101
|
Xu L, Tian Z, Chen H, Zhao Y, Yang Y. Anthocyanins, Anthocyanin-Rich Berries, and Cardiovascular Risks: Systematic Review and Meta-Analysis of 44 Randomized Controlled Trials and 15 Prospective Cohort Studies. Front Nutr 2022; 8:747884. [PMID: 34977111 PMCID: PMC8714924 DOI: 10.3389/fnut.2021.747884] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
Objective: The associations between intake of anthocyanins and anthocyanin-rich berries and cardiovascular risks remained to be established. We aimed to quantitatively summarize the effects of purified anthocyanins and anthocyanin-rich berries on major surrogate markers of cardiovascular diseases (CVDs) and the longitudinal associations between dietary anthocyanins and CVD events. Methods: Meta-analysis of randomized controlled trials (RCTs) and prospective cohort studies. Results: We included 44 eligible RCTs and 15 prospective cohort studies in this study. Pooled analysis of RCTs showed that purified anthocyanin supplementation could significantly reduce blood LDL cholesterol (weighted mean difference (WMD): −5.43 mg/dL, 95% CI: −8.96, −1.90 mg/dL; p = 0.003) and triglyceride (WMD: −6.18 mg/dL, 95% CI: −11.67, −0.69 mg/dL; p = 0.027) while increase HDL cholesterol (WMD: 11.49 mg/dL, 95% CI: 7.43, 15.55 mg/dL; p < 0.001) concentrations. Purified anthocyanins also markedly decreased circulating tumor necrosis factor alpha (WMD: −1.62 pg/mL, 95% CI: −2.76, −0.48 pg/mL; p = 0.005) and C-reactive protein (WMD: −0.028 mg/dL, 95% CI: −0.050, −0.005 mg/dL; p = 0.014). Besides, administration of anthocyanin-rich berries could significantly lower blood total cholesterol (WMD: −4.48 mg/dL, 95% CI: −8.94, −0.02 mg/dL; p = 0.049) and C-reactive protein (WMD: −0.046 mg/dL, 95% CI: −0.070, −0.022 mg/dL; p < 0.001). Neither purified anthocyanins nor anthocyanin-rich berries could cause any substantial improvements in BMI, blood pressure, or flow-mediated dilation. In addition, meta-analysis of prospective cohort studies suggested that high dietary anthocyanins were related to lower risk of coronary heart disease (CHD) (relative risk (RR): 0.83, 95% CI: 0.72, 0.95; p = 0.009), total CVD incidence (RR: 0.73, 95% CI: 0.55, 0.97; p = 0.030), and total CVD deaths (RR: 0.91, 95% CI: 0.87, 0.96; p < 0.001). Conclusion: Habitual intake of anthocyanins and anthocyanin-rich berries could protect against CVDs possibly via improving blood lipid profiles and decreasing circulating proinflammatory cytokines. Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO, identifier: CRD42020208782.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, China.,China-DRIs Expert Committee on Other Food Substances, Sun Yat-sen University, Guangzhou, China
| | - Zezhong Tian
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, China.,China-DRIs Expert Committee on Other Food Substances, Sun Yat-sen University, Guangzhou, China
| | - Hong Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, China.,China-DRIs Expert Committee on Other Food Substances, Sun Yat-sen University, Guangzhou, China
| | - Yimin Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, China.,China-DRIs Expert Committee on Other Food Substances, Sun Yat-sen University, Guangzhou, China
| | - Yan Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, China.,China-DRIs Expert Committee on Other Food Substances, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
102
|
Liu P, Zhou W, Xu W, Peng Y, Yan Y, Lu L, Mi J, Zeng X, Cao Y. The Main Anthocyanin Monomer from Lycium ruthenicum Murray Fruit Mediates Obesity via Modulating the Gut Microbiota and Improving the Intestinal Barrier. Foods 2021; 11:foods11010098. [PMID: 35010223 PMCID: PMC8750395 DOI: 10.3390/foods11010098] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Anthocyanins have been shown to exert certain antiobesity properties, but the specific relationship between anthocyanin-induced beneficial effects and the gut microbiota remains unclear. Petunidin-3-O-[rhamnopyranosyl-(trans-p-coumaroyl)]-5-O-(β-D-glucopyranoside) (P3G) is the main anthocyanin monomer from the fruit of Lycium ruthenicum Murray. Therefore, in this study, we investigated the antiobesity and remodeling effects of P3G on gut microbiota through a high-fat diet (HFD)-induced obesity mouse model and a fecal microbiota transplantation experiment. P3G was found to reduce body weight gain, fat accumulation, and liver steatosis in HFD-induced obese mice. Moreover, supplementation with P3G alleviated the HFD-induced imbalance in gut microbiota composition, and transferring the P3G-regulated gut microbiota to recipient mice provided comparable protection against obesity. This is the first time evidence is provided that P3G has an antiobesity effect by changing the intestinal microbiota. Our present data highlight a link between P3G intervention and enhancement in gut barrier integrity. This may be a promising option for obesity prevention.
Collapse
Affiliation(s)
- Peiyun Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (P.L.); (W.Z.); (W.X.); (Y.P.)
| | - Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (P.L.); (W.Z.); (W.X.); (Y.P.)
| | - Weiqi Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (P.L.); (W.Z.); (W.X.); (Y.P.)
| | - Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (P.L.); (W.Z.); (W.X.); (Y.P.)
| | - Yamei Yan
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (Y.Y.); (L.L.); (J.M.)
- National Wolfberry Engineering Research Center, Yinchuan 750002, China
| | - Lu Lu
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (Y.Y.); (L.L.); (J.M.)
- National Wolfberry Engineering Research Center, Yinchuan 750002, China
| | - Jia Mi
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (Y.Y.); (L.L.); (J.M.)
- National Wolfberry Engineering Research Center, Yinchuan 750002, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (P.L.); (W.Z.); (W.X.); (Y.P.)
- Correspondence: (X.Z.); (Y.C.); Tel.: +86-25-84396791 (X.Z.); +86-951-6886783 (Y.C.)
| | - Youlong Cao
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (Y.Y.); (L.L.); (J.M.)
- National Wolfberry Engineering Research Center, Yinchuan 750002, China
- Correspondence: (X.Z.); (Y.C.); Tel.: +86-25-84396791 (X.Z.); +86-951-6886783 (Y.C.)
| |
Collapse
|
103
|
Mao W, Huang G, Chen H, Xu L, Qin S, Li A. Research Progress of the Role of Anthocyanins on Bone Regeneration. Front Pharmacol 2021; 12:773660. [PMID: 34776985 PMCID: PMC8585783 DOI: 10.3389/fphar.2021.773660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/14/2021] [Indexed: 12/22/2022] Open
Abstract
Bone regeneration in osteoporosis and fragility fractures which are highly associated with age remains a great challenge in the orthopedic field, even though the bone is subjected to a continuous process of remodeling which persists throughout lifelong. Regulation of osteoblast and osteoclast differentiation is recognized as effective therapeutic targets to accelerate bone regeneration in osteopenic conditions. Anthocyanins (ACNs), a class of naturally occurring compounds obtained from colored plants, have received increasing attention recently because of their well-documented biological effects, such as antioxidant, anti-inflammation, and anti-apoptosis in chronic diseases, like osteoporosis. Here, we summarized the detailed research progress on ACNs on bone regeneration and their molecular mechanisms on promoting osteoblast differentiation as well as inhibiting osteoclast formation and differentiation to explore their promising therapeutic application in repressing bone loss and helping fragility fracture healing. Better understanding the role and mechanisms of ACNs on bone regeneration is helpful for the prevention or treatment of osteoporosis and also for the exploration of new bone regenerative medicine.
Collapse
Affiliation(s)
- Wei Mao
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China.,Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Guowei Huang
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Huan Chen
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Liangliang Xu
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengnan Qin
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Aiguo Li
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
104
|
Adingo S, Yu JR, Xuelu L, Li X, Jing S, Xiaong Z. Variation of soil microbial carbon use efficiency (CUE) and its Influence mechanism in the context of global environmental change: a review. PeerJ 2021; 9:e12131. [PMID: 34721956 PMCID: PMC8522642 DOI: 10.7717/peerj.12131] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/17/2021] [Indexed: 12/05/2022] Open
Abstract
Soil microbial carbon utilization efficiency (CUE) is the efficiency with which microorganisms convert absorbed carbon (C) into their own biomass C, also referred to as microorganism growth efficiency. Soil microbial CUE is a critical physiological and ecological parameter in the ecosystem’s C cycle, influencing the processes of C retention, turnover, soil mineralization, and greenhouse gas emission. Understanding the variation of soil microbial CUE and its influence mechanism in the context of global environmental change is critical for a better understanding of the ecosystem’s C cycle process and its response to global changes. In this review, the definition of CUE and its measurement methods are reviewed, and the research progress of soil microbial CUE variation and influencing factors is primarily reviewed and analyzed. Soil microbial CUE is usually expressed as the ratio of microbial growth and absorption, which is divided into methods based on the microbial growth rate, microbial biomass, substrate absorption rate, and substrate concentration change, and varies from 0.2 to 0.8. Thermodynamics, ecological environmental factors, substrate nutrient quality and availability, stoichiometric balance, and microbial community composition all influence this variation. In the future, soil microbial CUE research should focus on quantitative analysis of trace metabolic components, analysis of the regulation mechanism of biological-environmental interactions, and optimization of the carbon cycle model of microorganisms’ dynamic physiological response process.
Collapse
Affiliation(s)
- Samuel Adingo
- College of Forestry, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jie-Ru Yu
- College of Resources and Environment, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Liu Xuelu
- College of Resources and Environment, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaodan Li
- School of Management, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Sun Jing
- College of Resources and Environment, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zhang Xiaong
- College of Forestry, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
105
|
Chen G, Yang Z, Cao C, Xiao X, Huang Y, Tian L, Bai W. Subacute safety assessment of recombinant Lactococcus lactis on the gut microbiota of male Sprague-Dawley rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5807-5812. [PMID: 33792042 DOI: 10.1002/jsfa.11231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/06/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Lactococcus lactis strain pGSMT/MG1363 is a genetically modified microorganism (GMM) that constitutively expresses human metallothionein-I fusion protein to combine with intracellular lead. Unlike traditional probiotics, pGSMT/MG1363 lacks a history of safe use in food. Administration of microorganism could influence the gut microbial community and consequently confer health benefits or cause disadvantages to the host. To date, little has been done to assess the influence of recombinant strain pGSMT/MG1363 on the stability of gut microbiota. RESULTS Liver, testis and kidney sections of male Sprague-Dawley rats orally administered pGSMT/MG1363 for 6 weeks showed normal structure and no pathological damage. There were no adverse effects on the analyzed serum biochemical parameters between the pGSMT/MG1363 group and the MG1363 group. Principal coordinate analysis showed that, compared with the MG1363 group, the 6-week-old fecal gut microbiota of rats fed with pGSMT/MG1363 was not significantly different (Adonis, P = 0.802). pGSMT/MG1363 treatment for 6 weeks did not significantly change the relative abundance of gut microbiota at the phylum and genus levels in comparison with MG1363 treatment. CONCLUSION Compared to the non-GM strain MG1363 group, administration of the recombinant strain pGSMT/MG1363 for 6 weeks showed no adverse effects on the analyzed physiological parameters and gut microbial compositions of male Sprague-Dawley rats. The results suggested that, in terms of gut microbiota stability, pGSMT/MG1363 could be considered as safe as MG1363, at least for short-term intake. Further toxicological evaluations still need to be considered before drawing a definite conclusion concerning the safe use of pGSMT/MG1363. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guowei Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Zixin Yang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Chunting Cao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Xue Xiao
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yadong Huang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| |
Collapse
|
106
|
Domínguez-Avila JA, Villa-Rodriguez JA, Montiel-Herrera M, Pacheco-Ordaz R, Roopchand DE, Venema K, González-Aguilar GA. Phenolic Compounds Promote Diversity of Gut Microbiota and Maintain Colonic Health. Dig Dis Sci 2021; 66:3270-3289. [PMID: 33111173 DOI: 10.1007/s10620-020-06676-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/13/2020] [Indexed: 02/08/2023]
Abstract
The role of non-energy-yielding nutrients on health has been meticulously studied, and the evidence shows that a compound can exert significant effects on health even if not strictly required by the organism. Phenolic compounds are among the most widely studied molecules that fit this description; they are found in plants as secondary metabolites and are not required by humans for growth or development, but they can influence a wide array of processes that modulate health across multiple organs and systems. The lower gastrointestinal tract is a prime site of action of phenolic compounds, namely, by their effects on gut microbiota and colonic health. As with humans, phenolic compounds are not required by most bacteria but can be substrates of others; in fact, some phenolic compounds exert antibacterial actions. A diet rich in phenolic compounds can lead to qualitative and quantitative effects on gut microbiota, thereby inducing indirect health effects in mammals through the action of these microorganisms. Moreover, phenolic compounds may be fermented by the gut microbiota, thereby modulating the compounds bioactivity. In the colon, phenolic compounds promote anti-inflammatory, anti-oxidant and antiproliferative actions. The aim of the present review is to highlight the role of phenolic compounds on maintaining or restoring a healthy microbiota and overall colonic health. Mechanisms of action that substantiate the reported evidence will also be discussed.
Collapse
Affiliation(s)
- J Abraham Domínguez-Avila
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304, Hermosillo, Sonora, Mexico.
| | - Jose A Villa-Rodriguez
- Center for Digestive Health, Department of Food Science, Institute for Food Nutrition and Health, Rutgers, The State University of New Jersey, 61 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Marcelino Montiel-Herrera
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | - Ramón Pacheco-Ordaz
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304, Hermosillo, Sonora, Mexico
| | - Diana E Roopchand
- Center for Digestive Health, Department of Food Science, Institute for Food Nutrition and Health, Rutgers, The State University of New Jersey, 61 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Koen Venema
- Centre for Healthy Eating and Food Innovation, Maastricht University - Campus Venlo, St. Jansweg 20, 5928 RC, Venlo, The Netherlands
| | - Gustavo A González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304, Hermosillo, Sonora, Mexico
| |
Collapse
|
107
|
Amaral DT, Johnson CH, Viviani VR. RNA-Seq analysis of the blue light-emitting Orfelia fultoni (Diptera: Keroplatidae) suggest photoecological adaptations at the molecular level. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 39:100840. [PMID: 34022525 PMCID: PMC8495875 DOI: 10.1016/j.cbd.2021.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022]
Abstract
Bioluminescence in Diptera is found in the Keroplatidae family, within Arachnocampininae and Keroplatinae subfamilies, with reported occurrences in Oceania, Eurasia, and Americas. Larvae of Orfelia fultoni, which inhabit stream banks in the Appalachian Mountains, emit the bluest bioluminescence among insects, using it for prey attraction, similarly to Arachnocampa spp. Although bioluminescence has a similar prey attraction function, the systems of Arachonocampininae and Keroplatinae subfamilies are morphologically/biochemically distinct, indicating different evolutionary origins. To identify the possible coding genes associated with physiological control, ecological adaptations, and origin/evolution of bioluminescence in the Keroplatinae subfamily, we performed the RNA-Seq analysis of O. fultoni larvae during day and night and compared it with the transcriptomes of Arachnocampa luminosa, and reanalyzed the previously published proteomic data of O. fultoni against the RNA-Seq dataset. The abundance of chaperones/heat-shock and hexamerin gene products at night and in luciferase enriched fractions supports their possible association and participation in bioluminescence. The low diversity of copies/families of opsins indicate a simpler visual system in O. fultoni. Noteworthy, gene products associated with silk protein biosynthesis in Orfelia were more similar to Lepidoptera than to the Arachnocampa, indicating that, similarly to the bioluminescent systems, at some point, the biochemical apparatus for web construction may have evolved independently in Orfelia and Arachnocampa.
Collapse
Affiliation(s)
- Danilo T Amaral
- Graduate School of Biotechnology and Environmental Monitoring (UFSCar), Sorocaba, SP, Brazil
| | - Carl H Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Vadim R Viviani
- Graduate School of Biotechnology and Environmental Monitoring (UFSCar), Sorocaba, SP, Brazil; Graduate School of Evolutive Genetics and Molecular Biology, Federal Univ. São Carlos (UFSCar), São Carlos, SP, Brazil.
| |
Collapse
|
108
|
Liu J, Hao W, He Z, Kwek E, Zhu H, Ma N, Ma KY, Chen ZY. Blueberry and cranberry anthocyanin extracts reduce bodyweight and modulate gut microbiota in C57BL/6 J mice fed with a high-fat diet. Eur J Nutr 2021; 60:2735-2746. [PMID: 33392758 DOI: 10.1007/s00394-020-02446-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/12/2020] [Indexed: 01/23/2023]
Abstract
PURPOSE Blueberry and cranberry are rich in anthocyanins. The present study was to investigate the effects of anthocyanin extracts from blueberry and cranberry on body weight and gut microbiota. METHODS C57BL/6 J Mice were divided into six groups (n = 9 each) fed one of six diets namely low-fat diet (LFD), high-fat diet (HFD), HFD with the addition of 1% blueberry extract (BL), 2% blueberry extract (BH), 1% cranberry extract (CL), and 2% cranberry extract (CH), respectively. RESULTS Feeding BL and BH diets significantly decreased body weight gain by 20-23%, total adipose tissue weight by 18-20%, and total liver lipids by 16-18% compared with feeding HFD. Feeding CH diet but not CL diet reduced the body weight by 27%, accompanied by a significant reduction of total plasma cholesterol by 25% and tumor necrosis factor alpha (TNF-α) by 38%. The metagenomic analysis showed that the supplementation of blueberry and cranberry anthocyanin extracts reduced plasma lipopolysaccharide concentration, accompanied by a reduction in the relative abundance of Rikenella and Rikenellaceae. Dietary supplementation of berry anthocyanin extracts promoted the growth of Lachnoclostridium, Roseburia, and Clostridium_innocuum_group in genus level, leading to a greater production of fecal short-chain fatty acids (SCFA). CONCLUSIONS It was concluded that both berry anthocyanins could manage the body weight and favorably modulate the gut microbiota at least in mice.
Collapse
Affiliation(s)
- Jianhui Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Wangjun Hao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Zouyan He
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Erika Kwek
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Hanyue Zhu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Ning Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Ka Ying Ma
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China.
| |
Collapse
|
109
|
A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chem 2021; 366:130611. [PMID: 34388403 DOI: 10.1016/j.foodchem.2021.130611] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022]
Abstract
Anthocyanins are pigments abundant in fruits and vegetables, and commonly applied in foods due to attractive colour and health-promoting benefits. However, instability of anthocyanins leads to their easy degradation, reduced bioactivity, and colour fading in food processing, limiting their application and causing economic losses. Stability of anthocyanins depends on their own structures and environmental factors. For structural factors, modification including copigmentation, acylation and biosynthesis is a potential solution to increase anthocyanin stability due to forming stable structures. With regard to environmental factors, encapsulation such as microencapsulation, liposome and nanoparticles has been shown effectively to enhance the stability. We proposed the potential challenges and perspectives for the diversification of anthocyanin-rich products for food application, particularly, introduction of hazards, technical limitations, interaction with other ingredients in food system and exploration of pyranoanthocyanins. The integrated strategies are warranted for improving anthocyanin stabilization for promoting their further application in food industry.
Collapse
|
110
|
Duan L, Cheng S, Li L, Liu Y, Wang D, Liu G. Natural Anti-Inflammatory Compounds as Drug Candidates for Inflammatory Bowel Disease. Front Pharmacol 2021; 12:684486. [PMID: 34335253 PMCID: PMC8316996 DOI: 10.3389/fphar.2021.684486] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) represents chronic recurrent intestinal inflammation resulting from various factors. Crohn’s disease (CD) and ulcerative colitis (UC) have been identified as the two major types of IBD. Currently, most of the drugs for IBD used commonly in the clinic have adverse reactions, and only a few drugs present long-lasting treatment effects. Moreover, issues of drug resistance and disease recurrence are frequent and difficult to resolve. Together, these issues cause difficulties in treating patients with IBD. Therefore, the development of novel therapeutic agents for the prevention and treatment of IBD is of significance. In this context, research on natural compounds exhibiting anti-inflammatory activity could be a novel approach to developing effective therapeutic strategies for IBD. Phytochemicals such as astragalus polysaccharide (APS), quercetin, limonin, ginsenoside Rd, luteolin, kaempferol, and icariin are reported to be effective in IBD treatment. In brief, natural compounds with anti-inflammatory activities are considered important candidate drugs for IBD treatment. The present review discusses the potential of certain natural compounds and their synthetic derivatives in the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Linshan Duan
- School of Pharmaceutical Sciences Xiamen University, Xiamen, China
| | - Shuyu Cheng
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, China
| | - Long Li
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Yanling Liu
- School of Pharmaceutical Sciences Xiamen University, Xiamen, China
| | - Dan Wang
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, China
| | - Guoyan Liu
- School of Pharmaceutical Sciences Xiamen University, Xiamen, China.,Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, China.,Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
111
|
Goodman C, Lyon KN, Scotto A, Smith C, Sebrell TA, Gentry AB, Bala G, Stoner GD, Bimczok D. A High-Throughput Metabolic Microarray Assay Reveals Antibacterial Effects of Black and Red Raspberries and Blackberries against Helicobacter pylori Infection. Antibiotics (Basel) 2021; 10:845. [PMID: 34356766 PMCID: PMC8300682 DOI: 10.3390/antibiotics10070845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori infection is commonly treated with a combination of antibiotics and proton pump inhibitors. However, since H. pylori is becoming increasingly resistant to standard antibiotic regimens, novel treatment strategies are needed. Previous studies have demonstrated that black and red berries may have antibacterial properties. Therefore, we analyzed the antibacterial effects of black and red raspberries and blackberries on H. pylori. Freeze-dried powders and organic extracts from black and red raspberries and blackberries were prepared, and high-performance liquid chromatography was used to measure the concentrations of anthocyanins, which are considered the major active ingredients. To monitor antibiotic effects of the berry preparations on H. pylori, a high-throughput metabolic growth assay based on the Biolog system was developed and validated with the antibiotic metronidazole. Biocompatibility was analyzed using human gastric organoids. All berry preparations tested had significant bactericidal effects in vitro, with MIC90 values ranging from 0.49 to 4.17%. Antimicrobial activity was higher for extracts than powders and appeared to be independent of the anthocyanin concentration. Importantly, human gastric epithelial cell viability was not negatively impacted by black raspberry extract applied at the concentration required for complete bacterial growth inhibition. Our data suggest that black and red raspberry and blackberry extracts may have potential applications in the treatment and prevention of H. pylori infection but differ widely in their MICs. Moreover, we demonstrate that the Biolog metabolic assay is suitable for high-throughput antimicrobial susceptibility screening of H. pylori.
Collapse
Affiliation(s)
- Candace Goodman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (C.G.); (G.B.)
| | - Katrina N. Lyon
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| | - Aitana Scotto
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| | - Cyra Smith
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| | - Thomas A. Sebrell
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| | - Andrew B. Gentry
- Bozeman Health GI Clinic, Bozeman Health Deaconess Hospital, Bozeman, MT 59715, USA;
| | - Ganesh Bala
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (C.G.); (G.B.)
| | - Gary D. Stoner
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| |
Collapse
|
112
|
Olas B, Białecki J, Urbańska K, Bryś M. The Effects of Natural and Synthetic Blue Dyes on Human Health: A Review of Current Knowledge and Therapeutic Perspectives. Adv Nutr 2021; 12:2301-2311. [PMID: 34245145 PMCID: PMC8634323 DOI: 10.1093/advances/nmab081] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/08/2021] [Accepted: 06/04/2021] [Indexed: 12/31/2022] Open
Abstract
Blue synthetic dyes are widely used in many industries. Although they are approved for use as food dyes and in cosmetics and some medicines, their impacts on consumer health remain unknown. Some studies indicate that 2 synthetic dyes, Blue No. 1 and Blue No. 2, may have toxic effects. It has therefore been suggested that these should be replaced with natural dyes; however, despite being nontoxic and arguably healthier than synthetic dyes, these compounds are often unsuitable for use in food or drugs due to their instability. Nevertheless, among the natural blue pigments, anthocyanins and genipin offer particular health benefits, as they are associated with the prevention of cardiovascular disease and have anticancer, neuroprotective, anti-inflammatory, and antidiabetic properties. This review summarizes the effects of blue food and drug colorings on health and proposes that synthetic colors should be replaced with natural ones.
Collapse
Affiliation(s)
| | - Jacek Białecki
- University of Lodz, Department of General Biochemistry, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Karina Urbańska
- Medical University of Lodz, Faculty of Medicine, Lodz, Poland
| | - Magdalena Bryś
- University of Lodz, Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, Lodz, Poland
| |
Collapse
|
113
|
Menezes FNDD, da Cruz Almeida ÉT, da Silva Vieira AR, de Souza Aquino J, Dos Santos Lima M, Magnani M, de Souza EL. Impact of Cashew (Anacardium occidentale L.) by-Product on Composition and Metabolic Activity of Human Colonic Microbiota In Vitro Indicates Prebiotic Properties. Curr Microbiol 2021; 78:2264-2274. [PMID: 33934170 DOI: 10.1007/s00284-021-02502-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/19/2021] [Indexed: 12/21/2022]
Abstract
Cashew apple by-product (CAB) is an important agro-industrial waste still underutilized, although it has been characterized as source of a variety of nutrients and bioactive compounds. This study evaluated the capability of freeze-dried CAB (FCAB) submitted to a simulated gastrointestinal digestion of inducing changes in relative abundance of distinct microbial groups found as part of human colonic microbiota, as well as in pH and short-chain fatty acid production during a 24-h in vitro fermentation using a pooled human fecal inocula. FCAB increased the relative abundance of Bifidobacterium and Lactobacillus/Enterococcus during colonic fermentation, besides to decrease the relative abundance of Bacteroides/Prevotella, Eubacterium rectale/Clostridium coccoides, and Clostridium histolyticum. FCAB increased the counts of lactic acid bacteria and decreased the counts of Enterobacteriaceae during colonic fermentation. Furthermore, FCAB decreased pH and increased the production of short-chain fatty acids in colonic fermentation media. These effects could be linked to contents of dietary fibers and the presence of fructans and different phenolic compounds found in FCAB. These results showed that FCAB induced positive alterations in composition and metabolic activity of human colonic microbiota in vitro, which indicate prebiotic properties.
Collapse
Affiliation(s)
- Francisca Nayara Dantas Duarte Menezes
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I, Cidade Universitária, João Pessoa, Brazil
| | - Érika Tayse da Cruz Almeida
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I, Cidade Universitária, João Pessoa, Brazil
| | - Arthur Rodrigo da Silva Vieira
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I, Cidade Universitária, João Pessoa, Brazil
| | - Jailane de Souza Aquino
- Laboratory of Experimental Nutrtition, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Federal University of Paraíba, João Pessoa, Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I, Cidade Universitária, João Pessoa, Brazil.
| |
Collapse
|
114
|
Verediano TA, Stampini Duarte Martino H, Dias Paes MC, Tako E. Effects of Anthocyanin on Intestinal Health: A Systematic Review. Nutrients 2021; 13:1331. [PMID: 33920564 PMCID: PMC8074038 DOI: 10.3390/nu13041331] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Intestinal health relies on the association between the mucosal immune system, intestinal barrier and gut microbiota. Bioactive components that affect the gut microbiota composition, epithelial physical barrier and intestinal morphology were previously studied. The current systematic review evaluated evidence of anthocyanin effects and the ability to improve gut microbiota composition, their metabolites and parameters of the physical barrier; this was conducted in order to answer the question: "Does food source or extract of anthocyanin promote changes on intestinal parameters?". The data analysis was conducted following the PRISMA guidelines with the search performed at PubMed, Cochrane and Scopus databases for experimental studies, and the risk of bias was assessed by the SYRCLE tool. Twenty-seven studies performed in animal models were included, and evaluated for limitations in heterogeneity, methodologies, absence of information regarding allocation process and investigators' blinding. The data were analyzed, and the anthocyanin supplementation demonstrated positive effects on intestinal health. The main results identified were an increase of Bacteroidetes and a decrease of Firmicutes, an increase of short chain fatty acids production, a decrease of intestinal pH and intestinal permeability, an increase of the number of goblet cells and tight junction proteins and villi improvement in length or height. Thus, the anthocyanin supplementation has a potential effect to improve the intestinal health. PROSPERO (CRD42020204835).
Collapse
Affiliation(s)
- Thaísa Agrizzi Verediano
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil; (T.A.V.); (H.S.D.M.)
| | | | | | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14850, USA
| |
Collapse
|
115
|
Ponte LGS, Pavan ICB, Mancini MCS, da Silva LGS, Morelli AP, Severino MB, Bezerra RMN, Simabuco FM. The Hallmarks of Flavonoids in Cancer. Molecules 2021; 26:2029. [PMID: 33918290 PMCID: PMC8038160 DOI: 10.3390/molecules26072029] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Flavonoids represent an important group of bioactive compounds derived from plant-based foods and beverages with known biological activity in cells. From the modulation of inflammation to the inhibition of cell proliferation, flavonoids have been described as important therapeutic adjuvants against several diseases, including diabetes, arteriosclerosis, neurological disorders, and cancer. Cancer is a complex and multifactor disease that has been studied for years however, its prevention is still one of the best known and efficient factors impacting the epidemiology of the disease. In the molecular and cellular context, some of the mechanisms underlying the oncogenesis and the progression of the disease are understood, known as the hallmarks of cancer. In this text, we review important molecular signaling pathways, including inflammation, immunity, redox metabolism, cell growth, autophagy, apoptosis, and cell cycle, and analyze the known mechanisms of action of flavonoids in cancer. The current literature provides enough evidence supporting that flavonoids may be important adjuvants in cancer therapy, highlighting the importance of healthy and balanced diets to prevent the onset and progression of the disease.
Collapse
Affiliation(s)
- Luis Gustavo Saboia Ponte
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
- Laboratory of Signal Mechanisms (LMS), School of Pharmaceutical Sciences (FCF), University of Campinas (UNICAMP), Campinas, São Paulo 13083-871, Brazil
| | - Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Matheus Brandemarte Severino
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Rosangela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| |
Collapse
|
116
|
Si X, Bi J, Chen Q, Cui H, Bao Y, Tian J, Shu C, Wang Y, Tan H, Zhang W, Chen Y, Li B. Effect of Blueberry Anthocyanin-Rich Extracts on Peripheral and Hippocampal Antioxidant Defensiveness: The Analysis of the Serum Fatty Acid Species and Gut Microbiota Profile. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3658-3666. [PMID: 33709697 DOI: 10.1021/acs.jafc.0c07637] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The current study investigated the positive effects of blueberry anthocyanin-rich extracts (BAE) on either peripheral or hippocampal antioxidant defensiveness and established the connection of the improved antioxidant status with the altered fatty acid species and gut microbiota profile. High-fat diet-induced oxidative stress in C57BL/6 mice was attenuated by BAE administration, which was reflected by strengthened antioxidant enzymes, alleviated hepatic steatosis, and improved hippocampal neuronal status. Serum lipidomics analysis indicated that the fatty acid species were altered toward the elevated unsaturated/saturated ratio, along with phospholipid species toward enriched n-3 polyunsaturated fatty acid compositions. The modulated antioxidant pattern could be attributed to the increased bacteria diversity, stimulated probiotics (Bifidobacterium and Lactobacillus) and short-chain fatty acid (SCFA) producers (Roseburia, Faecalibaculum, and Parabacteroides) improved by anthocyanins and their metabolites, which improved the colon environment, characterized by promoted SCFAs, restored colonic mucosa, and reorganized microbial structure. Thus, anthocyanin-rich dietary intervention is a promising approach for the defensiveness in human oxidative damage and neurodegeneration.
Collapse
Affiliation(s)
- Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jinfeng Bi
- Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, National Risk Assessment Laboratory of Agro-Products Processing Quality and Safety, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Beijing 100193, China
| | - Qinqin Chen
- Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, National Risk Assessment Laboratory of Agro-Products Processing Quality and Safety, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Beijing 100193, China
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Hui Tan
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Weijia Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
117
|
Zhou Y, Long S, Xu Q, Yan C, Yang J, Zhou Y. Optimization and application of HPLC for simultaneous separation of six well-known major anthocyanins in blueberry. Prep Biochem Biotechnol 2021; 51:961-970. [PMID: 33626297 DOI: 10.1080/10826068.2021.1881906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Anthocyanins have attracted great attention because of their potential therapeutic benefit. However, the effective technique for simultaneous separation and preparation multiple anthocyanin monomers with high purity and high yield is still deficient. In this study, the chromatographic conditions of HPLC were optimized to investigate six well-known major anthocyanins (delphinidin-3-O-glucoside, cyanidin-3-O-glucoside, petunidin-3-O-glucoside, pelargonidin-3-O-glucoside, peonidin-3-O-glucoside and malvidin-3-O-glucoside) in blueberry. The separation conditions were optimized in analytical HPLC and further applied in semi-preparative HPLC to prepare anthocyanin monomers. The results showed that six well-known major anthocyanins were well separated under the condition of using acetonitrile-water (contained 0.3% phosphoric acid) as a mobile phase with gradient elution at a detection wavelength of 520 nm. The method showed good linear correlations between the concentrations and peak areas of the six components with correlation coefficients greater than 0.9994, and the detection limits of the six anthocyanins were 0.010-0.035 μg/mL, and the quantification limits were 0.033-0.117 μg/mL, which was suitable for the determination of anthocyanins in products. In the same experimental conditions, six well-known major anthocyanins were simultaneously prepared by semi-preparative HPLC with high purity to 99% and high yield to 22.5%. This study provides a practical and valuable method for simultaneous determination and preparation of six well-known major anthocyanins.
Collapse
Affiliation(s)
- Yuanjing Zhou
- Guizhou Academy of Analysis and Testing, Guizhou Academy of Sciences, Guiyang City, P. R. China
| | - Shangjun Long
- Guizhou Academy of Analysis and Testing, Guizhou Academy of Sciences, Guiyang City, P. R. China
| | - Qing Xu
- Institute of Biology, Guizhou Academy of Sciences, Guiyang City, P. R. China
| | - Changrui Yan
- Institute of Biology, Guizhou Academy of Sciences, Guiyang City, P. R. China
| | - Jiang Yang
- Institute of Biology, Guizhou Academy of Sciences, Guiyang City, P. R. China
| | - Yousong Zhou
- Institute of Biology, Guizhou Academy of Sciences, Guiyang City, P. R. China
| |
Collapse
|
118
|
Han H, Liu C, Gao W, Li Z, Qin G, Qi S, Jiang H, Li X, Liu M, Yan F, Guo Q, Hu CY. Anthocyanins Are Converted into Anthocyanidins and Phenolic Acids and Effectively Absorbed in the Jejunum and Ileum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:992-1002. [PMID: 33428422 DOI: 10.1021/acs.jafc.0c07771] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anthocyanins have been known for their health benefits. However, the in vivo digestion and absorption of anthocyanins through the gastrointestinal tract have not been fully clarified, creating challenges for understanding why anthocyanins have high biological activities and purported low bioavailability in vivo. Twenty-seven male rats were intubated with a 500 mg/kg dose of cyanidin-3-glucoside (C3G). Samples from rats' stomach, duodenum, jejunum, ileum, colon, and serum were collected at 0.5, 1, 2, 3, 4, 5, 6, 12, and 24 h after intubation. Three rats without C3G were used as the control with samples collected at 0 h. C3G and its metabolites in each sample were analyzed using high-performance liquid chromatography-PDA-electrospray ionization-MS/MS. These in vivo studies' results unequivocally demonstrated that cyanidin and phenolic acids were the primary C3G metabolites absorbed, mainly in the jejunum and ileum, between 1 and 5 h post-ingestion. We speculate that C3G uses phloroglucinaldehyde and protocatechuic acid metabolic pathways in its metabolism in vivo.
Collapse
Affiliation(s)
- Hao Han
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Caifen Liu
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Wenchuan Gao
- Baoji Academy of Agricultural Sciences, Qishan 721000, Shaanxi, China
| | - Zhongye Li
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Gongwei Qin
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Shanshan Qi
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Hai Jiang
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Xinsheng Li
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Minghui Liu
- Baoji Academy of Agricultural Sciences, Qishan 721000, Shaanxi, China
| | - Fei Yan
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ching Yuan Hu
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu 96822, Hawaii, United States
| |
Collapse
|
119
|
Feng S, Yi J, Li X, Wu X, Zhao Y, Ma Y, Bi J. Systematic Review of Phenolic Compounds in Apple Fruits: Compositions, Distribution, Absorption, Metabolism, and Processing Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7-27. [PMID: 33397106 DOI: 10.1021/acs.jafc.0c05481] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As the most widely consumed fruit in the world, apple (Malus domestica Borkh.) fruits provide a high level of phenolics and have many beneficial effects on human health. The composition and content of phenolic compounds in natural apples differs according to the tissue types and cultivar varieties. The bioavailability of apple-derived phenolics, depending on the absorption and metabolism of phenolics during digestion, is the key determinant of their positive biological effects. Meanwhile, various processing technologies affect the composition and content of phenolic compounds in apple products, further affecting the bioavailability of apple phenolics. This review summarizes current understanding on the compositions, distribution, absorption, and metabolism of phenolic compounds in apple and their stability when subjected to common technologies during processing. We intend to provide an updated overview on apple phenolics and also suggest some perspectives for future research of apple phenolics.
Collapse
Affiliation(s)
- Shuhan Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xuan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xinye Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yuanyuan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Youchuan Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
120
|
Luo J, Lin X, Bordiga M, Brennan C, Xu B. Manipulating effects of fruits and vegetables on gut microbiota – a critical review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jing Luo
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
| | - Xian Lin
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing Sericultural & Agri‐Food Research Institute Guangdong China
| | - Matteo Bordiga
- Dipartimento di Scienze del Farmaco Università degli Studi del Piemonte Orientale ‘A. Avogadro’ Novara Italy
| | - Charles Brennan
- Faculty of Agriculture and Life Sciences Lincoln University Christchurch New Zealand
| | - Baojun Xu
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
| |
Collapse
|
121
|
Li Y, Wang J, Wang M, Gao Y, Jin CY, Shi X, Ji B, Wei Y, Liu H. Microbial profiling identifies potential key drivers in gastric cancer patients. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1896384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Yonghong Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Jia Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Mengge Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Cheng-Yun Jin
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Xiaojing Shi
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Boyang Ji
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Hongmin Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| |
Collapse
|
122
|
Gonzalez de Mejia E, Rebollo-Hernanz M, Aguilera Y, Martín-Cabrejas MA. Role of anthocyanins in oxidative stress and the prevention of cancer in the digestive system. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
123
|
Ma J, Zheng Y, Tang W, Yan W, Nie H, Fang J, Liu G. Dietary polyphenols in lipid metabolism: A role of gut microbiome. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:404-409. [PMID: 33364456 PMCID: PMC7750795 DOI: 10.1016/j.aninu.2020.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/19/2022]
Abstract
Polyphenols are a class of non-essential phytonutrients, which are abundant in fruits and vegetables. Dietary polyphenols or foods rich in polyphenols are widely recommended for metabolic health. Indeed, polyphenols (i.e., catechins, resveratrol, and curcumin) are increasingly recognized as a regulator of lipid metabolism in host. The mechanisms, at least in part, may be highly associated with gut microbiome. This review mainly discussed the beneficial effects of dietary polyphenols on lipid metabolism. The potential mechanisms of gut microbiome are focused on the effect of dietary polyphenols on gut microbiota compositions and how gut microbiota affect polyphenol metabolism. Together, dietary polyphenols may be a useful nutritional strategy for manipulation of lipid metabolism or obesity care.
Collapse
Affiliation(s)
- Jie Ma
- College of Bioscience and Biotechnology, College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China
| | - Yongmin Zheng
- College of Bioscience and Biotechnology, College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China
| | - Wenjie Tang
- College of Bioscience and Biotechnology, College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- Sichuan Academy of Animal Sciences, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Wenxin Yan
- College of Bioscience and Biotechnology, College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China
| | - Houfu Nie
- Agricultural and Rural Office of Chunkou Town, Liuyang, Hunan, China
| | - Jun Fang
- College of Bioscience and Biotechnology, College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China
| | - Gang Liu
- College of Bioscience and Biotechnology, College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China
| |
Collapse
|
124
|
Zhang N, Jing P. Anthocyanins in Brassicaceae: composition, stability, bioavailability, and potential health benefits. Crit Rev Food Sci Nutr 2020; 62:2205-2220. [DOI: 10.1080/10408398.2020.1852170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Nan Zhang
- Shanghai Food Safety and Engineering Technology Research Center, Key Lab of Urban Agriculture Ministry of Agriculture, Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Key Lab of Urban Agriculture Ministry of Agriculture, Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
125
|
Henriques JF, Serra D, Dinis TCP, Almeida LM. The Anti-Neuroinflammatory Role of Anthocyanins and Their Metabolites for the Prevention and Treatment of Brain Disorders. Int J Mol Sci 2020; 21:E8653. [PMID: 33212797 PMCID: PMC7696928 DOI: 10.3390/ijms21228653] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Anthocyanins are naturally occurring polyphenols commonly found in fruits and vegetables. Numerous studies have described that anthocyanin-rich foods may play a crucial role in the prevention and treatment of different pathological conditions, which have encouraged their consumption around the world. Anthocyanins exhibit a significant neuroprotective role, mainly due to their well-recognized antioxidant and anti-inflammatory properties. Neuroinflammation is an intricate process relevant in both homeostatic and pathological circumstances. Since the progression of several neurological disorders relies on neuroinflammatory process, targeting brain inflammation has been considered a promising strategy in those conditions. Recent data have shown the anti-neuroinflammatory abilities of many anthocyanins and of their metabolites in the onset and development of several neurological disorders. In this review, it will be discussed the importance and the applicability of these polyphenolic compounds as neuroprotective agents and it will be also scrutinized the molecular mechanisms underlying the modulation of neuroinflammation by these natural compounds in the context of several brain diseases.
Collapse
Affiliation(s)
- Joana F. Henriques
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.F.H.); (T.C.P.D.); (L.M.A.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Diana Serra
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.F.H.); (T.C.P.D.); (L.M.A.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Teresa C. P. Dinis
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.F.H.); (T.C.P.D.); (L.M.A.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Leonor M. Almeida
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.F.H.); (T.C.P.D.); (L.M.A.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
126
|
Sun J, Chen J, Mei Z, Luo Z, Ding L, Jiang X, Bai W. Synthesis, structural characterization, and evaluation of cyanidin-3-O-glucoside-loaded chitosan nanoparticles. Food Chem 2020; 330:127239. [DOI: 10.1016/j.foodchem.2020.127239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/13/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
|
127
|
Izzo L, Rodríguez-Carrasco Y, Pacifico S, Castaldo L, Narváez A, Ritieni A. Colon Bioaccessibility under In Vitro Gastrointestinal Digestion of a Red Cabbage Extract Chemically Profiled through UHPLC-Q-Orbitrap HRMS. Antioxidants (Basel) 2020; 9:E955. [PMID: 33036251 PMCID: PMC7601900 DOI: 10.3390/antiox9100955] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Red cabbage is a native vegetable of the Mediterranean region that represents one of the major sources of anthocyanins. The aim of this research is to evaluate the antioxidant capability and total polyphenol content (TPC) of a red cabbage extract and to compare acquired data with those from the same extract encapsulated in an acid-resistant capsule. The extract, which was qualitatively and quantitatively profiled by UHPLC-Q-Orbitrap HRMS analysis, contained a high content of anthocyanins and phenolic acids, whereas non-anthocyanin flavonoids were the less abundant compounds. An in vitro gastrointestinal digestion system was utilized to follow the extract's metabolism in humans and to evaluate its colon bioaccessibility. Data obtained showed that during gastrointestinal digestion, the total polyphenol content of the extract digested in the acid-resistant capsule in the Pronase E stage resulted in a higher concentration value compared to the extract digested without the capsule. Reasonably, these results could be attributed to the metabolization process by human colonic microflora and to the genesis of metabolites with greater bioactivity and more beneficial effects. The use of red cabbage extract encapsulated in an acid-resistant capsule could improve the polyphenols' bioaccessibility and be proposed as a red cabbage-based nutraceutical formulation for counteracting stress oxidative diseases.
Collapse
Affiliation(s)
- Luana Izzo
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (A.N.); (A.R.)
| | - Yelko Rodríguez-Carrasco
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain;
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy;
| | - Luigi Castaldo
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (A.N.); (A.R.)
| | - Alfonso Narváez
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (A.N.); (A.R.)
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (A.N.); (A.R.)
- Health Education and Sustainable Development, Federico II University, 80131 Naples, Italy
| |
Collapse
|
128
|
Denaro M, Smeriglio A, De Francesco C, Xiao J, Cornara L, Trombetta D. In vitro intestinal transport and anti-inflammatory properties of ideain across Caco-2 transwell model. Fitoterapia 2020; 146:104723. [PMID: 32949649 DOI: 10.1016/j.fitote.2020.104723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 02/08/2023]
Abstract
The aim of the study was to investigate the absorption and transport mechanisms as well as the anti-inflammatory properties of ideain on Caco-2 transwell model. A concentration and time-dependent bidirectional transport was highlighted; despite this, a clear saturation of the transepithelial absorption in the A-B direction was observed at ideain concentration > 10 μM, suggesting an involvement of membrane transporters. Comparing Papp and PDR values of ideain (10 μM) to reference drugs with a low to a high apparent permeability, it is possible to predict a low in vivo absorption, with a transport efficiency of 1.03%. Co-treatments with several EDTA-Na2 concentrations (1-5 mM) and P-gp inhibition studies with verapamil 100 μM ruled out a passive diffusion of this molecule as well the possibility that P-gp could affect ideain absorption. Inhibition studies using 2 mM phloridzin (SGLT1 inhibitor) and 2 mM phloretin (GLUT2 inhibitor), showed a clear SGLT1 and GLUT2 involvement in the ideain absorption, with SGLT1, which plays the pivotal role. Finally, preliminary anti-inflammatory studies showed that ideain is able to modulate, at a pharmanutritional dose, and with a comparable activity in respect to the reference drug dexamethasone (10 μM), the LPS-induced inflammation in Caco-2 transwell model, which makes it a potentially useful molecule for nutraceutical purpose.
Collapse
Affiliation(s)
- Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; Foundation Prof. Antonio Imbesi, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy.
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; Foundation Prof. Antonio Imbesi, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy.
| | - Clara De Francesco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; Foundation Prof. Antonio Imbesi, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau, SAR 999078, China
| | - Laura Cornara
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy.
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy.
| |
Collapse
|
129
|
Mattioli R, Francioso A, Mosca L, Silva P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020; 25:E3809. [PMID: 32825684 PMCID: PMC7504512 DOI: 10.3390/molecules25173809] [Citation(s) in RCA: 378] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Anthocyanins are a class of water-soluble flavonoids widely present in fruits and vegetables. Dietary sources of anthocyanins include red and purple berries, grapes, apples, plums, cabbage, or foods containing high levels of natural colorants. Cyanidin, delphinidin, malvidin, peonidin, petunidin, and pelargonidin are the six common anthocyanidins. Following consumption, anthocyanin, absorption occurs along the gastrointestinal tract, the distal lower bowel being the place where most of the absorption and metabolism occurs. In the intestine, anthocyanins first undergo extensive microbial catabolism followed by absorption and human phase II metabolism. This produces hybrid microbial-human metabolites which are absorbed and subsequently increase the bioavailability of anthocyanins. Health benefits of anthocyanins have been widely described, especially in the prevention of diseases associated with oxidative stress, such as cardiovascular and neurodegenerative diseases. Furthermore, recent evidence suggests that health-promoting effects attributed to anthocyanins may also be related to modulation of gut microbiota. In this paper we attempt to provide a comprehensive view of the state-of-the-art literature on anthocyanins, summarizing recent findings on their chemistry, biosynthesis, nutritional value and on their effects on human health.
Collapse
Affiliation(s)
- Roberto Mattioli
- Department of Sciences, RomaTre University, v.le G. Marconi 446, 00146 Rome, Italy;
| | - Antonio Francioso
- Department of Biochemical Sciences, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy;
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy;
| | - Paula Silva
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences Abel Salazar (ICBAS), Rua de Jorge Viterbo Ferreira n°228, 4050-313 Porto, Portugal
| |
Collapse
|
130
|
Oliveira H, Fernandes A, F. Brás N, Mateus N, de Freitas V, Fernandes I. Anthocyanins as Antidiabetic Agents-In Vitro and In Silico Approaches of Preventive and Therapeutic Effects. Molecules 2020; 25:E3813. [PMID: 32825758 PMCID: PMC7504281 DOI: 10.3390/molecules25173813] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Many efforts have been made in the past two decades into the search for novel natural and less-toxic anti-diabetic agents. Some clinical trials have assigned this ability to anthocyanins, although different factors like the food source, the amount ingested, the matrix effect and the time of consumption (before or after a meal) seem to result in contradictory conclusions. The possible mechanisms involved in these preventive or therapeutic effects will be discussed-giving emphasis to the latest in vitro and in silico approaches. Therapeutic strategies to counteract metabolic alterations related to hyperglycemia and Type 2 Diabetes Mellitus (T2DM) may include: (a) Inhibition of carbohydrate-metabolizing enzymes; (b) reduction of glucose transporters expression or activity; (c) inhibition of glycogenolysis and (d) modulation of gut microbiota by anthocyanin breakdown products. These strategies may be achieved through administration of individual anthocyanins or by functional foods containing complexes of anthocyanin:carbohydrate:protein.
Collapse
Affiliation(s)
| | | | | | | | | | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (H.O.); (A.F.); (N.F.B.); (N.M.); (V.d.F.)
| |
Collapse
|
131
|
Microbiota Changes Due to Grape Seed Extract Diet Improved Intestinal Homeostasis and Decreased Fatness in Parental Broiler Hens. Microorganisms 2020; 8:microorganisms8081141. [PMID: 32731511 PMCID: PMC7465624 DOI: 10.3390/microorganisms8081141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022] Open
Abstract
In poultry, the selection of broilers for growth performance has induced a deterioration in the health of the parental hens associated with poor reproductive efficiency. To improve these parameters, we administered to laying parental broiler hens a regular diet supplemented or not (Control) with a moderate (1%) or a high level (2%) of grape seed extract (GSE). The 1% GSE diet was administered from a young age (from 4 to 40 weeks of age) and the high level of 2% GSE was administered only during a 2-week period (from 38 to 40 weeks of age) in the laying period. The analysis of 40-week-old hens showed that 2% GSE displayed a reduction in the fat tissue and an improvement in fertility with heavier and more resistant eggs. Seven monomer phenolic metabolites of GSE were significantly measured in the plasma of the 2% GSE hens. GSE supplementation increased the relative abundance of the following bacteria populations: Bifidobacteriaceae, Lactobacilliaceae and Lachnospiraceae. In conclusion, a supplementation period of only 2 weeks with 2% GSE is sufficient to improve the metabolic and laying parameters of breeder hens through a modification in the microbiota.
Collapse
|
132
|
Anuyahong T, Chusak C, Adisakwattana S. Incorporation of anthocyanin-rich riceberry rice in yogurts: Effect on physicochemical properties, antioxidant activity and in vitro gastrointestinal digestion. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109571] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
133
|
Consumption of whole purple and regular wheat modestly improves metabolic markers in adults with elevated high-sensitivity C-reactive protein: a randomised, single-blind parallel-arm study. Br J Nutr 2020; 124:1179-1189. [PMID: 32594915 DOI: 10.1017/s0007114520002275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Whole-grain wheat, in particular coloured varieties, may have health benefits in adults with chronic metabolic disease risk factors. Twenty-nine overweight and obese adults with chronic inflammation (high-sensitivity C-reactive protein) > 1·0 mg/l) replaced four daily servings of refined grain food products with bran-enriched purple or regular whole-wheat convenience bars (approximately 41-45 g fibre, daily) for 8 weeks in a randomised, single-blind parallel-arm study where body weight was maintained. Anthropometrics, blood markers of inflammation, oxidative stress, and lipaemia and metabolites of anthocyanins and phenolic acids were compared at days 1, 29 and 57 using repeated-measures ANOVA within groups and ANCOVA between groups at day 57, with day 1 as a covariate. A significant reduction in IL-6 and increase in adiponectin were observed within the purple wheat (PW) group. TNF-α was lowered in both groups and ferulic acid concentration increased in the regular wheat (RW) group. Comparing between wheats, only plasma TNF-α and glucose differed significantly (P < 0·05), that is, TNF-α and glucose decreased with RW and PW, respectively. Consumption of PW or RW products showed potential to improve plasma markers of inflammation and oxidative stress in participants with evidence of chronic inflammation, with modest differences observed based on type of wheat.
Collapse
|
134
|
Fernández-López JA, Fernández-Lledó V, Angosto JM. New insights into red plant pigments: more than just natural colorants. RSC Adv 2020; 10:24669-24682. [PMID: 35516216 PMCID: PMC9055186 DOI: 10.1039/d0ra03514a] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/16/2020] [Indexed: 12/02/2022] Open
Abstract
Pigments make nature both colorful and attractive. Humans have always incorporated the natural pigments of fruits, vegetables and spices into their dietary requirements. Naturally occurring red pigments in plants are carotenoids, anthocyanins and betacyanins. Natural pigments, apart from colour, provide added properties and are therefore considered to be bioactive constituents. Red natural colorants are one of the most widely used in the food industry. The interest in these pigments lies in the enhancement of the healthy effects of the diet. In this context, attention is given to carotenoids, anthocyanins and betacyanins, with emphasis on the basic chemical and biochemical attributes and wide-ranging health-promoting benefits of these pigments. Thus, in this review, we systematically present the advantages and limitations of these natural pigments as food colorants in relation to their physico-chemical properties, reactivity and bioactivity.
Collapse
Affiliation(s)
- José A Fernández-López
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT) Paseo Alfonso XIII 52 E-30203 Cartagena Murcia Spain
| | - Vicente Fernández-Lledó
- Higher Technical School of Telecommunications, Technical University of Madrid (UPM) Madrid Spain
| | - José M Angosto
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT) Paseo Alfonso XIII 52 E-30203 Cartagena Murcia Spain
| |
Collapse
|
135
|
Mercado-Mercado G, Blancas-Benítez FJ, Zamora-Gasga VM, Sáyago-Ayerdi SG. Mexican Traditional Plant-Foods: Polyphenols Bioavailability, Gut Microbiota Metabolism and Impact Human Health. Curr Pharm Des 2020; 25:3434-3456. [PMID: 31604412 DOI: 10.2174/1381612825666191011093753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
Functional foods have been used worldwide since ancient times, particularly, the prehispanic civilizations used several plants as medicinal foods. Nowadays, many Mexicans populations preserve their traditions and dietary patterns based on corn, beans, besides other endemic vegetables, mainly diverse varieties of chili, tomatoes and other plant-foods. It is well known that each species has a special complex mixture of bioactive compounds (BC) in which each component contributes to its overall bioactivity. These BC are plant metabolites that benefit human health by means of anti-inflammatory, immune-modulatory, and antioxidant effects. However, it becomes bioactive at human body when these BC must undergo diverse intestinal transformations, due to the action of digestive enzymes, but also by the action of microbiota metabolism. Thus, the intestinal microbiota is the key factor in the mediation of the physiological functions of dietary polyphenols. In fact, limited information is available, especially on dietary phytochemicals and metabolism in commonly available Mexican plant-foods. In this review, the bioaccesibility and bioavailability major BC from traditional Mexican plant-foods products and its potential health benefits will be discussed. Besides, we compile the scientific reports and the evidence of the impact of some Mexican plant-foods on the gut microbiota dynamic composition, specific microbial metabolites and its possible contributions to human health.
Collapse
Affiliation(s)
- Gilberto Mercado-Mercado
- Departamento de Ciencias Quimico Biologicas, Instituto de Ciencias Biomedicas, Universidad Autonoma de Ciudad Juarez, Ciudad Juarez, Chihuahua, Mexico
| | - Francisco J Blancas-Benítez
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic. Laboratorio Integral de Investigacion en Alimentos, Division de Estudios de Posgrado, Tepic, Nayarit, Mexico
| | - Victor M Zamora-Gasga
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic. Laboratorio Integral de Investigacion en Alimentos, Division de Estudios de Posgrado, Tepic, Nayarit, Mexico
| | - Sonia G Sáyago-Ayerdi
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic. Laboratorio Integral de Investigacion en Alimentos, Division de Estudios de Posgrado, Tepic, Nayarit, Mexico
| |
Collapse
|
136
|
Peng Z, Hu X, Li X, Jiang X, Deng L, Hu Y, Bai W. Protective effects of cyanidin‐3‐
O
‐glucoside on UVB‐induced chronic skin photodamage in mice via alleviating oxidative damage and anti‐inflammation. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.26] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ziyao Peng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety Jinan University Guangzhou China
| | - Xiaolong Hu
- Department of Dermatology Shenzhen FuYong People's Hospital Shenzhen China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety Jinan University Guangzhou China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety Jinan University Guangzhou China
| | - Liehua Deng
- Department of Dermatology, The First Affiliated Hospital Jinan University Guangzhou China
| | - Yunfeng Hu
- Department of Dermatology, The First Affiliated Hospital Jinan University Guangzhou China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety Jinan University Guangzhou China
| |
Collapse
|
137
|
Speer H, D’Cunha NM, Alexopoulos NI, McKune AJ, Naumovski N. Anthocyanins and Human Health-A Focus on Oxidative Stress, Inflammation and Disease. Antioxidants (Basel) 2020; 9:antiox9050366. [PMID: 32353990 PMCID: PMC7278778 DOI: 10.3390/antiox9050366] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 11/23/2022] Open
Abstract
Consumption of anthocyanins (ACNs), due to their antioxidant, anti-inflammatory and anti-apoptotic effects, has been proposed for the prevention and treatment of several different diseases and conditions. ACNs are recognized as one of the leading nutraceuticals for prolonging health benefits through the attenuation of oxidative stress, and inflammatory or age-related diseases. Increased consumption of ACNs has the potential to attenuate the damage ensuing from oxidative stress, inflammation, enhance cardiometabolic health, and delay symptoms in predisposed neuropathology. A myriad of evidence supports ACN consumption as complementary or standalone treatment strategies for non-communicable diseases (NCDs) including obesity, diabetes, cardiovascular disease (CVD), neurodegenerative diseases, as well as, more recently, for the modulation of gut bacteria and bone metabolism. While these findings indicate the beneficial effects of ACN consumption, their food sources differ vastly in ACN composition and thus potentially in their physiological effects. Consumption of foods high in ACNs can be recommended for their potential beneficial health effects due to their relatively easy and accessible addition to the everyday diet.
Collapse
Affiliation(s)
- Hollie Speer
- Faculty of Health, University of Canberra, Bruce, ACT 2617, Australia; (H.S.); (N.M.D.); (A.J.M.)
- Faculty of Science and Technology, University of Canberra, Bruce, ACT 2617, Australia
- University of Canberra Research Institute for Sport and Exercise (UC-RISE), University of Canberra, Bruce, ACT 2617, Australia
| | - Nathan M. D’Cunha
- Faculty of Health, University of Canberra, Bruce, ACT 2617, Australia; (H.S.); (N.M.D.); (A.J.M.)
| | | | - Andrew J. McKune
- Faculty of Health, University of Canberra, Bruce, ACT 2617, Australia; (H.S.); (N.M.D.); (A.J.M.)
- University of Canberra Research Institute for Sport and Exercise (UC-RISE), University of Canberra, Bruce, ACT 2617, Australia
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal 4000, South Africa
| | - Nenad Naumovski
- Faculty of Health, University of Canberra, Bruce, ACT 2617, Australia; (H.S.); (N.M.D.); (A.J.M.)
- Correspondence: ; Tel.: +612-6206-8719
| |
Collapse
|
138
|
Frame LA, Costa E, Jackson SA. Current explorations of nutrition and the gut microbiome: a comprehensive evaluation of the review literature. Nutr Rev 2020; 78:798-812. [DOI: 10.1093/nutrit/nuz106] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Context
The ability to measure the gut microbiome led to a surge in understanding and knowledge of its role in health and disease. The diet is a source of fuel for and influencer of composition of the microbiome.
Objective
To assess the understanding of the interactions between nutrition and the gut microbiome in healthy adults.
Data Sources
PubMed and Google Scholar searches were conducted in March and August 2018 and were limited to the following: English, 2010–2018, healthy adults, and reviews.
Data Extraction
A total of 86 articles were independently screened for duplicates and relevance, based on preidentified inclusion criteria.
Data Analysis
Research has focused on dietary fiber – microbiota fuel. The benefits of fiber center on short-chain fatty acids, which are required by colonocytes, improve absorption, and reduce intestinal transit time. Contrastingly, protein promotes microbial protein metabolism and potentially harmful by-products that can stagnate in the gut. The microbiota utilize and produce micronutrients; the bidirectional relationship between micronutrition and the gut microbiome is emerging.
Conclusions
Nutrition has profound effects on microbial composition, in turn affecting wide-ranging metabolic, hormonal, and neurological processes. There is no consensus on what defines a “healthy” gut microbiome. Future research must consider individual responses to diet.
Collapse
Affiliation(s)
- Leigh A Frame
- The George Washington School of Medicine and Health Sciences, Washington, USA
| | - Elise Costa
- The George Washington School of Medicine and Health Sciences, Washington, USA
| | - Scott A Jackson
- The George Washington School of Medicine and Health Sciences, Washington, USA
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
139
|
Yu X, Wu Z, Song Z, Zhang H, Zhan J, Yu H, Huang H, Yang B, Xie L, Dai X, Zhao W, Yu J, Wu L. Single-Anastomosis Duodenal Jejunal Bypass Improve Glucose Metabolism by Regulating Gut Microbiota and Short-Chain Fatty Acids in Goto-Kakisaki Rats. Front Microbiol 2020; 11:273. [PMID: 32153548 PMCID: PMC7047167 DOI: 10.3389/fmicb.2020.00273] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, bariatric surgery has emerged as a promising treatment for type 2 diabetes. Bariatric surgery is known to cause alterations in the relative abundance and composition of gut microbiota, which may lead to alterations in the levels of Short-Chain Fatty Acids (SCFAs) that are produced during fermentation by gut microbes. However, little is known about the mechanism of improved glucose metabolism mediated by gut microbiota following bariatric surgery. The aim of our study was to explore whether changes in gut microbiota and in fecal SCFA could be detected following single-anastomosis duodenal jejunal bypass (DJB-sa) surgery, a type of bariatric surgery, and whether these alterations might be related to the improvement of glucose metabolism. To this end, we performed DJB-sa or SHAM surgery on Goto-Kakisaki (GK) rats. We then compared the glucose metabolism as well as changes in gut microbiota and SCFAs levels between both groups. Our results showed that DJB-sa surgery was associated with a significant decrease in fasting blood glucose (FBG), intraperitoneal glucose tolerance test (IPGTT), and fasting serum insulin (FSI). And, DJB-sa led to a change in the composition of gut microbiota including an increase in the relative abundance of SCFA-producing bacteria (Bifidobacterium and Subdoligranulum). Moreover, the levels of six SCFAs in feces, as well as the intestinal expression of SCFA receptors including G-protein-coupled receptor 41 (GPR41), G-protein-coupled receptor 43 (GPR43), and G-protein-coupled receptor 109A (GPR109A), and the expression of Glucagon-like peptide-1 (GLP-1) displayed a significant increase following DJB-sa compared with the Sham group. Thus, the gut microbiota may contribute to the improvement of glucose metabolism in type 2 diabetes following DJB-sa. In conclusion, our study shows that DJB-sa improves glucose metabolism by modulating gut microbiota and by increasing short-chain fatty acid production.
Collapse
Affiliation(s)
- Xiang Yu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhuangwei Wu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhigao Song
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongbin Zhang
- Department of Medical Experimental, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Junfang Zhan
- Health Management Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hao Yu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongyan Huang
- Department of Metabolic Surgery, UDM Medical Group, Guangzhou, China.,Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Baolin Yang
- Department of Metabolic Surgery, UDM Medical Group, Guangzhou, China.,Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Lang Xie
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojiang Dai
- Department of Metabolic Surgery, UDM Medical Group, Guangzhou, China.,Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Weiguo Zhao
- Department of Metabolic Surgery, UDM Medical Group, Guangzhou, China.,Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jinlong Yu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liangping Wu
- Department of Metabolic Surgery, UDM Medical Group, Guangzhou, China.,Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
140
|
Eran Nagar E, Okun Z, Shpigelman A. Digestive fate of polyphenols: updated view of the influence of chemical structure and the presence of cell wall material. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2019.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
141
|
Kaiser M, Müller-Ehl L, Passon M, Schieber A. Development and Validation of Methods for the Determination of Anthocyanins in Physiological Fluids via UHPLC-MS n. Molecules 2020; 25:molecules25030518. [PMID: 31991680 PMCID: PMC7037091 DOI: 10.3390/molecules25030518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/17/2022] Open
Abstract
Recent in vitro and in vivo studies on anthocyanins confirmed numerous health-promoting effects in humans. Daily anthocyanin intake can be estimated via food databases, but the amount absorbed by the organism still remains uncertain because anthocyanin bioavailability is yet to be elucidated in its entirety. For this purpose, suitable and validated methods of sample preparation and analysis are required. Therefore, a sample preparation method for anthocyanin metabolite analysis in plasma was successfully established and validated. The validation yielded acceptable results for the anthocyanins in terms of recovery (54–108%) and precision (coefficient of variation (CV) < 15%). The UHPLC-MS method used in the consecutive reaction monitoring (CRM) mode was sufficiently sensitive, resulting in limits of detection <2.3 ng/mL and limits of quantification < 8.1 ng/mL with associated repeatability of the MS system with CVs of <5.1%. In addition, a method for the sum parameter determination of anthocyanidins in urine comprising solely the evaporation of acidified samples was developed, validated, and successfully applied to real samples. The results showed that this method is applicable for the methylated anthocyanidins, but not for the hydroxylated anthocyanidins, due to the chosen CRM modes required for optimum selectivity.
Collapse
|
142
|
Liu J, He Z, Ma N, Chen ZY. Beneficial Effects of Dietary Polyphenols on High-Fat Diet-Induced Obesity Linking with Modulation of Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:33-47. [PMID: 31829012 DOI: 10.1021/acs.jafc.9b06817] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Obesity is caused by an imbalance of energy intake and expenditure. It is characterized by a higher accumulation of body fat with a chronic low-grade inflammation. Many reports have shown that gut microbiota in the host plays a pivotal role in mediating the interaction between consumption of a high-fat diet (HFD) and onset of obesity. Accumulative evidence has suggested that the changes in the composition of gut microbiota may affect the host's energy homeostasis, systemic inflammation, lipid metabolism, and insulin sensitivity. As one of the major components in human diet, polyphenols have demonstrated to be capable of modulating the composition of gut microbiota and reducing the HFD-induced obesity. The present review summarizes the findings of recent studies on dietary polyphenols regarding their metabolism and interaction with bacteria in the intestine as well as the underlying mechanisms by which they modulate the gut microbiota and alleviate the HFD-induced obesity.
Collapse
Affiliation(s)
- Jianhui Liu
- College of Food Science and Engineering , Nanjing University of Finance & Economics , Nanjing , China
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| | - Zouyan He
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| | - Ning Ma
- College of Food Science and Engineering , Nanjing University of Finance & Economics , Nanjing , China
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| | - Zhen-Yu Chen
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| |
Collapse
|
143
|
Chen G, Wang G, Zhu C, Jiang X, Sun J, Tian L, Bai W. Effects of cyanidin-3-O-glucoside on 3-chloro-1,2-propanediol induced intestinal microbiota dysbiosis in rats. Food Chem Toxicol 2019; 133:110767. [PMID: 31449897 DOI: 10.1016/j.fct.2019.110767] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
Abstract
Gastrointestinal studies suggested that balanced gut microbial community contribute to a healthy gut. Our previous studies have suggested that cyanidin-3-O-glucoside (C3G) can alleviate food contaminant 3-Chloro-1,2-propanediol (3-MCPD) induced testis injury and improve the spermatogenesis in rats. To the best of our knowledge, the effects of 3-MCPD exposure and C3G intervention on intestinal microbiota have not been studied. In the present study, male Wistar rats were used to investigate the effects of C3G and 3-MCPD on microbiota composition. After 3-MCPD treatment, the small intestinal showed histopathological alterations, including villus atrophy, necrosis, decreased number of epithelial cells and cellular infiltration. Supplementation of C3G brings the small intestine closer to normal histology. Meanwhile, 3-MCPD exposure significantly changed the diversity and composition of gut microbiota. At the phylum level, Cyanobacteria and Firmicutes were enriched in 3-MCPD groups, while Actinobacteria and Proteobacteria were decreased. Supplementation of C3G significantly increased the relative abundance of Lachnospiraceae_NK4A136_group and Actinobacteria, indicating that C3G may regulate the communities of gut microbiota towards a beneficial orientation. Our results indicate that C3G may protect the intestinal mucosa damage caused by 3-MCPD, and appropriate dose of C3G restrains gut microbial dysbiosis caused by 3-MCPD, which is a potential way to promote gut healthy.
Collapse
Affiliation(s)
- Guowei Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China
| | - Gang Wang
- Department of Neurosurgery, Nanfang Hospital Southern Medical University, Guangzhou, 510515, PR China
| | - Cuijuan Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China.
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
144
|
Forgie AJ, Fouhse JM, Willing BP. Diet-Microbe-Host Interactions That Affect Gut Mucosal Integrity and Infection Resistance. Front Immunol 2019; 10:1802. [PMID: 31447837 PMCID: PMC6691341 DOI: 10.3389/fimmu.2019.01802] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022] Open
Abstract
The gastrointestinal tract microbiome plays a critical role in regulating host innate and adaptive immune responses against pathogenic bacteria. Disease associated dysbiosis and environmental induced insults, such as antibiotic treatments can lead to increased susceptibility to infection, particularly in a hospital setting. Dietary intervention is the greatest tool available to modify the microbiome and support pathogen resistance. Some dietary components can maintain a healthy disease resistant microbiome, whereas others can contribute to an imbalanced microbial population, impairing intestinal barrier function and immunity. Characterizing the effects of dietary components through the host-microbe axis as it relates to gastrointestinal health is vital to provide evidence-based dietary interventions to mitigate infections. This review will cover the effect of dietary components (carbohydrates, fiber, proteins, fats, polyphenolic compounds, vitamins, and minerals) on intestinal integrity and highlight their ability to modulate host-microbe interactions as to improve pathogen resistance.
Collapse
Affiliation(s)
| | | | - Benjamin P. Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
145
|
Affiliation(s)
- Jianbo Xiao
- a Department of Food Science and Engineering , Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University , Guangzhou , China
| | - Weibin Bai
- a Department of Food Science and Engineering , Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University , Guangzhou , China
| |
Collapse
|