101
|
Windheim M, Lang C, Peggie M, Plater L, Cohen P. Molecular mechanisms involved in the regulation of cytokine production by muramyl dipeptide. Biochem J 2007; 404:179-90. [PMID: 17348859 PMCID: PMC1868792 DOI: 10.1042/bj20061704] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 03/01/2007] [Accepted: 03/09/2007] [Indexed: 01/02/2023]
Abstract
MDP (muramyl dipeptide), a component of peptidoglycan, interacts with NOD2 (nucleotide-binding oligomerization domain 2) stimulating the NOD2-RIP2 (receptor-interacting protein 2) complex to activate signalling pathways important for antibacterial defence. Here we demonstrate that the protein kinase activity of RIP2 has two functions, namely to limit the strength of downstream signalling and to stabilize the active enzyme. Thus pharmacological inhibition of RIP2 kinase with either SB 203580 [a p38 MAPK (mitogen-activated protein kinase) inhibitor] or the Src family kinase inhibitor PP2 induces a rapid and drastic decrease in the level of the RIP2 protein, which may explain why these RIP2 inhibitors block MDP-stimulated downstream signalling and the production of IL-1beta (interleukin-1beta) and TNFalpha (tumour necrosis factor-alpha). We also show that RIP2 induces the activation of the protein kinase TAK1 (transforming-growth-factor-beta-activated kinase-1), that a dominant-negative mutant of TAK1 inhibits RIP2-induced activation of JNK (c-Jun N-terminal kinase) and p38alpha MAPK, and that signalling downstream of NOD2 or RIP2 is reduced by the TAK1 inhibitor (5Z)-7-oxozeaenol or in TAK1-deficient cells. We also show that MDP activates ERK1 (extracellular-signal-regulated kinase 1)/ERK2 and p38alpha MAPK in human peripheral-blood mononuclear cells and that the activity of both MAPKs and TAK1 are required for MDP-induced signalling and production of IL-1beta and TNFalpha in these cells. Taken together, our results indicate that the MDP-NOD2/RIP2 and LPS (lipopolysaccharide)-TLR4 (Toll-like receptor 4) signalling pathways converge at the level of TAK1 and that many subsequent events that lead to the production of pro-inflammatory cytokines are common to both pathways.
Collapse
Key Words
- muramyl dipeptide (mdp)
- nucleotide-binding oligomerization domain 2 (nod2)
- pro-inflammatory cytokines
- receptor-interacting protein 2 (rip2)
- transforming-growth-factor-β-activated kinase-1 (tak1)
- ck1, ‘casein kinase 1’
- erk, extracellular-signal-regulated kinase
- fcs, foetal-calf serum
- gak, cyclin g-associated kinase
- gapdh, glyceraldehyde-3-phosphate dehydrogenase
- gst, glutathione s-transferase
- ha, haemagglutinin
- hek-293, human embryonic kidney 293 cells
- iκb, inhibitor of nf-κb
- ikkβ, inhibitor of nuclear factor κb kinase β
- il, interleukin
- jnk, c-jun n-terminal kinase
- k63-pub, lys63-linked polyubiquitin
- ki, kinase inactive
- lps, lipopolysaccharide
- mapk, mitogen-activated protein kinase
- mdp, muramyl dipeptide
- mkk1, mapk kinase-1
- m-tridap, muramyl-n-acetyl-l-ala-d-glu-m-diaminopimelic acid
- nemo, nuclear factor κb essential modifier
- nf-κb, nuclear factor κb
- nod, nucleotide-binding oligomerization domain
- pbmcs, peripheral-blood mononuclear cells
- rip2, receptor-interacting protein 2
- shrna, short hairpin rna
- tab, tak1-binding protein
- tak1, transforming-growth-factor-β-activated kinase-1
- tlr, toll-like receptor
- tnf, tumour necrosis factor
- tpl2, tumour progression locus 2
- traf6, tnf-receptor-associated factor 6
- vsv-g, vesicular-stomatitis-virus envelope glycoprotein
- wt, wild-type
Collapse
Affiliation(s)
- Mark Windheim
- *MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Christine Lang
- *MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Mark Peggie
- †Division of Signal Transduction Therapy, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Lorna A. Plater
- †Division of Signal Transduction Therapy, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Philip Cohen
- *MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
- †Division of Signal Transduction Therapy, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| |
Collapse
|
102
|
Keestra AM, de Zoete MR, van Aubel RAMH, van Putten JPM. The Central Leucine-Rich Repeat Region of Chicken TLR16 Dictates Unique Ligand Specificity and Species-Specific Interaction with TLR2. THE JOURNAL OF IMMUNOLOGY 2007; 178:7110-9. [PMID: 17513760 DOI: 10.4049/jimmunol.178.11.7110] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ligand specificity of human TLR (hTLR) 2 is determined through the formation of functional heterodimers with either hTLR1 or hTLR6. The chicken carries two TLR (chTLR) 2 isoforms, type 1 and type 2 (chTLR2t1 and chTLR2t2), and one putative TLR1/6/10 homologue (chTLR16) of unknown function. In this study, we report that transfection of HeLa cells with the various chicken receptors yields potent NF-kappaB activation for the receptor combination of chTLR2t2 and chTLR16 only. The sensitivity of this complex was strongly enhanced by human CD14. The functional chTLR16/chTLR2t2 complex responded toward both the hTLR2/6-specific diacylated peptide S-(2,3-bispalmitoyloxypropyl)-Cys-Gly-Asp-Pro-Lys-His-Pro-Lys-Ser-Phe (FSL-1) and the hTLR2/1 specific triacylated peptide tripalmitoyl-S-(bis(palmitoyloxy)propyl)-Cys-Ser-(Lys)(3)-Lys (Pam(3)CSK(4)), indicating that chTLR16 covers the functions of both mammalian TLR1 and TLR6. Dissection of the species specificity of TLR2 and its coreceptors showed functional chTLR16 complex formation with chTLR2t2 but not hTLR2. Conversely, chTLR2t2 did not function in combination with hTLR1 or hTLR6. The use of constructed chimeric receptors in which the defined domains of chTLR16 and hTLR1 or hTLR6 had been exchanged revealed that the transfer of leucine-rich repeats (LRR) 6-16 of chTLR16 into hTLR6 was sufficient to confer dual ligand specificity to the human receptor and to establish species-specific interaction with chTLR2t2. Collectively, our data indicate that diversification of the central LRR region of the TLR2 coreceptors during evolution has put constraints on both their ligand specificity and their ability to form functional complexes with TLR2.
Collapse
Affiliation(s)
- A Marijke Keestra
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
103
|
van Aubel RAMH, Keestra AM, Krooshoop DJEB, van Eden W, van Putten JPM. Ligand-induced differential cross-regulation of Toll-like receptors 2, 4 and 5 in intestinal epithelial cells. Mol Immunol 2007; 44:3702-14. [PMID: 17493681 DOI: 10.1016/j.molimm.2007.04.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 03/30/2007] [Accepted: 04/02/2007] [Indexed: 10/23/2022]
Abstract
Toll-like receptors (TLR) 2, TLR4 and TLR5 are primary mucosal sensors of microbial patterns. Dissection of the cross-talk between TLRs in intestinal cells has thus far been hampered by the lack of functional TLR2 and TLR4 in in vitro model systems. Here we report that the mouse intestinal epithelial cell line mIC(cl2) expresses these TLRs and that receptor expression and function are regulated by environmental TLR stimuli. Our results show that stimulation of TLR5 by bacterial flagellin resulted in upregulated TLR2 and TLR4 mRNA and concomitant sensitization of the cells for subsequent TLR2 (Pam(3)CSK(4)) and TLR4 (LPS) stimulation. Exposure to low amounts of either Pam(3)CSK(4) or LPS in turn downregulated TLR5 mRNA and attenuated subsequent flagellin-mediated NF-kappaB activation, pointing to a negative feedback mechanism. Pam(3)CSK(4) and LPS also downregulated TLR4 mRNA but upregulated TLR2 mRNA and sensitized cells for subsequent TLR2 stimulation. Inhibition of the phosphatidyl-inositol-3-kinase/Akt pathway only affected LPS-mediated TLR cross-talk indicating that differential TLR cross-regulation was conferred via different mechanisms. Together, our results demonstrate that the expression and function of TLR in intestinal cells are highly dynamic and tightly regulated in response to encountered bacterial stimuli.
Collapse
Affiliation(s)
- Rémon A M H van Aubel
- Department of Infectious Diseases and Immunology, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
104
|
Owen HR, Elser M, Cheung E, Gersbach M, Kraus WL, Hottiger MO. MYBBP1a is a Novel Repressor of NF-κB. J Mol Biol 2007; 366:725-36. [PMID: 17196614 DOI: 10.1016/j.jmb.2006.11.099] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 11/17/2006] [Accepted: 11/21/2006] [Indexed: 01/22/2023]
Abstract
NF-kappaB is an inducible transcription factor activated in many different cell types by inflammatory and stress signals. The transcription of a wide variety of NF-kappaB genes is regulated by the coordinated action of transcription co-activators and co-repressors. Previously we identified Myb binding protein 1a (MYBBP1a) as an interaction partner of the transcription activation domain of RelA/p65. MYBBP1a has been shown by others to regulate various transcription factors, through largely unknown mechanisms. Here we present evidence that MYBBP1a is a novel co-repressor of NF-kappaB. MYBBP1a interacted directly with RelA/p65 and expression of MYBBP1a in cells repressed NF-kappaB dependent reporter expression but did affect neither RelA/p65 nuclear translocation nor its DNA binding activity. In vitro, MYBBP1a inhibited transcription from chromatinized templates at a step before pre-initiation complex formation. MYBBP1a was found to compete with the histone acetyl transferase co-activator, p300, for interaction with the transcription activation domain of RelA/p65. Expression levels of MYBBP1a are dependent on the cell type, and are particularly high in Jurkat T cells. These results indicate that MYBBP1a is a novel NF-kappaB co-repressor of transcription that competes with p300 and may function to regulate cell type specific genes.
Collapse
Affiliation(s)
- Heather R Owen
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
105
|
Miskolci V, Ghosh CC, Rollins J, Romero C, Vu HY, Robinson S, Davidson D, Vancurova I. TNFalpha release from peripheral blood leukocytes depends on a CRM1-mediated nuclear export. Biochem Biophys Res Commun 2006; 351:354-60. [PMID: 17064665 DOI: 10.1016/j.bbrc.2006.10.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 10/05/2006] [Indexed: 10/24/2022]
Abstract
Tumor necrosis factor-alpha (TNFalpha) is a potent pro-inflammatory cytokine that plays a major role in the pathogenesis of acute and chronic inflammatory disorders such as septic shock and arthritis, respectively. Leukocytes stimulated with inflammatory signals such as lipopolysaccharide (LPS) are the predominant producers of TNFalpha, and thus control of TNFalpha release from stimulated leukocytes represents a potential therapeutic target. Here, we report that leptomycin B (LMB), a specific inhibitor of CRM1-dependent nuclear protein export, inhibits TNFalpha release from LPS-stimulated human peripheral blood neutrophils and mononuclear cells. In addition, immunofluorescence confocal microscopy and immunoblotting analysis indicate that TNFalpha is localized in the nucleus of human neutrophils and mononuclear cells. This study demonstrates that the cellular release of TNFalpha from stimulated leukocytes is mediated by the CRM1-dependent nuclear export mechanism. Inhibition of CRM1-dependent cellular release of TNFalpha could thus provide a novel therapeutic approach for disorders involving excessive TNFalpha release.
Collapse
|
106
|
Zheng X, Ruas JL, Cao R, Salomons FA, Cao Y, Poellinger L, Pereira T. Cell-type-specific regulation of degradation of hypoxia-inducible factor 1 alpha: role of subcellular compartmentalization. Mol Cell Biol 2006; 26:4628-41. [PMID: 16738327 PMCID: PMC1489139 DOI: 10.1128/mcb.02236-05] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The hypoxia-inducible factor-1 alpha (HIF-1 alpha) is a transcription factor that mediates adaptive cellular responses to decreased oxygen availability (hypoxia). At normoxia, HIF-1 alpha is targeted by the von Hippel-Lindau tumor suppressor protein (pVHL) for degradation by the ubiquitin-proteasome pathway. In the present study we have observed distinct cell-type-specific differences in the ability of various tested pVHL-interacting subfragments to stabilize HIF-1 alpha and unmask its function at normoxia. These properties correlated with differences in subcellular compartmentalization and degradation of HIF-1 alpha. We observed that the absence or presence of nuclear localization or export signals differently affected the ability of a minimal HIF-1 alpha peptide spanning residues 559 to 573 of mouse HIF-1 alpha to stabilize endogenous HIFalpha and induce HIF-driven reporter gene activity in two different cell types (primary mouse endothelial and HepG2 hepatoma cells). Degradation of HIF-1 alpha occurred mainly in the cytoplasm of HepG2 cells, whereas it occurs with equal efficiency in nuclear and cytoplasmic compartments of primary endothelial cells. Consistent with these observations, green fluorescent protein-HIF-1 alpha is differently distributed during hypoxia and reoxygenation in hepatoma and endothelial cells. Consequently, we propose that differential compartmentalization of degradation of HIF-1 alpha and the subcellular distribution of HIF-1 alpha may account for cell-type-specific differences in stabilizing HIF-1 alpha protein levels under hypoxic conditions.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Carcinoma, Hepatocellular/metabolism
- Cattle
- Cell Compartmentation
- Cell Hypoxia
- Cell Line
- Cells, Cultured
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Gene Products, tat/genetics
- Gene Products, tat/metabolism
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Mice
- Models, Biological
- Neovascularization, Physiologic
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Proteasome Endopeptidase Complex/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Subcellular Fractions/metabolism
- Von Hippel-Lindau Tumor Suppressor Protein/metabolism
Collapse
Affiliation(s)
- Xiaowei Zheng
- Department of Cell and Molecular Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
107
|
Ganesh L, Yoshimoto T, Moorthy NC, Akahata W, Boehm M, Nabel EG, Nabel GJ. Protein methyltransferase 2 inhibits NF-kappaB function and promotes apoptosis. Mol Cell Biol 2006; 26:3864-74. [PMID: 16648481 PMCID: PMC1488990 DOI: 10.1128/mcb.26.10.3864-3874.2006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 12/18/2005] [Accepted: 02/18/2006] [Indexed: 11/20/2022] Open
Abstract
The protein arginine methyltransferases (PRMTs) include a family of proteins with related putative methyltransferase domains that modify chromatin and regulate cellular transcription. Although some family members, PRMT1 and PRMT4, have been implicated in transcriptional modulation or intracellular signaling, the roles of other PRMTs in diverse cellular processes have not been fully established. Here, we report that PRMT2 inhibits NF-kappaB-dependent transcription and promotes apoptosis. PRMT2 exerted this effect by blocking nuclear export of IkappaB-alpha through a leptomycin-sensitive pathway, increasing nuclear IkappaB-alpha and decreasing NF-kappaB DNA binding. The highly conserved S-adenosylmethionine-binding domain of PRMT2 mediated this effect. PRMT2 also rendered cells susceptible to apoptosis by cytokines or cytotoxic drugs, likely due to its effects on NF-kappaB. Mouse embryo fibroblasts from PRMT2 genetic knockouts showed elevated NF-kappaB activity and decreased susceptibility to apoptosis compared to wild-type or complemented cells. Taken together, these data suggest that PRMT2 inhibits cell activation and promotes programmed cell death through this NF-kappaB-dependent mechanism.
Collapse
Affiliation(s)
- Lakshmanan Ganesh
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, 40 Convent Dr., Bethesda, Maryland 20892-3005, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Chen Y, Dai X, Haas AL, Wen R, Wang D. Proteasome-dependent down-regulation of activated Stat5A in the nucleus. Blood 2006; 108:566-74. [PMID: 16569768 PMCID: PMC1895487 DOI: 10.1182/blood-2005-12-4777] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A broad spectrum of cytokines can activate the signal transducer and activator of transcription 5 (Stat5) by inducing a single tyrosine phosphorylation of the molecule. Although the process of Stat5 activation has been well studied, the mechanism by which it is inactivated is not fully understood. We demonstrate that the proteasome inhibitor MG132, but not the nuclear export inhibitor leptomycin B (LMB), stabilizes active nuclear Stat5A, whereas MG132 only partially stabilizes active cytoplasmic Stat5A. Importantly, ubiquitinated Stat5A is detected in the nucleus and the polyubiquitination of active Stat5A is K48 linked, a linkage type targeting proteins for degradation. Ubiquitination of Stat5A is recapitulated in a cell-free system, and Ubc5 is identified as the E2-conjugating enzyme for Stat5A ubiquitination. Interestingly, phosphorylation of Stat5A per se is not required for ubiquitination. Finally, C-terminal deletion analysis of Stat5A localizes the amphipathic region of amino acids 751-762 as a ubiquitination signal, possibly representing an E3 recognition motif. Taken together, these results demonstrate that the down-regulation of nuclear and cytoplasmic active Stat5A is differentially regulated. In the nucleus, ubiquitin/proteasome-mediated protein degradation is the dominant mechanism for the down-regulation of active Stat5A, whereas in the cytoplasm, protein tyrosine phasphatase is a major player in the down-regulation of active Stat5A.
Collapse
Affiliation(s)
- Yuhong Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, China
| | | | | | | | | |
Collapse
|
109
|
Shin HM, Minter LM, Cho OH, Gottipati S, Fauq AH, Golde TE, Sonenshein GE, Osborne BA. Notch1 augments NF-kappaB activity by facilitating its nuclear retention. EMBO J 2005; 25:129-38. [PMID: 16319921 PMCID: PMC1356346 DOI: 10.1038/sj.emboj.7600902] [Citation(s) in RCA: 250] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 11/15/2005] [Indexed: 12/12/2022] Open
Abstract
Notch1 specifically upregulates expression of the cytokine interferon-gamma in peripheral T cells through activation of NF-kappaB. However, how Notch mediates NF-kappaB activation remains unclear. Here, we examined the temporal relationship between Notch signaling and NF-kappaB induction during T-cell activation. NF-kappaB activation occurs within minutes of T-cell receptor (TCR) engagement and this activation is sustained for at least 48 h following TCR signaling. We used gamma-secretase inhibitor (GSI) to prevent the cleavage and subsequent activation of Notch family members. We demonstrate that GSI blocked the later, sustained NF-kappaB activation, but did not affect the initial activation of NF-kappaB. Using biochemical approaches, as well as confocal microscopy, we show that the intracellular domain of Notch1 (N1IC) directly interacts with NF-kappaB and competes with IkappaBalpha, leading to retention of NF-kappaB in the nucleus. Additionally, we show that N1IC can directly regulate IFN-gamma expression through complexes formed on the IFN-gamma promoter. Taken together, these data suggest that there are two 'waves' of NF-kappaB activation: an initial, Notch-independent phase, and a later, sustained activation of NF-kappaB, which is Notch dependent.
Collapse
Affiliation(s)
- Hyun Mu Shin
- Molecular and Cellular Biology Program, University of Massachusetts/Amherst, Amherst, MA, USA
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts/Amherst, Amherst, MA, USA
| | - Ok Hyun Cho
- Department of Veterinary and Animal Sciences, University of Massachusetts/Amherst, Amherst, MA, USA
| | - Sridevi Gottipati
- Molecular and Cellular Biology Program, University of Massachusetts/Amherst, Amherst, MA, USA
| | - Abdul H Fauq
- Department of Neuroscience, Mayo Clinic, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Todd E Golde
- Department of Neuroscience, Mayo Clinic, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Gail E Sonenshein
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Barbara A Osborne
- Molecular and Cellular Biology Program, University of Massachusetts/Amherst, Amherst, MA, USA
- Department of Veterinary and Animal Sciences, University of Massachusetts/Amherst, Amherst, MA, USA
- Department of Veterinary and Animal Sciences, 311 Paige Laboratory, University of Massachusetts/Amherst, 161 Holdsworth Way, Amherst, MA 01003, USA. Tel.: +1 413 545 4882; Fax: +1 413 545 1446; E-mail:
| |
Collapse
|
110
|
Lingbeck JM, Trausch-Azar JS, Ciechanover A, Schwartz AL. E12 and E47 modulate cellular localization and proteasome-mediated degradation of MyoD and Id1. Oncogene 2005; 24:6376-84. [PMID: 16007194 DOI: 10.1038/sj.onc.1208789] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Programs of tissue differentiation are likely controlled by factors regulating gene expression and protein degradation. In muscle, the degradation of the muscle transcription factor MyoD and its inhibitor Id1 occurs via the ubiquitin-proteasome system. E12 and E47, splice products of the E2A gene, interact with MyoD to activate transcription of the muscle program and are also degraded by the ubiquitin-proteasome system (t(1/2) = approximately 6 h). E12 and E47 each contain two regions of basic amino acids, which, when mutated, lead to cytoplasmic accumulation of the proteins. These NLS mutants (E12(NLS), E47(NLS)) are degraded with a half-life similar to the wild-type proteins. In nonmuscle cells, cotransfection of either E12 or E47 with MyoD extended MyoD's half-life from approximately 1 to approximately 4 h. In addition, cotransfection of either E12 or E47 with Id1 led to a marked reduction in Id1's degradation rate from t(1/2) of approximately 1 to approximately 8 h. Furthermore, the cotransfection of NLS deficient mutants of MyoD or Id1 with E12 or E47 resulted in altered intracellular localization of the proteins largely dependent upon the E12 or E47 moiety. Cotransfection of wild-type MyoD or Id1 with NLS deficient mutants of E12 or E47 also led to an altered intracellular localization of MyoD and Id1. These results demonstrate in vivo that E12 and E47 modulate both MyoD and Id1 degradation and may have implications for the physiological regulation of muscle development.
Collapse
Affiliation(s)
- Jody M Lingbeck
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
111
|
Singal M, Finkelstein JN. Amorphous silica particles promote inflammatory gene expression through the redox sensitive transcription factor, AP-1, in alveolar epithelial cells. Exp Lung Res 2005; 31:581-97. [PMID: 16019989 DOI: 10.1080/019021490951504] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ultrafine particulate (UFP) matter, from environmental or industrial exposure, can induce expression of inflammatory mediators and promote production of reactive oxygen species. Previous studies showed various cellular stresses activate signaling pathways operating through specific transcription factors (TFs), activator protein (AP)-1 and nuclear factor (NF)-kappaB, known to regulate inflammatory gene expression. Exposing MLE15 cells to inflammatory, or UFP, stimuli increased macrophage inflammatory protein (MIP)-2 protein, in the absence of the NF = kappaB inhibitor IkappaBc degradation, synergistically increasing in the presence of proteosomal inhibition. Although thiol antioxidants attenuate MIP-2 induction, mitogen-activated protein kinase (MAPK) inhibitors significantly inhibit MIP-2 protein production. This suggests UFP promote inflammatory gene expression through the redox responsive TF AP-1.
Collapse
Affiliation(s)
- Madhuri Singal
- Department of Environmental Medicine, School of Medicine and Dentistry, The University of Rochester, New York 14642, USA
| | | |
Collapse
|
112
|
Stark LA, Dunlop MG. Nucleolar sequestration of RelA (p65) regulates NF-kappaB-driven transcription and apoptosis. Mol Cell Biol 2005; 25:5985-6004. [PMID: 15988014 PMCID: PMC1168799 DOI: 10.1128/mcb.25.14.5985-6004.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The molecular mechanisms that regulate nuclear NF-kappaB to determine whether the stimulation of this pathway has a pro- or anti-apoptotic effect on cells have yet to be fully defined. Nuclear compartmentalization is increasingly recognized as an important mechanism for regulating the activity of transcription-related proteins and modulating cell growth and death. We have investigated whether such compartmentalization serves as a mechanism for regulating NF-kappaB transcriptional activity. We demonstrate that the RelA component of NF-kappaB is sequestered in the nucleolus in response to the proapoptotic NF-kappaB stimuli aspirin, serum withdrawal, and UV-C radiation. In contrast, RelA is excluded from the nucleolus in response to the cytokines tumor necrosis factor and TRAIL. We identify an N-terminal motif of RelA that is essential for the nucleolar localization of the protein and show that deleting this motif inhibits the translocation of RelA from the nucleoplasm to the nucleolus. We demonstrate that the nucleolar accumulation of RelA is paralleled by a decrease in basal levels of NF-kappaB transcriptional activity and by apoptosis. Furthermore, we show that the retention of RelA in the nucleoplasm inhibits this decrease in NF-kappaB-driven transcription and blocks apoptosis induced by aspirin and UV-C radiation. This work identifies a novel cellular mechanism for regulating NF-kappaB-driven transcription and apoptosis, involving the nucleolar sequestration of a key NF-kappaB subunit. These data contribute to the understanding of the complexities of NF-kappaB function and have considerable relevance to cancer prevention and therapy.
Collapse
Affiliation(s)
- Lesley A Stark
- Colon Cancer Genetics Group, University of Edinburgh Division of Oncology, MRC Human Genetics Unit, Western General Hospital, Crewe Rd., Edinburgh, Scotland.
| | | |
Collapse
|
113
|
Ear T, Cloutier A, McDonald PP. Constitutive Nuclear Expression of the IκB Kinase Complex and Its Activation in Human Neutrophils. THE JOURNAL OF IMMUNOLOGY 2005; 175:1834-42. [PMID: 16034126 DOI: 10.4049/jimmunol.175.3.1834] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A singular feature of human neutrophils is that they constitutively express substantial amounts of NF-kappaB/Rel proteins and IkappaB-alpha in the nucleus. In this study, we show that in these cells, IkappaB kinase alpha (IKKalpha), IKKbeta, and IKKgamma also partially localize to the nucleus, whereas IKK-related kinases (IKKepsilon, TANK-binding kinase-1) are strictly cytoplasmic, and the NF-kappaB-inducing kinase is strictly nuclear. Following neutrophil activation, IKKbeta and IKKgamma become transiently phosphorylated in both the cytoplasm and nucleus, whereas IKKalpha transiently vanishes from both compartments in what appears to be an IKKbeta-dependent process. These responses are paralleled by the degradation of IkappaB-alpha, and by the phosphorylation of RelA on serine 536, in both compartments. Although both proteins can be IKK substrates, inhibition of IKK prevented IkappaB-alpha phosphorylation, while that of RelA was mostly unaffected. Finally, we provide evidence that the nuclear IKK isoforms (alpha, beta, gamma) associate with chromatin following neutrophil activation, which suggests a potential role in gene regulation. This is the first study to document IKK activation and the phosphorylation of NF-kappaB/Rel proteins in primary neutrophils. More importantly, our findings unveil a hitherto unsuspected mode of activation for the IKK/IkappaB signaling cascade within the cell nucleus.
Collapse
Affiliation(s)
- Thornin Ear
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
114
|
Lee DK, Kang JE, Park HJ, Kim MH, Yim TH, Kim JM, Heo MK, Kim KY, Kwon HJ, Hur MW. FBI-1 enhances transcription of the nuclear factor-kappaB (NF-kappaB)-responsive E-selectin gene by nuclear localization of the p65 subunit of NF-kappaB. J Biol Chem 2005; 280:27783-91. [PMID: 15917220 DOI: 10.1074/jbc.m504909200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The POZ domain is a highly conserved protein-protein interaction motif found in many regulatory proteins. Nuclear factor-kappaB (NF-kappaB) plays a key role in the expression of a variety of genes in response to infection, inflammation, and stressful conditions. We found that the POZ domain of FBI-1 (factor that binds to the inducer of short transcripts of human immunodeficiency virus-1) interacted with the Rel homology domain of the p65 subunit of NF-kappaB in both in vivo and in vitro protein-protein interaction assays. FBI-1 enhanced NF-kappaB-mediated transcription of E-selectin genes in HeLa cells upon phorbol 12-myristate 13-acetate stimulation and overcame gene repression by IkappaB alpha or IkappaB beta. In contrast, the POZ domain of FBI-1, which is a dominant-negative form of FBI-1, repressed NF-kappaB-mediated transcription, and the repression was cooperative with IkappaB alpha or IkappaB beta. In contrast, the POZ domain tagged with a nuclear localization sequence polypeptide of FBI-1 enhanced NF-kappaB-responsive gene transcription, suggesting that the molecular interaction between the POZ domain and the Rel homology domain of p65 and the nuclear localization by the nuclear localization sequence are important in the transcription enhancement mediated by FBI-1. Confocal microscopy showed that FBI-1 increased NF-kappaB movement into the nucleus and increased the stability of NF-kappaB in the nucleus, which enhanced NF-kappaB-mediated transcription of the E-selectin gene. FBI-1 also interacted with IkappaB alpha and IkappaB beta.
Collapse
Affiliation(s)
- Dong-Kee Lee
- Department of Biochemistry and Molecular Biology and the Institute of Genetic Sciences, BK21 Project for Medical Sciences, Yonsei University School of Medicine, 134 ShinChon-Dong, SeoDaeMoon-Ku, Seoul 120-752, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Boulanger J, Vézina A, Mongrain S, Boudreau F, Perreault N, Auclair BA, Lainé J, Asselin C, Rivard N. Cdk2-dependent phosphorylation of homeobox transcription factor CDX2 regulates its nuclear translocation and proteasome-mediated degradation in human intestinal epithelial cells. J Biol Chem 2005; 280:18095-107. [PMID: 15741163 DOI: 10.1074/jbc.m502184200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
By having demonstrated previously that p27(Kip1), a potent inhibitor of G(1) cyclin-cyclin-dependent kinases complexes, increases markedly during intestinal epithelial cell differentiation, we examined the effect of p27(Kip1) on the activity of the transcription factor CDX2. The present results revealed the following. 1) p27(Kip1) interacts with the CDX2 transcription factor. 2) In contrast to CDX2 mRNA levels, CDX2 protein expression levels significantly increased as soon as Caco-2/15 cells reached confluence, slowed their proliferation, and began their differentiation. The mechanism of CDX2 regulation is primarily related to protein stability, because inhibition of proteasome activity increased CDX2 levels. The half-life of CDX2 protein was significantly enhanced in differentiated versus undifferentiated proliferative intestinal epithelial cells. 3) Cdk2 interacted with CDX2 and phosphorylated CDX2, as determined by pull-down glutathione S-transferase and immunoprecipitation experiments with proliferating undifferentiated Caco-2/15 cell extracts. 4) Treatment of Caco-2/15 cells with MG132 (a proteasome inhibitor) and (R)-roscovitine (a specific Cdk2 inhibitor) induced an increase in CDX2 protein levels. 5) Conversely, ectopic expression of Cdk2 resulted in decreased expression of CDX2 protein. 6) Of note, treatment of proliferative Caco-2/15 cells with (R)-roscovitine or leptomycin (an inhibitor of nuclear export through CRM1) led to an accumulation of CDX2 into the nucleus. These data suggest that CDX2 undergoes CRM1-dependent nuclear export and cytoplasmic degradation in cells in which Cdk2 is activated, such as in proliferative intestinal epithelial cells. The targeted degradation of CDX2 following its phosphorylation by Cdk2 identifies a new mechanism through which CDX2 activity can be regulated in coordination with the cell cycle machinery.
Collapse
Affiliation(s)
- Jim Boulanger
- Canadian Institutes of Health Research Group on Functional Development and Physiopathology of the Digestive Tract, Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Schmitz ML, Mattioli I, Buss H, Kracht M. NF-kappaB: a multifaceted transcription factor regulated at several levels. Chembiochem 2005; 5:1348-58. [PMID: 15457532 DOI: 10.1002/cbic.200400144] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
NF-kappaB is a generic name for an evolutionarily conserved transcription-factor system that contributes to the mounting of an effective immune response but is also involved in the regulation of cell proliferation, development, and apoptosis. The implication of NF-kappaB in central biological processes and its extraordinary connectivity to other signaling pathways raise a need for highly controlled regulation of NF-kappaB activity at several levels. While all NF-kappaB activation pathways share a central and critical proteasome-mediated step that leads to the degradation of inhibitory proteins and the release of DNA-binding subunits, there is evidence for a downstream level of NF-kappaB regulation that employs several mechanisms. These include promoter-specific exchange of dimers and modification of the transactivating p65 subunit by phosphorylation, acetylation, ubiquitination, or prolyl isomerization. The signaling pathways and enzymes controlling this second level of regulation and their potential use as therapeutic targets for the treatment of NF-kappaB-associated pathologies are discussed here.
Collapse
Affiliation(s)
- M Lienhard Schmitz
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, 3012 Bern, Switzerland.
| | | | | | | |
Collapse
|
117
|
Bates GJ, Nicol SM, Wilson BJ, Jacobs AMF, Bourdon JC, Wardrop J, Gregory DJ, Lane DP, Perkins ND, Fuller-Pace FV. The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. EMBO J 2005; 24:543-53. [PMID: 15660129 PMCID: PMC548656 DOI: 10.1038/sj.emboj.7600550] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 12/20/2004] [Indexed: 11/08/2022] Open
Abstract
The DEAD box RNA helicase, p68, has been implicated in various cellular processes and has been shown to possess transcriptional coactivator function. Here, we show that p68 potently synergises with the p53 tumour suppressor protein to stimulate transcription from p53-dependent promoters and that endogenous p68 and p53 co-immunoprecipitate from nuclear extracts. Strikingly, RNAi suppression of p68 inhibits p53 target gene expression in response to DNA damage, as well as p53-dependent apoptosis, but does not influence p53 stabilisation or expression of non-p53-responsive genes. We also show, by chromatin immunoprecipitation, that p68 is recruited to the p21 promoter in a p53-dependent manner, consistent with a role in promoting transcriptional initiation. Interestingly, p68 knock-down does not significantly affect NF-kappaB activation, suggesting that the stimulation of p53 transcriptional activity is not due to a general transcription effect. This study represents the first report of the involvement of an RNA helicase in the p53 response, and highlights a novel mechanism by which p68 may act as a tumour cosuppressor in governing p53 transcriptional activity.
Collapse
Affiliation(s)
- Gaynor J Bates
- Department of Molecular & Cellular Pathology, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Samantha M Nicol
- Department of Molecular & Cellular Pathology, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Brian J Wilson
- Department of Molecular & Cellular Pathology, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Anne-Marie F Jacobs
- Department of Molecular & Cellular Pathology, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Jean-Christophe Bourdon
- Department of Surgery & Molecular Oncology, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Julie Wardrop
- Department of Surgery & Molecular Oncology, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - David J Gregory
- Division of Gene Expression and Regulation, School of Life Sciences, University of Dundee, Dundee, UK
| | - David P Lane
- Department of Surgery & Molecular Oncology, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Neil D Perkins
- Division of Gene Expression and Regulation, School of Life Sciences, University of Dundee, Dundee, UK
| | - Frances V Fuller-Pace
- Department of Molecular & Cellular Pathology, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| |
Collapse
|
118
|
Fujihara S, Jaffray E, Farrow SN, Rossi AG, Haslett C, Hay RT. Inhibition of NF-κB by a cell permeable form of IκBα induces apoptosis in eosinophils. Biochem Biophys Res Commun 2005; 326:632-7. [PMID: 15596146 DOI: 10.1016/j.bbrc.2004.11.090] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Indexed: 01/21/2023]
Abstract
An 11 amino acid HIV-TAT peptide can deliver target proteins into a variety of cells in a receptor-independent manner. To generate a highly specific inhibitor of the transcription factor NF-kappa B, we have fused the TAT-peptide to a version of I kappa B alpha that is resistant to signal-induced degradation. TAT-I kappa B alpha(S32A, S36A) inhibited NF-kappa B-dependent transcription in HeLa and A549 cells by retaining NF-kappa B p65 in the cytoplasm. Introduction of TAT-I kappa B alpha(S32A, S36A) into human eosinophils inhibited the nuclear translocation of NF-kappa B and induced apoptosis. Thus, continuous NF-kappa B-dependent transcription is important for eosinophil survival. While eosinophils are normally refractive to standard methods of gene delivery, the ability of TAT fusion proteins to be taken up by these cells should enable a detailed molecular analysis of survival pathways in these cells.
Collapse
Affiliation(s)
- Satoko Fujihara
- Department of Medicine, Centre for Inflammation Research, University of Edinburgh Medical School, Teviot Place, Edinburgh EH8 9AG, UK.
| | | | | | | | | | | |
Collapse
|
119
|
Aguilera C, Hoya-Arias R, Haegeman G, Espinosa L, Bigas A. Recruitment of IkappaBalpha to the hes1 promoter is associated with transcriptional repression. Proc Natl Acad Sci U S A 2004; 101:16537-42. [PMID: 15536134 PMCID: PMC534509 DOI: 10.1073/pnas.0404429101] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The NF-kappaB pathway plays a pivotal role in proliferation, differentiation, apoptosis, and immune responses in mammals. The NF-kappaB inhibitor, IkappaB, has classically been characterized for its ability to sequester NF-kappaB transcription factors in the cytoplasm. Nevertheless, a nuclear fraction of IkappaBalpha has consistently been detected and associated with repression of nuclear NF-kappaB. Now we show that IkappaBalpha physically associates with different repression elements such as nuclear corepressors and histone acetyltransferases and deacetylases (HDACs). More remarkably, chromatin immunoprecipitation experiments demonstrate that IkappaBalpha is recruited to the promoter regions of the Notch-target gene, hes1, together with HDAC1 and -5, whereas we did not detect IkappaBalpha associated with classical NF-kappaB target genes such as IL6 and RANTES. TNF-alpha treatment results in a temporary release of IkappaBalpha from the hes1 promoter that correlates with increased histone acetylation and transcriptional activation. In addition, we demonstrate that both IkappaB kinase-alpha and -beta are simultaneously recruited to the hes1 promoter in response to TNF-alpha, coinciding with a maximum of IkappaBalpha release and gene activation. Moreover, TNF-alpha-dependent histone H3 acetylation, release of IkappaBalpha from the hes1 promoter, and hes1 mRNA synthesis are affected in IKK-alpha(-/-) mouse embryonic fibroblasts. We propose that IkappaBalpha plays a previously undescribed role in regulating the recruitment of repression elements to specific promoters. Recruitment of IKKs to the nucleus in response to TNF-alpha may induce chromatin-associated IkappaBalpha release and gene activation. These findings provide additional insight in the cross-talk between NF-kappaB and other signaling pathways.
Collapse
Affiliation(s)
- Cristina Aguilera
- Centre Oncologia Molecular, Institut d'Investigació Biomèdica de Bellvitge-Institut de Recerca Oncologica, Barcelona 08907, Spain
| | | | | | | | | |
Collapse
|
120
|
Joseph T, Look D, Ferkol T. NF-kappaB activation and sustained IL-8 gene expression in primary cultures of cystic fibrosis airway epithelial cells stimulated with Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2004; 288:L471-9. [PMID: 15516493 DOI: 10.1152/ajplung.00066.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The progression of lung disease in cystic fibrosis (CF) is characterized by an exuberant inflammatory response mounted by the respiratory epithelium that is further exacerbated by bacterial infection. Recent studies have demonstrated upregulation of nuclear factor-kappaB (NF-kappaB) in response to infection in genetically modified cell culture models, which is associated with expression of interleukin (IL)-8. Using human airway epithelial cells grown in primary culture, we examined in vitro activation of NF-kappaB in cells isolated from five CF (DeltaF508/DeltaF508) and three non-CF (NCF) patients in response to Pseudomonas aeruginosa. Immunofluorescence, gel-shift, and immunoblot assays demonstrated a rapid translocation of NF-kappaB subunits (p50 and p65) to the nucleus in both CF and NCF cell cultures. However, nuclear extracts from CF cells both before and following P. aeruginosa stimulation revealed elevated NF-kappaB activation compared with NCF cells. Additionally, elevated nuclear levels of the NF-kappaB inhibitor IkappaBalpha were detected in nuclei of CF cells after P. aeruginosa stimulation, but this increase was transient. There was no difference in IL-8 mRNA levels between CF and NCF cells early after stimulation, whereas expression was higher and sustained in CF cells at later times. Our results also demonstrated increased baseline translocation of NF-kappaB to nuclei of primary CF epithelial cell cultures, but intranuclear IkappaBalpha may initially block its effects following P. aeruginosa stimulation. Thus, IL-8 mRNA expression was prolonged after P. aeruginosa stimulation in CF epithelial cells, and this sustained IL-8 expression may contribute to the excessive inflammatory response in CF.
Collapse
Affiliation(s)
- Theresa Joseph
- Department of Pediatrics, Washington University School of Medcine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
121
|
Joiakim A, Mathieu PA, Elliott AA, Reiners JJ. Superinduction ofCYP1A1in MCF10A Cultures by Cycloheximide, Anisomycin, and Puromycin: A Process Independent of Effects on Protein Translation and Unrelated to Suppression of Aryl Hydrocarbon Receptor Proteolysis by the Proteasome. Mol Pharmacol 2004. [DOI: 10.1124/mol.66.4.936] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
122
|
Wu WT, Chi KH, Ho FM, Tsao WC, Lin WW. Proteasome inhibitors up-regulate haem oxygenase-1 gene expression: requirement of p38 MAPK (mitogen-activated protein kinase) activation but not of NF-kappaB (nuclear factor kappaB) inhibition. Biochem J 2004; 379:587-93. [PMID: 14731112 PMCID: PMC1224107 DOI: 10.1042/bj20031579] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 01/09/2004] [Accepted: 01/19/2004] [Indexed: 12/15/2022]
Abstract
Regulation of intracellular protein stability by the ubiquitin-dependent proteasome system plays a crucial role in cell function. HO-1 (haem oxygenase) is a stress response protein, which confers cytoprotection against oxidative injury and provides a vital function in maintaining tissue homoeostasis. In the present study, we found a novel action of proteasome inhibitors MG132 and MG262 on HO-1 induction, and characterized the underlying mechanisms. MG132 (> or =0.1 microM) treatment resulted in a marked time- and concentration-dependent induction of the steady-state level of HO-1 mRNA in RAW264.7 macrophages, followed by a corresponding increase in HO-1 protein. Actinomycin D and cycloheximide inhibited MG132-responsive HO-1 protein expression, indicating a requirement for transcription and de novo protein synthesis. The involvement of signal pathways in MG132-induced HO-1 gene expression was examined using chemical inhibitors. Antioxidant N -acetylcysteine and SB203580, an antioxidant and inhibitor of p38 MAPK (mitogen-activated protein kinase), abolished MG132-inducible HO-1 expression. Furthermore, MG132 activated the p38 MAPK pathway. The half-life of HO-1 protein was prolonged by MG132, indicating that the upregulation of HO-1 by proteasome inhibitor is partially attributable to the inhibition of protein degradation. MG132 can ablate IkappaBalpha degradation and NF-kappaB (nuclear factor kappaB) activation induced by lipopolysaccharide, similar to the effect of another NF-kappaB inhibitor pyrrolidine dithiocarbamate. We found HO-1 upregulation by MG132 and pyrrolidine dithiocarbamate is unrelated to their inhibition of NF-kappaB, since leptomycin B, another NF-kappaB inhibitor, did not elicit similar induction of HO-1. Taken together, we found a novel effect of proteasome inhibitor on induction of HO-1 expression. This action is ascribed to the activation of the p38 MAPK pathway, but is not dependent on NF-kappaB inhibition.
Collapse
Affiliation(s)
- Wen-Tung Wu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
123
|
Azran I, Schavinsky-Khrapunsky Y, Aboud M. Role of Tax protein in human T-cell leukemia virus type-I leukemogenicity. Retrovirology 2004; 1:20. [PMID: 15310405 PMCID: PMC514576 DOI: 10.1186/1742-4690-1-20] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2004] [Accepted: 08/13/2004] [Indexed: 11/17/2022] Open
Abstract
HTLV-1 is the etiological agent of adult T-cell leukemia (ATL), the neurological syndrome TSP/HAM and certain other clinical disorders. The viral Tax protein is considered to play a central role in the process leading to ATL. Tax modulates the expression of many viral and cellular genes through the CREB/ATF-, SRF- and NF-κB-associated pathways. In addition, Tax employs the CBP/p300 and p/CAF co-activators for implementing the full transcriptional activation competence of each of these pathways. Tax also affects the function of various other regulatory proteins by direct protein-protein interaction. Through these activities Tax sets the infected T-cells into continuous uncontrolled replication and destabilizes their genome by interfering with the function of telomerase and topoisomerase-I and by inhibiting DNA repair. Furthermore, Tax prevents cell cycle arrest and apoptosis that would otherwise be induced by the unrepaired DNA damage and enables, thereby, accumulation of mutations that can contribute to the leukemogenic process. Together, these capacities render Tax highly oncogenic as reflected by its ability to transform rodent fibroblasts and primary human T-cells and to induce tumors in transgenic mice. In this article we discuss these effects of Tax and their apparent contribution to the HTLV-1 associated leukemogenic process. Notably, however, shortly after infection the virus enters into a latent state, in which viral gene expression is low in most of the HTLV-1 carriers' infected T-cells and so is the level of Tax protein, although rare infected cells may still display high viral RNA. This low Tax level is evidently insufficient for exerting its multiple oncogenic effects. Therefore, we propose that the latent virus must be activated, at least temporarily, in order to elevate Tax to its effective level and that during this transient activation state the infected cells may acquire some oncogenic mutations which can enable them to further progress towards ATL even if the activated virus is re-suppressed after a while. We conclude this review by outlining an hypothetical flow of events from the initial virus infection up to the ultimate ATL development and comment on the risk factors leading to ATL development in some people and to TSP/HAM in others.
Collapse
Affiliation(s)
- Inbal Azran
- Department of Microbiology and Immunology and Cancer Research Center, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Yana Schavinsky-Khrapunsky
- Department of Microbiology and Immunology and Cancer Research Center, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Mordechai Aboud
- Department of Microbiology and Immunology and Cancer Research Center, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
124
|
Lipniacki T, Paszek P, Brasier ARAR, Luxon B, Kimmel M. Mathematical model of NF-kappaB regulatory module. J Theor Biol 2004; 228:195-215. [PMID: 15094015 DOI: 10.1016/j.jtbi.2004.01.001] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 12/11/2003] [Accepted: 12/23/2003] [Indexed: 11/22/2022]
Abstract
The two-feedback-loop regulatory module of nuclear factor kappaB (NF-kappaB) signaling pathway is modeled by means of ordinary differential equations. The constructed model involves two-compartment kinetics of the activators IkappaB (IKK) and NF-kappaB, the inhibitors A20 and IkappaBalpha, and their complexes. In resting cells, the unphosphorylated IkappaBalpha binds to NF-kappaB and sequesters it in an inactive form in the cytoplasm. In response to extracellular signals such as tumor necrosis factor or interleukin-1, IKK is transformed from its neutral form (IKKn) into its active form (IKKa), a form capable of phosphorylating IkappaBalpha, leading to IkappaBalpha degradation. Degradation of IkappaBalpha releases the main activator NF-kappaB, which then enters the nucleus and triggers transcription of the inhibitors and numerous other genes. The newly synthesized IkappaBalpha leads NF-kappaB out of the nucleus and sequesters it in the cytoplasm, while A20 inhibits IKK converting IKKa into the inactive form (IKKi), a form different from IKKn, no longer capable of phosphorylating IkappaBalpha. After parameter fitting, the proposed model is able to properly reproduce time behavior of all variables for which the data are available: NF-kappaB, cytoplasmic IkappaBalpha, A20 and IkappaBalpha mRNA transcripts, IKK and IKK catalytic activity in both wild-type and A20-deficient cells. The model allows detailed analysis of kinetics of the involved proteins and their complexes and gives the predictions of the possible responses of whole kinetics to the change in the level of a given activator or inhibitor.
Collapse
Affiliation(s)
- Tomasz Lipniacki
- Institute of Fundamental Technological Research, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
125
|
Mo YY, Yu Y, Ee PLR, Beck WT. Overexpression of a Dominant-Negative Mutant Ubc9 Is Associated with Increased Sensitivity to Anticancer Drugs. Cancer Res 2004; 64:2793-8. [PMID: 15087395 DOI: 10.1158/0008-5472.can-03-2410] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ubc9 is an E2-conjugating enzyme required for sumoylation and has been implicated in regulating several critical cellular pathways. We have shown previously that Ubc9 is important for sumoylation and nucleolar delocalization of topoisomerase (topo) I in response to topo I inhibitors such as topotecan. However, the role for Ubc9 in tumor drug responsiveness is not clear. In this study, we found that although MCF7 cells expressing a Ubc9 dominant-negative mutant (Ubc9-DN) display decreased activity of topo I, these cells are more sensitive to the topo I inhibitor topotecan and other anticancer agents such as VM-26 and cisplatin. In addition, we found that alteration of Ubc9 expression correlates with drug responsiveness in tumor cell lines. To understand possible mechanisms of Ubc9-associated drug responsiveness, we examined several proteins that have been shown to interact with Ubc9 and that may be involved in drug responsiveness. One such protein is Daxx, which is a Fas-associated protein that plays a role in Fas-mediated apoptosis by participating in a caspase-independent pathway through activation of apoptosis signal-regulating kinase 1 and c-Jun NH(2)-terminal kinase. We found that cells expressing Ubc9-DN accumulate more cytoplasmic Daxx than the control cells. Because cytoplasmic Daxx is believed to participate in cellular apoptosis, we suggest that the interaction of Ubc9 with Daxx and subsequent alteration in the subcellular localization of Daxx may contribute to the increased sensitivity to anticancer drugs in the cells expressing Ubc9-DN. Finally, we found that overexpression of Daxx sensitizes cells to anticancer drugs possibly in part through alterations of the ratio of cytoplasmic and nuclear Daxx. Together, our results suggest a role for Ubc9 in tumor drug responsiveness.
Collapse
Affiliation(s)
- Yin-Yuan Mo
- Department of Biopharmaceutical Sciences, and the Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA.
| | | | | | | |
Collapse
|
126
|
Smolle M, Hay RT, Byron O. Hydrodynamic bead modelling of the 2:1 p50–IκBγ complex. Biophys Chem 2004; 108:259-71. [PMID: 15043934 DOI: 10.1016/j.bpc.2003.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
NFkappaB is an important and ubiquitous transcription factor formed by various homo- and heterodimers of the NFkappaB family. The active transcription factor regulates genes involved in immune, inflammatory and survival responses. Specificity in gene regulation is achieved, at least in part, by the distinct DNA binding preferences of the various homo- and heterodimers and by the complex pathways that lead to signal-induced degradation of the IkappaB inhibitors. Analytical ultracentrifugation and hydrodynamic bead modelling were used to model the solution structures of the NFkappaB family member p50, its inhibitor IkappaBgamma and their complex. Sedimentation equilibrium (SE) and sedimentation velocity (SV) data show that p50 is a dimer in solution with a sedimentation coefficient consistent with a conformation intermediate between the closed conformation observed in the crystal structure of the p50 (N-terminal domain)-p65 heterodimer complexed with IkappaBalpha and the open conformation adopted by p50 when bound to DNA. SE and SV data show that IkappaBgamma is a monomer in solution and is prone to aggregation over time. p50 forms a 2:1 stoichiometric complex with IkappaBgamma in solution with a sedimentation coefficient consistent with a closed conformation for the p50 dimer.
Collapse
Affiliation(s)
- Michaela Smolle
- Biomolecular Sciences Building, School of Biology, University of St. Andrews, The North Haugh, St. Andrews KY16 9ST, Scotland, UK
| | | | | |
Collapse
|
127
|
Suzuki N, Shibata Y, Urano T, Murohara T, Muramatsu T, Kadomatsu K. Proteasomal degradation of the nuclear targeting growth factor midkine. J Biol Chem 2004; 279:17785-91. [PMID: 14970216 DOI: 10.1074/jbc.m310772200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is widely held that growth factor signaling is terminated by lysosomal degradation of its activated receptor and the endocytosed growth factor is transported to lysosomes. Nuclear targeting is another important pathway through which signals of growth factors are mediated. However, mechanisms underlying desensitization of nuclear targeting growth factors are poorly understood. Here we report that the nuclear targeting pathway is down-regulated by the proteasome system. Degradation of endocytosed midkine, a heparin-binding growth factor, was suppressed by both proteasome and lysosome inhibitors to similar extents. By contrast, a proteasome inhibitor, but not lysosome ones, accelerated the nuclear accumulation of midkine. An expression vector of signal sequence-less midkine, which is produced in the cytosol, was constructed because endocytosed midkine may be translocated to the cytosol from cellular compartments before entering the nucleus. The cytosol-produced midkine underwent proteasomal degradation and accumulated in the nucleus as did the endocytosed midkine. It was polyubiquitinated, and its nuclear accumulation was enhanced by a proteasome inhibitor. We further dissected the midkine molecule to investigate roles in degradation and trafficking. The N-terminal half-domain of midkine was significantly more susceptible to proteasomal degradation, whereas the C-terminal half-domain was sufficient for nuclear localization. Together, these data highlight the desensitization of nuclear targeting by growth factors and indicate a critical role of the proteasome system in it.
Collapse
Affiliation(s)
- Noriyuki Suzuki
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
128
|
Verma UN, Yamamoto Y, Prajapati S, Gaynor RB. Nuclear Role of IκB Kinase-γ/NF-κB Essential Modulator (IKKγ/NEMO) in NF-κB-dependent Gene Expression. J Biol Chem 2004; 279:3509-15. [PMID: 14597638 DOI: 10.1074/jbc.m309300200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The I kappa B kinase (IKK) complex, which is composed of the two kinases IKK alpha and IKK beta and the regulatory subunit IKK gamma/nuclear factor-kappa B (NF-kappa B) essential modulator (NEMO), is important in the cytokine-induced activation of the NF-kappa B pathway. In addition to modulation of IKK activity, the NF-kappa B pathway is also regulated by other processes, including the nucleocytoplasmic shuttling of various components of this pathway and the post-translational modification of factors bound to NF-kappa B-dependent promoters. In this study, we explored the role of the nucleocytoplasmic shuttling of components of the IKK complex in the regulation of the NF-kappa B pathway. IKK gamma/NEMO was demonstrated to shuttle between the cytoplasm and the nucleus and to interact with the nuclear coactivator cAMP-responsive element-binding protein-binding protein (CBP). Using both in vitro and in vivo analysis, we demonstrated that IKK gamma/NEMO competed with p65 and IKK alpha for binding to the N terminus of CBP, inhibiting CBP-dependent transcriptional activation. These results indicate that, in addition to the key role of IKK gamma/NEMO in regulating cytokine-induced IKK activity, its ability to shuttle between the cytoplasm and the nucleus and to bind to CBP can lead to transcriptional repression of the NF-kappa B pathway.
Collapse
Affiliation(s)
- Udit N Verma
- Division of Hematology-Oncology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8594, USA
| | | | | | | |
Collapse
|
129
|
Lopez RG, Carron C, Ghysdael J. v-SRC specifically regulates the nucleo-cytoplasmic delocalization of the major isoform of TEL (ETV6). J Biol Chem 2003; 278:41316-25. [PMID: 12893822 DOI: 10.1074/jbc.m306435200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
TEL is a frequent target of chromosomal translocations in human cancer and an alleged tumor suppressor gene. TEL encodes two isoforms: a major TEL-M1 isoform as well as TEL-M43, which lacks the first 42 amino acid residues of TEL-M1. Both isoforms are potent transcriptional repressors that can inhibit RAS-induced transformation. Here we show that the v-SRC protein-tyrosine kinase relieves the repressive activity of TEL-M1, an activity that is associated with the v-SRC-induced delocalization of TEL-M1 from the nucleus to the cytoplasm. TEL-M1 delocalization requires the kinase activity of v-SRC and is not induced by oncogenic RAS or AKT. Cytoplasmic delocalization of TEL-M1 in response to v-SRC critically depends upon its unique amino-terminal domain (SRCD domain) because (i). v-SRC did not inhibit the repressive properties of TEL-M43, nor affected TEL-M43 nuclear localization; (ii). fusion of the first 52 amino acid residues of TEL-M1 to FLI-1, an ETS protein insensitive to v-SRC-induced delocalization, is sufficient to confer v-SRC-induced delocalization to this TEL/FLI-1 chimeric protein. The v-SRC-induced nucleo-cytoplasmic delocalization of TEL-M1 does not involve phosphorylation of the SRCD and does not require TEL self-association and repressive domains. Finally, enforced expression of the v-SRC-insensitive TEL-M43, but not of TEL-M1, inhibits v-SRC-induced transformation of NIH3T3 fibroblasts. These results identify a regulatory domain in TEL that specifically impinges on the subcellular localization of its major TEL-M1 isoform. They, furthermore, indicate that inhibition of TEL-M1 nuclear function is required for v-SRC to induce cellular transformation.
Collapse
Affiliation(s)
- Rodolphe G Lopez
- CNRS UMR146-Institut Curie, Centre Universitaire, Bat 110, 91405 Orsay, France
| | | | | |
Collapse
|
130
|
Hay DC, Beers C, Cameron V, Thomson L, Flitney FW, Hay RT. Activation of NF-kappaB nuclear transcription factor by flow in human endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1642:33-44. [PMID: 12972291 DOI: 10.1016/s0167-4889(03)00084-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The tractive force generated by blood flow, called fluid shear stress, is an important regulator of endothelial cell gene expression. Several transcription factors are activated by shear stress, including members of the NF-kappaB/Rel family. The nature of the upstream-signaling components involved in the activation of NF-kappaB by flow has been studied in human endothelial cells. Flow rapidly increased endogenous IKK1/2 activity and transiently degraded IkappaBalpha and IkappaBbeta1, but not p105/p50. Nuclear translocation of the p65 subunit was induced by flow in wild-type (w/t) cells and in cells overexpressing w/t NIK, IKK1 or IKK2, but not in cells transiently transfected with kinase-inactive mutants of these enzymes. Nuclear translocation of p65 in response to flow was not affected by overexpressing a dominant-negative mutant of a MAPKKK related to NIK, called TPL2 kinase, nor by pretreating cells with the selective PKC inhibitor bisindoylmaleimide-1. Gel shift assays showed that the binding of p50/p65 heterodimer to radiolabeled oligonucleotide containing a shear-stress response element was increased by flow. The activity of a 3kappaB conA-luciferase reporter was also increased, confirming that NF-kappaB activated by flow was transcriptionally active. We conclude that shear stress induces gene transactivation by NF-kappaB (p50/p65) via the NIK-IKK1/2 pathway and proteosome-dependent degradation of IkappaB and that induction by flow does not involve TPL-2 kinase or PKC.
Collapse
Affiliation(s)
- David C Hay
- Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife KY16 9TS, UK
| | | | | | | | | | | |
Collapse
|
131
|
Algül H, Adler G, Schmid RM. NF-kappaB/Rel transcriptional pathway: implications in pancreatic cancer. INTERNATIONAL JOURNAL OF GASTROINTESTINAL CANCER 2003; 31:71-8. [PMID: 12622417 DOI: 10.1385/ijgc:31:1-3:71] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite considerable efforts in understanding the cellular mechanisms contributing to pancreatic cancer, the prognosis of this malignant disease is still extremely poor. Although pancreatic cancer is the fifth common cause of cancer death in Western countries, current options in treatment enable a 5-yr survival rate for all stages of less than 5%. In the face fo the fatal outcome, new approaches to the therapy have been established. Based on its role in malignant transformation, apoptosis, and cell proliferation, the transcription factor NF-kappaB/Rel has gained the attention of many laboratories. This review provides basic information for the understanding of the biology of NF-kappaB and aims at presenting experimental data illustrating the involvement of NF-kappaB/Rel in pancreatic cancer.
Collapse
Affiliation(s)
- Hana Algül
- Department of Internal Medicine I, University of Ulm, Germany
| | | | | |
Collapse
|
132
|
Adam E, Quivy V, Bex F, Chariot A, Collette Y, Vanhulle C, Schoonbroodt S, Goffin V, Nguyên TLA, Gloire G, Carrard G, Friguet B, De Launoit Y, Burny A, Bours V, Piette J, Van Lint C. Potentiation of tumor necrosis factor-induced NF-kappa B activation by deacetylase inhibitors is associated with a delayed cytoplasmic reappearance of I kappa B alpha. Mol Cell Biol 2003; 23:6200-9. [PMID: 12917341 PMCID: PMC180966 DOI: 10.1128/mcb.23.17.6200-6209.2003] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2002] [Revised: 01/22/2003] [Accepted: 05/31/2003] [Indexed: 02/06/2023] Open
Abstract
Previous studies have implicated acetylases and deacetylases in regulating the transcriptional activity of NF-kappa B. Here, we show that inhibitors of deacetylases such as trichostatin A (TSA) and sodium butyrate (NaBut) potentiated TNF-induced expression of several natural NF-kappa B-driven promoters. This transcriptional synergism observed between TNF and TSA (or NaBut) required intact kappa B sites in all promoters tested and was biologically relevant as demonstrated by RNase protection on two instances of endogenous NF-kappa B-regulated gene transcription. Importantly, TSA prolonged both TNF-induced DNA-binding activity and the presence of NF-kappa B in the nucleus. We showed that the p65 subunit of NF-kappa B was acetylated in vivo. However, this acetylation was weak, suggesting that other mechanisms could be implicated in the potentiated binding and transactivation activities of NF-kappa B after TNF plus TSA versus TNF treatment. Western blot and immunofluorescence confocal microscopy experiments revealed a delay in the cytoplasmic reappearance of the I kappa B alpha inhibitor that correlated temporally with the prolonged intranuclear binding and presence of NF-kappa B. This delay was due neither to a defect in I kappa B alpha mRNA production nor to a nuclear retention of I kappa B alpha but was rather due to a persistent proteasome-mediated degradation of I kappa B alpha. A prolongation of I kappa B kinase activity could explain, at least partially, the delayed I kappa B alpha cytoplasmic reappearance observed in presence of TNF plus TSA.
Collapse
Affiliation(s)
- Emmanuelle Adam
- Institut de Biologie et de Médecine Moléculaires, Service de Chimie Biologique, Laboratoire de Virologie Moléculaire, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Kishore N, Sommers C, Mathialagan S, Guzova J, Yao M, Hauser S, Huynh K, Bonar S, Mielke C, Albee L, Weier R, Graneto M, Hanau C, Perry T, Tripp CS. A selective IKK-2 inhibitor blocks NF-kappa B-dependent gene expression in interleukin-1 beta-stimulated synovial fibroblasts. J Biol Chem 2003; 278:32861-71. [PMID: 12813046 DOI: 10.1074/jbc.m211439200] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
NF-kappa B-induced gene expression contributes significantly to the pathogenesis of inflammatory diseases such as arthritis. I kappa B kinase (IKK) is the converging point for the activation of NF-kappa B by a broad spectrum of inflammatory agonists and is thus a novel target for therapeutic intervention. We describe a small molecule, selective inhibitor of IKK-2, SC-514, which does not inhibit other IKK isoforms or other serine-threonine and tyrosine kinases. SC-514 inhibits the native IKK complex or recombinant human IKK-1/IKK-2 heterodimer and IKK-2 homodimer similarly. IKK-2 inhibition by SC-514 is selective, reversible, and competitive with ATP. SC-514 inhibits transcription of NF-kappa B-dependent genes in IL-1 beta-induced rheumatoid arthritis-derived synovial fibroblasts in a dose-dependent manner. When the mechanism of NF-kappa B activation was evaluated in the presence of this inhibitor, several interesting observations were found. First, SC-514 did not inhibit the phosphorylation and activation of the IKK complex. Second, there was a delay but not a complete blockade in I kappa B alpha phosphorylation and degradation; likewise there was a slightly slowed, decreased import of p65 into the nucleus and a faster export of p65 from the nucleus. Finally, both I kappa B alpha and p65 were comparable substrates for IKK-2, with similar Km and Kcat values, and SC-514 inhibited the phosphorylation of either substrate similarly. Thus, the effect of SC-514 on cytokine gene expression may be a combination of inhibiting I kappa B alpha phosphorylation/degradation, affecting NF-kappa B nuclear import/export as well as the phosphorylation and transactivation of p65.
Collapse
Affiliation(s)
- Nandini Kishore
- Department of Arthritis and Inflammation Pharmacology, Pharmacia Corp., St. Louis, Missouri 63167, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Amazit L, Alj Y, Tyagi RK, Chauchereau A, Loosfelt H, Pichon C, Pantel J, Foulon-Guinchard E, Leclerc P, Milgrom E, Guiochon-Mantel A. Subcellular localization and mechanisms of nucleocytoplasmic trafficking of steroid receptor coactivator-1. J Biol Chem 2003; 278:32195-203. [PMID: 12791702 DOI: 10.1074/jbc.m300730200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroid hormone receptors are ligand-stimulated transcription factors that modulate gene transcription by recruiting coregulators to gene promoters. Subcellular localization and dynamic movements of transcription factors have been shown to be one of the major means of regulating their transcriptional activity. In the present report we describe the subcellular localization and the dynamics of intracellular trafficking of steroid receptor coactivator 1 (SRC-1). After its synthesis in the cytoplasm, SRC-1 is imported into the nucleus, where it activates transcription and is subsequently exported back to the cytoplasm. In both the nucleus and cytoplasm, SRC-1 is localized in speckles. The characterization of SRC-1 nuclear localization sequence reveals that it is a classic bipartite signal localized in the N-terminal region of the protein, between amino acids 18 and 36. This sequence is highly conserved within the other members of the p160 family. Additionally, SRC-1 nuclear export is inhibited by leptomycin B. The region involved in its nuclear export is localized between amino acids 990 and 1038. It is an unusually large domain differing from the classic leucine-rich NES sequences. Thus SRC-1 nuclear export involves either an alternate type of NES or is dependent on the interaction of SRC-1 with a protein, which is exported through the crm1/exportin pathway. Overall, the intracellular trafficking of SRC-1 might be a mechanism to regulate the termination of hormone action, the interaction with other signaling pathways in the cytoplasm and its degradation.
Collapse
Affiliation(s)
- Larbi Amazit
- INSERM U135, Hormones, Gènes et Reproduction, IFR Bicêtre, Laboratoire d'Hormonologie et Biologie Moléculaire, AP-HP, Hôpital Bicêtre, 78 rue du Général Leclerc, 94275-Le Kremlin-Bicêtre cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Yang L, Ross K, Qwarnstrom EE. RelA control of IkappaBalpha phosphorylation: a positive feedback loop for high affinity NF-kappaB complexes. J Biol Chem 2003; 278:30881-8. [PMID: 12663663 DOI: 10.1074/jbc.m212216200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NF-kappaB-IkappaB complex formation regulates the level and specificity of NF-kappaB activity. Quantitative analyses showed that RelA-NF-kappaB-induced IkappaBalpha binding is regulated through inhibitor retention and phosphorylation. RelA caused an increase in IkappaBalpha phosphorylation and in degradation, which was enhanced monotonically with inhibitor concentration. In vivo analysis demonstrated the RelA-induced IkappaBalpha/RelA interactions to be specific, saturable, and phosphorylation-dependent. In addition, it showed that phosphorylation regulates both the level and affinity of the complexes and demonstrated an increased average affinity to coincide with reduction in the level of complexes during cytokine-induced pathway activation. The data show that RelA regulation of NF-kappaB-IkappaBalpha complex formation is IkappaBalpha phosphorylation-dependent and that IkappaBalpha/NF-kappaB binding is dynamic and determined by concentration of the subunits. In addition, they suggest that regulation of both complex levels and affinities through phosphorylation, with effects on the system steady state, participate in selective activation of the NF-kappaB pathway.
Collapse
Affiliation(s)
- Lin Yang
- Cell Biology Unit, Functional Genomics, Division of Genomic Medicine, The Medical School, University of Sheffield, Sheffield S10 2JF, United Kingdom
| | | | | |
Collapse
|
136
|
Nelson G, Wilde GJC, Spiller DG, Kennedy SM, Ray DW, Sullivan E, Unitt JF, White MRH. NF-kappaB signalling is inhibited by glucocorticoid receptor and STAT6 via distinct mechanisms. J Cell Sci 2003; 116:2495-503. [PMID: 12734399 DOI: 10.1242/jcs.00461] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NF-kappaB transcription factors are involved in the cellular response to stress, and are regulated by inhibitor (IkappaB) proteins, which prevent NF-kappaB-mediated transcription by maintaining NF-kappaB in the cytoplasm. Proteins from other pathways are also known to regulate NF-kappaB negatively, notably the glucocorticoid receptor (GR) and IL-4-responsive STAT6. Both pathways were shown to inhibit NF-kappaB-mediated transcription, by expressing either STAT6 or GR and activating the respective pathways. Using fluorescent fusion proteins, we show that GR alters the timing of activated p65 NF-kappaB nuclear occupancy by increasing the export rate of p65 and is independent of whether GR is present as a dimer or monomer. Expression of STAT6 was also shown to alter p65 nuclear occupancy but appeared to affect the import rate and hence the overall maximal level of p65 translocation. Activating STAT6 with IL-4 prior to activating NF-kappaB significantly increased this inhibition. Investigation of IkappaBa showed that activated STAT6 inhibited TNFalpha-mediated IkappaBa phosphorylation and degradation, whereas GR activation did not alter IkappaBalphakinetics. This demonstrates a clear separation of two distinct mechanisms of inhibition by STAT6 and GR upon the NF-kappaB pathway.
Collapse
Affiliation(s)
- Glyn Nelson
- Biosciences Building, School of Biological Sciences, University of Liverpool, Crown Street, UK
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Affiliation(s)
- Marieke H Schoemaker
- Division of Gastroenterology and Hepatology, University Hospital Groningen; P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | | |
Collapse
|
138
|
DeFranco DB. Functional implications of glucocorticoid receptor trafficking. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2003:91-109. [PMID: 12355731 DOI: 10.1007/978-3-662-04660-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- D B DeFranco
- University of Pittsburgh, Department of Biological Sciences, Pittsburgh, PA 15260, USA. dod1+@pitt.edu
| |
Collapse
|
139
|
Antonsson A, Hughes K, Edin S, Grundström T. Regulation of c-Rel nuclear localization by binding of Ca2+/calmodulin. Mol Cell Biol 2003; 23:1418-27. [PMID: 12556500 PMCID: PMC141150 DOI: 10.1128/mcb.23.4.1418-1427.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The NF-kappa B/Rel family of transcription factors participates in the control of a wide array of genes, including genes involved in embryonic development and regulation of immune, inflammation, and stress responses. In most cells, inhibitory I kappa B proteins sequester NF-kappa B/Rel in the cytoplasm. Cellular stimulation results in the degradation of I kappa B and modification of NF-kappa B/Rel proteins, allowing NF-kappa B/Rel to translocate to the nucleus and act on its target genes. Calmodulin (CaM) is a highly conserved, ubiquitously expressed Ca(2+) binding protein that serves as a key mediator of intracellular Ca(2+) signals. Here we report that two members of the NF-kappa B/Rel family, c-Rel and RelA, interact directly with Ca(2+)-loaded CaM. The interaction with CaM is greatly enhanced by cell stimulation, and this enhancement is blocked by addition of I kappa B. c-Rel and RelA interact with CaM through a similar sequence near the nuclear localization signal. Compared to the wild-type protein, CaM binding-deficient mutants of c-Rel exhibit increases in both nuclear accumulation and transcriptional activity on the interleukin 2 and granulocyte macrophage colony-stimulating factor promoters in the presence of a Ca(2+) signal. Conversely, for RelA neither nuclear accumulation nor transcriptional activity on these promoters is increased by mutation of the sequence interacting with CaM. Our results suggest that CaM binds c-Rel and RelA after their release from I kappa B and can inhibit nuclear import of c-Rel while letting RelA translocate to the nucleus and act on its target genes. CaM can therefore differentially regulate the activation of NF-kappa B/Rel proteins following stimulation.
Collapse
Affiliation(s)
- Asa Antonsson
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
140
|
Kiernan R, Brès V, Ng RWM, Coudart MP, El Messaoudi S, Sardet C, Jin DY, Emiliani S, Benkirane M. Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. J Biol Chem 2003; 278:2758-66. [PMID: 12419806 DOI: 10.1074/jbc.m209572200] [Citation(s) in RCA: 419] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NF-kappaB represents a family of eukaryotic transcription factors participating in the regulation of various cellular genes involved in the immediate early processes of immune, acute-phase, and inflammatory responses. Cellular localization and consequently the transcriptional activity of NF-kappaB is tightly regulated by its partner IkappaBalpha. Here, we show that the p65 subunit of NF-kappaB is acetylated by both p300 and PCAF on lysines 122 and 123. Both HDAC2 and HDAC3 interact with p65, although only HDAC3 was able to deacetylate p65. Acetylation of p65 reduces its ability to bind kappaBeta-DNA. Finally, acetylation of p65 facilitated its removal from DNA and consequently its IkappaBetaalpha-mediated export from the nucleus. We propose that acetylation of p65 plays a key role in IkappaBetaalpha-mediated attenuation of NF-kappaBeta transcriptional activity which is an important process that restores the latent state in post-induced cells.
Collapse
Affiliation(s)
- Rosemary Kiernan
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, Montpellier 34296, France
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Lingbeck JM, Trausch-Azar JS, Ciechanover A, Schwartz AL. Determinants of nuclear and cytoplasmic ubiquitin-mediated degradation of MyoD. J Biol Chem 2003; 278:1817-23. [PMID: 12397066 DOI: 10.1074/jbc.m208815200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin-proteasome system is responsible for the regulation and turnover of many short-lived proteins both in the cytoplasm and in the nucleus. Degradation can occur via two distinct pathways, an N terminus-dependent pathway and a lysine-dependent pathway. The pathways are characterized by the site of initial ubiquitination of the protein, the N terminus or an internal lysine, respectively. MyoD, a basic helix-loop-helix transcription factor, is a substrate for the ubiquitin-proteasome pathway and is degraded in the nucleus. It is preferentially tagged for degradation on the N terminus and thus is degraded by the N terminus-dependent pathway. Addition of a 6x Myc tag to the N terminus of MyoD can force degradation through the lysine-dependent pathway by preventing ubiquitination at the N-terminal site. Modifications of the nuclear localization signal and nuclear export signal of MyoD restrict ubiquitination and degradation to the cytoplasm or the nucleus. Using these mutants, we determined which degradation pathway is dominant in the cytoplasm and the nucleus. Our results suggest that the lysine-dependent pathway is the more active pathway within the cytoplasm, whereas in the nucleus the two pathways are both active in protein degradation.
Collapse
Affiliation(s)
- Jody M Lingbeck
- Edward Mallinckrodt Department of Pediatrics and Molecular Biology and Pharmacology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
142
|
Schooley K, Zhu P, Dower SK, Qwarnström EE. Regulation of nuclear translocation of nuclear factor-kappaB relA: evidence for complex dynamics at the single-cell level. Biochem J 2003; 369:331-9. [PMID: 12350227 PMCID: PMC1223076 DOI: 10.1042/bj20020253] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Revised: 09/17/2002] [Accepted: 09/26/2002] [Indexed: 01/14/2023]
Abstract
We have analysed activation of nuclear factor-kappaB (NF-kappaB) in response to interleukin-1 (IL-1) in human fibroblasts by tracking intracellular distribution and levels of endogenous relA, NF-kappaB1 and inhibitor of kappaB (I-kappaB) alpha using semi-quantitative confocal microscopy. Nuclear translocation of endogenous relA correlated with I-kappaBalpha degradation during stimulation with IL-1, whereas no effects were seen on levels or localization of NF-kappaB1. During pathway activation, relA was transported up a concentration gradient, resulting in a 3-4-fold increase in nuclear levels, but without any significant decrease in cytoplasmic concentration. IL-1 stimulation caused translocation of only 20% of the relA, but resulted in degradation of up to 70% of the cytoplasmic I-kappaBalpha. RelA nuclear translocation in fibroblasts correlated with DNA-binding activity measured by electrophoretic mobility shift assay (EMSA), both with respect to kinetics and IL-1 concentration-dependence. Clonal populations of cells demonstrated a marked degree of heterogeneity in the response to IL-1. The single-cell assay revealed the presence of responder and non-responder subpopulations, with an enhanced proportion of responder cells, and prolonged responses at higher concentrations of IL-1. Comparing different cell types demonstrated that whereas HepG2 cells, as fibroblasts, showed good correlation between nuclear translocation of relA and activation of DNA binding by relA-containing dimers, EL4 thymoma cells showed no effect on relA localization, even during induction of significant levels NF-kappaB activity, as measured by EMSA. The analysis shows that stimulation by IL-1 results in transient perturbation of the NF-kappaB system, which cycles between the resting and active states with net redistribution of a minor proportion of its DNA-binding component. In addition, it demonstrates significant cell-to-cell variations, as well as cell-type-specific differences in net relA nuclear transport in response to stimuli. The data are consistent with NF-kappaB constituting a dynamic and versatile system, regulated to a significant degree by binary events involving bidirectional trafficking between the cytoplasmic and nuclear compartments during pathway activation.
Collapse
Affiliation(s)
- Kenneth Schooley
- Department of Biochemistry, Immunex Research and Development Corporation, 51 University Street, Seattle, Washington 98101, U.S.A
| | | | | | | |
Collapse
|
143
|
Barsony J, Prufer K. Vitamin D receptor and retinoid X receptor interactions in motion. VITAMINS AND HORMONES 2003; 65:345-76. [PMID: 12481554 DOI: 10.1016/s0083-6729(02)65071-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vitamin D receptor (VDR) and retinoid X receptor (RXR) are members of the nuclear receptor superfamily and they bind target DNA sequences as heterodimers to regulate transcription. This article surveys the latest findings regarding the roles of dimerizing RXR in VDR function and emphasizes potential areas for future developments. We first highlight the importance of dimerization with RXR for both the ligand-independent (hair growth) and ligand-dependent functions of VDR (calcium homeostasis, bone development and mineralization, control of cell growth and differentiation). Emerging information regarding the regulatory control of dimerization based on biochemical, structural, and genetic studies is then presented. Finally, the main focus of this article is a new dynamic perspective of dimerization functions, based on recent research with fluorescent protein chimeras in living cells by microscopy. These studies revealed that both VDR and RXR constantly shuttle between the cytoplasm and the nucleus and between subnuclear compartments, and showed the transient nature of receptor--DNA and receptor--coregulator interactions. Because RXR dimerizes with most of the nuclear receptors, regulation of receptor dynamics by RXR has a broad significance.
Collapse
Affiliation(s)
- J Barsony
- Laboratory of Cell Biochemistry and Biology, National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
144
|
Anderson LA, Perkins ND. Regulation of RelA (p65) function by the large subunit of replication factor C. Mol Cell Biol 2003; 23:721-32. [PMID: 12509469 PMCID: PMC151544 DOI: 10.1128/mcb.23.2.721-732.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The RelA (p65) subunit of NF-kappaB is an important regulator of inflammation, proliferation, and apoptosis. We have discovered that the large subunit, p140, of replication factor C (RFC) can function as a regulator of RelA. RFC is a clamp loader, facilitating the addition and removal of proliferating-cell nuclear antigen from DNA during replication and repair but can also interact directly with the retinoblastoma tumor suppressor protein and the transcription factor C/EBPalpha. We find that RFC (p140) interacts with RelA both in vitro and in vivo and stimulates RelA transactivation. In contrast, coexpression of fragments of RFC (p140) that mediate the interaction with RelA results in transcriptional inhibition. The significance of this regulation was confirmed by using short interfering RNA oligonucleotides targeted to RFC (p140). Down regulation of endogenous RFC (p140) inhibits expression from a chromosomally integrated reporter plasmid induced by endogenous, TNF-alpha-activated NF-kappaB. Dominant negative fragments of RFC (p140) also cooperate with overexpressed RelA to induce cell death. Interestingly, RFC (p140) also interacts with the tumor suppressor p53. Taken together, these observations suggest that, in addition to its previously described function in DNA replication and repair, RFC (p140) has an important role as a regulator of transcription and NF-kappaB activity.
Collapse
Affiliation(s)
- Lisa A Anderson
- Division of Gene Expression and Regulation, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | |
Collapse
|
145
|
Dargemont C. Export nucléaire des protéines et homéostasie cellulaire. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/200218121237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
146
|
Tapalaga D, Tiegs G, Angermüller S. NFkappaB and caspase-3 activity in apoptotic hepatocytes of galactosamine-sensitized mice treated with TNFalpha. J Histochem Cytochem 2002; 50:1599-609. [PMID: 12486082 DOI: 10.1177/002215540205001204] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tumor necrosis factor-alpha (TNFalpha) induces apoptosis in hepatocytes only under transcriptional arrest induced by galactosamine (GalN). In this study we demonstrated the shuttle of the transcription factor NFkappaB (nuclear factor-kappa B) in the liver tissue of mice within 30 min-4.5 hr hours after GalN/TNFalpha treatment. NFkappaB translocation from cytoplasm to the nucleus is initiated by its separation from the inhibitory IkappaB proteins which include IkappaBalpha, IkappaBbeta, and IkappaB. Thirty minutes after GalN/TNFalpha administration, NFkappaBp65 in hepatocellular nuclei becomes increasingly detectable and reaches its highest level after 2.5 hr. Then export back into cytoplasm begins but, surprisingly, approximately 30% of NFkappaB remains in the nuclear fraction and appears as an immunoprecipitate in the nuclei of apoptotic hepatocytes. Non-apoptotic hepatocytes do not show any reaction product in the nuclei 4.5 hr after treatment. Correspondingly, the amount of dissociated IkappaBbeta decreases in the cytoplasm up to 2.5 hr and increases again afterwards, although it does not reach the level of the control samples. No evidence of IkappaBbeta in the nuclei was found either immunocytochemically or biochemically. Caspase-3 activity, which is responsible for apoptosis, increases significantly after 3.5 hr. At that time, apoptotic hepatocytes can occasionally be observed and, 4.5 hr after GalN/TNFalpha treatment, constitute approximately 30% of the hepatocytes.
Collapse
Affiliation(s)
- Dan Tapalaga
- Department of Anatomy and Cell Biology II, University of Heidelberg, Germany
| | | | | |
Collapse
|
147
|
Castro-Alcaraz S, Miskolci V, Kalasapudi B, Davidson D, Vancurova I. NF-kappa B regulation in human neutrophils by nuclear I kappa B alpha: correlation to apoptosis. THE JOURNAL OF IMMUNOLOGY 2002; 169:3947-53. [PMID: 12244195 DOI: 10.4049/jimmunol.169.7.3947] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neutrophils are among the first circulating leukocytes involved in acute inflammatory processes. Transcription factor NF-kappaB plays a key role in the inflammatory response, regulating the expression of proinflammatory and anti-apoptotic genes. Recently we have shown that human neutrophils contain a significant amount of NF-kappaB inhibitor, IkappaBalpha, in the nucleus of unstimulated cells. The present objective was to examine the mechanisms controlling the nuclear content of IkappaBalpha in human neutrophils and to determine whether increased accumulation of IkappaBalpha in the nucleus is associated with increased neutrophil apoptosis. We show for the first time that neutrophil stimulation with pro-inflammatory signals results in degradation of IkappaBalpha that occurs in both cytoplasm and nucleus. Prolonged (2-h) stimulation with TNF and LPS induces resynthesis of IkappaBalpha that is again translocated to the nucleus in human neutrophils, but not in monocytic cells. Leptomycin B, a specific inhibitor of nuclear export, increases nuclear accumulation of IkappaBalpha in stimulated neutrophils by blocking the IkappaBalpha nuclear export, and this is associated with inhibition of NF-kappaB activity, induction of caspase-3 activation, and apoptosis. Based on our data we present a new model of NF-kappaB regulation in human neutrophils by nuclear IkappaBalpha. Our results demonstrate that the NF-kappaB activity in human neutrophils is regulated by mechanisms clearly different from those in monocytes and other human cells and suggest that the increased nuclear content of IkappaBalpha in human neutrophils might represent one of the underlying mechanisms for the increased apoptosis in these cells.
Collapse
Affiliation(s)
- Susana Castro-Alcaraz
- Division of Neonatal-Perinatal Medicine, Schneider Children's Hospital, Long Island Jewish Medical Center-The Long Island Campus, Albert Einstein College of Medicine, and North Shore-Long Island Jewish Research Institute, New Hyde Park, NY 11040, USA
| | | | | | | | | |
Collapse
|
148
|
Russell JS, Tofilon PJ. Radiation-induced activation of nuclear factor-kappaB involves selective degradation of plasma membrane-associated I(kappa)B(alpha). Mol Biol Cell 2002; 13:3431-40. [PMID: 12388747 PMCID: PMC129956 DOI: 10.1091/mbc.e02-05-0252] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In contrast to nuclear factor-kappaB (NF-kappaB) activation by tumor necrosis factor-alpha (TNF-alpha), the specific processes involved in the activation of this transcription factor by ionizing radiation (IR) have not been completely defined. According to the classical paradigm, a critical event in NF-kappaB activation is the degradation of I(kappa)B(alpha). Data presented herein show that, in contrast to treatment with TNF-alpha, IR-induced NF-kappaB activation was not accompanied by degradation of I(kappa)B(alpha) in the U251 glioblastoma cell line as determined in whole cell lysates. However, treatment with the proteosome inhibitor MG-132 inhibited NF-kappaB activation induced by IR, suggesting that I(kappa)B(alpha) degradation was a critical event in this process. To reconcile these results, U251 cell lysates were separated into soluble and insoluble fractions and I(kappa)B(alpha) levels evaluated. Although I(kappa)B(alpha) was found in both subcellular fractions, treatment with IR resulted in the degradation of I(kappa)B(alpha) only in the insoluble fraction. Further subcellular fractionation suggested that the IR-sensitive, insoluble pool of I(kappa)B(alpha) was associated with the plasma membrane. These data suggest that the subcellular location of I(kappa)B(alpha) is a critical determinant in IR-induced NF-kappaB activation.
Collapse
Affiliation(s)
- Jeffery S Russell
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
149
|
Wang X, Pongrac JL, DeFranco DB. Glucocorticoid receptors in hippocampal neurons that do not engage proteasomes escape from hormone-dependent down-regulation but maintain transactivation activity. Mol Endocrinol 2002; 16:1987-98. [PMID: 12198236 DOI: 10.1210/me.2001-0287] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The glucocorticoid receptor (GR) protein is subjected to hormone-dependent down-regulation in most cells and tissues. This reduction in receptor levels that accompanies chronic hormone exposure serves to limit hormone responsiveness and operates at transcriptional, posttranscriptional, and posttranslational levels. The ability of glucocorticoid hormones to trigger GR down-regulation may be not universal, particularly in mature and developing neurons in which conflicting results regarding hormone control of GR protein have been reported. We find that endogenous GR is not down-regulated in the HT22 mouse hippocampal cell line and in primary hippocampal neurons derived from embryonic rats. Because GR has the capacity to be ubiquitylated in HT22 cells, receptor down-regulation must be limited by defects in either targeting of polyubiquitylated receptor to the proteasome or processing of the targeted receptor by the proteasome. Despite the lack of GR down-regulation in the HT22 cells, glucocorticoid-induced transcription from transiently transfected templates is attenuated upon prolonged hormone treatment. This termination of GR transactivation is not due to inefficient nuclear import or nuclear retention of the receptor. Furthermore, GR efficiently exports from HT22 cell nuclei in hormone-withdrawn cells, indicating that the receptor has access to both nuclear and cytoplasmic degradation pathways. Our results suggest that appropriate maturation of proteasomal degradative or targeting activities may be required, particularly in hippocampal neurons, for hormone-dependent down-regulation of GR.
Collapse
Affiliation(s)
- Xinjia Wang
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
150
|
Mellits KH, Mullen J, Wand M, Armbruster G, Patel A, Connerton PL, Skelly M, Connerton IF. Activation of the transcription factor NF-kappaB by Campylobacter jejuni. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2753-2763. [PMID: 12213922 DOI: 10.1099/00221287-148-9-2753] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Campylobacter jejuni is a food-borne pathogen responsible for infectious enterocolitis. The early-response transcription factor NF-kappa B triggers the expression of genes associated with cellular immune and inflammatory responses. Co-incubation of HeLa cells with viable C. jejuni leads to the activation of the transcription factor NF-kappa B as determined by specific induction of a cellular luciferase-based reporter. Boiled cell-free extracts of C. jejuni are also potent dose-dependent stimulators of NF-kappa B-dependent transcription, the levels of which can reach up to 1000-fold as compared with independent controls. Using both cultured HeLa cells and human colonic epithelial (HCA-7) cells, the activation of NF-kappa B by C. jejuni boiled extract has been monitored through the degradation of IKB alpha and DNA binding of the nuclear translocated p50/p65 heterodimer of NF-kappa B. These events are co-ordinated with elaboration of the pro-inflammatory cytokine interleukin-8. Fractionation of the boiled C. jejuni extract suggests that the majority of the bioactive component has a molecular mass of 3 kDa or less, which is insensitive to proteinase K treatment.
Collapse
Affiliation(s)
- Kenneth H Mellits
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK1
| | - Joseph Mullen
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK1
| | - Matthew Wand
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK1
| | - Gisèle Armbruster
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK1
| | - Amit Patel
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK1
| | - Phillippa L Connerton
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK1
| | - Maeve Skelly
- Division of Gastroenterology, University Hospital Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK2
| | - Ian F Connerton
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK1
| |
Collapse
|