101
|
Vivancos M, Moreno JJ. Role of Ca(2+)-independent phospholipase A(2) and cyclooxygenase/lipoxygenase pathways in the nitric oxide production by murine macrophages stimulated by lipopolysaccharides. Nitric Oxide 2002; 6:255-62. [PMID: 12009843 DOI: 10.1006/niox.2001.0410] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is evidence of molecular cross talk between inflammatory mediators such as nitric oxide (NO) and prostaglandins (PG), which may regulate tissue homeostasis and contribute to pathophysiological processes. Here we examine the role of endogenous arachidonic acid (AA) and its AA metabolites in the regulation of NO release by lipopolysaccharide (LPS)-stimulated macrophages RAW 264.7. Our results suggest that bromoenol lactone-sensitive phospholipase A(2) is involved in AA release and the subsequent PG and leukotriene (LT) production. The cyclooxygenase inhibitor, indomethacin, and lipoxygenase inhibitors such as baicalein and zileuton blocked the dose-dependent PGE(2) or LTB(4) and nitrite (NO(2)(-)) production induced by LPS. Furthermore, the effects of indomethacin were reverted by exogenous PGE(2) and forskolin, whereas AH23848B, an EP(4) PGE(2) subtype receptor antagonist, decreased NO(2)(-) release. On the other hand, the effect of baicalein on NO(-)(2) production was reverted by exogenous LTB(4) and the fibrate WY 14,643, a natural and a synthetic peroxisome proliferator-activated receptor alpha (PPAR alpha), respectively. Thus, PGE(2) via EP(4) receptor/cAMP and LTB(4) via PPAR alpha may be involved in the control of NO synthesis by LPS in macrophage RAW 264.7 cultures.
Collapse
Affiliation(s)
- Marta Vivancos
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Barcelona, Avda. Joan XXIII s/n, E-08028 Barcelona, Spain
| | | |
Collapse
|
102
|
Murakami M, Yoshihara K, Shimbara S, Lambeau G, Singer A, Gelb MH, Sawada M, Inagaki N, Nagai H, Kudo I. Arachidonate release and eicosanoid generation by group IIE phospholipase A(2). Biochem Biophys Res Commun 2002; 292:689-96. [PMID: 11922621 DOI: 10.1006/bbrc.2002.6716] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The heparin-binding group II subfamily of secretory phospholipase A(2)s (sPLA(2)s), such as sPLA(2)-IIA and -IID, augments stimulus-induced arachidonic acid (AA) release through the cellular heparan sulfate proteoglycan (HSPG)-dependent pathway when transfected into HEK293 cells. Here we show that the closest homolog, sPLA(2)-IIE, also promotes stimulus-induced AA release and prostaglandin (PG) production similar to those elicited by HSPG-dependent sPLA(2)s. Confocal laser microscopic analysis demonstrates the location of sPLA(2)-IIE in cytoplasmic punctate compartments. sPLA(2)-IIE also enhances leukotriene (LT) production and granule exocytosis by RBL-2H3 mastocytoma cells. Expression of sPLA(2)-IIE was highly upregulated in mice injected with lipopolysaccharide (LPS) and in mice with experimental atopic dermatitis. These observations suggest that this enzyme plays a role in the inflammatory process, as proposed for other group II subfamily sPLA(2)s.
Collapse
Affiliation(s)
- Makoto Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Beers SA, Buckland AG, Koduri RS, Cho W, Gelb MH, Wilton DC. The antibacterial properties of secreted phospholipases A2: a major physiological role for the group IIA enzyme that depends on the very high pI of the enzyme to allow penetration of the bacterial cell wall. J Biol Chem 2002; 277:1788-93. [PMID: 11706041 DOI: 10.1074/jbc.m109777200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antibacterial properties of human group IIA secreted phospholipase A(2) against Gram-positive bacteria as a result of membrane hydrolysis have been reported. Using Micrococcus luteus as a model system, we demonstrate the very high specificity of this human enzyme for such hydrolysis compared with the group IB, IIE, IIF, V, and X human secreted phospholipase A(2)s. A unique feature of the group IIA enzyme is its very high pI due to a large excess of cationic residues on the enzyme surface. The importance of this global positive charge in bacterial cell membrane hydrolysis and bacterial killing has been examined using charge reversal mutagenesis. The global positive charge on the enzyme surface allows penetration through the bacterial cell wall, thus allowing access of this enzyme to the cell membrane. Reduced bacterial killing was associated with the loss of positive charge and reduced cell membrane hydrolysis. All mutants were highly effective in hydrolyzing the bacterial membrane of cells in which the cell wall was permeabilized with lysozyme. These same overall characteristics were also seen with suspensions of Staphylococcus aureus and Listeria innocua, where cell membrane hydrolysis and antibacterial activity of human group IIA enzyme was also lost as a result of charge reversal mutagenesis.
Collapse
Affiliation(s)
- Stephen A Beers
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, United Kingdom
| | | | | | | | | | | |
Collapse
|
104
|
Affiliation(s)
- Peter J Quinn
- Division of Life Sciences, King's College London, 150 Stamford Street, London SE1 9NN, UK
| |
Collapse
|
105
|
Yagami T, Ueda K, Asakura K, Hata S, Kuroda T, Sakaeda T, Takasu N, Tanaka K, Gemba T, Hori Y. Human group IIA secretory phospholipase A2 induces neuronal cell death via apoptosis. Mol Pharmacol 2002; 61:114-26. [PMID: 11752212 DOI: 10.1124/mol.61.1.114] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of group IIA secretory phospholipase A2 (sPLA2-IIA) is documented in the cerebral cortex (CTX) after ischemia, suggesting that sPLA2-IIA is associated with neurodegeneration. However, how sPLA2-IIA is involved in the neurodegeneration remains obscure. To clarify the pathologic role of sPLA2-IIA, we examined its neurotoxicity in rats that had the middle cerebral artery occluded and in primary cultures of cortical neurons. After occlusion, sPLA2 activity was increased in the CTX. An sPLA2 inhibitor, indoxam, significantly ameliorated not only the elevated activity of the sPLA2 but also the neurodegeneration in the CTX. The neuroprotective effect of indoxam was observed even when it was administered after occlusion. In primary cultures, sPLA2-IIA caused marked neuronal cell death. Morphologic and ultrastructural characteristics of neuronal cell death by sPLA2-IIA were apoptotic, as evidenced by condensed chromatin and fragmented DNA. Before apoptosis, sPLA2-IIA liberated arachidonic acid (AA) and generated prostaglandin D2 (PGD2), an AA metabolite, from neurons. Indoxam significantly suppressed not only AA release, but also PGD2 generation. Indoxam prevented neurons from sPLA2-IIA-induced neuronal cell death. The neuroprotective effect of indoxam was observed even when it was administered after sPLA2-IIA treatment. Furthermore, a cyclooxygenase-2 inhibitor significantly prevented neurons from sPLA2-IIA-induced PGD2 generation and neuronal cell death. In conclusion, sPLA2-IIA induces neuronal cell death via apoptosis, which might be associated with AA metabolites, especially PGD2. Furthermore, sPLA2 contributes to neurodegeneration in the ischemic brain, highlighting the therapeutic potential of sPLA2-IIA inhibitors for stroke.
Collapse
Affiliation(s)
- Tatsurou Yagami
- Discovery Research Laboratories, Shionogi and Co., Ltd., Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Anthonsen MW, Andersen S, Solhaug A, Johansen B. Atypical lambda/iota PKC conveys 5-lipoxygenase/leukotriene B4-mediated cross-talk between phospholipase A2s regulating NF-kappa B activation in response to tumor necrosis factor-alpha and interleukin-1beta. J Biol Chem 2001; 276:35344-51. [PMID: 11445585 DOI: 10.1074/jbc.m105264200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor nuclear factor kappaB (NF-kappaB) plays crucial roles in a wide variety of biological functions such as inflammation, stress, and immune responses. We have shown previously that secretory nonpancreatic (snp) and cytosolic (c) phospholipase A(2) (PLA(2)) regulate NF-kappaB activation in response to tumor necrosis factor (TNF)-alpha or interleukin (IL)-1beta activation and that a functional coupling mediated by the 5-lipoxygenase (5-LO) metabolite leukotriene B(4) (LTB(4)) exists between snpPLA(2) and cPLA(2) in human keratinocytes. In this study, we have further investigated the mechanisms of PLA(2)-modulated NF-kappaB activation with respect to specific kinases involved in TNF-alpha/IL-1beta-stimulated cPLA(2) phosphorylation and NF-kappaB activation. The protein kinase C (PKC) inhibitors RO 31-8220, Gö 6976, and a pseudosubstrate peptide inhibitor of atypical PKCs attenuated arachidonic acid release, cPLA(2) phosphorylation, and NF-kappaB activation induced by TNF-alpha or IL-1beta, thus indicating atypical PKCs in cPLA(2) regulation and transcription factor activation. Transfection of a kinase-inactive mutant of lambda/iotaPKC in NIH-3T3 fibroblasts completely abolished TNF-alpha/IL-1beta-stimulated cellular arachidonic acid release and cPLA(2) activation assayed in vitro, confirming the role of lambda/iotaPKC in cPLA(2) regulation. Furthermore, lambda/iotaPKC and cPLA(2) phosphorylation was attenuated by phosphatidyinositol 3-kinase (PI3-kinase) inhibitors, which also reduced NF-kappaB activation in response to TNF-alpha and IL-1beta, indicating a role for PI3-kinase in these processes in human keratinocytes. TNF-alpha- and IL-1beta-induced phosphorylation of lambda/iotaPKC was attenuated by inhibitors toward snpPLA(2) and 5-LO and by an LTB(4) receptor antagonist, suggesting lambda/iotaPKC as a downstream effector of snpPLA(2) and 5-LO/LTB(4) the LTB(4) receptor. Hence, lambda/iotaPKC regulates snpPLA(2)/LTB(4)-mediated cPLA(2) activation, cellular arachidonic acid release, and NF-kappaB activation induced by TNF-alpha and IL-1beta. In addition, our results demonstrate that PI3-kinase and lambda/iotaPKC are involved in cytokine-induced cPLA(2) and NF-kappaB activation, thus identifying lambda/iotaPKC as a novel regulator of cPLA(2).
Collapse
Affiliation(s)
- M W Anthonsen
- UNIGEN Center for Molecular Biology, Faculty of Chemistry and Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | | | | |
Collapse
|
107
|
Ueno N, Murakami M, Tanioka T, Fujimori K, Tanabe T, Urade Y, Kudo I. Coupling between cyclooxygenase, terminal prostanoid synthase, and phospholipase A2. J Biol Chem 2001; 276:34918-27. [PMID: 11418589 DOI: 10.1074/jbc.m100429200] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently shown that two distinct prostaglandin (PG) E(2) synthases show preferential functional coupling with upstream cyclooxygenase (COX)-1 and COX-2 in PGE(2) biosynthesis. To investigate whether other lineage-specific PG synthases also show preferential coupling with either COX isozyme, we introduced these enzymes alone or in combination into 293 cells to reconstitute their functional interrelationship. As did the membrane-bound PGE(2) synthase, the perinuclear enzymes thromboxane synthase and PGI(2) synthase generated their respective products via COX-2 in preference to COX-1 in both the -induced immediate and interleukin-1-induced delayed responses. Hematopoietic PGD(2) synthase preferentially used COX-1 and COX-2 in the -induced immediate and interleukin-1-induced delayed PGD(2)-biosynthetic responses, respectively. This enzyme underwent stimulus-dependent translocation from the cytosol to perinuclear compartments, where COX-1 or COX-2 exists. COX selectivity of these lineage-specific PG synthases was also significantly affected by the concentrations of arachidonate, which was added exogenously to the cells or supplied endogenously by the action of cytosolic or secretory phospholipase A(2). Collectively, the efficiency of coupling between COXs and specific PG synthases may be crucially influenced by their spatial and temporal compartmentalization and by the amount of arachidonate supplied by PLA(2)s at a moment when PG production takes place.
Collapse
Affiliation(s)
- N Ueno
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Osaka Bioscience Institute CREST, Japan
| | | | | | | | | | | | | |
Collapse
|
108
|
Affiliation(s)
- M Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | |
Collapse
|
109
|
Díaz C, León G, Rucavado A, Rojas N, Schroit AJ, Gutiérrez JM. Modulation of the susceptibility of human erythrocytes to snake venom myotoxic phospholipases A(2): role of negatively charged phospholipids as potential membrane binding sites. Arch Biochem Biophys 2001; 391:56-64. [PMID: 11414685 DOI: 10.1006/abbi.2001.2386] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cerrophidion (Bothrops) godmani myotoxins I (CGMT-I) and II (CGMT-II), Asp-49 and Lys-49 phospholipases A(2) (PLA2s), which drastically differ in enzymatic activity, were devoid of direct hemolytic effects on erythrocytes (RBC) from different species despite the fact that enzymatically active CGMT-I was able to hydrolyze RBC membrane phospholipids and disrupt liposomes prepared from RBC lipids. Human RBC did not become susceptible to the toxins after treatment with neuraminidase or after altering membrane fluidity with cholesterol or sublytic concentrations of detergent. Unlike normal RBC, significant hemolysis was induced by CGMT-II and another similar Lys-49 isoform, B. asper MT-II (BAMT-II), in RBC enriched with phosphatidylserine (PS). Hemolysis was greater in RBC preincubated with pyridyldithioethylamine (PDA), a potent inhibitor of aminophospholipid transport. RBC enriched with phosphatidic acid (PA) also became susceptible to the myotoxins but was unaffected by PDA. Cells enriched with phosphatidylcholine (PC) remained resistant to the action of the toxins. BAMT-II also induced damage in black lipid membranes prepared with PS but not PC alone. When RBC binding of BAMT-II was measured by enzyme-linked immunosorbent assay, it was observed that PS- and PA-enriched erythrocytes were always able to capture more toxin than normal and PC-enriched RBC. This effect was significantly improved by PDA (in the case of PS) and it was observed either in the presence or in the absence of calcium in the medium. These data suggest that negatively charged lipids in the outer leaflet of cell membranes constitute myotoxic PLA2 binding sites. The scarcity of anionic phospholipids in the outer leaflet of RBC could explain their resistance to the action of these PLA2s.
Collapse
Affiliation(s)
- C Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| | | | | | | | | | | |
Collapse
|
110
|
Lindbom J, Ljungman AG, Lindahl M, Tagesson C. Expression of members of the phospholipase A2 family of enzymes in human nasal mucosa. Eur Respir J 2001; 18:130-8. [PMID: 11510783 DOI: 10.1183/09031936.01.00054701] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Phospholipase A2 (PLA2) is a family of enzymes thought to play a key role in inflammation by releasing arachidonic acid for the synthesis of eicosanoids and lysophospholipid for the synthesis of platelet-activating factor. However, the precise contribution of different PLA2 types to the formation of inflammatory lipid mediators in the upper airways is not known and the expression of different PLA2 genes in the human nasal mucosa has not been examined. This study therefore investigated the occurrence of messenger ribonucleic acids (mRNAs) for different PLA2 forms (IB, IIA, IID, IIE, III, IVA, IVB, IVC, V, VI, VII, X, acid calcium-independent (aiPLA2), and calcium-independent membrane bound PLA2, (iPLA2-2)) in the nasal mucosa of five healthy human subjects. Using reversed transcription-polymerase chain reaction (RT-PCR) techniques it was found that all these PLA2 types except PLA2 V were expressed in all subjects, whereas PLA2 V was detected in only one individual on one single occasion. The relative abundance of the different PLA2 transcripts were aiPLA2 > X approximately = IVA > IIA approximately = IIE approximately = IVB approximately = VI > IB approximately = IID approximately = III approximately = IVC approximately = VII approximately = iPLA2-2. To further quantify the mRNA-expression of PLA2 X, IVA and IIA, the samples were reanalysed with a quantitative PCR-technique utilizing competitive deoxyribonucleic acid (DNA) mimics as references. The amounts of PLA2 X, IVA and IIA mRNA were then estimated to 0.9 +/- 0.2, 1.1 +/- 0.7, and 0.0025 +/- 0.0021 amol (mean +/- SE), respectively, confirming the relative abundance of these PLA2 transcripts and indicating that the recently described PLA2 X form is relatively strongly expressed. These findings demonstrate that a large number of PLA2 types are expressed in the normal human nasal mucosa. Moreover, this investigation demonstrates, for the first time, the presence of the newly discovered phospholipase A2 forms IID, IIE, III, IVB, IVC, X and calcium-independent membrane bound phospholipase A2 in the human nasal mucosa and raises the possibility that one or several of these may be involved in inflammatory reactions in the nose.
Collapse
Affiliation(s)
- J Lindbom
- Dept of Health and Environment, Faculty of Health Sciences, University of Linköping, Sweden
| | | | | | | |
Collapse
|
111
|
Akiba S, Hatazawa R, Ono K, Kitatani K, Hayama M, Sato T. Secretory phospholipase A2 mediates cooperative prostaglandin generation by growth factor and cytokine independently of preceding cytosolic phospholipase A2 expression in rat gastric epithelial cells. J Biol Chem 2001; 276:21854-62. [PMID: 11274144 DOI: 10.1074/jbc.m010201200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Transforming growth factor (TGF)-alpha and interleukin (IL)-1beta are responsible for the healing of gastric lesions through, in part, prostaglandin (PG) generation. We examined the contribution of cytosolic and secretory phospholipase A(2)s (cPLA(2) and sPLA(2)) to the PG generation by rat gastric epithelial cells in response to both stimuli. Stimulation with TGF-alpha for 24 h increased cPLA(2) and cyclooxygenase (COX)-2 markedly, PGE(2) slightly, and type IIA sPLA(2) and COX-1 not at all, whereas IL-1beta increased sPLA(2) only. Both stimuli synergistically increased PGE(2), sPLA(2), and the two COXs but not cPLA(2). The onset of the PGE(2) generation paralleled the sPLA(2) release but was apparently preceded by increases in cPLA(2) and the two COXs. The increase in PGE(2) was impaired by inhibitors for sPLA(2) and COX-2 but not COX-1. cPLA(2) inhibitors suppressed PGE(2) generation by TGF-alpha alone but not augmentation of PGE(2) generation or sPLA(2) release by IL-1beta in combination with TGF-alpha. Furthermore, despite an increase in cPLA(2) including its phosphorylated form (phosphoserine), -induced arachidonic acid liberation was impaired in the TGF-alpha/IL-1beta-stimulated cells, in which p11, a putative cPLA(2) inhibitory molecule, was also increased and co-immunoprecipitated with cPLA(2). These results suggest that synergistic stimulation of sPLA(2) and COX-2 expression by TGF-alpha and IL-1beta results in an increase in PGE(2). Presumably, the preceding cPLA(2) expression is not involved in the PGE(2) generation, because of impairment of its hydrolytic activity in the stimulated cells.
Collapse
Affiliation(s)
- S Akiba
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | | | | | | | | | | |
Collapse
|
112
|
Capper EA, Marshall LA. Mammalian phospholipases A(2): mediators of inflammation, proliferation and apoptosis. Prog Lipid Res 2001; 40:167-97. [PMID: 11275266 DOI: 10.1016/s0163-7827(01)00002-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- E A Capper
- SmithKline Beecham Pharmaceuticals, Department of Immunology, Upper Merion, 709 Swedeland Road, King of Prussia, PA 19406, USA.
| | | |
Collapse
|
113
|
Murakami M, Koduri RS, Enomoto A, Shimbara S, Seki M, Yoshihara K, Singer A, Valentin E, Ghomashchi F, Lambeau G, Gelb MH, Kudo I. Distinct arachidonate-releasing functions of mammalian secreted phospholipase A2s in human embryonic kidney 293 and rat mastocytoma RBL-2H3 cells through heparan sulfate shuttling and external plasma membrane mechanisms. J Biol Chem 2001; 276:10083-96. [PMID: 11106649 DOI: 10.1074/jbc.m007877200] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We analyzed the ability of a diverse set of mammalian secreted phospholipase A(2) (sPLA(2)) to release arachidonate for lipid mediator generation in two transfected cell lines. In human embryonic kidney 293 cells, the heparin-binding enzymes sPLA(2)-IIA, -IID, and -V promote stimulus-dependent arachidonic acid release and prostaglandin E(2) production in a manner dependent on the heparan sulfate proteoglycan glypican. In contrast, sPLA(2)-IB, -IIC, and -IIE, which bind weakly or not at all to heparanoids, fail to elicit arachidonate release, and addition of a heparin binding site to sPLA(2)-IIC allows it to release arachidonate. Heparin nonbinding sPLA(2)-X liberates arachidonic acid most likely from the phosphatidylcholine-rich outer plasma membrane in a glypican-independent manner. In rat mastocytoma RBL-2H3 cells that lack glypican, sPLA(2)-V and -X, which are unique among sPLA(2)s in being able to hydrolyze phosphatidylcholine-rich membranes, act most likely on the extracellular face of the plasma membrane to markedly augment IgE-dependent immediate production of leukotriene C(4) and platelet-activating factor. sPLA(2)-IB, -IIA, -IIC, -IID, and -IIE exert minimal effects in RBL-2H3 cells. These results are also supported by studies with sPLA(2) mutants and immunocytostaining and reveal that sPLA(2)-dependent lipid mediator generation occur by distinct (heparanoid-dependent and -independent) mechanisms in HEK293 and RBL-2H3 cells.
Collapse
Affiliation(s)
- M Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
van der Helm HA, Buijtenhuijs P, van den Bosch H. Group IIA and group V secretory phospholipase A(2): quantitative analysis of expression and secretion and determination of the localization and routing in rat mesangial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1530:86-96. [PMID: 11341961 DOI: 10.1016/s1388-1981(00)00171-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mesangial cells can be induced to express group IIA and group V secretory phospholipase A(2) (sPLA(2)) at the mRNA level and at the protein level. In this report we quantitatively analyze the expression of both proteins in stimulated cells by Western blot techniques. We found that 75-80% of the total amount of synthesized group IIA sPLA(2) was secreted. The synthesized group V sPLA(2), however, was present almost exclusively intracellularly. The amount of group V present in the cell was comparable to the intracellular amount of group IIA sPLA(2). We furthermore studied the localization and routing of both proteins. Using fusion proteins of the group IIA or group V pre-sPLA(2) with green fluorescent protein it was established that both presequences are able to direct the proteins to the Golgi system. In immunofluorescence studies group V sPLA(2) expressed by rat mesangial cells was located in a punctate pattern in the cytosol with an enrichment near the nucleus. Immunofluorescent confocal laser scanning microscopy revealed that the group V and IIA sPLA(2) show partial colocalization in a Golgi-like structure in the inner part in the cell, but no colocalization was seen in the vesicles in the cytoplasm. The images also showed that group IIA sPLA(2) was located throughout the cell while group V was mainly present in the inner part of the cell. After treatment of the cells with brefeldin A or monensin the group IIA enzyme could no longer be detected, while group V sPLA(2) was still present although its localization was somewhat dependent on the treatment. Collectively, these results indicate that the two enzymes differ in both localization and routing in the cell, which underscores the hypothesis that the enzymes might have different functions.
Collapse
Affiliation(s)
- H A van der Helm
- Centre for Biomembranes and Lipid Enzymology, Department Biochemistry of Lipids, Institute of Biomembranes, Utrecht University, The Netherlands
| | | | | |
Collapse
|
115
|
Saiga A, Morioka Y, Ono T, Nakano K, Ishimoto Y, Arita H, Hanasaki K. Group X secretory phospholipase A(2) induces potent productions of various lipid mediators in mouse peritoneal macrophages. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1530:67-76. [PMID: 11341959 DOI: 10.1016/s1388-1981(00)00167-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously shown the expression of group X secretory phospholipase A(2) (sPLA(2)-X) in mouse splenic macrophages and its powerful potency for releasing fatty acids from various intact cell membranes. Here, we examined the potency of sPLA(2)-X in the production of lipid mediators in murine peritoneal macrophages. Mouse sPLA(2)-X was found to induce a marked release of fatty acids including arachidonic acid and linoleic acid, which contrasted with little, if any, release by the action of group IB and IIA sPLA(2)s. In resting macrophages, sPLA(2)-X elicited a modest production of prostaglandin E(2) and thromboxane A(2). After the induction of cyclooxygenase-2 (COX-2) by pretreatment with lipopolysaccharide, a dramatic increase in the production of these eicosanoids was observed in sPLA(2)-X-treated macrophages, which was completely blocked by the addition of either the specific sPLA(2) inhibitor indoxam or the COX inhibitor indomethacin. In accordance with its higher hydrolyzing activity toward phosphatidylcholine, mouse sPLA(2)-X induced a potent production of lysophosphatidylcholine. These findings strongly suggest that sPLA(2)-X plays a critical role in the production of various lipid mediators from macrophages. These events might be relevant to the progression of various pathological states, including chronic inflammation and atherosclerosis.
Collapse
Affiliation(s)
- A Saiga
- Shionogi Research Laboratories, Shionogi&Co., Ltd., 12-4 Sagisu, 5-Chome, Fukushima-ku, 553-0002, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
116
|
Schadow A, Scholz-Pedretti K, Lambeau G, Gelb MH, Fürstenberger G, Pfeilschifter J, Kaszkin M. Characterization of group X phospholipase A(2) as the major enzyme secreted by human keratinocytes and its regulation by the phorbol ester TPA. J Invest Dermatol 2001; 116:31-9. [PMID: 11168795 DOI: 10.1046/j.1523-1747.2001.00179.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HaCaT as well as human primary keratinocytes constitutively expressed mRNA of the human secreted phospholipase A(2) subtype groups X, V, IIA, and IID. A similar expression pattern was also found in human skin biopsies. Protein analysis showed that under serum-free conditions only group X secreted phospholipase A(2) is secreted into cell culture supernatants of HaCaT as well as human primary keratinocytes, whereas the other secreted phospholipases A(2) were not detectable at protein level. HaCaT keratinocytes constitutively released secreted phospholipase A(2) activity into the cell culture supernatant, being reflected by a constant release of fatty acids. The phorbol ester 12-O-tetradecanoylphorbol-13-acetate, which is a potent inducer of inflammation in skin, drastically reduced the mRNA level of group X secreted phospholipase A(2) and other secreted phospholipase A(2) subtypes as well as secreted phospholipase A(2) activity in cell culture supernatants. This suggests that inhibition of secreted phospholipase A(2) expression and activity as well as of fatty acid release by 12-O-tetradecanoylphorbol-13-acetate treatment might be a critical step impairing the integrity of the epidermis during phorbol-ester-induced pathologic processes in skin. The results show that group X secreted phospholipase A(2) represents the major secreted phospholipase A(2) subtype in human keratinocytes and thus may indicate a physiologic role for this enzyme in epidermis in vivo.
Collapse
Affiliation(s)
- A Schadow
- Pharmazentrum Frankfurt, University Hospital, Frankfurt/Main, Germany
| | | | | | | | | | | | | |
Collapse
|
117
|
Morioka Y, Ikeda M, Saiga A, Fujii N, Ishimoto Y, Arita H, Hanasaki K. Potential role of group X secretory phospholipase A(2) in cyclooxygenase-2-dependent PGE(2) formation during colon tumorigenesis. FEBS Lett 2000; 487:262-6. [PMID: 11150521 DOI: 10.1016/s0014-5793(00)02350-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the cyclooxygenase-2 (COX-2) pathway of the arachidonic acid cascade has been suggested to play an important role in colon carcinogenesis, there is little information concerning the identity of phospholipase A(2) (PLA(2)) involved in the arachidonic acid release in colon tumors. Here, we compared the potencies of three types of secretory PLA(2)s (group IB, IIA and X sPLA(2)s) for the arachidonic acid release from cultured human colon adenocarcinoma cells, and found that group X sPLA(2) has the most powerful potency in the release of arachidonic acid leading to COX-2-dependent prostaglandin E(2) (PGE(2)) formation. Furthermore, immunohistological analysis revealed the elevated expression of group X sPLA(2) in human colon adenocarcinoma neoplastic cells in concert with augmented expression of COX-2. These findings suggest a critical role of group X sPLA(2) in the PGE(2) biosynthesis during colon tumorigenesis.
Collapse
Affiliation(s)
- Y Morioka
- Shionogi Research Laboratories, Shionogi and Co., Ltd., Sagisu 5-12-4, Fukushima-ku, 553-0002, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
118
|
Lilja I, Gustafson-Svärd C, Franzeń L, Sjödahl R, Andersen S, Johansen B. Presence of group IIa secretory phospholipase A2 in mast cells and macrophages in normal human ileal submucosa and in Crohn's disease. Clin Chem Lab Med 2000; 38:1231-6. [PMID: 11205686 DOI: 10.1515/cclm.2000.194] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Secretory group IIa phospholipase A2 (PLA2-II) is an important regulator of proinflammatory lipid mediator production and may play a role in ileal inflammation in Crohn's disease. The enzyme has previously only been detected in epithelial Paneth cells. However, one characteristic feature of Crohn's disease is the transmural inflammation. Full thickness ileal sections from nine patients with Crohn's disease, and histologically normal sections from patients with colonic cancer (n=7) and chronic severe constipation (n=1) as controls, were used in this study. PLA2-II-positive cells were detected by immunofluorescence and in situ hybridization. Metachromatic staining and esterase staining were used to identify mast cells and macrophages, respectively. It was shown that mast cells and macrophages in the ileal submucosa in both patients and controls showed positive PLA2-II staining. The number of PLA2-II-labeled cells that did not react with metachromasia, e.g. macrophages, was significantly greater in inflamed Crohn's disease compared to controls. This is, to our knowledge, the first study that has described the presence in healthy, while presence and upregulation of PLA2-II-positive cells in inflamed human ileal submucosa. Our findings suggest a proinflammatory potential for secretory PLA2-II in submucosa, while proinflammatory stimulation of mast cells and macrophages in vitro has shown that the enzyme is responsible for delayed prostaglandin formation.
Collapse
Affiliation(s)
- I Lilja
- Department of Biomedicine and Surgery, Linköping University, Sweden
| | | | | | | | | | | |
Collapse
|
119
|
Takaku K, Sonoshita M, Sasaki N, Uozumi N, Doi Y, Shimizu T, Taketo MM. Suppression of Intestinal Polyposis inApc Δ716 Knockout Mice by an Additional Mutation in the Cytosolic Phospholipase A2Gene. J Biol Chem 2000. [DOI: 10.1074/jbc.c000586200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
120
|
Six DA, Dennis EA. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:1-19. [PMID: 11080672 DOI: 10.1016/s1388-1981(00)00105-0] [Citation(s) in RCA: 995] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The phospholipase A(2) (PLA(2)) superfamily consists of a broad range of enzymes defined by their ability to catalyze the hydrolysis of the middle (sn-2) ester bond of substrate phospholipids. The hydrolysis products of this reaction, free fatty acid and lysophospholipid, have many important downstream roles, and are derived from the activity of a diverse and growing superfamily of PLA(2) enzymes. This review updates the classification of the various PLA(2)'s now described in the literature. Four criteria have been employed to classify these proteins into one of the 11 Groups (I-XI) of PLA(2)'s. First, the enzyme must catalyze the hydrolysis of the sn-2 ester bond of a natural phospholipid substrate, such as long fatty acid chain phospholipids, platelet activating factor, or short fatty acid chain oxidized phospholipids. Second, the complete amino acid sequence of the mature protein must be known. Third, each PLA(2) Group should include all of those enzymes that have readily identifiable sequence homology. If more than one homologous PLA(2) gene exists within a species, then each paralog should be assigned a Subgroup letter, as in the case of Groups IVA, IVB, and IVC PLA(2). Homologs from different species should be classified within the same Subgroup wherever such assignments are possible as is the case with zebra fish and human Group IVA PLA(2) orthologs. The current classification scheme does allow for historical exceptions of the highly homologous Groups I, II, V, and X PLA(2)'s. Fourth, catalytically active splice variants of the same gene are classified as the same Group and Subgroup, but distinguished using Arabic numbers, such as for Group VIA-1 PLA(2) and VIA-2 PLA(2)'s. These four criteria have led to the expansion or realignment of Groups VI, VII and VIII, as well as the addition of Group XI PLA(2) from plants.
Collapse
Affiliation(s)
- D A Six
- Department of Chemistry and Biochemistry, MC 0601, Revelle College and School of Medicine, University of California, San Diego, La Jolla, CA 92093-0601, USA
| | | |
Collapse
|
121
|
Yedgar S, Lichtenberg D, Schnitzer E. Inhibition of phospholipase A(2) as a therapeutic target. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:182-7. [PMID: 11080687 DOI: 10.1016/s1388-1981(00)00120-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hydrolysis of cell membrane phospholipids by phospholipase A(2) (PLA(2)) leads to the production of numerous lipid mediators of diverse pathological conditions, mainly inflammatory diseases. These include lysophospholipids and their derivatives, and arachidonic acid and its derivatives (the eicosanoids). Both these groups of mediators are produced predominantly by the secretory PLA(2)s (sPLA(2)s) which hydrolyze the phospholipids of the cell surface membrane. Protection of cell membrane from these 'inflammatory enzymes' can therefore be used for the treatment of inflammatory processes. A prototype of cell-impermeable PLA(2) inhibitors, which protect the cell membrane from different sPLA(2)s without affecting vital phospholipid metabolism, is presented and discussed in the present review.
Collapse
Affiliation(s)
- S Yedgar
- Department of Biochemistry, Hebrew University-hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
122
|
Murakami M, Nakatani Y, Kuwata H, Kudo I. Cellular components that functionally interact with signaling phospholipase A(2)s. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:159-66. [PMID: 11080685 DOI: 10.1016/s1388-1981(00)00118-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Accumulating evidence has suggested that cytosolic phospholipase A(2) (cPLA(2)) and several secretory PLA(2) (sPLA(2)) isozymes are signaling PLA(2)s that are functionally coupled with downstream cyclooxygenase (COX) isozymes for prostaglandin (PG) biosynthesis. Arachidonic acid (AA) released by cPLA(2) and sPLA(2)s is supplied to both COX-1 and COX-2 in the immediate, and predominantly to COX-2 in the delayed, PG-biosynthetic responses. Vimentin, an intermediate filament component, acts as a functional perinuclear adapter for cPLA(2), in which the C2 domain of cPLA(2) associates with the head domain of vimentin in a Ca(2+)-sensitive manner. The heparin-binding signaling sPLA(2)-IIA, IID and V bind the glycosylphosphatidylinositol-anchored heparan sulfate proteoglycan glypican, which plays a role in sorting of these isozymes into caveolae and perinuclear compartments. Phospholipid scramblase, which facilitates transbilayer movement of anionic phospholipids, renders the cellular membranes more susceptible to signaling sPLA(2)s. There is functional cooperation between cPLA(2) and signaling sPLA(2)s in that prior activation of cPLA(2) is required for the signaling sPLA(2)s to act properly. cPLA(2)-derived AA is oxidized by 12/15-lipoxygenase, the products of which not only augment the induction of sPLA(2) expression, but also cause membrane perturbation, leading to increased cellular susceptibility to the signaling sPLA(2)s. sPLA(2)-X, a heparin-non-binding sPLA(2) isozyme, is capable of releasing AA from intact cells in the absence of cofactors. This property is attributed to its ability to avidly hydrolyze zwitterionic phosphatidylcholine, a major phospholipid in the outer plasma membrane. sPLA(2)-V can also utilize this route in several cell types. Taken together, the AA-releasing function of sPLA(2)s depends on the presence of regulatory cofactors and interfacial binding to membrane phospholipids, which differ according to cell type, stimuli, secretory processes, and subcellular distributions.
Collapse
Affiliation(s)
- M Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, 142-8555, Tokyo, Japan
| | | | | | | |
Collapse
|
123
|
Tanioka T, Nakatani Y, Semmyo N, Murakami M, Kudo I. Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. J Biol Chem 2000; 275:32775-82. [PMID: 10922363 DOI: 10.1074/jbc.m003504200] [Citation(s) in RCA: 547] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Here we report the molecular identification of cytosolic glutathione (GSH)-dependent prostaglandin (PG) E(2) synthase (cPGES), a terminal enzyme of the cyclooxygenase (COX)-1-mediated PGE(2) biosynthetic pathway. GSH-dependent PGES activity in the cytosol of rat brains, but not of other tissues, increased 3-fold after lipopolysaccharide (LPS) challenge. Peptide microsequencing of purified enzyme revealed that it was identical to p23, which is reportedly the weakly bound component of the steroid hormone receptor/hsp90 complex. Recombinant p23 expressed in Escherichia coli and 293 cells exhibited all the features of PGES activity detected in rat brain cytosol. A tyrosine residue near the N terminus (Tyr(9)), which is known to be critical for the activity of cytosolic GSH S-transferases, was essential for PGES activity. The expression of cPGES/p23 was constitutive and was unaltered by proinflammatory stimuli in various cells and tissues, except that it was increased significantly in rat brain after LPS treatment. cPGES/p23 was functionally linked with COX-1 in marked preference to COX-2 to produce PGE(2) from exogenous and endogenous arachidonic acid, the latter being supplied by cytosolic phospholipase A(2) in the immediate response. Thus, functional coupling between COX-1 and cPGES/p23 may contribute to production of the PGE(2) that plays a role in maintenance of tissue homeostasis.
Collapse
Affiliation(s)
- T Tanioka
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142, Japan
| | | | | | | | | |
Collapse
|
124
|
Murakami M, Naraba H, Tanioka T, Semmyo N, Nakatani Y, Kojima F, Ikeda T, Fueki M, Ueno A, Oh S, Kudo I. Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J Biol Chem 2000; 275:32783-92. [PMID: 10869354 DOI: 10.1074/jbc.m003505200] [Citation(s) in RCA: 736] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Here we report the molecular identification of membrane-bound glutathione (GSH)-dependent prostaglandin (PG) E(2) synthase (mPGES), a terminal enzyme of the cyclooxygenase (COX)-2-mediated PGE(2) biosynthetic pathway. The activity of mPGES was increased markedly in macrophages and osteoblasts following proinflammatory stimuli. cDNA for mouse and rat mPGESs encoded functional proteins that showed high homology with the human ortholog (microsomal glutathione S-transferase-like 1). mPGES expression was markedly induced by proinflammatory stimuli in various tissues and cells and was down-regulated by dexamethasone, accompanied by changes in COX-2 expression and delayed PGE(2) generation. Arg(110), a residue well conserved in the microsomal GSH S-transferase family, was essential for catalytic function. mPGES was functionally coupled with COX-2 in marked preference to COX-1, particularly when the supply of arachidonic acid was limited. Increased supply of arachidonic acid by explosive activation of cytosolic phospholipase A(2) allowed mPGES to be coupled with COX-1. mPGES colocalized with both COX isozymes in the perinuclear envelope. Moreover, cells stably cotransfected with COX-2 and mPGES grew faster, were highly aggregated, and exhibited aberrant morphology. Thus, COX-2 and mPGES are essential components for delayed PGE(2) biosynthesis, which may be linked to inflammation, fever, osteogenesis, and even cancer.
Collapse
Affiliation(s)
- M Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Kuwata H, Yamamoto S, Miyazaki Y, Shimbara S, Nakatani Y, Suzuki H, Ueda N, Yamamoto S, Murakami M, Kudo I. Studies on a mechanism by which cytosolic phospholipase A2 regulates the expression and function of type IIA secretory phospholipase A2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4024-31. [PMID: 11034413 DOI: 10.4049/jimmunol.165.7.4024] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although it has been proposed that arachidonate release by several secretory phospholipase A2 (sPLA2) isozymes is modulated by cytosolic PLA2 (cPLA2), the cellular component(s) that intermediates between these two signaling PLA2s remains unknown. Here we provide evidence that 12- or 15-lipoxygenase (12/15-LOX), which lies downstream of cPLA2, plays a pivotal role in cytokine-induced gene expression and function of sPLA2-IIA. The sPLA2-IIA expression and associated PGE2 generation induced by cytokines in rat fibroblastic 3Y1 cells were markedly attenuated by antioxidants that possess 12/15-LOX inhibitory activity. 3Y1 cells expressed 12/15-LOX endogenously, and forcible overexpression of 12/15-LOX in these cells greatly enhanced cytokine-induced expression of sPLA2-IIA, with a concomitant increase in delayed PG generation. Moreover, studies using 293 cells stably transfected with sPLA2-IIA revealed that stimulus-dependent hydrolysis of membrane phospholipids by sPLA2-IIA was enhanced by overexpression of 12/15-LOX. These results indicate that the product(s) generated by the cPLA2-12/15-LOX pathway following cell activation may play two roles: enhancement of sPLA2-IIA gene expression and membrane sensitization that leads to accelerated sPLA2-IIA-mediated hydrolysis.
Collapse
Affiliation(s)
- H Kuwata
- Department of Health Chemistry, Showa University School of Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Enomoto A, Murakami M, Valentin E, Lambeau G, Gelb MH, Kudo I. Redundant and segregated functions of granule-associated heparin-binding group II subfamily of secretory phospholipases A2 in the regulation of degranulation and prostaglandin D2 synthesis in mast cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4007-14. [PMID: 11034411 DOI: 10.4049/jimmunol.165.7.4007] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We herein demonstrate that mast cells express all known members of the group II subfamily of secretory phospholipase A2 (sPLA2) isozymes, and those having heparin affinity markedly enhance the exocytotic response. Rat mastocytoma RBL-2H3 cells transfected with heparin-binding (sPLA2-IIA, -V, and -IID), but not heparin-nonbinding (sPLA2-IIC), enzymes released more granule-associated markers (beta-hexosaminidase and histamine) than mock- or cytosolic PLA2alpha (cPLA2alpha)-transfected cells after stimulation with IgE and Ag. Site-directed mutagenesis of sPLA2-IIA and -V revealed that both the catalytic and heparin-binding domains are essential for this function. Confocal laser and electron microscopic analyses revealed that sPLA2-IIA, which was stored in secretory granules in unstimulated cells, accumulated on the membranous sites where fusion between the plasma membrane and granule membranes occurred in activated cells. These results suggest that the heparin-binding sPLA2s bind to the perigranular membranes through their heparin-binding domain, and lysophospholipids produced in situ by their enzymatic action may facilitate the ongoing membrane fusion. In contrast to the redundant role of sPLA2-IIA, -IID, and -V in the regulation of degranulation, only sPLA2-V had the ability to markedly augment IgE/Ag-stimulated immediate PGD2 production, which reached a level comparable to that elicited by cPLA2alpha. The latter observation reveals an unexplored functional segregation among the three related isozymes expressed in the same cell population.
Collapse
Affiliation(s)
- A Enomoto
- Department of Health Chemistry, Showa University School of Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
127
|
Enomoto A, Murakami M, Kudo I. Internalization and degradation of type IIA phospholipase A(2) in mast cells. Biochem Biophys Res Commun 2000; 276:667-72. [PMID: 11027529 DOI: 10.1006/bbrc.2000.3468] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whereas exogenous types IB and X secretory phospholipase A(2) (sPLA(2)) elicited prostaglandin D(2) (PGD(2)) production in mouse bone marrow-derived mast cells (BMMC), sPLA(2)-IIA was unable to do so. In search of a mechanism underlying this cellular refractoriness to exogenous sPLA(2)-IIA, we now report that this isozyme is promptly associated with cell surfaces, internalized, and then degraded in BMMC. Adsorption of sPLA(2)-IIA to BMMC was prevented by addition of heparin to the medium. Moreover, a heparin-nonbinding sPLA(2)-IIA mutant did not bind to BMMC. These results indicate that this sPLA(2)-IIA inactivation process depends on its rapid binding to heparan sulfate proteoglycan (HSPG) on BMMC surfaces. Thus, the present observations represent a particular situation in which cell surface HSPG exhibit a negative regulatory effect on cellular function of sPLA(2)-IIA, and argue that HSPG does not always act as a functional adapter for heparin-binding sPLA(2)s in mammalian cells as has been demonstrated before.
Collapse
Affiliation(s)
- A Enomoto
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | | | | |
Collapse
|
128
|
Morioka Y, Saiga A, Yokota Y, Suzuki N, Ikeda M, Ono T, Nakano K, Fujii N, Ishizaki J, Arita H, Hanasaki K. Mouse group X secretory phospholipase A2 induces a potent release of arachidonic acid from spleen cells and acts as a ligand for the phospholipase A2 receptor. Arch Biochem Biophys 2000; 381:31-42. [PMID: 11019817 DOI: 10.1006/abbi.2000.1977] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Group X secretory phospholipase A2 (sPLA2-X) has recently been shown to possess a powerful potency for releasing arachidonic acid from cell membrane phospholipids. Here, we report the purification of mouse pro- and mature forms of sPLA2-X, as well as its expression and biological functions. Purified pro-sPLA2-X was found to possess a propeptide of 11 amino acid residues attached at the NH2-terminals of the mature protein, and showed as little as 8% of the PLA2 activity of the mature form. Limited proteolysis of pro-sPLA2-X with trypsin resulted in the appearance of the mature form with a concomitant increase in PLA2 activity, suggesting a requirement of proteolytic removal of the propeptide for the optimal activity. The expression of sPLA2-X mRNA was detected in various tissues including the lung, thymus, and spleen, and immunohistochemical analysis revealed its expression in splenic macrophages. In the spleen cells, mature sPLA2-X elicited a prompt release of arachidonic acid with significant production of prostaglandin E2 more efficiently than group IB and IIA sPLA2s. In addition, sPLA2-X was identified as a high-affinity ligand for both native and recombinant form of mouse PLA2 receptor (PLA2R). However, there was no significant difference in the sPLA2-X-induced arachidonic acid release responses in the spleen cells between wild-type and PLA2R-deficient mice. These findings strongly suggest that sPLA2-X possesses two distinct biological functions in mice: it elicits a marked release of arachidonic acid from membrane phospholipids leading to the production of lipid mediators based on its enzymatic potency, and it acts as a natural ligand for the PLA2R that has been shown to play a critical role in the production of inflammatory cytokines during endotoxic shock.
Collapse
Affiliation(s)
- Y Morioka
- Shionogi Research Laboratories, Shionogi & Co., Ltd, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Clark CI, Reid RC, McGeary RP, Schafer K, Fairlie DP. Small peptides Do not inhibit human non-pancreatic secretory phospholipase-A(2) (Type IIA). Biochem Biophys Res Commun 2000; 274:831-4. [PMID: 10924362 DOI: 10.1006/bbrc.2000.3221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Seven small peptides, that are among the most potent reported inhibitors of secreted mammalian phospholipases A(2), were found not to inhibit processing of a small phospholipid substrate by human non-pancreatic secretory phospholipase A(2) (type IIa), under conditions where certain non-peptides are potent inhibitors at nanomolar concentrations.
Collapse
Affiliation(s)
- C I Clark
- The Centre for Drug Design and Development, Institute for Molecular Bioscience, Brisbane, Queensland, 4072, Australia.
| | | | | | | | | |
Collapse
|
130
|
Sjursen W, Brekke OL, Johansen B. Secretory and cytosolic phospholipase A(2)regulate the long-term cytokine-induced eicosanoid production in human keratinocytes. Cytokine 2000; 12:1189-94. [PMID: 10930295 DOI: 10.1006/cyto.1999.0727] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The involvement of cytosolic phospholipase A(2)(cPLA(2)) and secretory non-pancreatic PLA(2)(npPLA(2)) in release of arachidonic acid (AA) preceding eicosanoid formation in the human keratinocyte cell line HaCaT was examined. Interleukin 1beta (IL-1beta) and tumour necrosis factor-alpha (TNF), phorbol myristate acetate (PMA) and calcium ionophore A(23187)increased the extracellular AA release, and stimulated eicosanoid synthesis as determined by HPLC analysis. The main metabolites after stimulation with IL-1beta, PMA or A(23187)were PGE(2), an unidentified PG and LTB(4), while TNF stimulated HETE-production. Both cPLA(2)and npPLA(2)message and enzyme activity were detected in unstimulated HaCaT cells. IL-1beta, PMA and TNF increased both cPLA(2)enzyme activity and expression, but did not lead to any increase in npPLA(2)expression or activity. The selective npPLA(2)inhibitors LY311727 and 12-epi-scalaradial, or the cPLA(2)inhibitor arachidonyl trifluoro methyl ketone (AACOCF(3)) reduced IL-1beta-induced eicosanoid production in a concentration dependent manner. The results presented strongly suggest that both cPLA(2)and npPLA(2)contribute to the long-term generation of AA preceding eicosanoid production in differentiated, human keratinocytes. Inhibitors against npPLA2 or cPLA2 enzymes should be useful in treating inflammatory skin diseases, such as psoriasis.
Collapse
Affiliation(s)
- W Sjursen
- UNIGEN Center for Molecular Biology, Norwegian University of Science and Technology, NTNU, Trondheim, N-7489, Norway
| | | | | |
Collapse
|
131
|
Seeds MC, Jones KA, Duncan Hite R, Willingham MC, Borgerink HM, Woodruff RD, Bowton DL, Bass DA. Cell-specific expression of group X and group V secretory phospholipases A(2) in human lung airway epithelial cells. Am J Respir Cell Mol Biol 2000; 23:37-44. [PMID: 10873151 DOI: 10.1165/ajrcmb.23.1.4034] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Secretory phospholipase A(2) (sPLA(2)) enzymes contribute to inflammatory injury in human lungs by several mechanisms, including eicosanoid production and hydrolytic damage to surfactant phospholipids. Several distinct sPLA(2) genes have been described in human tissue but little is known regarding their presence, localization, or function(s) within lungs. We hypothesized that sPLA(2)s would have cell-specific distributions within lung. We used reverse transcriptase/polymerase chain reaction to identify sPLA(2) messenger RNAs (mRNAs) in adult human lung tissue. Resulting complementary DNA (cDNA) sequences indicated that total lung extracts contained mRNA for Groups IB, IIA, V, and X sPLA(2). An epithelial cell line, BEAS cells, expressed only Groups IIA, V, and X. We used these cDNAs to clone these enzymes, especially the recently described Group X and Group V enzymes. Digoxigenin-labeled complementary RNA probes were used to determine localization of each sPLA(2) by in situ hybridization of human lung. Hybridization was strongly positive for Group X and Group V in airway epithelial cells, which failed to hybridize Group IB or IIA probes. Although four known mammalian sPLA(2) isotypes were expressed in lung, only Group X and Group V sPLA(2) mRNAs appear uniquely expressed in airway epithelium, suggesting they could provide a mechanism of pulmonary surfactant hydrolysis during lung injury.
Collapse
Affiliation(s)
- M C Seeds
- Departments of Internal Medicine/Section on Pulmonary and Critical Care, Pathology, and Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Ueno N, Murakami M, Kudo I. Functional crosstalk between phospholipase D(2) and signaling phospholipase A(2)/cyclooxygenase-2-mediated prostaglandin biosynthetic pathways. FEBS Lett 2000; 475:242-6. [PMID: 10869564 DOI: 10.1016/s0014-5793(00)01691-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We performed reconstitution analyses of functional interaction between phospholipase A(2) (PLA(2)) and phospholipase D (PLD) enzymes. Cotransfection of HEK293 cells with cytosolic (cPLA(2)) or type IIA secretory (sPLA(2)-IIA) PLA(2) and PLD(2), but not PLD(1), led to marked augmentation of stimulus-induced arachidonate release. Interleukin-1-stimulated arachidonate release was accompanied by prostaglandin E(2) production via cyclooxygenase-2, the expression of which was augmented by PLD(2). Conversely, activation of PLD(2), not PLD(1), was facilitated by cPLA(2) or sPLA(2)-IIA. Thus, our results revealed functional crosstalk between signaling PLA(2)s and PLD(2) in the regulation of various cellular responses in which these enzymes have been implicated.
Collapse
Affiliation(s)
- N Ueno
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, 142-8555, Tokyo, Japan
| | | | | |
Collapse
|
133
|
Atsumi G, Murakami M, Kojima K, Hadano A, Tajima M, Kudo I. Distinct roles of two intracellular phospholipase A2s in fatty acid release in the cell death pathway. Proteolytic fragment of type IVA cytosolic phospholipase A2alpha inhibits stimulus-induced arachidonate release, whereas that of type VI Ca2+-independent phospholipase A2 augments spontaneous fatty acid release. J Biol Chem 2000; 275:18248-58. [PMID: 10747887 DOI: 10.1074/jbc.m000271200] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosolic phospholipase A(2)alpha (cPLA(2)alpha; type IVA), an essential initiator of stimulus-dependent arachidonic acid (AA) metabolism, underwent caspase-mediated cleavage at Asp(522) during apoptosis. Although the resultant catalytically inactive N-terminal fragment, cPLA(2)(1-522), was inessential for cell growth and the apoptotic process, it was constitutively associated with cellular membranes and attenuated both the A23187-elicited immediate and the interleukin-1-dependent delayed phases of AA release by several phospholipase A(2)s (PLA(2)s) involved in eicosanoid generation, without affecting spontaneous AA release by PLA(2)s implicated in phospholipid remodeling. Confocal microscopic analysis revealed that cPLA(2)(1-522) was distributed in the nucleus. Pharmacological and transfection studies revealed that Ca(2+)-independent PLA(2) (iPLA(2); type VI), a phospholipid remodeling PLA(2), contributes to the cell death-associated increase in fatty acid release. iPLA(2) was cleaved at Asp(183) by caspase-3 to a truncated enzyme lacking most of the first ankyrin repeat, and this cleavage resulted in increased iPLA(2) functions. iPLA(2) had a significant influence on cell growth or death, according to cell type. Collectively, the caspase-truncated form of cPLA(2)alpha behaves like a naturally occurring dominant-negative molecule for stimulus-induced AA release, rendering apoptotic cells no longer able to produce lipid mediators, whereas the caspase-truncated form of iPLA(2) accelerates phospholipid turnover that may lead to apoptotic membranous changes.
Collapse
Affiliation(s)
- G Atsumi
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142, Japan
| | | | | | | | | | | |
Collapse
|
134
|
Balsinde J, Balboa MA, Yedgar S, Dennis EA. Group V phospholipase A(2)-mediated oleic acid mobilization in lipopolysaccharide-stimulated P388D(1) macrophages. J Biol Chem 2000; 275:4783-6. [PMID: 10671511 DOI: 10.1074/jbc.275.7.4783] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P388D(1) macrophages prelabeled with [(3)H]arachidonic acid (AA) respond to bacterial lipopolysaccharide (LPS) by mobilizing AA in a process that takes several hours and is mediated by the concerted actions of the group IV cytosolic phospholipase A(2) and the group V secretory phospholipase A(2) (sPLA(2)). Here we show that when the LPS-activated cells are prelabeled with [(3)H]oleic acid (OA), they also mobilize and release OA to the extracellular medium. The time and concentration dependence of the LPS effect on OA release fully resemble those of the AA release. Experiments in which both AA and OA release are measured simultaneously indicate that AA is released 3 times more efficiently than OA. Importantly, LPS-stimulated OA release is strongly inhibited by the selective sPLA(2) inhibitors 3-(3-acetamide-1-benzyl-2-ethylindolyl-5-oxy)propane sulfonic acid and carboxymethylcellulose-linked phosphatidylethanolamine. The addition of exogenous recombinant sPLA(2) to the cells also triggers OA release. These data implicate a functionally active sPLA(2) as being essential for the cells to release OA upon stimulation with LPS. OA release is also inhibited by methyl arachidonyl fluorophosphonate but not by bromoenol lactone, indicating that the group IV cytosolic phospholipase A(2) is also involved in the process. Together, these data reveal that OA release occurs during stimulation of the P388D(1) macrophages by LPS and that the regulatory features of the OA release are strikingly similar to those previously found for the AA release.
Collapse
Affiliation(s)
- J Balsinde
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093-0601, USA.
| | | | | | | |
Collapse
|
135
|
Bezzine S, Koduri RS, Valentin E, Murakami M, Kudo I, Ghomashchi F, Sadilek M, Lambeau G, Gelb MH. Exogenously added human group X secreted phospholipase A(2) but not the group IB, IIA, and V enzymes efficiently release arachidonic acid from adherent mammalian cells. J Biol Chem 2000; 275:3179-91. [PMID: 10652303 DOI: 10.1074/jbc.275.5.3179] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian secreted phospholipases A(2) (sPLA2s) comprise a group of at least eight enzymes, including the recently identified group X sPLA2. A bacterial expression system was developed to produce human group X sPLA2 (hGX). Inhibition studies show that the sPLA2 inhibitor LY311727 binds modestly more tightly to human group IIA sPLA2 than to hGX and that a pyrazole-based inhibitor of group IIA sPLA2 is much less active against hGX. The phospholipid head group preference of vesicle-bound hGX was determined. hGX binds tightly to phosphatidylcholine vesicles, which is thought to be required to act efficiently on cells. Tryptophan 67 hGX makes a significant contribution to interfacial binding to zwitterionic vesicles. As little as 10 ng/ml hGX releases arachidonic acid for cyclooxygenase-2- dependent prostaglandin E(2) generation when added exogenously to adherent mammalian cells. In contrast, human group IIA, rat group V, and mouse group IB sPLA2s are virtually inactive at releasing arachidonate when added exogenously to adherent cells. Dislodging cells from the growth surface enhances the ability of all the sPLA2s to release fatty acids. Studies with CHO-K1 cell mutants show that binding of sPLA2s to glycosaminoglycans is not the basis for poor plasma membrane hydrolysis by group IB, IIA, and V sPLA2s.
Collapse
Affiliation(s)
- S Bezzine
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|