101
|
Evolving Role of Natriuretic Peptides from Diagnostic Tool to Therapeutic Modality. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1067:109-131. [PMID: 29411335 DOI: 10.1007/5584_2018_143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natriuretic peptides (NP) are widely recognized as key regulators of blood pressure, water and salt homeostasis. In addition, they play a critical role in physiological cardiac growth and mediate a variety of biological effects including antiproliferative and anti-inflammatory effects in other organs and tissues. The cardiac release of NPs ANP and BNP represents an important compensatory mechanism during acute and chronic cardiac overload and during the pathogenesis of heart failure where their actions counteract the sustained activation of renin-angiotensin-aldosterone and other neurohormonal systems. Elevated circulating plasma NP levels correlate with the severity of heart failure and particularly BNP and the pro-peptide, NT-proBNP have been established as biomarkers for the diagnosis of heart failure as well as prognostic markers for cardiovascular risk. Despite activation of the NP system in heart failure it is inadequate to prevent progressive fluid and sodium retention and cardiac remodeling. Therapeutic approaches included administration of synthetic peptide analogs and the inhibition of NP-degrading enzyme neutral endopeptidase (NEP). Of all strategies only the combined NEP/ARB inhibition with sacubitril/valsartan had shown clinical success in reducing cardiovascular mortality and morbidity in patients with heart failure.
Collapse
|
102
|
Verboven K, Hansen D, Jocken JWE, Blaak EE. Natriuretic peptides in the control of lipid metabolism and insulin sensitivity. Obes Rev 2017; 18:1243-1259. [PMID: 28901677 DOI: 10.1111/obr.12598] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/08/2017] [Accepted: 07/20/2017] [Indexed: 12/24/2022]
Abstract
Natriuretic peptides have long been known for their cardiovascular function. However, a growing body of evidence emphasizes the role of natriuretic peptides in human substrate and energy metabolism, thereby connecting the heart with several insulin-sensitive organs like adipose tissue, skeletal muscle and liver. Obesity may be associated with an impaired regulation of the natriuretic peptide system, also indicated as a natriuretic handicap. Evidence points towards a contribution of this natriuretic handicap to the development of obesity, type 2 diabetes mellitus and cardiometabolic complications, although the causal relationship is not fully understood. Nevertheless, targeting the natriuretic peptide pathway may improve metabolic health in obesity and type 2 diabetes mellitus. This review will focus on current literature regarding the metabolic roles of natriuretic peptides with emphasis on lipid metabolism and insulin sensitivity. Furthermore, it will be discussed how exercise and lifestyle intervention may modulate the natriuretic peptide-related metabolic effects.
Collapse
Affiliation(s)
- K Verboven
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - D Hansen
- REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
103
|
Abstract
The nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway plays a key role in regulating cardiovascular homeostasis, and genetic variants allocated to NO-cGMP pathway genes, leading to NO-cGMP deficiency, may influence the prevalence or course of cardiovascular disease. NO-cGMP deficiency can be caused by nitric oxide synthase substrate deficiency, substrate competition, defects, or uncoupling; endogenous inhibitors of nitric oxide synthase; decreased cGMP production; or increased cGMP degradation. This review presents evidence supporting the role of NO-cGMP deficiency in cardiovascular disease, including findings from genetic association studies for particular polymorphisms, haplotypes, and racial disparities. NO-cGMP pathway components including arginases, guanosine-5'-triphosphate cyclohydrolase 1, nitric oxide synthase, dimethylarginine dimethylaminohydrolases, soluble guanylyl cyclase, protein kinase G, phosphodiesterase 5, and natriuretic peptides will be discussed.
Collapse
Affiliation(s)
| | - Sven Moosmang
- Bayer AG, Experimental Medicine CV/HEM, Wuppertal, Germany
| | | |
Collapse
|
104
|
Kanai Y, Yasoda A, Mori KP, Watanabe-Takano H, Nagai-Okatani C, Yamashita Y, Hirota K, Ueda Y, Yamauchi I, Kondo E, Yamanaka S, Sakane Y, Nakao K, Fujii T, Yokoi H, Minamino N, Mukoyama M, Mochizuki N, Inagaki N. Circulating osteocrin stimulates bone growth by limiting C-type natriuretic peptide clearance. J Clin Invest 2017; 127:4136-4147. [PMID: 28990933 DOI: 10.1172/jci94912] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/29/2017] [Indexed: 12/30/2022] Open
Abstract
Although peptides are safe and useful as therapeutics, they are often easily degraded or metabolized. Dampening the clearance system for peptide ligands is a promising strategy for increasing the efficacy of peptide therapies. Natriuretic peptide receptor B (NPR-B) and its naturally occurring ligand, C-type natriuretic peptide (CNP), are potent stimulators of endochondral bone growth, and activating the CNP/NPR-B system is expected to be a powerful strategy for treating impaired skeletal growth. CNP is cleared by natriuretic peptide clearance receptor (NPR-C); therefore, we investigated the effect of reducing the rate of CNP clearance on skeletal growth by limiting the interaction between CNP and NPR-C. Specifically, we generated transgenic mice with increased circulating levels of osteocrin (OSTN) protein, a natural NPR-C ligand without natriuretic activity, and observed a dose-dependent skeletal overgrowth phenotype in these animals. Skeletal overgrowth in OSTN-transgenic mice was diminished in either CNP- or NPR-C-depleted backgrounds, confirming that CNP and NPR-C are indispensable for the bone growth-stimulating effect of OSTN. Interestingly, double-transgenic mice of CNP and OSTN had even higher levels of circulating CNP and additional increases in bone length, as compared with mice with elevated CNP alone. Together, these results support OSTN administration as an adjuvant agent for CNP therapy and provide a potential therapeutic approach for diseases with impaired skeletal growth.
Collapse
Affiliation(s)
- Yugo Kanai
- Department of Diabetes, Endocrinology and Nutrition, and
| | - Akihiro Yasoda
- Department of Diabetes, Endocrinology and Nutrition, and
| | - Keita P Mori
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Chiaki Nagai-Okatani
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Yui Yamashita
- Department of Diabetes, Endocrinology and Nutrition, and
| | - Keisho Hirota
- Department of Diabetes, Endocrinology and Nutrition, and
| | - Yohei Ueda
- Department of Diabetes, Endocrinology and Nutrition, and
| | | | - Eri Kondo
- Department of Diabetes, Endocrinology and Nutrition, and
| | - Shigeki Yamanaka
- Department of Oral and Maxillofacial Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoriko Sakane
- Department of Diabetes, Endocrinology and Nutrition, and
| | - Kazumasa Nakao
- Department of Oral and Maxillofacial Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Hideki Yokoi
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Naoto Minamino
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Masashi Mukoyama
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.,Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Naoki Mochizuki
- Department of Cell Biology and.,Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, and
| |
Collapse
|
105
|
Shi F, Collins S. Second messenger signaling mechanisms of the brown adipocyte thermogenic program: an integrative perspective. Horm Mol Biol Clin Investig 2017; 31:/j/hmbci.ahead-of-print/hmbci-2017-0062/hmbci-2017-0062.xml. [PMID: 28949928 DOI: 10.1515/hmbci-2017-0062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/29/2017] [Indexed: 01/19/2023]
Abstract
β-adrenergic receptors (βARs) are well established for conveying the signal from catecholamines to adipocytes. Acting through the second messenger cyclic adenosine monophosphate (cAMP) they stimulate lipolysis and also increase the activity of brown adipocytes and the 'browning' of adipocytes within white fat depots (so-called 'brite' or 'beige' adipocytes). Brown adipose tissue mitochondria are enriched with uncoupling protein 1 (UCP1), which is a regulated proton channel that allows the dissipation of chemical energy in the form of heat. The discovery of functional brown adipocytes in humans and inducible brown-like ('beige' or 'brite') adipocytes in rodents have suggested that recruitment and activation of these thermogenic adipocytes could be a promising strategy to increase energy expenditure for obesity therapy. More recently, the cardiac natriuretic peptides and their second messenger cyclic guanosine monophosphate (cGMP) have gained attention as a parallel signaling pathway in adipocytes, with some unique features. In this review, we begin with some important historical work that touches upon the regulation of brown adipocyte development and physiology. We then provide a synopsis of some recent advances in the signaling cascades from β-adrenergic agonists and natriuretic peptides to drive thermogenic gene expression in the adipocytes and how these two pathways converge at a number of unexpected points. Finally, moving from the physiologic hormonal signaling, we discuss yet another level of control downstream of these signals: the growing appreciation of the emerging roles of non-coding RNAs as important regulators of brown adipocyte formation and function. In this review, we discuss new developments in our understanding of the signaling mechanisms and factors including new secreted proteins and novel non-coding RNAs that control the function as well as the plasticity of the brown/beige adipose tissue as it responds to the energy needs and environmental conditions of the organism.
Collapse
|
106
|
Wu W, Shi F, Liu D, Ceddia RP, Gaffin R, Wei W, Fang H, Lewandowski ED, Collins S. Enhancing natriuretic peptide signaling in adipose tissue, but not in muscle, protects against diet-induced obesity and insulin resistance. Sci Signal 2017; 10:10/489/eaam6870. [PMID: 28743802 PMCID: PMC7418652 DOI: 10.1126/scisignal.aam6870] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In addition to controlling blood pressure, cardiac natriuretic peptides (NPs) can stimulate lipolysis in adipocytes and promote the "browning" of white adipose tissue. NPs may also increase the oxidative capacity of skeletal muscle. To unravel the contribution of NP-stimulated metabolism in adipose tissue compared to that in muscle in vivo, we generated mice with tissue-specific deletion of the NP clearance receptor, NPRC, in adipose tissue (NprcAKO ) or in skeletal muscle (NprcMKO ). We showed that, similar to Nprc null mice, NprcAKO mice, but not NprcMKO mice, were resistant to obesity induced by a high-fat diet. NprcAKO mice exhibited increased energy expenditure, improved insulin sensitivity, and increased glucose uptake into brown fat. These mice were also protected from diet-induced hepatic steatosis and visceral fat inflammation. These findings support the conclusion that NPRC in adipose tissue is a critical regulator of energy metabolism and suggest that inhibiting this receptor may be an important avenue to explore for combating metabolic disease.
Collapse
Affiliation(s)
- Wei Wu
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA.,Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Fubiao Shi
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Dianxin Liu
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Ryan P Ceddia
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Robert Gaffin
- Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Wan Wei
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Huafeng Fang
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - E Douglas Lewandowski
- Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Sheila Collins
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA.
| |
Collapse
|
107
|
Padmanabhan S, Aman A, Dominiczak AF. Genomics of hypertension. Pharmacol Res 2017; 121:219-229. [DOI: 10.1016/j.phrs.2017.04.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 01/11/2023]
|
108
|
Sarzani R, Spannella F, Giulietti F, Balietti P, Cocci G, Bordicchia M. Cardiac Natriuretic Peptides, Hypertension and Cardiovascular Risk. High Blood Press Cardiovasc Prev 2017; 24:115-126. [PMID: 28378069 PMCID: PMC5440492 DOI: 10.1007/s40292-017-0196-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/27/2017] [Indexed: 02/08/2023] Open
Abstract
Prevalence of cardiovascular (CV) disease is increasing worldwide. One of the most important risk factors for CV disease is hypertension that is very often related to obesity and metabolic syndrome. The search for key mechanisms, linking high blood pressure (BP), glucose and lipid dysmetabolism together with higher CV risk and mortality, is attracting increasing attention. Cardiac natriuretic peptides (NPs), including ANP and BNP, may play a crucial role in maintaining CV homeostasis and cardiac health, given their impact not only on BP regulation, but also on glucose and lipid metabolism. The summa of all metabolic activities of cardiac NPs, together with their CV and sodium balance effects, may be very important in decreasing the overall CV risk. Therefore, in the next future, cardiac NPs system, with its two receptors and a neutralizing enzyme, might represent one of the main targets to treat these multiple related conditions and to reduce hypertension and metabolic-related CV risk.
Collapse
Affiliation(s)
- Riccardo Sarzani
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy.
- Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS-INRCA, via della Montagnola n. 81, 60127, Ancona, Italy.
| | - Francesco Spannella
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy
- Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS-INRCA, via della Montagnola n. 81, 60127, Ancona, Italy
| | - Federico Giulietti
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy
- Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS-INRCA, via della Montagnola n. 81, 60127, Ancona, Italy
| | - Paolo Balietti
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy
- Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS-INRCA, via della Montagnola n. 81, 60127, Ancona, Italy
| | - Guido Cocci
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy
- Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS-INRCA, via della Montagnola n. 81, 60127, Ancona, Italy
| | - Marica Bordicchia
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy
| |
Collapse
|
109
|
Ahn YM, Choi YH, Yoon JJ, Lee YJ, Cho KW, Kang DG, Lee HS. Oleanolic acid modulates the renin-angiotensin system and cardiac natriuretic hormone concomitantly with volume and pressure balance in rats. Eur J Pharmacol 2017; 809:231-241. [PMID: 28514645 DOI: 10.1016/j.ejphar.2017.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 01/13/2023]
Abstract
Oleanolic acid is known to possess beneficial effects on the regulation of the cardiovascular homeostasis. However, the exact nature of the role of oleanolic acid on the regulation of body fluid balance and blood pressure homeostasis and its mechanisms involved are not well defined. Experiments were performed to identify the effects of oleanolic acid on the renin-angiotensin system and cardiac natriuretic hormone (ANP) system, and also renal function and blood pressure in normotensive and renovascular hypertensive rats. The change in the plasma levels of hormones and the expressions of renin, angiotensin II receptors, ANP, natriuretic peptide receptor-C, M2 muscarinic receptor and GIRK4 were determined in the kidney, heart and aorta. Oleanolic acid was administered orally for 1 or 3 weeks. Here, we found that oleanolic acid suppressed plasma levels of renin activity and aldosterone and intrarenal levels of renin and angiotensin II type 1 receptor expression and increased angiotensin II type 2 receptor in normotensive and hypertensive rats. Also, oleanolic acid increased plasma levels of ANP. Further, oleanolic acid suppressed angiotensin II type 1 receptor and natriuretic peptide receptor-C expression and increased angiotensin II type 2 receptor and ANP expression in the heart and aorta. Along with these changes, oleanolic acid accentuated urinary volume, electrolyte excretion and glomerular filtration rate in normotensive rats and suppressed arterial blood pressure in hypertensive rats. These findings suggest that beneficial effects of oleanolic acid on the cardiorenal system are closely associated with its roles on the renin-angiotensin system and cardiac natriuretic hormone system.
Collapse
Affiliation(s)
- You Mee Ahn
- Department of Herbal Resources, Hanbang Body Fluid Research Center, Professional Graduate School of Oriental Medicine, Wonkwang University, Republic of Korea
| | - Yoon Hee Choi
- Department of Herbal Resources, Hanbang Body Fluid Research Center, Professional Graduate School of Oriental Medicine, Wonkwang University, Republic of Korea
| | - Jung Joo Yoon
- Department of Herbal Resources, Hanbang Body Fluid Research Center, Professional Graduate School of Oriental Medicine, Wonkwang University, Republic of Korea
| | - Yun Jung Lee
- Department of Herbal Resources, Hanbang Body Fluid Research Center, Professional Graduate School of Oriental Medicine, Wonkwang University, Republic of Korea
| | - Kyung Woo Cho
- Department of Herbal Resources, Hanbang Body Fluid Research Center, Professional Graduate School of Oriental Medicine, Wonkwang University, Republic of Korea
| | - Dae Gill Kang
- Department of Herbal Resources, Hanbang Body Fluid Research Center, Professional Graduate School of Oriental Medicine, Wonkwang University, Republic of Korea.
| | - Ho Sub Lee
- Department of Herbal Resources, Hanbang Body Fluid Research Center, Professional Graduate School of Oriental Medicine, Wonkwang University, Republic of Korea.
| |
Collapse
|
110
|
Kuang DB, Zhou JP, Li MP, Tang J, Chen XP. Association of NPR3 polymorphism with risk of essential hypertension in a Chinese population. J Clin Pharm Ther 2017; 42:554-560. [PMID: 28497617 DOI: 10.1111/jcpt.12549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 04/05/2017] [Indexed: 12/24/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Essential hypertension (EH) is a common disease exhibiting large individual difference in occurrence, development and treatment response. Genetic factors are implicated in the development and progression of EH. This study aimed to explore the association between NPR3 single nucleotide polymorphism rs2270915 (A/G, Asn521Asp) and the risk of EH in a Chinese Han population by a case-control study. METHODS The study was a single-centre, case-control trial, in which a total of 287 EH patients and 289 age- and sex-matched healthy controls were enrolled. The inclusion criteria were as follows: Han Chinese origin, male or female patients, systolic blood pressure (SBP) ≥140 mm Hg and/or diastolic blood pressure (DBP) ≥90 mm Hg. The healthy controls were subjects without histories of cardiovascular or cerebrovascular diseases. NPR3 rs2270915 polymorphism was genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). In addition, primary human umbilical vein endothelial cells (HUVECs) were isolated from 19 fresh human umbilical cords and cultured. Atrial natriuretic peptide (ANP) concentration in cell medium was determined by enzyme-linked immunosorbent assay (ELISA). NPR3 mRNA expression was determined by real-time semi-quantitative PCR. RESULTS AND DISCUSSION No significant difference in genotype distribution of NPR3 rs2270915 polymorphism was observed between cases and controls (P>.05). Patients carrying the rs2270915 G allele showed decreased SBP, and the difference was marginal. As compared with cells carrying the rs2270915 AA genotype, those with the AG genotype showed significantly lower NPR3 mRNA expression levels (P<.05) and lower medium ANP concentration (P<.001). WHAT IS NEW AND CONCLUSION This study suggested that NPR3 rs2270915 polymorphism was associated with decreased SBP level marginally in EH patients in a Chinese Han population, and the polymorphism may function through decreasing NPR3 mRNA expression and ANP level.
Collapse
Affiliation(s)
- D-B Kuang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - J-P Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - M-P Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - J Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - X-P Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| |
Collapse
|
111
|
Holditch SJ, Schreiber CA, Harris PC, LaRusso NF, Ramirez-Alvarado M, Cataliotti A, Torres VE, Ikeda Y. B-type natriuretic peptide overexpression ameliorates hepatorenal fibrocystic disease in a rat model of polycystic kidney disease. Kidney Int 2017; 92:657-668. [PMID: 28416225 DOI: 10.1016/j.kint.2017.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 02/05/2017] [Accepted: 02/16/2017] [Indexed: 12/15/2022]
Abstract
Polycystic kidney disease (PKD) involves progressive hepatorenal cyst expansion and fibrosis, frequently leading to end-stage renal disease. Increased vasopressin and cAMP signaling, dysregulated calcium homeostasis, and hypertension play major roles in PKD progression. The guanylyl cyclase A agonist, B-type natriuretic peptide (BNP), stimulates cGMP and shows anti-fibrotic, anti-hypertensive, and vasopressin-suppressive effects, potentially counteracting PKD pathogenesis. Here, we assessed the impacts of guanylyl cyclase A activation on PKD progression in a rat model of PKD. Sustained BNP production significantly reduced kidney weight, renal cystic indexes and fibrosis, in concert with suppressed hepatic cystogenesis in vivo. In vitro, BNP decreased cystic epithelial cell proliferation, suppressed fibrotic gene expression, and increased intracellular calcium. Together, our data demonstrate multifaceted effects of sustained activation of guanylyl cyclase A on polycystic kidney and liver disease. Thus, targeting the guanylyl cyclase A-cGMP axis may provide a novel therapeutic strategy for hepatorenal fibrocystic diseases.
Collapse
Affiliation(s)
- Sara J Holditch
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Claire A Schreiber
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
112
|
Hwang M, Go Y, Park JH, Shin SK, Song SE, Oh BC, Im SS, Hwang I, Jeon YH, Lee IK, Seino S, Song DK. Epac2a-null mice exhibit obesity-prone nature more susceptible to leptin resistance. Int J Obes (Lond) 2017; 41:279-288. [PMID: 27867203 PMCID: PMC5309344 DOI: 10.1038/ijo.2016.208] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 10/07/2016] [Accepted: 10/30/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND The exchange protein directly activated by cAMP (Epac), which is primarily involved in cAMP signaling, has been known to be essential for controlling body energy metabolism. Epac has two isoforms: Epac1 and Epac2. The function of Epac1 on obesity was unveiled using Epac1 knockout (KO) mice. However, the role of Epac2 in obesity remains unclear. METHODS To evaluate the role of Epac2 in obesity, we used Epac2a KO mice, which is dominantly expressed in neurons and endocrine tissues. Physiological factors related to obesity were analyzed: body weight, fat mass, food intake, plasma leptin and adiponectin levels, energy expenditure, glucose tolerance, and insulin and leptin resistance. To determine the mechanism of Epac2a, mice received exogenous leptin and then hypothalamic leptin signaling was analyzed. RESULTS Epac2a KO mice appeared to have normal glucose tolerance and insulin sensitivity until 12 weeks of age, but an early onset increase of plasma leptin levels and decrease of plasma adiponectin levels compared with wild-type mice. Acute leptin injection revealed impaired hypothalamic leptin signaling in KO mice. Consistently, KO mice fed a high-fat diet (HFD) were significantly obese, presenting greater food intake and lower energy expenditure. HFD-fed KO mice were also characterized by greater impairment of hypothalamic leptin signaling and by weaker leptin-induced decrease in food consumption compared with HFD-fed wild-type mice. In wild-type mice, acute exogenous leptin injection or chronic HFD feeding tended to induce hypothalamic Epac2a expression. CONCLUSIONS Considering that HFD is an inducer of hypothalamic leptin resistance and that Epac2a functions in pancreatic beta cells during demands of greater work load, hypothalamic Epac2a may have a role in facilitating leptin signaling, at least in response to higher metabolic demands. Thus, our data indicate that Epac2a is critical for preventing obesity and thus Epac2a activators may be used to manage obesity and obesity-mediated metabolic disorders.
Collapse
Affiliation(s)
- M Hwang
- Department of Physiology and Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Korea
| | - Y Go
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - J-H Park
- Department of Physiology and Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Korea
| | - S-K Shin
- Department of Physiology and Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Korea
| | - S E Song
- Department of Physiology and Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Korea
| | - B-C Oh
- Laboratory of Molecular and Cellular Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - S-S Im
- Department of Physiology and Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Korea
| | - I Hwang
- Department of Physiology and Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Korea
| | - Y H Jeon
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - I-K Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - S Seino
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - D-K Song
- Department of Physiology and Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
113
|
Nagai-Okatani C, Kangawa K, Minamino N. Three molecular forms of atrial natriuretic peptides: quantitative analysis and biological characterization. J Pept Sci 2017; 23:486-495. [PMID: 28120499 DOI: 10.1002/psc.2969] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 11/09/2022]
Abstract
Atrial natriuretic peptide (ANP) is primarily produced in the heart tissue and plays a pivotal role in maintaining cardiovascular homeostasis in endocrine and autocrine/paracrine systems and has clinical applications as a biomarker and a therapeutic agent for cardiac diseases. ANP is synthesized by atrial cardiomyocytes as a preprohormone that is processed by a signal peptidase and stored in secretory granules as a prohormone. Subsequent proteolytic processing of ANP by corin during the secretion process results in a bioactive form consisting of 28 amino acid residues. Mechanical stretch of the atrial wall and multiple humoral factors directly stimulates the transcription and secretion of ANP. Secreted ANP elicits natriuretic and diuretic effects via cyclic guanosine monophosphate produced through binding to the guanylyl cyclase-A/natriuretic peptide receptor-A. Circulating ANP is subjected to rapid clearance by a natriuretic peptide receptor-C-mediated mechanism and proteolytic degradation by neutral endopeptidase. In humans, ANP is present as three endogenous molecular forms: bioactive α-ANP, a homodimer of α-ANP designated as β-ANP, and an ANP precursor designated as proANP (also referred to as γ-ANP). The proANP and especially β-ANP, as minor forms in circulation, are notably increased in patients with cardiac diseases, suggesting the utility of monitoring the pathophysiological conditions that result in abnormal proANP processing that cannot be monitored by inactive N-terminal proANP-related fragments. Emerging plate-based sandwich immunoassays for individual quantitation of the three ANP forms enables evaluation of diagnostic implications and net ANP bioactivity. This new tool may provide further understanding in the pathophysiology of cardiac diseases. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chiaki Nagai-Okatani
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Kenji Kangawa
- National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
114
|
Koneva LA, Vyas AK, McEachin RC, Puttabyatappa M, H-S W, Sartor MA, Padmanabhan V. Developmental programming: Interaction between prenatal BPA and postnatal overfeeding on cardiac tissue gene expression in female sheep. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:4-18. [PMID: 28079927 PMCID: PMC5730970 DOI: 10.1002/em.22071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 05/23/2023]
Abstract
Epidemiologic studies and studies in rodents point to potential risks from developmental exposure to BPA on cardiometabolic diseases. Furthermore, it is becoming increasingly evident that the manifestation and severity of adverse outcomes is the result of interaction between developmental insults and the prevailing environment. Consistent with this premise, recent studies in sheep found prenatal BPA treatment prevented the adverse effects of postnatal obesity in inducing hypertension. The gene networks underlying these complex interactions are not known. mRNA-seq of myocardium was performed on four groups of four female sheep to assess the effects of prenatal BPA exposure, postnatal overfeeding and their interaction on gene transcription, pathway perturbations and functional effects. The effects of prenatal exposure to BPA, postnatal overfeeding, and prenatal BPA with postnatal overfeeding all resulted in transcriptional changes (85-141 significant differentially expressed genes). Although the effects of prenatal BPA and postnatal overfeeding did not involve dysregulation of many of the same genes, they affected a remarkably similar set of biological pathways. Furthermore, an additive or synergistic effect was not found in the combined treatment group, but rather prenatal BPA treatment led to a partial reversal of the effects of overfeeding alone. Many genes previously known to be affected by BPA and involved in obesity, hypertension, or heart disease were altered following these treatments, and AP-1, EGR1, and EGFR were key hubs affected by BPA and/or overfeeding. Environ. Mol. Mutagen. 58:4-18, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- LA Koneva
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor MI
| | - AK Vyas
- Department of Pediatrics, Texas Tech Health Sciences Permian Basin, Odessa, TX
| | - RC McEachin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor MI
| | - M Puttabyatappa
- Department of Pediatrics, University of Michigan, Ann Arbor MI
| | - Wang H-S
- Department of Environmental Health, University of Cincinnati, Cincinnati OH
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati OH
| | - MA Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor MI
| | - V Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor MI
| |
Collapse
|
115
|
Koneva LA, Vyas AK, McEachin RC, Puttabyatappa M, Wang HS, Sartor MA, Padmanabhan V. Developmental programming: Interaction between prenatal BPA and postnatal overfeeding on cardiac tissue gene expression in female sheep. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:4-18. [PMID: 28079927 DOI: 10.1002/em] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 05/23/2023]
Abstract
Epidemiologic studies and studies in rodents point to potential risks from developmental exposure to BPA on cardiometabolic diseases. Furthermore, it is becoming increasingly evident that the manifestation and severity of adverse outcomes is the result of interaction between developmental insults and the prevailing environment. Consistent with this premise, recent studies in sheep found prenatal BPA treatment prevented the adverse effects of postnatal obesity in inducing hypertension. The gene networks underlying these complex interactions are not known. mRNA-seq of myocardium was performed on four groups of four female sheep to assess the effects of prenatal BPA exposure, postnatal overfeeding and their interaction on gene transcription, pathway perturbations and functional effects. The effects of prenatal exposure to BPA, postnatal overfeeding, and prenatal BPA with postnatal overfeeding all resulted in transcriptional changes (85-141 significant differentially expressed genes). Although the effects of prenatal BPA and postnatal overfeeding did not involve dysregulation of many of the same genes, they affected a remarkably similar set of biological pathways. Furthermore, an additive or synergistic effect was not found in the combined treatment group, but rather prenatal BPA treatment led to a partial reversal of the effects of overfeeding alone. Many genes previously known to be affected by BPA and involved in obesity, hypertension, or heart disease were altered following these treatments, and AP-1, EGR1, and EGFR were key hubs affected by BPA and/or overfeeding. Environ. Mol. Mutagen. 58:4-18, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- L A Koneva
- Departments of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - A K Vyas
- Department of Pediatrics, Texas Tech Health Sciences Permian Basin, Odessa, Texas
| | - R C McEachin
- Departments of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - M Puttabyatappa
- Departments of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - H-S Wang
- Departments of Environmental Health, University of Cincinnati, Cincinnati, Ohio
- Departments of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio
| | - M A Sartor
- Departments of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - V Padmanabhan
- Departments of Pediatrics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
116
|
Meyer T, Herrmann-Lingen C. Natriuretic Peptides in Anxiety and Panic Disorder. ANXIETY 2017; 103:131-145. [DOI: 10.1016/bs.vh.2016.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
117
|
Ichiki T, Burnett Jr JC. Atrial Natriuretic Peptide ― Old But New Therapeutic in Cardiovascular Diseases ―. Circ J 2017; 81:913-919. [DOI: 10.1253/circj.cj-17-0499] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomoko Ichiki
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic
| | - John C. Burnett Jr
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic
| |
Collapse
|
118
|
Chiba A, Watanabe-Takano H, Terai K, Fukui H, Miyazaki T, Uemura M, Hashimoto H, Hibi M, Fukuhara S, Mochizuki N. Osteocrin, a peptide secreted from the heart and other tissues, contributes to cranial osteogenesis and chondrogenesis in zebrafish. Development 2016; 144:334-344. [PMID: 27993976 DOI: 10.1242/dev.143354] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022]
Abstract
The heart is an endocrine organ, as cardiomyocytes (CMs) secrete natriuretic peptide (NP) hormones. Since the discovery of NPs, no other peptide hormones that affect remote organs have been identified from the heart. We identified osteocrin (Ostn) as an osteogenesis/chondrogenesis regulatory hormone secreted from CMs in zebrafish. ostn mutant larvae exhibit impaired membranous and chondral bone formation. The impaired bones were recovered by CM-specific overexpression of OSTN. We analyzed the parasphenoid (ps) as a representative of membranous bones. In the shortened ps of ostn morphants, nuclear Yap1/Wwtr1-dependent transcription was increased, suggesting that Ostn might induce the nuclear export of Yap1/Wwtr1 in osteoblasts. Although OSTN is proposed to bind to NPR3 (clearance receptor for NPs) to enhance the binding of NPs to NPR1 or NPR2, OSTN enhanced C-type NP (CNP)-dependent nuclear export of YAP1/WWTR1 of cultured mouse osteoblasts stimulated with saturable CNP. OSTN might therefore activate unidentified receptors that augment protein kinase G signaling mediated by a CNP-NPR2 signaling axis. These data demonstrate that Ostn secreted from the heart contributes to bone formation as an endocrine hormone.
Collapse
Affiliation(s)
- Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Haruko Watanabe-Takano
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Kenta Terai
- Laboratory of Function and Morphology, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hajime Fukui
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Takahiro Miyazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Mami Uemura
- Laboratory of Function and Morphology, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hisashi Hashimoto
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chigusa-ku, Nagoya, Aichi 464-8061, Japan.,Devision of Biological Science, Graduate School of Science Nagoya, Nagoya University, Furo-cho, Chigusa-ku, Nagoya, Aichi 464-8061, Japan
| | - Masahiko Hibi
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chigusa-ku, Nagoya, Aichi 464-8061, Japan.,Devision of Biological Science, Graduate School of Science Nagoya, Nagoya University, Furo-cho, Chigusa-ku, Nagoya, Aichi 464-8061, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Science, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki, Kanagawa 211-8533, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan .,AMED-CREST, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| |
Collapse
|
119
|
Esapa CT, Piret SE, Nesbit MA, Loh NY, Thomas G, Croucher PI, Brown MA, Brown SDM, Cox RD, Thakker RV. Mice with an N-Ethyl-N-Nitrosourea (ENU) Induced Tyr209Asn Mutation in Natriuretic Peptide Receptor 3 (NPR3) Provide a Model for Kyphosis Associated with Activation of the MAPK Signaling Pathway. PLoS One 2016; 11:e0167916. [PMID: 27959934 PMCID: PMC5154531 DOI: 10.1371/journal.pone.0167916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022] Open
Abstract
Non-syndromic kyphosis is a common disorder that is associated with significant morbidity and has a strong genetic involvement; however, the causative genes remain to be identified, as such studies are hampered by genetic heterogeneity, small families and various modes of inheritance. To overcome these limitations, we investigated 12 week old progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) using phenotypic assessments including dysmorphology, radiography, and dual-energy X-ray absorptiometry. This identified a mouse with autosomal recessive kyphosis (KYLB). KYLB mice, when compared to unaffected littermates, had: thoraco-lumbar kyphosis, larger vertebrae, and increased body length and increased bone area. In addition, female KYLB mice had increases in bone mineral content and plasma alkaline phosphatase activity. Recombination mapping localized the Kylb locus to a 5.5Mb region on chromosome 15A1, which contained 51 genes, including the natriuretic peptide receptor 3 (Npr3) gene. DNA sequence analysis of Npr3 identified a missense mutation, Tyr209Asn, which introduced an N-linked glycosylation consensus sequence. Expression of wild-type NPR3 and the KYLB-associated Tyr209Asn NPR3 mutant in COS-7 cells demonstrated the mutant to be associated with abnormal N-linked glycosylation and retention in the endoplasmic reticulum that resulted in its absence from the plasma membrane. NPR3 is a decoy receptor for C-type natriuretic peptide (CNP), which also binds to NPR2 and stimulates mitogen-activated protein kinase (MAPK) signaling, thereby increasing the number and size of hypertrophic chondrocytes. Histomorphometric analysis of KYLB vertebrae and tibiae showed delayed endochondral ossification and expansion of the hypertrophic zones of the growth plates, and immunohistochemistry revealed increased p38 MAPK phosphorylation throughout the growth plates of KYLB vertebrae. Thus, we established a model of kyphosis due to a novel NPR3 mutation, in which loss of plasma membrane NPR3 expression results in increased MAPK pathway activation, causing elongation of the vertebrae and resulting in kyphosis.
Collapse
Affiliation(s)
- Christopher T. Esapa
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Sian E. Piret
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - M. Andrew Nesbit
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nellie Y. Loh
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gethin Thomas
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | | | - Matthew A. Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Steve D. M. Brown
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Roger D. Cox
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Rajesh V. Thakker
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
120
|
Moro C. Targeting cardiac natriuretic peptides in the therapy of diabetes and obesity. Expert Opin Ther Targets 2016; 20:1445-1452. [DOI: 10.1080/14728222.2016.1254198] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
121
|
Schmidt H, Peters S, Frank K, Wen L, Feil R, Rathjen FG. Dorsal root ganglion axon bifurcation tolerates increased cyclic GMP levels: the role of phosphodiesterase 2A and scavenger receptor Npr3. Eur J Neurosci 2016; 44:2991-3000. [PMID: 27740716 DOI: 10.1111/ejn.13434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/21/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
A cyclic GMP (cGMP) signaling pathway, comprising C-type natriuretic peptide (CNP), its guanylate cyclase receptor Npr2, and cGMP-dependent protein kinase I, is critical for the bifurcation of dorsal root ganglion (DRG) and cranial sensory ganglion axons when entering the mouse spinal cord and the hindbrain respectively. However, the identity and functional relevance of phosphodiesterases (PDEs) that degrade cGMP in DRG neurons are not completely understood. Here, we asked whether regulation of the intracellular cGMP concentration by PDEs modulates the branching of sensory axons. Real-time imaging of cGMP with a genetically encoded fluorescent cGMP sensor, RT-PCR screens, in situ hybridization, and immunohistology combined with the analysis of mutant mice identified PDE2A as the major enzyme for the degradation of CNP-induced cGMP in embryonic DRG neurons. Tracking of PDE2A-deficient DRG sensory axons in conjunction with cGMP measurements indicated that axon bifurcation tolerates increased cGMP concentrations. As we found that the natriuretic peptide scavenger receptor Npr3 is expressed by cells associated with dorsal roots but not in DRG neurons itself at early developmental stages, we analyzed axonal branching in the absence of Npr3. In Npr3-deficient mice, the majority of sensory axons showed normal bifurcation, but a small population of axons (13%) was unable to form T-like branches and generated turns in rostral or caudal directions only. Taken together, this study shows that sensory axon bifurcation is insensitive to increases of CNP-induced cGMP levels and Npr3 does not have an important scavenging function in this axonal system.
Collapse
Affiliation(s)
- Hannes Schmidt
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, 13092, Berlin, Germany
| | - Stefanie Peters
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076, Tübingen, Germany
| | - Katharina Frank
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, 13092, Berlin, Germany
| | - Lai Wen
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076, Tübingen, Germany
| | - Fritz G Rathjen
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, 13092, Berlin, Germany
| |
Collapse
|
122
|
Ruiz-Ojeda FJ, Aguilera CM, Rupérez AI, Gil Á, Gomez-Llorente C. An analogue of atrial natriuretic peptide (C-ANP4-23) modulates glucose metabolism in human differentiated adipocytes. Mol Cell Endocrinol 2016; 431:101-8. [PMID: 27181211 DOI: 10.1016/j.mce.2016.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/27/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022]
Abstract
The present study was undertaken to investigate the effects of C-atrial natriuretic peptide (C-ANP4-23) in human adipose-derived stem cells differentiated into adipocytes over 10 days (1 μM for 4 h). The intracellular cAMP, cGMP and protein kinase A levels were determined by ELISA and gene and protein expression were determined by qRT-PCR and Western blot, respectively, in the presence or absence of C-ANP4-23. The levels of lipolysis and glucose uptake were also determined. C-ANP4-23 treatment significantly increased the intracellular cAMP levels and the gene expression of glucose transporter type 4 (GLUT4) and protein kinase, AMP-activated, alpha 1 catalytic subunit (AMPK). Western blot showed a significant increase in GLUT4 and phosphor-AMPKα levels. Importantly, the adenylate cyclase inhibitor SQ22536 abolished these effects. Additionally, C-ANP4-23 increased glucose uptake by 2-fold. Our results show that C-ANP4-23 enhances glucose metabolism and might contribute to the development of new peptide-based therapies for metabolic diseases.
Collapse
Affiliation(s)
- Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Armilla, Granada, Spain; Instituto de Investigación Biosanitaria ibs, Granada, Spain
| | - Concepción María Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Armilla, Granada, Spain; Instituto de Investigación Biosanitaria ibs, Granada, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Azahara Iris Rupérez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Armilla, Granada, Spain
| | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Armilla, Granada, Spain; Instituto de Investigación Biosanitaria ibs, Granada, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Carolina Gomez-Llorente
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Armilla, Granada, Spain; Instituto de Investigación Biosanitaria ibs, Granada, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain.
| |
Collapse
|
123
|
Venkatesan B, Tumala A, Subramanian V, Vellaichamy E. Transient silencing of Npr3 gene expression improved the circulatory levels of atrial natriuretic peptides and attenuated β-adrenoceptor activation- induced cardiac hypertrophic growth in experimental rats. Eur J Pharmacol 2016; 782:44-58. [DOI: 10.1016/j.ejphar.2016.04.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
|
124
|
Pernomian L, Prado AF, Silva BR, Azevedo A, Pinheiro LC, Tanus-Santos JE, Bendhack LM. C-Type Natriuretic Peptide Induces Anti-contractile Effect Dependent on Nitric Oxide, Oxidative Stress, and NPR-B Activation in Sepsis. Front Physiol 2016; 7:226. [PMID: 27445832 PMCID: PMC4917550 DOI: 10.3389/fphys.2016.00226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/30/2016] [Indexed: 11/13/2022] Open
Abstract
AIMS To evaluate the role of nitric oxide, reactive oxygen species (ROS), and natriuretic peptide receptor-B activation in C-type natriuretic peptide-anti-contractile effect on Phenylephrine-induced contraction in aorta isolated from septic rats. METHODS AND RESULTS Cecal ligation and puncture (CLP) surgery was used to induce sepsis in male rats. Vascular reactivity was conducted in rat aorta and resistance mesenteric artery (RMA). Measurement of survival rate, mean arterial pressure (MAP), plasma nitric oxide, specific protein expression, and localization were evaluated. Septic rats had a survival rate about 37% at 4 h after the surgery, and these rats presented hypotension compared to control-operated (Sham) rats. Phenylephrine-induced contraction was decreased in sepsis. C-type natriuretic peptide (CNP) induced anti-contractile effect in aortas. Plasma nitric oxide was increased in sepsis. Nitric oxide-synthase but not natriuretic peptide receptor-B expression was increased in septic rat aortas. C-type natriuretic peptide-anti-contractile effect was dependent on nitric oxide-synthase, ROS, and natriuretic peptide receptor-B activation. Natriuretic peptide receptor-C, protein kinase-Cα mRNA, and basal nicotinamide adenine dinucleotide phosphate (NADPH)-dependent ROS production were lower in septic rats. Phenylephrine and CNP enhanced ROS production. However, stimulated ROS production was low in sepsis. CONCLUSION CNP induced anti-contractile effect on Phenylephrine contraction in aortas from Sham and septic rats that was dependent on nitric oxide-synthase, ROS, and natriuretic peptide receptor-B activation.
Collapse
Affiliation(s)
- Laena Pernomian
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo Ribeirão Preto, Brazil
| | - Alejandro F Prado
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo Ribeirão Preto, Brazil
| | - Bruno R Silva
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo Ribeirão Preto, Brazil
| | - Aline Azevedo
- Department of Biomechanics, School of Medicine of Ribeirão Preto (FMRP), Medicine and Rehabilitation of the Locomotor System, University of São Paulo Ribeirão Preto, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo Ribeirão Preto, Brazil
| | - José E Tanus-Santos
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo Ribeirão Preto, Brazil
| | - Lusiane M Bendhack
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo Ribeirão Preto, Brazil
| |
Collapse
|
125
|
Abstract
cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
126
|
Dewey CM, Spitler KM, Ponce JM, Hall DD, Grueter CE. Cardiac-Secreted Factors as Peripheral Metabolic Regulators and Potential Disease Biomarkers. J Am Heart Assoc 2016; 5:e003101. [PMID: 27247337 PMCID: PMC4937259 DOI: 10.1161/jaha.115.003101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Colleen M Dewey
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Kathryn M Spitler
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jessica M Ponce
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Duane D Hall
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Chad E Grueter
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA Fraternal Order of Eagles Diabetes Research Center, Papajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
127
|
Mahinrad S, de Craen AJM, Yasar S, van Heemst D, Sabayan B. Natriuretic peptides in the central nervous system: Novel targets for cognitive impairment. Neurosci Biobehav Rev 2016; 68:148-156. [PMID: 27229760 DOI: 10.1016/j.neubiorev.2016.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/22/2016] [Accepted: 05/22/2016] [Indexed: 02/06/2023]
Abstract
Natriuretic peptides (NPs) are traditionally known as cardiac hormones with diuretic, natriuretic and blood pressure lowering properties. Evidence indicates that NPs and their receptors are abundant in the central nervous system, suggesting their involvement in regulation of various brain functions. It has been shown that NPs are involved in the regulation of neurovascular and blood-brain barrier integrity, neuro-inflammation, neuroprotection, synaptic transmission and brain fluid homeostasis. In addition, NPs might contribute to the brain's inhibitory control over the hypothalamic-pituitary-adrenal axis. Studies have also shown that high systemic levels of NPs are associated with cognitive impairment independent of cardiovascular risk factors. In this review we discuss the potential roles of NPs in regulating structural and functional integrity of the brain. Based on the available neurobiological and clinical evidence, we propose that NPs might represent as potential novel diagnostic and therapeutic targets for cognitive impairment.
Collapse
Affiliation(s)
- Simin Mahinrad
- Department of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands.
| | - Anton J M de Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands.
| | - Sevil Yasar
- Department of Medicine, Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, 5200 Eastern Avenue, MFL Center tower, Baltimore, MD 21224, United States.
| | - Diana van Heemst
- Department of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands.
| | - Behnam Sabayan
- Department of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands; Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands.
| |
Collapse
|
128
|
Attenuated atrial natriuretic peptide-mediated lipolysis in subcutaneous adipocytes of obese type 2 diabetic men. Clin Sci (Lond) 2016; 130:1105-14. [DOI: 10.1042/cs20160220] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/01/2016] [Indexed: 11/17/2022]
Abstract
Subjects with obesity seem to display a suboptimal exercise response, which might be due to hormonal disturbances. In the present study, we show the adipose tissue of obese subjects to be less sensitive to atrial natriuretic peptide, a cardiac hormone important during exercise.
Collapse
|
129
|
Natriuretic peptide control of energy balance and glucose homeostasis. Biochimie 2016; 124:84-91. [DOI: 10.1016/j.biochi.2015.05.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/19/2015] [Indexed: 12/27/2022]
|
130
|
Wu JR, Chen IC, Dai ZK, Hung JF, Hsu JH. Early Elevated B-Type Natriuretic Peptide Levels are Associated with Cardiac Dysfunction and Poor Clinical Outcome in Pediatric Septic Patients. ACTA CARDIOLOGICA SINICA 2016; 31:485-93. [PMID: 27122912 DOI: 10.6515/acs20141201e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND To determine the B-type natriuretic peptide (BNP) level in pediatric septic patients, and to investigate its association with cardiovascular dysfunction and clinical outcome. METHODS Pediatric patients with sepsis or septic shock were prospectively enrolled in our pediatric intensive care unit (PICU). On day 1 of admission, plasma BNP levels were measured at the time-point of echocardiography. Myocardial dysfunction was defined as left ventricular fractional shortening (FS) < 30%. Inotropic support was quantified by inotropic scores and disease severity was assessed by Pediatric Risk of Mortality (PRISM) III scores. Therafter, associations between BNP levels and clinical parameters were analyzed. RESULTS There were 94 patients (mean: 5.6 yr, range: 2 mo-17 yr) that were consecutively enrolled in this study. The median BNP level was 127 pg/ml (range: 5 to 4950 pg/ml). BNP levels were correlated with PRISM III (rho = 0.36, p = 0.001) and C-reactive protein level (r = 0.39, p = 0.001). The median BNP levels were not only higher in patients with septic shock (n = 34) than those with sepsis (n = 58) (213 vs. 54 pg/ml, p = 0.0004), but also higher in patients with myocardial dysfunction (n = 18) than those with preserved myocardial function (n = 66) (765 vs. 65 pg/ml, p < 0.001). We also found that BNP levels correlated negatively with FS (r = -0.56, p < 0.001) and positively with inotropic scores (r = 0.34, p = 0.04). Most importantly, the median BNP levels were higher in non-survivors (n = 13) than survivors (n = 81) (367 vs. 106 pg/ml, p = 0.003). CONCLUSIONS BNP levels are elevated in pediatric septic patients early in the disease course, and increased levels are associated with cardiovascular dysfunction and worse clinical outcome. KEY WORDS B-type natriuretic peptide; Cardiac function; Pediatric; Sepsis; Septic shock.
Collapse
Affiliation(s)
- Jiunn-Ren Wu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University; ; Department of Pediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Chen Chen
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University
| | - Zen-Kong Dai
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University; ; Department of Pediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jui-Feng Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University
| | - Jong-Hau Hsu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University; ; Department of Pediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
131
|
Bordicchia M, Ceresiani M, Pavani M, Minardi D, Polito M, Wabitsch M, Cannone V, Burnett JC, Dessì-Fulgheri P, Sarzani R. Insulin/glucose induces natriuretic peptide clearance receptor in human adipocytes: a metabolic link with the cardiac natriuretic pathway. Am J Physiol Regul Integr Comp Physiol 2016; 311:R104-14. [PMID: 27101299 DOI: 10.1152/ajpregu.00499.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/12/2016] [Indexed: 11/22/2022]
Abstract
Cardiac natriuretic peptides (NP) are involved in cardiorenal regulation and in lipolysis. The NP activity is largely dependent on the ratio between the signaling receptor NPRA and the clearance receptor NPRC. Lipolysis increases when NPRC is reduced by starving or very-low-calorie diet. On the contrary, insulin is an antilipolytic hormone that increases sodium retention, suggesting a possible functional link with NP. We examined the insulin-mediated regulation of NP receptors in differentiated human adipocytes and tested the association of NP receptor expression in visceral adipose tissue (VAT) with metabolic profiles of patients undergoing renal surgery. Differentiated human adipocytes from VAT and Simpson-Golabi-Behmel Syndrome (SGBS) adipocyte cell line were treated with insulin in the presence of high-glucose or low-glucose media to study NP receptors and insulin/glucose-regulated pathways. Fasting blood samples and VAT samples were taken from patients on the day of renal surgery. We observed a potent insulin-mediated and glucose-dependent upregulation of NPRC, through the phosphatidylinositol 3-kinase pathway, associated with lower lipolysis in differentiated adipocytes. No effect was observed on NPRA. Low-glucose medium, used to simulate in vivo starving conditions, hampered the insulin effect on NPRC through modulation of insulin/glucose-regulated pathways, allowing atrial natriuretic peptide to induce lipolysis and thermogenic genes. An expression ratio in favor of NPRC in adipose tissue was associated with higher fasting insulinemia, HOMA-IR, and atherogenic lipid levels. Insulin/glucose-dependent NPRC induction in adipocytes might be a key factor linking hyperinsulinemia, metabolic syndrome, and higher blood pressure by reducing NP effects on adipocytes.
Collapse
Affiliation(s)
- M Bordicchia
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche," Ancona, Italy
| | - M Ceresiani
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche," Ancona, Italy
| | - M Pavani
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche," Ancona, Italy
| | - D Minardi
- Department of Urology, University Politecnica delle Marche, Ancona, Italy
| | - M Polito
- Department of Urology, University Politecnica delle Marche, Ancona, Italy
| | - M Wabitsch
- Pediatric Endocrinology and Diabetes, University of Ulm, Ulm, Germany; and
| | - V Cannone
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - J C Burnett
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - P Dessì-Fulgheri
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche," Ancona, Italy; Italian National Research Center on Aging INRCA-IRCCS Ospedale "U. Sestilli"
| | - R Sarzani
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche," Ancona, Italy; Italian National Research Center on Aging INRCA-IRCCS Ospedale "U. Sestilli";
| |
Collapse
|
132
|
Kovacova Z, Tharp WG, Liu D, Wei W, Xie H, Collins S, Pratley RE. Adipose tissue natriuretic peptide receptor expression is related to insulin sensitivity in obesity and diabetes. Obesity (Silver Spring) 2016; 24:820-8. [PMID: 26887289 PMCID: PMC5067565 DOI: 10.1002/oby.21418] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/22/2015] [Accepted: 10/30/2015] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Cardiac natriuretic peptides (NPs) bind to two receptors (NPRA-mediator of signaling; NPRC-clearance receptor) whose ratio, NPRR (NPRA/NPRC), determines the NP bioactivity. This study investigated the relationship of NP receptor gene expression in adipose tissue and muscle with obesity and glucose intolerance. Prospectively, the study also assessed whether changes in NP receptor expression and thermogenic gene markers accompanied improvements of insulin sensitivity. METHODS A cross-sectional study of subjects with a wide range of BMI and glucose tolerance (n = 50) was conducted, as well as a randomized 12-week trial of subjects with type 2 diabetes mellitus (T2DM) treated with pioglitazone (n = 9) or placebo (n = 10). RESULTS NPRR mRNA was significantly lower in adipose tissue of subjects with obesity when compared with lean subjects (P ≤ 0.001). NPRR decreased with progression from normal glucose tolerance to T2DM (P < 0.01) independently of obesity. Treatment of subjects with T2DM with pioglitazone increased NPRR in adipose tissue (P ≤ 0.01) in conjunction with improvements in insulin sensitivity and increases of the thermogenic markers PPARγ coactivator-1α and uncoupling protein 1 (P ≤ 0.01). CONCLUSIONS Decreased adipose tissue NPRR was associated with obesity, glucose intolerance, and insulin resistance. This relationship was not observed for skeletal muscle NPRR. Pharmacological improvement of insulin sensitivity in subjects with T2DM was tied to improvement in NPRR and increased expression of genes involved in thermogenic processes.
Collapse
Affiliation(s)
- Zuzana Kovacova
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida, USA
| | - William G Tharp
- Division of Endocrinology, Diabetes and Metabolism, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Dianxin Liu
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Wan Wei
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Hui Xie
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida, USA
| | - Sheila Collins
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Richard E Pratley
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida, USA
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| |
Collapse
|
133
|
Chen S, Huang J, Zhao Q, Chen J, Jaquish CE, He J, Lu X, Yang X, Gu CC, Hixson JE, Liu F, Rice TK, Cao J, Chen J, Gu D. Associations Between Genetic Variants of the Natriuretic Peptide System and Blood Pressure Response to Dietary Sodium Intervention: The GenSalt Study. Am J Hypertens 2016. [PMID: 26224401 DOI: 10.1093/ajh/hpv129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The aim of this study was to comprehensively test the association of genetic variants in the natriuretic peptide (NP) system with blood pressure (BP) response to dietary sodium intervention in a Chinese population. METHODS We conducted a 7-day low-sodium intervention followed by a 7-day high-sodium intervention among 1,906 participants in rural China. BP measurements were obtained at baseline and each dietary intervention using a random-zero sphygmomanometer. Linear mixed-effect models were used to assess the associations of 48 single-nucleotide polymorphisms (SNPs) in 6 genes of NP system with BP response to dietary sodium intervention. RESULTS SNP rs5063 in the NPPA gene and SNP rs2077386 in the NPPC gene exhibited significant associations with BP response to low-sodium dietary intervention under recessive genetic model. For rs5063, absolute mean arterial pressure responses (95% confidence interval) to the low-sodium intervention were 1.31 (-1.08, 3.70) mm Hg for TT genotype and -3.74 (-4.01, -3.46) mm Hg for CC or TC genotype, respectively (P = 4.1 × 10(-5)). Individuals with at least one copy of the C allele of rs2077386 had significantly reduction in systolic BP during the low-sodium intervention compared to those with genotype GG with responses of -5.48 (-5.83, -5.14) vs. -2.76 (-3.52, -2.00) mm Hg, respectively (P = 1.9 × 10(-13)). CONCLUSIONS These novel findings suggested that genetic variants of NP system may contribute to the variation of BP response to sodium intervention in Chinese population. Certainly, replication of these results in other populations and further functional studies are warranted to clarify their role in the regulation of BP and hypertension.
Collapse
Affiliation(s)
- Shufeng Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China;
| | - Jianfeng Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Zhao
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Jing Chen
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Cashell E Jaquish
- National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Jiang He
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Xiangfeng Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueli Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Charles C Gu
- School of Medicine, Washington University, St. Louis, Missouri, USA
| | - James E Hixson
- School of Public Health, University of Texas, Houston, Texas, USA
| | - Fangchao Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Treva K Rice
- School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Jie Cao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jichun Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongfeng Gu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
134
|
Sierra A, Subbotina E, Zhu Z, Gao Z, Koganti SRK, Coetzee WA, Goldhamer DJ, Hodgson-Zingman DM, Zingman LV. Disruption of ATP-sensitive potassium channel function in skeletal muscles promotes production and secretion of musclin. Biochem Biophys Res Commun 2016; 471:129-34. [PMID: 26828268 PMCID: PMC4815902 DOI: 10.1016/j.bbrc.2016.01.166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
Abstract
Sarcolemmal ATP-sensitive potassium (KATP) channels control skeletal muscle energy use through their ability to adjust membrane excitability and related cell functions in accordance with cellular metabolic status. Mice with disrupted skeletal muscle KATP channels exhibit reduced adipocyte size and increased fatty acid release into the circulation. As yet, the molecular mechanisms underlying this link between skeletal muscle KATP channel function and adipose mobilization have not been established. Here, we demonstrate that skeletal muscle-specific disruption of KATP channel function in transgenic (TG) mice promotes production and secretion of musclin. Musclin is a myokine with high homology to atrial natriuretic peptide (ANP) that enhances ANP signaling by competing for elimination. Augmented musclin production in TG mice is driven by a molecular cascade resulting in enhanced acetylation and nuclear exclusion of the transcription factor forkhead box O1 (FOXO1) - an inhibitor of transcription of the musclin encoding gene. Musclin production/secretion in TG is paired with increased mobilization of fatty acids and a clear trend toward increased circulating ANP, an activator of lipolysis. These data establish KATP channel-dependent musclin production as a potential mechanistic link coupling "local" skeletal muscle energy consumption with mobilization of bodily resources from fat. Understanding such mechanisms is an important step toward designing interventions to manage metabolic disorders including those related to excess body fat and associated co-morbidities.
Collapse
Affiliation(s)
- Ana Sierra
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Ekaterina Subbotina
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Zhiyong Zhu
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Zhan Gao
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Siva Rama Krishna Koganti
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA.
| | - William A Coetzee
- Department of Pediatrics, NYU School of Medicine, New York, NY 10016, USA.
| | - David J Goldhamer
- Center for Regenerative Biology, Department of Molecular and Cell Biology, Advanced Technology Laboratory, University of Connecticut, 1392 Storrs Road Unit 4243, Storrs, Connecticut 06269, USA.
| | - Denice M Hodgson-Zingman
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Leonid V Zingman
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, Iowa City, IA 52242, USA; Department of Veterans Affairs, Medical Center, Iowa City, IA 52242, USA.
| |
Collapse
|
135
|
Moghtadaei M, Polina I, Rose RA. Electrophysiological effects of natriuretic peptides in the heart are mediated by multiple receptor subtypes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 120:37-49. [DOI: 10.1016/j.pbiomolbio.2015.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022]
|
136
|
Musclin is an activity-stimulated myokine that enhances physical endurance. Proc Natl Acad Sci U S A 2015; 112:16042-7. [PMID: 26668395 DOI: 10.1073/pnas.1514250112] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exercise remains the most effective way to promote physical and metabolic wellbeing, but molecular mechanisms underlying exercise tolerance and its plasticity are only partially understood. In this study we identify musclin-a peptide with high homology to natriuretic peptides (NP)-as an exercise-responsive myokine that acts to enhance exercise capacity in mice. We use human primary myoblast culture and in vivo murine models to establish that the activity-related production of musclin is driven by Ca(2+)-dependent activation of Akt1 and the release of musclin-encoding gene (Ostn) transcription from forkhead box O1 transcription factor inhibition. Disruption of Ostn and elimination of musclin secretion in mice results in reduced exercise tolerance that can be rescued by treatment with recombinant musclin. Reduced exercise capacity in mice with disrupted musclin signaling is associated with a trend toward lower levels of plasma atrial NP (ANP) and significantly smaller levels of cyclic guanosine monophosphate (cGMP) and peroxisome proliferator-activated receptor gamma coactivator 1-α in skeletal muscles after exposure to exercise. Furthermore, in agreement with the established musclin ability to interact with NP clearance receptors, but not with NP guanyl cyclase-coupled signaling receptors, we demonstrate that musclin enhances cGMP production in cultured myoblasts only when applied together with ANP. Elimination of the activity-related musclin-dependent boost of ANP/cGMP signaling results in significantly lower maximum aerobic capacity, mitochondrial protein content, respiratory complex protein expression, and succinate dehydrogenase activity in skeletal muscles. Together, these data indicate that musclin enhances physical endurance by promoting mitochondrial biogenesis.
Collapse
|
137
|
Coué M, Badin PM, Vila IK, Laurens C, Louche K, Marquès MA, Bourlier V, Mouisel E, Tavernier G, Rustan AC, Galgani JE, Joanisse DR, Smith SR, Langin D, Moro C. Defective Natriuretic Peptide Receptor Signaling in Skeletal Muscle Links Obesity to Type 2 Diabetes. Diabetes 2015; 64:4033-45. [PMID: 26253614 DOI: 10.2337/db15-0305] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/31/2015] [Indexed: 11/13/2022]
Abstract
Circulating natriuretic peptide (NP) levels are reduced in obesity and predict the risk of type 2 diabetes (T2D). Since skeletal muscle was recently shown as a key target tissue of NP, we aimed to investigate muscle NP receptor (NPR) expression in the context of obesity and T2D. Muscle NPRA correlated positively with whole-body insulin sensitivity in humans and was strikingly downregulated in obese subjects and recovered in response to diet-induced weight loss. In addition, muscle NP clearance receptor (NPRC) increased in individuals with impaired glucose tolerance and T2D. Similar results were found in obese diabetic mice. Although no acute effect of brain NP (BNP) on insulin sensitivity was observed in lean mice, chronic BNP infusion improved blood glucose control and insulin sensitivity in skeletal muscle of obese and diabetic mice. This occurred in parallel with a reduced lipotoxic pressure in skeletal muscle due to an upregulation of lipid oxidative capacity. In addition, chronic NP treatment in human primary myotubes increased lipid oxidation in a PGC1α-dependent manner and reduced palmitate-induced lipotoxicity. Collectively, our data show that activation of NPRA signaling in skeletal muscle is important for the maintenance of long-term insulin sensitivity and has the potential to treat obesity-related metabolic disorders.
Collapse
MESH Headings
- Adult
- Animals
- Body Mass Index
- Cells, Cultured
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/prevention & control
- Diet, Reducing
- Disease Progression
- Glucose Intolerance/etiology
- Glucose Intolerance/prevention & control
- Humans
- Insulin Resistance
- Male
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Middle Aged
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Obesity/diet therapy
- Obesity/metabolism
- Obesity/pathology
- Obesity/physiopathology
- Random Allocation
- Receptors, Atrial Natriuretic Factor/agonists
- Receptors, Atrial Natriuretic Factor/genetics
- Receptors, Atrial Natriuretic Factor/metabolism
- Signal Transduction
- Specific Pathogen-Free Organisms
- Weight Loss
Collapse
Affiliation(s)
- Marine Coué
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Pierre-Marie Badin
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Isabelle K Vila
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Claire Laurens
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Katie Louche
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Marie-Adeline Marquès
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Virginie Bourlier
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Etienne Mouisel
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Geneviève Tavernier
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Arild C Rustan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Jose E Galgani
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Denis R Joanisse
- Department of Kinesiology, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval, Canada
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford-Burnham Medical Research Institute, Orlando, FL
| | - Dominique Langin
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France Department of Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
| | - Cedric Moro
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| |
Collapse
|
138
|
Chen X, Yao Y, Zhou LF. Serum B-Type Natriuretic Peptide: A Potential Marker for Neoplastic Edema in Brain Tumor Patients? World Neurosurg 2015; 86:39-41. [PMID: 26459707 DOI: 10.1016/j.wneu.2015.09.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 11/17/2022]
Affiliation(s)
- Xi Chen
- Shanghai Huashan Institution of Neurological Surgery, Shanghai Neurosurgical Center, Shanghai, China
| | - Yu Yao
- Shanghai Huashan Institution of Neurological Surgery, Shanghai Neurosurgical Center, Shanghai, China
| | - Liang-Fu Zhou
- Shanghai Huashan Institution of Neurological Surgery, Shanghai Neurosurgical Center, Shanghai, China.
| |
Collapse
|
139
|
Hu P, Huang BY, Xia X, Xuan Q, Hu B, Qin YH. Therapeutic effect of CNP on renal osteodystrophy by antagonizing the FGF-23/MAPK pathway. J Recept Signal Transduct Res 2015; 36:213-9. [DOI: 10.3109/10799893.2015.1075041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
140
|
Tam JCW, Ko CH, Koon CM, Cheng Z, Lok WH, Lau CP, Leung PC, Fung KP, Chan WY, Lau CBS. Identification of Target Genes Involved in Wound Healing Angiogenesis of Endothelial Cells with the Treatment of a Chinese 2-Herb Formula. PLoS One 2015; 10:e0139342. [PMID: 26430762 PMCID: PMC4591983 DOI: 10.1371/journal.pone.0139342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/11/2015] [Indexed: 01/10/2023] Open
Abstract
Angiogenesis is vitally important in diabetic wound healing. We had previously demonstrated that a Chinese 2-herb formula (NF3) significantly stimulated angiogenesis of HUVEC in wound healing. However, the molecular mechanism has not yet been elucidated. In line with this, global expression profiling of NF3-treated HUVEC was performed so as to assess the regulatory role of NF3 involved in the underlying signaling pathways in wound healing angiogenesis. The microarray results illustrated that different panels of differentially expressed genes were strictly governed in NF3-treated HUVEC in a time-regulated manner. The microarray analysis followed by qRT-PCR and western blotting verification of NF3-treated HUVEC at 6 h revealed the involvement of various genes in diverse biological process, e.g., MAP3K14 in anti-inflammation; SLC5A8 in anti-tumorogenesis; DNAJB7 in protein translation; BIRC5, EPCAM, INSL4, MMP8 and NPR3 in cell proliferation; CXCR7, EPCAM, HAND1 and MMP8 in migration; CXCR7, EPCAM and MMP8 in tubular formation; and BIRC5, CXCR7, EPCAM, HAND1, MMP8 and UBD in angiogenesis. After 16 h incubation of NF3, other sets of genes were shown with differential expression in HUVEC, e.g., IL1RAPL2 and NR1H4 in anti-inflammation; miR28 in anti-tumorogenesis; GRIN1 and LCN1 in anti-oxidation; EPB41 in intracellular signal transduction; PRL and TFAP2A in cell proliferation; miR28, PRL and SCG2 in cell migration; PRL in tubular formation; and miR28, NR1H4 and PRL in angiogenesis. This study provided concrete scientific evidence in support of the regulatory role of NF3 on endothelial cells involved in wound healing angiogenesis.
Collapse
Affiliation(s)
- Jacqueline Chor Wing Tam
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Chun Hay Ko
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Chi Man Koon
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Zhang Cheng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Wong Hing Lok
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ching Po Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ping Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kwok Pui Fung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Wai Yee Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Clara Bik San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- * E-mail:
| |
Collapse
|
141
|
Takasuga A, Sato K, Nakamura R, Saito Y, Sasaki S, Tsuji T, Suzuki A, Kobayashi H, Matsuhashi T, Setoguchi K, Okabe H, Ootsubo T, Tabuchi I, Fujita T, Watanabe N, Hirano T, Nishimura S, Watanabe T, Hayakawa M, Sugimoto Y, Kojima T. Non-synonymous FGD3 Variant as Positional Candidate for Disproportional Tall Stature Accounting for a Carcass Weight QTL (CW-3) and Skeletal Dysplasia in Japanese Black Cattle. PLoS Genet 2015; 11:e1005433. [PMID: 26306008 PMCID: PMC4549114 DOI: 10.1371/journal.pgen.1005433] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 07/08/2015] [Indexed: 12/22/2022] Open
Abstract
Recessive skeletal dysplasia, characterized by joint- and/or hip bone-enlargement, was mapped within the critical region for a major quantitative trait locus (QTL) influencing carcass weight; previously named CW-3 in Japanese Black cattle. The risk allele was on the same chromosome as the Q allele that increases carcass weight. Phenotypic characterization revealed that the risk allele causes disproportional tall stature and bone size that increases carcass weight in heterozygous individuals but causes disproportionately narrow chest width in homozygotes. A non-synonymous variant of FGD3 was identified as a positional candidate quantitative trait nucleotide (QTN) and the corresponding mutant protein showed reduced activity as a guanine nucleotide exchange factor for Cdc42. FGD3 is expressed in the growth plate cartilage of femurs from bovine and mouse. Thus, loss of FDG3 activity may lead to subsequent loss of Cdc42 function. This would be consistent with the columnar disorganization of proliferating chondrocytes in chondrocyte-specific inactivated Cdc42 mutant mice. This is the first report showing association of FGD3 with skeletal dysplasia.
Collapse
Affiliation(s)
- Akiko Takasuga
- National Livestock Breeding Center, Odakura, Nishigo, Fukushima, Japan
- Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association, Odakura, Nishigo, Fukushima, Japan
- * E-mail:
| | - Kunio Sato
- Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Kuju, Takeda, Oita, Japan
| | - Ryouichi Nakamura
- Shimane Prefectural Livestock Technology Center, Koshi, Izumo, Shimane, Japan
| | - Yosuke Saito
- Miyagi Prefectural Livestock Experiment Station, Iwadeyama, Osaki, Miyagi, Japan
| | - Shinji Sasaki
- National Livestock Breeding Center, Odakura, Nishigo, Fukushima, Japan
- Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association, Odakura, Nishigo, Fukushima, Japan
| | - Takehito Tsuji
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka, Okayama, Japan
| | - Akio Suzuki
- Aomori Prefectural Industrial Technology Research Center, Moritatukimino, Morita, Tugaru, Aomori, Japan
| | - Hiroshi Kobayashi
- Okayama Prefectural Research Institute of Livestock Industry, Misaki, Kume, Okayama, Japan
| | - Tamako Matsuhashi
- Gifu Prefectural Livestock Research Institute, Kiyomi, Takayama, Gifu, Japan
| | - Koji Setoguchi
- Cattle Breeding Development Institute of Kagoshima Prefecture, Osumi, So, Kagoshima, Japan
| | - Hiroshi Okabe
- Nagasaki Prefectural Beef Cattle Improvement Center, Tabiracho Kotedamen, Hirado, Nagasaki, Japan
| | - Toshitake Ootsubo
- Saga Prefectural Livestock Experiment Station, Yamauchi, Takeo, Saga, Japan
| | - Ichiro Tabuchi
- Tottori Animal Husbandry Experiment Station, Kotoura, Touhaku, Tottori, Japan
| | - Tatsuo Fujita
- Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Kuju, Takeda, Oita, Japan
| | - Naoto Watanabe
- Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Kuju, Takeda, Oita, Japan
| | - Takashi Hirano
- Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association, Odakura, Nishigo, Fukushima, Japan
| | - Shota Nishimura
- Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association, Odakura, Nishigo, Fukushima, Japan
| | - Toshio Watanabe
- Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association, Odakura, Nishigo, Fukushima, Japan
| | - Makio Hayakawa
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Yoshikazu Sugimoto
- Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association, Odakura, Nishigo, Fukushima, Japan
| | - Takatoshi Kojima
- National Livestock Breeding Center, Odakura, Nishigo, Fukushima, Japan
| |
Collapse
|
142
|
Peake NJ, Bader DL, Vessillier S, Ramachandran M, Salter DM, Hobbs AJ, Chowdhury TT. C-type natriuretic peptide signalling drives homeostatic effects in human chondrocytes. Biochem Biophys Res Commun 2015; 465:784-9. [PMID: 26307537 DOI: 10.1016/j.bbrc.2015.08.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
Signals induced by mechanical loading and C-type natriuretic peptide (CNP) represent chondroprotective routes that may potentially prevent osteoarthritis (OA). We examined whether CNP will reduce hyaluronan production and export via members of the multidrug resistance protein (MRP) and diminish pro-inflammatory effects in human chondrocytes. The presence of interleukin-1β (IL-1β) increased HA production and export via MRP5 that was reduced with CNP and/or loading. Treatment with IL-1β conditioned medium increased production of catabolic mediators and the response was reduced with the hyaluronan inhibitor, Pep-1. The induction of pro-inflammatory cytokines by the conditioned medium was reduced by CNP and/or Pep-1, αCD44 or αTLR4 in a cytokine-dependent manner, suggesting that the CNP pathway is protective and should be exploited further.
Collapse
Affiliation(s)
- N J Peake
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - D L Bader
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - S Vessillier
- National Institute for Biological Standards and Control, Biotherapeutics Group, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - M Ramachandran
- Department of Orthopaedics and Trauma, The Royal London Hospital and Barts & The London School of Medicine & Dentistry, Queen Mary University of London, Whitechapel Road, London E1 1BB, UK
| | - D M Salter
- Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crew Road, Edinburgh EH4 2XU, UK
| | - A J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, QMUL, Charterhouse Square, London EC1M 6BQ, UK
| | - T T Chowdhury
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
143
|
Abstract
Natriuretic peptides are cardiac-derived hormones with a range of protective functions, including natriuresis, diuresis, vasodilation, lusitropy, lipolysis, weight loss, and improved insulin sensitivity. Their actions are mediated through membrane-bound guanylyl cyclases that lead to production of the intracellular second-messenger cyclic guanosine monophosphate. A growing body of evidence demonstrates that genetic and acquired deficiencies of the natriuretic peptide system can promote hypertension, cardiac hypertrophy, obesity, diabetes mellitus, the metabolic syndrome, and heart failure. Clinically, natriuretic peptides are robust diagnostic and prognostic markers, and augmenting natriuretic peptides is a target for therapeutic strategies in cardiometabolic disease. This review will summarize current understanding and highlight novel aspects of natriuretic peptide biology.
Collapse
Affiliation(s)
- Deepak K Gupta
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular Medicine, Vanderbilt University School of Medicine
| | | |
Collapse
|
144
|
Santos-Araújo C, Leite-Moreira A, Pestana M. Clinical value of natriuretic peptides in chronic kidney disease. Nefrologia 2015; 35:227-33. [PMID: 26299165 DOI: 10.1016/j.nefro.2015.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 03/09/2015] [Indexed: 11/26/2022] Open
Abstract
According to several lines of evidence, natriuretic peptides (NP) are the main components of a cardiac-renal axis that operate in clinical conditions of decreased cardiac hemodynamic tolerance to regulate sodium homeostasis, blood pressure and vascular function. Even though it is reasonable to assume that NP may exert a relevant role in the adaptive response to renal mass ablation, evidence gathered so far suggest that this contribution is probably complex and dependent on the type and degree of the functional mass loss. In the last years NP have been increasingly used to diagnose, monitor treatment and define the prognosis of several cardiovascular (CV) diseases. However, in many clinical settings, like chronic kidney disease (CKD), the predictive value of these biomarkers has been questioned. In fact, it is now well established that renal function significantly affects the plasmatic levels of NP and that renal failure is the clinical condition associated with the highest plasmatic levels of these peptides. The complexity of the relation between NP plasmatic levels and CV and renal functions has obvious consequences, as it may limit the predictive value of NP in CV assessment of CKD patients and be a demanding exercise for clinicians involved in the daily management of these patients. This review describes the role of NP in the regulatory response to renal function loss and addresses the main factors involved in the clinical valorization of the peptides in the context of significant renal failure.
Collapse
Affiliation(s)
- Carla Santos-Araújo
- Department of Physiology and Cardiothoracic Surgery, Cardiovascular R&D Center and Nephrology and Infectious Diseases Research and Development Group, INEB (I3S) Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Cardiovascular R&D Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Manuel Pestana
- Nephrology and Infectious Diseases Research and Development Group, INEB (I3S) and Department of Renal, Urologic and Infectious Diseases, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
145
|
Vasques GA, Arnhold IJP, Jorge AAL. Role of the natriuretic peptide system in normal growth and growth disorders. Horm Res Paediatr 2015; 82:222-9. [PMID: 25196103 DOI: 10.1159/000365049] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/03/2014] [Indexed: 11/19/2022] Open
Abstract
The C-type natriuretic peptide (CNP) and its receptor (NPR-B) are recognized as important regulators of longitudinal growth. Animal models involving CNP or NPR-B genes (Nppc or Npr2) support the fundamental role of CNP/NPR-B for endochondral ossification. Studies with these animals allow the development of potential drug therapies for dwarfism. Polymorphisms in two genes related to the CNP pathway have been implicated in height variability in healthy individuals. Biallelic loss-of-function mutations in NPR-B gene (NPR2) cause acromesomelic dysplasia type Maroteux, a skeletal dysplasia with extremely short stature. Heterozygous mutations in NPR2 are responsible for nonsyndromic familial short stature. Conversely, heterozygous gain-of-function mutations in NPR2 cause tall stature, with a variable phenotype. A phase 2 multicenter and multinational trial is being developed to evaluate a CNP analog treatment for achondroplasia. Pediatricians and endocrinologists must be aware of growth disorders related to natriuretic peptides, although there is still much to be learned about its diagnostic and therapeutic use.
Collapse
Affiliation(s)
- Gabriela A Vasques
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM-25, Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
146
|
Systemic, but not cardiomyocyte-specific, deletion of the natriuretic peptide receptor guanylyl cyclase A increases cardiomyocyte number in neonatal mice. Histochem Cell Biol 2015; 144:365-75. [PMID: 26059418 DOI: 10.1007/s00418-015-1337-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2015] [Indexed: 12/13/2022]
Abstract
Guanylyl cyclase A (GC-A), the receptor for atrial and B-type natriuretic peptides, is implicated in the regulation of blood pressure and cardiac growth. We used design-based stereological methods to examine the effect of GC-A inactivation on cardiomyocyte volume, number and subcellular composition in postnatal mice at day P2. In mice with global, systemic GC-A deletion, the cardiomyocyte number was significantly increased, demonstrating that hyperplasia is the main cause for the increase in ventricle weight in these early postnatal animals. In contrast, conditional, cardiomyocyte-restricted inactivation of GC-A had no significant effect on ventricle weight or cardiomyocyte number. The mean volume of cardiomyocytes and the myocyte-related volumes of the four major cell organelles (myofibrils, mitochondria, nuclei and sarcoplasm) were similar between genotypes. Taken together, systemic GC-A deficiency induces cardiac enlargement based on a higher number of normally composed and sized cardiomyocytes early after birth, whereas cardiomyocyte-specific GC-A abrogation is not sufficient to induce cardiac enlargement and has no effect on number, size and composition of cardiomyocytes. We conclude that postnatal cardiac hyperplasia in mice with global GC-A inactivation is provoked by systemic alterations, e.g., arterial hypertension. Direct GC-A-mediated effects in cardiomyocytes seem not to be involved in the regulation of myocyte proliferation at this early stage.
Collapse
|
147
|
Wong LL, Wee ASY, Lim JY, Ng JYX, Chong JPC, Liew OW, Lilyanna S, Martinez EC, Ackers-Johnson MA, Vardy LA, Armugam A, Jeyaseelan K, Ng TP, Lam CSP, Foo RSY, Richards AM, Chen YT. Natriuretic peptide receptor 3 (NPR3) is regulated by microRNA-100. J Mol Cell Cardiol 2015; 82:13-21. [PMID: 25736855 DOI: 10.1016/j.yjmcc.2015.02.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 02/18/2015] [Accepted: 02/21/2015] [Indexed: 01/01/2023]
Abstract
Natriuretic peptide receptor 3 (NPR3) is the clearance receptor for the cardiac natriuretic peptides (NPs). By modulating the level of NPs, NPR3 plays an important role in cardiovascular homeostasis. Although the physiological functions of NPR3 have been explored, little is known about its regulation in health or disease. MicroRNAs play an essential role in the post-transcriptional expression of many genes. Our aim was to investigate potential microRNA-based regulation of NPR3 in multiple models. Hypoxic challenge elevated levels of NPPB and ADM mRNA, as well as NT-proBNP and MR-proADM in human left ventricle derived cardiac cells (HCMa), and in the corresponding conditioned medium, as revealed by qRT-PCR and ELISA. NPR3 was decreased while NPR1 was increased by hypoxia at mRNA and protein levels in HCMa. Down-regulation of NPR3 mRNA was also observed in infarct and peri-infarct cardiac tissue from rats undergoing myocardial infarction. From microRNA microarray analyses and microRNA target predictive databases, miR-100 was selected as a candidate regulator of NPR3 expression. Further analyses confirmed up-regulation of miR-100 in hypoxic cells and associated conditioned media. Antagomir-based silencing of miR-100 enhanced NPR3 expression in HCMa. Furthermore, miR-100 levels were markedly up-regulated in rat hearts and in peripheral blood after myocardial infarction and in the blood from heart failure patients. Results from this study point to a role for miR-100 in the regulation of NPR3 expression, and suggest a possible therapeutic target for modulation of NP bioactivity in heart disease.
Collapse
MESH Headings
- 3' Untranslated Regions
- Adrenomedullin/genetics
- Adrenomedullin/metabolism
- Aged
- Animals
- Base Sequence
- Binding Sites
- Case-Control Studies
- Culture Media, Conditioned/metabolism
- Disease Models, Animal
- Down-Regulation
- Female
- Gene Expression Profiling
- Gene Expression Regulation
- Heart Failure/blood
- Heart Failure/genetics
- Heart Failure/metabolism
- Humans
- Hypoxia/genetics
- Hypoxia/metabolism
- Male
- MicroRNAs/chemistry
- MicroRNAs/genetics
- Middle Aged
- Myocardial Infarction/blood
- Myocardial Infarction/genetics
- Myocardial Infarction/metabolism
- Myocytes, Cardiac/metabolism
- Natriuretic Peptide, Brain/metabolism
- Peptide Fragments/metabolism
- Protein Precursors/metabolism
- RNA Interference
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Receptors, Atrial Natriuretic Factor/chemistry
- Receptors, Atrial Natriuretic Factor/genetics
- Receptors, Atrial Natriuretic Factor/metabolism
- Time Factors
Collapse
Affiliation(s)
- Lee Lee Wong
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Abby S Y Wee
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jia Yuen Lim
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jessica Y X Ng
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jenny P C Chong
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Oi Wah Liew
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shera Lilyanna
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eliana C Martinez
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Matthew Andrew Ackers-Johnson
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Leah A Vardy
- A*STAR Institute of Medical Biology, Singapore; Department of Biological Sciences, Nanyang Technological University, Singapore
| | - Arunmozhiarasi Armugam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kandiah Jeyaseelan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| | - Tze P Ng
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiac Department, National University Health System, Singapore
| | - Carolyn S P Lam
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiac Department, National University Health System, Singapore
| | - Roger S Y Foo
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Arthur Mark Richards
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiac Department, National University Health System, Singapore; Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Yei-Tsung Chen
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
148
|
Abstract
In the year 2015, many questions regarding the pathophysiology of essential arterial hypertension remain unresolved. Substantial scientific progress has been made in various medical areas aided by novel molecular"omics" techniques. The findings could then be implemented in diagnostic and therapeutic procedures. In the field of hypertension research such methods have been applied in very large cohorts but have contributed less to pathophysiological understanding and clinical management than expected. The findings on the pathophysiological importance of baroreflex mechanisms, natriuretic peptides and osmotically inactive sodium storage discussed in this article all have something in common: all are based on small, carefully conducted human physiological investigations and often challenge current textbook knowledge. Nevertheless, these findings have opened up new research fields and are likely to affect clinical care.
Collapse
Affiliation(s)
- J Jordan
- Institut für Klinische Pharmakologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland,
| |
Collapse
|
149
|
Egom EE, Vella K, Hua R, Jansen HJ, Moghtadaei M, Polina I, Bogachev O, Hurnik R, Mackasey M, Rafferty S, Ray G, Rose RA. Impaired sinoatrial node function and increased susceptibility to atrial fibrillation in mice lacking natriuretic peptide receptor C. J Physiol 2015; 593:1127-46. [PMID: 25641115 DOI: 10.1113/jphysiol.2014.283135] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/06/2014] [Indexed: 12/17/2022] Open
Abstract
Natriuretic peptides (NPs) are critical regulators of the cardiovascular system that are currently viewed as possible therapeutic targets for the treatment of heart disease. Recent work demonstrates potent NP effects on cardiac electrophysiology, including in the sinoatrial node (SAN) and atria. NPs elicit their effects via three NP receptors (NPR-A, NPR-B and NPR-C). Among these receptors, NPR-C is poorly understood. Accordingly, the goal of this study was to determine the effects of NPR-C ablation on cardiac structure and arrhythmogenesis. Cardiac structure and function were assessed in wild-type (NPR-C(+/+)) and NPR-C knockout (NPR-C(-/-)) mice using echocardiography, intracardiac programmed stimulation, patch clamping, high-resolution optical mapping, quantitative polymerase chain reaction and histology. These studies demonstrate that NPR-C(-/-) mice display SAN dysfunction, as indicated by a prolongation (30%) of corrected SAN recovery time, as well as an increased susceptibility to atrial fibrillation (6% in NPR-C(+/+) vs. 47% in NPR-C(-/-)). There were no differences in SAN or atrial action potential morphology in NPR-C(-/-) mice; however, increased atrial arrhythmogenesis in NPR-C(-/-) mice was associated with reductions in SAN (20%) and atrial (15%) conduction velocity, as well as increases in expression and deposition of collagen in the atrial myocardium. No differences were seen in ventricular arrhythmogenesis or fibrosis in NPR-C(-/-) mice. This study demonstrates that loss of NPR-C results in SAN dysfunction and increased susceptibility to atrial arrhythmias in association with structural remodelling and fibrosis in the atrial myocardium. These findings indicate a critical protective role for NPR-C in the heart.
Collapse
Affiliation(s)
- Emmanuel E Egom
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Hodes A, Lichtstein D. Natriuretic hormones in brain function. Front Endocrinol (Lausanne) 2014; 5:201. [PMID: 25506340 PMCID: PMC4246887 DOI: 10.3389/fendo.2014.00201] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/12/2014] [Indexed: 01/11/2023] Open
Abstract
Natriuretic hormones (NH) include three groups of compounds: the natriuretic peptides (ANP, BNP and CNP), the gastrointestinal peptides (guanylin and uroguanylin), and endogenous cardiac steroids. These substances induce the kidney to excrete sodium and therefore participate in the regulation of sodium and water homeostasis, blood volume, and blood pressure (BP). In addition to their peripheral functions, these hormones act as neurotransmitters or neuromodulators in the brain. In this review, the established information on the biosynthesis, release and function of NH is discussed, with particular focus on their role in brain function. The available literature on the expression patterns of each of the NH and their receptors in the brain is summarized, followed by the evidence for their roles in modulating brain function. Although numerous open questions exist regarding this issue, the available data support the notion that NH participate in the central regulation of BP, neuroprotection, satiety, and various psychiatric conditions, including anxiety, addiction, and depressive disorders. In addition, the interactions between the different NH in the periphery and the brain are discussed.
Collapse
Affiliation(s)
- Anastasia Hodes
- Faculty of Medicine, Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Lichtstein
- Faculty of Medicine, Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|