAFLD is correlated to a higher CVD risk which may be ameliorated by dietary interventions. This is not surprising, since new criteria defining MAFLD include other metabolic risk abnormalities fuelling development of serious adverse extrahepatic outcomes, for example CVD. The present lack of a targeted pharmacological approach makes the identification of patients with liver disease at higher CVD risk (eg diabetes, hypertension, obesity or high levels of C-reactive protein) of major clinical interest.
Collapse
Affiliation(s)
- Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Paolini
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.,Multimedica IRCCS, Sesto San Giovanni (MI), Milan, Italy
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
115
|
George MN, Leavens KF, Gadue P. Genome Editing Human Pluripotent Stem Cells to Model β-Cell Disease and Unmask Novel Genetic Modifiers. Front Endocrinol (Lausanne) 2021; 12:682625. [PMID: 34149620 PMCID: PMC8206553 DOI: 10.3389/fendo.2021.682625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/13/2021] [Indexed: 01/21/2023] Open
Abstract
A mechanistic understanding of the genetic basis of complex diseases such as diabetes mellitus remain elusive due in large part to the activity of genetic disease modifiers that impact the penetrance and/or presentation of disease phenotypes. In the face of such complexity, rare forms of diabetes that result from single-gene mutations (monogenic diabetes) can be used to model the contribution of individual genetic factors to pancreatic β-cell dysfunction and the breakdown of glucose homeostasis. Here we review the contribution of protein coding and non-protein coding genetic disease modifiers to the pathogenesis of diabetes subtypes, as well as how recent technological advances in the generation, differentiation, and genome editing of human pluripotent stem cells (hPSC) enable the development of cell-based disease models. Finally, we describe a disease modifier discovery platform that utilizes these technologies to identify novel genetic modifiers using induced pluripotent stem cells (iPSC) derived from patients with monogenic diabetes caused by heterozygous mutations.
Collapse
Affiliation(s)
- Matthew N. George
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Karla F. Leavens
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
116
|
Dallio M, Romeo M, Gravina AG, Masarone M, Larussa T, Abenavoli L, Persico M, Loguercio C, Federico A. Nutrigenomics and Nutrigenetics in Metabolic- (Dysfunction) Associated Fatty Liver Disease: Novel Insights and Future Perspectives. Nutrients 2021; 13:1679. [PMID: 34063372 PMCID: PMC8156164 DOI: 10.3390/nu13051679] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic- (dysfunction) associated fatty liver disease (MAFLD) represents the predominant hepatopathy and one of the most important systemic, metabolic-related disorders all over the world associated with severe medical and socio-economic repercussions due to its growing prevalence, clinical course (steatohepatitis and/or hepatocellular-carcinoma), and related extra-hepatic comorbidities. To date, no specific medications for the treatment of this condition exist, and the most valid recommendation for patients remains lifestyle change. MAFLD has been associated with metabolic syndrome; its development and progression are widely influenced by the interplay between genetic, environmental, and nutritional factors. Nutrigenetics and nutrigenomics findings suggest nutrition's capability, by acting on the individual genetic background and modifying the specific epigenetic expression as well, to influence patients' clinical outcome. Besides, immunity response is emerging as pivotal in this multifactorial scenario, suggesting the interaction between diet, genetics, and immunity as another tangled network that needs to be explored. The present review describes the genetic background contribution to MAFLD onset and worsening, its possibility to be influenced by nutritional habits, and the interplay between nutrients and immunity as one of the most promising research fields of the future in this context.
Collapse
Affiliation(s)
- Marcello Dallio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via S. Pansini 5, 80131 Naples, Italy; (M.R.); (A.G.G.); (C.L.); (A.F.)
| | - Mario Romeo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via S. Pansini 5, 80131 Naples, Italy; (M.R.); (A.G.G.); (C.L.); (A.F.)
| | - Antonietta Gerarda Gravina
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via S. Pansini 5, 80131 Naples, Italy; (M.R.); (A.G.G.); (C.L.); (A.F.)
| | - Mario Masarone
- Department of Medicine and Surgery, University of Salerno, Via Allende, 84081 Baronissi, Italy; (M.M.); (M.P.)
| | - Tiziana Larussa
- Department of Health Sciences, University Magna Graecia, viale Europa, 88100 Catanzaro, Italy; (T.L.); (L.A.)
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, viale Europa, 88100 Catanzaro, Italy; (T.L.); (L.A.)
| | - Marcello Persico
- Department of Medicine and Surgery, University of Salerno, Via Allende, 84081 Baronissi, Italy; (M.M.); (M.P.)
| | - Carmelina Loguercio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via S. Pansini 5, 80131 Naples, Italy; (M.R.); (A.G.G.); (C.L.); (A.F.)
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via S. Pansini 5, 80131 Naples, Italy; (M.R.); (A.G.G.); (C.L.); (A.F.)
| |
Collapse
|
117
|
Juanola O, Martínez-López S, Francés R, Gómez-Hurtado I. Non-Alcoholic Fatty Liver Disease: Metabolic, Genetic, Epigenetic and Environmental Risk Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105227. [PMID: 34069012 PMCID: PMC8155932 DOI: 10.3390/ijerph18105227] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most frequent causes of chronic liver disease in the Western world, probably due to the growing prevalence of obesity, metabolic diseases, and exposure to some environmental agents. In certain patients, simple hepatic steatosis can progress to non-alcoholic steatohepatitis (NASH), which can sometimes lead to liver cirrhosis and its complications including hepatocellular carcinoma. Understanding the mechanisms that cause the progression of NAFLD to NASH is crucial to be able to control the advancement of the disease. The main hypothesis considers that it is due to multiple factors that act together on genetically predisposed subjects to suffer from NAFLD including insulin resistance, nutritional factors, gut microbiota, and genetic and epigenetic factors. In this article, we will discuss the epidemiology of NAFLD, and we overview several topics that influence the development of the disease from simple steatosis to liver cirrhosis and its possible complications.
Collapse
Affiliation(s)
- Oriol Juanola
- Gastroenterology and Hepatology, Translational Research Laboratory, Ente Ospedaliero Cantonale, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Sebastián Martínez-López
- Clinical Medicine Department, Miguel Hernández University, 03550 San Juan de Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain
| | - Rubén Francés
- Clinical Medicine Department, Miguel Hernández University, 03550 San Juan de Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Isabel Gómez-Hurtado
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
118
|
Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021; 184:2537-2564. [PMID: 33989548 DOI: 10.1016/j.cell.2021.04.015] [Citation(s) in RCA: 1136] [Impact Index Per Article: 284.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/21/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide. Its more advanced subtype, nonalcoholic steatohepatitis (NASH), connotes progressive liver injury that can lead to cirrhosis and hepatocellular carcinoma. Here we provide an in-depth discussion of the underlying pathogenetic mechanisms that lead to progressive liver injury, including the metabolic origins of NAFLD, the effect of NAFLD on hepatic glucose and lipid metabolism, bile acid toxicity, macrophage dysfunction, and hepatic stellate cell activation, and consider the role of genetic, epigenetic, and environmental factors that promote fibrosis progression and risk of hepatocellular carcinoma in NASH.
Collapse
Affiliation(s)
- Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
119
|
Szkalisity A, Piccinini F, Beleon A, Balassa T, Varga IG, Migh E, Molnar C, Paavolainen L, Timonen S, Banerjee I, Ikonen E, Yamauchi Y, Ando I, Peltonen J, Pietiäinen V, Honti V, Horvath P. Regression plane concept for analysing continuous cellular processes with machine learning. Nat Commun 2021; 12:2532. [PMID: 33953203 PMCID: PMC8100172 DOI: 10.1038/s41467-021-22866-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/30/2021] [Indexed: 01/16/2023] Open
Abstract
Biological processes are inherently continuous, and the chance of phenotypic discovery is significantly restricted by discretising them. Using multi-parametric active regression we introduce the Regression Plane (RP), a user-friendly discovery tool enabling class-free phenotypic supervised machine learning, to describe and explore biological data in a continuous manner. First, we compare traditional classification with regression in a simulated experimental setup. Second, we use our framework to identify genes involved in regulating triglyceride levels in human cells. Subsequently, we analyse a time-lapse dataset on mitosis to demonstrate that the proposed methodology is capable of modelling complex processes at infinite resolution. Finally, we show that hemocyte differentiation in Drosophila melanogaster has continuous characteristics.
Collapse
Affiliation(s)
- Abel Szkalisity
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeged, Hungary
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Filippo Piccinini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| | - Attila Beleon
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeged, Hungary
| | - Tamas Balassa
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeged, Hungary
| | | | - Ede Migh
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeged, Hungary
| | - Csaba Molnar
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeged, Hungary
| | - Lassi Paavolainen
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute of Life Science-HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sanna Timonen
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute of Life Science-HiLIFE, University of Helsinki, Helsinki, Finland
| | - Indranil Banerjee
- Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Yohei Yamauchi
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD University Walk, Bristol, UK
| | - Istvan Ando
- Institute of Genetics, Biological Research Center (BRC), Szeged, Hungary
| | - Jaakko Peltonen
- Faculty of Information Technology and Communication Sciences, Tampere University, FI-33014 Tampere University, Tampere, Finland
- Department of Computer Science, Aalto University, Aalto, Finland
| | - Vilja Pietiäinen
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute of Life Science-HiLIFE, University of Helsinki, Helsinki, Finland
| | - Viktor Honti
- Institute of Genetics, Biological Research Center (BRC), Szeged, Hungary
| | - Peter Horvath
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeged, Hungary.
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute of Life Science-HiLIFE, University of Helsinki, Helsinki, Finland.
- Single-Cell Technologies Ltd., Szeged, Hungary.
| |
Collapse
|
120
|
Ma Y, Brown PM, Lin DD, Ma J, Feng D, Belyaeva OV, Podszun MC, Roszik J, Allen J, Umarova R, Kleiner DE, Kedishvili NY, Gavrilova O, Gao B, Rotman Y. 17-Beta Hydroxysteroid Dehydrogenase 13 Deficiency Does Not Protect Mice From Obesogenic Diet Injury. Hepatology 2021; 73:1701-1716. [PMID: 32779242 PMCID: PMC8627256 DOI: 10.1002/hep.31517] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/07/2020] [Accepted: 07/19/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS 17-Beta hydroxysteroid dehydrogenase 13 (HSD17B13) is genetically associated with human nonalcoholic fatty liver disease (NAFLD). Inactivating mutations in HSD17B13 protect humans from NAFLD-associated and alcohol-associated liver injury, fibrosis, cirrhosis, and hepatocellular carcinoma, leading to clinical trials of anti-HSD17B13 therapeutic agents in humans. We aimed to study the in vivo function of HSD17B13 using a mouse model. APPROACH AND RESULTS Single-cell RNA-sequencing and quantitative RT-PCR data revealed that hepatocytes are the main HSD17B13-expressing cells in mice and humans. We compared Hsd17b13 whole-body knockout (KO) mice and wild-type (WT) littermate controls fed regular chow (RC), a high-fat diet (HFD), a Western diet (WD), or the National Institute on Alcohol Abuse and Alcoholism model of alcohol exposure. HFD and WD induced significant weight gain, hepatic steatosis, and inflammation. However, there was no difference between genotypes with regard to body weight, liver weight, hepatic triglycerides (TG), histological inflammatory scores, expression of inflammation-related and fibrosis-related genes, and hepatic retinoid levels. Compared to WT, KO mice on the HFD had hepatic enrichment of most cholesterol esters, monoglycerides, and certain sphingolipid species. Extended feeding with the WD for 10 months led to extensive liver injury, fibrosis, and hepatocellular carcinoma, with no difference between genotypes. Under alcohol exposure, KO and WT mice showed similar hepatic TG and liver enzyme levels. Interestingly, chow-fed KO mice showed significantly higher body and liver weights compared to WT mice, while KO mice on obesogenic diets had a shift toward larger lipid droplets. CONCLUSIONS Extensive evaluation of Hsd17b13 deficiency in mice under several fatty liver-inducing dietary conditions did not reproduce the protective role of HSD17B13 loss-of-function mutants in human NAFLD. Moreover, mouse Hsd17b13 deficiency induces weight gain under RC. It is crucial to understand interspecies differences prior to leveraging HSD17B13 therapies.
Collapse
Affiliation(s)
- Yanling Ma
- Liver & Energy Metabolism Section,,Liver Diseases Branch, NIDDK, NIH, Bethesda, MD
| | - Philip M. Brown
- Liver & Energy Metabolism Section,,Liver Diseases Branch, NIDDK, NIH, Bethesda, MD
| | - Dennis D. Lin
- Liver & Energy Metabolism Section,,Liver Diseases Branch, NIDDK, NIH, Bethesda, MD
| | - Jing Ma
- Laboratory of Liver Diseases, NIAAA, NIH, Bethesda, MD
| | - Dechun Feng
- Laboratory of Liver Diseases, NIAAA, NIH, Bethesda, MD
| | - Olga V. Belyaeva
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama – Birmingham, Birmingham, AL
| | - Maren C. Podszun
- Liver & Energy Metabolism Section,,Liver Diseases Branch, NIDDK, NIH, Bethesda, MD
| | - Jason Roszik
- Department of Melanoma Medical Oncology - Research, Division of Cancer Medicine,,Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - David E. Kleiner
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD
| | - Natalia Y. Kedishvili
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama – Birmingham, Birmingham, AL
| | | | - Bin Gao
- Laboratory of Liver Diseases, NIAAA, NIH, Bethesda, MD
| | - Yaron Rotman
- Liver & Energy Metabolism Section,,Liver Diseases Branch, NIDDK, NIH, Bethesda, MD
| |
Collapse
|
121
|
Longo M, Meroni M, Paolini E, Macchi C, Dongiovanni P. Mitochondrial dynamics and nonalcoholic fatty liver disease (NAFLD): new perspectives for a fairy-tale ending? Metabolism 2021; 117:154708. [PMID: 33444607 DOI: 10.1016/j.metabol.2021.154708] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) includes a broad spectrum of liver dysfunctions and it is predicted to become the primary cause of liver failure and hepatocellular carcinoma. Mitochondria are highly dynamic organelles involved in multiple metabolic/bioenergetic pathways in the liver. Emerging evidence outlined that hepatic mitochondria adapt in number and functionality in response to external cues, as high caloric intake and obesity, by modulating mitochondrial biogenesis, and maladaptive mitochondrial response has been described from the early stages of NAFLD. Indeed, mitochondrial plasticity is lost in progressive NAFLD and these organelles may assume an aberrant phenotype to drive or contribute to hepatocarcinogenesis. Severe alimentary regimen and physical exercise represent the cornerstone for NAFLD care, although the low patients' compliance is urging towards the discovery of novel pharmacological treatments. Mitochondrial-targeted drugs aimed to recover mitochondrial lifecycle and to modulate oxidative stress are becoming attractive molecules to be potentially introduced for NAFLD management. Although the path guiding the switch from bench to bedside remains tortuous, the study of mitochondrial dynamics is providing intriguing perspectives for future NAFLD healthcare.
Collapse
Affiliation(s)
- Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Erika Paolini
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy.
| |
Collapse
|
122
|
Wegermann K, Garrett ME, Zheng J, Coviello A, Moylan CA, Abdelmalek MF, Chow S, Guy CD, Diehl AM, Ashley‐Koch A, Suzuki A. Sex and Menopause Modify the Effect of Single Nucleotide Polymorphism Genotypes on Fibrosis in NAFLD. Hepatol Commun 2021; 5:598-607. [PMID: 33860118 PMCID: PMC8034580 DOI: 10.1002/hep4.1668] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022] Open
Abstract
The development of fibrosis in nonalcoholic fatty liver disease (NAFLD) is influenced by genetics, sex, and menopausal status, but whether genetic susceptibility to fibrosis is influenced by sex and reproductive status is unclear. Our aim was to identify metabolism-related single nucleotide polymorphisms (SNPs), whose effect on NAFLD fibrosis is significantly modified by sex and menopausal status. We performed a cross-sectional, proof-of-concept study of 616 patients in the Duke NAFLD Clinical Database and Biorepository. The primary outcome was nonalcoholic steatohepatitis-Clinical Research Network (NASH-CRN) fibrosis stage. Menopause status was self-reported; age 51 years was used as a surrogate for menopause in patients with missing menopause data. The Metabochip was used to obtain 98,359 SNP genotypes in known metabolic pathway genes for each patient. We used additive genetic models to characterize sex and menopause-specific effects of SNP genotypes on NAFLD fibrosis stage. In the main effects analysis, none of the SNPs were associated with fibrosis at P < 0.05 after correcting for multiple comparisons. Twenty-five SNPs significantly interacted with sex/menopause to affect fibrosis stage (interaction P < 0.0001). After removal of loci in linkage disequilibrium, 10 independent loci were identified. Six were in the following genes: KCNIP4 (potassium voltage-gated channel interacting protein 4), PSORS1C1 (psoriasis susceptibility 1 candidate 1), KLHL8 (Kelch-like family member 8), GLRA1 (glycine receptor alpha 1), NOTCH2 (notch receptor 2), and PRKCH (protein kinase C eta), and four SNPs were intergenic. In stratified models, four SNPs were significant in premenopausal and postmenopausal women, three only in postmenopausal women, two in men and postmenopausal women, and one only in premenopausal women. Conclusion: We identified 10 loci with a significant sex/menopause interaction with respect to fibrosis. None of these SNPs were significant in all sex/menopause groups, suggesting modulation of genetic susceptibility to fibrosis by sex and menopause status. Future studies of genetic predictors of NAFLD progression should account for sex and menopause.
Collapse
Affiliation(s)
- Kara Wegermann
- Division of GastroenterologyDepartment of MedicineDuke UniversityDurhamNCUSA
| | | | - Jiayin Zheng
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Andrea Coviello
- Division of EndocrinologyDepartment of MedicineDuke UniversityDurhamNCUSA
| | - Cynthia A. Moylan
- Division of GastroenterologyDepartment of MedicineDuke UniversityDurhamNCUSA
- Department of MedicineDurham Veterans Affairs Medical CenterDurhamNCUSA
| | - Manal F. Abdelmalek
- Division of GastroenterologyDepartment of MedicineDuke UniversityDurhamNCUSA
| | - Shein‐Chung Chow
- Department of Biostatistics and BioinformaticsDuke UniversityDurhamNCUSA
| | | | - Anna Mae Diehl
- Division of GastroenterologyDepartment of MedicineDuke UniversityDurhamNCUSA
| | | | - Ayako Suzuki
- Division of GastroenterologyDepartment of MedicineDuke UniversityDurhamNCUSA
- Department of MedicineDurham Veterans Affairs Medical CenterDurhamNCUSA
| |
Collapse
|
123
|
Oliveira AIN, Malta FM, Zitelli PMY, Salles APM, Gomes-Gouvea MS, Nastri ACS, Pinho JRR, Carrilho FJ, Oliveira CP, Mendes-Corrêa MC, Pessoa MG, Mazo DF. The role of PNPLA3 and TM6SF2 polymorphisms on liver fibrosis and metabolic abnormalities in Brazilian patients with chronic hepatitis C. BMC Gastroenterol 2021; 21:81. [PMID: 33622266 PMCID: PMC7901065 DOI: 10.1186/s12876-021-01654-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/07/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Despite the growing body of knowledge about TM6SF2 and PNPLA3 polymorphisms in non-alcoholic fatty liver disease, their influence in the spectrum of HCV liver disease is not yet fully defined. Besides that, admixed populations, such as Brazilians, were not included in most of the studies. METHODS This cross-sectional study enrolled 365 treatment-naïve patients with HCV and 134 healthy individuals. TM6SF2 (rs58542926 c.499C > T) and PNPLA3 (rs738409 c.444C > G) polymorphisms were evaluated regarding their association with clinical and laboratory data, histological liver steatosis and fibrosis, and with components of the metabolic syndrome. RESULTS In HCV subjects, the frequencies of TM6SF2 CC and CT + TT were 89% and 11%, while PNPLA3 frequencies of CC and CG + GG were 51.4% and 48.6%. In the univariate logistic regression analysis, the TM6SF2 CT + TT genotype in HCV was associated with significant liver fibrosis (p = 0.047; OR 1.953; 95% CI 1.009-3.788). In comparison to the CT + TT genotype, the TM6SF2 CC genotype in HCV was associated with older age (p = 0.002), higher frequency of arterial hypertension (p = 0.032), obesity (p = 0.030), metabolic syndrome (p = 0.014) and lower total cholesterol levels (p = 0.036). The PNPLA3 GG subjects had lower body mass index than CG/ CC individuals (p = 0.047). None of the polymorphisms, or their combinations, was independently associated with hepatic steatosis or fibrosis. On the other hand, older age, lower serum levels of total cholesterol, and higher serum levels of alanine aminotransferase and alkaline phosphatase were associated with liver fibrosis in the multivariate logistic regression analysis. CONCLUSION In this evaluation of an admixed HCV population, neither TM6SF2 nor PNPLA3 polymorphisms were independently associated with hepatic steatosis or fibrosis. Other factors seem more influential than these specific polymorphisms in isolation. More studies are warranted to clarify the role of the TM6SF2 and PNPLA3 polymorphisms in Brazilians with HCV.
Collapse
Affiliation(s)
- Arthur Ivan N Oliveira
- Division of Clinical Gastroenterology and Hepatology, LIM07, Department of Gastroenterology, University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar no 255, Instituto Central, # 9159, São Paulo, 05403-900, Brazil
| | - Fernanda M Malta
- Division of Clinical Gastroenterology and Hepatology, LIM07, Department of Gastroenterology, University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar no 255, Instituto Central, # 9159, São Paulo, 05403-900, Brazil
| | - Patricia Momoyo Y Zitelli
- Division of Clinical Gastroenterology and Hepatology, LIM07, Department of Gastroenterology, University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar no 255, Instituto Central, # 9159, São Paulo, 05403-900, Brazil
| | - Ana Paula M Salles
- Division of Clinical Gastroenterology and Hepatology, LIM07, Department of Gastroenterology, University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar no 255, Instituto Central, # 9159, São Paulo, 05403-900, Brazil
| | - Michele S Gomes-Gouvea
- Division of Clinical Gastroenterology and Hepatology, LIM07, Department of Gastroenterology, University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar no 255, Instituto Central, # 9159, São Paulo, 05403-900, Brazil
| | - Ana Catharina S Nastri
- Department of Infectious Diseases, University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar no 255, São Paulo, 05403-900, Brazil
| | - Joao Renato R Pinho
- Division of Clinical Gastroenterology and Hepatology, LIM07, Department of Gastroenterology, University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar no 255, Instituto Central, # 9159, São Paulo, 05403-900, Brazil
| | - Flair J Carrilho
- Division of Clinical Gastroenterology and Hepatology, LIM07, Department of Gastroenterology, University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar no 255, Instituto Central, # 9159, São Paulo, 05403-900, Brazil
| | - Claudia P Oliveira
- Division of Clinical Gastroenterology and Hepatology, LIM07, Department of Gastroenterology, University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar no 255, Instituto Central, # 9159, São Paulo, 05403-900, Brazil
| | - Maria Cássia Mendes-Corrêa
- Department of Infectious Diseases, University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar no 255, São Paulo, 05403-900, Brazil
| | - Mario G Pessoa
- Division of Clinical Gastroenterology and Hepatology, LIM07, Department of Gastroenterology, University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar no 255, Instituto Central, # 9159, São Paulo, 05403-900, Brazil
| | - Daniel F Mazo
- Division of Clinical Gastroenterology and Hepatology, LIM07, Department of Gastroenterology, University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar no 255, Instituto Central, # 9159, São Paulo, 05403-900, Brazil.
- Division of Gastroenterology (Gastrocentro), School of Medical Sciences, University of Campinas (UNICAMP), Rua Carlos Chagas no 420, Campinas, 13083-878, Brazil.
| |
Collapse
|
124
|
Ramai D, Tai W, Rivera M, Facciorusso A, Tartaglia N, Pacilli M, Ambrosi A, Cotsoglou C, Sacco R. Natural Progression of Non-Alcoholic Steatohepatitis to Hepatocellular Carcinoma. Biomedicines 2021; 9:184. [PMID: 33673113 PMCID: PMC7918599 DOI: 10.3390/biomedicines9020184] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a chronic and progressive form of non-alcoholic fatty liver disease (NAFLD). Its global incidence is increasing which makes NASH an epidemic and a public health threat. Due to repeated insults to the liver, patients are at risk for developing hepatocellular carcinoma (HCC). The progression of NASH to HCC was initially defined according to a two-hit model which involved the development of steatosis, followed by lipid peroxidation and inflammation. However, current research defines a "multi-hit" or "multi-parallel hit" model which synthesizes several contributing pathways involved in progressive fibrosis and oncogenesis. This perspective considers the effects of cellular, genetic, immunologic, metabolic, and endocrine pathways leading up to HCC which underscores the complexity of this condition. This article will provide an updated review of the pathogenic mechanisms leading from NASH to HCC as well as an exploration of the role of biomarkers and screening.
Collapse
Affiliation(s)
- Daryl Ramai
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, NY 11201, USA; (D.R.); (W.T.); (M.R.)
| | - Waqqas Tai
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, NY 11201, USA; (D.R.); (W.T.); (M.R.)
| | - Michelle Rivera
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, NY 11201, USA; (D.R.); (W.T.); (M.R.)
| | - Antonio Facciorusso
- Section of Gastroenterology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Nicola Tartaglia
- General Surgery Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (N.T.); (M.P.); (A.A.)
| | - Mario Pacilli
- General Surgery Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (N.T.); (M.P.); (A.A.)
| | - Antonio Ambrosi
- General Surgery Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (N.T.); (M.P.); (A.A.)
| | - Christian Cotsoglou
- General Surgey Unit, Department of Surgery, ASST-Vimercate, 20871 Vimercate, Italy;
| | - Rodolfo Sacco
- Section of Gastroenterology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
125
|
Rinaldi L, Pafundi PC, Galiero R, Caturano A, Morone MV, Silvestri C, Giordano M, Salvatore T, Sasso FC. Mechanisms of Non-Alcoholic Fatty Liver Disease in the Metabolic Syndrome. A Narrative Review. Antioxidants (Basel) 2021; 10:270. [PMID: 33578702 PMCID: PMC7916383 DOI: 10.3390/antiox10020270] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and metabolic syndrome (MS) are two different entities sharing common clinical and physio-pathological features, with insulin resistance (IR) as the most relevant. Large evidence leads to consider it as a risk factor for cardiovascular disease, regardless of age, sex, smoking habit, cholesterolemia, and other elements of MS. Therapeutic strategies remain still unclear, but lifestyle modifications (diet, physical exercise, and weight loss) determine an improvement in IR, MS, and both clinical and histologic liver picture. NAFLD and IR are bidirectionally correlated and, consequently, the development of pre-diabetes and diabetes is the most direct consequence at the extrahepatic level. In turn, type 2 diabetes is a well-known risk factor for multiorgan damage, including an involvement of cardiovascular system, kidney and peripheral nervous system. The increased MS incidence worldwide, above all due to changes in diet and lifestyle, is associated with an equally significant increase in NAFLD, with a subsequent rise in both morbidity and mortality due to both metabolic, hepatic and cardiovascular diseases. Therefore, the slowdown in the increase of the "bad company" constituted by MS and NAFLD, with all the consequent direct and indirect costs, represents one of the main challenges for the National Health Systems.
Collapse
Affiliation(s)
- Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, Section of Microbiology, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy;
| | - Chiara Silvestri
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Mauro Giordano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, 80138 Naples, Italy;
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| |
Collapse
|
126
|
Chen VL, Du X, Chen Y, Kuppa A, Handelman SK, Vohnoutka RB, Peyser PA, Palmer ND, Bielak LF, Halligan B, Speliotes EK. Genome-wide association study of serum liver enzymes implicates diverse metabolic and liver pathology. Nat Commun 2021; 12:816. [PMID: 33547301 PMCID: PMC7865025 DOI: 10.1038/s41467-020-20870-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Serum liver enzyme concentrations are the most frequently-used laboratory markers of liver disease, a major cause of mortality. We conduct a meta-analysis of genome-wide association studies of liver enzymes from UK BioBank and BioBank Japan. We identified 160 previously-unreported independent alanine aminotransferase, 190 aspartate aminotransferase, and 199 alkaline phosphatase genome-wide significant associations, with some affecting multiple different enzymes. Associated variants implicate genes that demonstrate diverse liver cell type expression and promote a range of metabolic and liver diseases. These findings provide insight into the pathophysiology of liver and other metabolic diseases that are associated with serum liver enzyme concentrations. Serum liver enzymes are used as markers of liver disease, their concentration influenced in part by genetic factors. Here the authors meta-analyse genome-wide association studies on the UK Biobank and BioBank Japan to evaluate the association of three liver enzymes with liver and other metabolic diseases.
Collapse
Affiliation(s)
- Vincent L Chen
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Xiaomeng Du
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Yanhua Chen
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Annapurna Kuppa
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Samuel K Handelman
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rishel B Vohnoutka
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lawrence F Bielak
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Brian Halligan
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Elizabeth K Speliotes
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA. .,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
127
|
Choudhary NS, Duseja A. Genetic and epigenetic disease modifiers: non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). Transl Gastroenterol Hepatol 2021; 6:2. [PMID: 33409397 DOI: 10.21037/tgh.2019.09.06] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Inter-individual and inter-ethnic differences and difference in the severity and progression of liver disease among patients with non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) suggests the involvement of genetic and epigenetic factors in their pathogenesis. This article reviews the genetic and epigenetic modifiers in patients with NAFLD and ALD. Evidence regarding the genetic and epigenetic disease modifiers of NAFLD and ALD was reviewed by searching the available literature. Both genome wide association studies (GWAS) and candidate gene studies pertaining to the pathogenesis in both diseases were included. Clinical implications of the available information are also discussed. Several studies have shown association of both NAFLD and ALD with I148M PNPLA3 variant. In addition to the higher prevalence of hepatic steatosis, the I148M PNPLA3 variant is also associated with severity of liver disease and risk of hepatocellular carcinoma (HCC). TM6SF2 is the other genetic variant shown to be significantly associated with hepatic steatosis and cirrhosis in patients with NAFLD and ALD. The Membrane bound O-acyltransferase domain-containing 7 (MBOAT7) genetic variant is also associated with both NAFLD and ALD. In addition to these mutations, several variants related to the genes involved in glucose metabolism, insulin resistance, lipid metabolism, oxidative stress, inflammatory pathways, fibrosis have also been shown to be the disease modifiers in patients with NAFLD and ALD. Epigenetics involving several micro RNAs and DNA methylation could also modify the disease course in NAFLD and ALD. In conclusion the available literature suggests that genetics and epigenetics are involved in the pathogenesis of NAFLD and ALD which may affect the disease prevalence, severity and response to treatment in these patients.
Collapse
Affiliation(s)
- Narendra Singh Choudhary
- Institute of Liver Transplantation and Regenerative Medicine, Medanta, The Medicity, Gurgaon, Delhi (NCR), India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
128
|
Luukkonen PK, Qadri S, Lehtimäki TE, Juuti A, Sammalkorpi H, Penttilä AK, Hakkarainen A, Orho-Melander M, Arola J, Yki-Järvinen H. The PNPLA3-I148M Variant Confers an Antiatherogenic Lipid Profile in Insulin-resistant Patients. J Clin Endocrinol Metab 2021; 106:e300-e315. [PMID: 33064150 DOI: 10.1210/clinem/dgaa729] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
CONTEXT The I148M (rs738409-G) variant in PNPLA3 increases liver fat content but may be protective against cardiovascular disease. Insulin resistance (IR) amplifies the effect of PNPLA3-I148M on liver fat. OBJECTIVE To study whether PNPLA3-I148M confers an antihyperlipidemic effect in insulin-resistant patients. DESIGN Cross-sectional study comparing the impact of PNPLA3-I148M on plasma lipids and lipoproteins in 2 cohorts, both divided into groups based on rs738409-G allele carrier status and median HOMA-IR. SETTING Tertiary referral center. PATIENTS A total of 298 obese patients who underwent a liver biopsy during bariatric surgery (bariatric cohort: age 49 ± 9 years, body mass index [BMI] 43.2 ± 6.8 kg/m2), and 345 less obese volunteers in whom liver fat was measured by proton magnetic resonance spectroscopy (nonbariatric cohort: age 45 ± 14 years, BMI 29.7 ± 5.7 kg/m2). MAIN OUTCOME MEASURES Nuclear magnetic resonance profiling of plasma lipids, lipoprotein particle subclasses and their composition. RESULTS In both cohorts, individuals carrying the PNPLA3-I148M variant had significantly higher liver fat content than noncarriers. In insulin-resistant and homozygous carriers, PNPLA3-I148M exerted a distinct antihyperlipidemic effect with decreased very-low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) particles and their constituents, and increased high-density lipoprotein particles and their constituents, compared with noncarriers. VLDL particles were smaller and LDL particles larger in PNPLA3-I148M carriers. These changes were geometrically opposite to those due to IR. PNPLA3-I148M did not have a measurable effect in patients with lower IR, and its effect was smaller albeit still significant in the less obese than in the obese cohort. CONCLUSIONS PNPLA3-I148M confers an antiatherogenic plasma lipid profile particularly in insulin-resistant individuals.
Collapse
Affiliation(s)
- Panu K Luukkonen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Sami Qadri
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Tiina E Lehtimäki
- HUS Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | - Anne Juuti
- Department of Gastrointestinal Surgery, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Henna Sammalkorpi
- Department of Gastrointestinal Surgery, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Anne K Penttilä
- Department of Gastrointestinal Surgery, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Antti Hakkarainen
- HUS Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | | | - Johanna Arola
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
129
|
Borén J, Adiels M, Björnson E, Matikainen N, Söderlund S, Rämö J, Ståhlman M, Ripatti P, Ripatti S, Palotie A, Mancina RM, Hakkarainen A, Romeo S, Packard CJ, Taskinen MR. Effects of TM6SF2 E167K on hepatic lipid and very low-density lipoprotein metabolism in humans. JCI Insight 2020; 5:144079. [PMID: 33170809 PMCID: PMC7819740 DOI: 10.1172/jci.insight.144079] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation. The transmembrane 6 superfamily member 2 (TM6SF2) E167K genetic variant associates with NAFLD and with reduced plasma triglyceride levels in humans. However, the molecular mechanisms underlying these associations remain unclear. We hypothesized that TM6SF2 E167K affects hepatic very low-density lipoprotein (VLDL) secretion and studied the kinetics of apolipoprotein B100 (apoB100) and triglyceride metabolism in VLDL in homozygous subjects. In 10 homozygote TM6SF2 E167K carriers and 10 matched controls, we employed stable-isotope tracer and compartmental modeling techniques to determine apoB100 and triglyceride kinetics in the 2 major VLDL subfractions: large triglyceride-rich VLDL1 and smaller, less triglyceride-rich VLDL2. VLDL1-apoB100 production was markedly reduced in homozygote TM6SF2 E167K carriers compared with controls. Likewise, VLDL1-triglyceride production was 35% lower in the TM6SF2 E167K carriers. In contrast, the direct production rates for VLDL2-apoB100 and triglyceride were not different between carriers and controls. In conclusion, the TM6SF2 E167K genetic variant was linked to a specific reduction in hepatic secretion of large triglyceride-rich VLDL1. The impaired secretion of VLDL1 explains the reduced plasma triglyceride concentration and provides a basis for understanding the lower risk of cardiovascular disease associated with the TM6SF2 E167K genetic variant.
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martin Adiels
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Elias Björnson
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Niina Matikainen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Sanni Söderlund
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Joel Rämö
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Pietari Ripatti
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.,Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA.,Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.,Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Rosellina M Mancina
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Antti Hakkarainen
- Helsinki and Uusimaa Hospital District Medical Imaging Center, Radiology, Helsinki University Hospital, University of Helsinki, Finland
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Chris J Packard
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
130
|
Makri E, Goulas A, Polyzos SA. Epidemiology, Pathogenesis, Diagnosis and Emerging Treatment of Nonalcoholic Fatty Liver Disease. Arch Med Res 2020; 52:25-37. [PMID: 33334622 DOI: 10.1016/j.arcmed.2020.11.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/26/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, with an estimated rising prevalence, in concert with the epidemics of obesity and type 2 diabetes. The pathogenesis of NAFLD is not fully elucidated. Besides weight gain and insulin resistance, many other factors seem to contribute, including adipokines, gut microbiota and genetic predisposition. The disease starts as hepatic steatosis, which may proceed to nonalcoholic steatohepatitis (NASH); if fibrosis is added, the risk of cirrhosis and/or hepatocellular carcinoma is augmented. Liver biopsy is considered the gold standard for the diagnosis and staging of NAFLD; the early use of reliable and easily applied diagnostic tools, such as noninvasive biomarkers, is needed to identify patients at different-preferably early-stages of disease however. Whilst lifestyle modification is the first step to manage NAFLD, there is poor compliance, leading to the need of drug therapy. Accordingly, a variety of medications is under investigation. Given the multifaceted pathophysiology of NAFLD, probably, a combination of approaches in an individualized basis may be a more appropriate management. This review summarizes evidence on the epidemiology, pathogenesis, diagnosis and treatment of NAFLD.
Collapse
MESH Headings
- Biomarkers/analysis
- Biomarkers/blood
- Carcinoma, Hepatocellular/complications
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/epidemiology
- Carcinoma, Hepatocellular/therapy
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/epidemiology
- Diabetes Mellitus, Type 2/therapy
- Humans
- Life Style
- Liver Cirrhosis/diagnosis
- Liver Cirrhosis/epidemiology
- Liver Cirrhosis/etiology
- Liver Cirrhosis/therapy
- Liver Neoplasms/complications
- Liver Neoplasms/diagnosis
- Liver Neoplasms/epidemiology
- Liver Neoplasms/therapy
- Non-alcoholic Fatty Liver Disease/diagnosis
- Non-alcoholic Fatty Liver Disease/epidemiology
- Non-alcoholic Fatty Liver Disease/etiology
- Non-alcoholic Fatty Liver Disease/therapy
- Obesity/complications
- Obesity/diagnosis
- Obesity/epidemiology
- Obesity/therapy
- Prevalence
- Risk Factors
- Therapies, Investigational/methods
- Therapies, Investigational/trends
Collapse
Affiliation(s)
- Evangelia Makri
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonis Goulas
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
131
|
Peng C, Stewart AG, Woodman OL, Ritchie RH, Qin CX. Non-Alcoholic Steatohepatitis: A Review of Its Mechanism, Models and Medical Treatments. Front Pharmacol 2020; 11:603926. [PMID: 33343375 PMCID: PMC7745178 DOI: 10.3389/fphar.2020.603926] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) develops from non-alcoholic fatty liver disease (NAFLD). Currently, around 25% of the population is estimated to have NAFLD, and 25% of NAFLD patients are estimated to have NASH. NASH is typically characterized by liver steatosis inflammation, and fibrosis driven by metabolic disruptions such as obesity, diabetes, and dyslipidemia. NASH patients with significant fibrosis have increased risk of developing cirrhosis and liver failure. Currently, NASH is the second leading cause for liver transplant in the United States. More importantly, the risk of developing hepatocellular carcinoma from NASH has also been highlighted in recent studies. Patients may have NAFLD for years before progressing into NASH. Although the pathogenesis of NASH is not completely understood, the current “multiple-hits” hypothesis suggests that in addition to fat accumulation, elevated oxidative and ER stress may also drive liver inflammation and fibrosis. The development of clinically relevant animal models and pharmacological treatments for NASH have been hampered by the limited understanding of the disease mechanism and a lack of sensitive, non-invasive diagnostic tools. Currently, most pre-clinical animal models are divided into three main groups which includes: genetic models, diet-induced, and toxin + diet-induced animal models. Although dietary models mimic the natural course of NASH in humans, the models often only induce mild liver injury. Many genetic and toxin + diet-induced models rapidly induce the development of metabolic disruption and serious liver injury, but not without their own shortcomings. This review provides an overview of the “multiple-hits” hypothesis and an evaluation of the currently existing animal models of NASH. This review also provides an update on the available interventions for managing NASH as well as pharmacological agents that are currently undergoing clinical trials for the treatment of NASH.
Collapse
Affiliation(s)
- Cheng Peng
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia.,Australian Research Council, Centre for Personalised Therapeutics Technologies, Lancaster, CBR, Australia
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
132
|
Degasperi E, Galmozzi E, Pelusi S, D'Ambrosio R, Soffredini R, Borghi M, Perbellini R, Facchetti F, Iavarone M, Sangiovanni A, Valenti L, Lampertico P. Hepatic Fat-Genetic Risk Score Predicts Hepatocellular Carcinoma in Patients With Cirrhotic HCV Treated With DAAs. Hepatology 2020; 72:1912-1923. [PMID: 32762045 DOI: 10.1002/hep.31500] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/28/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Genetic factors and steatosis predispose to hepatocellular carcinoma (HCC) in patients with chronic hepatitis C virus; however, their impact in patients with cirrhosis cured by direct-acting antivirals (DAAs) is still undefined. We assessed the association between a genetic risk score (GRS) of hepatic fat accumulation, combining variants in PNPLA3 (patatin-like phospholipase domain containing 3), MBOAT7 (membrane bound O-acyltransferase domain containing 7), TM6SF2 (transmembrane 6 superfamily member 2), GCKR (glucokinase regulator), and HCC in patients treated with DAAs. APPROACH AND RESULTS We considered 509 consecutive patients with HCV cirrhosis (defined histologically or when liver stiffness ≥12 kPa) treated with DAAs. HCC was diagnosed according to international recommendations. GRS was calculated from the weighted impact of single variants on hepatic fat content quantified by H1 spectrometry in the general population (Dallas Heart Study). During a median follow-up of 43 (3-57) months after DAA start, 36 of 452 (8%) patients developed de novo HCC, 4-year cumulative probability being 9% (95% confidence interval 7%-12%). Male sex (hazard ratio [HR] 2.54, P = 0.02), diabetes (HR 2.39, P = 0.01), albumin (HR 0.35, P = 0.001), and GRS score >0.597 (HR 2.30, P = 0.04) were independent predictors of de novo HCC. In contrast, single genetic risk variants were not useful in stratifying HCC risk. The proportion of patients who developed HCC according to the combination of the independent risk factors ranged from 11% to 67%. HCC recurred in 28 of 57 (49%) patients with previous history; diabetes and ethnicity were the only independent predictors of HCC recurrence. CONCLUSIONS In a large cohort of DAA-treated patients with cirrhotic HCV, GRS was associated with de novo HCC independently of classical risk factors, including liver disease severity. These data suggest that hepatic fat (i.e., lipotoxicity) promotes HCC in this setting and may represent a target for chemoprevention. Combination of clinical and genetic predictors may improve HCC risk stratification.
Collapse
Affiliation(s)
- Elisabetta Degasperi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, CRC "A. M. and A. Migliavacca" Center for Liver Disease, Milan, Italy
| | - Enrico Galmozzi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, CRC "A. M. and A. Migliavacca" Center for Liver Disease, Milan, Italy
| | - Serena Pelusi
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Roberta D'Ambrosio
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, CRC "A. M. and A. Migliavacca" Center for Liver Disease, Milan, Italy
| | - Roberta Soffredini
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, CRC "A. M. and A. Migliavacca" Center for Liver Disease, Milan, Italy
| | - Marta Borghi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, CRC "A. M. and A. Migliavacca" Center for Liver Disease, Milan, Italy
| | - Riccardo Perbellini
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, CRC "A. M. and A. Migliavacca" Center for Liver Disease, Milan, Italy
| | - Floriana Facchetti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, CRC "A. M. and A. Migliavacca" Center for Liver Disease, Milan, Italy
| | - Massimo Iavarone
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, CRC "A. M. and A. Migliavacca" Center for Liver Disease, Milan, Italy
| | - Angelo Sangiovanni
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, CRC "A. M. and A. Migliavacca" Center for Liver Disease, Milan, Italy
| | - Luca Valenti
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Pietro Lampertico
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, CRC "A. M. and A. Migliavacca" Center for Liver Disease, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
133
|
Kim U, Kim N, Shin HY. Modeling Non-Alcoholic Fatty Liver Disease (NAFLD) Using "Good-Fit" Genome-Editing Tools. Cells 2020; 9:cells9122572. [PMID: 33271878 PMCID: PMC7760008 DOI: 10.3390/cells9122572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), which affects both adults and children, is the most common liver disorder worldwide. NAFLD is characterized by excess fat accumulation in the liver in the absence of significant alcohol use. NAFLD is strongly associated with obesity, insulin resistance, metabolic syndrome, as well as specific genetic polymorphisms. Severe NAFLD cases can further progress to cirrhosis, hepatocellular carcinoma (HCC), or cardiovascular complications. Here, we describe the pathophysiological features and critical genetic variants associated with NAFLD. Recent advances in genome-engineering technology have provided a new opportunity to generate in vitro and in vivo models that reflect the genetic abnormalities of NAFLD. We review the currently developed NAFLD models generated using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) genome editing. We further discuss unique features of CRISPR/Cas9 and Cas9 variants, including base editors and prime editor, that are useful for replicating genetic features specific to NAFLD. We also compare advantages and limitations of currently available methods for delivering genome-editing tools necessary for optimal genome editing. This review should provide helpful guidance for selecting “good fit” genome-editing tools and appropriate gene-delivery methods for the successful development of NAFLD models and clinical therapeutics.
Collapse
|
134
|
Kubota N, Fujiwara N, Hoshida Y. Clinical and Molecular Prediction of Hepatocellular Carcinoma Risk. J Clin Med 2020; 9:jcm9123843. [PMID: 33256232 PMCID: PMC7761278 DOI: 10.3390/jcm9123843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Prediction of hepatocellular carcinoma (HCC) risk becomes increasingly important with recently emerging HCC-predisposing conditions, namely non-alcoholic fatty liver disease and cured hepatitis C virus infection. These etiologies are accompanied with a relatively low HCC incidence rate (~1% per year or less), while affecting a large patient population. Hepatitis B virus infection remains a major HCC risk factor, but a majority of the patients are now on antiviral therapy, which substantially lowers, but does not eliminate, HCC risk. Thus, it is critically important to identify a small subset of patients who have elevated likelihood of developing HCC, to optimize the allocation of limited HCC screening resources to those who need it most and enable cost-effective early HCC diagnosis to prolong patient survival. To date, numerous clinical-variable-based HCC risk scores have been developed for specific clinical contexts defined by liver disease etiology, severity, and other factors. In parallel, various molecular features have been reported as potential HCC risk biomarkers, utilizing both tissue and body-fluid specimens. Deep-learning-based risk modeling is an emerging strategy. Although none of them has been widely incorporated in clinical care of liver disease patients yet, some have been undergoing the process of validation and clinical development. In this review, these risk scores and biomarker candidates are overviewed, and strategic issues in their validation and clinical translation are discussed.
Collapse
|
135
|
Liu S, Murakami E, Nakahara T, Ohya K, Teraoka Y, Makokha GN, Uchida T, Morio K, Fujino H, Ono A, Yamauchi M, Kawaoka T, Miki D, Tsuge M, Hiramatsu A, Abe-Chayama H, Hayes NC, Imamura M, Aikata H, Chayama K. In vitro analysis of hepatic stellate cell activation influenced by transmembrane 6 superfamily 2 polymorphism. Mol Med Rep 2020; 23:16. [PMID: 33179077 PMCID: PMC7673330 DOI: 10.3892/mmr.2020.11654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Non‑alcoholic steatohepatitis (NASH) may progress via liver fibrosis along with hepatic stellate cell (HSC) activation. A single nucleotide polymorphism (SNP; rs58542926) located in transmembrane 6 superfamily 2 (TM6SF2) has been reported to be significantly associated with fibrosis in patients with NASH, but the precise mechanism is still unknown. The present study aimed to explore the role of TM6SF2 in HSC activation in vitro. Plasmids producing TM6SF2 wild-type (WT) and mutant type (MT) containing E167K amino acid substitution were constructed, and the activation of LX‑2 cells was analyzed by overexpressing or knocking down TM6SF2 under transforming growth factor β1 (TGFβ) treatment. Intracellular α‑smooth muscle actin (αSMA) expression in LX‑2 cells was significantly repressed by TM6SF2‑WT overexpression and increased by TM6SF2 knockdown. Following treatment with TGFβ, αSMA expression was restored in TM6SF2‑WT overexpressed LX‑2 cells and was enhanced in TM6SF2 knocked‑down LX‑2 cells. Comparing αSMA expression under TM6SF2‑WT or ‑MT overexpression, expression of αSMA in TM6SF2‑MT overexpressed cells was higher than that in TM6SF2‑WT cells and was further enhanced by TGFβ treatment. The present study demonstrated that intracellular αSMA expression in HCS was negatively regulated by TM6SF2 while the E167K substitution released this negative regulation and led to enhanced HSC activation by TGFβ. These results suggest that the SNP in TM6SF2 may relate to sensitivity of HSC activation.
Collapse
Affiliation(s)
- Songyao Liu
- Department of Gastroenterology and Metabolism, Graduate School of Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Eisuke Murakami
- Department of Gastroenterology and Metabolism, Graduate School of Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Takashi Nakahara
- Department of Gastroenterology and Metabolism, Graduate School of Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Kazuki Ohya
- Department of Gastroenterology and Metabolism, Graduate School of Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Yuji Teraoka
- Department of Gastroenterology and Metabolism, Graduate School of Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Grace Naswa Makokha
- Department of Gastroenterology and Metabolism, Graduate School of Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Takuro Uchida
- Department of Gastroenterology and Metabolism, Graduate School of Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Kei Morio
- Department of Gastroenterology and Metabolism, Graduate School of Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Hatsue Fujino
- Department of Gastroenterology and Metabolism, Graduate School of Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Atsushi Ono
- Department of Gastroenterology and Metabolism, Graduate School of Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Masami Yamauchi
- Department of Gastroenterology and Metabolism, Graduate School of Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Tomokazu Kawaoka
- Department of Gastroenterology and Metabolism, Graduate School of Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Daiki Miki
- Department of Gastroenterology and Metabolism, Graduate School of Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Masataka Tsuge
- Department of Gastroenterology and Metabolism, Graduate School of Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Akira Hiramatsu
- Department of Gastroenterology and Metabolism, Graduate School of Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Hiromi Abe-Chayama
- Department of Gastroenterology and Metabolism, Graduate School of Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Nelson C Hayes
- Department of Gastroenterology and Metabolism, Graduate School of Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Graduate School of Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Hiroshi Aikata
- Department of Gastroenterology and Metabolism, Graduate School of Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Graduate School of Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| |
Collapse
|
136
|
Mashek DG. Hepatic lipid droplets: A balancing act between energy storage and metabolic dysfunction in NAFLD. Mol Metab 2020; 50:101115. [PMID: 33186758 PMCID: PMC8324678 DOI: 10.1016/j.molmet.2020.101115] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is defined by the abundance of lipid droplets (LDs) in hepatocytes. While historically considered simply depots for energy storage, LDs are increasingly recognized to impact a wide range of biological processes that influence cellular metabolism, signaling, and function. While progress has been made toward understanding the factors leading to LD accumulation (i.e. steatosis) and its progression to advanced stages of NAFLD and/or systemic metabolic dysfunction, much remains to be resolved. SCOPE OF REVIEW This review covers many facets of LD biology. We provide a brief overview of the major pathways of lipid accretion and degradation that contribute to steatosis and how they are altered in NAFLD. The major focus is on the relationship between LDs and cell function and the detailed mechanisms that couple or uncouple steatosis from the severity and progression of NAFLD and systemic comorbidities. The importance of specific lipids and proteins within or on LDs as key components that determine whether LD accumulation is linked to cellular and metabolic dysfunction is presented. We discuss emerging areas of LD biology and future research directions that are needed to advance our understanding of the role of LDs in NAFLD etiology. MAJOR CONCLUSIONS Impairments in LD breakdown appear to contribute to disease progression, but inefficient incorporation of fatty acids (FAs) into LD-containing triacylglycerol (TAG) and the consequential changes in FA partitioning also affect NAFLD etiology. Increased LD abundance in hepatocytes does not necessarily equate to cellular dysfunction. While LD accumulation is the prerequisite step for most NAFLD cases, the protein and lipid composition of LDs are critical factors in determining the progression from simple steatosis. Further defining the detailed molecular mechanisms linking LDs to metabolic dysfunction is important for designing effective therapeutic approaches targeting NAFLD and its comorbidities.
Collapse
Affiliation(s)
- Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Minnesota, Suite 6-155, 321 Church St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
137
|
Jonas W, Schürmann A. Genetic and epigenetic factors determining NAFLD risk. Mol Metab 2020; 50:101111. [PMID: 33160101 PMCID: PMC8324682 DOI: 10.1016/j.molmet.2020.101111] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hepatic steatosis is a common chronic liver disease that can progress into more severe stages of NAFLD or promote the development of life-threatening secondary diseases for some of those affected. These include the liver itself (nonalcoholic steatohepatitis or NASH; fibrosis and cirrhosis, and hepatocellular carcinoma) or other organs such as the vessels and the heart (cardiovascular disease) or the islets of Langerhans (type 2 diabetes). In addition to elevated caloric intake and a sedentary lifestyle, genetic and epigenetic predisposition contribute to the development of NAFLD and the secondary diseases. SCOPE OF REVIEW We present data from genome-wide association studies (GWAS) and functional studies in rodents which describe polymorphisms identified in genes relevant for the disease as well as changes caused by altered DNA methylation and gene regulation via specific miRNAs. The review also provides information on the current status of the use of genetic and epigenetic factors as risk markers. MAJOR CONCLUSION With our overview we provide an insight into the genetic and epigenetic landscape of NAFLD and argue about the applicability of currently defined risk scores for risk stratification and conclude that further efforts are needed to make the scores more usable and meaningful.
Collapse
Affiliation(s)
- Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany; University of Potsdam, Institute of Nutritional Sciences, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| |
Collapse
|
138
|
Lei Y, Hoogerland JA, Bloks VW, Bos T, Bleeker A, Wolters H, Wolters JC, Hijmans BS, van Dijk TH, Thomas R, van Weeghel M, Mithieux G, Houtkooper RH, de Bruin A, Rajas F, Kuipers F, Oosterveer MH. Hepatic Carbohydrate Response Element Binding Protein Activation Limits Nonalcoholic Fatty Liver Disease Development in a Mouse Model for Glycogen Storage Disease Type 1a. Hepatology 2020; 72:1638-1653. [PMID: 32083759 PMCID: PMC7702155 DOI: 10.1002/hep.31198] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS Glycogen storage disease (GSD) type 1a is an inborn error of metabolism caused by defective glucose-6-phosphatase catalytic subunit (G6PC) activity. Patients with GSD 1a exhibit severe hepatomegaly due to glycogen and triglyceride (TG) accumulation in the liver. We have shown that the activity of carbohydrate response element binding protein (ChREBP), a key regulator of glycolysis and de novo lipogenesis, is increased in GSD 1a. In the current study, we assessed the contribution of ChREBP to nonalcoholic fatty liver disease (NAFLD) development in a mouse model for hepatic GSD 1a. APPROACH AND RESULTS Liver-specific G6pc-knockout (L-G6pc-/- ) mice were treated with adeno-associated viruses (AAVs) 2 or 8 directed against short hairpin ChREBP to normalize hepatic ChREBP activity to levels observed in wild-type mice receiving AAV8-scrambled short hairpin RNA (shSCR). Hepatic ChREBP knockdown markedly increased liver weight and hepatocyte size in L-G6pc-/- mice. This was associated with hepatic accumulation of G6P, glycogen, and lipids, whereas the expression of glycolytic and lipogenic genes was reduced. Enzyme activities, flux measurements, hepatic metabolite analysis and very low density lipoprotein (VLDL)-TG secretion assays revealed that hepatic ChREBP knockdown reduced downstream glycolysis and de novo lipogenesis but also strongly suppressed hepatic VLDL lipidation, hence promoting the storage of "old fat." Interestingly, enhanced VLDL-TG secretion in shSCR-treated L-G6pc-/- mice associated with a ChREBP-dependent induction of the VLDL lipidation proteins microsomal TG transfer protein and transmembrane 6 superfamily member 2 (TM6SF2), the latter being confirmed by ChIP-qPCR. CONCLUSIONS Attenuation of hepatic ChREBP induction in GSD 1a liver aggravates hepatomegaly because of further accumulation of glycogen and lipids as a result of reduced glycolysis and suppressed VLDL-TG secretion. TM6SF2, critical for VLDL formation, was identified as a ChREBP target in mouse liver. Altogether, our data show that enhanced ChREBP activity limits NAFLD development in GSD 1a by balancing hepatic TG production and secretion.
Collapse
Affiliation(s)
- Yu Lei
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Joanne A. Hoogerland
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Vincent W. Bloks
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Trijnie Bos
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Aycha Bleeker
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Henk Wolters
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Justina C. Wolters
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Brenda S. Hijmans
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Theo H. van Dijk
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Rachel Thomas
- Dutch Molecular Pathology CenterFaculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology and MetabolismAmsterdam Cardiovascular SciencesAmsterdamthe Netherlands
- Core Facility of MetabolomicsAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Gilles Mithieux
- National Institute of Health and Medical Research, U1213LyonFrance
- University of LyonLyonFrance
- University of Lyon 1VilleurbanneFrance
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology and MetabolismAmsterdam Cardiovascular SciencesAmsterdamthe Netherlands
| | - Alain de Bruin
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
- Dutch Molecular Pathology CenterFaculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Fabienne Rajas
- National Institute of Health and Medical Research, U1213LyonFrance
- University of LyonLyonFrance
- University of Lyon 1VilleurbanneFrance
| | - Folkert Kuipers
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Maaike H. Oosterveer
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
139
|
Sookoian S, Pirola CJ. Precision medicine in nonalcoholic fatty liver disease: New therapeutic insights from genetics and systems biology. Clin Mol Hepatol 2020; 26:461-475. [PMID: 32906228 PMCID: PMC7641575 DOI: 10.3350/cmh.2020.0136] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022] Open
Abstract
Despite more than two decades of extensive research focusing on nonalcoholic fatty liver disease (NAFLD), no approved therapy for steatohepatitis-the severe histological form of the disease-presently exists. More importantly, new drugs and small molecules with diverse molecular targets on the pathways of hepatocyte injury, inflammation, and fibrosis cannot achieve the primary efficacy endpoints. Precision medicine can potentially overcome this issue, as it is founded on extensive knowledge of the druggable genome/proteome. Hence, this review summarizes significant trends and developments in precision medicine with a particular focus on new potential therapeutic discoveries modeled via systems biology approaches. In addition, we computed and simulated the potential utility of the NAFLD polygenic risk score, which could be conceptually very advantageous not only for early disease detection but also for implementing actionable measures. Incomplete knowledge of the druggable NAFLD genome severely impedes the drug discovery process and limits the likelihood of identifying robust and safe drug candidates. Thus, we close this article with some insights into emerging disciplines, such as chemical genetics, that may accelerate accurate identification of the druggable NAFLD genome/proteome.
Collapse
Affiliation(s)
- Silvia Sookoian
- Institute of Medical Research A Lanari, School of Medicine, University of Buenos Aires, Autonomous City of Buenos Aires, Argentina
- Department of Clinical and Molecular Hepatology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET)-University of Buenos Aires, Autonomous City of Buenos Aires, Argentina
| | - Carlos J. Pirola
- Institute of Medical Research A Lanari, School of Medicine, University of Buenos Aires, Autonomous City of Buenos Aires, Argentina
- Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET)-University of Buenos Aires, Autonomous City of Buenos Aires, Argentina
| |
Collapse
|
140
|
Donor PNPLA3 and TM6SF2 Variant Alleles Confer Additive Risks for Graft Steatosis After Liver Transplantation. Transplantation 2020; 104:526-534. [PMID: 31356578 DOI: 10.1097/tp.0000000000002876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The rs58542926 polymorphism in transmembrane 6 superfamily member 2 (TM6SF2) is a genetic factor predisposing to nonalcoholic fatty liver disease. We aimed to explore the effect of recipient and donor TM6SF2 rs58542926 genotypes on liver graft fat content after liver transplantation. METHODS Steatosis was evaluated in liver biopsies from 268 adult recipients. The influence of recipient and donor TM6SF2 genotypes, patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 genotypes, and nongenetic factors on the steatosis grade assessed 6-30 months after transplantation was analyzed by ordinal logistic regression. RESULTS The presence of the TM6SF2 c.499A allele in the donor (P = 0.014), PNPLA3 c.444G allele in the donor (P < 0.001), posttransplant body mass index (P < 0.001), and serum triglycerides (P = 0.047) independently predicted increased liver fat content on multivariable analysis, whereas noncirrhotic liver disease, as an indication for liver transplantation, was associated with lower risk of steatosis (P = 0.003). The effects of the donor TM6SF2 A and PNPLA3 G alleles were additive, with an odds ratio of 4.90 (95% confidence interval, 2.01-13.00; P < 0.001), when both minor alleles were present compared with an odds ratio of 2.22 (95% confidence interval, 1.42-3.61; P = 0.002) when only one of these alleles was present. CONCLUSIONS The donor TM6SF2 c.499A allele is an independent risk factor of liver graft steatosis after liver transplantation that is additive to the effects of donor PNPLA3 c.444G allele.
Collapse
|
141
|
Ma Y, Karki S, Brown PM, Lin DD, Podszun MC, Zhou W, Belyaeva OV, Kedishvili NY, Rotman Y. Characterization of essential domains in HSD17B13 for cellular localization and enzymatic activity. J Lipid Res 2020; 61:1400-1409. [PMID: 32973038 DOI: 10.1194/jlr.ra120000907] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human genetic studies recently identified an association of SNPs in the 17-β hydroxysteroid dehydrogenase 13 (HSD17B13) gene with alcoholic and nonalcoholic fatty liver disease development. Mutant HSD17B13 variants devoid of enzymatic function have been demonstrated to be protective from cirrhosis and liver cancer, supporting the development of HSD17B13 as a promising therapeutic target. Previous studies have demonstrated that HSD17B13 is a lipid droplet (LD)-associated protein. However, the critical domains that drive LD targeting or determine the enzymatic activity have yet to be defined. Here we used mutagenesis to generate multiple truncated and point-mutated proteins and were able to demonstrate in vitro that the N-terminal hydrophobic domain, PAT-like domain, and a putative α-helix/β-sheet/α-helix domain in HSD17B13 are all critical for LD targeting. Similarly, we characterized the predicted catalytic, substrate-binding, and homodimer interaction sites and found them to be essential for the enzymatic activity of HSD17B13, in addition to our previous identification of amino acid P260 and cofactor binding site. In conclusion, we identified critical domains and amino acid sites that are essential for the LD localization and protein function of HSD17B13, which may facilitate understanding of its function and targeting of this protein to treat chronic liver diseases.
Collapse
Affiliation(s)
- Yanling Ma
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA.,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA
| | - Suman Karki
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Philip M Brown
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA.,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA
| | - Dennis D Lin
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA.,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA
| | - Maren C Podszun
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA.,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA
| | - Wenchang Zhou
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung, and Blood Institute, the National Institutes of Health, Bethesda, MD, USA
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Yaron Rotman
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA .,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
142
|
Khalifa O, Errafii K, Al-Akl NS, Arredouani A. Noncoding RNAs in Nonalcoholic Fatty Liver Disease: Potential Diagnosis and Prognosis Biomarkers. DISEASE MARKERS 2020; 2020:8822859. [PMID: 33133304 PMCID: PMC7593715 DOI: 10.1155/2020/8822859] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/25/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently the most common chronic liver disease worldwide in part due to the concomitant obesity pandemic and insulin resistance (IR). It is increasingly becoming evident that NAFLD is a disease affecting numerous extrahepatic vital organs and regulatory pathways. The molecular mechanisms underlying the nonalcoholic steatosis formation are poorly understood, and little information is available on the pathways that are responsible for the progressive hepatocellular damage that follows lipid accumulation. Recently, much research has focused on the identification of the epigenetic modifications that contribute to NAFLD pathogenesis. Noncoding RNAs (ncRNAs) are one of such epigenetic factors that could be implicated in the NAFLD development and progression. In this review, we summarize the current knowledge of the genetic and epigenetic factors potentially underlying the disease. Particular emphasis will be put on the contribution of microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) to the pathophysiology of NAFLD as well as their potential use as therapeutic targets or as markers for the prediction and the progression of the disease.
Collapse
Affiliation(s)
- Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Khaoula Errafii
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| | - Nayla S. Al-Akl
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| |
Collapse
|
143
|
Li BT, Sun M, Li YF, Wang JQ, Zhou ZM, Song BL, Luo J. Disruption of the ERLIN-TM6SF2-APOB complex destabilizes APOB and contributes to non-alcoholic fatty liver disease. PLoS Genet 2020; 16:e1008955. [PMID: 32776921 PMCID: PMC7462549 DOI: 10.1371/journal.pgen.1008955] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/01/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder characterized by excess lipid accumulation in the liver without significant consumption of alcohol. The transmembrane 6 superfamily member 2 (TM6SF2) E167K missense variant strongly associates with NAFLD in humans. The E167K mutation destabilizes TM6SF2, resulting in hepatic lipid accumulation and low serum lipid levels. However, the molecular mechanism by which TM6SF2 regulates lipid metabolism remains unclear. By using tandem affinity purification in combination with mass spectrometry, we found that apolipoprotein B (APOB), ER lipid raft protein (ERLIN) 1 and 2 were TM6SF2-interacting proteins. ERLINs and TM6SF2 mutually bound and stabilized each other. TM6SF2 bound and stabilized APOB via two luminal loops. ERLINs did not interact with APOB directly but still increased APOB stability through stabilizing TM6SF2. This APOB stabilization was hampered by the E167K mutation that reduced the protein expression of TM6SF2. In mice, knockout of Tm6sf2 and knockdown of Tm6sf2 or Erlins decreased hepatic APOB protein level, causing lipid accumulation in the liver and lowering lipid levels in the serum. We conclude that defective APOB stabilization, as a result of ERLINs or TM6SF2 deficiency or E167K mutation, is a key factor contributing to NAFLD. Non-alcoholic fatty liver disease (NAFLD) is a very common liver disorder that occurs in people who do not drink too much alcohol. It initiates from extra fat storage in the liver and can advance to hepatitis, fibrosis, liver failure and liver cancer. NAFLD is often associated with other health problems such as obesity, diabetes, and hyperlipidemia. The TM6SF2 gene variant is a strong risk factor for NAFLD in humans. However, the mechanism by which loss of TM6SF2 protein causes NAFLD is unclear. Here, we demonstrate that TM6SF2 forms a complex with ERLINs and APOB. ERLINs and TM6SF2 stabilize each other, and TM6SF2 stabilizes APOB. In mice, ablating the expression of ERLINs or TM6SF2 lowers APOB protein level, causing lipid accumulation in the liver while decreasing lipid levels in the blood. These phenotypes resemble the symptoms of NAFLD patients carrying TM6SF2 mutations. We conclude that TM6SF2 promotes APOB stability via complex formation and that defective APOB stabilization is one of the underlying causes of NAFLD.
Collapse
Affiliation(s)
- Bo-Tao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ming Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yun-Feng Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ju-Qiong Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zi-Mu Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
144
|
Meroni M, Longo M, Dongiovanni P. Genetic and metabolic factors: the perfect combination to treat metabolic associated fatty liver disease. EXPLORATION OF MEDICINE 2020; 1:218-243. [DOI: 10.37349/emed.2020.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 01/04/2025] Open
Abstract
The prevalence of nonalcoholic or more recently re-defined metabolic associated fatty liver disease (MAFLD) is rapidly growing worldwide. It is characterized by hepatic fat accumulation exceeding 5% of liver weight not attributable to alcohol consumption. MAFLD refers to an umbrella of conditions ranging from simple steatosis to nonalcoholic steatohepatitis which may finally progress to cirrhosis and hepatocellular carcinoma. MAFLD is closely related to components of the metabolic syndrome and to environmental factors. In addition to the latter, genetic predisposition plays a key role in MAFLD pathogenesis and strictly contributes to its progressive forms. The candidate genes which have been related to MAFLD hereditability are mainly involved in lipids remodeling, lipid droplets assembly, lipoprotein packaging and secretion, de novo lipogenesis, and mitochondrial redox status. In the recent years, it has emerged the opportunity to translate the genetics into clinics by aggregating the genetic variants mostly associated with MAFLD in polygenic risk scores. These scores might be used in combination with metabolic factors to identify those patients at higher risk to develop more severe liver disease and to schedule an individual therapeutic approach.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| |
Collapse
|
145
|
Park SL, Li Y, Sheng X, Hom V, Xia L, Zhao K, Pooler L, Setiawan VW, Lim U, Monroe KR, Wilkens LR, Kristal BS, Lampe JW, Hullar M, Shepherd J, Loo LLM, Ernst T, Franke AA, Tiirikainen M, Haiman CA, Stram DO, Le Marchand L, Cheng I. Genome-Wide Association Study of Liver Fat: The Multiethnic Cohort Adiposity Phenotype Study. Hepatol Commun 2020; 4:1112-1123. [PMID: 32766472 PMCID: PMC7395069 DOI: 10.1002/hep4.1533] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/20/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
The global rise in fatty liver is a major public health problem. Thus, it is critical to identify both global and population-specific genetic variants associated with liver fat. We conducted a genome-wide association study (GWAS) of percent liver fat and nonalcoholic fatty liver disease (NAFLD) assessed by magnetic resonance imaging in 1,709 participants from the population-based Multiethnic Cohort Adiposity Phenotype Study. Our participants comprised older adults of five U.S. racial/ethnic groups: African Americans (n = 277), Japanese Americans (n = 424), Latinos (n = 348), Native Hawaiians (n = 274), and European Americans (n = 386). The established missense risk variant rs738409 located in patatin-like phospholipase domain containing 3 (PNPLA3) at 22q13 was confirmed to be associated with percent liver fat (P = 3.52 × 10-15) but more strongly in women than men (P heterogeneity = 0.002). Its frequency correlated with the prevalence of NAFLD across the five ethnic/racial groups. Rs738409 was also associated with homeostasis model assessment of insulin resistance (HOMA-IR) (beta = 0.028; P = 0.009) and circulating levels of insulin (beta = 0.022; P = 0.020) and alanine aminotransferase (beta = 0.016; P = 0.030). A novel association of percent liver fat with rs77249491 (located at 6q13 between limb region 1 domain containing 1 [LMBRD1] and collagen type XIX alpha 1 chain [COL19A1] (P = 1.42 × 10-8) was also observed. Rs7724941 was associated with HOMA-IR (beta = 0.12; P = 0.0005), insulin (beta = 0.11; P = 0.0003), triglycerides (beta = 0.059; P = 0.01), high-density lipoprotein (beta = -0.046; P = 0.04), and sex hormone binding globulin (beta = -0.084; P = 0.0012). This variant was present in Japanese Americans (minor allele frequency [MAF], 8%) and Native Hawaiians (MAF, 2%). Conclusion: We replicated the PNPLA3 rs738409 association in a multiethnic population and identified a novel liver fat risk variant in Japanese Americans and Native Hawaiians. GWASes of percent liver fat in East Asian and Oceanic populations are needed to replicate the rs77249491 association.
Collapse
Affiliation(s)
- S. Lani Park
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Yuqing Li
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Xin Sheng
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Victor Hom
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Lucy Xia
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Kechen Zhao
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Loreall Pooler
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - V. Wendy Setiawan
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Unhee Lim
- University of Hawaii Cancer CenterUniversity of Hawaii at ManoaHonoluluHIUSA
| | - Kristine R. Monroe
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Lynne R. Wilkens
- University of Hawaii Cancer CenterUniversity of Hawaii at ManoaHonoluluHIUSA
| | - Bruce S. Kristal
- Division of Sleep and Circadian DisordersDepartment of MedicineBrigham and Women's HospitalBostonMAUSA
- Division of Sleep MedicineHarvard Medical SchoolBostonMAUSA
| | | | | | - John Shepherd
- University of Hawaii Cancer CenterUniversity of Hawaii at ManoaHonoluluHIUSA
| | - Lenora L. M. Loo
- University of Hawaii Cancer CenterUniversity of Hawaii at ManoaHonoluluHIUSA
| | - Thomas Ernst
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Adrian A. Franke
- University of Hawaii Cancer CenterUniversity of Hawaii at ManoaHonoluluHIUSA
| | - Maarit Tiirikainen
- University of Hawaii Cancer CenterUniversity of Hawaii at ManoaHonoluluHIUSA
| | | | - Daniel O. Stram
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Loïc Le Marchand
- University of Hawaii Cancer CenterUniversity of Hawaii at ManoaHonoluluHIUSA
| | - Iona Cheng
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoCAUSA
| |
Collapse
|
146
|
Botello-Manilla AE, Chávez-Tapia NC, Uribe M, Nuño-Lámbarri N. Genetics and epigenetics purpose in nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2020; 14:733-748. [PMID: 32552211 DOI: 10.1080/17474124.2020.1780915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION nonalcoholic fatty liver disease (NAFLD) comprises a broad spectrum of diseases, which can progress from benign steatosis to nonalcoholic steatohepatitis, liver cirrhosis and hepatocellular carcinoma. NAFLD is the most common chronic liver disease in developed countries, affecting approximately 25% of the general population. Insulin resistance, adipose tissue dysfunction, mitochondrial and endoplasmic reticulum stress, chronic inflammation, genetic and epigenetic factors are NAFLD triggers that control the disease susceptibility and progression. AREAS COVERED In recent years a large number of investigations have been carried out to elucidate genetic and epigenetic factors in the disease pathogenesis, as well as the search for diagnostic markers and therapeutic targets. This paper objective is to report the most studied genetic and epigenetic variants around NAFLD. EXPERT OPINION NAFLD lead to various comorbidities, which have a considerable impact on the patient wellness and life quality, as well as on the costs they generate for the country's health services. It is essential to continue with molecular research, since it could be used as a clinical tool for prognosis and disease severity. Specifically, in the field of hepatology, plasma miRNAs could provide a novel tool in liver diseases diagnosis and monitoring, representing an alternative to invasive diagnostic procedures.
Collapse
Affiliation(s)
| | - Norberto Carlos Chávez-Tapia
- Traslational Research Unit, Médica Sur Clinic & Foundation , Mexico City, Mexico.,Obesity and Digestive Diseases Unit, Médica Sur Clinic & Foundation , Mexico City, Mexico
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Médica Sur Clinic & Foundation , Mexico City, Mexico
| | | |
Collapse
|
147
|
Zhang M, Yang M, Wang N, Liu Q, Wang B, Huang T, Tong Y, Ming Y, Wong CW, Liu J, Yao D, Guan M. Andrographolide modulates HNF4α activity imparting on hepatic metabolism. Mol Cell Endocrinol 2020; 513:110867. [PMID: 32422400 DOI: 10.1016/j.mce.2020.110867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 12/28/2022]
Abstract
Hepatic nuclear factor 4 alpha (HNF4α) drives the expression of apolipoprotein B (ApoB), microsomal triglyceride transfer protein (MTP) and phospholipase A2 G12B (PLA2G12B), governing hepatic very-low-density lipoprotein (VLDL) production and secretion. Andrographolide (AP) is a major constituent isolated from Andrographis paniculata. We found that AP can disrupt the interaction between HNF4α and its coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α). Virtual docking and mutational analysis indicated that arginine 235 of HNF4α is essential for binding to AP. As a consequence of antagonizing the activity of HNF4α, AP suppresses the expression of ApoB, MTP and PLA2G12B and reduces the rate of hepatic VLDL secretion in vivo. AP additionally reduced gluconeogenesis via down-regulating the expression of HNF4α target genes phosphoenolpyruvate carboxykinase (Pepck) and glucose-6-phosphatase (G6pc). Collectively, our results suggest that AP affects liver function via modulating the transcriptional activity of HNF4α.
Collapse
Affiliation(s)
- Minyi Zhang
- National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, Jinan University, Guangzhou, 510632, Guangdong, China; Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Meng Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Na Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qingli Liu
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Binxu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Tongling Huang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yan Tong
- Institute of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Yanlin Ming
- Institute of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Chi-Wai Wong
- NeuMed Pharmaceuticals Limited, Yuen Long, Hong Kong, China
| | - Jinsong Liu
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Dongsheng Yao
- National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Min Guan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
148
|
Fujiwara N, Qian T, Koneru B, Hoshida Y. Omics-derived hepatocellular carcinoma risk biomarkers for precision care of chronic liver diseases. Hepatol Res 2020; 50:817-830. [PMID: 32323426 PMCID: PMC8318383 DOI: 10.1111/hepr.13506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 02/07/2023]
Abstract
Precise hepatocellular carcinoma (HCC) risk prediction will play increasingly important roles with the contemporary HCC etiologies, that is, non-alcoholic fatty liver disease and resolved hepatitis C virus infection. Because the HCC incidence rate in this emerging patient population is relatively low (~1% per year), identification of a subset of patients at the highest risk is critical to concentrate the effort and resources of regular HCC screening to those who most need it. Omics profiling has been derived using several candidate HCC risk biomarkers, which could refine HCC screening by enabling individual risk-based personalized or risk-stratified patient management. Various types of biomolecules have been explored as sources of information to predict HCC risk at various time horizons. Germline DNA polymorphisms likely reflect race/ethnicity- and/or etiology-specific susceptibility to HCC development or chronic liver disease progression toward carcinogenesis. Transcriptomic dysregulations in the diseased liver capture functional molecular status supporting oncogenesis such as inflammatory pathway and myofibroblast activation. Circulating nucleic acids, proteins, and metabolites could serve as less-invasive measures of molecular HCC risk. Characterization of gut microbiota could also inform HCC risk estimation. Each biomarker could have its niche of clinical application depending on logistics of use, performance, and costs with a goal to eventually improve patient prognosis as a part of the whole algorithm of chronic liver disease management.
Collapse
Affiliation(s)
- Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tongqi Qian
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bhuvaneswari Koneru
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
149
|
Sookoian S, Pirola CJ, Valenti L, Davidson NO. Genetic Pathways in Nonalcoholic Fatty Liver Disease: Insights From Systems Biology. Hepatology 2020; 72:330-346. [PMID: 32170962 PMCID: PMC7363530 DOI: 10.1002/hep.31229] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a burgeoning worldwide epidemic whose etiology reflects multiple interactions between environmental and genetic factors. Here, we review the major pathways and dominant genetic modifiers known to be relevant players in human NAFLD and which may determine key components of the heritability of distinctive disease traits including steatosis and fibrosis. In addition, we have employed general assumptions which are based on known genetic factors in NAFLD to build a systems biology prediction model that includes functional enrichment. This prediction model highlights additional complementary pathways that represent plausible intersecting signaling networks that we define here as an NAFLD-Reactome. We review the evidence connecting variants in each of the major known genetic modifiers (variants in patatin-like phospholipase domain containing 3, transmembrane 6 superfamily member 2, membrane-bound O-acyltransferase domain containing 7, glucokinase regulator, and hydroxysteroid 17-beta dehydrogenase 13) to NAFLD and expand the associated underlying mechanisms using functional enrichment predictions, based on both preclinical and cell-based experimental findings. These major candidate gene variants function in distinct pathways, including substrate delivery for de novo lipogenesis; mitochondrial energy use; lipid droplet assembly, lipolytic catabolism, and fatty acid compartmentalization; and very low-density lipoprotein assembly and secretion. The NAFLD-Reactome model expands these pathways and allows for hypothesis testing, as well as serving as a discovery platform for druggable targets across multiple pathways that promote NAFLD development and influence several progressive outcomes. In conclusion, we summarize the strengths and weaknesses of studies implicating selected variants in the pathophysiology of NAFLD and highlight opportunities for future clinical research and pharmacologic intervention, as well as the implications for clinical practice.
Collapse
Affiliation(s)
- Silvia Sookoian
- University of Buenos Aires, School of Medicine, Institute of Medical Research ALanari, Ciudad Autónoma de Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET)−University of Buenos Aires, Institute of Medical Research (IDIM), Department of Clinical and Molecular Hepatology, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlos J. Pirola
- University of Buenos Aires, School of Medicine, Institute of Medical Research ALanari, Ciudad Autónoma de Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET)−University of Buenos Aires, Institute of Medical Research (IDIM), Department of Molecular Genetics and Biology of Complex Diseases, Ciudad Autónoma de Buenos Aires, Argentina
| | - Luca Valenti
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca Granda OspedalePoliclinico Milano, Department of Pathophysiology and Transplantation, Universita degli Studi di Milano, Milan, Italy
| | - Nicholas O. Davidson
- Departments of Medicine and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
150
|
Deng GX, Yin RX, Guan YZ, Liu CX, Zheng PF, Wei BL, Wu JZ, Miao L. Association of the NCAN-TM6SF2-CILP2-PBX4-SUGP1-MAU2 SNPs and gene-gene and gene-environment interactions with serum lipid levels. Aging (Albany NY) 2020; 12:11893-11913. [PMID: 32568739 PMCID: PMC7343441 DOI: 10.18632/aging.103361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/01/2020] [Indexed: 01/07/2023]
Abstract
This study investigated the association of the NCAN-TM6SF2-CILP2-PBX4-SUGP1-MAU2 SNPs and gene-gene and gene-environment interactions with serum lipid levels in the population of Southwest China. Genotyping of 12 SNPs (i.e., rs2238675, rs2228603, rs58542926, rs735273, rs16996148, rs968525, rs17216525, rs12610185, rs10401969, rs8102280, rs73001065 and rs150268548) was performed in 1248 hyperlipidemia patients and 1248 normal subjects. The allelic and genotypic frequencies of the detected SNPs differed substantially between the normal and hyperlipidemia groups (P < 0.05-0.001), and the association of the 12 SNPs and hyperlipidemia was also observed (P < 0.004-0.0001). Four haplotypes (i.e., NCAN C-C, CILP2 G-T, PBX4-SUGP1 G-C, and MAU2 C-A-G-T) and 5 gene-gene interaction haplotypes (i.e., rs2238675C-rs2228603C, rs16996148G-rs17216525T, rs12610185G-rs10401969C, rs73001065G-rs8102280A-rs150268548G-rs968525C and rs73001065C-rs8102280A-rs150268548G-rs96852)showed a protective effect, whereas four other haplotypes (i.e., TM6SF2 T-A, TM6SF2 C-A, MAU2 G-G-G-C and MAU2 C-G-A-T), as well as 4 gene-gene interaction haplotypes (i.e., rs58542926C-rs735273A, rs58542926T-rs735273A, rs73001065G-rs8102280G-rs150268548G-rs968525C, and rs73001065C-rs8102280G-rs150268548A-rs968525T), exhibited an inverse effect on hyperlipidemia (P < 0.05-0.0001). There were notable three-locus models comprising SNP-SNP, SNP-environment, and haplotype-haplotype interactions (P < 0.05-0.0001). The individuals with some genotypes and haplotypes reduced the prevalence of hyperlipidemia, whereas the individuals with some other genotypes and haplotypes augmented the prevalence of hyperlipidemia. The NCAN-TM6SF2-CILP2-PBX4-SUGP1-MAU2 SNPs and gene-gene and gene-environment interactions on hyperlipidemia were observed in the population of Southwest China.
Collapse
Affiliation(s)
- Guo-Xiong Deng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, Nanning 530021, Guangxi, People's Republic of China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning 530021, Guangxi, People's Republic of China
| | - Yao-Zong Guan
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Chun-Xiao Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Peng-Fei Zheng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Bi-Liu Wei
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Jin-Zhen Wu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Liu Miao
- Department of Cardiology, Liuzhou People's Hospital, Liuzhou 545006, Guangxi, People's Republic of China
| |
Collapse
|