101
|
Shiraki A, Saito F, Akane H, Takeyoshi M, Imatanaka N, Itahashi M, Yoshida T, Shibutani M. Expression alterations of genes on both neuronal and glial development in rats after developmental exposure to 6-propyl-2-thiouracil. Toxicol Lett 2014; 228:225-34. [PMID: 24780913 DOI: 10.1016/j.toxlet.2014.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 04/19/2014] [Accepted: 04/20/2014] [Indexed: 12/31/2022]
Abstract
The present study was performed to determine target gene profiles associated with pathological mechanisms of developmental neurotoxicity. For this purpose, we selected a rat developmental hypothyroidism model because thyroid hormones play an essential role in both neuronal and glial development. Region-specific global gene expression analysis was performed at postnatal day (PND) 21 on four brain regions representing different structures and functions, i.e., the cerebral cortex, corpus callosum, dentate gyrus and cerebellar vermis of rats exposed to 6-propyl-2-thiouracil in the drinking water at 3 and 10ppm from gestational day 6 to PND 21. Expression changes of gene clusters of neuron differentiation and development, cell migration, synaptic function, and axonogenesis were detected in all four regions. Characteristically, gene expression profiles suggestive of affection of ephrin signaling and glutamate transmission were obtained in multiple brain regions. Gene clusters suggestive of suppression of myelination and glial development were specifically detected in the corpus callosum and cerebral cortex. Immunohistochemically, immature astrocytes immunoreactive for vimentin and glial fibrillary acidic protein were increased, and oligodendrocytes immunoreactive for oligodendrocyte lineage transcription factor 2 were decreased in the corpus callosum. Immunoreactive intensity of myelin basic protein was also decreased in the corpus callosum and cerebral cortex. The hippocampal dentate gyrus showed downregulation of Ptgs2, which is related to synaptic activity and neurogenesis, as well as a decrease of cyclooxygenase-2-immunoreactive granule cells, suggesting an impaired synaptic function related to neurogenesis. These results suggest that multifocal brain region-specific microarray analysis can determine the affection of neuronal or glial development.
Collapse
Affiliation(s)
- Ayako Shiraki
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Fumiyo Saito
- Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Hirotoshi Akane
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Masahiro Takeyoshi
- Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Nobuya Imatanaka
- Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Megu Itahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
102
|
Golovko T, Min R, Lozovaya N, Falconer C, Yatsenko N, Tsintsadze T, Tsintsadze V, Ledent C, Harvey RJ, Belelli D, Lambert JJ, Rozov A, Burnashev N. Control of Inhibition by the Direct Action of Cannabinoids on GABAAReceptors. Cereb Cortex 2014; 25:2440-55. [DOI: 10.1093/cercor/bhu045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
103
|
Donahue MJ, Rane S, Hussey E, Mason E, Pradhan S, Waddell KW, Ally BA. γ-Aminobutyric acid (GABA) concentration inversely correlates with basal perfusion in human occipital lobe. J Cereb Blood Flow Metab 2014; 34:532-41. [PMID: 24398941 PMCID: PMC3948135 DOI: 10.1038/jcbfm.2013.231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/14/2013] [Accepted: 12/03/2013] [Indexed: 01/03/2023]
Abstract
Commonly used neuroimaging approaches in humans exploit hemodynamic or metabolic indicators of brain function. However, fundamental gaps remain in our ability to relate such hemo-metabolic reactivity to neurotransmission, with recent reports providing paradoxical information regarding the relationship among basal perfusion, functional imaging contrast, and neurotransmission in awake humans. Here, sequential magnetic resonance spectroscopy (MRS) measurements of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA+macromolecules normalized by the complex N-acetyl aspartate-N-acetyl aspartyl glutamic acid: [GABA(+)]/[NAA-NAAG]), and magnetic resonance imaging (MRI) measurements of perfusion, fractional gray-matter volume, and arterial arrival time (AAT) are recorded in human visual cortex from a controlled cohort of young adult male volunteers with neurocognitive battery-confirmed comparable cognitive capacity (3 T; n=16; age=23±3 years). Regression analyses reveal an inverse correlation between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.46; P=0.037), yet no relationship between AAT and [GABA(+)]/[NAA-NAAG] (R=-0.12; P=0.33). Perfusion measurements that do not control for AAT variations reveal reduced correlations between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.13; P=0.32). These findings largely reconcile contradictory reports between perfusion and inhibitory tone, and underscore the physiologic origins of the growing literature relating functional imaging signals, hemodynamics, and neurotransmission.
Collapse
Affiliation(s)
- Manus J Donahue
- 1] Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA [2] Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA [3] Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA [4] Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| | - Swati Rane
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Erin Hussey
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Emily Mason
- 1] Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA [2] Department of Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Subechhya Pradhan
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kevin W Waddell
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Brandon A Ally
- 1] Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA [2] Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
104
|
KANO M. Control of synaptic function by endocannabinoid-mediated retrograde signaling. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2014; 90:235-250. [PMID: 25169670 PMCID: PMC4237895 DOI: 10.2183/pjab.90.235] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/30/2014] [Indexed: 06/03/2023]
Abstract
Since the first reports in 2001, great advances have been made towards the understanding of endocannabinoid-mediated synaptic modulation. Electrophysiological studies have revealed that one of the two major endocannabinoids, 2-arachidonoylglycerol (2-AG), is produced from membrane lipids upon postsynaptic Ca(2+) elevation and/or activation of Gq/11-coupled receptors, and released from postsynaptic neurons. The released 2-AG then acts retrogradely onto presynaptic cannabinoid CB1 receptors and induces suppression of neurotransmitter release either transiently or persistently. These forms of 2-AG-mediated retrograde synaptic modulation are functional throughout the brain. The other major endocannabinoid, anandamide, mediates a certain form of endocannabinoid-mediated long-term depression (LTD). Anandamide also functions as an agonist for transient receptor potential vanilloid receptor type 1 (TRPV1) and mediates endocannabinoid-independent and TRPV1-dependent forms of LTD. It has also been demonstrated that the endocannabinoid system itself is plastic, which can be either up- or down-regulated by experimental or environmental conditions. In this review, I will make an overview of the mechanisms underlying endocannabinoid-mediated synaptic modulation.
Collapse
Affiliation(s)
- Masanobu KANO
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
105
|
Kim SF. The Nitric Oxide-Mediated Regulation of Prostaglandin Signaling in Medicine. VITAMINS & HORMONES 2014; 96:211-45. [DOI: 10.1016/b978-0-12-800254-4.00009-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
106
|
Kelso ML, Gendelman HE. Bridge between neuroimmunity and traumatic brain injury. Curr Pharm Des 2014; 20:4284-4298. [PMID: 24025052 PMCID: PMC4135046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/05/2013] [Indexed: 06/02/2023]
Abstract
The pathophysiology of degenerative, infectious, inflammatory and traumatic diseases of the central nervous system includes a significant immune component. As to the latter, damage to the cerebral vasculature and neural cell bodies, caused by traumatic brain injury (TBI) activates innate immunity with concomitant infiltration of immunocytes into the damaged nervous system. This leads to proinflammatory cytokine and prostaglandin production and lost synaptic integrity and more generalized neurotoxicity. Engagement of adaptive immune responses follows including the production of antibodies and lymphocyte proliferation. These affect the tempo of disease along with tissue repair and as such provide a number of potential targets for pharmacological treatments for TBI. However, despite a large body of research, no such treatment intervention is currently available. In this review we will discuss the immune response initiated following brain injuries, drawing on knowledge gained from a broad array of experimental and clinical studies. Our discussion seeks to address potential therapeutic targets and propose ways in which the immune system can be controlled to promote neuroprotection.
Collapse
Affiliation(s)
| | - Howard E Gendelman
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6045.
| |
Collapse
|
107
|
An Y, Belevych N, Wang Y, Zhang H, Herschman H, Chen Q, Quan N. Neuronal and nonneuronal COX-2 expression confers neurotoxic and neuroprotective phenotypes in response to excitotoxin challenge. J Neurosci Res 2013; 92:486-95. [PMID: 24375716 DOI: 10.1002/jnr.23317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 01/17/2023]
Abstract
Treating acute brain injuries with COX-2 inhibitors can produce both neuroprotective and neurotoxic effects. This study investigated the role of COX-2 in modulating acute brain injury induced by excitotoxic neural damage. Intrastriatal injection of excitotoxin (RS)-(tetrazole-5yl) glycine elicited COX-2 expression in two distinct groups of cells. cortical neurons surrounding the lesion and vascular cells in the lesion core. The vascular COX-2 was expressed in two cell types, endothelial cells and monocytes. Selective deletion of COX-2 in vascular cells in Tie2Cre Cox-2(flox/flox) mice did not affect the induction of COX-2 in neurons after the excitotoxin injection but resulted in increased lesion volume, indicating a neuroprotective role for the COX-2 expressed in the vascular cells. Selective deletion of monocyte COX-2 in LysMCre Cox-2(flox/flox) mice did not reduce COX-2-dependent neuroprotection, suggesting that endothelial COX-2 is sufficient to confer neuroprotection. Pharmacological inhibition of COX-2 activity in Tie2Cre Cox-2(flox/flox) mice reduced lesion volume, indicating a neurotoxic role for the COX-2 expressed in neurons. Furthermore, COX-2-dependent neurotoxicity was mediated, at least in part, via the activation of the EP1 receptor. These results show that Cox-2 expression induced in different cell types can confer opposite effects.
Collapse
Affiliation(s)
- Ying An
- Institute for Behavior Medicine Research, The Ohio State University, Columbus, Ohio; Department of Oral Biology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | | | | | | | | | | | | |
Collapse
|
108
|
Rojas A, Jiang J, Ganesh T, Yang MS, Lelutiu N, Gueorguieva P, Dingledine R. Cyclooxygenase-2 in epilepsy. Epilepsia 2013; 55:17-25. [PMID: 24446952 DOI: 10.1111/epi.12461] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2013] [Indexed: 12/14/2022]
Abstract
Epilepsy is one of the more prevalent neurologic disorders in the world, affecting approximately 50 million people of different ages and backgrounds. Epileptic seizures propagating through both lobes of the forebrain can have permanent debilitating effects on a patient's cognitive and somatosensory brain functions. Epilepsy, defined by the sporadic occurrence of spontaneous recurrent seizures (SRS), is often accompanied by inflammation of the brain. Pronounced increases in the expression of key inflammatory mediators (e.g., interleukin -1β [IL-1β], tumor necrosis factor alpha [TNFα], cyclooxygenase-2 [COX-2], and C-X-C motif chemokine 10 [CXCL10]) after seizures may cause secondary damage in the brain and increase the likelihood of repetitive seizures. The COX-2 enzyme is induced rapidly during seizures. The increased level of COX-2 in specific areas of the epileptic brain can help to identify regions of seizure-induced brain inflammation. A good deal of effort has been expended to determine whether COX-2 inhibition might be neuroprotective and represent an adjunct therapeutic strategy along with antiepileptic drugs used to treat epilepsy. However, the effectiveness of COX-2 inhibitors on epilepsy animal models appears to depend on the timing of administration. With all of the effort placed on making use of COX-2 inhibitors as therapeutic agents for the treatment of epilepsy, inflammation, and neurodegenerative diseases there has yet to be a selective and potent COX-2 inhibitor that has shown a clear therapeutic outcome with acceptable side effects.
Collapse
Affiliation(s)
- Asheebo Rojas
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | | | | | | | | | | | | |
Collapse
|
109
|
McGeer PL, McGeer EG. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol 2013; 126:479-97. [PMID: 24052108 DOI: 10.1007/s00401-013-1177-7] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 12/14/2022]
Abstract
The amyloid cascade hypothesis is widely accepted as the centerpiece of Alzheimer disease (AD) pathogenesis. It proposes that abnormal production of beta amyloid protein (Abeta) is the cause of AD and that the neurotoxicity is due to Abeta itself or its oligomeric forms. We suggest that this, in itself, cannot be the cause of AD because demonstrating such toxicity requires micromolar concentrations of these Abeta forms, while their levels in brain are a million times lower in the picomolar range. AD probably results from the inflammatory response induced by extracellular Abeta deposits, which later become enhanced by aggregates of tau. The inflammatory response, which is driven by activated microglia, increases over time as the disease progresses. Disease-modifying therapeutic attempts to date have failed and may continue to do so as long as the central role of inflammation is not taken into account. Multiple epidemiological and animal model studies show that NSAIDs, the most widely used antiinflammatory agents, have a substantial sparing effect on AD. These studies provide a proof of concept regarding the anti-inflammatory approach to disease modification. Biomarker studies have indicated that early intervention may be necessary. They have established that disease onset occurs more than a decade before it becomes clinically evident. By combining biomarker and pathological data, it is possible to define six phases of disease development, each separated by about 5 years. Phase one can be identified by decreases in Abeta in the CSF, phase 2 by increases of tau in the CSF plus clear evidence of Abeta brain deposits by PET scanning, phase 3 by slight decreases in brain metabolic rate by PET-FDG scanning, phase 4 by slight decreases in brain volume by MRI scanning plus minimal cognitive impairment, phase 5 by increased scanning abnormalities plus clinical diagnosis of AD, and phase 6 by advanced AD requiring institutional care. Utilization of antiinflammatory agents early in the disease process remains an overlooked therapeutic opportunity. Such agents, while not preventative, have the advantage of being able to inhibit the consequences of both Abeta and tau aggregation. Since there is more than a decade between disease onset and cognitive decline, a window of opportunity exists to introduce truly effective disease-modifying regimens. Taking advantage of this opportunity is the challenge for the future.
Collapse
Affiliation(s)
- Patrick L McGeer
- Kinsmen Laboratory of Neurological Research, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T1Z3, Canada,
| | | |
Collapse
|
110
|
Çolakoğlu S, Aktaş A, Raimondo S, Türkmen AP, Altunkaynak BZ, Odacı E, Geuna S, Kaplan S. Effects of prenatal exposure to diclofenac sodium and saline on the optic nerve of 4- and 20-week-old male rats: a stereological and histological study. Biotech Histochem 2013; 89:136-44. [DOI: 10.3109/10520295.2013.827741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
111
|
Ji B, Kumata K, Onoe H, Kaneko H, Zhang MR, Seki C, Ono M, Shukuri M, Tokunaga M, Minamihisamatsu T, Suhara T, Higuchi M. Assessment of radioligands for PET imaging of cyclooxygenase-2 in an ischemic neuronal injury model. Brain Res 2013; 1533:152-62. [PMID: 23973859 DOI: 10.1016/j.brainres.2013.08.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/29/2013] [Accepted: 08/14/2013] [Indexed: 12/12/2022]
Abstract
Cyclooxygenase-2 (COX-2) plays crucial roles in progressive neuronal death in ischemic brain injury. In the present study, we evaluated two radiolabeled COX-2 selective inhibitors, [11C]celecoxib and [11C]rofecoxib, as positron emission tomography (PET) tracers for COX-2 imaging in normal and ischemic mouse brains. We also took advantage of our newly-generated antibody highly selective for mouse COX-2 to prove accumulation of the radioligands in regions enriched with COX-2. In vitro autoradiography demonstrated specific binding of high-concentration [11C]rofecoxib but not [11C]celecoxib to the cerebellum and brain stem of normal brains wherein COX-2 immunoreactivity in neurons was most abundantly observed. Meanwhile, both of these radioligands failed to detect COX-2 expression in PET assays despite their excellent brain permeability. Hypoperfusion-induced ischemia caused marked necrotic neuron death accompanied by gliosis and enhancement of neuronal COX-2 immunoreactivity in the hippocampus. Correspondingly, in vitro autoradiographic binding of [11C]rofecoxib was increased in the injured hippocampus compared to the uninjured contralateral region, but failed in living brains of ischemia model likewise. Our work provides the rationale for monitoring COX-2 as a biomarker reflecting ischemic brain injuries and demonstrates that [11C]rofecoxib, not [11C]celecoxib, is useful for in vitro assays of COX-2, but its affinity would be insufficient for in vivo PET visualization.
Collapse
Affiliation(s)
- Bin Ji
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba, Chiba 263-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Lương KVQ, Nguyen LTH. The role of Beta-adrenergic receptor blockers in Alzheimer's disease: potential genetic and cellular signaling mechanisms. Am J Alzheimers Dis Other Demen 2013; 28:427-39. [PMID: 23689075 PMCID: PMC10852699 DOI: 10.1177/1533317513488924] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
According to genetic studies, Alzheimer's disease (AD) is linked to beta-adrenergic receptor blockade through numerous factors, including human leukocyte antigen genes, the renin-angiotensin system, poly(adenosine diphosphate-ribose) polymerase 1, nerve growth factor, vascular endothelial growth factor, and the reduced form of nicotinamide adenine dinucleotide phosphate. Beta-adrenergic receptor blockade is also implicated in AD due to its effects on matrix metalloproteinases, mitogen-activated protein kinase pathways, prostaglandins, cyclooxygenase-2, and nitric oxide synthase. Beta-adrenergic receptor blockade may also have a significant role in AD, although the role is controversial. Behavioral symptoms, sex, or genetic factors, including Beta 2-adrenergic receptor variants, apolipoprotein E, and cytochrome P450 CYP2D6, may contribute to beta-adrenergic receptor blockade modulation in AD. Thus, the characterization of beta-adrenergic receptor blockade in patients with AD is needed.
Collapse
Affiliation(s)
- Khanh vinh quoc Lương
- Vietnamese American Medical Research Foundation, Westminster, California, CA 92683, USA.
| | | |
Collapse
|
113
|
Vezzani A, Friedman A, Dingledine RJ. The role of inflammation in epileptogenesis. Neuropharmacology 2013; 69:16-24. [PMID: 22521336 PMCID: PMC3447120 DOI: 10.1016/j.neuropharm.2012.04.004] [Citation(s) in RCA: 373] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/19/2012] [Accepted: 04/02/2012] [Indexed: 12/20/2022]
Abstract
One compelling challenge in the therapy of epilepsy is to develop anti-epileptogenic drugs with an impact on the disease progression. The search for novel targets has focused recently on brain inflammation since this phenomenon appears to be an integral part of the diseased hyperexcitable brain tissue from which spontaneous and recurrent seizures originate. Although the contribution of specific proinflammatory pathways to the mechanism of ictogenesis in epileptic tissue has been demonstrated in experimental models, the role of these pathways in epileptogenesis is still under evaluation. We review the evidence conceptually supporting the involvement of brain inflammation and the associated blood-brain barrier damage in epileptogenesis, and describe the available pharmacological evidence where post-injury intervention with anti-inflammatory drugs has been attempted. Our review will focus on three main inflammatory pathways, namely the IL-1 receptor/Toll-like receptor signaling, COX-2 and the TGF-β signaling. The mechanisms underlying neuronal-glia network dysfunctions induced by brain inflammation are also discussed, highlighting novel neuromodulatory effects of classical inflammatory mediators such as cytokines and prostaglandins. The increase in knowledge about a role of inflammation in disease progression, may prompt the use of specific anti-inflammatory drugs for developing disease-modifying treatments. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Laboratory Experimental Neurology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Via G. La Masa 19, 20156 Milano, Italy.
| | | | | |
Collapse
|
114
|
Locus coeruleus stimulation recruits a broad cortical neuronal network and increases cortical perfusion. J Neurosci 2013; 33:3390-401. [PMID: 23426667 DOI: 10.1523/jneurosci.3346-12.2013] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The locus coeruleus (LC), the main source of brain noradrenalin (NA), modulates cortical activity, cerebral blood flow (CBF), glucose metabolism, and blood-brain barrier permeability. However, the role of the LC-NA system in the regulation of cortical CBF has remained elusive. This rat study shows that similar proportions (∼20%) of cortical pyramidal cells and GABA interneurons are contacted by LC-NA afferents on their cell soma or proximal dendrites. LC stimulation induced ipsilateral activation (c-Fos upregulation) of pyramidal cells and of a larger proportion (>36%) of interneurons that colocalize parvalbumin, somatostatin, or nitric oxide synthase compared with pyramidal cells expressing cyclooxygenase-2 (22%, p < 0.05) or vasoactive intestinal polypeptide-containing interneurons (16%, p < 0.01). Concurrently, LC stimulation elicited larger ipsilateral compared with contralateral increases in cortical CBF (52 vs 31%, p < 0.01). These CBF responses were almost abolished (-70%, p < 0.001) by cortical NA denervation with DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride] and were significantly reduced by α- and β-adrenoceptor antagonists (-40%, p < 0.001 and -30%, p < 0.05, respectively). Blockade of glutamatergic or GABAergic neurotransmission with NMDA or GABA(A) receptor antagonists potently reduced the LC-induced hyperemic response (-56%, p < 0.001 or -47%, p < 0.05). Moreover, inhibition of astroglial metabolism (-35%, p < 0.01), vasoactive epoxyeicosatrienoic acids (EETs; -60%, p < 0.001) synthesis, large-conductance, calcium-operated (BK, -52%, p < 0.05), and inward-rectifier (Kir, -40%, p < 0.05) K+ channels primarily impaired the hyperemic response. The data demonstrate that LC stimulation recruits a broad network of cortical excitatory and inhibitory neurons resulting in increased cortical activity and that K+ fluxes and EET signaling mediate a large part of the hemodynamic response.
Collapse
|
115
|
Bishay P, Häussler A, Lim HY, Oertel B, Galve-Roperh I, Ferreirós N, Tegeder I. Anandamide deficiency and heightened neuropathic pain in aged mice. Neuropharmacology 2013; 71:204-15. [PMID: 23597506 DOI: 10.1016/j.neuropharm.2013.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/14/2013] [Accepted: 03/19/2013] [Indexed: 01/06/2023]
Abstract
Damaging of peripheral nerves may result in chronic neuropathic pain for which the likelihood is increased in the elderly. We assessed in mice if age-dependent alterations of endocannabinoids contributed to the heightened vulnerability to neuropathic pain at old age. We assessed nociception, endocannabinoids and the therapeutic efficacy of R-flurbiprofen in young and aged mice in the spared nerve injury model of neuropathic pain. R-flurbiprofen was used because it is able to reduce neuropathic pain in young mice in part by increasing anandamide. Aged mice developed stronger nociceptive hypersensitivity after sciatic nerve injury than young mice. This was associated with low anandamide levels in the dorsal root ganglia, spinal cord, thalamus and cortex, which further decreased after nerve injury. In aged mice, R-flurbiprofen had only weak antinociceptive efficacy and it failed to restore normal anandamide levels after nerve injury. In terms of the mechanisms, we found that fatty acid amide hydrolase (FAAH) which degrades anandamide, was upregulated after nerve injury at both ages, so that this upregulation likely did not account for the age-dependent differences. However, enzymes contributing to oxidative metabolism of anandamide, namely cyclooxygenase-1 and Cyp2D6, were increased in the brain of aged mice, possibly enhancing the oxidative breakdown of anandamide. This may overwhelm the capacity of R-flurbiprofen to restore anandamide homeostasis and may contribute to the heightened risk for neuropathic pain at old age.
Collapse
Affiliation(s)
- Philipp Bishay
- Pharmazentrum Frankfurt, Institute of Clinical Pharmacology, Goethe-University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
116
|
Inhibition of the prostaglandin receptor EP2 following status epilepticus reduces delayed mortality and brain inflammation. Proc Natl Acad Sci U S A 2013; 110:3591-6. [PMID: 23401547 DOI: 10.1073/pnas.1218498110] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prostaglandin E2 is now widely recognized to play critical roles in brain inflammation and injury, although the responsible prostaglandin receptors have not been fully identified. We developed a potent and selective antagonist for the prostaglandin E2 receptor subtype EP2, TG6-10-1, with a sufficient pharmacokinetic profile to be used in vivo. We found that in the mouse pilocarpine model of status epilepticus (SE), systemic administration of TG6-10-1 completely recapitulates the effects of conditional ablation of cyclooxygenase-2 from principal forebrain neurons, namely reduced delayed mortality, accelerated recovery from weight loss, reduced brain inflammation, prevention of blood-brain barrier opening, and neuroprotection in the hippocampus, without modifying seizures acutely. Prolonged SE in humans causes high mortality and morbidity that are associated with brain inflammation and injury, but currently the only effective treatment is to stop the seizures quickly enough with anticonvulsants to prevent brain damage. Our results suggest that the prostaglandin receptor EP2 is critically involved in neuroinflammation and neurodegeneration, and point to EP2 receptor antagonism as an adjunctive therapeutic strategy to treat SE.
Collapse
|
117
|
PGE2 EP1 receptor deletion attenuates 6-OHDA-induced Parkinsonism in mice: old switch, new target. Neurotox Res 2013; 23:260-6. [PMID: 23385625 DOI: 10.1007/s12640-013-9381-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/21/2012] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
Recent experimental data on Parkinson's disease (PD) predicts the critical role of inflammation in the progression of neurodegeneration and the promising preventive effects of nonsteroidal anti-inflammatory drugs (NSAIDs). Previous studies suggest that NSAIDs minimize cyclooxygenase-2 (COX-2) activity and thereby attenuate free radical generation. Prostaglandin E2 (PGE2) is an important product of COX activity and plays an important role in various physiologic and pathophysiologic conditions through its EP receptors (EP1-EP4). Part of the toxic effect of PGE2 in the central nervous system has been reported to be through the EP1 receptor; however, the effect of the EP1 receptor in PD remains elusive. Therefore, in our pursuit to determine if deletion of the PGE2 EP1 receptor will attenuate 6-hydroxy dopamine (6-OHDA)-induced Parkinsonism, mice were given a unilateral 6-OHDA injection into the medial forebrain bundle. We found that apomorphine-induced contralateral rotations were significantly attenuated in the 6-OHDA-lesioned EP1(-/-) mice compared with the 6-OHDA-lesioned WT mice. Quantitative analysis showed significant protection of dopaminergic neurons in the substantia nigra pars compacta of the 6-OHDA-lesioned EP1(-/-) mice. To the best of our knowledge, this is the first in vivo study to implicate the PGE2 EP1 receptor in toxin-induced Parkinsonism. We propose the PGE2 EP1 receptor as a new target to better understand some of the mechanisms leading to PD.
Collapse
|
118
|
Effects of Subchronic Treatment with Ibuprofen and Nimesulide on Spatial Memory and NMDAR Subunits Expression in Aged Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2013; 12:877-85. [PMID: 24523767 PMCID: PMC3920686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several studies point to an important function of cyclooxygenase (COX) and prostaglandin signaling in models of synaptic plasticity which is associated with N-methyl-D-aspartate receptors (NMDARs). Cyclooxygenase gene is suggested to be an immediate early gene that is tightly regulated in neurons by NMDA dependent synaptic activity. Nonsteroid Antiinflammatory Drugs (NSAIDs) exert their antiinflammatory effect by the inhibion of COX have controversial effects on learning and memory. We administered ibuprofen as a non-selective COX-2 inhibitor and nimesulide as a selective COX-2 inhibitor for 8 weeks for determining the cognitive impact of subchronic administration of NSAIDs to aged rats. Wistar albino rats (16 mo, n = 30) were separated into control (n = 10), ibuprofen (n = 10) and nimesulide (n = 10) treated groups. First we evaluated hippocampus-dependent spatial memory in the radial arm maze (RAM) and than we evaluated the expression of the NMDAR subunits, NR2A and NR2B by western blotting to see if their expressions are effected by subchronic administration with these drugs. Ibuprofen and nimesulide treated rats completed the task in a statistically significant shorter time when compared with control group (p < 0.01), but there was no statistically significant difference between groups about choice accuracy data in RAM. Furthermore, no statistically significant difference was detected for the protein expressions of NR2A and NR2B of the subjects. Oral administration of ibuprofen and nimesulide for 8 weeks showed no impairment but partly improved spatial memory.
Collapse
|
119
|
Effect of systemic celecoxib on human meningioma after intracranial transplantation into nude mice. Acta Neurochir (Wien) 2013; 155:173-82. [PMID: 23143216 DOI: 10.1007/s00701-012-1534-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Meningiomas are mostly benign, but they may have a notorious tendency to recur when total resection is not possible. Systemic chemotherapeutical treatment has been largely disappointing. The treatment of meningiomas with the cyclooxygenase-2 (COX-2) inhibitor celecoxib showed inhibitory-growth effects in vitro and in vivo after subcutaneous transplantation into mouse. So far, celecoxib has never been tested in an orthotopic model of meningioma. In this work, we tested the effects of celecoxib on the growth of human benign meningiomas after transplantation into the prefrontal cortex of nude mice after confirming the inhibitory in vitro effect on these cells. METHODS Primary cell cultures were stereotactically implanted into mice and were treated with 0, 750, or 1,500 ppm celecoxib for 3 months. The mice were then killed and blood was analyzed for celecoxib concentration. The mice brains were histologically processed for measurement of tumor volume, COX-2 expression, proliferation index (PI), intratumoral microvessel density (iMVD), and vascular endothelial growth factor (VEGF) expression. RESULTS Treatment with celecoxib had no effect on tumor volume, despite the fact that we found a dose-dependent inhibitory effect on cell cultures and there was a sufficiently high celecoxib concentration in blood plasma and brain tissue. Additionally, celecoxib had neither an effect on COX-2 and VEGF expression nor on the PI and iMVD. CONCLUSIONS Our findings suggest that celecoxib may not be effective on meningioma growth in clinical settings. In general, these results may indicate that the effect of treatment on brain tumors should not only be tested in a heterotopic environment but also in the orthotopic location of these tumors.
Collapse
|
120
|
Härtig W, Michalski D, Seeger G, Voigt C, Donat CK, Dulin J, Kacza J, Meixensberger J, Arendt T, Schuhmann MU. Impact of 5-lipoxygenase inhibitors on the spatiotemporal distribution of inflammatory cells and neuronal COX-2 expression following experimental traumatic brain injury in rats. Brain Res 2012; 1498:69-84. [PMID: 23268351 DOI: 10.1016/j.brainres.2012.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/10/2012] [Accepted: 12/17/2012] [Indexed: 02/05/2023]
Abstract
The inflammatory response following traumatic brain injury (TBI) contributes to neuronal death with poor outcome. Although anti-inflammatory strategies were beneficial in the experimental TBI, clinical translations mostly failed, probably caused by the complexity of involved cells and mediators. We recently showed in a rat model of controlled cortical impact (CCI) that leukotriene inhibitors (LIs) attenuate contusion growth and improve neuronal survival. This study focuses on spatiotemporal characteristics of macrophages and granulocytes, typically involved in inflammatory processes, and neuronal COX-2 expression. Effects of treatment with LIs (Boscari/MK-886), started prior trauma, were evaluated by quantifying CD68(+), CD43(+) and COX-2(+) cells 24h and 72 h post-CCI in the parietal cortex (PC), CA3 region, dentate gyrus (DG) and visual/auditory cortex (v/aC). Correlations were applied to identify intercellular relationships. At 24h, untreated animals showed granulocyte invasion in all regions, decreasing towards 72 h. Macrophages increased from 24h to 72 h post-CCI in PC and v/aC. COX-2(+) neurones showed no temporal changes, except of an increase in the CA3 region at 72 h. Treatment reduced granulocytes at 24h in the pericontusional zone and hippocampus, and macrophages at 72 h in the PC and v/aC. COX-2 expression remained unaffected by LIs, except of time-specific changes in the DG (increase/decrease at 24/72 h). Interrelations confirmed concomitant cellular reactions beyond the initial trauma site. In conclusion, LIs attenuated the cellular inflammatory response following CCI. Future studies have to clarify region-specific effects and explore the potential of a clinically more relevant therapeutic approach applying LIs after CCI.
Collapse
Affiliation(s)
- Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany.
| | - Gudrun Seeger
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Cornelia Voigt
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Cornelius K Donat
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmacy, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig-Site, Permoserstr. 15, 04318 Leipzig, Germany
| | - Julia Dulin
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Johannes Kacza
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Jürgen Meixensberger
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Thomas Arendt
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Martin U Schuhmann
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany; Department of Neurosurgery, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| |
Collapse
|
121
|
Maes M. Targeting cyclooxygenase-2 in depression is not a viable therapeutic approach and may even aggravate the pathophysiology underpinning depression. Metab Brain Dis 2012; 27:405-13. [PMID: 22773310 DOI: 10.1007/s11011-012-9326-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/26/2012] [Indexed: 01/25/2023]
Abstract
Depression is a complex progressive disorder accompanied by activation of inflammatory and Th-1 driven pathways, oxidative and nitrosative stress (O&NS), lowered antioxidant levels, mitochondrial dysfunctions, neuroprogression and increased bacterial translocation. In depression, activation of immuno-inflammatory pathways is associated with an increased risk for cardio-vascular disorder (CVD). Because of the inflammatory component, the use of cyclooxygenase 2 (COX-2) inhibitors, such as celecoxib, has been advocated to treat depression. Electronic databases, i.e. PUBMED, Scopus and Google Scholar were used as sources for this selective review on the effects of COX-2 inhibitors aggravating the abovementioned pathways. COX-2 inhibitors may induce neuroinflammation, exacerbate Th1 driven responses, increase lipid peroxidation, decrease the levels of key antioxidants, damage mitochondria and aggravate neuroprogression. COX-2 inhibitors may aggravate bacterial translocation and CVD through Th1-driven mechanisms. COX-2 inhibitors may aggravate the pathophysiology of depression. Since Th1 and O&NS pathways are risk factors for CVD, the use of COX-2 inhibitors may further aggravate the increased risk for CVD in depression. Selectively targeting COX-2 may not be a viable therapeutic approach to treat depression. Multi-targeting of the different pathways that play a role in depression is more likely to yield good treatment results.
Collapse
Affiliation(s)
- Michael Maes
- Maes Clinics @ TRIA, Piyavate Hospital 998 Rimklongsamsen Road, Bangkok, 10310, Thailand.
| |
Collapse
|
122
|
Dean SL, Knutson JF, Krebs-Kraft DL, McCarthy MM. Prostaglandin E2 is an endogenous modulator of cerebellar development and complex behavior during a sensitive postnatal period. Eur J Neurosci 2012; 35:1218-29. [PMID: 22512254 DOI: 10.1111/j.1460-9568.2012.08032.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prostaglandins are lipid-derived molecules that mediate the generation of fever in the central nervous system. In addition to their proinflammatory role, prostaglandins also impact neuronal development and synaptic plasticity, sometimes in a sex-specific manner. The cerebellum has a high expression of prostaglandin receptors during development, but the role that these molecules play during normal cerebellar maturation is unknown. We demonstrate here that disrupting prostaglandin synthesis with cyclo-oxygenase inhibitors during a time-sensitive window in early postnatal life alters cerebellar Purkinje cell development in rats, resulting in initially increased dendritic growth in both sexes. We show that this results in later cerebellar atrophy in males only, resulting in a sex-specific loss of cerebellar volume. Further, although performance in motor tasks is spared, social interaction and the sensory threshold are altered in males developmentally exposed to cyclo-oxygenase inhibitors. This work demonstrates a previously unknown role for prostaglandins in cerebellar development and emphasizes the role that the cerebellum plays outside motor tasks, in cognitive and sensory domains that may help to explain its connection to complex neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
- Shannon L Dean
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
123
|
Carrero I, Gonzalo M, Martin B, Sanz-Anquela J, Arévalo-Serrano J, Gonzalo-Ruiz A. Oligomers of beta-amyloid protein (Aβ1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1beta, tumour necrosis factor-alpha, and a nuclear factor kappa-B mechanism in the rat brain. Exp Neurol 2012; 236:215-27. [DOI: 10.1016/j.expneurol.2012.05.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 04/22/2012] [Accepted: 05/05/2012] [Indexed: 11/25/2022]
|
124
|
Oláh O, Németh I, Tóth-Szuki V, Bari F, Domoki F. Regional Differences in the Neuronal Expression of Cyclooxygenase-2 (COX-2) in the Newborn Pig Brain. Acta Histochem Cytochem 2012; 45:187-92. [PMID: 22829712 PMCID: PMC3395304 DOI: 10.1267/ahc.11056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 03/21/2012] [Indexed: 11/22/2022] Open
Abstract
Cyclooxygenase (COX)-2 is the major constitutively expressed COX isoform in the newborn brain. COX-2 derived prostanoids and reactive oxygen species appear to play a major role in the mechanism of perinatal hypoxic-ischemic injury in the newborn piglet, an accepted animal model of the human term neonate. The study aimed to quantitatively determine COX-2 immunopositive neurons in different brain regions in piglets under normoxic conditions (n=15), and 4 hours after 10 min asphyxia (n=11). Asphyxia did not induce significant changes in neuronal COX-2 expression of any studied brain areas. In contrast, there was a marked regional difference in all experimental groups. Thus, significant difference was observed between fronto-parietal and temporo-occipital regions: 59±4% and 67±3% versus 41±2%* and 31±3%* respectively (mean±SEM, data are pooled from all subjects, n=26, *p<0.05, vs. fronto-parietal region). In the hippocampus, COX-2 immunopositivity was rare (highest expression in CA1 region: 14±2%). The studied subcortical areas showed negligible COX-2 staining. Our findings suggest that asphyxia does not significantly alter the pattern of neuronal COX-2 expression in the early reventilation period. Furthermore, based on the striking differences observed in cortical neuronal COX-2 distribution, the contribution of COX-2 mediated neuronal injury after asphyxia may also show region-specific differences.
Collapse
Affiliation(s)
- Orsolya Oláh
- Department of Physiology, University of Szeged School of Medicine
- Department of Physiology, University of Szeged School of Medicine
| | - István Németh
- Department of Dermatology and Allergology, University of Szeged School of Medicine
- Department of Dermatology and Allergology, University of Szeged School of Medicine
| | - Valéria Tóth-Szuki
- Department of Physiology, University of Szeged School of Medicine
- Department of Physiology, University of Szeged School of Medicine
| | - Ferenc Bari
- Department of Medical Physics and Informatics, University of Szeged School of Medicine
- Department of Medical Physics and Informatics, University of Szeged School of Medicine
| | - Ferenc Domoki
- Department of Physiology, University of Szeged School of Medicine
- Department of Physiology, University of Szeged School of Medicine
| |
Collapse
|
125
|
EVALUATION OF CYCLOOXYGENASE PROTEIN EXPRESSION IN TRAUMATIZED VERSUS NORMAL TISSUES FROM EASTERN BOX TURTLES (TERRAPENE CAROLINA CAROLINA). J Zoo Wildl Med 2012; 43:289-95. [DOI: 10.1638/2011-0154.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
126
|
Pyramidal cells and cytochrome P450 epoxygenase products in the neurovascular coupling response to basal forebrain cholinergic input. J Cereb Blood Flow Metab 2012; 32:896-906. [PMID: 22293985 PMCID: PMC3345917 DOI: 10.1038/jcbfm.2012.4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activation of the basal forebrain (BF), the primary source of acetylcholine (ACh) in the cortex, broadly increases cortical cerebral blood flow (CBF), a response downstream to ACh release. Although endothelial nitric oxide and cholinoceptive GABA (γ-aminobutyric acid) interneurons have been implicated, little is known about the role of pyramidal cells in this response and their possible interaction with astrocytes. Using c-Fos immunohistochemistry as a marker of neuronal activation and laser-Doppler flowmetry, we measured changes in CBF evoked by BF stimulation following pharmacological blockade of c-Fos-identified excitatory pathways, astroglial metabolism, or vasoactive mediators. Pyramidal cells including those that express cyclooxygenase-2 (COX-2) displayed c-Fos upregulation. Glutamate acting via NMDA, AMPA, and mGlu receptors was involved in the evoked CBF response, NMDA receptors having the highest contribution (~33%). In contrast, nonselective and selective COX-2 inhibition did not affect the evoked CBF response (+0.4% to 6.9%, ns). The metabolic gliotoxins fluorocitrate and fluoroacetate, the cytochrome P450 epoxygenase inhibitor MS-PPOH and the selective epoxyeicosatrienoic acids (EETs) antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE) all blocked the evoked CBF response by ~50%. Together, the data demonstrate that the hyperemic response to BF stimulation is largely mediated by glutamate released from activated pyramidal cells and by vasoactive EETs, likely originating from activated astrocytes.
Collapse
|
127
|
Bazan NG, Eady TN, Khoutorova L, Atkins KD, Hong S, Lu Y, Zhang C, Jun B, Obenaus A, Fredman G, Zhu M, Winkler JW, Petasis NA, Serhan CN, Belayev L. Novel aspirin-triggered neuroprotectin D1 attenuates cerebral ischemic injury after experimental stroke. Exp Neurol 2012; 236:122-30. [PMID: 22542947 DOI: 10.1016/j.expneurol.2012.04.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/05/2012] [Accepted: 04/11/2012] [Indexed: 11/30/2022]
Abstract
Acute ischemic stroke triggers complex neurovascular, neuroinflammatory and synaptic alterations. Aspirin and docosahexaenoic acid (DHA), an omega-3 essential fatty acid family member, have beneficial effects on cerebrovascular diseases. DHA is the precursor of neuroprotectin D1 (NPD1), which downregulates apoptosis and, in turn, promotes cell survival. Here we have tested the effect of aspirin plus DHA administration and discovered the synthesis of aspirin-triggered NPD1 (AT-NPD1) in the brain. Then we performed the total chemical synthesis of this molecule and tested in the setting of 2h middle cerebral artery occlusion (MCAo) in Sprague-Dawley rats. Neurological status was evaluated at 24h, 48 h, 72 h, and 7 days. At 3h post-stroke onset, an intravenous administration of 333 μg/kg of AT-NPD1 sodium salt (AT-NPD1-SS) or methyl-ester (AT-NPD1-ME) or vehicle (saline) as treatment was given. On day 7, ex vivo magnetic resonance imaging (MRI) of the brains was conducted on 11.7 T MRI. T2WI, 3D volumes, and apparent diffusion coefficient (ADC) maps were generated. In addition, infarct volumes and number of GFAP (reactive astrocytes), ED-1 (activated microglia/macrophages) and SMI-71-positive vessels were counted in the cortex and striatum at the level of the central lesion. All animals showed similar values for rectal and cranial temperatures, arterial blood gases, and plasma glucose during and after MCAo. Treatment with both AT-NPD1-SS and AT-NPD1-ME significantly improved neurological scores compared to saline treatment at 24h, 48 h, 72 h and 7 days. Total lesion volumes computed from T2WI images were significantly reduced by both AT-NPD1-SS and AT-NPD1-ME treatment in the cortex (by 44% and 81%), striatum (by 61% and 77%) and total infarct (by 48% and 78%, respectively). Brain edema, computed from T2WI in the cortex (penumbra) and striatum (core), was elevated in the saline group. In contrast, both AT-NPD1 decreased water content in the striatum on day 7. 3D volumes, computed from T2WI, were dramatically reduced with both AT-NPD1 and the lesion was mostly localized in the subcortical areas. Treatment with both AT-NPD1-SS and AT-NPD1-ME significantly reduced cortical (by 76% and 96%), subcortical (by 61% and 70%) and total (69% and 84%, respectively) infarct volumes as defined by histopathology. In conclusion, a novel biosynthetic pathway that leads to the formation of AT-NPD1 mediator in the brain was discovered. In addition, administration of synthetic AT-NPD1, in either its sodium salt or as the methyl ester, was able to attenuate cerebral ischemic injury which leads to a novel approach for pharmaceutical intervention and clinical translation.
Collapse
Affiliation(s)
- Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Armagan G, Kanıt L, Yalcın A. Effects of non-steroidal antiinflammatory drugs on D-serine-induced oxidative stressin vitro. Drug Chem Toxicol 2012; 35:393-8. [DOI: 10.3109/01480545.2011.633086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
129
|
Azimi L, Pourmotabbed A, Ghadami MR, Nedaei SE, Pourmotabbed T. Effects of Peripheral and Intra-hippocampal Administration of Sodium Salicylate on Spatial Learning and Memory of Rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2012; 15:709-18. [PMID: 23493500 PMCID: PMC3586878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 10/01/2011] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Cyclooxygenases (COXs) are known to play some roles in physiological mechanisms related to learning and memory. Since sodium salicylate is an inhibitor of COX, we have evaluated the effect of peripheral and intra-hippocampal administration of sodium salicylate on spatial learning and memory in male rats. MATERIALS AND METHODS Male rats were studied in two groups; the first group received different intraperitoneal (i.p.) sodium salicylate doses (0, 200, 300, and 400 mg/kg) and the second group received intra-hippocampal doses of the drug (0, 30, 50, and 100 μg/0.5 μl/side). The spatial performance of rats was tested using Morris water maze (MWM) task. The spatial learning and memory parameters were analyzed using ANOVA. RESULTS Peripheral and intra-hippocampal administration of sodium salicylate did not lead to a statistically significant change in the mean time (escape latency), and also the distance traveled for finding the hidden platform during the training days, compared with the control group. But at the probe trial, the percentage of time spent in the target quadrant by rats which received the highest doses of drug significantly increased. CONCLUSION We found that both peripheral and intra-hippocampal administration of sodium salicylate facilitates the process of spatial memory consolidation in the MWM.
Collapse
Affiliation(s)
- Leila Azimi
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Neuroscience, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Pourmotabbed
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Rasool Ghadami
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Ershad Nedaei
- Department of Neuroscience, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Targol Pourmotabbed
- Student of Information Technology, Kermanshah University of Technology, Kermanshah, Iran
| |
Collapse
|
130
|
Mullins KB, Thomason JM, Lunsford KV, Pinchuk LM, Langston VC, Wills RW, McLaughlin RM, Mackin AJ. Effects of carprofen, meloxicam and deracoxib on platelet function in dogs. Vet Anaesth Analg 2012; 39:206-17. [DOI: 10.1111/j.1467-2995.2011.00684.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
131
|
Small molecule antagonist reveals seizure-induced mediation of neuronal injury by prostaglandin E2 receptor subtype EP2. Proc Natl Acad Sci U S A 2012; 109:3149-54. [PMID: 22323596 DOI: 10.1073/pnas.1120195109] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
With interest waning in the use of cyclooxygenase-2 (COX-2) inhibitors for inflammatory disease, prostaglandin receptors provide alternative targets for the treatment of COX-2-mediated pathological conditions in both the periphery and the central nervous system. Activation of prostaglandin E2 receptor (PGE(2)) subtype EP2 promotes inflammation and is just beginning to be explored as a therapeutic target. To better understand physiological and pathological functions of the prostaglandin EP2 receptor, we developed a suite of small molecules with a 3-aryl-acrylamide scaffold as selective EP2 antagonists. The 12 most potent compounds displayed competitive antagonism of the human EP2 receptor with K(B) 2-20 nM in Schild regression analysis and 268- to 4,730-fold selectivity over the prostaglandin EP4 receptor. A brain-permeant compound completely suppressed the up-regulation of COX-2 mRNA in rat cultured microglia by EP2 activation and significantly reduced neuronal injury in hippocampus when administered in mice beginning 1 h after termination of pilocarpine-induced status epilepticus. The salutary actions of this novel group of antagonists raise the possibility that selective block of EP2 signaling via small molecules can be an innovative therapeutic strategy for inflammation-related brain injury.
Collapse
|
132
|
Protective effects of ebselen (Ebs) and para-aminosalicylic acid (PAS) against manganese (Mn)-induced neurotoxicity. Toxicol Appl Pharmacol 2012; 258:394-402. [DOI: 10.1016/j.taap.2011.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 11/28/2011] [Accepted: 12/01/2011] [Indexed: 11/23/2022]
|
133
|
Fraites MJP, Wood CE. Chemoreflex activity increases prostaglandin endoperoxide synthase mRNA expression in the late-gestation fetal sheep brain. Reprod Sci 2012; 18:824-31. [PMID: 21846688 DOI: 10.1177/1933719111398499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fetal sheep defend blood pressure, blood volume, and blood gases using baro- and chemoreflexes that influence autonomic and neuroendocrine responses. The local generation of prostanoids within the fetal brain is also an important component in activating hormone responses to these stimuli, but the relationship between the reflexes and prostanoid biosynthesis is unclear. The present study was performed to test the hypothesis that the abundances of prostaglandin biosynthetic enzymes in the fetal brain are dependent upon the activity of the baro- and chemoreflex pathways. We subjected chronically catheterized fetal sheep in late gestation to a 10-minute period of brachiocephalic occlusion (BCO), a stimulus that provokes brisk cardiovascular and neuroendocrine responses. We compared the central nervous system abundance of prostaglandin endoperoxide synthases 1 and 2 (PGHS-1 and PGHS-2) after BCO to (1) fetal sheep that had been subjected to BCO after chronic sinoaortic denervation plus bilateral vagotomy and (2) fetal sheep in which the N-methyl d-aspartate (NMDA) receptor antagonist, ketamine, had been administered prior to BCO. Abundances of messenger RNA (mRNA) for PGHS-1 and of mRNA and protein for PGHS-2 in fetal hippocampus were reduced significantly by either prior denervation or ketamine administration. Prostaglandin endoperoxide synthases 1 and 2 mRNA in pituitary were decreased and increased, respectively, by ketamine pretreatment. The results of this study are consistent with the conclusion that the expression of PGHS-1 and -2 in fetal hippocampus and pituitary are influenced by the baro- and/or chemoreflex pathways within the fetal brain in late gestation.
Collapse
Affiliation(s)
- Melanie J P Fraites
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | |
Collapse
|
134
|
Sevigny MB, Graham K, Ponce E, Louie MC, Mitchell K. Glycosylation of human cyclooxygenase-2 (COX-2) decreases the efficacy of certain COX-2 inhibitors. Pharmacol Res 2012; 65:445-50. [PMID: 22245433 DOI: 10.1016/j.phrs.2012.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 12/30/2011] [Accepted: 01/01/2012] [Indexed: 12/15/2022]
Abstract
Prostanoids play an important role in a variety of physiological and pathophysiological processes including inflammation and cancer. The rate-limiting step in the prostanoid biosynthesis pathway is catalyzed by cyclooxygenase-2 (COX-2). COX-2 exists as two glycoforms, 72 and 74 kDa, the latter resulting from an additional glycosylation at Asn(580). In this study, Asn(580) was mutated, and the mutant and wild-type COX-2 genes were expressed in COS-1 cells to determine how glycosylation affects the inhibition of COX-2 activity by aspirin, flurbiprofen, ibuprofen, celecoxib, and etoricoxib. Results indicate that certain inhibitors were 2-5 times more effective at inhibiting COX-2 activity when the glycosylation site was eliminated, indicating that glycosylation of COX-2 at Asn(580) decreases the efficacy of some inhibitors.
Collapse
Affiliation(s)
- Mary B Sevigny
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, USA.
| | | | | | | | | |
Collapse
|
135
|
Yun CH, Kim JG, Park BS, Lee HM, Kim DH, Kim EO, Park JJ, Park JW, Damante G, Kim YI, Lee BJ. TTF-1 action on the transcriptional regulation of cyclooxygenase-2 gene in the rat brain. PLoS One 2011; 6:e28959. [PMID: 22174936 PMCID: PMC3236776 DOI: 10.1371/journal.pone.0028959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 11/17/2011] [Indexed: 12/04/2022] Open
Abstract
We have recently found that thyroid transcription factor-1 (TTF-1), a homeodomain-containing transcription factor, is postnatally expressed in discrete areas of the hypothalamus and closely involved in neuroendocrine functions. We now report that transcription of cyclooxygenase-2 (COX-2), the rate limiting enzyme in prostaglandin biosynthesis, was inhibited by TTF-1. Double immunohistochemistry demonstrated that TTF-1 was expressed in the astrocytes and endothelial cells of blood vessel in the hypothalamus. Promoter assays and electrophoretic mobility shift assays showed that TTF-1 inhibited COX-2 transcription by binding to specific binding domains in the COX-2 promoter. Furthermore, blocking TTF-1 synthesis by intracerebroventricular injection of an antisense oligomer induced an increase of COX-2 synthesis in non-neuronal cells of the rat hypothalamus, and resulted in animals' hyperthermia. These results suggest that TTF-1 is physiologically involved in the control of thermogenesis by regulating COX-2 transcription in the brain.
Collapse
Affiliation(s)
- Chang Ho Yun
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Jae Geun Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Byong Seo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Hye Myeong Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Dong Hee Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Eun Ok Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Joong Jean Park
- Department of Physiology, College of Medicine, Korea University, Seoul, South Korea
| | - Jeong Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Giuseppe Damante
- Department of Biomedical Sciences and Technologies, University of Udine, Udine, Italy
| | - Young Il Kim
- Department of Internal Medicine, Ulsan University Hospital, Ulsan, South Korea
- * E-mail: (YIK); (BJL)
| | - Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
- * E-mail: (YIK); (BJL)
| |
Collapse
|
136
|
Segi-Nishida E. Exploration of new molecular mechanisms for antidepressant actions of electroconvulsive seizure. Biol Pharm Bull 2011; 34:939-44. [PMID: 21719995 DOI: 10.1248/bpb.34.939] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electroconvulsive seizure (ECS) therapy is a clinically proven treatment for depression and is often effective even in patients resistant to chemical antidepressants. However, the molecular mechanisms underlying the therapeutic efficacy of ECS are not fully understood. Here, I review studies that show molecular, cellular, and behavioral changes by ECS treatment, and discuss the functions of ECS to underlie the action of antidepressant effects. In hippocampus, these changes cover gene induction, increased adult neurogenesis, and electrophysiological reactivity. Especially, the role of vascular endothelial growth factor (VEGF) in neurogenesis is discussed. Among other gene expression changes in hippocampus, a role of cyclooxygenase (COX)-2, an inducible type of the rate-limiting enzyme of prostanoid synthesis, is focused. ECS-induced changes in other brain regions such as prefrontal cortex and hypothalamus, and ECS-induced behavioral changes are also reviewed. Understanding the molecular, cellular, and behavioral changes by ECS will provide a new view to find potential targets for novel antidepressant design that are highlighted by these findings.
Collapse
Affiliation(s)
- Eri Segi-Nishida
- Department of Systems Bioscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606–8501, Japan.
| |
Collapse
|
137
|
Synaptic and extrasynaptic NMDA receptors differentially modulate neuronal cyclooxygenase-2 function, lipid peroxidation, and neuroprotection. J Neurosci 2011; 31:13710-21. [PMID: 21957234 DOI: 10.1523/jneurosci.3544-11.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Stimulation of synaptic NMDA receptors (NMDARs) induces neuroprotection, while extrasynaptic NMDARs promote excitotoxic cell death. Neuronal expression of cyclooxygenase-2 (COX-2) is enhanced by synaptic NMDARs, and although this enzyme mediates neuronal functions, COX-2 is also regarded as a key modulator of neuroinflammation and is thought to exacerbate excitotoxicity via overproduction of prostaglandins. This raises an apparent paradox: synaptic NMDARs are pro-survival yet are essential for robust neuronal COX-2 expression. We hypothesized that stimulation of extrasynaptic NMDARs converts COX-2 signaling from a physiological to a potentially pathological process. We combined HPLC-electrospray ionization-tandem MS-based mediator lipidomics and unbiased image analysis in mouse dissociated and organotypic cortical cultures to uncover that synaptic and extrasynaptic NMDARs differentially modulate neuronal COX-2 expression and activity. We show that synaptic NMDARs enhance neuronal COX-2 expression, while sustained synaptic stimulation limits COX-2 activity by suppressing cellular levels of the primary COX-2 substrate, arachidonic acid (AA). In contrast, extrasynaptic NMDARs suppress COX-2 expression while activating phospholipase A₂, which enhances AA levels by hydrolysis of membrane phospholipids. Thus, sequential activation of synaptic then extrasynaptic NMDARs maximizes COX-2-dependent prostaglandin synthesis. We also show that excitotoxic events only drive induction of COX-2 expression through abnormal synaptic network excitability. Finally, we show that nonenzymatic lipid peroxidation of arachidonic and other polyunsaturated fatty acids is a function of network activity history. A new paradigm emerges from our results suggesting that pathological COX-2 signaling associated with models of stroke, epilepsy, and neurodegeneration requires specific spatiotemporal NMDAR stimulation.
Collapse
|
138
|
Lu'o'ng KVQ, Nguyên LTH. The beneficial role of vitamin D in Alzheimer's disease. Am J Alzheimers Dis Other Demen 2011; 26:511-20. [PMID: 22202127 PMCID: PMC10845314 DOI: 10.1177/1533317511429321] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly individuals and is associated with progressive neurodegeneration of the human neocortex. Patients with AD have a high prevalence of vitamin D deficiency, which is also associated with low mood and impaired cognitive performance in older people. Genetic studies have provided the opportunity to determine which proteins link vitamin D to AD pathology (ie, the major histocompatibility complex class II molecules, vitamin D receptor, renin-angiotensin system, apolipoprotein E, liver X receptor, Sp1 promoter gene, and the poly(ADP-ribose) polymerase-1 gene). Vitamin D also exerts its effect on AD through nongenomic factors, that is, L-type voltage-sensitive calcium channels, nerve growth factor, the prostaglandins, cyclooxygenase 2, reactive oxygen species, and nitric oxide synthase. In conclusion, vitamin D clearly has a beneficial role in AD and improves cognitive function in some patients with AD. Calcitriol, 1 α,25-dihydroxyvitamin D3, is best used for AD because of its active form of vitamin D(3) metabolite and its receptor in the central nervous system.
Collapse
|
139
|
Neri M, Cantatore S, Pomara C, Riezzo I, Bello S, Turillazzi E, Fineschi V. Immunohistochemical expression of proinflammatory cytokines IL-1β, IL-6, TNF-α and involvement of COX-2, quantitatively confirmed by Western blot analysis, in Wernicke's encephalopathy. Pathol Res Pract 2011; 207:652-658. [PMID: 21930349 DOI: 10.1016/j.prp.2011.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Revised: 05/16/2011] [Accepted: 07/27/2011] [Indexed: 11/27/2022]
Abstract
Selective cerebral vulnerability is a major consequence of Wernicke's encephalopathy (WE), in which focal areas of the brain exhibit symmetrical profound neuronal loss and accompanying gliosis, occurring most frequently in diencephalic regions such as the thalamus and the mammillary bodies. Many processes have been proposed to explain the selective cerebral vulnerability and the focal neuronal cell death in Wernicke's encephalopathy. There are several mechanisms which are common to the pathophysiology of encephalopathies caused by thiamine deficiency (TD). Recently, emphasis is being placed on deficit in mitochondrial oxidative metabolism, oxidative/nitrosative stress, and the release of proinflammatory cytokines such as IL-1β, IL-6, and tumor necrosis factor-α (TNF-α). Cyclooxygenase-2 (COX-2) plays major roles in regulating brain damage and inflammation. Here we present two fatal cases of non-alcohol associated WE. The immunohistochemical study revealed increased proinflammatory cytokine immunoreactivity in the neurons of the mammillary bodies and medial thalamus, and in the periaqueductal regions, compared with basal constitutive levels of expression in the frontal cortex. Positive (WE cases) and negative (immediate trauma deaths) case-controls were used to confirm the results. TD induced IL-1β proteins weakly, while moderate increase was observed for TNF-α and IL-6. Immunofluorescence analysis by confocal microscopy confirmed the staining results for immunoreactivity in WE brains. Further, the induction of proinflammatory cytokine protein expression levels was quantified by Western blot analysis.
Collapse
Affiliation(s)
- Margherita Neri
- Department of Forensic Pathology, University of Foggia, Ospedale Colonnello D'Avanzo, Italy
| | | | | | | | | | | | | |
Collapse
|
140
|
Gaur V, Kumar A. Effect of nonselective and selective COX-2 inhibitors on memory dysfunction, glutathione system, and tumor necrosis factor alpha level against cerebral ischemia reperfusion injury. Drug Chem Toxicol 2011; 35:218-24. [DOI: 10.3109/01480545.2011.589850] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
141
|
Perez-Polo JR, Reilly CB, Rea HC. Oxygen resuscitation after hypoxia ischemia stimulates prostaglandin pathway in rat cortex. Int J Dev Neurosci 2011; 29:639-44. [PMID: 21514373 PMCID: PMC3158954 DOI: 10.1016/j.ijdevneu.2011.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 03/21/2011] [Accepted: 03/29/2011] [Indexed: 12/31/2022] Open
Abstract
Exposure to hypoxia and hyperoxia in a rodent model of perinatal ischemia results in delayed cell death and inflammation. Hyperoxia increases oxidative stress that can trigger inflammatory cascades, neutrophil activation, and brain microvascular injury. Here we show that 100% oxygen resuscitation in our rodent model of perinatal ischemia increases cortical COX-2 protein levels, S-nitrosylated COX-2cys526, PGE2, iNOS and 5-LOX, all components of the prostaglandin and leukotriene inflammatory pathway.
Collapse
|
142
|
Differential effects of treadmill exercise on cyclooxygenase-2 in the rat hippocampus at early and chronic stages of diabetes. Lab Anim Res 2011; 27:189-95. [PMID: 21998607 PMCID: PMC3188725 DOI: 10.5625/lar.2011.27.3.189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 08/06/2011] [Accepted: 08/17/2011] [Indexed: 11/21/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is believed to be a multifunctional neural modulator that affects synaptic plasticity in the hippocampus. In the present study, we investigated the differential effects of treadmill exercise on COX-2 immunoreactivity in the dentate gyrus in early and chronic diabetic stages in Zucker diabetic fatty (ZDF) rats and lean control (ZLC) rats. To this end, ZLC and ZDF rats at 6 or 23 weeks of age were put on a treadmill with or without running for 1 h/day for 5 consecutive days at 16-22 m/min for 5 weeks or 12-16 m/min for 7 weeks, respectively. Treadmill exercise in prediabetic and chronic diabetic rats significantly reduced blood glucose levels. In particular, exercise in the prediabetic rat blocked the onset of diabetes. COX-2 immunoreactivity was mainly detected in the granule cell layer of the dentate gyrus and stratum pyramidale of the CA3 region in all groups. COX-2 immunoreactivity was significantly increased in these regions of ZLC and ZDF rats after treadmill exercise in the early diabetic stage. However, COX-2 immunoreactivity was not changed in these regions in ZDF rats after treadmill exercise in the chronic stage. These results suggest that treadmill exercise in diabetic animals in the chronic stage has limited ability to cause plasticity in the dentate gyrus.
Collapse
|
143
|
Alonso A, Reinz E, Fatar M, Hennerici MG, Meairs S. Clearance of albumin following ultrasound-induced blood–brain barrier opening is mediated by glial but not neuronal cells. Brain Res 2011; 1411:9-16. [DOI: 10.1016/j.brainres.2011.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/17/2011] [Accepted: 07/05/2011] [Indexed: 01/29/2023]
|
144
|
Kim SF. The role of nitric oxide in prostaglandin biology; update. Nitric Oxide 2011; 25:255-64. [PMID: 21820072 DOI: 10.1016/j.niox.2011.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 07/15/2011] [Accepted: 07/19/2011] [Indexed: 02/06/2023]
Abstract
The biosynthesis of nitric oxide (NO) and prostaglandin share many similarities. Two major forms of nitric oxide synthase (NOS) and cyclooxygenase (COX) have been identified: constitutive versus inducible. In general, the constitutive form functions in housekeeping and physiologic roles whereas the inducible form is up-regulated by mitogenic or inflammatory stimuli and is responsible for pathophysiological responses. The cross talk between the COX and NOS pathways was initially reported in 1993 and since then, numerous studies have been undertaken to delineate the functional consequences of this interaction as well as the potential mechanism by which each pathway interacts. This review will focus in particular on recent advances in this field that extend our understanding of these two pathways under various systems.
Collapse
Affiliation(s)
- Sangwon F Kim
- Department of Psychiatry and Pharmacology, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, 125 S, 31st St. TRL Rm 2207, Philadelphia, PA 19104, USA.
| |
Collapse
|
145
|
Bartels AL, Leenders KL. Cyclooxygenase and neuroinflammation in Parkinson's disease neurodegeneration. Curr Neuropharmacol 2011; 8:62-8. [PMID: 20808546 PMCID: PMC2866462 DOI: 10.2174/157015910790909485] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/21/2009] [Accepted: 11/02/2009] [Indexed: 01/07/2023] Open
Abstract
Cyclooxygenase (COX) expression in the brain is associated with pro-inflammatory activities, which are instrumental in neurodegenerative processes such as Parkinson’s disease (PD). It is discussed that drugs with the capacity to rescue dopaminergic neurons from microglia toxicity and neuroinflammatory processes may result in an amelioration of parkinsonian symptoms by delaying the onset or slowing progression. This article reviews the involvement of COX in neuroinflammation, specifically focussing at the role of selective COX-2 inhibition in neuroinflammation and neurodegeneration in Parkinson’s disease.
Collapse
Affiliation(s)
- Anna L Bartels
- Dept. of Neurology, University Medical Centre Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | |
Collapse
|
146
|
Caracciolo L, Barbon A, Palumbo S, Mora C, Toscano CD, Bosetti F, Barlati S. Altered mRNA editing and expression of ionotropic glutamate receptors after kainic acid exposure in cyclooxygenase-2 deficient mice. PLoS One 2011; 6:e19398. [PMID: 21589914 PMCID: PMC3093380 DOI: 10.1371/journal.pone.0019398] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 04/04/2011] [Indexed: 12/31/2022] Open
Abstract
Kainic acid (KA) binds to the AMPA/KA receptors and induces seizures that result in inflammation, oxidative damage and neuronal death. We previously showed that cyclooxygenase-2 deficient (COX-2(-/-)) mice are more vulnerable to KA-induced excitotoxicity. Here, we investigated whether the increased susceptibility of COX-2(-/-) mice to KA is associated with altered mRNA expression and editing of glutamate receptors. The expression of AMPA GluR2, GluR3 and KA GluR6 was increased in vehicle-injected COX-2(-/-) mice compared to wild type (WT) mice in hippocampus and cortex, whereas gene expression of NMDA receptors was decreased. KA treatment decreased the expression of AMPA, KA and NMDA receptors in the hippocampus, with a significant effect in COX-2(-/-) mice. Furthermore, we analyzed RNA editing levels and found that the level of GluR3 R/G editing site was selectively increased in the hippocampus and decreased in the cortex in COX-2(-/-) compared with WT mice. After KA, GluR4 R/G editing site, flip form, was increased in the hippocampus of COX-2(-/-) mice. Treatment of WT mice with the COX-2 inhibitor celecoxib for two weeks decreased the expression of AMPA/KA and NMDAR subunits after KA, as observed in COX-2(-/-) mice. After KA exposure, COX-2(-/-) mice showed increased mRNA expression of markers of inflammation and oxidative stress, such as cytokines (TNF-α, IL-1β and IL-6), inducible nitric oxide synthase (iNOS), microglia (CD11b) and astrocyte (GFAP). Thus, COX-2 gene deletion can exacerbate the inflammatory response to KA. We suggest that COX-2 plays a role in attenuating glutamate excitotoxicity by modulating RNA editing of AMPA/KA and mRNA expression of all ionotropic glutamate receptor subunits and, in turn, neuronal excitability. These changes may contribute to the increased vulnerability of COX-2(-/-) mice to KA. The overstimulation of glutamate receptors as a consequence of COX-2 gene deletion suggests a functional coupling between COX-2 and the glutamatergic system.
Collapse
Affiliation(s)
- Luca Caracciolo
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Biology and Genetics, Department of Biomedical Sciences and Biotechnologies and National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Alessandro Barbon
- Division of Biology and Genetics, Department of Biomedical Sciences and Biotechnologies and National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Sara Palumbo
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cristina Mora
- Division of Biology and Genetics, Department of Biomedical Sciences and Biotechnologies and National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Christopher D. Toscano
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Francesca Bosetti
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Sergio Barlati
- Division of Biology and Genetics, Department of Biomedical Sciences and Biotechnologies and National Institute of Neuroscience, University of Brescia, Brescia, Italy
| |
Collapse
|
147
|
Manev H, Chen H, Dzitoyeva S, Manev R. Cyclooxygenases and 5-lipoxygenase in Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:315-9. [PMID: 20691748 PMCID: PMC3033490 DOI: 10.1016/j.pnpbp.2010.07.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 07/20/2010] [Accepted: 07/29/2010] [Indexed: 11/26/2022]
Abstract
Typically, cyclooxygenases (COXs) and 5-lipoxygenase (5-LOX), enzymes that generate biologically active lipid molecules termed eicosanoids, are considered inflammatory. Hence, their putative role in Alzheimer's disease (AD) has been explored in the framework of possible inflammatory mechanisms of AD pathobiology. More recent data indicate that these enzymes and the biologically active lipid molecules they generate could influence the functioning of the central nervous system and the pathobiology of neurodegenerative disorders such as AD via mechanisms different from classical inflammation. These mechanisms include the cell-specific localization of COXs and 5-LOX in the brain, the type of lipid molecules generated by the activity of these enzymes, the type and the localization of receptors selective for a type of lipid molecule, and the putative interactions of the COXs and 5-LOX pathways with intracellular components relevant for AD such as the gamma-secretase complex. Considering the importance of these multiple and not necessarily inflammatory mechanisms may help us delineate the exact nature of the involvement of the brain COXs and 5-LOX in AD and would reinvigorate the search for novel targets for AD therapy.
Collapse
Affiliation(s)
- Hari Manev
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
148
|
Attanasio G, Viccaro M, Covelli E, De seta E, Minni A, Pizzoli F, Filipo R. Cyclo-oxygenase enzyme in the perilymph of human inner ear. Acta Otolaryngol 2011; 131:242-6. [PMID: 21189050 DOI: 10.3109/00016489.2010.522593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSIONS Cyclo-oxygenase-2 (COX-2) enzyme would not appear to be constitutively expressed in human perilymph while it is always induced in the perilymph of patients affected by sensorineural hearing loss (SNHL). The COX-2 isoform may be involved in hearing loss and, therefore, pathological states of the inner ear should possibly be further analyzed to clarify the clinical relevance of prostaglandin and selective COX-2 antagonist therapy. OBJECTIVES Perilymph samples from a group of patients with bilateral SNHL and another with conductive hearing loss were collected to evaluate the presence of the COX-2 enzyme. The possible correlation between different causes of deafness and the expression of COX-2 in the human ear was studied. METHODS A prospective clinical study of 14 patients with severe or profound hearing loss who underwent cochlear implant surgery and 4 patients with conductive hearing loss who underwent stapes surgery was carried out. Western blot analysis of perilymph samples was performed with monoclonal anti-human COX-2 antibody. RESULTS COX-2 enzyme was detected in all patients affected by SNHL and was absent in all those with conductive hearing loss due to otosclerosis.
Collapse
|
149
|
Therapeutic targets for neuroprotection and/or enhancement of functional recovery following traumatic brain injury. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:85-131. [PMID: 21199771 DOI: 10.1016/b978-0-12-385506-0.00003-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is a significant public health concern. The number of injuries that occur each year, the cost of care, and the disabilities that can lower the victim's quality of life are all driving factors for the development of therapy. However, in spite of a wealth of promising preclinical results, clinicians are still lacking a therapy. The use of preclinical models of the primary mechanical trauma have greatly advanced our knowledge of the complex biochemical sequela that follow. This cascade of molecular, cellular, and systemwide changes involves plasticity in many different neurochemical systems, which represent putative targets for remediation or attenuation of neuronal injury. The purpose of this chapter is to highlight some of the promising molecular and cellular targets that have been identified and to provide an up-to-date summary of the development of therapeutic compounds for those targets.
Collapse
|
150
|
Rizzo MT. Cyclooxygenase-2 in oncogenesis. Clin Chim Acta 2010; 412:671-87. [PMID: 21187081 DOI: 10.1016/j.cca.2010.12.026] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 02/07/2023]
Abstract
Compelling experimental and clinical evidence supports the notion that cyclooxygenase-2, the inducible isoform of cyclooxygenase, plays a crucial role in oncogenesis. Clinical and epidemiological data indicate that aberrant regulation of cyclooxygenase-2 in certain solid tumors and hematological malignancies is associated with adverse clinical outcome. Moreover, findings extrapolated from experimental studies in cultured tumor cells and animal tumor models indicate that cyclooxygenase-2 critically influences all stages of tumor development from tumor initiation to tumor progression. Cyclooxygenase-2 elicits cell-autonomous effects on tumor cells resulting in stimulation of growth, increased cell survival, enhanced tumor cell invasiveness, stimulation of neovascularization, and tumor evasion from the host immune system. Additionally, the oncogenic effects of cyclooxygenase-2 stem from its unique ability to impact tumor cell surroundings and create a proinflammatory environment conducive for tumor development, growth and progression. The initial enthusiasm generated by the availability of cyclooxygenase-2 selective inhibitors for cancer prevention and therapy has been lessened by the severe cardiovascular adverse side effects associated with their long-term use, as well as by the mixed results of recent clinical trials evaluating the efficacy of cyclooxygenase-2 inhibitors in adjuvant chemotherapy. Therefore, our ability to efficiently target the oncogenic effects of cyclooxygenase-2 for therapeutic and preventive purposes strictly depends on a better understanding of the spatial and temporal aspects of its activation in tumor cells along with a clearer elucidation of the signaling networks whereby cyclooxygenase-2 affects tumor cells and their interactions with the tumor microenvironment. This knowledge has the potential of leading to the identification of novel cyclooxygenase-2-dependent molecular and signaling networks that can be exploited to improve cancer prevention and therapy.
Collapse
Affiliation(s)
- Maria Teresa Rizzo
- Signal Transduction Laboratory, Methodist Research Institute, Clarian Health and Department of Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|