101
|
Ruiz-Vela A, Serrano F, González MA, Abad JL, Bernad A, Maki M, Martínez-A C. Transplanted long-term cultured pre-BI cells expressing calpastatin are resistant to B cell receptor-induced apoptosis. J Exp Med 2001; 194:247-54. [PMID: 11489944 PMCID: PMC2193469 DOI: 10.1084/jem.194.3.247] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Long-term cultured pre-B cells are able to differentiate into immunoglobulin (Ig)M-positive B cells (IgM(+) cells) when transplanted into severe combined immunodeficient (SCID) mice. Based on previous studies, here we report the development of a reconstitution assay in nonobese diabetic/SCID (NOD/SCID) mice using pre-B cells, which allows us to study the role of calpains (calcium-activated endopeptidases) during B cell development as well as in B cell clonal deletion. Using this model, we show that calpastatin (the natural inhibitor of calpains) inhibits B cell receptor-induced apoptosis in IgM(+) cells derived from transplanted mice. We thus hypothesize an important function for calpain in sculpting the B cell repertoire.
Collapse
Affiliation(s)
- A Ruiz-Vela
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco UAM, E-28049 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
102
|
Vassilopoulos G, Trobridge G, Josephson NC, Russell DW. Gene transfer into murine hematopoietic stem cells with helper-free foamy virus vectors. Blood 2001; 98:604-9. [PMID: 11468157 DOI: 10.1182/blood.v98.3.604] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene transfer into hematopoietic stem cells (HSCs) is an ideal treatment strategy for many genetic and hematologic diseases. However, progress has been limited by the low HSC transduction rates obtained with retroviral vectors based on murine leukemia viruses. This study examined the potential of vectors derived from the nonpathogenic human foamy virus (HFV) to transduce human CD34(+) cells and murine HSCs. More than 80% of human hematopoietic progenitors present in CD34(+) cell preparations derived from cord blood were transduced by a single overnight exposure to HFV vector stocks. Mice that received transduced bone marrow cells expressed the vector-encoded transgene long term in all major hematopoietic cell lineages and in over 50% of cells in some animals. Secondary bone marrow transplants and integration site analysis confirmed that gene transfer occurred at the stem cell level. Transgene silencing was not observed. Thus vectors based on foamy viruses represent a promising approach for HSC gene therapy. (Blood. 2001;98:604-609)
Collapse
Affiliation(s)
- G Vassilopoulos
- Division of Hematology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
103
|
Kern A, Liu K, Mansbridge J. Modification of fibroblast gamma-interferon responses by extracellular matrix. J Invest Dermatol 2001; 117:112-8. [PMID: 11442757 DOI: 10.1046/j.0022-202x.2001.01386.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fibroblasts from scaffold-based three-dimensional human cultures have been demonstrated to colonize ulcer wound beds and persist for at least 6 mo without rejection. This study examines the expression in these cultures of molecules associated with activation of the immune system in acute rejection. Studies in monolayer cultures showed that fibroblasts expressed CD40 at about 10% of the surface density seen in umbilical vein endothelial cells, whereas HLA-DR was undetectable. In these cultures, both molecules were induced by gamma-interferon. In scaffold-based three-dimensional cultures, however, a majority of the fibroblasts showed little induction of CD40 and HLA-DR in response to gamma-interferon, although HLA class I expression was increased. Fibroblasts re- isolated from the three-dimensional cultures and cultured in monolayers recovered HLA-DR induction in response to gamma-interferon. Fibroblasts cultured in an alternative three-dimensional system using collagen gels showed CD40 and HLA-DR induction by gamma-interferon in the same manner as monolayer cultures. Comparison of phosphorylation of signal transducer and activator of transcription 1 on tyrosine-701 showed it to be similar in monolayer and three-dimensional culture, and phospho-signal transducer and activator of transcription 1 moved into the nucleus. Induction of the class II transcription activator was greatly reduced, however. We propose that interaction of fibroblasts with the fibroblast-derived extracellular matrix is an important modulator of gamma-interferon responsiveness and that this interaction may play a role in the low immunogenicity of allogeneic fibroblasts grown on scaffolds.
Collapse
Affiliation(s)
- A Kern
- Advanced Tissue Sciences Inc., La Jolla, California, USA
| | | | | |
Collapse
|
104
|
|
105
|
Klebe S, Sykes PJ, Coster DJ, Krishnan R, Williams KA. Prolongation of sheep corneal allograft survival by ex vivo transfer of the gene encoding interleukin-10. Transplantation 2001; 71:1214-20. [PMID: 11397952 DOI: 10.1097/00007890-200105150-00006] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Modification of a donor cornea by gene therapy ex vivo has potential to modulate irreversible rejection, the major cause of corneal graft failure. Our aim was to transfer the gene encoding mammalian IL-10 to ovine donor corneas and to determine subsequent orthotopic corneal allograft survival in an outbred sheep model. METHODS The replicative capacity of ovine corneal endothelium was determined by autoradiography after deliberate injury. A replication-defective adenovirus was used to deliver the lacZ reporter gene to ovine corneas and transfected corneas were organ-cultured in vitro to allow transfection efficiency, duration of reporter gene expression, and toxicity attributable to the vector to be determined. A cDNA encoding full-length ovine IL-10 was cloned into an adenoviral vector that was used to transfect donor corneas ex vivo before transplantation. Orthotopic penetrating corneal transplantation was performed in outbred sheep. RESULTS Sheep corneal endothelium was found to be essentially amitotic. Transfection of > 70% corneal endothelial cells was achieved with the viral vector and expression was maintained for 28 days in vitro. IL-10 mRNA was detectable in transfected, organ-cultured corneas for 21 days in vitro. Donor corneas transfected with cDNA encoding IL-10 showed significantly prolonged survival after penetrating keratoplasty (median 55 days, range 19 > or =300 days) compared with control corneas (median 20.5 days, range 18-32 days, P=0.011). CONCLUSION Local gene therapy-mediated expression of the immunomodulatory cytokine IL-10 has the potential to reduce the incidence of corneal graft rejection and to prolong corneal allograft survival.
Collapse
Affiliation(s)
- S Klebe
- Department of Ophthalmology, Flinders University, Adelaide, South Australia
| | | | | | | | | |
Collapse
|
106
|
Kowolik CM, Hu J, Yee JK. Locus control region of the human CD2 gene in a lentivirus vector confers position-independent transgene expression. J Virol 2001; 75:4641-8. [PMID: 11312334 PMCID: PMC114217 DOI: 10.1128/jvi.75.10.4641-4648.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vectors derived from murine leukemia virus (MLV) have been used in many human gene therapy clinical trials. However, insertion of the locus control regions (LCRs) derived from the beta-globin gene locus or the CD2 gene into MLV vectors frequently led to vector rearrangement. Since the human immunodeficiency virus (HIV) sequence diverges significantly from the MLV sequence, we tested whether the LCR sequence is more stable in the context of an HIV vector. Clones derived from human fibrosarcoma line HT1080 cells transduced with an HIV vector containing the T-cell-specific CD2 LCR exhibit the same wide range of transgene expression as clones lacking the LCR. In contrast, Jurkat and primary T-cell clones derived from the transduction of the LCR-containing vector show, on average, a three- to fourfold increase in transgene expression relative to that of the control vector. This is consistent with previous observations that the CD2 LCR contains a T-cell-specific enhancer. In addition, the clones derived from the LCR-containing vector have a much lower clonal variation in transgene expression than those derived from the control vector. We also demonstrate that the level of transgene expression is proportional to the vector copy number. These results suggest that the human CD2 LCR sequence is compatible with HIV vector sequences and confers enhanced integration site-independent and copy number-dependent expression of the transgene. Thus, HIV vectors may represent the ideal vehicle to deliver genes controlled by various cis-acting elements such as LCRs.
Collapse
Affiliation(s)
- C M Kowolik
- Department of Virology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | | | | |
Collapse
|
107
|
Ghazizadeh S, Taichman LB. Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J 2001; 20:1215-22. [PMID: 11250888 PMCID: PMC145528 DOI: 10.1093/emboj/20.6.1215] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Continuous renewal of the epidermis and its appendages throughout life depends on the proliferation of a distinct population of cells called stem cells. We have used in situ retrovirus-mediated gene transfer to genetically mark cutaneous epithelial stem cells of adolescent mice, and have followed the fate of the marked progeny after at least 37 epidermal turnovers and five cycles of depilation-induced hair growth. Histological examination of serial sections of labeled pilosebaceous units demonstrated a complex cell lineage. In most instances, labeled cells were confined to one or more follicular compartments or solely to sebaceous glands. Labeled keratinocytes in interfollicular epidermis were confined to distinct columnar units representing epidermal proliferative units. The contribution of hair follicles to the epidermis was limited to a small rim of epidermis at the margin of the follicle, indicating that long term maintenance of interfollicular epidermis was independent of follicle-derived cells. Our results indicate the presence of multiple stem cells in cutaneous epithelium, some with restricted lineages in the absence of major injury.
Collapse
Affiliation(s)
- Soosan Ghazizadeh
- Department of Oral Biology and Pathology and Department of Dermatology, SUNY at Stony Brook, Stony Brook, NY 11794-8702, USA Corresponding author e-mail:
| | - Lorne B. Taichman
- Department of Oral Biology and Pathology and Department of Dermatology, SUNY at Stony Brook, Stony Brook, NY 11794-8702, USA Corresponding author e-mail:
| |
Collapse
|
108
|
Pastorino S, Massazza S, Cilli M, Varesio L, Bosco MC. Generation of high-titer retroviral vector-producing macrophages as vehicles for in vivo gene transfer. Gene Ther 2001; 8:431-41. [PMID: 11313821 DOI: 10.1038/sj.gt.3301405] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2000] [Accepted: 11/30/2000] [Indexed: 11/09/2022]
Abstract
The goal of this project was to develop a novel gene transfer system based on macrophages (Mphi) as shuttles of recombinant retroviral vectors carrying therapeutic or marker genes. The murine Mphi cell line WGL5 was used as a source of Mphi for this study. We generated retrovirus-producing Mphi by transducing the WGL5 cells with a replication-defective retroviral vector carrying the enhanced green fluorescent protein (EGFP) reporter gene and the Moloney murine leukemia virus (MoMLV) as helper virus. We demonstrated stable integration of the recombinant retrovirus in the Mphi genome, efficient recombinant retrovirus production, and EGFP gene delivery to different cell lines in vitro. To evaluate Mphi-mediated EGFP gene transfer in vivo, allogeneic mice were injected s.c. with the retrovirus-producing WGL5 Mphi, that gave rise to solid tumor masses at the injection site, highly infiltrated with host leukocytes. We observed EGFP fluorescence in tumor-infiltrating CD4(+) and CD8(+) host T lymphocytes, providing direct evidence of the ability of engineered Mphi to mediate EGFP gene delivery to host cells in vivo. Moreover, we showed that retrovirus-producing Mphi could home to different organs in vivo following i.v. injection into mice. These data demonstrate that Mphi can be engineered as cellular vehicles for recombinant retroviruses carrying heterologous genes and suggest potential applications of this novel vector system for gene therapy.
Collapse
Affiliation(s)
- S Pastorino
- Laboratory of Molecular Biology, G Gaslini Institute, Largo G Gaslini 5, 16147, Genova, Italy
| | | | | | | | | |
Collapse
|
109
|
Di Ianni M, Terenzi A, Di Florio S, Venditti G, Benedetti R, Santucci A, Bartoli A, Fettucciari K, Marconi P, Rossi R, Martelli MF, Tabilio A. In vivo demethylation of a MoMuLV retroviral vector expressing the herpes simplex thymidine kinase suicide gene by 5' azacytidine. Stem Cells 2001; 18:415-21. [PMID: 11072029 DOI: 10.1634/stemcells.18-6-415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We constructed a functional MoMuLV-based bicistronic retroviral vector encoding the herpes simplex virus type I thymidine kinase gene, which induces sensitivity to the prodrug ganciclovir (gcv), and the reporter beta-galactosidase gene (MFG-tk-IRES-lacZ). The U937 histiocytic cell line was transduced with this vector, and a clone (VB71) with high-level transgene expression was selected. Severe combined immunodeficient (SCID) mice were injected with VB71 cells to evaluate the role of long terminal repeat methylation in transgene silencing in vivo and to see whether 5-azacytidine (5' aza-C) demethylating agent prevented it. We found 5' aza-C maintained gene expression at high level in vitro. In vivo, time to tumor onset was significantly longer in SCID mice receiving the VB71 cells, 5' aza-C, and gcv compared with animals treated with either 5' aza-C or gcv alone. The number of injected tumor cells influences tumor onset time and the efficacy of 5' aza-C and gcv treatment. The standard gcv treatment schedule (10 mg/kg from d + 1 until the onset of tumor) controlled tumor onset better than short-term treatment with high doses. In conclusion, the results extend our previous findings that transgene methylation in vivo may be prevented with an appropriate schedule of 5' aza-C and gcv.
Collapse
Affiliation(s)
- M Di Ianni
- Haematology and Clinical Immunology and Pathology Sections, Department of Clinical and Experimental Medicine, Perugia University, Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Heller R, Schultz J, Lucas ML, Jaroszeski MJ, Heller LC, Gilbert RA, Moelling K, Nicolau C. Intradermal delivery of interleukin-12 plasmid DNA by in vivo electroporation. DNA Cell Biol 2001; 20:21-6. [PMID: 11242540 DOI: 10.1089/10445490150504666] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gene therapy depends on safe and efficient gene delivery. The skin is an attractive target for gene delivery because of its accessibility. Recently, in vivo electroporation has been shown to enhance expression after injection of plasmid DNA. In this study, we examined the use of electroporation to deliver plasmid DNA to cells of the skin in order to demonstrate that localized delivery can result in increased serum concentrations of a specific protein. Intradermal injection of a plasmid encoding luciferase resulted in low levels of expression. However, when injection was combined with electroporation, expression was significantly increased. When performing this procedure with a plasmid encoding interleukin-12, the induced serum concentrations of gamma-interferon were as much as 10 fold higher when electroporation was used. The results presented here demonstrate that electroporation can be used to augment the efficiency of direct injection of plasmid DNA to skin.
Collapse
Affiliation(s)
- R Heller
- Department of Surgery, University of South Florida, Tampa, Florida 33612-4799, USA.
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Kügler S, Meyn L, Holzmüller H, Gerhardt E, Isenmann S, Schulz JB, Bähr M. Neuron-specific expression of therapeutic proteins: evaluation of different cellular promoters in recombinant adenoviral vectors. Mol Cell Neurosci 2001; 17:78-96. [PMID: 11161471 DOI: 10.1006/mcne.2000.0929] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In order to achieve neuron-restricted expression of antiapoptotic proteins, cellular promoters were investigated for their expression profiles in the context of adenoviral vectors. Both the synapsin 1 gene and the tubulin alpha1 gene promoters were strictly neuron specific in cocultures of primary neurons with their essential feeder cells. The neuron-specific enolase gene promoter exhibited only weak activity in cultured hippocampal neurons and was not neuron specific in preparations of cerebellar granule cells. By attaining virtually 100% transduction efficiency we were able to generate "quasi-transgenic" primary neuron cultures using both differentiated and completely undifferentiated hippocampal neurons. In a functional assay, we used the synapsin promoter to evaluate the effect of Bcl-X(L) overexpression on potassium-withdrawal-induced apoptosis of cerebellar granule neurons. We found nearly complete inhibition of caspase-9 and -3 activation and apoptosis, indicating a major role for mitochondrial pathways in this paradigm of neuronal cell death. The excellent suitability of the synapsin promoter as a strong panneuronal promoter was further demonstrated by its restricted neuronal activity in various brain regions of adult rats in vivo.
Collapse
Affiliation(s)
- S Kügler
- Neuro-Regeneration Laboratory, University of Tübingen, Medical School, Verfügungsgebaude, Auf der Morgenstelle 15, Tübingen, 72076, Germany.
| | | | | | | | | | | | | |
Collapse
|
112
|
Emilien G, Maloteaux JM, Penasse C, Goodeve A, Casimir C. Haemophilias: advances towards genetic engineering replacement therapy. CLINICAL AND LABORATORY HAEMATOLOGY 2000; 22:313-23. [PMID: 11318796 DOI: 10.1046/j.1365-2257.2000.00332.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both haemophilia A and B are X-linked recessive disorders and therefore occur almost exclusively in males. The genes for both factors VIII and IX have been mapped to the distal end of the long arm of the X chromosome, bands Xq28 and Xq27.1, respectively. The Factor VIII gene comprises 186 kb DNA with 9 kb of exon of DNA which encodes an mRNA of nearly 9 kb. The Factor IX gene is 34 kb in length and the essential genetic information is present in eight exons which encode 1.6 kb mRNA. In gene therapy, genetic modification of the target cells can be either ex vivo or in vivo. The advantage of the ex vivo approach is that the genetic modification is strictly limited to the isolated cells. In the in vivo approach, the integrity of the target tissue is maintained but the major challenge is to deliver the gene to the target tissue. The use of improved retroviral and adenovirus-based vectors for gene therapy has produced clinically relevant levels of human factor VIII in mice and haemophilic dogs. If further improvements can increase the persistence of expression and decrease the immunological responses, phase I clinical trials in patients can be considered.
Collapse
Affiliation(s)
- G Emilien
- Laboratory of Pharmacology, Université Catholique de Louvain, Belgium.
| | | | | | | | | |
Collapse
|
113
|
Abstract
Gene therapy is becoming a reality, and it is a particularly attractive approach for wound healing, because the wound site is often exposed, the treatment and condition should be transient, and gene products such as growth factors and cytokines suffer from problems with bioavailability and stability. Among the techniques for gene delivery to the wound site, particle-mediated bombardment with a device called the gene gun has become an important developmental tool. This instrument has been used in numerous examples of wound gene therapy with growth factors or their receptors in the last decade. Among the advantages of particle-mediated bombardment are ease and speed of preparation of the delivery vehicle, the stability of the DNA preparation, the absence of (viral) antigens, the ability to target the projectiles to different tissue depths and areas, and the rapid shedding of both particles and DNA if they are targeted to the epidermis. Clinical application of the technology remains limited by the relatively low efficiency of the method, the potential tissue damage created by impact of the particles, and the coverage area. The gene gun can also be used to facilitate the discovery and validation of gene products as wound healing agents.
Collapse
Affiliation(s)
- J M Davidson
- Department of Pathology, Vanderbilt University School of Medicine, C-3321 Medical Center North, Nashville, TN 37232-2561, USA.
| | | | | |
Collapse
|
114
|
Affiliation(s)
- G Daly
- Bone and Joint Research Unit, London, United Kingdom
| | | |
Collapse
|
115
|
Zhao-Emonet JC, Marodon G, Pioche-Durieu C, Cosset FL, Klatzmann D. T cell-specific expression from Mo-MLV retroviral vectors containing a CD4 mini-promoter/enhancer. J Gene Med 2000; 2:416-25. [PMID: 11199262 DOI: 10.1002/1521-2254(200011/12)2:6<416::aid-jgm142>3.0.co;2-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Gene therapy of various immunological disorders will greatly benefit from improved retroviral vectors (RVs) with T cell specificity. Such vectors can be designed by placing a gene of therapeutic interest under the control of tissue-specific transcriptional elements. However, low titers and loss of specificity are frequently encountered with tissue-specific vectors. The aim of the present study was to develop a T cell-specific RV. METHODS We constructed a series of Moloney murine leukemia virus (Mo-MLV)-based RVs expressing enhanced green fluorescent protein (EGFP) under the control of a mini-promoter/enhancer cassette derived from the CD4 gene (CD4pmE) and tested them in cell lines and peripheral blood lymphocytes. Expression of EGFP was monitored by fluorescence microscopy and analyzed by flow cytometry. RESULTS The CD4pmE cassette was inserted between the viral long terminal repeats (LTRs) in self-inactivating vectors (SIN vectors) or was substituted to the 3' U3 viral promoter/enhancer (hybrid vectors). High vector titers but poor specific expression of EGFP were achieved when CD4pmE was inserted in sense orientation in SIN vectors. Low titers but high specificity were observed when the CD4pmE cassette was in anti-sense orientation. In contrast, high titers and good T cell specificity were obtained with hybrid vectors. CONCLUSION An efficient T cell-specific retroviral vector was obtained.
Collapse
Affiliation(s)
- J C Zhao-Emonet
- Laboratoire de Biologie et Thérapeutique des Pathologies Immunitaires UPMC-CNRS ESA 7087-CERVI-H pital de la Pitié, Paris, France
| | | | | | | | | |
Collapse
|
116
|
Abstract
This review highlights our current understanding of the biology of, survival of, and transgene expression by genetically modified fibroblasts (GMFb) carrying stably integrated transgenes in vivo. Experimental data demonstrate that three elements will enhance expression by and survival of GMFb in vivo: a matrix scaffolding to take the place of the existing dermis, the presence of elements of the extracellular matrix in the construct used to move GMFb to the in vivo setting, and the utilization of immortalized fibroblasts to carry the transgenes. Although moving GMFb to an in vivo setting is an invasive procedure, there are a number of clinical settings where GMFb appear to be the suitable cell for gene therapy.
Collapse
Affiliation(s)
- G G Krueger
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA.
| |
Collapse
|
117
|
Pan D, Aronovich E, McIvor RS, Whitley CB. Retroviral vector design studies toward hematopoietic stem cell gene therapy for mucopolysaccharidosis type I. Gene Ther 2000; 7:1875-83. [PMID: 11110421 DOI: 10.1038/sj.gt.3301298] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To optimize a gene transfer system for hematopoietic stem cell gene therapy of patients with mucopolysaccharidosis (MPS) type I, 10 retroviral vectors were constructed to express the human alpha-L-iduronidase (IDUA) cDNA. These vectors were designed to evaluate the potential effects of specific promoters, the addition of selectable markers, and the use of multiple promoters versus an internal ribosome entry site for expression of IDUA and selectable maker genes. The effect of vector design was investigated in primary patient fibroblasts (F(MPS)) or murine fibroblast cell lines; while overall comparison of transgene expression was determined in patients' peripheral blood lymphocytes (PBL(MPS)) and CD34+ progenitors (PBPC(MPS)). We observed that the human PGK promoter introduced the highest IDUA activity per 1% relative transgene frequency in F(MPS). Use of the same promoter to separately regulate both the therapeutic gene and a drug-resistance gene resulted in decreased expression of the unselected gene. Co-selection using bicistronic vectors not only increased the number of transductants, but also elevated transgene expression under selective pressure in transgene-positive progenitors. Bicistronic vector LP1CD overcame down-regulation and practically introduced the highest IDUA level in unselected PBL(MPS) and an intermediate level in PBPC(MPS). These studies provide a better understanding of factors contributing to efficient gene expression in hematopoietic cells.
Collapse
Affiliation(s)
- D Pan
- Department of Pediatrics, and Institute of Human Genetics, University of Minnesota, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
118
|
Abstract
The art and science of gene therapy has received much attention of late. The tragic death of 18-year-old Jesse Gelsinger, a volunteer in a Phase I clinical trial, has overshadowed the successful treatment of three children suffering from a rare but fatal immunological disease. In the light of the success and tragedy, it is timely to consider the challenges faced by gene therapy--a novel form of molecular medicine that may be poised to have an important impact on human health in the new millennium.
Collapse
Affiliation(s)
- N Somia
- Laboratory of Genetics, Salk Institute, 10,010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
119
|
Migliaccio AR, Bengra C, Ling J, Pi W, Li C, Zeng S, Keskintepe M, Whitney B, Sanchez M, Migliaccio G, Tuan D. Stable and unstable transgene integration sites in the human genome: extinction of the Green Fluorescent Protein transgene in K562 cells. Gene 2000; 256:197-214. [PMID: 11054549 DOI: 10.1016/s0378-1119(00)00353-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In gene transfer experiments including gene therapy studies, expression of the integrated transgenes in host cells often declines with time. The molecular basis of this phenomenon is not clearly understood. We have used the Green Fluorescent Protein (GFP) gene as both a selectable marker and a reporter to study long-term transgene integration and expression in K562 cells. Cells transfected with plasmids containing the GFP gene coupled to the HS2 or HS3 enhancer of the human beta-globin Locus Control Region (LCR) or the cytomegalovirus (CMV) enhancer were sorted by either fluorescence-activated-cell-sorting (FACS) alone or FACS combined with drug selection based on a co-integrated drug resistance gene. The two groups of selected cells were subsequently cultured for long periods up to 250 cell generations. Comparison of long-term GFP transgene integration and expression in these two groups of cells revealed that the K562 genome contains two types of transgene integration sites: i) abundant unstable sites that permit transcription but not long-term integration of the transgenes and thus eliminate the transgenes in 60-250 cell generations and ii) rare stable sites that permit both efficient transcription and long-term stable integration of the transgenes for at least 200 cell generations. Our results indicate that extinction of GFP expression with time is due at least in part to elimination of the gene from the host genome and not entirely to transcriptional silencing of the gene. However, long-term, stable expression of the transgene can be achieved in cells containing the transgene integrated into the rare, stable host sites.
Collapse
Affiliation(s)
- A R Migliaccio
- Laboratorio di Biologia Cellulare, Instituto Superiore di Sanita, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Noël D, Pelegrin M, Brockly F, Lund AH, Piechaczyk M. Sustained systemic delivery of monoclonal antibodies by genetically modified skin fibroblasts. J Invest Dermatol 2000; 115:740-5. [PMID: 10998153 DOI: 10.1046/j.1523-1747.2000.00106.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vivo production and systemic delivery of therapeutic antibodies by engineered cells might advantageously replace injection of purified antibodies for treating a variety of life-threatening diseases, including cancer, acquired immunodeficiency syndrome, and autoimmune diseases. We report here that skin fibroblasts retrovirally transduced to express immunoglobulin genes can be used for sustained long-term systemic delivery of cloned antibodies in immunocompetent mice. Importantly, no anti- idiotypic response against the ectopically expressed model antibody used in this study was observed. This supports the notion that skin fibroblasts can potentially be used in antibody-based gene/cell therapy protocols without inducing any adverse immune response in treated individuals.
Collapse
Affiliation(s)
- D Noël
- Institut de Génetique Moléculaire, UMR 5535, CNRS, Montpellier, France
| | | | | | | | | |
Collapse
|
121
|
Abstract
Lentiviral vectors are tools for gene transfer derived from lentiviruses. From their first application to now they have been strongly developed in design, in biosafety and in their ability of transgene expression into target cells. Primate and non-primate derived lentiviral vectors are now available and with both types of systems a lot of studies tuned to improve their performances in a large number of tissues are ongoing. Here we review the state of the art of lentiviral vector systems discussing their potential for gene therapy.
Collapse
Affiliation(s)
- E Vigna
- Laboratory for Gene Transfer and Therapy, IRCC, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy
| | | |
Collapse
|
122
|
Inactivation of a GFP retrovirus occurs at multiple levels in long-term repopulating stem cells and their differentiated progeny. Blood 2000. [DOI: 10.1182/blood.v96.3.894] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Hematopoietic stem cell gene therapy holds promise for the treatment of many hematologic disorders. One major variable that has limited the overall success of gene therapy to date is the lack of sustained gene expression from viral vectors in transduced stem cell populations. To understand the basis for reduced gene expression at a single-cell level, we have used a murine retroviral vector, MFG, that expresses the green fluorescent protein (GFP) to transduce purified populations of long-term self-renewing hematopoietic stem cells (LT-HSC) isolated using the fluorescence-activated cell sorter. Limiting dilution reconstitution of lethally irradiated recipient mice with 100% transduced, GFP+ LT-HSC showed that silencing of gene expression occurred rapidly in most integration events at the LT-HSC level, irrespective of the initial levels of GFP expression. When inactivation occurred at the LT-HSC level, there was no GFP expression in any hematopoietic lineage clonally derived from silenced LT-HSC. Inactivation downstream of LT-HSC that stably expressed GFPin long-term reconstituted animals was restricted primarily to lymphoid cells. These observations suggest at least 2 distinct mechanisms of silencing retrovirally expressed genes in hematopoietic cells.
Collapse
|
123
|
Inactivation of a GFP retrovirus occurs at multiple levels in long-term repopulating stem cells and their differentiated progeny. Blood 2000. [DOI: 10.1182/blood.v96.3.894.015k35_894_901] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cell gene therapy holds promise for the treatment of many hematologic disorders. One major variable that has limited the overall success of gene therapy to date is the lack of sustained gene expression from viral vectors in transduced stem cell populations. To understand the basis for reduced gene expression at a single-cell level, we have used a murine retroviral vector, MFG, that expresses the green fluorescent protein (GFP) to transduce purified populations of long-term self-renewing hematopoietic stem cells (LT-HSC) isolated using the fluorescence-activated cell sorter. Limiting dilution reconstitution of lethally irradiated recipient mice with 100% transduced, GFP+ LT-HSC showed that silencing of gene expression occurred rapidly in most integration events at the LT-HSC level, irrespective of the initial levels of GFP expression. When inactivation occurred at the LT-HSC level, there was no GFP expression in any hematopoietic lineage clonally derived from silenced LT-HSC. Inactivation downstream of LT-HSC that stably expressed GFPin long-term reconstituted animals was restricted primarily to lymphoid cells. These observations suggest at least 2 distinct mechanisms of silencing retrovirally expressed genes in hematopoietic cells.
Collapse
|
124
|
Srinivasakumar N, Schuening F. Novel Tat-encoding bicistronic human immunodeficiency virus type 1-based gene transfer vectors for high-level transgene expression. J Virol 2000; 74:6659-68. [PMID: 10864682 PMCID: PMC112178 DOI: 10.1128/jvi.74.14.6659-6668.2000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe bicistronic single-exon Tat (72-amino-acid Tat [Tat72])- and full-length Tat (Tat86)-encoding gene transfer vectors based on human immunodeficiency virus type 1 (HIV-1). We created versions of these vectors that were rendered Rev independent by using the constitutive transport element (CTE) from Mason-Pfizer monkey virus (MPMV). Tat72-encoding vectors performed better than Tat86-expressing vectors in gene transfer experiments. CTE-containing vectors, produced in a Rev-independent packaging system, had gene transfer efficiencies nearly equivalent to those produced using a combination RNA transport (CTE and Rev-Rev response element)-based packaging system. The Tat72-encoding vectors could be efficiently transduced into a variety of cell types, showed higher levels of transgene expression than vectors with the simian cytomegalovirus immediate-early or the simian virus 40 early promoter, and provide an alternative to HIV-1 vectors with internal promoters.
Collapse
Affiliation(s)
- N Srinivasakumar
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232-6305, USA.
| | | |
Collapse
|
125
|
Pan D, Jonsson JJ, Braun SE, McIvor RS, Whitley CB. "Supercharged Cells" for delivery of recombinant human iduronate-2-sulfatase. Mol Genet Metab 2000; 70:170-8. [PMID: 10924271 DOI: 10.1006/mgme.2000.3012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of iduronate-2-sulfatase (IDS) from three different promoters in four retroviral vectors was studied in peripheral blood lymphocytes from patients with Hunter syndrome (PBL(MPS)), i.e., the LTR in vectors L2SN and L2, avian beta-actin promoter in LB2, and the CMV early promoter in LNC2. PBL(MPS) were exposed to packaging cell supernatant resulting in transduction frequencies ranging 10-fold from 5 to 49%. Surprisingly, IDS activities were equally high in all transduced lymphocyte populations: 515 U/mg/h in PBL(MPS)-L2SN, 734 in PBL(MPS)-LB2, 352 in PBL(MPS)-L2, and 389 in PBL(MPS)-LNC2 compared to controls (<10 in PBL(MPS)-LXSN or PBL(MPS)). The half-life of endocytosed IDS in PBL(MPS) was 1.9 days. However, the level of lymphocyte IDS activity from proviral expression was found to be only a fraction of the total, a large portion being derived from reuptake of enzyme from murine packaging cells, i.e., a "second source" of enzyme. Therefore, measurement of transgene lysosomal enzyme soon after exposure of target cells to vector supernatant may yield a gross overestimate of long-term transgene expression by transduced cells. Nevertheless, patient fibroblasts cocultured with transduced PBL(MPS) had reduced (35)SO(4)-GAG accumulation, levels similar to those of normal fibroblasts. These studies revealed a broadly applicable phenomenon: cells can be charged with a lysosomal enzyme to levels much higher than those found in nature. By "supercharging" cells with a lysosomal protein (or other molecule bearing the mannose-6-phosphate ligand), such cells may be exploited as vehicles for systemic delivery of therapeutic or diagnostic agents.
Collapse
Affiliation(s)
- D Pan
- Gene Therapy Program, Department of Pediatrics, Institute of Human Genetics, University of Minnesota, 420 Delaware Street SE, Minneapolis, Minnesota, 55455, USA
| | | | | | | | | |
Collapse
|
126
|
Moisset PA, Bonham L, Skuk D, Koeberl D, Brussee V, Goulet M, Roy B, Asselin I, Miller AD, Tremblay JP. Systemic production of human granulocyte colony-stimulating factor in nonhuman primates by transplantation of genetically modified myoblasts. Hum Gene Ther 2000; 11:1277-88. [PMID: 10890738 DOI: 10.1089/10430340050032384] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Clinical use of human granulocyte-colony stimulating factor (hG-CSF) to treat various diseases involving neutropenia has been previously shown to (1) successfully increase circulating neutrophils, (2) reduce condition-related infections, and (3) cause few side effects in patients. To alleviate the symptoms of neutropenia, the patient must receive frequent injections of recombinant hG-CSF. Permanent ways to deliver stable levels of the molecule to the patient are being investigated. Among them, the transplantation of hG-CSF-secreting cells has been proposed and performed successfully in rodents, using fibroblast cell lines and primary muscle cells. We thus investigated whether similar results could be obtained by intramuscular myoblast transplantation in a large animal model. When 1-3 x 10(8) myoblasts were injected into three Macaca mulatta, hG-CSF was detected at high levels (300-900 pg/ml), which in turn led to a four- to fivefold increase in circulating neutrophils. However, both the concentrations of hG-CSF and neutrophil levels were found to decrease over time. Nonetheless, neutrophils were found at higher levels from the fourth week until the end the experiment (up to 29 weeks) in G-CSF monkeys compared with control animals. These results show that transplantation of hG-CSF-secreting myoblasts may indeed be a therapeutic option for the treatment of neutropenic patients.
Collapse
Affiliation(s)
- P A Moisset
- Unité de Recherche en Génétique Humaine, CHUL, Université Laval, Ste.-Foy, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Yamano T, Ura K, Morishita R, Nakajima H, Monden M, Kaneda Y. Amplification of transgene expression in vitro and in vivo using a novel inhibitor of histone deacetylase. Mol Ther 2000; 1:574-80. [PMID: 10933982 DOI: 10.1006/mthe.2000.0074] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Enhancement of transgene expression is an important issue in human gene therapy. Here we describe a novel system for enhancing transgene expression by cointroduction of plasmid DNA with FR901228, a water-soluble histone deacetylase inhibitor. When a luciferase expression vector was cointroduced into cells with FR901228, luciferase gene expression was enhanced 50-fold in the mouse melanoma cell line B16-F1 and 5200-fold in NIH3T3 cells in comparison to cells without the drug. Luciferase gene expression enhancement was dependent on both drug dose and treatment time. Acetylated histones increased in accordance with drug dose, and the activation of gene expression occurred at the transcriptional level. The stimulation of luciferase gene expression by FR901228 was also observed in a B16-F1 clone stably expressing luciferase. Cointroduction of the luciferase plasmid with FR901228 into a B16-F1 tumor mass activated luciferase gene expression 3- to 4-fold. Thus, activation of transgene expression by FR901228 may serve as a new tool for gene therapy.
Collapse
Affiliation(s)
- T Yamano
- Department of Surgery and Clinical Oncology, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | | | | | | | | |
Collapse
|
128
|
Rivella S, Callegari JA, May C, Tan CW, Sadelain M. The cHS4 insulator increases the probability of retroviral expression at random chromosomal integration sites. J Virol 2000; 74:4679-87. [PMID: 10775605 PMCID: PMC111989 DOI: 10.1128/jvi.74.10.4679-4687.2000] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviruses are highly susceptible to transcriptional silencing and position effects imparted by chromosomal sequences at their integration site. These phenomena hamper the use of recombinant retroviruses as stable gene delivery vectors. As insulators are able to block promoter-enhancer interactions and reduce position effects in some transgenic animals, we examined the effect of an insulator on the expression and structure of randomly integrated recombinant retroviruses. We used the cHS4 element, an insulator from the chicken beta-like globin gene cluster, which has been shown to reduce position effects in transgenic Drosophila. A large panel of mouse erythroleukemia cells that bear a single copy of integrated recombinant retroviruses was generated without using drug selection. We show that the cHS4 increases the probability that integrated proviruses will express and dramatically decreases the level of de novo methylation of the 5' long terminal repeat. These findings support a primary role of methylation in the silencing of retroviruses and suggest that cHS4 could be useful in gene therapy applications to overcome silencing of retroviral vectors.
Collapse
Affiliation(s)
- S Rivella
- Department of Human Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
129
|
Metharom P, Takyar S, Xia HH, Ellem KA, Macmillan J, Shepherd RW, Wilcox GE, Wei MQ. Novel bovine lentiviral vectors based on Jembrana disease virus. J Gene Med 2000; 2:176-85. [PMID: 10894263 DOI: 10.1002/(sici)1521-2254(200005/06)2:3<176::aid-jgm106>3.0.co;2-q] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Safety is a concern that must be addressed prior to any clinical use of human immunodeficiency virus (HIV)-based lentiviral vectors in human patients. Unfortunately, efforts to examine the biosafety of the vectors in preclinical animal models are hampered due to the lack of animal models for HIV infection. We have developed new lentiviral vectors based on the recently characterised Jembrana Disease Virus (JDV), which infects a specific species of cattle naturally in Bali, Indonesia. METHODS Sequences from the JDV genome were amplified by splicing overlap extension polymerase chain reaction (PCR) for the construction of transfer vectors as well as a packaging construct. Co-transfection of these two plasmids into 293T cells with a third encoding a G glycoprotein of vesicular stomatitis virus produced pseudotyped, disabled, replication defective JDV vector particles. Viral titre was obtained by transducing the cells with the supernatant harvested from transfectants and determining the number of cells expressing the transgene. PCR and Southern blotting were used to detect the presence of potential replication-competent viruses as well as transgene integration. RESULTS Bicistronic JDV vectors encoding the green fluorescent protein (GFP) and the neomycin phosphotransferase were harvested with a titre range of 0.4-1.2 x 10(6) colony forming units/ml from vector-producing cells and were further concentrated by ultracentrifugation to the high titre of approximately 10(7) CFU/ml. Vectors encoding GFP were shown to transduce and integrate efficiently into the chromosomes of a range of primary and transformed cells of different origins in different differentiation status, including growth-arrested cells, with an efficiency of 25-75%. Exhaustive testing with a marker gene transfer assay in combination with a reverse transcriptase assay and PCR amplification of samples of serially passaged, transduced cells showed that no detectable amount of replication competent lentivirus (RCL) was produced. CONCLUSIONS We showed the feasibility of the development of gene transfer vectors based on a non-primate bovine lentivirus, which will provide the opportunity for examination of the efficacy and biosafety of lentiviral vector-mediated gene transfer in vivo in animal models. JDV-based vectors may be applicable and more readily acceptable than those from HIV for human gene therapy.
Collapse
Affiliation(s)
- P Metharom
- Gene Therapy Unit, Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Cisterni C, Henderson CE, Aebischer P, Pettmann B, Déglon N. Efficient gene transfer and expression of biologically active glial cell line-derived neurotrophic factor in rat motoneurons transduced wit lentiviral vectors. J Neurochem 2000; 74:1820-8. [PMID: 10800924 DOI: 10.1046/j.1471-4159.2000.0741820.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several studies have shown the ability of human immunodeficiency virus type 1 (HIV1)-based lentiviral vectors to infect nondividing brain and retinal neurons with high efficiency and long-term expression of the transduced gene. We show that purified embryonic motoneurons can be efficiently (>95%) transduced in culture using an HIV1-based lentiviral vector encoding LacZ. Expression of beta-galactosidase was observed for at least 9 days in these conditions. Furthermore, motoneurons transduced with a lentiviral vector expressing glial cell line-derived neurotrophic factor survived in the absence of additional trophic support, showing that the overexpressed protein was biologically active. Our results demonstrate the potential of lentiviral vectors in studying the biological effects of proteins expressed in motoneurons and in the development of future gene therapy for motoneuron diseases.
Collapse
Affiliation(s)
- C Cisterni
- INSERM U.382, Developmental Biology Institute of Marseille (CNRS-INSERM-Université Méditerranée-AP), France
| | | | | | | | | |
Collapse
|
131
|
McInerney JM, Nawrocki JR, Lowrey CH. Long-term silencing of retroviral vectors is resistant to reversal by trichostatin A and 5-azacytidine. Gene Ther 2000; 7:653-63. [PMID: 10800088 DOI: 10.1038/sj.gt.3301155] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One problem limiting the development of long-term gene replacement therapy is gene silencing. A variety of experiments have implicated DNA methylation and histone deacetylation in gene silencing and shown that the agents 5-azacytidine (5-Aza) and trichostatin A (TSA) are able to reverse these effects. To begin to investigate clinically relevant strategies to reverse silencing with these drugs, we transduced the MEL and FDCP-1 hematopoietic cell lines with Moloney murine leukemia virus (MMLV) and Harvey murine sarcoma virus (HMSV)-based retroviral vectors carrying the beta-galactosidase/neomycin resistance fusion gene (beta-geo). Fifty-one clones were isolated under G418 selection over 2 weeks and then allowed to grow without selection as beta-gal activity was monitored over time. More than 80% of these clones showed significant silencing over a period of 70-80 days. The clones were then exposed to a wide range of 5-Aza and TSA concentrations, both alone and in combination, in an effort to reverse silencing. Despite demonstration that the agents were able to decrease DNA methylation and increase histone acetylation, significant reversal of long-term silencing was not seen under any experimental condition. These results suggest that long-term retroviral silencing involves mechanisms in addition to DNA methylation and histone acetylation and that new pharmacologic strategies are needed to overcome the silencing process.
Collapse
Affiliation(s)
- J M McInerney
- Department of Medicine, Dartmouth Medical School, Hanover, NH, USA
| | | | | |
Collapse
|
132
|
Dang Q, Auten J, Plavec I. Human beta interferon scaffold attachment region inhibits de novo methylation and confers long-term, copy number-dependent expression to a retroviral vector. J Virol 2000; 74:2671-8. [PMID: 10684282 PMCID: PMC111756 DOI: 10.1128/jvi.74.6.2671-2678.2000] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/1999] [Accepted: 12/20/1999] [Indexed: 11/20/2022] Open
Abstract
Moloney murine leukemia virus-based retroviral vector expression is gradually lost during prolonged in vitro culture of CEMSS T cells. However, when the human beta interferon scaffold attachment region (IFN-SAR) was inserted into the vector immediately upstream of the 3' long terminal repeat (LTR), expression was maintained for the length of the study (4 months). Clonal analysis of the retrovirus vector-infected CEMSS cells showed that SAR-containing retroviral vector expression levels were positively correlated with the proviral copy numbers (P < 0.0001), while there was no correlation between the proviral copy numbers and expression levels in control vector-infected clones. Thirty-three percent of the CEMSS cell clones infected with the control vector showed evidence of partial or complete methylation in the 5' LTR region. In sharp contrast, we detected no methylation in the clones infected with the SAR-containing vector. To demonstrate a direct inhibitory effect of methylation on retroviral vector expression, we have transfected 293 cells with in vitro-methylated proviral DNA. In transiently transfected cells, expression of methylated LTR was reduced but not completely inhibited, irrespective of the presence of the IFN-SAR sequence. In stably transfected cells, however, methylation completely abolished expression of the control vector but not of the SAR-containing vector. Furthermore, the expression of the SAR-containing vector was stable over time, indicating the ability of the SAR sequence to alleviate methylation-mediated transcriptional repression of a vector. This study extends our understanding of the mechanisms of retroviral vector inactivation by methylation and provides insight into a functional role for the SAR elements.
Collapse
Affiliation(s)
- Q Dang
- SyStemix Inc., Palo Alto, California 94304, USA
| | | | | |
Collapse
|
133
|
Affiliation(s)
- T H Bestor
- Department of Genetics, College of Physicians and Surgeons of Columbia University, 701 West 168th Street, New York, New York 10032, USA.
| |
Collapse
|
134
|
Jeschke MG, Barrow RE, Hawkins HK, Tao Z, Perez-Polo JR, Herndon DN. Biodistribution and feasibility of non-viral IGF-I gene transfers in thermally injured skin. J Transl Med 2000; 80:151-8. [PMID: 10701685 DOI: 10.1038/labinvest.3780019] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Gene therapy using cationic liposomes containing cDNA is a relatively new approach with great potential; however, little is known about the mechanisms of dermal gene transfer, its biodistribution, systemic transfection, and cellular uptake. This study identifies mechanisms, transfection rates, and biodistribution of liposomal gene transfers in the skin of thermally injured rats using cDNA gene constructs coding for insulin-like growth factor-I (IGF-I) and Lac Z. Male Sprague-Dawley rats (350 to 375 g) were given a 60% total body surface area full-thickness scald burn that was followed by weekly subcutaneous injections of normal saline (control, n = 10), liposomes plus 0.2 microg Lac Z cDNA construct driven by a cytomegalovirus (CMV) promoter (vehicle, n = 10), or liposomes containing 2.2 microg cDNA coding for IGF-I plus 0.2 microg Lac Z cDNA construct driven by a CMV promoter (IGF-I cDNA, n = 10). Gene transfection was determined by histochemical and luminescent beta-galactosidase assays of blood, skin, liver, spleen, and kidney. Transcription of IGF-I cDNA to IGF-I mRNA was determined in skin cells by Northern blot analyses. Levels of IGF-I protein in blood, skin, liver, spleen, and kidney were measured by radioimmunoassay. The biological activity of the translated IGF-I was evaluated by the mitogenic activity in dermal cells and the rate of re-epithelization. Gene transfection was observed only in skin cells. The expression of IGF-I mRNA increased in skin cells of burned rats receiving liposomes containing the IGF-I cDNA construct compared with liposomes without the construct or normal saline. IGF-I protein levels in the skin of rats receiving the IGF-I cDNA was 176 +/- 4 ng/ml compared with 105 +/- 6 ng/ml for liposomes alone or 90 +/-3 ng/ml for saline (p < 0.05). The translated IGF-I protein was found biologically active in the skin by increasing skin cell proliferation and accelerating re-epithelization 33 days after thermal injury (p < 0.05). No systemic transfection could be detected. Skin cells transfected with liposomes encapsulating the IGF-I cDNA constructs increased the expression of IGF-I mRNA transcript and the expression of a biologically active IGF-I protein. Liposomes containing the cDNA coding for IGF-I present an effective approach to gene therapy in the skin.
Collapse
Affiliation(s)
- M G Jeschke
- Shriners Hospital for Children, and the Department of Surgery, University of Texas Medical Branch, Galveston, USA.
| | | | | | | | | | | |
Collapse
|
135
|
|
136
|
Byun J, Huh JE, Park SJ, Jang JE, Suh YL, Lee JS, Gwon HC, Lee WR, Cosset FL, Kim DK. Myocardial injury-induced fibroblast proliferation facilitates retroviral-mediated gene transfer to the rat heart in vivo. J Gene Med 2000; 2:2-10. [PMID: 10765500 DOI: 10.1002/(sici)1521-2254(200001/02)2:1<2::aid-jgm83>3.0.co;2-o] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Efficient and stable transfer of therapeutic DNA into injured myocardium would be an initial step towards a genetic treatment aimed at myocardial repair after myocardial infarction. Proliferating cardiac fibroblasts in the healing myocardium could be a compelling target for retroviral infection. We evaluated the feasibility of direct in vivo gene transfer into injured myocardium using a high-titer, stable retroviral vector. METHODS Using the TE-FLY-A-based MFG retroviral vector harboring nlsLacZ reporter, the gene transfer efficiency was assessed first in vitro in rat cardiac fibroblasts, followed by in vivo evaluation in healing rat myocardium after local freeze-thaw injury. A total of 2.5 x 10(7) infectious units of retrovirus were injected into the injured region of a beating rat heart. The transduced cells were identified by X-gal staining and immunohistochemistry. RESULTS Highly efficient transduction of cardiac fibroblasts was observed in vitro with 98% of the cells transduced with single infection. The cell proliferation index in the cardiac granulation tissue appeared maximal 3 days after cryoinjury. Retroviral injection into the injured beating heart induced gene expression localized to the wound repair region. One week after retrovirus injection, 14% of the cells in the reparative tissue were beta-gal-positive, while 4% were beta-gal-positive after 4 weeks. The transduced cells were mostly myofibroblasts. CONCLUSIONS Local gene transfer to the healing rat heart is feasible by retrovirus in vivo. This observation may serve as a useful guide for the development of gene therapy aimed at myocardial repair after myocardial infarction.
Collapse
Affiliation(s)
- J Byun
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Chen X, Zhang D, Dennert G, Hung G, Lee AS. Eradication of murine mammary adenocarcinoma through HSVtk expression directed by the glucose-starvation inducible grp78 promoter. Breast Cancer Res Treat 2000; 59:81-90. [PMID: 10752683 DOI: 10.1023/a:1006398918227] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gene therapy strategies employing the HSVtk/ganciclovir (GCV) suicide gene offer promising approaches towards the treatment of metastatic breast cancer. These include bystander effects on non-transduced tumor cells, lower systemic toxicity, and the possibility of inducing immunity against the tumor. Previously we have demonstrated the ability of the grp78 stress-inducible promoter to stimulate expression of reporter genes within the tumor microenvironment. However, experimental evidence demonstrating the ability of this promoter to activate therapeutic agents within the breast cancer environment causing tumor eradication is needed prior to clinical trials. In this report, we test the efficacy of the grp78 promoter in a retroviral system to drive the expression of the HSVtk suicide gene in a murine mammary adenocarcinoma cell line (TSA) in syngeneic, immune-competent hosts. Our results show that under glucose-starvation conditions in vitro, the expression of HSVtk and GCV induced cell death are enhanced in tumor cells in which the HSVtk gene is driven by the internal grp78 promoter compared to cells in which the Moloney murine leukemia virus LTR drives HSVtk. In in vivo studies, in tumors in which the HSVtk gene is driven by the grp78 promoter, GCV treatment causes complete tumor eradication, whereas tumors persist when the HSVtk gene is driven by the retroviral LTR. Our study suggests that the grp78 promoter may be useful to enhance the effectivity of therapeutic agents within a breast tumor. In addition, it is shown that immune memory is induced in syngeneic, immune-competent hosts. This new retroviral vector might therefore be useful for breast cancer gene therapy.
Collapse
Affiliation(s)
- X Chen
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, University of Southlern California Keck School of Medicine, Los Angeles 90089-9176, USA
| | | | | | | | | |
Collapse
|
138
|
Cortez N, Trejo F, Vergara P, Segovia J. Primary astrocytes retrovirally transduced with a tyrosine hydroxylase transgene driven by a glial-specific promoter elicit behavioral recovery in experimental Parkinsonism. J Neurosci Res 2000. [DOI: 10.1002/(sici)1097-4547(20000101)59:1<39::aid-jnr6>3.0.co;2-n] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
139
|
Yadid G, Fitoussi N, Kinor N, Geffen R, Gispan I. Astrocyte line SVG-TH grafted in a rat model of Parkinson's disease. Prog Neurobiol 1999; 59:635-61. [PMID: 10845756 DOI: 10.1016/s0301-0082(99)00013-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present review describes gene transfer into the brain using extraneuronal cells with an ex vivo approach. The mild immunological reactions in the central nervous system to grafts provided the rationale and empirical basis for brain-transplantation, to replace dying cells, of potential clinical relevance. Fetal human astrocytes were genetically engineered to express tyrosine hydroxylase, the rate-limiting enzyme for the synthesis of catecholamines. These cells were also found to produce constitutively and secrete GDNF and interleukins. Therefore, these cells may prove as a drug-delivery system for the treatment of neurological degenerative conditions such as Parkinson's disease (PD). The field of neuronal reconstruction has reached a critical threshold and there is a need to evaluate the variables that will become critical as the field matures. One of the needs is to characterize the neurochemical alterations in the microenvironment in the context of grafted-host connectivity. This review discusses the functional effects of the pharmacologically-active construct, which consists of astrocytes producing L-DOPA and GDNF. The striatum in PD that lacks the dopaminergic projection from the substantia nigra metabolizes and releases dopamine differently from normal tissue and may react to different factors released by the grafted cells. Moreover, neurochemicals of the host tissue may effect grafted cells as well. An understanding of the way in which these neurochemicals are abnormal in PD and their role in the grafted brain is critical to the improvement of reconstructive strategies using cellular therapeutic strategies.
Collapse
Affiliation(s)
- G Yadid
- Faculty of Life Sciences, Neuropharmacology Section, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | |
Collapse
|
140
|
Harrison PT, Dalziel RG, Ditchfield NA, Quinn JP. Neuronal-specific and nerve growth factor-inducible expression directed by the preprotachykinin-A promoter delivered by an adeno-associated virus vector. Neuroscience 1999; 94:997-1003. [PMID: 10579592 DOI: 10.1016/s0306-4522(99)00366-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ability to manipulate the expression of genes within neurons provides unique opportunities to study the role of individual gene products in nervous system function. Virus vectors are a potentially rapid tool for the experimental manipulation of gene expression in the mammalian nervous system. However, a block to the use of virus vector systems in neurobiology is often the lack of cell-specific expression of the gene within the nervous system, and the immune and inflammatory responses to both the virus vector and the delivered gene. We have generated an adeno-associated virus vector that exploits the restricted expression pattern of the rat preprotachykinin-A promoter to support reporter gene expression. We demonstrate that this virus has a neuronal-specific expression pattern. Moreover, it is shown for the first time that the proximal rat preprotachykinin-A promoter is nerve growth factor inducible. This virus will be a useful tool to (i) modify neuronal phenotype by expressing therapeutic molecules or antisense nucleic acid and (ii) dissect the signal transduction pathways that regulate promoter function in vivo.
Collapse
Affiliation(s)
- P T Harrison
- Department of Veterinary Pathology, The University of Edinburgh, Summerhall, UK
| | | | | | | |
Collapse
|
141
|
Pfützner W, Hengge UR, Joari MA, Foster RA, Vogel JC. Selection of keratinocytes transduced with the multidrug resistance gene in an in vitro skin model presents a strategy for enhancing gene expression in vivo. Hum Gene Ther 1999; 10:2811-21. [PMID: 10584927 DOI: 10.1089/10430349950016546] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In gene therapy studies, achieving prolonged, high-level gene expression in a significant percentage of cells has been difficult. One solution to enhance expression would be to select for cells expressing both the desired gene and a linked selectable marker gene in a bicistronic vector. As a potential target tissue, the skin is easily accessible for safe topical application of a selecting agent that could lead to significant gene expression in a high percentage of keratinocytes. To test the feasibility of such an approach, a skin raft culture model was developed. Human keratinocytes were transduced with the multidrug resistance (MDR) gene, which confers resistance to a variety of cytostatic and antimitotic compounds, such as colchicine. While growing on acellular dermis, transduced keratinocytes were treated with various doses of colchicine (10-50 ng/ml). Colchicine treatment increased the percentage of keratinocytes expressing MDR to almost 100% in raft cultures, Significantly, keratinocytes in colchicine-treated, MDR-transduced raft cultures were able to proliferate normally and form a stratified, differentiated epidermis. This model suggests that topical selection for MDR-expressing keratinocytes in vivo should be feasible without hampering the biologic integrity of skin. Thus, topical selection leading to enhanced expression of a desired gene, linked to a resistance gene, holds future promise for skin gene therapy.
Collapse
Affiliation(s)
- W Pfützner
- Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1908, USA.
| | | | | | | | | |
Collapse
|
142
|
Navarro V, Millecamps S, Geoffroy MC, Robert JJ, Valin A, Mallet J, Gal La Salle GL. Efficient gene transfer and long-term expression in neurons using a recombinant adenovirus with a neuron-specific promoter. Gene Ther 1999; 6:1884-92. [PMID: 10602384 DOI: 10.1038/sj.gt.3301008] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adenoviruses are highly efficient vectors for gene transfer into brain cells. Restricting transgene expression to specific cell types and maintaining long-term expression are major goals for gene therapy in the central nervous system. We targeted gene expression to neurons by constructing an adenoviral vector that expressed the E. coli LacZ reporter gene under the control of the rat neuron-specific enolase promoter (Ad-NSE). Expression from Ad-NSE was compared with that from an adenoviral vector encoding the same reporter gene under the control of the Rous sarcoma virus LTR promoter (Ad-RSV). Both recombinant adenoviruses were injected stereotactically into rat hippocampus, cerebellum and striatum. Anatomical and immunohistochemical analyses of the Ad-NSE-stained cells showed that neurons were preferentially transduced. More neurons were stained in the hippocampus following infection with Ad-NSE than with Ad-RSV. Cytotoxicity from Ad-NSE was lower than from Ad-RSV. beta-Galactosidase gene expression after Ad-NSE infection remained stable for 3(1/2) months, and was detectable for 6 months. Thus, the NSE-adenoviral vector can be used to transfer potentially therapeutic genes into neuronal cells. The use of a cell-specific promoter also resulted in high in vivo efficiency and long-term transgene expression.
Collapse
Affiliation(s)
- V Navarro
- Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, Bâtiment CERVI, Hôpital de la Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
143
|
Blaveri K, Heslop L, Yu DS, Rosenblatt JD, Gross JG, Partridge TA, Morgan JE. Patterns of repair of dystrophic mouse muscle: studies on isolated fibers. Dev Dyn 1999; 216:244-56. [PMID: 10590476 DOI: 10.1002/(sici)1097-0177(199911)216:3<244::aid-dvdy3>3.0.co;2-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Repair of damaged skeletal muscle fibers by muscle precursor cells (MPC) is central to the regeneration that occurs after injury or disease of muscle and is vital to the success of myoblast transplantation to treat inherited myopathies. However, we lack a detailed knowledge of the mechanisms of this muscle repair. Here, we have used a novel combination of techniques to study this process, marking MPC with nuclear-localizing LacZ and tracing their contribution to regeneration of muscle fibers after grafting into preirradiated muscle of the mdx nu/nu mouse. In this model system, there is muscle degeneration, but little or no regeneration from endogenous MPC. Incorporation of donor MPC into injected muscles was analyzed by preparing single viable muscle fibers at various times after cell implantation. Fibers were either stained immediately for beta-gal, or cultured to allow their associated satellite cells to migrate from the fiber and then stained for beta-gal. Marked myonuclei were located in discrete segments of host muscle fibers and were not incorporated preferentially at the ends of the fibers. All branches on host fibers were also found to be composed of myonuclei carrying the beta-gal marker. There was no significant movement of donor myonuclei within myofibers for up to 7 weeks after MPC implantation. Although donor-derived dystrophin was usually located coincidentally with donor myonuclei, in some fibers, the dystrophin protein had spread further along the mosaic myofibers than had the myonuclei of donor origin. In addition to repairing segments of the host fiber, the implanted MPC also gave rise to satellite cells, which may contribute to future muscle repair.
Collapse
Affiliation(s)
- K Blaveri
- MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, England
| | | | | | | | | | | | | |
Collapse
|
144
|
McPherson SW, Roberts JP, Gregerson DS. Systemic Expression of Rat Soluble Retinal Antigen Induces Resistance to Experimental Autoimmune Uveoretinitis. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.8.4269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
To assess the role of sequestration in the maintenance of the immune privilege of the retina, retrovirally mediated gene transfer was used to express a defined, specific retinal autoantigen, rat soluble retinal Ag (S-Ag), in a systemic, nonsequestered manner. In this study we report the stable, long term transduction of rat retinal S-Ag into PBMC. Tolerance to S-Ag was assayed by challenging the S-Ag chimeric animals with S-Ag peptides in CFA and monitoring the time course and severity of experimental autoimmune uveoretinitis (EAU). The resulting data showed a correlation between the incidence of S-Ag chimerism and the loss of susceptibility to EAU. The development of resistance to EAU induction supports the hypothesis that Ag sequestration contributes to retinal immune privilege.
Collapse
Affiliation(s)
- Scott W. McPherson
- Department of Ophthalmology, University of Minnesota, Minneapolis, MN 55455
| | - Josh P. Roberts
- Department of Ophthalmology, University of Minnesota, Minneapolis, MN 55455
| | - Dale S. Gregerson
- Department of Ophthalmology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
145
|
Kügler S, Klöcker N, Kermer P, Isenmann S, Bähr M. Transduction of axotomized retinal ganglion cells by adenoviral vector administration at the optic nerve stump: an in vivo model system for the inhibition of neuronal apoptotic cell death. Gene Ther 1999; 6:1759-67. [PMID: 10516726 DOI: 10.1038/sj.gt.3301000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Axotomy of the rat optic nerve leads to apoptotic cell death of retinal ganglion cells (RGCs). We have used adenoviral vectors to transduce RGCs from the cut optic nerve stump, a paradigm in which only those neurons are transduced which are directly affected by the axonal lesion. Transgenes encoded by the vectors were p35 and CrmA, which are potent intracellular anti-apoptotic proteins. We found that p35, but not CrmA exerted significant rescue effects on RGCs 14 days after axotomy. Expression of the transgenes was driven by the murine CMV (MCMV) promoter. The respective mRNAs were detectable 7 days but not 14 days after transduction. Since surviving RGCs were present beyond the time-point of detectable transcription of the p35 transgene, we conclude that apoptosis has been efficiently inhibited. In addition, we observed that transduction with two control vectors without a transgene in E1 also resulted in a minor but significant RGC rescue, implicating neuroprotective effects due to adenoviral transduction itself. This system will be useful in dissecting the pathways leading to neuronal cell death after axonal lesions and in the evaluation of the important question whether the cellular suicide program can be reverted to survival by therapeutic gene delivery.
Collapse
Affiliation(s)
- S Kügler
- University of Tuebingen, Medical School, Department of Neurology, Tuebingen, Germany
| | | | | | | | | |
Collapse
|
146
|
Gene therapy for Parkinson's disease: review and update. Expert Opin Investig Drugs 1999; 8:1551-1564. [PMID: 11139810 DOI: 10.1517/13543784.8.10.1551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene transfer technology is under exploration to find therapies for the treatment of Parkinson's disease (PD) and other neurodegenerative disorders. The technology of genetic transfer can also be used as a neurobiological tool to understand the role of various genes in animal models of neurodegeneration. We describe the general approaches to gene therapy for neurodegeneration, with specific attention to commonly used methodologies. Current gene therapy models for PD are then described in two parts: genetic transfer of the biosynthetic enzymes for dopamine synthesis, and genetic transfer of the genes encoding neurotrophic factors protective for dopaminergic neurones. Future strategies for the genetic treatment of PD, such as the introduction of genes to prevent apoptosis or to detoxify free radical species are also discussed. Limitations of current approaches, such as the length and regulation of transgene expression, as well as strategies to overcome those limitations, are emphasised where possible. Gene therapy remains a promising but as yet theoretical approach to the treatment of PD in humans. However, current results in animal models predict eventual therapeutic applications.
Collapse
|
147
|
Pollok KE, van der Loo JC, Cooper RJ, Kennedy L, Williams DA. Costimulation of transduced T lymphocytes via T cell receptor-CD3 complex and CD28 leads to increased transcription of integrated retrovirus. Hum Gene Ther 1999; 10:2221-36. [PMID: 10498253 DOI: 10.1089/10430349950017202] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Primary human T lymphocytes were transduced at high efficiency with the Moloney murine leukemia virus (Mo-MuLV) vector, LNC-mB7-1, in which an internal cytomegalovirus (CMV) promoter drives expression of the murine B7-1 cDNA. Compared with transduced T cells expanded in IL-2 or reactivated with soluble antibodies to CD3 or CD28, transgene expression was significantly increased after activation on immobilized anti-CD3 antibodies (CD3i) or by simultaneous activation on immobilized anti-CD3 and anti-CD28 antibodies (CD3i/CD28i). A similar pattern of transgene expression was observed in T cells transduced with Mo-MuLV LNC-EGFP. Proviral copy number was maintained in LNC-mB7-1-transduced T cells expanded in IL-2 or reactivated on CD3i/CD28i. Substantial increases in LNC-mB7-1 steady state mRNA in reactivated T lymphocytes, compared with those maintained in IL-2, correlated with increased transcription of the LNC-mB7-1 proviral DNA. Furthermore, T cells transduced with the Mo-MuLV ZIPPGK-mADA, in which the mADA cDNA is driven by an internal human phosphoglycerate kinase (PGK) promoter, showed increases in steady state ZIPPGK-mADA RNA on reactivation. High levels of transgene expression were evident irrespective of cell cycle position in both CD4+ and CD8+ lymphocytes. After reactivation, increases in LNC-mB7-1 mRNA were observed in the presence of the protein synthesis inhibitor cycloheximide, indicating that proteins involved in upregulating transgene expression preexisted in transduced lymphocytes. Induction of transgene expression on CD3i/CD28i showed a dose-dependent decrease in transgene expression when incubated with selective protein kinase inhibitors. These data provide new insights into the mechanisms governing transgene expression driven by Mo-MuLV constructs containing internal promoters in transduced primary T lymphocytes.
Collapse
Affiliation(s)
- K E Pollok
- Section of Pediatric Hematology/Oncology, Herman B Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | |
Collapse
|
148
|
Asahi K, Mizutani H, Tanaka M, Miura M, Yamanaka K, Matsushima K, Nakashima K, Shimizu M. Intradermal transfer of caspase-1 (CASP1) DNA into mouse dissects: role of CASP1 in interleukin-1beta associated skin inflammation and apoptotic cell death. J Dermatol Sci 1999; 21:49-58. [PMID: 10468192 DOI: 10.1016/s0923-1811(99)00013-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Caspase-1 (CASP1) interleukin-1beta (IL-1beta) converting enzyme (ICE) has been cloned as a specific enzyme which activates the biologically inactive pro-form of IL-1beta into biological active IL-1beta. Based on the significant homology to Ced-3, Caenorhabditis elegans apoptotic gene and, proof of apoptotic activity of ICE in rat fibroblasts, ICE was renamed as CASP1. In contrast to in vitro functions, the in vivo significance of high expression of CASP1 in skin remains to be elucidated. We transferred plasmid DNA encoding murine CASP1 with beta-actin promoter into mouse skin. The CASP1 DNA-injected skin, but not skin injected with control plasmid without CASP1, developed localized erythema with subcutaneous nodules. The nodules were associated with marked inflammatory infiltrates. The apoptotic cells detected by the TUNEL method were distributed in and around the inflammatory foci. The plasma IL-1beta level of CASP1 DNA-injected mouse was elevated compared with that of the control DNA-injected mouse. These inflammatory reactions of CASP1 DNA-injected skin were suppressed by treatment with neutralizing anti-murine IL-1beta antibodies, but the TUNEL positive apoptotic cells were still detected. This study clearly demonstrate dual roles of CASP1 in causing IL-1beta associated granulomatous skin infiltration and inducing apoptotic cell death in vivo.
Collapse
Affiliation(s)
- K Asahi
- Department of Dermatology, Mie University, Faculty of Medicine, Tsu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Mansbridge JN, Liu K, Pinney RE, Patch R, Ratcliffe A, Naughton GK. Growth factors secreted by fibroblasts: role in healing diabetic foot ulcers. Diabetes Obes Metab 1999; 1:265-79. [PMID: 11225638 DOI: 10.1046/j.1463-1326.1999.00032.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- J N Mansbridge
- Advanced Tissue Sciences, Inc., La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
150
|
Foster GA, Stringer BM. Genetic regulatory elements introduced into neural stem and progenitor cell populations. Brain Pathol 1999; 9:547-67. [PMID: 10416993 PMCID: PMC8098454 DOI: 10.1111/j.1750-3639.1999.tb00541.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The genetic manipulation of neural cells has advantage in both basic biology and medicine. Its utility has provided a clearer understanding of how the survival, connectivity, and chemical phenotype of neurones is regulated during, and after, embryogenesis. Much of this achievement has come from the recent generation by genetic means of reproducible and representative supplies of precursor cells which can then be analyzed in a variety of paradigms. Furthermore, advances made in the clinical use of transplantation for neurodegenerative disease have created a demand for an abundant, efficacious and safe supply of neural cells for grafting. This review describes how genetic methods, in juxtaposition to epigenetic means, have been used advantageously to achieve this goal. In particular, we detail how gene transfer techniques have been developed to enable cell immortalization, manipulation of cell differentiation and commitment, and the controlled selection of cells for purification or safety purposes. In addition, it is now also possible to genetically modify antigen presentation on cell surfaces. Finally, there is detailed the transfer of therapeutic products to discrete parts of the central nervous system (CNS), using neural cells as elegant and sophisticated delivery vehicles. In conclusion, once the epigenetic and genetic controls over neural cell production, differentiation and death have been more fully determined, providing a mixture of hard-wired elements and more flexibly expressed characteristics becomes feasible. Optimization of the contributions and interactions of these two controlling systems should lead to improved cell supplies for neurotransplantation.
Collapse
Affiliation(s)
- G A Foster
- Cardiff School of Biosciences, University of Wales, UK.
| | | |
Collapse
|