101
|
Wang Y, Xia X, Wu M, Sun Q, Zhang W, Qiu Y, Deng R, Luo A. Species-Level Monitoring of Key Bacteria in Fermentation Processes Using Single-Nucleotide Resolved Nucleic Acid Assays Based on CRISPR/Cas12. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13147-13155. [PMID: 37624706 DOI: 10.1021/acs.jafc.3c04775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Microorganisms can determine the flavor and quality of fermented food, such as Baijiu, which is produced via Daqu fermentation. Therefore, monitoring key microorganisms during fermentation is important for ensuring high-quality fermented food. Here, we report a single-nucleotide resolved nucleic acid assay based on the CRISPR/Cas12 system, enabling the quantification of Bacillus amyloliquefaciens, a key microorganism in Daqu fermentation at the species level. The assay employs an amplification-refractory mutation system derived from PCR to analyze minor genetic differences between different Bacillus species. The utilization of CRISPR/Cas12 further guaranties the specificity of identifying the PCR amplicon and enables the quantification of Bacillus amyloliquefaciens via end-measurement fluorescence. Compared to conventional qPCR, the assay allows for species-level detection of bacteria, thus enabling the precise detection of the Bacillus strain that yields high-level 2,3,5,6-tetramethylpyrazine. The assay promises the precise monitoring of bacterial growth and contribution to flavor during Daqu fermentation, thus facilitating fermented food quality control.
Collapse
Affiliation(s)
- Ying Wang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Xuhan Xia
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Minghua Wu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Qiyao Sun
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Wei Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yong Qiu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Aimin Luo
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| |
Collapse
|
102
|
Yang F, Chen C, Ni D, Yang Y, Tian J, Li Y, Chen S, Ye X, Wang L. Effects of Fermentation on Bioactivity and the Composition of Polyphenols Contained in Polyphenol-Rich Foods: A Review. Foods 2023; 12:3315. [PMID: 37685247 PMCID: PMC10486714 DOI: 10.3390/foods12173315] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Polyphenols, as common components with various functional activities in plants, have become a research hotspot. However, researchers have found that the bioavailability and bioactivity of plant polyphenols is generally low because they are usually in the form of tannins, anthocyanins and glycosides. Polyphenol-rich fermented foods (PFFs) are reported to have better bioavailability and bioactivity than polyphenol-rich foods, because polyphenols are used as substrates during food fermentation and are hydrolyzed into smaller phenolic compounds (such as quercetin, kaempferol, gallic acid, ellagic acid, etc.) with higher bioactivity and bioavailability by polyphenol-associated enzymes (PAEs, e.g., tannases, esterases, phenolic acid decarboxylases and glycosidases). Biotransformation pathways of different polyphenols by PAEs secreted by different microorganisms are different. Meanwhile, polyphenols could also promote the growth of beneficial bacteria during the fermentation process while inhibiting the growth of pathogenic bacteria. Therefore, during the fermentation of PFFs, there must be an interactive relationship between polyphenols and microorganisms. The present study is an integration and analysis of the interaction mechanism between PFFs and microorganisms and is systematically elaborated. The present study will provide some new insights to explore the bioavailability and bioactivity of polyphenol-rich foods and greater exploitation of the availability of functional components (such as polyphenols) in plant-derived foods.
Collapse
Affiliation(s)
- Fan Yang
- Moutai Group, Institute of Science and Technology, Zunyi 564501, China
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co., Ltd., Renhuai 564501, China
| | - Chao Chen
- Moutai Group, Institute of Science and Technology, Zunyi 564501, China
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co., Ltd., Renhuai 564501, China
| | - Derang Ni
- Moutai Group, Institute of Science and Technology, Zunyi 564501, China
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co., Ltd., Renhuai 564501, China
| | - Yubo Yang
- Moutai Group, Institute of Science and Technology, Zunyi 564501, China
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co., Ltd., Renhuai 564501, China
| | - Jinhu Tian
- Department of Food Science and Nutrition, Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Yuanyi Li
- Moutai Group, Institute of Science and Technology, Zunyi 564501, China
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co., Ltd., Renhuai 564501, China
| | - Shiguo Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- Department of Food Science and Nutrition, Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Li Wang
- Moutai Group, Institute of Science and Technology, Zunyi 564501, China
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co., Ltd., Renhuai 564501, China
| |
Collapse
|
103
|
Knorr D, Sevenich R. Processed foods: From their emergence to resilient technologies. Compr Rev Food Sci Food Saf 2023; 22:3765-3789. [PMID: 37421325 DOI: 10.1111/1541-4337.13205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 07/10/2023]
Abstract
Humans need food processing assuring food safety, quality, and functionality to sustain their life. The ongoing debates regarding food processing require rational and scientific data about food processing and processed foods. This study deals with the importance, origins, and history of processing, defining processes and discussing existing food classification systems and provides recommendations for future food process development. Descriptions and comparisons of technologies for food preservation, their resource efficiency, and beneficial aspects in relation to traditional processing are summarized. Possibilities for pretreatments or combination application and related potentials are provided. A consumer-oriented paradigm change is presented using the potential of resilient technologies for food product improvements rather than the traditional adaptation of raw materials to existing processes. Means for food science and technology research toward dietary changes by transparent, gentle, and resource-efficient processes for consumers food preference, acceptance, and needs are provided.
Collapse
Affiliation(s)
- Dietrich Knorr
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin (TU Berlin), Berlin, Germany
| | - Robert Sevenich
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin (TU Berlin), Berlin, Germany
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| |
Collapse
|
104
|
Houghton CA. The Rationale for Sulforaphane Favourably Influencing Gut Homeostasis and Gut-Organ Dysfunction: A Clinician's Hypothesis. Int J Mol Sci 2023; 24:13448. [PMID: 37686253 PMCID: PMC10487861 DOI: 10.3390/ijms241713448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Given the increasing scientific, clinical and consumer interest in highly prevalent functional gastrointestinal disorders, appropriate therapeutic strategies are needed to address the many aspects of digestive dysfunction. Accumulating evidence for the crucifer-derived bioactive molecule sulforaphane in upstream cellular defence mechanisms highlights its potential as a therapeutic candidate in targeting functional gastrointestinal conditions, as well as systemic disorders. This article catalogues the evolution of and rationale for a hypothesis that multifunctional sulforaphane can be utilised as the initial step in restoring the ecology of the gut ecosystem; it can do this primarily by targeting the functions of intestinal epithelial cells. A growing body of work has identified the colonocyte as the driver of dysbiosis, such that targeting gut epithelial function could provide an alternative to targeting the microbes themselves for the remediation of microbial dysbiosis. The hypothesis discussed herein has evolved over several years and is supported by case studies showing the application of sulforaphane in gastrointestinal disorders, related food intolerance, and several systemic conditions. To the best of our knowledge, this is the first time the effects of sulforaphane have been reported in a clinical environment, with several of its key properties within the gut ecosystem appearing to be related to its nutrigenomic effects on gene expression.
Collapse
Affiliation(s)
- Christine A. Houghton
- Institute for Nutrigenomic Medicine, Cleveland, QLD 4163, Australia; ; Tel.: +617-3488-0385
- Cell-Logic, 132-140 Ross Court, Cleveland, QLD 4163, Australia
| |
Collapse
|
105
|
Djorgbenoo R, Hu J, Hu C, Sang S. Fermented Oats as a Novel Functional Food. Nutrients 2023; 15:3521. [PMID: 37630712 PMCID: PMC10459665 DOI: 10.3390/nu15163521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Fermented oats are gaining popularity due to their nutritional value and the increasing consumer demand for health-conscious foods. These oats are believed to offer enhanced phytochemical and nutritional profiles compared to unfermented oats. The increased nutritional content of fermented oats is associated with various health benefits, including anti-inflammatory and antioxidant activities, which could potentially reduce the risk of chronic diseases. Further investigations are warranted to elucidate the nutritional benefits of fermented oats in human nutrition. This mini review provides a comprehensive overview of fermented oat products available on the market and the various production methods employed for fermenting oats. Furthermore, this review investigates how fermentation affects the chemical composition and biological functions of oats. Additionally, this manuscript presents some future perspectives on fermented oat products by discussing potential research directions and opportunities for further development. The findings presented in this review contribute to the expanding body of knowledge on fermented oats as a promising functional food, paving the way for future studies and applications in the field of nutrition and health.
Collapse
Affiliation(s)
| | | | | | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Research Campus, North Carolina Agricultural and Technical State University, Kannapolis, NC 28081, USA; (R.D.); (J.H.); (C.H.)
| |
Collapse
|
106
|
Xie J, Wang Y, Zhong R, Yuan Z, Du J, Huang J. Quality evaluation of Sojae Semen Praeparatum by HPLC combined with HS-GC-MS. Heliyon 2023; 9:e18767. [PMID: 37593616 PMCID: PMC10432166 DOI: 10.1016/j.heliyon.2023.e18767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/29/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023] Open
Abstract
Sojae Semen Praeparatum is a popular fermented legume product in China, with a delicious flavour and health benefits. However, the quality control methods for Sojae Semen Praeparatum are now incomplete, and there are no standards for defining its degree of fermentation. In this study, we introduced colour, acid value, ethanol-soluble extractives and six flavonoid components' content to evaluate the quality of Sojae Semen Praeparatum comprehensively. Multiple linear regression was used to streamline the 11 evaluation indicators to 4 and confirm the evaluating feasibility of the four indicators. The degree of fermentation and odour of Sojae Semen Praeparatum were analyzed on headspace-gas chromatography-mass, and two types of odours, 'pungent' and 'unpleasant', could distinguish over-fermented Sojae Semen Praeparatum. Our research developed fermentation specifications and quality standards for Sojae Semen Praeparatum.
Collapse
Affiliation(s)
- Jiaqi Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yibo Wang
- China National Traditional Chinese Medicine Co., Ltd, China
| | - Rongrong Zhong
- China National Traditional Chinese Medicine Co., Ltd, China
| | - Zhenshuang Yuan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie Du
- China National Traditional Chinese Medicine Co., Ltd, China
| | - Jianmei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
107
|
Yoon EJ, Ahn JW, Kim HS, Choi Y, Jeong J, Joo SS, Park D. Improvement of Cognitive Function by Fermented Panax ginseng C.A. Meyer Berries Extracts in an AF64A-Induced Memory Deficit Model. Nutrients 2023; 15:3389. [PMID: 37571326 PMCID: PMC10421307 DOI: 10.3390/nu15153389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
This study investigated the potential therapeutic properties of fermented ginseng berry extract (GBE) for Alzheimer's disease (AD). Fermented GBE was examined for its ginsenoside content and physiological properties, which have been suggested to have neuroprotective effects and improve cognitive function. The results showed that fermented GBE contains high levels of major active ginsenosides and exhibits antioxidant and acetylcholinesterase inhibitory activities. Post-fermented GBE demonstrated therapeutic potential in AF64A-induced damaged neural stem cells and an animal model of AD. These findings suggest that fermented GBE may hold promise as a candidate for developing new therapeutic interventions for memory deficits and cognitive disorders associated with AD and other neurodegenerative conditions. However, further studies are needed to evaluate the safety, tolerability, and efficacy of fermented GBE in human subjects and to determine its clinical applications. In conclusion, our study provides evidence that fermented GBE has potential as a natural product for the prevention and treatment of AD. The high levels of active ginsenosides and antioxidant and acetylcholinesterase inhibitory activities of fermented GBE suggest that it may be a promising therapeutic agent for improving cognitive function and reducing neurodegeneration.
Collapse
Affiliation(s)
- Eun-Jung Yoon
- Laboratory of Animal Physiology and Medicine, Department of Biology Education, Republic of Korea National University of Education, Cheongju 28173, Chungbuk, Republic of Korea; (E.-J.Y.); (J.J.)
| | - Jeong-Won Ahn
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung 25457, Gangwon, Republic of Korea; (J.-W.A.); (H.-S.K.)
| | - Hyun-Soo Kim
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung 25457, Gangwon, Republic of Korea; (J.-W.A.); (H.-S.K.)
| | - Yunseo Choi
- Laboratory of Animal Physiology and Medicine, Department of Biology Education, Republic of Korea National University of Education, Cheongju 28173, Chungbuk, Republic of Korea; (E.-J.Y.); (J.J.)
| | - Jiwon Jeong
- Laboratory of Animal Physiology and Medicine, Department of Biology Education, Republic of Korea National University of Education, Cheongju 28173, Chungbuk, Republic of Korea; (E.-J.Y.); (J.J.)
| | - Seong-Soo Joo
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung 25457, Gangwon, Republic of Korea; (J.-W.A.); (H.-S.K.)
- Huscion MAJIC R&D Center, 331 Pangyo-ro, Seongnam 13488, Gyeonggi, Republic of Korea
| | - Dongsun Park
- Laboratory of Animal Physiology and Medicine, Department of Biology Education, Republic of Korea National University of Education, Cheongju 28173, Chungbuk, Republic of Korea; (E.-J.Y.); (J.J.)
| |
Collapse
|
108
|
Abdul Hakim BN, Xuan NJ, Oslan SNH. A Comprehensive Review of Bioactive Compounds from Lactic Acid Bacteria: Potential Functions as Functional Food in Dietetics and the Food Industry. Foods 2023; 12:2850. [PMID: 37569118 PMCID: PMC10417365 DOI: 10.3390/foods12152850] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 08/13/2023] Open
Abstract
Lactic acid bacteria (LAB) are beneficial microbes known for their health-promoting properties. LAB are well known for their ability to produce substantial amounts of bioactive compounds during fermentation. Peptides, exopolysaccharides (EPS), bacteriocins, some amylase, protease, lipase enzymes, and lactic acid are the most important bioactive compounds generated by LAB activity during fermentation. Additionally, the product produced by LAB is dependent on the type of fermentation used. LAB derived from the genera Lactobacillus and Enterococcus are the most popular probiotics at present. Consuming fermented foods has been previously connected to a number of health-promoting benefits such as antibacterial activity and immune system modulation. Furthermore, functional food implementations lead to the application of LAB in therapeutic nutrition such as prebiotic, immunomodulatory, antioxidant, anti-tumor, blood glucose lowering actions. Understanding the characteristics of LAB in diverse sources and its potential as a functional food is crucial for therapeutic applications. This review presents an overview of functional food knowledge regarding interactions between LAB isolated from dairy products (dairy LAB) and fermented foods, as well as the prospect of functioning LAB in human health. Finally, the health advantages of LAB bioactive compounds are emphasized.
Collapse
Affiliation(s)
- Bibi Nabihah Abdul Hakim
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (B.N.A.H.); (N.J.X.)
| | - Ng Jia Xuan
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (B.N.A.H.); (N.J.X.)
| | - Siti Nur Hazwani Oslan
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (B.N.A.H.); (N.J.X.)
- Innovative Food Processing and Ingredients Research Group, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
109
|
López-Sánchez R, Hernández-Oaxaca D, Escobar-Zepeda A, Ramos Cerrillo B, López-Munguía A, Segovia L. Analysing the dynamics of the bacterial community in pozol, a Mexican fermented corn dough. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001355. [PMID: 37410634 PMCID: PMC10433422 DOI: 10.1099/mic.0.001355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
Pozol is a traditional prehispanic Mexican beverage made from fermented nixtamal dough; it is still part of everyday life in many communities due to its nutritional properties. It is the product of spontaneous fermentation and has a complex microbiota composed primarily of lactic acid bacteria (LAB). Although this is a beverage that has been used for centuries, the microbial processes that participate in this fermented beverage are not well understood. We fermented corn dough to produce pozol and sampled it at four key times to follow the community and metabolic changes (0, 9 24 and 48 h) by shotgun metagenomic sequencing to determine structural changes in the bacterial community, as well as metabolic genes used for substrate fermentation, nutritional properties and product safety. We found a core of 25 abundant genera throughout the 4 key fermentation times, with the genus Streptococcus being the most prevalent throughout fermentation. We also performed an analysis focused on metagenomic assembled genomes (MAGs) to identify species from the most abundant genera. Genes involving starch, plant cell wall (PCW), fructan and sucrose degradation were found throughout fermentation and in MAGs, indicating the metabolic potential of the pozol microbiota to degrade these carbohydrates. Complete metabolic modules responsible for amino acid and vitamin biosynthesis increased considerably during fermentation, and were also found to be abundant in MAG, highlighting the bacterial contribution to the well-known nutritional properties attributed to pozol. Further, clusters of genes containing CAZymes (CGCs) and essential amino acids and vitamins were found in the reconstructed MAGs for abundant species in pozol. The results of this study contribute to our understanding of the metabolic role of micro-organisms in the transformation of corn to produce this traditional beverage and their contribution to the nutritional impact that pozol has had for centuries in the traditional cuisine of southeast Mexico.
Collapse
Affiliation(s)
- Rafael López-Sánchez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, Mexico
| | - Diana Hernández-Oaxaca
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, Mexico
| | | | - Blanca Ramos Cerrillo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, Mexico
| | - Agustin López-Munguía
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, Mexico
| | - Lorenzo Segovia
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, Mexico
| |
Collapse
|
110
|
Tatulli G, Cagliani LR, Sparvoli F, Brasca M, Consonni R. NMR-Based Metabolomic Study on Phaseolus vulgaris Flour Fermented by Lactic Acid Bacteria and Yeasts. Molecules 2023; 28:4864. [PMID: 37375419 DOI: 10.3390/molecules28124864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, fermented foods have attracted increasing attention due to their important role in the human diet, since they supply beneficial health effects, providing important sources of nutrients. In this respect, a comprehensive characterization of the metabolite content in fermented foods is required to achieve a complete vision of physiological, microbiological, and functional traits. In the present preliminary study, the NMR-based metabolomic approach combined with chemometrics has been applied, for the first time, to investigate the metabolite content of Phaseolus vulgaris flour fermented by different lactic acid bacteria (LAB) and yeasts. A differentiation of microorganisms (LAB and yeasts), LAB metabolism (homo- and heterofermentative hexose fermentation), LAB genus (Lactobacillus, Leuconostoc, and Pediococcus), and novel genera (Lacticaseibacillus, Lactiplantibacillus, and Lentilactobacillus) was achieved. Moreover, our findings showed an increase of free amino acids and bioactive molecules, such as GABA, and a degradation of anti-nutritional compounds, such as raffinose and stachyose, confirming the beneficial effects of fermentation processes and the potential use of fermented flours in the production of healthy baking foods. Finally, among all microorganisms considered, the Lactiplantibacillus plantarum species was found to be the most effective in fermenting bean flour, as a larger amount of free amino acids were assessed in their analysis, denoting more intensive proteolytic activity.
Collapse
Affiliation(s)
- Giuseppina Tatulli
- National Research Council, Institute of Sciences of Food Production (ISPA), Via Celoria 2, 20133 Milan, Italy
| | - Laura Ruth Cagliani
- National Research Council, Institute of Chemical Sciences and Technologies "G. Natta" (SCITEC), Via Corti 12, 20133 Milan, Italy
| | - Francesca Sparvoli
- National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA), Via Corti 12, 20133 Milan, Italy
| | - Milena Brasca
- National Research Council, Institute of Sciences of Food Production (ISPA), Via Celoria 2, 20133 Milan, Italy
| | - Roberto Consonni
- National Research Council, Institute of Chemical Sciences and Technologies "G. Natta" (SCITEC), Via Corti 12, 20133 Milan, Italy
| |
Collapse
|
111
|
Zhao X, Sun C, Jin M, Chen J, Xing L, Yan J, Wang H, Liu Z, Chen WH. Enrichment Culture but Not Metagenomic Sequencing Identified a Highly Prevalent Phage Infecting Lactiplantibacillus plantarum in Human Feces. Microbiol Spectr 2023; 11:e0434022. [PMID: 36995238 PMCID: PMC10269749 DOI: 10.1128/spectrum.04340-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) is increasingly used as a probiotic to treat human diseases, but its phages in the human gut remain unexplored. Here, we report its first gut phage, Gut-P1, which we systematically screened using metagenomic sequencing, virus-like particle (VLP) sequencing, and enrichment culture from 35 fecal samples. Gut-P1 is virulent, belongs to the Douglaswolinvirus genus, and is highly prevalent in the gut (~11% prevalence); it has a genome of 79,928 bp consisting of 125 protein coding genes and displaying low sequence similarities to public L. plantarum phages. Physiochemical characterization shows that it has a short latent period and adapts to broad ranges of temperatures and pHs. Furthermore, Gut-P1 strongly inhibits the growth of L. plantarum strains at a multiplicity of infection (MOI) of 1e-6. Together, these results indicate that Gut-P1 can greatly impede the application of L. plantarum in humans. Strikingly, Gut-P1 was identified only in the enrichment culture, not in our metagenomic or VLP sequencing data nor in any public human phage databases, indicating the inefficiency of bulk sequencing in recovering low-abundance but highly prevalent phages and pointing to the unexplored hidden diversity of the human gut virome despite recent large-scale sequencing and bioinformatics efforts. IMPORTANCE As Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) is increasingly used as a probiotic to treat human gut-related diseases, its bacteriophages may pose a certain threat to their further application and should be identified and characterized more often from the human intestine. Here, we isolated and identified the first gut L. plantarum phage that is prevalent in a Chinese population. This phage, Gut-P1, is virulent and can strongly inhibit the growth of multiple L. plantarum strains at low MOIs. Our results also show that bulk sequencing is inefficient at recovering low-abundance but highly prevalent phages such as Gut-P1, suggesting that the hidden diversity of human enteroviruses has not yet been explored. Our results call for innovative approaches to isolate and identify intestinal phages from the human gut and to rethink our current understanding of the enterovirus, particularly its underestimated diversity and overestimated individual specificity.
Collapse
Affiliation(s)
- Xueyang Zhao
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuqing Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Menglu Jin
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingchao Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Xing
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hailei Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
| |
Collapse
|
112
|
Du R, Xiong W, Xu L, Xu Y, Wu Q. Metagenomics reveals the habitat specificity of biosynthetic potential of secondary metabolites in global food fermentations. MICROBIOME 2023; 11:115. [PMID: 37210545 DOI: 10.1186/s40168-023-01536-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/28/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Fermented foods are considered to be beneficial for human health. Secondary metabolites determined by biosynthetic gene clusters (BGCs) are precious bioactive compounds with various biological activities. However, the diversity and distribution of the biosynthetic potential of secondary metabolites in global food fermentations remain largely unknown. In this study, we performed a large-scale and comprehensive investigation for the BGCs in global food fermentations by metagenomics analysis. RESULTS We recovered 653 bacterial metagenome-assembled genomes (MAGs) from 367 metagenomic sequencing datasets covering 15 general food fermentation types worldwide. In total, 2334 secondary metabolite BGCs, including 1003 novel BGCs, were identified in these MAGs. Bacillaceae, Streptococcaceae, Streptomycetaceae, Brevibacteriaceae and Lactobacillaceae contained high abundances of novel BGCs (≥ 60 novel BGCs). Among 2334 BGCs, 1655 were habitat-specific, originating from habitat-specific species (80.54%) and habitat-specific genotypes within multi-habitat species (19.46%) in different food fermentation types. Biological activity analysis suggested that 183 BGC-producing secondary metabolites exhibited high probabilities of antibacterial activity (> 80%). These 183 BGCs were distributed across all 15 food fermentation types, and cheese fermentation contained the most BGC number. CONCLUSIONS This study demonstrates that food fermentation systems are an untapped reservoir of BGCs and bioactive secondary metabolites, and it provides novel insights into the potential human health benefits of fermented foods. Video Abstract.
Collapse
Affiliation(s)
- Rubing Du
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Wu Xiong
- Laboratory of Bio-Interactions and Crop Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lei Xu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
113
|
Vinderola G, Cotter PD, Freitas M, Gueimonde M, Holscher HD, Ruas-Madiedo P, Salminen S, Swanson KS, Sanders ME, Cifelli CJ. Fermented foods: a perspective on their role in delivering biotics. Front Microbiol 2023; 14:1196239. [PMID: 37250040 PMCID: PMC10213265 DOI: 10.3389/fmicb.2023.1196239] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Fermented foods are often erroneously equated with probiotics. Although they might act as delivery vehicles for probiotics, or other 'biotic' substances, including prebiotics, synbiotics, and postbiotics, stringent criteria must be met for a fermented food to be considered a 'biotic'. Those criteria include documented health benefit, sufficient product characterization (for probiotics to the strain level) and testing. Similar to other functional ingredients, the health benefits must go beyond that of the product's nutritional components and food matrix. Therefore, the 'fermented food' and 'probiotic' terms may not be used interchangeably. This concept would apply to the other biotics as well. In this context, the capacity of fermented foods to deliver one, several, or all biotics defined so far will depend on the microbiological and chemical level of characterization, the reproducibility of the technological process used to produce the fermented foods, the evidence for health benefits conferred by the biotics, as well as the type and amount of testing carried out to show the probiotic, prebiotic, synbiotic, and postbiotic capacity of that fermented food.
Collapse
Affiliation(s)
- Gabriel Vinderola
- Instituto de Lactología Industrial (CONICET-UNL), Faculty of Chemical Engineering, National University of Litoral, Santa Fe, Argentina
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark and APC Microbiome Ireland, Cork, Ireland
| | - Miguel Freitas
- Health and Scientific Affairs, Danone North America, White Plains, NY, United States
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias—Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Hannah D. Holscher
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, 260 Edward R. Madigan Laboratory, University of Illinois, Urbana, IL, United States
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias—Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| | - Kelly S. Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO, United States
| | | |
Collapse
|
114
|
Roles of fermented plant-, dairy- and meat-based foods in the modulation of allergic responses. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
115
|
Ferraris C, Guglielmetti M, Neri LDCL, Allehdan S, Mohsin Albasara JM, Fareed Alawadhi HH, Trentani C, Perna S, Tagliabue A. A Review of Ketogenic Dietary Therapies for Epilepsy and Neurological Diseases: A Proposal to Implement an Adapted Model to Include Healthy Mediterranean Products. Foods 2023; 12:foods12091743. [PMID: 37174282 PMCID: PMC10178865 DOI: 10.3390/foods12091743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Based on the growing evidence of the therapeutic role of high-fat ketogenic dietary therapies (KDTs) for neurological diseases and on the protective effect of the Mediterranean diet (MD), it could be important to delineate a Mediterranean version of KDTs in order to maintain a high ketogenic ratio, and thus avoid side effects, especially in patients requiring long-term treatment. This narrative review aims to explore the existing literature on this topic and to elaborate recommendations for a Mediterranean version of the KDTs. It presents practical suggestions based on MD principles, which consist of key elements for the selection of foods (both from quantitative and qualitative prospective), and indications of the relative proportions and consumption frequency of the main food groups that constitute the Mediterranean version of the KDTs. We suggest the adoption of a Mediterranean version of ketogenic diets in order to benefit from the multiple protective effects of the MD. This translates to: (i) a preferential use of olive oil and vegetable fat sources in general; (ii) the limitation of foods rich in saturated fatty acids; (iii) the encouragement of high biological value protein sources; (iv) inserting fruit and vegetables at every meal possible, varying their choices according to seasonality.
Collapse
Affiliation(s)
- Cinzia Ferraris
- Ketogenic Metabolic Therapy Laboratory, Department of Public Health, Experimental and Forensics Medicine, University of Pavia, 27100 Pavia, Italy
- Laboratory of Food Education and Sport Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Monica Guglielmetti
- Ketogenic Metabolic Therapy Laboratory, Department of Public Health, Experimental and Forensics Medicine, University of Pavia, 27100 Pavia, Italy
- Laboratory of Food Education and Sport Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Lenycia de Cassya Lopes Neri
- Ketogenic Metabolic Therapy Laboratory, Department of Public Health, Experimental and Forensics Medicine, University of Pavia, 27100 Pavia, Italy
| | - Sabika Allehdan
- Department of Biology, College of Science, University of Bahrain, Sakhir P.O. Box 32038, Bahrain
| | | | | | - Claudia Trentani
- Ketogenic Metabolic Therapy Laboratory, Department of Public Health, Experimental and Forensics Medicine, University of Pavia, 27100 Pavia, Italy
| | - Simone Perna
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20122 Milano, Italy
| | - Anna Tagliabue
- Ketogenic Metabolic Therapy Laboratory, Department of Public Health, Experimental and Forensics Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
116
|
Knez E, Kadac-Czapska K, Grembecka M. Fermented Vegetables and Legumes vs. Lifestyle Diseases: Microbiota and More. Life (Basel) 2023; 13:life13041044. [PMID: 37109573 PMCID: PMC10141223 DOI: 10.3390/life13041044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Silages may be preventive against lifestyle diseases, including obesity, diabetes mellitus, or metabolic syndrome. Fermented vegetables and legumes are characterized by pleiotropic health effects, such as probiotic or antioxidant potential. That is mainly due to the fermentation process. Despite the low viability of microorganisms in the gastrointestinal tract, their probiotic potential was confirmed. The modification of microbiota diversity caused by these food products has numerous implications. Most of them are connected to changes in the production of metabolites by bacteria, such as butyrate. Moreover, intake of fermented vegetables and legumes influences epigenetic changes, which lead to inhibition of lipogenesis and decreased appetite. Lifestyle diseases' feature is increased inflammation; thus, foods with high antioxidant potential are recommended. Silages are characterized by having a higher bioavailable antioxidants content than fresh samples. That is due to fermentative microorganisms that produce the enzyme β-glucosidase, which releases these compounds from conjugated bonds with antinutrients. However, fermented vegetables and legumes are rich in salt or salt substitutes, such as potassium chloride. However, until today, silages intake has not been connected to the prevalence of hypertension or kidney failure.
Collapse
Affiliation(s)
- Eliza Knez
- Department of Bromatology, Medical University of Gdańsk, Gen. J. Hallera Aw. 107, 80-416 Gdansk, Poland
| | - Kornelia Kadac-Czapska
- Department of Bromatology, Medical University of Gdańsk, Gen. J. Hallera Aw. 107, 80-416 Gdansk, Poland
| | - Małgorzata Grembecka
- Department of Bromatology, Medical University of Gdańsk, Gen. J. Hallera Aw. 107, 80-416 Gdansk, Poland
| |
Collapse
|
117
|
Abstract
Our current food system relies on unsustainable practices, which often fail to provide healthy diets to a growing population. Therefore, there is an urgent demand for new sustainable nutrition sources and processes. Microorganisms have gained attention as a new food source solution, due to their low carbon footprint, low reliance on land, water and seasonal variations coupled with a favourable nutritional profile. Furthermore, with the emergence and use of new tools, specifically in synthetic biology, the uses of microorganisms have expanded showing great potential to fulfil many of our dietary needs. In this review, we look at the different applications of microorganisms in food, and examine the history, state-of-the-art and potential to disrupt current foods systems. We cover both the use of microbes to produce whole foods out of their biomass and as cell factories to make highly functional and nutritional ingredients. The technical, economical, and societal limitations are also discussed together with the current and future perspectives.
Collapse
Affiliation(s)
- Alicia E Graham
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
118
|
Yu Q, Qian J, Guo Y, Qian H, Yao W, Cheng Y. Applicable Strains, Processing Techniques and Health Benefits of Fermented Oat Beverages: A Review. Foods 2023; 12:1708. [PMID: 37107502 PMCID: PMC10137769 DOI: 10.3390/foods12081708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Based on the high nutrients of oat and the demand of health-conscious consumers for value-added and functional foods, fermented oat beverages have great market prospects. This review summarizes the applicable strains, processing techniques and health benefits of fermented oat beverages. Firstly, the fermentation characteristics and conditions of the applicable strains are systematically described. Secondly, the advantages of pre-treatment processes such as enzymatic hydrolysis, germination, milling and drying are summarized. Furthermore, fermented oat beverages can increase the nutrient content and reduce the content of anti-nutritional factors, thereby reducing some risk factors related to many diseases such as diabetes, high cholesterol and high blood pressure. This paper discusses the current research status of fermented oat beverages, which has academic significance for researchers interested in the application potential of oat. Future studies on fermenting oat beverages can focus on the development of special compound fermentation agents and the richness of their taste.
Collapse
Affiliation(s)
- Qian Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jiaqin Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yahui Guo
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - He Qian
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Weirong Yao
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
119
|
Cichońska P, Kowalska E, Ziarno M. The Survival of Psychobiotics in Fermented Food and the Gastrointestinal Tract: A Review. Microorganisms 2023; 11:microorganisms11040996. [PMID: 37110420 PMCID: PMC10142889 DOI: 10.3390/microorganisms11040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, scientists have been particularly interested in the gut-brain axis, as well as the impact of probiotics on the nervous system. This has led to the creation of the concept of psychobiotics. The present review describes the mechanisms of action of psychobiotics, their use in food products, and their viability and survival during gastrointestinal passage. Fermented foods have a high potential of delivering probiotic strains, including psychobiotic ones. However, it is important that the micro-organisms remain viable in concentrations ranging from about 106 to 109 CFU/mL during processing, storage, and digestion. Reports indicate that a wide variety of dairy and plant-based products can be effective carriers for psychobiotics. Nonetheless, bacterial viability is closely related to the type of food matrix and the micro-organism strain. Studies conducted in laboratory conditions have shown promising results in terms of the therapeutic properties and viability of probiotics. Because human research in this field is still limited, it is necessary to broaden our understanding of the survival of probiotic strains in the human digestive tract, their resistance to gastric and pancreatic enzymes, and their ability to colonize the microbiota.
Collapse
Affiliation(s)
- Patrycja Cichońska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159c St., 02-776 Warsaw, Poland
| | - Ewa Kowalska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159c St., 02-776 Warsaw, Poland
| | - Małgorzata Ziarno
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159c St., 02-776 Warsaw, Poland
| |
Collapse
|
120
|
Piao M, Tu Y, Zhang N, Diao Q, Bi Y. Advances in the Application of Phytogenic Extracts as Antioxidants and Their Potential Mechanisms in Ruminants. Antioxidants (Basel) 2023; 12:antiox12040879. [PMID: 37107254 PMCID: PMC10135197 DOI: 10.3390/antiox12040879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Under current breeding conditions, multiple stressors are important challenges facing animal husbandry in achieving animal wellbeing. For many years, the use of antibiotics has been a social concern in the livestock industry. With the implementation of the non-antibiotics policy, there is an urgent need to find relevant technologies and products to replace antibiotics and to solve the problem of disease prevention during animal growth. Phytogenic extracts have the unique advantages of being natural and extensive sources, having a low residue, and being pollution-free and renewable. They can relieve the various stresses, including oxidative stress, on animals and even control their inflammation by regulating the signaling pathways of proinflammatory cytokines, improving animal immunity, and improving the structure of microorganisms in the gastrointestinal tract, thereby becoming the priority choice for improving animal health. In this study, we reviewed the types of antioxidants commonly used in the livestock industry and their applicable effects on ruminants, as well as the recent research progress on their potential mechanisms of action. This review may provide a reference for further research and for the application of other phytogenic extracts and the elucidation of their precise mechanisms of action.
Collapse
Affiliation(s)
- Minyu Piao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Tu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Naifeng Zhang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiyu Diao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanliang Bi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
121
|
Zhang Z, Wu R, Xu W, Cocolin L, Liang H, Ji C, Zhang S, Chen Y, Lin X. Combined effects of lipase and Lactiplantibacillus plantarum 1-24-LJ on physicochemical property, microbial succession and volatile compounds formation in fermented fish product. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2304-2312. [PMID: 36636889 DOI: 10.1002/jsfa.12445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Studies have shown that either the addition of starter culture or enzyme can improve fermentation in fish or other products. However, little research has been carried out on the effects of coupling starter cultures with lipase on the microbial community and product quality. Suanzhayu is a Chinese fermented fish product that mainly relies on spontaneous fermentation, resulting in an unstable flavor and quality. The present study investigated the impact of lipase and Lactiplantibacillus plantarum 1-24-LJ on the quality of Suanzhayu. RESULTS Inoculation decreased pH and 2-thiobarbituric acid reactive substances (TBARS) values, and also helped the dominance of the strain in the ecosystem, whereas lipase addition raised TBARS values and had little effect on pH, water activity (aw ) and microbiota. The addition of lipase and/or Lpb. plantarum increased the content of alcohols, aldehydes, ketones, esters and umami amino acids. The co-additions with the most significant effect and the total contents of volatile compounds (VCs) and free amino acids (FAAs) were 1801.92 g per 100 g and 21 357.05 mg per 100 g, respectively. Former-Lactobacillus was negatively correlated with pH, aw and Prevotella, but positively with VCs (ethyl ester of heptanoic acid, ethyl ester of octanoic acid) and FAAs (Tyr, Phe). Furthermore, adding Lpb. plantarum 1-24-LJ alone or in combination with lipase shortened the fermentation process. CONCLUSION The present study provides a recommended Suanzhayu process approach for improving product quality and flavor, as well as shortening fermentation time, by adding Lpb. plantarum 1-24-LJ with or without lipase. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zuoli Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Ruohan Wu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Wenhuan Xu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Torino, Turin, Italy
| | - Huipeng Liang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Chaofan Ji
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Sufang Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yingxi Chen
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xinping Lin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Department of Agricultural, Forest and Food Sciences, University of Torino, Turin, Italy
| |
Collapse
|
122
|
Wang Y, Han C, Cheng J, Wang Z, Liu L, Huang H, Liang Q, Liu R, Ran B, Li W. Fermented Cerasus humilis fruits protect against high-fat diet induced hyperlipidemia which is associated with alteration of gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2554-2563. [PMID: 36494898 DOI: 10.1002/jsfa.12377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 11/01/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Hyperlipidemia is regarded as a public health matter, and its effective prevention and treatment are urgently required. However, the treatment of hyperlipidemia is still relatively scarce. RESULTS Fermented Cerasus humilis fruit (FCHF) had higher total flavonoid, total phenolic, procyanidin, and organic and free amino acid content, and lower total sugar content, than non-fermented C. humilis fruit (NFCHF). Both FCHF and NFCHF treatment significantly prevent putting on weight. Furthermore, FCHF administration ameliorated hyperlipidemia and cholesterol over-accumulation. In addition, FCHF administration activated the antioxidase system and decreased the malondialdehyde content to relieve oxidative stress, and showed more efficaciously than NFCHF administration. FCHF treatments significantly reverse the fat deposition in high-fat diet rat liver. FCHF supplementation can relieve the dysbacteriosis induced by hyperlipidemia, and regulate the composition of rat gut microbiota by increasing the abundance of Prevotella and norank_f_Muribaculaceae. CONCLUSION Lactobacillus plantarum and Saccharomyces cerevisiae fermentation enhanced the antihyperlipidemic property of C. humilis fruits by promoting gut microbiota regulation. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinghe Cheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhanjun Wang
- Ningxia Academy of Agricultural and Forestry Sciences, Institute of Desertification Control, Yinchuan, China
| | - Lulu Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Houyu Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuxia Liang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ruiying Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Beibei Ran
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Weidong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
123
|
Adeleke I, Nwulu N, Adebo OA. Internet of Things
(
IoT
) in the food fermentation process: A bibliometric review. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Ismail Adeleke
- Center for Cyber‐Physical Food, Energy and Water Systems (CCP‐FEWS) University of Johannesburg Auckland Park South Africa
| | - Nnamdi Nwulu
- Center for Cyber‐Physical Food, Energy and Water Systems (CCP‐FEWS) University of Johannesburg Auckland Park South Africa
| | - Oluwafemi Ayodeji Adebo
- Food Innovation Research Group, Department of Biotechnology and Food Technology University of Johannesburg Doornfontein South Africa
| |
Collapse
|
124
|
Li K, Burton-Pimentel KJ, Brouwer-Brolsma EM, Blaser C, Badertscher R, Pimentel G, Portmann R, Feskens EJM, Vergères G. Identifying Plasma and Urinary Biomarkers of Fermented Food Intake and Their Associations with Cardiometabolic Health in a Dutch Observational Cohort. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4426-4439. [PMID: 36853956 PMCID: PMC10021015 DOI: 10.1021/acs.jafc.2c05669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Identification of food intake biomarkers (FIBs) for fermented foods could help improve their dietary assessment and clarify their associations with cardiometabolic health. We aimed to identify novel FIBs for fermented foods in the plasma and urine metabolomes of 246 free-living Dutch adults using nontargeted LC-MS and GC-MS. Furthermore, associations between identified metabolites and several cardiometabolic risk factors were explored. In total, 37 metabolites were identified corresponding to the intakes of coffee, wine, and beer (none were identified for cocoa, bread, cheese, or yoghurt intake). While some of these metabolites appeared to originate from raw food (e.g., niacin and trigonelline for coffee), others overlapped different fermented foods (e.g., 4-hydroxybenzeneacetic acid for both wine and beer). In addition, several fermentation-dependent metabolites were identified (erythritol and citramalate). Associations between these identified metabolites with cardiometabolic parameters were weak and inconclusive. Further evaluation is warranted to confirm their relationships with cardiometabolic disease risk.
Collapse
Affiliation(s)
- Katherine
J. Li
- Division
of Human Nutrition and Health, Department of Agrotechnology and Food
Science, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Agroscope, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | | | - Elske M. Brouwer-Brolsma
- Division
of Human Nutrition and Health, Department of Agrotechnology and Food
Science, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Carola Blaser
- Agroscope, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | | | | | - Reto Portmann
- Agroscope, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | - Edith J. M. Feskens
- Division
of Human Nutrition and Health, Department of Agrotechnology and Food
Science, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Guy Vergères
- Agroscope, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| |
Collapse
|
125
|
Effect of Limosilactobacillus fermentum 332 on physicochemical characteristics, volatile flavor components, and Quorum sensing in fermented sausage. Sci Rep 2023; 13:3942. [PMID: 36894700 PMCID: PMC9998864 DOI: 10.1038/s41598-023-31161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
The effects of Limosilactobacillus fermentum 332 on quality characteristics in fermented sausage were explored in terms of physicochemical characteristics, volatile flavor components, and Quorum sensing (QS). The results showed that the pH of fermented sausage decreased from 5.20 to 4.54 within 24 h with the inoculation of L. fermentum 332. Lightness and redness were significantly improved, and hardness and chewiness were significantly increased after the addition of L. fermentum 332. With the inoculation of L. fermentum 332, the thiobarbituric acid reactive substance content decreased from 0.26 to 0.19 mg/100 g and total volatile basic nitrogen content decreased from 2.16 to 1.61 mg/100 g. In total, 95 and 104 types of volatile flavor components were detected in the control and fermented sausage inoculated with starter culture, respectively. The AI-2 activity of fermented sausage inoculated with L. fermentum 332 was significantly higher than that of the control and positively correlated with viable count and quality characteristics. These results provide support for further research on the effect of microorganisms on the quality of fermented food.
Collapse
|
126
|
Tang H, Huang W, Yao YF. The metabolites of lactic acid bacteria: classification, biosynthesis and modulation of gut microbiota. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:49-62. [PMID: 36908281 PMCID: PMC9993431 DOI: 10.15698/mic2023.03.792] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 03/14/2023]
Abstract
Lactic acid bacteria (LAB) are ubiquitous microorganisms that can colonize the intestine and participate in the physiological metabolism of the host. LAB can produce a variety of metabolites, including organic acids, bacteriocin, amino acids, exopolysaccharides and vitamins. These metabolites are the basis of LAB function and have a profound impact on host health. The intestine is colonized by a large number of gut microorganisms with high species diversity. Metabolites of LAB can keep the balance and stability of gut microbiota through aiding in the maintenance of the intestinal epithelial barrier, resisting to pathogens and regulating immune responses, which further influence the nutrition, metabolism and behavior of the host. In this review, we summarize the metabolites of LAB and their influence on the intestine. We also discuss the underlying regulatory mechanisms and emphasize the link between LAB and the human gut from the perspective of health promotion.
Collapse
Affiliation(s)
- Huang Tang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wanqiu Huang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu-Feng Yao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Infectious Diseases, Shanghai Ruijin Hospital, Shanghai 200025, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases (20dz2261100), Shanghai 200025, China
| |
Collapse
|
127
|
Isas AS, Escobar F, Álvarez-Villamil E, Molina V, Mateos R, Lizarraga E, Mozzi F, Van Nieuwenhove C. Fermentation of pomegranate juice by lactic acid bacteria and its biological effect on mice fed a high-fat diet. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
128
|
Kao CC, Wang HM, Tsai SJ, Lin JY. Sensory and microbial analyses on naturally lacto-fermented cucumbers. Int J Gastron Food Sci 2023. [DOI: 10.1016/j.ijgfs.2023.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
129
|
Ustymenko I, Bal-Prylypko L, Nikolaenko M, Ivaniuta A, Tverezovska N, Chumachenko I, Pylypchuk O, Rozbytska T, Gruntovskyi M, Melnik V. Development of sour cream with vegetable oils using a food emulsion stabilised by an emulsifying complex. POTRAVINARSTVO 2023. [DOI: 10.5219/1849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
This scientific work describes the research that aims to study the use of a finely dispersed, aggregately stable food emulsion with a mass fraction of blended oil of 50% and xanthan gum in the composition of sour cream with vegetable oils as an analogue of traditional sour cream. The samples of fat-containing fermented-milk bases as a component of sour cream with vegetable oils with a fat content of 10-20% were obtained using two methods. The first method consists in normalising the fat content of the fermented-milk base obtained by fermentation of skimmed cow's milk with a food emulsion, and the second one – is in the fermentation of a normalised mixture consisting of a food emulsion and skimmed cow's milk. When comparing the duration of fermentation of skimmed cow's milk and normalised mixtures with a fat content of 10 to 20%, it was established that in order to achieve the minimum value of the titrated acidity of the clot of 60 °T, the duration of fermentation of skimmed cow's milk is 6 hours, of a normalised mixture with a fat content of 10% – 8 hours, 15% – 12 hours, 20% – 16 hours. According to the organoleptic quality indicators, the samples of fat-containing fermented-milk bases with a fat content of 20%, obtained by two methods, had an indiscrete but unsuitable thick consistency, which was adjusted using xanthan gum. According to the organoleptic quality indicators, it was established that in order to obtain a sour cream with vegetable oils with an indiscrete and thick consistency, 0.15% of xanthan gum should be added to the fat-containing base obtained by the first method, and 0.20% – to the fat-containing base obtained by the second method. The study of determining the content of polyunsaturated fatty acids in sour cream with vegetable oils with a fat content of 20% shows an increased content of omega-3 and omega-6 fatty acids – 2.13% and 10.88%, respectively, compared to sour cream obtained by the traditional technology.
Collapse
|
130
|
Fermentation for Designing Innovative Plant-Based Meat and Dairy Alternatives. Foods 2023; 12:foods12051005. [PMID: 36900522 PMCID: PMC10000644 DOI: 10.3390/foods12051005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Fermentation was traditionally used all over the world, having the preservation of plant and animal foods as a primary role. Owing to the rise of dairy and meat alternatives, fermentation is booming as an effective technology to improve the sensory, nutritional, and functional profiles of the new generation of plant-based products. This article intends to review the market landscape of fermented plant-based products with a focus on dairy and meat alternatives. Fermentation contributes to improving the organoleptic properties and nutritional profile of dairy and meat alternatives. Precision fermentation provides more opportunities for plant-based meat and dairy manufacturers to deliver a meat/dairy-like experience. Seizing the opportunities that the progress of digitalization is offering would boost the production of high-value ingredients such as enzymes, fats, proteins, and vitamins. Innovative technologies such as 3D printing could be an effective post-processing solution following fermentation in order to mimic the structure and texture of conventional products.
Collapse
|
131
|
Molecular Characterization of Methicillin-Resistant Staphylococci from the Dairy Value Chain in Two Indian States. Pathogens 2023; 12:pathogens12020344. [PMID: 36839616 PMCID: PMC9965176 DOI: 10.3390/pathogens12020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/22/2023] Open
Abstract
Bovine milk and milk products may contain pathogens, antimicrobial resistant bacteria, and antibiotic residues that could harm consumers. We analyzed 282 gram-positive isolates from milk samples from dairy farmers and vendors in Haryana and Assam, India, to assess the prevalence of methicillin-resistant staphylococci using microbiological tests, antibiotic susceptibility testing, and genotyping by PCR. The prevalence of genotypic methicillin resistance in isolates from raw milk samples was 5% [95% confidence interval, CI (3-8)], with 7% [CI (3-10)] in Haryana, in contrast to 2% [CI (0.2-6)] in Assam. The prevalence was the same in isolates from milk samples collected from farmers [5% (n = 6), CI (2-11)] and vendors [5% (n = 7), CI (2-10)]. Methicillin resistance was also observed in 15% of the isolates from pasteurized milk [(n = 3), CI (3-38)]. Two staphylococci harboring a novel mecC gene were identified for the first time in Indian dairy products. The only SCCmec type identified was Type V. The staphylococci with the mecA (n = 11) gene in raw milk were commonly resistant to oxacillin [92%, CI (59-100)] and cefoxitin [74%, CI (39-94)], while the isolates with mecC (n = 2) were resistant to oxacillin (100%) only. All the staphylococci with the mecA (n = 3) gene in pasteurized milk were resistant to both oxacillin and cefoxitin. Our results provided evidence that methicillin-resistant staphylococci occur in dairy products in India with potential public health implications. The state with more intensive dairy systems (Haryana) had higher levels of methicillin-resistant bacteria in milk.
Collapse
|
132
|
Mantegazza G, Dalla Via A, Licata A, Duncan R, Gardana C, Gargari G, Alamprese C, Arioli S, Taverniti V, Karp M, Guglielmetti S. Use of kefir-derived lactic acid bacteria for the preparation of a fermented soy drink with increased estrogenic activity. Food Res Int 2023; 164:112322. [PMID: 36737914 DOI: 10.1016/j.foodres.2022.112322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Fermented foods are receiving growing attention for their health promoting properties. In particular, there is a growing demand for plant-based fermented foods as dairy alternatives. Considering that soy is a vegetal food rich in nutrients and a source of the phytoestrogen isoflavones, the aim of this study was to select safe food microorganisms with the ability to ferment a soy drink resulting in a final product with an increased estrogenic activity and improved functional properties. We used milk kefir grains, a dairy source of microorganisms with proven health-promoting properties, as a starting inoculum for a soymilk. After 14 passages of daily inoculum in fresh soy drink, we isolated four lactic acid bacterial strains: Lactotoccus lactis subsp. lactis K03, Leuconostc pseudomesenteroides K05, Leuconostc mesenteroides K09 and Lentilactobacillus kefiri K10. Isolated strains were proven to be safe for human consumption according to the assessment of their antibiotic resistance profile and comparative genomics. Furthermore, functional characterization of the bacterial strains demonstrated their ability to ferment sugars naturally present in soybeans and produce a creamy texture. In addition, we demonstrated, by means of a yeast-based bioluminescence reporter system, that the two strains belonging to the genus Leuconostoc increased the estrogenic activity of the soybean drink. In conclusion, the proposed application of the bacterial strains characterized in this study meets the growing demand of consumers for health-promoting vegetal food alternatives to dairy products.
Collapse
Affiliation(s)
- Giacomo Mantegazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Alessandro Dalla Via
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Armando Licata
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Robin Duncan
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Claudio Gardana
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Cristina Alamprese
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Stefania Arioli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Valentina Taverniti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Matti Karp
- Materials Science and Environmental Engineering, Bio and Circular Economy, Tampere University, Finland
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy.
| |
Collapse
|
133
|
Paul AK, Lim CL, Apu MAI, Dolma KG, Gupta M, de Lourdes Pereira M, Wilairatana P, Rahmatullah M, Wiart C, Nissapatorn V. Are Fermented Foods Effective against Inflammatory Diseases? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2481. [PMID: 36767847 PMCID: PMC9915096 DOI: 10.3390/ijerph20032481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Fermented foods have been used over the centuries in various parts of the world. These foods are rich in nutrients and are produced naturally using various biological tools like bacteria and fungi. Fermentation of edible foods has been rooted in ancient cultures to keep food for preservation and storage for a long period of time with desired or enhanced nutritional values. Inflammatory diseases like rheumatoid arthritis, osteoarthritis, and chronic inflammatory pain are chronic disorders that are difficult to treat, and current treatments for these disorders fail due to various adverse effects of prescribed medications over a long period of time. Fermented foods containing probiotic bacteria and fungi can enhance the immune system, improve gastrointestinal health, and lower the risk of developing various inflammatory diseases. Foods prepared from vegetables by fermentation, like kimchi, sauerkraut, soy-based foods, or turmeric, lack proper clinical and translational experimental studies. The current review has focused on the effectiveness of various fermented foods or drinks used over centuries against inflammation, arthritis, and oxidative stress. We also described potential limitations on the efficacies or usages of these fermented products to provide an overarching picture of the research field.
Collapse
Affiliation(s)
- Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Md. Aminul Islam Apu
- Department of Nutrition and Hospitality Management, The University of Mississippi, Oxford, MS 38677, USA
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Re-search University, New Delhi 110017, India
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh
| | - Christophe Wiart
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
134
|
A Comprehensive Review with Future Insights on the Processing and Safety of Fermented Fish and the Associated Changes. Foods 2023; 12:foods12030558. [PMID: 36766088 PMCID: PMC9914387 DOI: 10.3390/foods12030558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 02/03/2023] Open
Abstract
As an easily spoiled source of valuable proteins and lipids, fish is preserved by fermentation in many cultures. Over time, diverse types of products have been produced from fish fermentation aside from whole fish, such as fermented fish paste and sauces. The consumption of fermented fish products has been shown to improve both physical and mental health due to the composition of the products. Fermented fish products can be dried prior to the fermentation process and include various additives to enhance the flavours and aid in fermentation. At the same time, the fermentation process and its conditions play a major role in determining the quality and safety of the product as the compositions change biochemically throughout fermentation. Additionally, the necessity of certain microorganisms and challenges in avoiding harmful microbes are reviewed to further optimise fermentation conditions in the future. Although several advanced technologies have emerged to produce better quality products and easier processes, the diversity of processes, ingredients, and products of fermented fish warrants further study, especially for the sake of the consumers' health and safety. In this review, the nutritional, microbial, and sensory characteristics of fermented fish are explored to better understand the health benefits along with the safety challenges introduced by fermented fish products. An exploratory approach of the published literature was conducted to achieve the purpose of this review using numerous books and online databases, including Google Scholar, Web of Science, Scopus, ScienceDirect, and PubMed Central, with the goal of obtaining, compiling, and reconstructing information on a variety of fundamental aspects of fish fermentation. This review explores significant information from all available library databases from 1950 to 2022. This review can assist food industries involved in fermented fish commercialization to efficiently ferment and produce better quality products by easing the fermentation process without risking the health and safety of consumers.
Collapse
|
135
|
Zhou X, Zhao Y, Dai L, Xu G. Bacillus subtilis and Bifidobacteria bifidum Fermentation Effects on Various Active Ingredient Contents in Cornus officinalis Fruit. Molecules 2023; 28:molecules28031032. [PMID: 36770698 PMCID: PMC9920020 DOI: 10.3390/molecules28031032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Microbial fermentation has been widely used to improve the quality and functional composition of food and edibles; however, the approach has rarely been applied to traditional Chinese medicines. In this study, to understand the effect of microbial fermentation on the active ingredients of traditional Chinese medicines, we used Bifidobacterium bifidum and Bacillus subtilis to ferment the traditional Chinese medicine, Cornus officinalis fruit (COF), and determined the levels of active ingredients using HPLC (high-performance liquid chromatography). According to the results, both B. subtilis and B. bifidum substantially increased the amount of gallic acid in the COF culture broth after fermentation; however, the two species of bacteria had no effect on the loganin content. Moreover, the B. subtilis fermentation reduced the contents of ursolic acid and oleanolic acid in the COF broth, whereas the B. bifidum fermentation did not. This study contributes to a better understanding of the mechanism by which microbial fermentation alters the active ingredient levels of traditional Chinese medicines, and suggests that fermentation may potentially improve their functional ingredients.
Collapse
Affiliation(s)
- Xiuren Zhou
- Department of Biotechnology, School of Life Science and Technology, Henan Institute of Science and Technology, Hualan Road 90#, Xinxiang 453002, China
- Correspondence: ; Tel.: +86-373-3040337
| | - Yimin Zhao
- Guangxi Botanical Garden of Medicinal Plants, Changgang Road 189#, Nanning 530010, China
| | - Lei Dai
- Department of Biotechnology, School of Life Science and Technology, Henan Institute of Science and Technology, Hualan Road 90#, Xinxiang 453002, China
| | - Guifang Xu
- Department of Biotechnology, School of Life Science and Technology, Henan Institute of Science and Technology, Hualan Road 90#, Xinxiang 453002, China
| |
Collapse
|
136
|
Wang J, Wei BC, Wang X, Zhang Y, Gong YJ. Aroma profiles of sweet cherry juice fermented by different lactic acid bacteria determined through integrated analysis of electronic nose and gas chromatography-ion mobility spectrometry. Front Microbiol 2023; 14:1113594. [PMID: 36726371 PMCID: PMC9886094 DOI: 10.3389/fmicb.2023.1113594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Sweet cherries are popular among consumers, with a recent explosion in sweet cherry production in China. However, the fragility of these fruits poses a challenge for expanding production and transport. With the aim of expanding the product categories of sweet cherries that can bypass these challenges, in this study, we prepared sweet cherry juice fermented by three different lactic acid bacteria (LAB; Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus rhamnosus GG), and evaluated the growth, physiochemical, and aroma characteristics. All three strains exhibited excellent growth potential in the sweet cherry juice; however, Lactobacillus acidophilus and Lactobacillus plantarum demonstrated more robust acid production capacity and higher microbial viability than Lactobacillus rhamnosus GG. Lactic acid was the primary fermentation product, and malic acid was significantly metabolized by LAB, indicating a transition in microbial metabolism from using carbohydrates to organic acids. The aroma profile was identified through integrated analysis of electronic nose (E-nose) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) data. A total of 50 volatile compounds characterized the aromatic profiles of the fermented juices by HS-GC-IMS. The flavor of sweet cherry juice changed after LAB fermentation and the fruity odor decreased overall. Lactobacillus acidophilus and Lactobacillus plantarum significantly increased 2-heptanone, ethyl acetate, and acetone contents, bringing about a creamy and rummy-like favor, whereas Lactobacillus rhamnosus GG significantly increased 2-heptanone, 3-hydroxybutan-2-one, and 2-pentanone contents, generating cheesy and buttery-like odors. Principal component analysis of GC-IMS data and linear discriminant analysis of E-nose results could effectively differentiate non-fermented sweet cherry juice and the sweet cherry juice separately inoculated with different LAB strains. Furthermore, there was a high correlation between the E-nose and GC-IMS results, providing a theoretical basis to identify different sweet cherry juice formulations and appropriate starter culture selection for fermentation. This study enables more extensive utilization of sweet cherry in the food industry and helps to improve the flavor of sweet cherry products.
Collapse
Affiliation(s)
- Jun Wang
- School of Biology, Food and Environment, Hefei University, Hefei, China,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China,*Correspondence: Jun Wang, ✉
| | - Bo-Cheng Wei
- School of Biology, Food and Environment, Hefei University, Hefei, China,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xin Wang
- School of Biology, Food and Environment, Hefei University, Hefei, China,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yan Zhang
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Yun-Jin Gong
- School of Biology, Food and Environment, Hefei University, Hefei, China
| |
Collapse
|
137
|
Identification and Analysis of Metabolites That Contribute to the Formation of Distinctive Flavour Components of Laoxianghuang. Foods 2023; 12:foods12020425. [PMID: 36673517 PMCID: PMC9858094 DOI: 10.3390/foods12020425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 01/17/2023] Open
Abstract
In addition to volatile compounds, metabolites also have a great effect on the flavour of food. Fresh finger citron cannot be eaten directly because of its spicy and bitter taste, so it is made into a preserved fruit product known as Laoxianghuang (LXH). To investigate the metabolites that have an effect on the flavour of LXH, untargeted metabolomics was performed using an ultrahigh-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS), and the metabolites of the Laoxianghuang samples from different locations in the Chaoshan area were compared and analysed. A total of 756 metabolites were identified and distinct differences were revealed among the different Laoxianghuang samples. A total of 33 differential metabolites with the most significant changes were screened through further multivariate analytical steps, and each group of samples had unique metabolites. For instance, pomolic acid had the highest content in the JG sample, while L-glycyl-L-isoleucine was rich in the QS sample. Moreover, flavonoid metabolites made the greatest contribution to the unique flavour of Laoxianghuang. The metabolic pathways involved are the biosynthetic pathways of flavonoids, isoflavonoids, flavones, and flavonols. This study can provide some creative information for distinguishing the quality differences of Laoxianghuang from the perspective of metabolites and offer preliminary theoretical support to characterise the formation of flavour substances in Laoxianghuang.
Collapse
|
138
|
Foti P, Occhipinti PS, Russo N, Scilimati A, Miciaccia M, Caggia C, Perrone MG, Randazzo CL, Romeo FV. Olive Mill Wastewater Fermented with Microbial Pools as a New Potential Functional Beverage. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020646. [PMID: 36677704 PMCID: PMC9866608 DOI: 10.3390/molecules28020646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Olive mill wastewater (OMWW) represents a by-product but also a source of biologically active compounds, and their recycling is a relevant strategy to recover income and to reduce environmental impact. The objective of the present study was to obtain a new functional beverage with a health-promoting effect starting from OMWW. Fresh OMWW were pre-treated through filtration and/or microfiltration and subjected to fermentation using strains belonging to Lactiplantibacillus plantarum, Candida boidinii and Wickerhamomyces anomalus. During fermentation, phenolic content and hydroxytyrosol were monitored. Moreover, the biological assay of microfiltered fermented OMWW was detected versus tumor cell lines and as anti-inflammatory activity. The results showed that in microfiltered OMWW, fermentation was successfully conducted, with the lowest pH values reached after 21 days. In addition, in all fermented samples, an increase in phenol and organic acid contents was detected. Particularly, in samples fermented with L. plantarum and C. boidinii in single and combined cultures, the concentration of hydroxytyrosol reached values of 925.6, 902.5 and 903.5 mg/L, respectively. Moreover, biological assays highlighted that fermentation determines an increase in the antioxidant and anti-inflammatory activity of OMWW. Lastly, an increment in the active permeability on Caco-2 cell line was also revealed. In conclusion, results of the present study confirmed that the process applied here represents an effective strategy to achieve a new functional beverage.
Collapse
Affiliation(s)
- Paola Foti
- Department of Agriculture, Food and Environment (Di3 A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Paride S. Occhipinti
- Department of Agriculture, Food and Environment (Di3 A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Nunziatina Russo
- Department of Agriculture, Food and Environment (Di3 A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
- ProBioEtna srl, Spin-Off of University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Antonio Scilimati
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy
| | - Morena Miciaccia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment (Di3 A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
- ProBioEtna srl, Spin-Off of University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
- CERNUT (Interdepartmental Research Centre in Nutraceuticals and Health Products), University of Catania, Via le A. Doria 6, 95125 Catania, Italy
- Correspondence:
| | - Maria Grazia Perrone
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy
| | - Cinzia L. Randazzo
- Department of Agriculture, Food and Environment (Di3 A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
- ProBioEtna srl, Spin-Off of University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
- CERNUT (Interdepartmental Research Centre in Nutraceuticals and Health Products), University of Catania, Via le A. Doria 6, 95125 Catania, Italy
| | - Flora V. Romeo
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Olivico-Tura, Frutticoltura e Agrumicoltura, Corso Savoia 190, 95024 Acireale, Italy
| |
Collapse
|
139
|
Sun Y, Xu J, Zhao H, Li Y, Zhang H, Yang B, Guo S. Antioxidant properties of fermented soymilk and its anti-inflammatory effect on DSS-induced colitis in mice. Front Nutr 2023; 9:1088949. [PMID: 36687722 PMCID: PMC9852838 DOI: 10.3389/fnut.2022.1088949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Lactic acid-fermented soymilk as a new plant-based food has aroused extensive attention because of its effects on nutrition and health. This study was conducted to delve into the antioxidative and anti-inflammatory activities of lactic acid-fermented soymilk. To elucidate the key factors that affect the antioxidant properties of fermented soymilk, the strains and preparation process were investigated. Findings show that the fermented soymilk prepared using hot-water blanching method (BT-80) demonstrated a better antioxidant activity than that using conventional method (CN-20). Besides, a huge difference was observed among the soymilks fermented with different strains. Among them, the YF-L903 fermented soymilk demonstrated the highest ABTS radical scavenging ability, which is about twofold of that of unfermented soymilk and 1.8-fold of that of L571 fermented soy milk. In vitro antioxidant experiments and the analysis of H2O2-induced oxidative damage model in Caco-2 cells showed that lactic acid-fermentation could improve the DPPH radical scavenging ability, ABTS radical scavenging ability, while reducing the content of reactive oxygen species (ROS) and malondialdehyde (MDA) in Caco-2 cells induced by H2O2, and increasing the content of superoxide dismutase (SOD). Consequently, cells are protected from the damage caused by active oxidation, and the repair ability of cells is enhanced. To identify the role of fermented soymilk in intestinal health, we investigate its preventive effect on dextran sodium sulfate-induced colitis mouse models. Results revealed that the fermented soymilk can significantly improve the health conditions of the mice, including alleviated of weight loss, relieved colonic injury, balanced the spleen-to-body weight ratio, reduced the disease index, and suppressed the inflammatory cytokines and oxidant indexes release. These results suggest that YF-L903 fermented soymilk is a promising natural antioxidant sources and anti-inflammatory agents for the food industry. We believe this work paves the way for elucidating the effect of lactic acid-fermented soymilk on intestinal health, and provides a reference for the preparation of fermented soymilk with higher nutritional and health value.
Collapse
Affiliation(s)
- Yijiao Sun
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingting Xu
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huiyan Zhao
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yue Li
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hui Zhang
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Baichong Yang
- Pony Testing International Group Co., Ltd., Beijing, China
| | - Shuntang Guo
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China,*Correspondence: Shuntang Guo ✉
| |
Collapse
|
140
|
Huang M, Yang F, Wu Y, Meng X, Shi L, Chen H, Li X. Identification of peptides sequence and conformation contributed to potential allergenicity of main allergens in yogurts. Front Nutr 2023; 9:1038466. [PMID: 36687717 PMCID: PMC9849743 DOI: 10.3389/fnut.2022.1038466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/21/2022] [Indexed: 01/07/2023] Open
Abstract
Yogurts provide a good source of nutrition and may induce tolerance in people with cow's milk allergy (CMA). This study aimed to investigate the IgE-binding capacity of main allergens in the different yogurts which provide a reference for people with a high risk of CMA, and analyze the epitopes of major allergen peptides in yogurt. We assessed the degradation and the allergenic properties of major allergens in six commercial yogurts and fresh milk. The degradation of major allergens was analyzed by SDS-PAGE and RP-HPLC. Western blot and ELISA experiments detected allergenic characteristics by using specific sera. The results showed that β-lactoglobulin (Bos d 5) and α-lactalbumin (Bos d 4) were obviously degraded in yogurts but caseins were still present in abundance, which indicated that the proteases in yogurts were specific to whey proteins. IgE and IgG binding ability of major allergens were obviously reduced in yogurts, especially GuMi yogurt. In addition, 17 peptides of major allergens in GuMi yogurt were identified by LC-MS/MS and most of them were located in the interior of the spatial structure of proteins. Among them, 8 peptides had specific biological functions for health benefits, such as antibacterial, antioxidant, and ACE-inhibitory. We also found that 6 and 14 IgE epitopes of Bos d 5 and caseins were destroyed in GuMi yogurt, which could lead to the reduction of IgE-binding capacity. Meanwhile, peptides [Bos d 5 (AA15-40), Bos d 9 (AA120-151, AA125-151)] also preserved T cell epitopes, which might also induce the development of oral tolerance. Therefore, this study suggested that the sequence and conformation of peptides in yogurts contributed to hypoallergenicity.
Collapse
Affiliation(s)
- Meijia Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Fan Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Linbo Shi
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,School of Food Science and Technology, Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China,*Correspondence: Xin Li,
| |
Collapse
|
141
|
Zhao X, Liang Q, Song X, Zhang Y. Whole genome sequence of Lactiplantibacillus plantarum MC5 and comparative analysis of eps gene clusters. Front Microbiol 2023; 14:1146566. [PMID: 37200914 PMCID: PMC10185785 DOI: 10.3389/fmicb.2023.1146566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction Probiotic Lactiplantibacillus plantarum MC5 produces large amounts of exopolysaccharides (EPS), and its use as a compound fermentor can greatly improve the quality of fermented milk. Methods To gain insight into the genomic characteristics of probiotic MC5 and reveal the relationship between its EPS biosynthetic phenotype and genotype, we analyzed the carbohydrate metabolic capacity, nucleotide sugar formation pathways, and EPS biosynthesis-related gene clusters of strain MC5 based on its whole genome sequence. Finally, we performed validation tests on the monosaccharides and disaccharides that strain MC5 may metabolize. Results Genomic analysis showed that MC5 has seven nucleotide sugar biosynthesis pathways and 11 sugar-specific phosphate transport systems, suggesting that the strain can metabolize mannose, fructose, sucrose, cellobiose, glucose, lactose, and galactose. Validation results showed that strain MC5 can metabolize these seven sugars and produce significant amounts of EPS (> 250 mg/L). In addition, strain MC5 possesses two typical eps biosynthesis gene clusters, which include the conserved genes epsABCDE, wzx, and wzy, six key genes for polysaccharide biosynthesis, and one MC5-specific epsG gene. Discussion These insights into the mechanism of EPS-MC5 biosynthesis can be used to promote the production of EPS through genetic engineering.
Collapse
|
142
|
Fasogbon BM, Ademuyiwa OH, Adebo OA. Fermented foods and gut microbiome: a focus on African Indigenous fermented foods. INDIGENOUS FERMENTED FOODS FOR THE TROPICS 2023:315-331. [DOI: 10.1016/b978-0-323-98341-9.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
143
|
Siddeeg A, Afzaal M, Saeed F, Ali R, Shah YA, Shehzadi U, Ateeq H, Waris N, Hussain M, Raza MA, Al-Farga A. Recent updates and perspectives of fermented healthy super food sauerkraut: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022; 25:2320-2331. [DOI: 10.1080/10942912.2022.2135531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/09/2022] [Indexed: 10/24/2022]
Affiliation(s)
- Azhari Siddeeg
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | - Farhan Saeed
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | - Rehman Ali
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | - Yasir Abbas Shah
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | - Umber Shehzadi
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | - Huda Ateeq
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | - Numra Waris
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | - Muzzamal Hussain
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | - Muhammad Ahtisham Raza
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | - Ammar Al-Farga
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
144
|
Nascimento da Silva K, Fávero AG, Ribeiro W, Ferreira CM, Sartorelli P, Cardili L, Bogsan CS, Bertaglia Pereira JN, de Cássia Sinigaglia R, Cristina de Moraes Malinverni A, Ribeiro Paiotti AP, Miszputen SJ, Ambrogini-Júnior O. Effects of kefir fermented milk beverage on sodium dextran sulfate (DSS)-induced colitis in rats. Heliyon 2022; 9:e12707. [PMID: 36685418 PMCID: PMC9852935 DOI: 10.1016/j.heliyon.2022.e12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Background and aim The etiopathogenesis of inflammatory bowel disease (IBD) is associated with different factors such as genetic, infectious, immunological, and environmental, including modification of the gut microbiota. IBD's conventional pharmacological therapeutic approaches have become a challenge due to side effects, complications from prolonged use, and higher costs. Kefir fermented milk beverage is a functional food that has demonstrated multiple beneficial effects including anti-inflammatory and antioxidant activity. Alternative therapeutic strategies have been used for IBD as more natural products with low-cost and easy acquisition. The aim of this study is to evaluate the anti-inflammatory effects of kefir fermented milk beverage on sodium dextran sulfate (DSS)-induced colitis in rats. Methods We used 4 groups to perform this study: baseline control (BC), kefir control (KC), 5% untreated DSS-induced colitis (DSS), and 5% DSS-induced colitis treated with kefir (DSSK). The animals received fermented kefir milk beverage ad libitum for six days and the disease activity index was recorded daily. Colon samples were processed for Transmission Electron Microscopy and histopathological evaluation. We analyzed short fatty chain acids through the fecal sample using gas chromatography. Results Kefir supplementation was able to reduce the clinical activity index and inflammatory process evidenced by decreased neutrophil accumulation, decreased reticulum edema, and increased autophagosomes. Also, showed a trend to increase the levels of acetate and propionate. Conclusions Our results suggest that kefir fermented milk beverage may have an anti-inflammatory effect minimizing the intestinal damage of DSS-induced colitis.
Collapse
Affiliation(s)
- Karina Nascimento da Silva
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - Aline Garnevi Fávero
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - William Ribeiro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Caroline Marcantonio Ferreira
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Patrícia Sartorelli
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Leonardo Cardili
- Laboratory of Experimental and Molecular Pathology, Department of Pathology - Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Cristina Stewart Bogsan
- Laboratory of Fermented Foods of the Faculty of Pharmaceutical Sciences – University of São Paulo
| | | | | | | | - Ana Paula Ribeiro Paiotti
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil,Corresponding author.
| | - Sender Jankiel Miszputen
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - Orlando Ambrogini-Júnior
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| |
Collapse
|
145
|
Li J, Zhang J, Zhang Y, Shi Y, Feng D, Zuo Y, Hu P. Effect and Correlation of Rosa roxburghii Tratt Fruit Vinegar on Obesity, Dyslipidemia and Intestinal Microbiota Disorder in High-Fat Diet Mice. Foods 2022; 11:foods11244108. [PMID: 36553852 PMCID: PMC9778257 DOI: 10.3390/foods11244108] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
To investigate the effect of Rosa roxburghii Tratt fruit vinegar (RFV) on the intervention of obesity and hyperlipidemia and its potential mechanism, a high-fat diet (HFD)-induced obesity model in mice was established and gavaged with RFV, saline and xuezhikang for 30 consecutive days, respectively. The results showed that RFV supplementation significantly reduced fat accumulation, and improved dyslipidemia and liver inflammation in HFD mice. RFV intervention for 30 days significantly improved the diversity of gut microbiota and altered the structure of gut microbiota in HFD mice. Compared with the model group (MC), the ratio of Firmicutes to Bacteroidetes at least decreased by 15.75% after RFV treatment, and increased the relative abundance of beneficial bacteria (Proteobacteria, Bacteroidetes, Lactobacillaceae, Bacteroides, Akkermansia,) and decreased the relative abundance of harmful bacteria (Ruminococcaceae, Erysipelotrichaceae, Ruminococcaceae _UCG-013, Lachnospiraceae, Allobaculum, Actinobacteria). Spearman’s correlation analysis revealed that Erysipelotrichaceae, Allobaculum, Lachnospiraceae, Ruminococcaceae, Ruminococcaceae_UCG-013, uncultured_bacterium_f_Lachnospiraceae and Desulfobacterota were positively correlated (p < 0.05) with the body weight of mice, while Proteobacteria was negatively correlated (p < 0.05) with the body weight of mice. The two main bacteria that could promote dyslipidemia in obese mice were Actinobacteria and Firmicutes, while those that played a mitigating role were mainly Bacteroidetes. It is concluded that RFV plays an important role in the intervention of obesity and related complications in HFD mice by regulating their gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ping Hu
- Correspondence: ; Tel.: +86-13639088037
| |
Collapse
|
146
|
Ramires FA, Bleve G, De Domenico S, Leone A. Combination of Solid State and Submerged Fermentation Strategies to Produce a New Jellyfish-Based Food. Foods 2022; 11:3974. [PMID: 36553715 PMCID: PMC9778331 DOI: 10.3390/foods11243974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
This study describes the set-up and optimization of a fermentation strategy applied to a composite raw material containing jellyfish biomass as the principal ingredient. New fermented food was developed by combining fresh jellyfish Rhizostoma pulmo and the sequential solid-state submerged liquid fermentation method used in Asian countries for processing a high-salt-containing raw material. Aspergillus oryzae was used to drive the first fermentation, conducted in solid-state conditions, of a jellyfish-based product, here named Jelly paste. The second fermentation was performed by inoculating the Jelly paste with different selected bacteria and yeasts, leading to a final product named fermented Jellyfish paste. For the first time, a set of safety parameters necessary for monitoring and describing a jellyfish-based fermented food was established. The new fermented products obtained by the use of Debaryomyces hansenii BC T3-23 yeast strain and the Bacillus amyloliquefaciens MS3 bacterial strain revealed desirable nutritional traits in terms of protein, lipids and total phenolic content, as well as valuable total antioxidant activity. The obtained final products also showed a complex enzyme profile rich in amylase, protease and lipase activities, thus making them characterized by unique composite sensory odor descriptors (umami, smoked, dried fruit, spices).
Collapse
Affiliation(s)
- Francesca Anna Ramires
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, 73100 Lecce, Italy
| | - Gianluca Bleve
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, 73100 Lecce, Italy
| | - Stefania De Domenico
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, 73100 Lecce, Italy
- Dipartimento di Biologia e Scienze Biologiche e Ambientali (DiSTeBA), Campus Ecotekne, Università del Salento, 73100 Lecce, Italy
| | - Antonella Leone
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, 73100 Lecce, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Local Unit of Lecce, 73100 Lecce, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
147
|
Mehlomakulu NN, Moyo SM, Kayitesi E. Yeast derived metabolites and their impact on nutritional and bioactive properties of African fermented maize products. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
148
|
Lactobacillus-fermented yogurt exerts hypoglycemic, hypocholesterolemic, and anti-inflammatory activities in STZ-induced diabetic Wistar rats. Nutr Res 2022; 108:22-32. [PMID: 36395709 DOI: 10.1016/j.nutres.2022.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
Abstract
Hyperglycemia is a symptom of type 2 diabetes mellitus, a chronic metabolic disease characterized by elevated blood glucose concentrations. Antidiabetic drugs are common treatments for this metabolic disorder; however, they may have unpleasant side effects. This study hypothesized that probiotic fermented products could preserve nutritional value, maintain metabolic homeostasis, and attenuate the inflammatory response associated with diabetes while reducing side effects. Lactobacillus plantarum KU985438 and Lactobacillus rhamnosus KU985439 showed the lowest alfa-amylase enzyme (α-amylase) activity among 8 lactobacilli tested. These 2 strains were used to develop functional fermented milk products, and their antidiabetic efficacy was tested in induced diabetic Wistar rats. The treatment of diabetic rats with L. plantarum KU985438 or L. rhamnosus KU985439 fermented yogurt resulted in a considerable reduction in blood glucose concentrations (136.79% and 145.17%, respectively) and α-amylase concentrations (56.84% and 56.84%, respectively) compared with conventional treatments. Diabetes relief began after 4 days of yogurt consumption compared with drug-based treatment. Significant improvements in both liver and kidney enzyme concentrations were also observed, in addition to a significant increase in high-density lipoprotein cholesterol concentrations and improved lipid profiles. Inhibition in nuclear factor κB and an increase in Bcl-2 concentrations were also detected. Histopathological examination of both hepatic and pancreatic cells revealed the positive effects of the studied treatment compared with standard treatment. Therefore, the selected Lactobacilli, which has hypoglycemic potential, could be used to produce functional nutraceutical antidiabetic supplements.
Collapse
|
149
|
Xu M, Su S, Zhang Z, Jiang S, Zhang J, Xu Y, Hu X. Two sides of the same coin: Meta-analysis uncovered the potential benefits and risks of traditional fermented foods at a large geographical scale. Front Microbiol 2022; 13:1045096. [PMID: 36406420 PMCID: PMC9668881 DOI: 10.3389/fmicb.2022.1045096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Traditional fermented foods, which are well-known microbial resources, are also bright national cultural inheritances. Recently, traditional fermented foods have received great attention due to their potential probiotic properties. Based on shotgun metagenomic sequencing data, we analyzed the microbial diversity, taxonomic composition, metabolic pathways, and the potential benefits and risks of fermented foods through a meta-analysis including 179 selected samples, as well as our own sequencing data collected from Hainan Province, China. As expected, raw materials, regions (differentiated by climatic zones), and substrates were the main driving forces for the microbial diversity and taxonomic composition of traditional fermented foods. Interestingly, a higher content of beneficial bacteria but a low biomass of opportunistic pathogens and antibiotic resistance genes were observed in the fermented dairy products, indicating that fermented dairy products are the most beneficial and reliable fermented foods. In contrast, despite the high microbial diversity found in the fermented soy products, their consumption risk was still high due to the enrichment of opportunistic pathogens and transferable antibiotic resistance genes. Overall, we provided the most comprehensive assessment of the microbiome of fermented food to date and generated a new view of its potential benefits and risks related to human health.
Collapse
Affiliation(s)
- Meng Xu
- School of Food Science and Engineering, Hainan University, Haikou, China
- School of Public Administration, Hainan University, Haikou, China
| | - Shunyong Su
- School of Food Science and Engineering, Hainan University, Haikou, China
- School of Public Administration, Hainan University, Haikou, China
| | - Zeng Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
- School of Public Administration, Hainan University, Haikou, China
| | - Shuaiming Jiang
- School of Food Science and Engineering, Hainan University, Haikou, China
- School of Public Administration, Hainan University, Haikou, China
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
- School of Public Administration, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Yanqing Xu
- School of Food Science and Engineering, Hainan University, Haikou, China
- School of Public Administration, Hainan University, Haikou, China
- *Correspondence: Yanqing Xu,
| | - Xiaosong Hu
- School of Food Science and Engineering, Hainan University, Haikou, China
- School of Public Administration, Hainan University, Haikou, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Xiaosong Hu,
| |
Collapse
|
150
|
Qin H, Wu H, Shen K, Liu Y, Li M, Wang H, Qiao Z, Mu Z. Fermented Minor Grain Foods: Classification, Functional Components, and Probiotic Potential. Foods 2022; 11:3155. [PMID: 37430904 PMCID: PMC9601907 DOI: 10.3390/foods11203155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 08/05/2023] Open
Abstract
Fermented minor grain (MG) foods often have unique nutritional value and functional characteristics, which are important for developing dietary culture worldwide. As a kind of special raw material in fermented food, minor grains have special functional components, such as trace elements, dietary fiber, and polyphenols. Fermented MG foods have excellent nutrients, phytochemicals, and bioactive compounds and are consumed as a rich source of probiotic microbes. Thus, the purpose of this review is to introduce the latest progress in research related to the fermentation products of MGs. Specific discussion is focused on the classification of fermented MG foods and their nutritional and health implications, including studies of microbial diversity, functional components, and probiotic potential. Furthermore, this review discusses how mixed fermentation of grain mixtures is a better method for developing new functional foods to increase the nutritional value of meals based on cereals and legumes in terms of dietary protein and micronutrients.
Collapse
Affiliation(s)
- Huibin Qin
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Houbin Wu
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Ke Shen
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Yilin Liu
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Meng Li
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Haigang Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Zhixin Mu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| |
Collapse
|