101
|
Blount MA. A timely characterization of vasopressin-sensitive adenylyl cyclase isoforms in the mouse inner medullary collecting duct. Am J Physiol Renal Physiol 2009; 298:F857-8. [PMID: 20032113 DOI: 10.1152/ajprenal.00725.2009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
102
|
Yang WL, Ravatn R, Kudoh K, Alabanza L, Chin KV. Interaction of the regulatory subunit of the cAMP-dependent protein kinase with PATZ1 (ZNF278). Biochem Biophys Res Commun 2009; 391:1318-23. [PMID: 20026299 DOI: 10.1016/j.bbrc.2009.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 12/07/2009] [Indexed: 12/01/2022]
Abstract
The effects of cAMP in cell are predominantly mediated by the cAMP-dependent protein kinase (PKA), which is composed of two genetically distinct subunits, catalytic (C) and regulatory (R), forming a tetrameric holoenzyme R(2)C(2). The only known function for the R subunit is that of inhibiting the activity of the C subunit kinase. It has been shown that overexpression of RIalpha, but not the C subunit kinase, is associated with neoplastic transformation. In addition, it has also been demonstrated that mutation in the RIalpha, but not the C subunit is associated with increased resistance to the DNA-damaging anticancer drug cisplatin, thus suggesting that the RIalpha subunit of PKA may have functions independent of the kinase. We show here that the RIalpha subunit interacts with a BTB/POZ domain zinc-finger transcription factor, PATZ1 (ZNF278), and co-expression with RIalpha results in its sequestration in the cytoplasm. The cytoplasmic/nuclear translocation is inducible by cAMP. C-terminus deletion abolishes PATZ1 interaction with RIalpha and results in its localization in the nucleus. PATZ1 transactivates the cMyc promoter and the presence of cAMP and co-expression with RIalpha modulates its transactivation. Moreover, PATZ1 is aberrantly expressed in cancer. Taken together, our results showed a potentially novel mechanism of cAMP signaling mediated through the interaction of RIalpha with PATZ1 that is independent of the kinase activity of PKA, and the aberrant expression of PATZ1 in cancer point to its role in cell growth regulation.
Collapse
Affiliation(s)
- Weng-Lang Yang
- Long Island Jewish Medical Center, North Shore University Hospital, Manhasset, NY 11030, USA
| | | | | | | | | |
Collapse
|
103
|
Haas B, Mayer P, Jennissen K, Scholz D, Berriel Diaz M, Bloch W, Herzig S, Fässler R, Pfeifer A. Protein kinase G controls brown fat cell differentiation and mitochondrial biogenesis. Sci Signal 2009; 2:ra78. [PMID: 19952371 DOI: 10.1126/scisignal.2000511] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Brown adipose tissue (BAT) is a primary site of energy expenditure through thermogenesis, which is mediated by the uncoupling protein-1 (UCP-1) in mitochondria. Here, we show that protein kinase G (PKG) is essential for brown fat cell differentiation. Induction of adipogenic markers and fat storage was impaired in the absence of PKGI. Furthermore, PKGI mediated the ability of nitric oxide (NO) and guanosine 3',5'-monophosphate (cGMP) to induce mitochondrial biogenesis and increase the abundance of UCP-1. Mechanistically, we found that PKGI controlled insulin signaling in BAT by inhibiting the activity of RhoA and Rho-associated kinase (ROCK), thereby relieving the inhibitory effects of ROCK on insulin receptor substrate-1 and activating the downstream phosphoinositide 3-kinase-Akt cascade. Thus, PKGI links NO and cGMP signaling with the RhoA-ROCK and the insulin pathways, thereby controlling induction of adipogenic and thermogenic programs during brown fat cell differentiation.
Collapse
Affiliation(s)
- Bodo Haas
- Institute for Pharmacology and Toxicology, Biomedical Center, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Bazhin AV, Kahnert S, Kimpfler S, Schadendorf D, Umansky V. Distinct metabolism of cyclic adenosine monophosphate in regulatory and helper CD4+ T cells. Mol Immunol 2009; 47:678-84. [PMID: 19939455 DOI: 10.1016/j.molimm.2009.10.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 10/23/2009] [Indexed: 12/22/2022]
Abstract
Regulatory T cells (Treg) are crucial for the suppression of antigen-specific immune responses by activated conventional T cells (Tcon). It has been recently reported that this suppression is mediated by cyclic adenosine monophosphate (cAMP) transported from Treg to Tcon via gap junctions. However, the underlying biochemical mechanisms of cAMP accumulation in activated Treg are still unclear. Here we reported that although non-activated murine Treg and Tcon displayed similar intracellular cAMP amounts, both subpopulations showed distinct expression of enzymes regulating cAMP metabolism. Thus, in Treg, activities of both anabolic (adenylyl cyclase, AC) and catabolic (phosphodiesterase, PDE) enzymes were lower than in Tcon. Furthermore, we demonstrated for the first time the expression of the PDE11 protein in murine Treg and Tcon. Treg activation by IL-2 induced a strong AC7 activation and cAMP accumulation in Treg. In contrast, Tcon showed a significant decrease in the AC7 activity and cAMP amounts under these conditions. Our data suggest that the mechanism of cAMP accumulation in stimulated Treg involves the AC7 activation and provide new insight into the modulation of Treg activities via AC inhibition or stimulation in various pathological processes like tumor and autoimmune diseases.
Collapse
Affiliation(s)
- Alexandr V Bazhin
- Skin Cancer Unit, German Cancer Research Center and University Hospital Mannheim, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
105
|
Gonçalves RL, Lugnier C, Keravis T, Lopes MJ, Fantini FA, Schmitt M, Cortes SF, Lemos VS. The flavonoid dioclein is a selective inhibitor of cyclic nucleotide phosphodiesterase type 1 (PDE1) and a cGMP-dependent protein kinase (PKG) vasorelaxant in human vascular tissue. Eur J Pharmacol 2009; 620:78-83. [PMID: 19686719 DOI: 10.1016/j.ejphar.2009.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 07/19/2009] [Accepted: 08/04/2009] [Indexed: 11/30/2022]
Abstract
The inhibitory effect of the flavonoid dioclein was assessed on purified vascular cyclic nucleotide phosphodiesterase isoforms (EC 3.1.4.17, PDE1-5) in comparison with 8-methoxymethyl-isobutylmethylxanthine (8-MM-IBMX) and vinpocetine which are currently used as PDE1 inhibitors. The mechanism underlying the vasorelaxant effect of dioclein was investigated in human saphenous vein. Dioclein inhibited PDE1 more selectively than vinpocetine and 8-MM-IBMX, with IC(50) values of 2.47+/-0.26 and 1.44+/-0.35 microM, respectively in basal- and calmodulin-activated states. Dioclein behaved as a competitive inhibitor for cGMP hydrolysis by PDE1 in basal- and calmodulin-activated states (K(i)=0.62+/-0.14 and 0.55+/-0.07 microM, respectively), indicating this inhibitory effect to be independent of calmodulin interactions. In addition, dioclein induced a concentration-dependent relaxation of human saphenous vein which was independent on the presence of functional endothelium (EC(50) values of 7.3+/-3.1 and 11+/-2.7 microM, respectively with and without endothelium). 8-MM-IBMX relaxed human saphenous vein with an EC(50)=31+/-16 microM, whereas vinpocetine did not cause any vasorelaxation at concentrations up to 100 microM. Rp-8-pCPT-cGMPS, which inhibits cGMP-dependent protein kinase (PKG), blocked the vasodilator effect of dioclein, whereas H-89, which is a cAMP-dependent protein kinase (PKA) inhibitor, had a minor inhibitory effect. Our data show that dioclein is a potent calmodulin-independent selective inhibitor of PDE1 and that inhibition of PDE1 is involved in the PKG-mediated vasorelaxant effect of dioclein in human saphenous vein. Furthermore, dioclein may represent a new archetype to develop more specific PDE1 inhibitors.
Collapse
Affiliation(s)
- Roberta L Gonçalves
- Department of Physiology and Biophysics, ICB, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Kammer GM, Laxminarayana D, Khan IU. MECHANISMS OF DEFICIENT TYPE I PROTEIN KINASE A ACTIVITY IN LUPUS T LYMPHOCYTES. Int Rev Immunol 2009; 23:225-44. [PMID: 15204086 DOI: 10.1080/08830180490452611] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease in which the immune response to antigen results in exaggerated CD4(+) T helper and diminished CD8(+) T cytotoxic responses. To determine the mechanisms underlying impaired T cell effector functions, we have investigated the cAMP/protein kinase A (cAMP/PKA) signaling pathway. The results demonstrate that diminished PKA-catalyzed protein phosphorylation is the result of deficient type I (PKA-I) and type II (PKA-II) isozyme-specific activities. The prevalence of deficient PKA-I and PKA-II activities in SLE T cells is approximately 80% and 40%, respectively. Diminished PKA-I activities are not associated with disease activity and appear to be stable over time. Two disparate mechanisms account for these low PKA-I and PKA-II isozyme activities. Moreover, novel transcript mutations of the RI alpha gene have been identified that are characterized by deletions, transitions, and transversions. Most mutations are clustered adjacent to GAGAG motifs and CT repeats. In conclusion, aberrant signaling via the cAMP/PKA pathway occurs in SLE T cells, and this is proposed to contribute to abnormal T cell effector functions.
Collapse
Affiliation(s)
- Gary M Kammer
- Section on Rheumatology and Clinical Immunology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | |
Collapse
|
107
|
Shemarova IV. cAMP-dependent signal pathways in unicellular eukaryotes. Crit Rev Microbiol 2009; 35:23-42. [PMID: 19514907 DOI: 10.1080/10408410802645646] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The review summarizes current data about mechanisms of signal transduction with participation of cAMP (cyclic adenosine monophosphate) and elements of the complex cAMP-protein kinase A (PKA) signal pathway in unicellular eukaryotes. Conceptions of evolutionary origin of eukaryotic signal transduction systems are developed.
Collapse
Affiliation(s)
- Irina V Shemarova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
108
|
Halvey EJ, Vernon J, Roy B, Garthwaite J. Mechanisms of activity-dependent plasticity in cellular nitric oxide-cGMP signaling. J Biol Chem 2009; 284:25630-41. [PMID: 19605352 PMCID: PMC2757965 DOI: 10.1074/jbc.m109.030338] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cellular responsiveness to nitric oxide (NO) is shaped by past history of NO exposure. The mechanisms behind this plasticity were explored using rat platelets in vitro, specifically to determine the relative contributions made by desensitization of NO receptors, which couple to cGMP formation, and by phosphodiesterase-5 (PDE5), which is activated by cGMP and also hydrolyzes it. Repeated delivery of brief NO pulses (50 nm peak) at 1-min intervals resulted in a progressive loss of the associated cGMP responses, which was the combined consequence of receptor desensitization and PDE5 activation, with the former dominating. Delivery of pulses of differing amplitude showed that NO stimulated and desensitized receptors with similar potency (EC50 = 10–20 nm). PDE5 activation was highly sensitive to NO, with a single pulse peaking at 2 nm being sufficient to evoke a 50% loss of response to a subsequent near-maximal NO pulse. However, the activated state of the PDE subsided quickly after removal of NO, the half-time for recovery being 25 s. In contrast, receptor desensitization reverted much more slowly, the half-time being 16 min. Accordingly, with long (20-min) exposures, NO concentrations as low as 600 pm provoked significant desensitization. The results indicate that PDE5 activation and receptor desensitization subserve distinct short term and longer term roles as mediators of plasticity in NO-cGMP signaling. A kinetic model explicitly describing the complex interplay between NO concentration, cGMP synthesis, PDE5 activation, and the resulting cGMP accumulation successfully simulated the present and previous data.
Collapse
Affiliation(s)
- Edward J Halvey
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
109
|
Laengle UW, Markstein R, Cazaubon C, Roman D. Antiglaucoma drug GLC756 and its effect on cellular cAMP and tumor necrosis factor alpha release in vitro of activated human monocytic leukemia cells. Jpn J Ophthalmol 2009; 53:159-163. [PMID: 19333701 DOI: 10.1007/s10384-008-0625-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE GLC756, a putative antiglaucoma drug with dopamine D(2) agonist and D(1) antagonist properties, significantly decreases tumor necrosis factor alpha (TNF-alpha) levels in lipopolysaccharide (LPS)-induced rats. The present study describes the effects of GLC756 on cellular adenosine 3', 5'-cyclic monophosphate (cAMP) in relation to TNF-alpha production on LPS-stimulated human acute monocytic leukemia cells. METHODS A human peripheral blood acute monocytic leukemia cell line (THP-1) was activated via LPS. THP-1 cells were incubated with GLC756 or betamethasone (positive control) at concentrations of 1, 10, and 30 microM. The TNF-alpha concentration in supernatant and cAMP levels in cellular extract were measured by enzyme-linked immunosorbent assay 0,1, 2.5, 4.5, 7, and 24 h post-activation. RESULTS Compared with LPS controls, both GLC756 at 30 muM and betamethasone at > or =1 microM had a significant inhibitory effect on TNF-alpha release from THP-1 cells 2.5 to 24 h post-activation. Parallel to the TNF-alpha decrease, GLC756 induced significant increases of cellular cAMP 2.5 and 7 h post-activation. Betamethasone had no effect on the cellular cAMP level. CONCLUSION Intracellular signaling pathway leading to inhibition of the production of the proinflammatory cytokine TNF-alpha after GLC756 treatment might be mediated through the second messenger cAMP.
Collapse
Affiliation(s)
- Ulrich W Laengle
- Department of Toxicology & Pathology, Novartis Pharma AG, Basel, Switzerland. .,Department of Toxicology & Pathology, Novartis Pharma AG, WKL-126.1.16, Klybeckerstr. 141, CH-4057, Basel, Switzerland.
| | - Rudolf Markstein
- Department of Toxicology & Pathology, Novartis Pharma AG, Basel, Switzerland
| | - Cecile Cazaubon
- Department of Toxicology & Pathology, Novartis Pharma AG, Basel, Switzerland
| | - Danielle Roman
- Department of Toxicology & Pathology, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
110
|
Pesek JJ, Matyska MT, Hearn MTW, Boysen RI. Aqueous normal-phase retention of nucleotides on silica hydride columns. J Chromatogr A 2008; 1216:1140-6. [PMID: 19135674 DOI: 10.1016/j.chroma.2008.12.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/15/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
The use of silica hydride-based stationary phases for the retention and analysis of nucleotides has been investigated. Both reversed-phase columns with a hydride surface underneath as well as those with an unmodified or a minimally modified hydride material were tested. With these systems, an aqueous normal-phase mode was used with high organic content mobile phases in combination with an additive to control pH for the retention of the hydrophilic nucleotides. Isocratic and gradient elution formats have been used to optimize separations for mixtures containing up to seven components. All conditions developed are suitable for methods that utilize mass spectrometry detection.
Collapse
Affiliation(s)
- Joseph J Pesek
- Department of Chemistry, San Jose State University, San Jose, CA 95112, USA.
| | | | | | | |
Collapse
|
111
|
Hofmann F, Bernhard D, Lukowski R, Weinmeister P. cGMP regulated protein kinases (cGK). Handb Exp Pharmacol 2008:137-62. [PMID: 19089329 DOI: 10.1007/978-3-540-68964-5_8] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
cGMP-dependent protein kinases (cGK) are serine/threonine kinases that are widely distributed in eukaryotes. Two genes--prkg1 and prkg2--code for cGKs, namely cGKI and cGKII. In mammals, two isozymes, cGKIalpha and cGKIbeta, are generated from the prkg1 gene. The cGKI isozymes are prominent in all types of smooth muscle, platelets, and specific neuronal areas such as cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. The cGKII prevails in the secretory epithelium of the small intestine, the juxta-glomerular cells, the adrenal cortex, the chondrocytes, and in the nucleus suprachiasmaticus. Both cGKs are major downstream effectors of many, but not all signalling events of the NO/cGMP and the ANP/cGMP pathways. cGKI relaxes smooth muscle tone and prevents platelet aggregation, whereas cGKII inhibits renin secretion, chloride/water secretion in the small intestine, the resetting of the clock during early night, and endochondreal bone growth. cGKs are also modulators of cell growth and many other functions.
Collapse
Affiliation(s)
- Franz Hofmann
- Institut für Pharmakologie und Toxikologie der Technischen Universität, Biedersteiner Str. 29, München, 80802, Germany.
| | | | | | | |
Collapse
|
112
|
Cen B, Deguchi A, Weinstein IB. Activation of protein kinase G Increases the expression of p21CIP1, p27KIP1, and histidine triad protein 1 through Sp1. Cancer Res 2008; 68:5355-62. [PMID: 18593937 DOI: 10.1158/0008-5472.can-07-6869] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The anticancer role of cyclic guanosine 3',5'-monophosphate (cGMP)-dependent protein kinase G (PKG) has become of considerable interest, but the underlying mechanisms are not fully established. In this study, we examined the effects of activation of PKG on the expression of three tumor suppressor proteins in human SW480 colon cancer cells. Our results revealed that treatment with cell permeable cGMP derivatives, or the cGMP phosphodiesterase inhibitor sulindac sulfone (exisulind, aptosyn, hereafter called exisulind) led to increased expression of the tumor suppressor proteins p21(CIP1), p27(KIP1), and Histidine triad protein 1 (HINT1), and their corresponding mRNAs. Overexpression of PKG Ibeta also caused increased expression of the p21(CIP1), p27(KIP1), and HINT1 proteins. Both the p21(CIP1) and p27(KIP1) promoters contain Sp1 binding sites and they were activated by PKG in luciferase reporter assays. Specific Sp1 sites in the p21 and p27 promoters were sufficient to mediate PKG-induced luciferase reporter activity, suggesting an interaction between Sp1 and PKG. Indeed, we found that PKG can phosphorylate Sp1 on serine residue(s) and this resulted in transcriptional activation of Sp1. Knockdown of Sp1 expression with siRNA inhibited the increased expression of p21(CIP1), p27(KIP1), and HINT1 induced by the cGMP derivative 8-pCPT-cGMP in SW480 cells. These novel effects of PKG activation on the expression of three tumor suppressor genes may explain, at least in part, the anticancer effects of activation of PKG. They also provide a rationale for further developing activators of PKG for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Bo Cen
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
113
|
Serulle Y, Arancio O, Ziff EB. A role for cGMP-dependent protein kinase II in AMPA receptor trafficking and synaptic plasticity. Channels (Austin) 2008; 2:230-2. [PMID: 18728399 DOI: 10.4161/chan.2.4.6391] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Regulated trafficking of AMPA receptors (AMPARs) is an important mechanism that underlies the activity-dependent modification of synaptic strength. Trafficking of AMPARs is regulated by specific interactions of their subunits with other proteins. Recently, we have reported that the AMPAR subunit GluR1 binds the cGMP-dependent kinase type II (cGKII) adjacent to the kinase catalytic site, and that this interaction is increased by cGMP. In this complex, cGKII phosphorylates GluR1 at serine 845 (S845), a site known to be phosphorylated also by PKA. S845 phosphorylation leads to an increase of GluR1 on the plasma membrane. In neurons, cGMP is produced by soluble guanylate cyclase (sGC), which is activated by nitric oxide (NO). Calcium flux through the NMDA receptor (NMDAR) activates neuronal nitric oxide synthase (nNOS), which produces NO. Using a combination of biochemical and electrophysiological experiments, we have shown that trafficking of GluR1 is under the regulation of NO, cGMP and cGKII. Moreover, our study indicates that the interaction of cGKII with GluR1, which is under the regulation of the NMDAR and NO, plays an important role in hippocampal plasticity.
Collapse
Affiliation(s)
- Yafell Serulle
- Program in Neuroscience and Physiology, New York University School of Medicine, New York, New York 10016, USA.
| | | | | |
Collapse
|
114
|
Blount MA, Mistry AC, Fröhlich O, Price SR, Chen G, Sands JM, Klein JD. Phosphorylation of UT-A1 urea transporter at serines 486 and 499 is important for vasopressin-regulated activity and membrane accumulation. Am J Physiol Renal Physiol 2008; 295:F295-9. [PMID: 18495802 PMCID: PMC2494505 DOI: 10.1152/ajprenal.00102.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 05/14/2008] [Indexed: 11/22/2022] Open
Abstract
The UT-A1 urea transporter plays an important role in the urine concentrating mechanism. Vasopressin (or cAMP) increases urea permeability in perfused terminal inner medullary collecting ducts and increases the abundance of phosphorylated UT-A1, suggesting regulation by phosphorylation. We performed a phosphopeptide analysis that strongly suggested that a PKA consensus site(s) in the central loop region of UT-A1 was/were phosphorylated. Serine 486 was most strongly identified, with other potential sites at serine 499 and threonine 524. Phosphomutation constructs of each residue were made and transiently transfected into LLC-PK1 cells to assay for UT-A1 phosphorylation. The basal level of UT-A1 phosphorylation was unaltered by mutation of these sites. We injected oocytes, assayed [14C]urea flux, and determined that mutation of these sites did not alter basal urea transport activity. Next, we tested the effect of stimulating cAMP production with forskolin. Forskolin increased wild-type UT-A1 and T524A phosphorylation in LLC-PK1 cells and increased urea flux in oocytes. In contrast, the S486A and S499A mutants demonstrated loss of forskolin-stimulated UT-A1 phosphorylation and reduced urea flux. In LLC-PK1 cells, we assessed biotinylated UT-A1. Wild-type UT-A1, S486A, and S499A accumulated in the membrane in response to forskolin. However, in the S486A/S499A double mutant, forskolin-stimulated UT-A1 membrane accumulation and urea flux were totally blocked. We conclude that the phosphorylation of UT-A1 on both serines 486 and 499 is important for activity and that this phosphorylation may be involved in UT-A1 membrane accumulation.
Collapse
Affiliation(s)
- Mitsi A Blount
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
115
|
O'Bryant CL, Lieu CH, Leong S, Boinpally R, Basche M, Gore L, Leonardi K, Schultz MK, Hariharan S, Chow L, Diab S, Gibbs A, Eckhardt SG. A dose-ranging study of the pharmacokinetics and pharmacodynamics of the selective apoptotic antineoplastic drug (SAAND), OSI-461, in patients with advanced cancer, in the fasted and fed state. Cancer Chemother Pharmacol 2008; 63:477-89. [PMID: 18509645 DOI: 10.1007/s00280-008-0761-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 04/10/2008] [Indexed: 12/16/2022]
Abstract
PURPOSE To evaluate the safety, pharmacokinetics and determine the recommended dose of the selective apoptotic antineoplastic drug, OSI-461 administered on a twice-daily regimen to patients with advanced solid malignancies. METHODS In this phase I trial, 33 patients were treated with OSI-461 doses ranging from 400 to 1,200 mg given twice daily in 4-week cycles. Pharmacokinetic studies were performed to characterize the plasma disposition of OSI-461 and the effect of food intake on OSI-461 absorption. Secondary biomarker studies were performed to assess the biologic activity of OSI-461 including the measurement of pGSK-3beta, a PKG substrate, and pharmacogenetic studies to identify polymorphisms of CYP3A that influence drug metabolism and of ABCG2, involved in drug resistance. RESULTS Thirty-three patients were treated with 86 courses of OSI-461. The dose-limiting toxicities were grade 3 abdominal pain, found in one patient at the 1,000 mg BID fed dose level and all patients at the 1,200 mg BID fed dose level. There was also one episode each of grade 3 fatigue and grade 3 constipation at the 1,000 and 1,200 mg BID fed dose levels, respectively. Other common toxicities included mild to moderate fatigue, nausea, anorexia and mild elevation in bilirubin. Pharmacokinetic studies of OSI-461 revealed approximately a twofold increase in AUC(0-24) when OSI-461 was administered with food. An increase in pGSK-3beta post-dose was seen in the majority of patients and was greater at higher dose levels. No patients exhibited CYP3A4 polymorphisms, while 100% of patients were found to have the CYP3A5*3/CYP3A5*3 polymorphism. Two known polymorphisms of the ABCG2 gene, G34 --> A34 and C421 --> A421, occurred at frequencies of 11.76 and 29%, respectively. CONCLUSIONS Toxicity and pharmacodynamic data show that the recommended oral dose of OSI-461 is 800 mg twice daily administered with food. The drug appears to be well-tolerated, and overall bioavailability appears to be markedly increased when the drug is administered with food. These results support further disease-directed evaluations of OSI-461 at a dose of 800 mg BID in combination with other chemotherapeutic agents.
Collapse
Affiliation(s)
- C L O'Bryant
- University of Colorado Cancer Center, Aurora 80045, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Browning DD. Protein kinase G as a therapeutic target for the treatment of metastatic colorectal cancer. Expert Opin Ther Targets 2008; 12:367-76. [PMID: 18269345 DOI: 10.1517/14728222.12.3.367] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Colorectal cancer is a leading cause of cancer-related death in the world and there is an urgent need for new strategies to combat this disease. Findings from several independent laboratories have converged on cGMP signaling as an exciting new therapeutic target, but the mechanisms remain controversial. A key intracellular effector of cGMP is protein kinase G (PKG). This article reviews the scientific literature concerning PKG effects on tumor development and progression, and discusses possible strategies for its exploitation in future cancer therapies. Studies from several independent laboratories have described novel anti-tumor effects of PKG in colon cancer cells that include inhibition of tumor growth and angiogenesis. While more preclinical research is warranted to better understand signaling mechanisms, these properties support the notion that PKG is a novel cancer target.
Collapse
Affiliation(s)
- Darren D Browning
- Medical College of Georgia, Department of Biochemistry and Molecular Biology, 1120 15th Street, CB2605, Augusta, GA 30912-2100, USA.
| |
Collapse
|
117
|
Puzzo D, Sapienza S, Arancio O, Palmeri A. Role of phosphodiesterase 5 in synaptic plasticity and memory. Neuropsychiatr Dis Treat 2008; 4:371-87. [PMID: 18728748 PMCID: PMC2518390 DOI: 10.2147/ndt.s2447] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Phosphodiesterases (PDEs) are enzymes that break down the phosphodiesteric bond of the cyclic nucleotides, cAMP and cGMP, second messengers that regulate many biological processes. PDEs participate in the regulation of signal transduction by means of a fine regulation of cyclic nucleotides so that the response to cell stimuli is both specific and activates the correct third messengers. Several PDE inhibitors have been developed and used as therapeutic agents because they increase cyclic nucleotide levels by blocking the PDE function. In particular, sildenafil, an inhibitor of PDE5, has been mainly used in the treatment of erectile dysfunction but is now also utilized against pulmonary hypertension. This review examines the physiological role of PDE5 in synaptic plasticity and memory and the use of PDE5 inhibitors as possible therapeutic agents against disorders of the central nervous system (CNS).
Collapse
Affiliation(s)
- Daniela Puzzo
- Dept of Physiological Sciences, University of Catania Catania, Italy.
| | | | | | | |
Collapse
|
118
|
Casteel DE, Zhang T, Zhuang S, Pilz RB. cGMP-dependent protein kinase anchoring by IRAG regulates its nuclear translocation and transcriptional activity. Cell Signal 2008; 20:1392-9. [PMID: 18450420 DOI: 10.1016/j.cellsig.2008.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 03/14/2008] [Accepted: 03/17/2008] [Indexed: 10/24/2022]
Abstract
Type I cGMP-dependent protein kinases (PKGs) translocate to the nucleus to regulate gene expression in some, but not all cell types; we hypothesized that nuclear translocation of PKG may be regulated by extra-nuclear anchoring proteins. The inositol 1,4,5-triphosphate (IP(3)) receptor-associated cGMP kinase substrate (IRAG) binds to the N-terminus of PKG Ibeta, but not PKG Ialpha, and in smooth muscle cells, IRAG and PKG Ibeta are in a complex with the IP(3) receptor at endoplasmatic reticulum membranes, where the complex regulates calcium release [Schlossmann et al., Nature, 404 (2000) 197]. We found that co-expression of IRAG and PKG Ibeta in baby hamster kidney cells prevented cGMP-induced PKG Ibeta translocation to the nucleus, and decreased cGMP/PKG Ibeta transactivation of a cAMP-response element-dependent reporter gene. These effects required the PKG Ibeta/IRAG association, as demonstrated by a binding-incompetent IRAG mutant, and were specific for PKG Ibeta, as nuclear translocation and reporter gene activation by PKG Ialpha was not affected by IRAG. A phosphorylation-deficient IRAG mutant that is no longer functionally regulated by PKG phosphorylation suppressed cGMP/PKG Ibeta transcriptional activity, indicating that IRAG's effect was not explained by changes in intracellular calcium, and was not related to competition of IRAG with other PKG substrates. These results demonstrate that PKG anchoring to a specific binding protein is sufficient to dictate subcellular localization of the kinase and affect cGMP signaling in the nucleus, and may explain why nuclear translocation of PKG I does not occur in all cell types.
Collapse
Affiliation(s)
- Darren E Casteel
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, CA 92093-0652, United States
| | | | | | | |
Collapse
|
119
|
Abstract
Nitric oxide (NO) is a multifunctional messenger in the CNS that can signal both in antero- and retrograde directions across synapses. Many effects of NO are mediated through its canonical receptor, the soluble guanylyl cyclase, and the second messenger cyclic guanosine-3',5'-monophosphate (cGMP). An increase of cGMP can also arise independently of NO via activation of membrane-bound particulate guanylyl cyclases by natriuretic peptides. The classical targets of cGMP are cGMP-dependent protein kinases (cGKs), cyclic nucleotide hydrolysing phosphodiesterases, and cyclic nucleotide-gated (CNG) cation channels. The NO/cGMP/cGK signalling cascade has been linked to the modulation of transmitter release and synaptic plasticity by numerous pharmacological and genetic studies. This review focuses on the role of NO as a retrograde messenger in long-term potentiation of transmitter release in the hippocampus. Presynaptic mechanisms of NO/cGMP/cGK signalling will be discussed with recently identified potential downstream components such as CaMKII, the vasodilator-stimulated phosphoprotein, and regulators of G protein signalling. NO has further been suggested to increase transmitter release through presynaptic clustering of a-synuclein. Alternative modes of NO/cGMP signalling resulting in inhibition of transmitter release and long-term depression of synaptic activity will also be addressed, as well as anterograde NO signalling in the cerebellum. Finally, emerging evidence for cGMP signalling through CNG channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels will be discussed.
Collapse
|
120
|
Dwivedi Y, Pandey GN. Adenylyl cyclase-cyclicAMP signaling in mood disorders: role of the crucial phosphorylating enzyme protein kinase A. Neuropsychiatr Dis Treat 2008; 4:161-76. [PMID: 18728821 PMCID: PMC2515915 DOI: 10.2147/ndt.s2380] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mood disorders are among the most prevalent and recurrent forms of psychiatric illnesses. In the last decade, there has been increased understanding of the biological basis of mood disorders. In fact, novel mechanistic concepts of the neurobiology of unipolar and bipolar disorders are evolving based on recent pre-clinical and clinical studies, most of which now focus on the role of signal transduction mechanisms in these psychiatric illnesses. Particular investigative emphasis has been given to the role of phosphorylating enzymes, which are crucial in regulating gene expression and neuronal and synaptic plasticity. Among the most important phosphorylating enzyme is protein kinase A (PKA), a component of adenylyl cyclase-cyclic adenosine monophosphate (AC-cAMP) signaling system. In this review, we critically and comprehensively discuss the role of various components of AC-cAMP signaling in mood disorders, with a special focus on PKA, because of the interesting observation that have been made about its involvement in unipolar and bipolar disorders. We also discuss the functional significance of the findings regarding PKA by discussing the role of important PKA substrates, namely, Rap-1, cyclicAMP-response element binding protein, and brain-derived neurotrophic factor. These studies suggest the interesting possibility that PKA and related signaling molecules may serve as important neurobiological factors in mood disorders and may be relevant in target-specific therapeutic interventions for these disorders.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago Chicago, Illinois 60612, USA.
| | | |
Collapse
|
121
|
Roy B, Mo E, Vernon J, Garthwaite J. Probing the presence of the ligand-binding haem in cellular nitric oxide receptors. Br J Pharmacol 2008; 153:1495-504. [PMID: 18204474 DOI: 10.1038/sj.bjp.0707687] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Nitric oxide (NO) acts on receptors coupled to guanylyl cyclase (GC), leading to cGMP accumulation. The NO binding site is a haem group, oxidation or loss of which diminishes NO-stimulated activity. Agonists reportedly engaging both these NO-insensitive forms have emerged. Here we characterize the effect of a prototype compound (BAY 58-2667) and use it to assess the haem status of cellular GC. EXPERIMENTAL APPROACH GC activity measurements were made on the purified protein and on rat platelets. KEY RESULTS Experiments on purified GC showed that the target for BAY 58-2667 is the haem-free GC, not the haem-oxidized form. The efficacy of BAY 58-2667 was about half that shown normally by NO. In platelets, BAY 58-2667 was a potent GC activator (EC50 approximately 15 nM) but the maximum effect was only about 1% of that achievable with NO. Nevertheless, it was enough to evoke cGMP-dependent protein phosphorylation. Profound (85 %) desensitization of NO-evoked GC activity did not alter the effectiveness of BAY 58-2667. Haem oxidation, however, increased the efficacy of BAY 58-2667 by 22-fold, implying that about half the cellular GC was then haem-free. Oxidation appeared to enhance the rate of haem dissociation from purified GC. CONCLUSIONS AND IMPLICATIONS Compounds such as BAY 58-2667 are useful for probing the occupancy of the haem pocket of NO receptors in cells but not for distinguishing oxidized from reduced haem. In vivo, such compounds are likely to be particularly effective in conditions where there is deficient haem incorporation or enhanced haem loss.
Collapse
Affiliation(s)
- B Roy
- The Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | | | | |
Collapse
|
122
|
Serulle Y, Zhang S, Ninan I, Puzzo D, McCarthy M, Khatri L, Arancio O, Ziff EB. A GluR1-cGKII interaction regulates AMPA receptor trafficking. Neuron 2008; 56:670-88. [PMID: 18031684 DOI: 10.1016/j.neuron.2007.09.016] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 11/13/2006] [Accepted: 09/14/2007] [Indexed: 10/24/2022]
Abstract
Trafficking of AMPA receptors (AMPARs) is regulated by specific interactions of the subunit intracellular C-terminal domains (CTDs) with other proteins, but the mechanisms involved in this process are still unclear. We have found that the GluR1 CTD binds to cGMP-dependent protein kinase II (cGKII) adjacent to the kinase catalytic site. Binding of GluR1 is increased when cGKII is activated by cGMP. cGKII and GluR1 form a complex in the brain, and cGKII in this complex phosphorylates GluR1 at S845, a site also phosphorylated by PKA. Activation of cGKII by cGMP increases the surface expression of AMPARs at extrasynaptic sites. Inhibition of cGKII activity blocks the surface increase of GluR1 during chemLTP and reduces LTP in the hippocampal slice. This work identifies a pathway, downstream from the NMDA receptor (NMDAR) and nitric oxide (NO), which stimulates GluR1 accumulation in the plasma membrane and plays an important role in synaptic plasticity.
Collapse
Affiliation(s)
- Yafell Serulle
- Program in Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Berrera M, Dodoni G, Monterisi S, Pertegato V, Zamparo I, Zaccolo M. A toolkit for real-time detection of cAMP: insights into compartmentalized signaling. Handb Exp Pharmacol 2008:285-98. [PMID: 18491057 DOI: 10.1007/978-3-540-72843-6_12] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The study of cAMP signaling has received a renewed impulse since the recognition that a key aspect of this pathway is the tight spatial control of signal propagation. The study of the mechanism that regulates cAMP signaling in space and time has prompted the development of new methodological approaches to detect cAMP in intact cells. Over the last decades, techniques to assess cAMP concentration with high spatial and temporal resolution in living cells have been elaborated that are based on fluorescent molecules and the phenomenon of fluorescence resonance energy transfer (FRET). A FRET-based indicator of cAMP concentration is typically a protein, including two fluorophores that are linked to a cAMP-binding domain. Binding of cAMP causes a change in the protein conformation and, as a consequence, in the distance between the fluorophores, thus altering the energy transfer between them. Several FRET indicators have been developed, differing in their affinity for cAMP, kinetic features and intracellular targeting. Such indicators enable the measurement of cAMP fluctuations as they happen in the complex intracellular environment and are proving to be effective tools to dissect compartmentalized cAMP signaling.
Collapse
Affiliation(s)
- M Berrera
- Dvn Biochemistry and Molecular Biology, IBLS, Wolfson Link Building, University Avenue, Glasgow, Scotland, UK
| | | | | | | | | | | |
Collapse
|
124
|
Abel T, Nguyen PV. Regulation of hippocampus-dependent memory by cyclic AMP-dependent protein kinase. PROGRESS IN BRAIN RESEARCH 2008; 169:97-115. [PMID: 18394470 DOI: 10.1016/s0079-6123(07)00006-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The hippocampus is crucial for the consolidation of new declarative long-term memories. Genetic and behavioral experimentation have revealed that several protein kinases are critical for the formation of hippocampus-dependent long-term memories. Cyclic-AMP dependent protein kinase (PKA) is a serine-threonine kinase that has been strongly implicated in the expression of specific forms of hippocampus-dependent memory. We review evidence that PKA is required for hippocampus-dependent memory in mammals, and we highlight some of the proteins that have been implicated as targets of PKA. Future directions and open questions regarding the role of PKA in memory storage are also described.
Collapse
Affiliation(s)
- Ted Abel
- University of Pennsylvania, Department of Biology, Biological Basis of Behavior Program, Philadelphia, PA 19104, USA
| | | |
Collapse
|
125
|
Abstract
Heme oxygenase-1 (HO-1) is a cytoprotective protein whose expression is consistently associated with therapeutic benefits in a number of pathologic conditions such as atherosclerotic vascular disease and inflammation. Although the expression of HO-1 in most tissues is low, a large number of clinical and experimental pharmacologic compounds have been demonstrated to induce HO-1. This induction is suggested to be at least partially responsible for the perceived therapeutic efficacy of these compounds. The increase in HO-1 expression in response to these compounds is the result of a complex regulatory network involving many signaling pathways and transcription factors. Understanding both the pathways by which HO-1 is induced and the mechanism through which the enzyme exerts its beneficial effects may facilitate the development of novel drugs.
Collapse
Affiliation(s)
- Cheng Li
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
126
|
Russwurm M, Mullershausen F, Friebe A, Jäger R, Russwurm C, Koesling D. Design of fluorescence resonance energy transfer (FRET)-based cGMP indicators: a systematic approach. Biochem J 2007; 407:69-77. [PMID: 17516914 PMCID: PMC2267402 DOI: 10.1042/bj20070348] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The intracellular signalling molecule cGMP regulates a variety of physiological processes, and so the ability to monitor cGMP dynamics in living cells is highly desirable. Here, we report a systematic approach to create FRET (fluorescence resonance energy transfer)-based cGMP indicators from two known types of cGMP-binding domains which are found in cGMP-dependent protein kinase and phosphodiesterase 5, cNMP-BD [cyclic nucleotide monophosphate-binding domain and GAF [cGMP-specific and -stimulated phosphodiesterases, Anabaena adenylate cyclases and Escherichia coli FhlA] respectively. Interestingly, only cGMP-binding domains arranged in tandem configuration as in their parent proteins were cGMP-responsive. However, the GAF-derived sensors were unable to be used to study cGMP dynamics because of slow response kinetics to cGMP. Out of 24 cGMP-responsive constructs derived from cNMP-BDs, three were selected to cover a range of cGMP affinities with an EC50 between 500 nM and 6 microM. These indicators possess excellent specifity for cGMP, fast binding kinetics and twice the dynamic range of existing cGMP sensors. The in vivo performance of these new indicators is demonstrated in living cells and validated by comparison with cGMP dynamics as measured by radioimmunoassays.
Collapse
Affiliation(s)
- Michael Russwurm
- Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Federal Republic of Germany
| | - Florian Mullershausen
- Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Federal Republic of Germany
| | - Andreas Friebe
- Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Federal Republic of Germany
| | - Ronald Jäger
- Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Federal Republic of Germany
| | - Corina Russwurm
- Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Federal Republic of Germany
| | - Doris Koesling
- Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Federal Republic of Germany
- To whom correspondence should be addressed ()
| |
Collapse
|
127
|
Bulbul A, Yağci A, Altunbaş K, Sevimli A, Celik HA, Karadeniz A, Akdağ E. The role of nitric oxide in the effects of ovarian steroids on spontaneous myometrial contractility in rats. Theriogenology 2007; 68:1156-68. [PMID: 17869333 DOI: 10.1016/j.theriogenology.2007.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 07/26/2007] [Accepted: 08/02/2007] [Indexed: 10/22/2022]
Abstract
Forty ovariectomized rats were apportioned into one control and three experimental groups (n=10 each) to evaluate the role of nitric oxide in the effects of ovarian steroids on spontaneous myometrial contractility in rats. The control group (group Ov) received sesame oil once daily for 10 days, whereas rats in the experimental groups were treated with progesterone (2 mg/(rat day); group P), 17beta-estradiol (10 microg/(rat day); group E2), or progesterone and 17beta-estradiol together (group E2+P). The functionality of the arginine-nitric oxide synthase (NOS)-nitric oxide (NO) pathway in the uterine horns of sacrificed rats was evaluated in an isolated organ bath. L-Arginine, sodium nitroprusside (SNP) and 8-Br-cGMP decreased uterine contractile tension induced by electric field stimulation (EFS) in the Ov, P, and E2+P groups, but not in the E2 group. In addition, L-arginine was ineffective when applied together with a NOS inhibitor, L-nitro-N-arginine (L-NNA). The percentage of contractile inhibition was higher in the Ov and P groups compared to the E2+P group. Immunohistochemical evaluation revealed that expression of neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS) in smooth muscles and nerve cells did not differ among the groups. Expression of nNOS and eNOS was strongly evident in the E2 and E2+P groups at both surface and glandular epithelium of the endometrium. iNOS expression was increased in surface epithelium of the E2 and E2+P groups. However, iNOS expression was only increased in glandular epithelial cells of the E2+P group. In conclusion, the L-arginine-NOS-NO pathway inhibits myometrial contractions via cGMP-dependent and -independent mechanisms, and while progesterone maintains the nitric oxide effects, estrogen prevents them. These results suggest that NOS does not mediate the effects of estrogen.
Collapse
Affiliation(s)
- A Bulbul
- Department of Physiology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyon, Turkey.
| | | | | | | | | | | | | |
Collapse
|
128
|
Raymond DR, Wilson LS, Carter RL, Maurice DH. Numerous distinct PKA-, or EPAC-based, signalling complexes allow selective phosphodiesterase 3 and phosphodiesterase 4 coordination of cell adhesion. Cell Signal 2007; 19:2507-18. [PMID: 17884339 DOI: 10.1016/j.cellsig.2007.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 08/06/2007] [Indexed: 11/23/2022]
Abstract
By activating two distinct classes of effector enzymes, namely Protein Kinases A [PKA] or Exchange Proteins Activated by cAMP [EPAC], the ubiquitous second messenger cAMP selectively coordinates numerous events simultaneously in virtually all cells. Studies focused on dissecting the manner by which cAMP simultaneously regulates multiple cellular events have shown that cAMP activates its effectors non-uniformly in cells and that this localized cAMP-mediated signalling is made possible, at least in part, by anchoring of cAMP effectors to selected subcellular structures. In the work described here, we report that HEK293T cells ["293T"] contain several PKA- and EPAC1-based signalling complexes. Interestingly, our data do not identify signalling complexes in which both PKA and EPAC are each present but rather are consistent with the idea that these two effectors operate in distinct complexes in these cells. Similarly, we report that while individual PKA- or EPAC-containing complexes can contain either phosphodiesterase 3B, [PDE3B] or phosphodiesterase 4D [PDE4D], they do not contain both these phosphodiesterases. Indeed, although PDE4D enzymes were identified in both PKA- and EPAC-based complexes, PDE3B was largely identified in EPAC-based complexes. Using a combination of approaches, we identified that integration of PDE3B into EPAC-based complexes occurred through its amino terminal fragment [PDE3B(AT)]. Consistent with the idea that integration of PDE3B within EPAC-based complexes was dynamic and regulated PDE3 inhibitor-mediated effects on cellular functions, expression of PDE3B(AT) competed with endogenous PDE3B for integration into EPAC-based complexes and antagonized PDE3 inhibitor-based cell adhesion. Our data support the concept that cells can contain several non-overlapping PKA- and EPAC-based signalling complexes and that these complexes may also represent sites within cells were the effects of family-selective PDE inhibitors could be integrated to affect cell functions, including adhesion.
Collapse
Affiliation(s)
- Daniel R Raymond
- Department of Pharmacology & Toxicology, Queen's University, Kingston, ON, Canada K7L 3N6
| | | | | | | |
Collapse
|
129
|
Hepp R, Tricoire L, Hu E, Gervasi N, Paupardin-Tritsch D, Lambolez B, Vincent P. Phosphodiesterase type 2 and the homeostasis of cyclic GMP in living thalamic neurons. J Neurochem 2007; 102:1875-1886. [PMID: 17561940 DOI: 10.1111/j.1471-4159.2007.04657.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ubiquitous second messenger cyclic GMP (cGMP) is synthesized by soluble guanylate cyclases in response to nitric oxide (NO) and degraded by phosphodiesterases (PDE). We studied the homeostasis of cGMP in living thalamic neurons by using the genetically encoded fluorescence resonance energy transfer sensor Cygnet, expressed in brain slices through viral gene transfer. Natriuretic peptides had no effect on cGMP. Basal cGMP levels decreased upon inhibition of NO synthases or soluble guanylate cyclases and increased when PDEs were inhibited. Single cell RT-PCR analysis showed that thalamic neurons express PDE1, PDE2, PDE9, and PDE10. Basal cGMP levels were increased by the PDE2 inhibitors erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) and BAY60-7550 but were unaffected by PDE1 or PDE10 inhibitors. We conclude that PDE2 regulates the basal cGMP concentration in thalamic neurons. In addition, in the presence of 3-isobutyl-1-methylxanthine (IBMX), cGMP still decreased after application of a NO donor. Probenecid, a blocker of cGMP transporters, had no effect on this decrease, leaving PDE9 as a possible candidate for decreasing cGMP concentration. Basal cGMP level is poised at an intermediate level from which it can be up or down-regulated according to the cyclase and PDE activities.
Collapse
Affiliation(s)
- R Hepp
- Université Pierre et Marie Curie-Paris6, CNRS, UMR 7102, Paris, France
| | - L Tricoire
- Université Pierre et Marie Curie-Paris6, CNRS, UMR 7102, Paris, France
| | - E Hu
- Université Pierre et Marie Curie-Paris6, CNRS, UMR 7102, Paris, France
| | - N Gervasi
- Université Pierre et Marie Curie-Paris6, CNRS, UMR 7102, Paris, France
| | | | - B Lambolez
- Université Pierre et Marie Curie-Paris6, CNRS, UMR 7102, Paris, France
| | - P Vincent
- Université Pierre et Marie Curie-Paris6, CNRS, UMR 7102, Paris, France
| |
Collapse
|
130
|
Heine M, Voyno-Yasenetskaya T, Zeug A, Ponimaskin E, Salonikidis P. Monitoring Receptor- Mediated Changes of Intracellular cAMP Level by Using Ion Channels and Fluorescent Proteins as Biosensors. Front Neurosci 2007. [DOI: 10.1201/9781420005752.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
131
|
Klawitter J, Schmitz V, Klawitter J, Leibfritz D, Christians U. Development and validation of an assay for the quantification of 11 nucleotides using LC/LC-electrospray ionization-MS. Anal Biochem 2007; 365:230-9. [PMID: 17475198 DOI: 10.1016/j.ab.2007.03.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/09/2007] [Accepted: 03/17/2007] [Indexed: 11/22/2022]
Abstract
A unique quantitative high-performance liquid chromatography-mass spectrometry (HPLC-MS) method to investigate the energy state in cells and tissues was developed and validated using a chromatographic method designed to (i) separate and quantify more than 11 nucleotides without the use of phosphate buffer and (ii) minimize the potential ion suppression common to other nucleotide methods. Several commonly used extraction methods were compared based on absolute recoveries and reproducibilities. Perchloric acid (PCA) extraction yielded the highest recoveries (75-86%) and showed the best reproducibility (coefficient of variation=2.5-9.5%). Our assay, which included PCA extraction, online desalting, separation of the high-energy phosphates on a C18 reversed-phase column using a methanol/dibutylammonium formate gradient, and detection of negative ions in the single ion mode, met all predefined acceptance criteria for the quantification of AMP, ADP, ATP, CDP, CTP, FAD, GDP, GTP, UDP, and UTP. Detection limits ranged from 0.25 pmol on-column (FAD) to 4 pmol (NAD+). Assay development also included validation of tissue sample collection procedures. ATP/ADP concentrations and the resulting energy charge in kidney tissues are very sensitive to hypoxia, with significant decreases occurring within seconds. Avoidance of hypoxia during tissue retrieval is critical, and in vivo freeze clamping compares favorably with other tissue collection techniques.
Collapse
Affiliation(s)
- Jost Klawitter
- Clinical Research and Development, Department of Anesthesiology, University of Colorado at Denver and Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | | | |
Collapse
|
132
|
Diederen RMH, La Heij EC, Markerink-van Ittersum M, Kijlstra A, Hendrikse F, de Vente J. Cyclic GMP synthesis by human retinal pigment epithelial cells is mainly mediated via the particulate guanylyl cyclase pathway. Ophthalmic Res 2006; 39:55-9. [PMID: 17179739 DOI: 10.1159/000098015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 06/28/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Cyclic 3',5'-guanosine monophosphate (cGMP), a central molecule in the phototransduction cascade, is also involved in a number of other physiological processes in the retina, like stimulating the absorption of subretinal fluid by activating the retinal pigment epithelium (RPE) cell pump. The aim of this study was to quantify cGMP synthesis by RPE cells and to investigate the role of two separate enzymatic pathways (soluble versus particulate guanylyl cyclase) in its production. METHODS cGMP expression was evaluated by immunochemistry and radioimmunoassay following culture of the D407 RPE cell line in the presence of a nonselective phosphodiesterase inhibitor (IBMX), in combination with the particulate guanylyl cyclase stimulator atrial natriuretic peptide (ANP) or the soluble guanylyl cyclase stimulator sodium nitroprusside (SNP). RESULTS Stimulation of the particulate guanylyl cyclase in RPE cells with ANP resulted in high intra- and extracellular cGMP levels. Stimulation of the soluble guanylyl cyclase by SNP resulted in a slight elevation of cGMP levels compared to controls. CONCLUSIONS These results show that cultured human RPE cells are capable of producing cGMP and that most cGMP is generated following stimulation of the particulate guanylyl cyclase pathway.
Collapse
Affiliation(s)
- Roselie M H Diederen
- Department of Ophthalmology, Eye Research Institute Maastricht, University Hospital Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
133
|
|
134
|
Abstract
The cAMP-dependent kinase (PKA) plays a crucial part in long-term memory formation in the honeybee (Apis mellifera). One of the putative substrates of the PKA activity is the cAMP response element binding protein (CREB), a transcription factor in the bZIP protein family. We searched the honeybee genome to characterize genes from the CREB/CREM and the PKA families. We identified two genes that encode regulatory subunits and three genes encode catalytic subunits of PKA. Eight genes code for bZIP proteins, but only one gene was found that encodes a member of the CREB/CREM family. The phylogenetic relationship of these genes was analysed with their Drosophila and human counterparts.
Collapse
Affiliation(s)
- D Eisenhardt
- Neurobiology, FB Biology/Chemistry/Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | | | | |
Collapse
|
135
|
Diederen RMH, La Heij EC, Markerink-van Ittersum M, Kijlstra A, Hendrikse F, de Vente J. Selective blockade of phosphodiesterase types 2, 5 and 9 results in cyclic 3'5' guanosine monophosphate accumulation in retinal pigment epithelium cells. Br J Ophthalmol 2006; 91:379-84. [PMID: 16943225 PMCID: PMC1857670 DOI: 10.1136/bjo.2006.100628] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIM To investigate which phosphodiesterase (PDE) is involved in regulating cyclic 3'5' guanosine monophosphate breakdown in retinal pigment epithelium (RPE) cells. METHODS cGMP content in the cultured RPE cells (D407 cell line) was evaluated by immunocytochemistry in the presence of non-selective or isoform-selective PDE inhibitors in combination with the particulate guanylyl cyclase stimulator atrial natriuretic peptide (ANP) or the soluble guanylyl cyclase stimulator sodium nitroprusside (SNP). mRNA expression of PDE2, PDE5 and PDE9 was studied in cultured human RPE cells and rat RPE cell layers using non-radioactive in situ hybridisation. RESULTS In the absence of PDE inhibitors, cGMP levels in cultured RPE cells are very low. cGMP accumulation was readily detected in cultured human RPE cells after incubation with Bay60-7550 as a selective PDE2 inhibitor, sildenafil as a selective PDE5 inhibitor or Sch51866 as a selective PDE9 inhibitor. In the presence of PDE inhibition, cGMP content increased markedly after stimulation of the particulate guanylyl cyclase. mRNA of PDE2,PDE5 and PDE9 was detected in all cultured human RPE cells and also in rat RPE cell layers. CONCLUSIONS PDE2, PDE5 and PDE9 have a role in cGMP metabolism in RPE cells.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- 3',5'-Cyclic-AMP Phosphodiesterases/physiology
- 3',5'-Cyclic-GMP Phosphodiesterases/antagonists & inhibitors
- 3',5'-Cyclic-GMP Phosphodiesterases/genetics
- 3',5'-Cyclic-GMP Phosphodiesterases/physiology
- Animals
- Cells, Cultured
- Cyclic GMP/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 5
- Exonucleases/antagonists & inhibitors
- Exonucleases/genetics
- Exonucleases/physiology
- Gene Expression
- Humans
- In Situ Hybridization
- Male
- Phosphodiesterase Inhibitors/pharmacology
- Phosphoric Diester Hydrolases/genetics
- Phosphoric Diester Hydrolases/physiology
- Pigment Epithelium of Eye/drug effects
- Pigment Epithelium of Eye/enzymology
- Pigment Epithelium of Eye/metabolism
- RNA, Messenger/genetics
- Rats
- Rats, Inbred Lew
- Retina/drug effects
- Retina/enzymology
- Retina/metabolism
Collapse
Affiliation(s)
- R M H Diederen
- Department of Psychiatry and Neuropsychology, European Graduate School of Neuroscience, University of Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
136
|
Abstract
Phosphorylation of Ser19 on the 20-kDa regulatory light chain of myosin II (MLC20) by Ca2+/calmodulin-dependent myosin light-chain kinase (MLCK) is essential for initiation of smooth muscle contraction. The initial [Ca2+]i transient is rapidly dissipated and MLCK inactivated, whereas MLC20 and muscle contraction are well maintained. Sustained contraction does not reflect Ca2+ sensitization because complete inhibition of MLC phosphatase activity in the absence of Ca2+ induces smooth muscle contraction. This contraction is suppressed by staurosporine, implying participation of a Ca2+-independent MLCK. Thus, sustained contraction, as with agonist-induced contraction at experimentally fixed Ca2+ concentrations, involves (a) G protein activation, (b) regulated inhibition of MLC phosphatase, and (c) MLC20 phosphorylation via a Ca2+-independent MLCK. The pathways that lead to inhibition of MLC phosphatase by G(q/13)-coupled receptors are initiated by sequential activation of Galpha(q)/alpha13, RhoGEF, and RhoA, and involve Rho kinase-mediated phosphorylation of the regulatory subunit of MLC phosphatase (MYPT1) and/or PKC-mediated phosphorylation of CPI-17, an endogenous inhibitor of MLC phosphatase. Sustained MLC20 phosphorylation is probably induced by the Ca2+-independent MLCK, ZIP kinase. The pathways initiated by G(i)-coupled receptors involve sequential activation of Gbetagamma(i), PI 3-kinase, and the Ca2+-independent MLCK, integrin-linked kinase. The last phosphorylates MLC20 directly and inhibits MLC phosphatase by phosphorylating CPI-17. PKA and PKG, which mediate relaxation, act upstream to desensitize the receptors (VPAC2 and NPR-C), inhibit adenylyl and guanylyl cyclase activities, and stimulate cAMP-specific PDE3 and PDE4 and cGMP-specific PDE5 activities. These kinases also act downstream to inhibit (a) initial contraction by inhibiting Ca2+ mobilization and (b) sustained contraction by inhibiting RhoA and targets downstream of RhoA. This increases MLC phosphatase activity and induces MLC20 dephosphorylation and muscle relaxation.
Collapse
Affiliation(s)
- Karnam S Murthy
- Department of Physiology, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298, USA.
| |
Collapse
|
137
|
Zhao L, Yang S, Zhou GQ, Yang J, Ji D, Sabatakos G, Zhu T. Downregulation of cAMP-dependent protein kinase inhibitor gamma is required for BMP-2-induced osteoblastic differentiation. Int J Biochem Cell Biol 2006; 38:2064-73. [PMID: 16870489 DOI: 10.1016/j.biocel.2006.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 05/11/2006] [Accepted: 05/15/2006] [Indexed: 11/19/2022]
Abstract
Osteoblasts, normally derived from undifferentiated mesenchymal precursor cells, acquire their characteristic phenotypes when induced by various regulatory factors, one of which is bone morphogenetic protein-2 (BMP-2). Our recent studies suggest that expression of cAMP-dependent protein kinase (PKA) inhibitor G (PKIG) is down-regulated as human mesenchymal stromal cells (MSCs) undergo BMP-2-induced osteoblastic differentiation. This raises our hypothesis that the PKA pathway is involved in osteogenesis. In this report, we demonstrated that PKIG in human MSCs and its murine homologue PKA inhibitor gamma (PKIgamma) in murine pre-myoblast C2C12 cells were down-regulated when these cells were treated with BMP-2. On the contrary, the PKA activity of C2C12 cells was increased upon BMP-2 treatment. Overexpression of PKIgamma in C2C12 cells was shown to repress mRNA expression of early osteoblastic markers osterix and type I collagen while inhibiting the PKA activity. This correlated with decreased alkaline phosphatase (ALP) activities. Furthermore, inhibition of the PKA activity using its specific inhibitor KT5720 was found to have the similar effect, whereas 8-Br-cAMP, a specific PKA activator, accelerated BMP-2-induced ALP activities. Finally, this study showed that BMP-2 treatment promoted activities of transcription regulatory elements including cAMP response element (CRE) and activating protein-1 (AP1). This effect of BMP-2 was diminished in PKIgamma-overexpressed C2C12 cells. Taken together, our results indicate that the activation of the PKA pathway may be one of key BMP-2-activated signaling events that lead to osteogenesis and that downregulation of PKIgamma may be prerequisite for the PKA activation during the osteoblastic differentiation of precursor cells.
Collapse
Affiliation(s)
- L Zhao
- Nankai University Medical College, Tianjin 300071, China
| | | | | | | | | | | | | |
Collapse
|
138
|
Morales A, Díaz M, Guelmes P, Marín R, Alonso R. Rapid modulatory effect of estradiol on acetylcholine-induced Ca2+ signal is mediated through cyclic-GMP cascade in LHRH-releasing GT1-7 cells. Eur J Neurosci 2006; 22:2207-15. [PMID: 16262659 DOI: 10.1111/j.1460-9568.2005.04432.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hypothalamic luteinizing hormone-releasing hormone neurons (LHRH) form the final pathway for the central control of reproduction through the release of LHRH into the pituitary-hypothalamic system. We previously found that LHRH-producing GT1-7 cells respond to acetylcholine (ACh) with an increase in intracellular calcium ([Ca2+]i) through activation of muscarinic receptors. This effect is acutely modulated by 17beta-estradiol in a manner compatible with specific membrane binding sites. Because increasing evidence suggests that second messengers are involved in the rapid action of estradiol, the aim of the present study was to identify the pathway underlying estrogen actions on ACh-induced Ca2+ signals. 8-Bromoguanosine 3',5'-cyclic monophosphate (10 microm) and C-type natriuretic peptide (10 microm) mimicked the effect of estradiol. On the contrary, neither dibutyryl cAMP (100 microm), forskolin (100 nm or 10 microm), or sodium nitroprusside (10 microm) induced any modification of [Ca2+]i in response to ACh. The effect of estradiol on calcium transients was totally blocked by two different cGMP-dependent protein kinase (PKG) inhibitors. In addition, phosphorylation of inositol 1,4,5-triphosphate (IP3) receptor was rapidly induced by estradiol but totally blocked when the cells were pretreated with a PKG inhibitor. We conclude that physiological concentrations of estradiol reduce ACh-induced Ca2+ transients via a mechanism involving a membrane-associated guanylate cyclase, which finally induces a PKG-dependent IP3 receptor phosphorylation that modifies calcium release from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Araceli Morales
- Department of Physiology, Institute of Biomedical Technologies, University of La Laguna, La Laguna, 38071 Santa Cruz de Tenerife, Spain
| | | | | | | | | |
Collapse
|
139
|
Richie-Jannetta R, Busch JL, Higgins KA, Corbin JD, Francis SH. Isolated regulatory domains of cGMP-dependent protein kinase Ialpha and Ibeta retain dimerization and native cGMP-binding properties and undergo isoform-specific conformational changes. J Biol Chem 2006; 281:6977-84. [PMID: 16407222 DOI: 10.1074/jbc.m510886200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular mechanisms that provide for cGMP activation of cGMP-dependent protein kinase (PKG) are unknown. PKGs are dimeric; each monomer contains a regulatory (R) and catalytic (C) domain. In this study, isolated recombinant R domains of PKGIalpha-(Delta349-670) and PKGIbeta-(Delta364-685) containing the dimerization and autoinhibitory subdomains and two allosteric cGMP-binding sites were expressed in Sf9 cells. Both R domains were dimers with elongated conformations (Stokes radii of 44 and 51 A, respectively, and frictional coefficients of 1.6 and 1.8, respectively). Exchange dissociation kinetics and K(D) values for cGMP were similar for each holoenzyme and its isolated R domain, indicating that under these conditions the C domain does not appreciably alter cGMP-binding functions of the R domain. As determined by gel filtration chromatography, cGMP binding caused elongation of the PKGIalpha-isolated R domain and contraction of the PKGIbeta-isolated R domain. Cyclic GMP-bound forms of the isoforms have similar physical dimensions that may reflect a common conformation of active isoforms. Elongation of the PKGIbeta holoenzyme associated with cGMP binding and PKG activation cannot be explained solely by conformational change in its R domain, but elongation of the PKGIalpha R domain may partially account for the elongation of wild type PKGIalpha associated with cGMP binding. The cGMP-induced conformational changes in the respective R domains are likely to be critical for kinase activation.
Collapse
Affiliation(s)
- Robyn Richie-Jannetta
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | | | | | | | | |
Collapse
|
140
|
Hofmann F, Feil R, Kleppisch T, Schlossmann J. Function of cGMP-Dependent Protein Kinases as Revealed by Gene Deletion. Physiol Rev 2006; 86:1-23. [PMID: 16371594 DOI: 10.1152/physrev.00015.2005] [Citation(s) in RCA: 327] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Over the past few years, a wealth of biochemical and functional data have been gathered on mammalian cGMP-dependent protein kinases (cGKs). In mammals, three different kinases are encoded by two genes. Mutant and chimeric cGK proteins generated by molecular biology techniques yielded important biochemical knowledge, such as the function of the NH2-terminal domains of cGKI and cGKII, the identity of the cGMP-binding sites of cGKI, and the substrate specificity of the enzymes. Genetic approaches have proven especially useful for the analysis of the biological functions of cGKs. Recently, some of the in vivo targets and mechanisms leading to changes in neuronal adaptation, smooth muscle relaxation and growth, intestinal water secretion, bone growth, renin secretion, and other important functions have been identified. These data show that cGKs are signaling molecules involved in many biological functions.
Collapse
Affiliation(s)
- F Hofmann
- Institut für Pharmakologie und Toxicologie, Technische Universität München, Biedersteiner Strasse 29, D-80802 Munich, Germany.
| | | | | | | |
Collapse
|
141
|
Bedner P, Niessen H, Odermatt B, Kretz M, Willecke K, Harz H. Selective permeability of different connexin channels to the second messenger cyclic AMP. J Biol Chem 2005; 281:6673-81. [PMID: 16373337 DOI: 10.1074/jbc.m511235200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gap junctions are intercellular conduits that are formed in vertebrates by connexin proteins and allow diffusion exchange of intracellular ions and small molecules. At least 20 different connexin genes in the human and mouse genome are cell-type specifically expressed with overlapping expression patterns. A possible explanation for this diversity could be different permeability of biologically important molecules, such as second messenger molecules. We have recently demonstrated that cyclic nucleotide-gated channels can be used to quantify gap junction-mediated diffusion of cyclic AMP. Using this method we have compared the relative permeability of gap junction channels composed of connexin 26, 32, 36, 43, 45, or 47 proteins toward the second messenger cAMP. Here we show that cAMP permeates through the investigated connexin channels with up to 30-fold different efficacy. Our results suggest that intercellular cAMP signaling in different cell types can be affected by the connexin expression pattern.
Collapse
Affiliation(s)
- Peter Bedner
- Institut für Genetik, Abteilung Molekulargenetik, Universität Bonn, Römerstrasse 164, 53117 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
142
|
Francis SH, Corbin JD. Phosphodiesterase-5 Inhibition: the Molecular Biology of Erectile Function and Dysfunction. Urol Clin North Am 2005; 32:419-29, vi. [PMID: 16291034 DOI: 10.1016/j.ucl.2005.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This article discusses the role of phosphodiesterase-5 (PDE-5) inhibition in the molecular biology of erectile function and dysfunction. Commercially marketed PDE-5 inhibitors are highly specific for PDE-5, and in the face of continuing cyclic GMP (cGMP) synthesis,elevate cellular cGMP. This elevation results from direct competitive inhibition of PDE-5 and from blocking the negative feedback regulation of the enzyme. Elevation of cGMP activates cGMP-dependent protein kinase, which mediates the effects of the cGMP-signaling pathway to decrease smooth muscle tone and dilate penile vascular smooth muscle. By exploiting features of PDE-5 regulatory mechanisms that modulate PDE-5 function, the inhibitors enhance their own potencies.
Collapse
Affiliation(s)
- Sharron H Francis
- Department of Molecular Physiology and Biophysics, Light Hall, Room 702, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA.
| | | |
Collapse
|
143
|
Hou Y, Gupta N, Schoenlein P, Wong E, Martindale R, Ganapathy V, Browning D. An anti-tumor role for cGMP-dependent protein kinase. Cancer Lett 2005; 240:60-8. [PMID: 16256267 DOI: 10.1016/j.canlet.2005.08.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2005] [Revised: 07/05/2005] [Accepted: 08/31/2005] [Indexed: 11/23/2022]
Abstract
This study compared Type-1 cGMP-dependent protein kinase (PKG) expression in normal and tumor tissues and examined PKG function in tumor growth. Studies with a cDNA array revealed that PKG expression was reduced in many tumors compared to respective normal tissue. This decrease in PKG expression was confirmed using quantitative RT-PCR and western blotting of matched colon specimens from normal epithelium and tumor tissue, and also in colon derived cell lines where luciferase reporter analysis revealed that the decreased expression occurred at the transcriptional level. Using SW620 colon carcinoma cells engineered for inducible expression of PKG1beta, it was found that exogenous PKG1beta lead to decreased tumor growth and invasiveness in nude mouse xenografts.
Collapse
Affiliation(s)
- Yali Hou
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
144
|
Casteel DE, Boss GR, Pilz RB. Identification of the interface between cGMP-dependent protein kinase Ibeta and its interaction partners TFII-I and IRAG reveals a common interaction motif. J Biol Chem 2005; 280:38211-8. [PMID: 16166082 DOI: 10.1074/jbc.m507021200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-protein interactions have emerged as an important mechanism providing for specificity in cellular signal transduction. Two splice variants of type I cGMP-dependent protein kinase (PKG Ialpha and Ibeta) differ only in their N-terminal approximately 100 amino acids, which mediate binding to different target proteins. PKG Ibeta, but not Ialpha, binds to the general transcriptional regulator TFII-I and the inositol 1,4,5-trisphosphate receptor-associated PKG substrate IRAG. Using a combination of site-directed mutagenesis and in vitro binding assays, we identified a group of acidic amino acids in the N-terminal leucine zipper dimerization domain of PKG Ibeta required for its binding to both TFII-I and IRAG. Small clusters of basic amino acids in possible alpha-helical regions in TFII-I and IRAG were found to mediate their interaction with PKG Ibeta. Mutation of two negatively charged residues in the PKG Ibeta leucine zipper (D26K/E31R) to positively charged residues, found in corresponding positions in PKG Ialpha, completely abrogated binding to TFII-I and IRAG without disrupting PKG dimerization. Mutation of specific basic residues in TFII-I or IRAG abolished binding of the full-length proteins to PKG Ibeta in intact cells. Based on these results, we propose a model for specific PKG Ibeta interaction with target proteins.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- COS Cells
- Calcium Channels/chemistry
- Cattle
- Cell Line
- Chlorocebus aethiops
- Cloning, Molecular
- Cyclic GMP-Dependent Protein Kinases/metabolism
- DNA/chemistry
- DNA/metabolism
- Dimerization
- Electrophoresis, Polyacrylamide Gel
- Glutathione Transferase/metabolism
- Humans
- Immunoblotting
- Inositol 1,4,5-Trisphosphate Receptors
- Leucine/chemistry
- Membrane Proteins
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Phosphoproteins/metabolism
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Cytoplasmic and Nuclear/chemistry
- Signal Transduction
- Static Electricity
- Transcription Factors, TFII/metabolism
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Darren E Casteel
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093-0652, USA
| | | | | |
Collapse
|
145
|
Francis SH, Corbin JD. Sildenafil: efficacy, safety, tolerability and mechanism of action in treating erectile dysfunction. Expert Opin Drug Metab Toxicol 2005; 1:283-93. [PMID: 16922643 DOI: 10.1517/17425255.1.2.283] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Sildenafil citrate is marketed under the trademark name Viagra and is widely used to treat male erectile dysfunction; therapeutic uses of this medication for other diseases related to vascular dysfunction are emerging. When used as recommended, the drug has a strong clinical efficacy and safety profile in a broad spectrum of the male population. Its widespread use and effects of long-term exposure to the drug due to particular treatment regimens or inappropriate use mandate an ongoing update of its molecular mechanism, pharmacological profile and associated safety issues. This review focuses on biochemical and pharmacological features of sildenafil, the active component in Viagra, interaction of sildenafil with phosphodiesterase 5, pharmacokinetic parameters, action in smooth muscle, side effects, safety profile and prospects for other uses.
Collapse
Affiliation(s)
- Sharron H Francis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Light Hall Room 702, Nashville, TN 37232-0615, USA.
| | | |
Collapse
|
146
|
Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 2005; 109:366-98. [PMID: 16102838 DOI: 10.1016/j.pharmthera.2005.07.003] [Citation(s) in RCA: 658] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 07/12/2005] [Indexed: 01/08/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs), which are ubiquitously distributed in mammalian tissues, play a major role in cell signaling by hydrolyzing cAMP and cGMP. Due to their diversity, which allows specific distribution at cellular and subcellular levels, PDEs can selectively regulate various cellular functions. Their critical role in intracellular signaling has recently designated them as new therapeutic targets for inflammation. The PDE superfamily represents 11 gene families (PDE1 to PDE11). Each family encompasses 1 to 4 distinct genes, to give more than 20 genes in mammals encoding the more than 50 different PDE proteins probably produced in mammalian cells. Although PDE1 to PDE6 were the first well-characterized isoforms because of their predominance in various tissues and cells, their specific contribution to tissue function and their regulation in pathophysiology remain open research fields. This concerns particularly the newly discovered families, PDE7 to PDE11, for which roles are not yet established. In many pathologies, such as inflammation, neurodegeneration, and cancer, alterations in intracellular signaling related to PDE deregulation may explain the difficulties observed in the prevention and treatment of these pathologies. By inhibiting specifically the up-regulated PDE isozyme(s) with newly synthesized potent and isozyme-selective PDE inhibitors, it may be potentially possible to restore normal intracellular signaling selectively, providing therapy with reduced adverse effects.
Collapse
Affiliation(s)
- Claire Lugnier
- CNRS UMR, 7034, Pharmacologie et Physicochimie des Interactions Moléculaires et Cellulaires, Faculté de Pharmacie, Université Louis Pasteur de Strasbourg, 74 route du Rhin, BP 60024, 67401 Illkirch, France.
| |
Collapse
|
147
|
Dunkern TR, Hatzelmann A. The effect of Sildenafil on human platelet secretory function is controlled by a complex interplay between phosphodiesterases 2, 3 and 5. Cell Signal 2005; 17:331-9. [PMID: 15567064 DOI: 10.1016/j.cellsig.2004.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 07/23/2004] [Indexed: 10/26/2022]
Abstract
Human platelets contain the cyclic nucleotide-hydrolyzing phosphodiesterases (PDEs) 2, 3 and 5. The cGMP-PDE5 inhibitors Sildenafil and Zaprinast have been demonstrated to potentiate the anti-platelet aggregatory effect of NO donors like sodium nitroprusside (SNP) in vitro but the mechanisms of Sildenafil's action on the secretory function of human platelets have not been analysed in detail. In the present paper, we show (1) that both compounds potentiate the SNP-induced increase in cGMP in human platelets concentration-dependently. (2) However, whereas Sildenafil plus SNP treatment only partially inhibits thrombin-induced release of serotonin, the less selective Zaprinast plus SNP cause a complete inhibition. (3) The inhibition mediated by Sildenafil plus SNP is limited to low compound concentrations at which cAMP levels are increased, probably due to cGMP-mediated inhibition of PDE3. (4) High concentrations of Sildenafil (plus SNP) neither affect cAMP levels, likely due to the activation of PDE2, nor inhibits the release of serotonin. Thus, increases in both cyclic nucleotides seem to control platelet function. (5) Accordingly, treatment with increasing concentrations of Sildenafil plus SNP and a selective PDE2 inhibitor, which by its own has no effect, induced a concentration-dependent increase in cAMP and complete inhibition of platelet activation. In summary, our data indicate that Sildenafil inhibits secretory function of human platelets at least in part due to the cGMP-mediated effects on intracellular cAMP and that entire inhibition of serotonin release from thrombin-activated platelets is controlled by both cyclic nucleotides.
Collapse
Affiliation(s)
- Torsten R Dunkern
- Department of Biochemistry Inflammation, ALTANA Pharma AG, Byk-Gulden-Str.2, Konstanz 78467, Germany.
| | | |
Collapse
|
148
|
Weeks JL, Zoraghi R, Beasley A, Sekhar KR, Francis SH, Corbin JD. High biochemical selectivity of tadalafil, sildenafil and vardenafil for human phosphodiesterase 5A1 (PDE5) over PDE11A4 suggests the absence of PDE11A4 cross-reaction in patients. Int J Impot Res 2005; 17:5-9. [PMID: 15538396 DOI: 10.1038/sj.ijir.3901283] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The physiological role of phosphodiesterase (PDE)11 is unknown and its biochemical characteristics are poorly understood. We have expressed human His-tagged PDE11A4 and purified the enzyme to apparent homogeneity. PDE11A4 displays K(m) values of 0.97 microM for cGMP and 2.4 microM for cAMP, and maximal velocities were 4- to 10-fold higher for cAMP than for cGMP. Given the homology between PDE11 and PDE5, we have compared the biochemical potencies of tadalafil (Cialis, Lilly-ICOS), vardenafil (Levitra, Bayer-GSK), and sildenafil (Viagra, Pfizer Inc.) for PDE11A4 and PDE5A1. PDE5A1/PDE11A4 selectivities are 40-, 9300-, and 1000-fold for tadalafil, vardenafil, and sildenafil, respectively. This suggests that none of these three compounds is likely to crossreact with PDE11A4 in patients.
Collapse
Affiliation(s)
- J L Weeks
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | | | |
Collapse
|
149
|
Yang J, Clark JW, Bryan RM, Robertson CS. Mathematical modeling of the nitric oxide/cGMP pathway in the vascular smooth muscle cell. Am J Physiol Heart Circ Physiol 2005; 289:H886-97. [PMID: 15833804 DOI: 10.1152/ajpheart.00216.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nitric oxide (NO)/cGMP pathway in the vascular smooth muscle cell (VSMC) is an important cellular signaling system for the regulation of VSMC relaxation. We present a mathematical model to investigate the underlying mechanisms of this pathway. The model describes the flow of NO-driven signal transduction: NO activation of soluble guanylate cyclase (sGC), sGC- and phosphodiesterase-catalyzed cGMP production and degradation, cGMP-mediated regulation of protein targets including the Ca2+-activated K+ (KCa) channel, and the myosin contractile system. Model simulations reproduce major NO/cGMP-induced VSMC relaxation effects, including intracellular Ca2+ concentration reduction and Ca2+ desensitization of myosin phosphorylation and force generation. Using the model, we examine several testable principles. 1) Rapid sGC desensitization is caused by end-product cGMP feedback inhibition; a large fraction of the steady-state sGC population is in an inactivated intermediate state, and cGMP production is limited well below maximum. 2) NO activates the K(Ca) channel with both cGMP-dependent and -independent mechanisms; moderate NO concentration affects the K(Ca) via the cGMP-dependent pathway, whereas higher NO concentration is accommodated by a cGMP-independent mechanism. 3) Chronic NO synthase inhibition may cause underexpressions of K+ channels including inward rectifier and K(Ca) channels. 4) Ca2+ desensitization of the contractile system is distinguished from Ca2+ sensitivity of myosin phosphorylation. The model integrates these interactions among the heterogeneous components of the NO signaling system and can serve as a general modeling framework for studying NO-mediated VSMC relaxation under various physiological and pathological conditions. New data can be readily incorporated into this framework for interpretation and possible modification and improvement of the model.
Collapse
Affiliation(s)
- Jin Yang
- Department of Bioengineering, MS-366, Rice Univ., Houston, TX 77005, USA
| | | | | | | |
Collapse
|
150
|
Kraft PJ, Haynes-Johnson D, Bhattacharjee S, Lundeen SG, Qiu Y. Altered activities of cyclic nucleotide phosphodiesterases and soluble guanylyl cyclase in cultured RFL-6 cells. Int J Biochem Cell Biol 2005; 36:2086-95. [PMID: 15203121 DOI: 10.1016/j.biocel.2004.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 04/13/2004] [Accepted: 04/14/2004] [Indexed: 10/26/2022]
Abstract
We utilized rat fetal lung fibroblasts (RFL-6) to evaluate our PDE5 inhibitors at cellular level and observed a decrease in cGMP accumulation induced by sodium nitroprusside (SNP) and PDE5 inhibitors with passage. To further investigate this observation, we examined cGMP synthesis via soluble guanylyl cyclase (sGC) and degradation via phosphodiesterases (PDEs) at different passages. At passage (p)4, p9, p14, major cGMP and cAMP degradation activities were contributed by PDE5 and PDE4, respectively. The PDE5 activity decreased 50% from p4 to p14, while PDE4 activity doubled. The cGMP accumulation was evaluated in the presence of sodium nitroprusside (SNP) and/or PDE inhibitors in p4 and p14 cells. SNP together with sildenafil, a PDE5 inhibitor, induced dose-dependent increase in cGMP levels in cells at p4, but showed little effect on cells at p14. The possible down regulation of sGC at mRNA level was explored using real-time RT-PCR. The result showed the mRNA level of the alpha1 subunit of sGC decreased about 98% by p9, while the change on beta1 mRNA was minimal. Consistently, sGC activities in cell lysate decreased by 94% at p9. Forskolin stimulated a dramatic increase in cAMP levels in cells at all passages examined. Our results show that sGC activity decreased significantly and rapidly with passage due to a down regulation of the alpha1 subunit mRNA, yet the adenylyl cyclase activity was not compromised. This study further emphasized the importance of considering passage number when using cell culture as a model system to study NO/cGMP pathway.
Collapse
Affiliation(s)
- Patricia J Kraft
- Reproductive Therapeutics, Drug Discovery, Johnson & Johnson Pharmaceutical Research & Development, LLC, 1000 Route 202 South, Raritan, NJ, USA
| | | | | | | | | |
Collapse
|