101
|
Chi OZ, Liu X, Cofano S, Patel N, Jacinto E, Weiss HR. Rapalink-1 Increased Infarct Size in Early Cerebral Ischemia-Reperfusion With Increased Blood-Brain Barrier Disruption. Front Physiol 2021; 12:706528. [PMID: 34354602 PMCID: PMC8329705 DOI: 10.3389/fphys.2021.706528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
It has been reported that the mechanistic target of rapamycin (mTOR) pathway is involved in cerebral ischemia–reperfusion injury. One of the important pathological changes during reperfusion after cerebral ischemia is disruption of blood–brain barrier (BBB). Rapamycin, a first-generation mTOR inhibitor, produces divergent effects on neuronal survival and alteration in BBB disruption. In this study, we investigated how Rapalink-1, a third-generation mTOR inhibitor, would affect neuronal survival and BBB disruption in the very early stage of cerebral ischemia–reperfusion that is within the time window of thrombolysis therapy. The middle cerebral artery occlusion (MCAO) was performed in rats under isoflurane anesthesia with controlled ventilation. Of note, 2 mg/kg of Rapalink-1 or vehicle was administered intraperitoneally 10 min after MCAO. After 1 h of MCAO and 2 h of reperfusion, the transfer coefficient (Ki) of 14C-α-aminoisobutyric acid (104 Da) and the volume of 3H-dextran (70,000 Da) distribution were determined to assess the degree of BBB disruption. At the same time points, phosphorylated S6 (Ser240/244) and Akt (Ser473) as well as matrix metalloproteinase-2 (MMP2) protein level were determined by Western blot along with the infarct size using tetrazolium stain. Rapalink-1 increased the Ki in the ischemic-reperfused cortex (IR-C, +23%, p < 0.05) without a significant change in the volume of dextran distribution. Rapalink-1 increased the percentage of cortical infarct out of the total cortical area (+41%, p < 0.005). Rapalink-1 significantly decreased phosphorylated S6 and Akt to half the level of the control rats in the IR-C, which suggests that both of the mechanistic target of rapamycin complex 1 and 2 (mTORC1 and mTORC2) were inhibited. The MMP2 level was increased suggesting that BBB disruption could be aggravated by Rapalink-1. Taken together, our data suggest that inhibiting both mTORC1 and mTORC2 by Rapalink-1 could worsen the neuronal damage in the early stage of cerebral ischemia–reperfusion and that the aggravation of BBB disruption could be one of the contributing factors.
Collapse
Affiliation(s)
- Oak Z Chi
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Xia Liu
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Sean Cofano
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Nikhil Patel
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Harvey R Weiss
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| |
Collapse
|
102
|
Lombardo R, Musumeci T, Carbone C, Pignatello R. Nanotechnologies for intranasal drug delivery: an update of literature. Pharm Dev Technol 2021; 26:824-845. [PMID: 34218736 DOI: 10.1080/10837450.2021.1950186] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Scientific research has focused its attention on finding an alternative route to systemic oral and parenteral administration, to overcome their usual drawbacks, such as hepatic first-pass which decreases drug bioavailability after oral administration, off-target effects, low patient compliance and low speed of onset of the pharmacological action in first-aid cases. Innovative drug delivery systems (DDS), mainly based on polymer and lipid biocompatible materials, have given a great prompt in this direction in the last years. The intranasal (IN) route of administration is a valid non-invasive alternative. It is highly suitable for self-administration, the drug quickly reaches the bloodstream, largely avoiding the first pass effect, and can also reach directly the brain bypassing BBB. Association of IN route with DDS can thus become a winning strategy for the controlled delivery of drugs, especially when a very quick effect is desired or needed. This review aims at analyzing the scientific literature regarding IN-DDS and their different ways of administration (systemic, topical, pulmonary, nose-to-brain). In particular, attention was devoted to polymer- and lipid-based micro- and nanocarriers, being the topic of most published articles in the last decade, but the whole plethora of colloidal DDS investigated in recent years for IN administration was presented.
Collapse
Affiliation(s)
- Rosamaria Lombardo
- Department of Drug Sciences, University of Catania, Catania, Italy.,Neurosciences, University of Catania, Catania, Italy
| | - Teresa Musumeci
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Center for Ocular Nanotechnology, University of Catania, Catania, Italy
| | - Claudia Carbone
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Center for Ocular Nanotechnology, University of Catania, Catania, Italy
| | - Rosario Pignatello
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Center for Ocular Nanotechnology, University of Catania, Catania, Italy
| |
Collapse
|
103
|
Kaur J, Fahmy LM, Davoodi-Bojd E, Zhang L, Ding G, Hu J, Zhang Z, Chopp M, Jiang Q. Waste Clearance in the Brain. Front Neuroanat 2021; 15:665803. [PMID: 34305538 PMCID: PMC8292771 DOI: 10.3389/fnana.2021.665803] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022] Open
Abstract
Waste clearance (WC) is an essential process for brain homeostasis, which is required for the proper and healthy functioning of all cerebrovascular and parenchymal brain cells. This review features our current understanding of brain WC, both within and external to the brain parenchyma. We describe the interplay of the blood-brain barrier (BBB), interstitial fluid (ISF), and perivascular spaces within the brain parenchyma for brain WC directly into the blood and/or cerebrospinal fluid (CSF). We also discuss the relevant role of the CSF and its exit routes in mediating WC. Recent discoveries of the glymphatic system and meningeal lymphatic vessels, and their relevance to brain WC are highlighted. Controversies related to brain WC research and potential future directions are presented.
Collapse
Affiliation(s)
- Jasleen Kaur
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Lara M. Fahmy
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, United States
| | - Esmaeil Davoodi-Bojd
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Radiology, Henry Ford Health System, Detroit, MI, United States
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Neurology, Wayne State University, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
- Department of Neurology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
104
|
Ha IH, Lim C, Kim Y, Moon Y, Han SH, Moon WJ. Regional Differences in Blood-Brain Barrier Permeability in Cognitively Normal Elderly Subjects: A Dynamic Contrast-Enhanced MRI-Based Study. Korean J Radiol 2021; 22:1152-1162. [PMID: 33739632 PMCID: PMC8236362 DOI: 10.3348/kjr.2020.0816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE This study aimed to determine whether there are regional differences in the blood-brain barrier (BBB) permeability of cognitively normal elderly participants and to identify factors influencing BBB permeability with a clinically feasible, 10-minute dynamic contrast-enhanced (DCE) MRI protocol. MATERIALS AND METHODS This IRB-approved prospective study recruited 35 cognitively normal adults (26 women; mean age, 64.5 ± 5.6 years) who underwent DCE T1-weighted imaging. Permeability maps (Ktrans) were coregistered with masks to calculate the mean regional values. The paired t test and Friedman test were used to compare Ktrans between different regions. The relationships between Ktrans and the factors of age, sex, education, cognition score, vascular risk burden, vascular factors on imaging, and medial temporal lobar atrophy were assessed using Pearson correlation and the Spearman rank test. RESULTS The mean permeability rates of the right and left hippocampi, as assessed with automatic segmentation, were 0.529 ± 0.472 and 0.585 ± 0.515 (Ktrans, × 10-3 min-1), respectively. Concerning the deep gray matter, the Ktrans of the thalamus was significantly greater than those of the putamen and hippocampus (p = 0.007, p = 0.041). Regarding the white matter, the Ktrans value of the occipital white matter was significantly greater than those of the frontal, cingulate, and temporal white matter (p < 0.0001, p = 0.0007, p = 0.0002). The variations in Ktrans across brain regions were not related to age, cognitive score, vascular risk burden, vascular risk factors on imaging, or medial temporal lobar atrophy in the study group. CONCLUSION Our study demonstrated regional differences in BBB permeability (Ktrans) in cognitively normal elderly adults using a clinically acceptable 10-minutes DCE imaging protocol. The regional differences suggest that the integrity of the BBB varies across the brains of cognitively normal elderly adults. We recommend considering regional differences in Ktrans values when evaluating BBB permeability in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Il Heon Ha
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Changmok Lim
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Yeahoon Kim
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Yeonsil Moon
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Seol Heui Han
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Won Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea.
| |
Collapse
|
105
|
Bernier LP, Brunner C, Cottarelli A, Balbi M. Location Matters: Navigating Regional Heterogeneity of the Neurovascular Unit. Front Cell Neurosci 2021; 15:696540. [PMID: 34276312 PMCID: PMC8277940 DOI: 10.3389/fncel.2021.696540] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022] Open
Abstract
The neurovascular unit (NVU) of the brain is composed of multiple cell types that act synergistically to modify blood flow to locally match the energy demand of neural activity, as well as to maintain the integrity of the blood-brain barrier (BBB). It is becoming increasingly recognized that the functional specialization, as well as the cellular composition of the NVU varies spatially. This heterogeneity is encountered as variations in vascular and perivascular cells along the arteriole-capillary-venule axis, as well as through differences in NVU composition throughout anatomical regions of the brain. Given the wide variations in metabolic demands between brain regions, especially those of gray vs. white matter, the spatial heterogeneity of the NVU is critical to brain function. Here we review recent evidence demonstrating regional specialization of the NVU between brain regions, by focusing on the heterogeneity of its individual cellular components and briefly discussing novel approaches to investigate NVU diversity.
Collapse
Affiliation(s)
- Louis-Philippe Bernier
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Clément Brunner
- Neuro-Electronics Research Flanders, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie, Leuven, Belgium.,Interuniversity Microeletronics Centre, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Matilde Balbi
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
106
|
Whitmore HAB, Kim LA. Understanding the Role of Blood Vessels in the Neurologic Manifestations of Coronavirus Disease 2019 (COVID-19). THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1946-1954. [PMID: 34126084 PMCID: PMC8193973 DOI: 10.1016/j.ajpath.2021.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was originally identified as an outbreak in Wuhan, China, toward the end of 2019 and quickly became a global pandemic, with a large death toll. Originally identified as a respiratory disease, similar to previously discovered SARS and Middle East respiratory syndrome (MERS), concern has since been raised about the effects of SARS-CoV-2 infection on the vasculature. This viral-vascular involvement is of particular concern with regards to the small vessels present in the brain, with mounting evidence demonstrating that SARS-CoV-2 is capable of crossing the blood-brain barrier. Severe symptoms, termed coronavirus disease 2019 (COVID-19), often result in neurologic complications, regardless of patient age. These neurologic complications range from mild to severe across all demographics; however, the long-term repercussions of neurologic involvement on patient health are still unknown.
Collapse
Affiliation(s)
- Hannah A B Whitmore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Leo A Kim
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
107
|
Abstract
Numerous studies have identified microbial sequences or epitopes in pathological and non-pathological human brain samples. It has not been resolved if these observations are artifactual, or truly represent population of the brain by microbes. Given the tempting speculation that resident microbes could play a role in the many neuropsychiatric and neurodegenerative diseases that currently lack clear etiologies, there is a strong motivation to determine the “ground truth” of microbial existence in living brains. Here I argue that the evidence for the presence of microbes in diseased brains is quite strong, but a compelling demonstration of resident microbes in the healthy human brain remains to be done. Dedicated animal models studies may be required to determine if there is indeed a “brain microbiome.”
Collapse
Affiliation(s)
- Christopher D Link
- Department of Integrative Physiology/Institute for Behavioral Genetics, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
108
|
McNeill J, Rudyk C, Hildebrand ME, Salmaso N. Ion Channels and Electrophysiological Properties of Astrocytes: Implications for Emergent Stimulation Technologies. Front Cell Neurosci 2021; 15:644126. [PMID: 34093129 PMCID: PMC8173131 DOI: 10.3389/fncel.2021.644126] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Astrocytes comprise a heterogeneous cell population characterized by distinct morphologies, protein expression and function. Unlike neurons, astrocytes do not generate action potentials, however, they are electrically dynamic cells with extensive electrophysiological heterogeneity and diversity. Astrocytes are hyperpolarized cells with low membrane resistance. They are heavily involved in the modulation of K+ and express an array of different voltage-dependent and voltage-independent channels to help with this ion regulation. In addition to these K+ channels, astrocytes also express several different types of Na+ channels; intracellular Na+ signaling in astrocytes has been linked to some of their functional properties. The physiological hallmark of astrocytes is their extensive intracellular Ca2+ signaling cascades, which vary at the regional, subregional, and cellular levels. In this review article, we highlight the physiological properties of astrocytes and the implications for their function and influence of network and synaptic activity. Furthermore, we discuss the implications of these differences in the context of optogenetic and DREADD experiments and consider whether these tools represent physiologically relevant techniques for the interrogation of astrocyte function.
Collapse
Affiliation(s)
- Jessica McNeill
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | | | | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
109
|
D'Souza A, Dave KM, Stetler RA, S. Manickam D. Targeting the blood-brain barrier for the delivery of stroke therapies. Adv Drug Deliv Rev 2021; 171:332-351. [PMID: 33497734 DOI: 10.1016/j.addr.2021.01.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
A variety of neuroprotectants have shown promise in treating ischemic stroke, yet their delivery to the brain remains a challenge. The endothelial cells lining the blood-brain barrier (BBB) are emerging as a dynamic factor in the response to neurological injury and disease, and the endothelial-neuronal matrix coupling is fundamentally neuroprotective. In this review, we discuss approaches that target the endothelium for drug delivery both across the BBB and to the BBB as a viable strategy to facilitate neuroprotective effects, using the example of brain-derived neurotrophic factor (BDNF). We highlight the advances in cell-derived extracellular vesicles (EVs) used for CNS targeting and drug delivery. We also discuss the potential of engineered EVs as a potent strategy to deliver BDNF or other drug candidates to the ischemic brain, particularly when coupled with internal components like mitochondria that may increase cellular energetics in injured endothelial cells.
Collapse
|
110
|
Nyúl-Tóth Á, Tarantini S, DelFavero J, Yan F, Balasubramanian P, Yabluchanskiy A, Ahire C, Kiss T, Csipo T, Lipecz A, Farkas AE, Wilhelm I, Krizbai IA, Tang Q, Csiszar A, Ungvari Z. Demonstration of age-related blood-brain barrier disruption and cerebromicrovascular rarefaction in mice by longitudinal intravital two-photon microscopy and optical coherence tomography. Am J Physiol Heart Circ Physiol 2021; 320:H1370-H1392. [PMID: 33543687 PMCID: PMC8260380 DOI: 10.1152/ajpheart.00709.2020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/25/2022]
Abstract
Age-related blood-brain barrier (BBB) disruption and cerebromicrovascular rarefaction contribute importantly to the pathogenesis of both vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). Recent advances in geroscience research enable development of novel interventions to reverse age-related alterations of the cerebral microcirculation for prevention of VCID and AD. To facilitate this research, there is an urgent need for sensitive and easy-to-adapt imaging methods that enable longitudinal assessment of changes in BBB permeability and brain capillarization in aged mice and that could be used in vivo to evaluate treatment efficiency. To enable longitudinal assessment of changes in BBB permeability in aged mice equipped with a chronic cranial window, we adapted and optimized two different intravital two-photon imaging approaches. By assessing relative fluorescence changes over the baseline within a volume of brain tissue, after qualitative image subtraction of the brain microvasculature, we confirmed that, in 24-mo-old C57BL/6J mice, cumulative permeability of the microvessels to fluorescent tracers of different molecular masses (0.3 to 40 kDa) is significantly increased compared with that of 5-mo-old mice. Real-time recording of vessel cross-sections showed that apparent solute permeability of single microvessels is significantly increased in aged mice vs. young mice. Cortical capillary density, assessed both by intravital two-photon microscopy and optical coherence tomography was also decreased in aged mice vs. young mice. The presented methods have been optimized for longitudinal (over the period of 36 wk) in vivo assessment of cerebromicrovascular health in preclinical geroscience research.NEW & NOTEWORTHY Methods are presented for longitudinal detection of age-related increase in blood-brain barrier permeability and microvascular rarefaction in the mouse cerebral cortex by intravital two-photon microscopy and optical coherence tomography.
Collapse
Affiliation(s)
- Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center For Geroscience and Healthy Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center For Geroscience and Healthy Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jordan DelFavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center For Geroscience and Healthy Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Feng Yan
- Stephenson School of Biomedical Engineering, Gallogly College of Engineering, The University of Oklahoma, Norman, Oklahoma
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center For Geroscience and Healthy Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center For Geroscience and Healthy Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center For Geroscience and Healthy Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center For Geroscience and Healthy Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics and Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center For Geroscience and Healthy Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center For Geroscience and Healthy Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Attila E Farkas
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Imola Wilhelm
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| | - István A Krizbai
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| | - Qinggong Tang
- Stephenson School of Biomedical Engineering, Gallogly College of Engineering, The University of Oklahoma, Norman, Oklahoma
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center For Geroscience and Healthy Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics and Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center For Geroscience and Healthy Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics and Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
111
|
Bennett HC, Kim Y. Pericytes Across the Lifetime in the Central Nervous System. Front Cell Neurosci 2021; 15:627291. [PMID: 33776651 PMCID: PMC7994897 DOI: 10.3389/fncel.2021.627291] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/23/2021] [Indexed: 12/25/2022] Open
Abstract
The pericyte is a perivascular cell type that encapsulates the microvasculature of the brain and spinal cord. Pericytes play a crucial role in the development and maintenance of the blood-brain barrier (BBB) and have a multitude of important functions in the brain. Recent evidence indicates that pericyte impairment has been implicated in neurovascular pathology associated with various human diseases such as diabetes mellitus, Alzheimer's disease (AD), and stroke. Although the pericyte is essential for normal brain function, knowledge about its developmental trajectory and anatomical distribution is limited. This review article summarizes the scientific community's current understanding of pericytes' regional heterogeneity in the brain and their changes during major life stages. More specifically, this review article focuses on pericyte differentiation and migration during brain development, regional population differences in the adult brain, and changes during normal and pathological aging. Most of what is known about pericytes come from studies of the cerebral cortex and hippocampus. Therefore, we highlight the need to expand our understanding of pericyte distribution and function in the whole brain to better delineate this cell type's role in the normal brain and pathological conditions.
Collapse
Affiliation(s)
- Hannah C Bennett
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, United States
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, United States
| |
Collapse
|
112
|
Khan N, Laudermilk L, Ware J, Rosa T, Mathews K, Gay E, Amato G, Maitra R. Peripherally Selective CB1 Receptor Antagonist Improves Symptoms of Metabolic Syndrome in Mice. ACS Pharmacol Transl Sci 2021; 4:757-764. [PMID: 33860199 DOI: 10.1021/acsptsci.0c00213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome (MetS) is a complex disorder that stems from the additive effects of multiple underlying causes such as obesity, insulin resistance, and chronic low-grade inflammation. The endocannabinoid system plays a central role in appetite regulation, energy balance, lipid metabolism, insulin sensitivity, and β-cell function. The type 1 cannabinoid receptor (CB1R) antagonist SR141716A (rimonabant) showed promising antiobesity effects, but its use was discontinued due to adverse psychiatric events in some users. These adverse effects are due to antagonism of CB1R in the central nervous system (CNS). As such, CNS-sparing CB1R antagonists are presently being developed for various indications. In this study, we report that a recently described compound, 3-{1-[8-(2-chlorophenyl)-9-(4-chlorophenyl)-9H-purin-6-yl]piperidin-4-yl}-1-[6-(difluoromethoxy)pyridin-3-yl]urea (RTI1092769), a pyrazole based weak inverse agonist/antagonist of CB1 with very limited brain exposure, improves MetS related complications. Treatment with RTI1092769 inhibited weight gain and improved glucose utilization in obese mice maintained on a high fat diet. Hepatic triglyceride content and steatosis significantly improved with treatment. These phenotypes were supported by improvement in several biomarkers associated with nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). These results reinforce the idea that CB1 antagonists with limited brain exposure should be pursued for MetS and other important indications.
Collapse
Affiliation(s)
- Nayaab Khan
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Lucas Laudermilk
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Jalen Ware
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Taylor Rosa
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Kelly Mathews
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Elaine Gay
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - George Amato
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Rangan Maitra
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
113
|
Olung NF, Aluko OM, Jeje SO, Adeagbo AS, Ijomone OM. Vascular Dysfunction in the Brain; Implications for Heavy Metal Exposures. Curr Hypertens Rev 2021; 17:5-13. [PMID: 33632106 DOI: 10.2174/1573402117666210225085528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/24/2020] [Accepted: 12/01/2020] [Indexed: 11/22/2022]
Abstract
Normal or diseased conditions that alter the brain's requirement for oxygen and nutrients via alterations to neurovascular coupling have an impact on the level of the neurovascular unit; comprising neuronal, glial and vascular components. The communications between the components of the neurovascular unit are precise and accurate for its functions; hence a minute disturbance can result in neurovascular dysfunction. Heavy metals such as cadmium, mercury, and lead have been identified to increase the vulnerability of the neurovascular unit to damage. This review examines the role of heavy metals in neurovascular dysfunctions and the possible mechanisms by which these metals act. Risk factors ranging from lifestyle, environment, genetics, infections, and physiologic ageing involved in neurological dysfunctions were highlighted, while stroke was discussed as the prevalent consequence of neurovascular dysfunctions. Furthermore, the role of these heavy metals in the pathogenesis of stroke consequently pinpoints the importance of understanding the mechanisms of neurovascular damage in a bid to curb the occurrence of neurovascular dysfunctions.
Collapse
Affiliation(s)
- Nzube F Olung
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Oritoke M Aluko
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Sikirullai O Jeje
- Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Ayotunde S Adeagbo
- Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Omamuyovwi M Ijomone
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
114
|
Gaidhani N, Tucci FC, Kem WR, Beaton G, Uteshev VV. Therapeutic efficacy of α7 ligands after acute ischaemic stroke is linked to conductive states of α7 nicotinic ACh receptors. Br J Pharmacol 2021; 178:1684-1704. [PMID: 33496352 DOI: 10.1111/bph.15392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Targeting α7 nicotinic ACh receptors (nAChRs) in neuroinflammatory disorders including acute ischaemic stroke holds significant therapeutic promise. However, therapeutically relevant signalling mechanisms remain unidentified. Activation of neuronal α7 nAChRs triggers ionotropic signalling, but there is limited evidence for it in immunoglial tissues. The α7 ligands which are effective in reducing acute ischaemic stroke damage promote α7 ionotropic activity, suggesting a link between their therapeutic effects for treating acute ischaemic stroke and activation of α7 conductive states. EXPERIMENTAL APPROACH This hypothesis was tested using a transient middle cerebral artery occlusion (MCAO) model of acute ischaemic stroke, NS6740, a known selective non-ionotropic agonist of α7 nAChRs and 4OH-GTS-21, a partial α7 agonist. NS6740-like ligands exhibiting low efficacy/potency for ionotropic activity will be referred to as non-ionotropic agonists or "metagonists". KEY RESULTS 4OH-GTS-21, used as a positive control, significantly reduced neurological deficits and brain injury after MCAO as compared to vehicle and NS6740. By contrast, NS6740 was ineffective in identical assays and reversed the effects of 4OH-GTS-21 when these compounds were co-applied. Electrophysiological recordings from acute hippocampal slices obtained from NS6740-injected animals demonstrated its remarkable brain availability and protracted effects on α7 nAChRs as evidenced by sustained (>8 h) alterations in α7 ionotropic responsiveness. CONCLUSION AND IMPLICATIONS These results suggest that α7 ionotropic activity may be obligatory for therapeutic efficacy of α7 ligands after acute ischaemic stroke yet, highlight the potential for selective application of α7 ligands to disease states based on their mode of receptor activation.
Collapse
Affiliation(s)
- Nikhil Gaidhani
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Fabio C Tucci
- Epigen Biosciences, Inc., San Diego, California, USA
| | - William R Kem
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Graham Beaton
- Epigen Biosciences, Inc., San Diego, California, USA
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
115
|
Hu J, Liu T, Han B, Tan S, Guo H, Xin Y. Immunotherapy: A Potential Approach for High-Grade Spinal Cord Astrocytomas. Front Immunol 2021; 11:582828. [PMID: 33679686 PMCID: PMC7930372 DOI: 10.3389/fimmu.2020.582828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/30/2020] [Indexed: 01/10/2023] Open
Abstract
Spinal cord astrocytomas (SCAs) account for 6–8% of all primary spinal cord tumors. For high-grade SCAs, the prognosis is often poor with conventional therapy, thus the urgent need for novel treatments to improve patient survival. Immunotherapy is a promising therapeutic strategy and has been used to treat cancer in recent years. Several clinical trials have evaluated immunotherapy for intracranial gliomas, providing evidence for immunotherapy-mediated ability to inhibit tumor growth. Given the unique microenvironment and molecular biology of the spinal cord, this review will offer new perspectives on moving toward the application of successful immunotherapy for SCAs based on the latest studies and literature. Furthermore, we will discuss the challenges associated with immunotherapy in SCAs, propose prospects for future research, and provide a periodic summary of the current state of immunotherapy for SCAs immunotherapy.
Collapse
Affiliation(s)
- Jie Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tie Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bo Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shishan Tan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu Xin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
116
|
El-Khouly FE, Haumann R, Breur M, Veldhuijzen van Zanten SE, Kaspers GJ, Hendrikse NH, Hulleman E, van Vuurden DG, Bugiani M. The neurovascular unit in diffuse intrinsic pontine gliomas. FREE NEUROPATHOLOGY 2021; 2:17. [PMID: 37284626 PMCID: PMC10227752 DOI: 10.17879/freeneuropathology-2021-3341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/27/2021] [Indexed: 06/08/2023]
Abstract
Aims: Diffuse intrinsic pontine glioma (DIPG) is a childhood brainstem tumor with a median overall survival of eleven months. Lack of chemotherapy efficacy may be related to an intact blood-brain barrier (BBB). In this study we aim to investigate the neurovascular unit (NVU) in DIPG patients. Methods: DIPG biopsy (n = 4) and autopsy samples (n = 6) and age-matched healthy pons samples (n = 20) were immunohistochemically investigated for plasma protein extravasation, and the expression of tight junction proteins claudin-5 and zonula occludens-1 (ZO-1), basement membrane component laminin, pericyte marker PDGFR-β, and efflux transporters P-gp and BCRP. The mean vascular density and diameter were also assessed. Results: DIPGs show a heterogeneity in cell morphology and evidence of BBB leakage. Both in tumor biopsy and autopsy samples, expression of claudin-5, ZO-1, laminin, PDGFR-β and P-gp was reduced compared to healthy pontine tissues. In DIPG autopsy samples, vascular density was lower compared to healthy pons. The density of small vessels (<10 µm) was significantly lower (P<0.001), whereas the density of large vessels (≥10 µm) did not differ between groups (P = 0.404). The median vascular diameter was not significantly different: 6.21 µm in DIPG autopsy samples (range 2.25-94.85 µm), and 6.26 µm in controls (range 1.17-264.77 µm). Conclusion: Our study demonstrates evidence of structural changes in the NVU in DIPG patients, both in biopsy and autopsy samples, as well as a reduced vascular density in end-stage disease. Adding such a biological perspective may help to better direct future treatment choices for DIPG patients.
Collapse
Affiliation(s)
- Fatma E. El-Khouly
- Emma Children’s Hospital, Amsterdam UMC – location VUmc, Department of Pediatric Oncology, Cancer Center AmsterdamNetherlands
- Princess Máxima Center for Pediatric Oncology, UtrechtNetherlands
| | - Rianne Haumann
- Emma Children’s Hospital, Amsterdam UMC – location VUmc, Department of Pediatric Oncology, Cancer Center AmsterdamNetherlands
- Princess Máxima Center for Pediatric Oncology, UtrechtNetherlands
| | - Marjolein Breur
- Amsterdam UMC – location VUmc, Department of Pathology, de Boelelaan 1117, AmsterdamNetherlands
| | - Sophie E.M. Veldhuijzen van Zanten
- Emma Children’s Hospital, Amsterdam UMC – location VUmc, Department of Pediatric Oncology, Cancer Center AmsterdamNetherlands
- Princess Máxima Center for Pediatric Oncology, UtrechtNetherlands
| | - Gertjan J.L. Kaspers
- Emma Children’s Hospital, Amsterdam UMC – location VUmc, Department of Pediatric Oncology, Cancer Center AmsterdamNetherlands
- Princess Máxima Center for Pediatric Oncology, UtrechtNetherlands
| | - N. Harry Hendrikse
- Amsterdam UMC – location VUmc, Department of Clinical Pharmacology & Pharmacy, AmsterdamNetherlands
- Amsterdam UMC – location VUmc, Department of Radiology & Nuclear Medicine, AmsterdamNetherlands
| | - Esther Hulleman
- Emma Children’s Hospital, Amsterdam UMC – location VUmc, Department of Pediatric Oncology, Cancer Center AmsterdamNetherlands
- Princess Máxima Center for Pediatric Oncology, UtrechtNetherlands
| | - Dannis G. van Vuurden
- Emma Children’s Hospital, Amsterdam UMC – location VUmc, Department of Pediatric Oncology, Cancer Center AmsterdamNetherlands
- Princess Máxima Center for Pediatric Oncology, UtrechtNetherlands
| | - Marianna Bugiani
- Amsterdam UMC – location VUmc, Department of Pathology, de Boelelaan 1117, AmsterdamNetherlands
| |
Collapse
|
117
|
Winkler L, Blasig R, Breitkreuz-Korff O, Berndt P, Dithmer S, Helms HC, Puchkov D, Devraj K, Kaya M, Qin Z, Liebner S, Wolburg H, Andjelkovic AV, Rex A, Blasig IE, Haseloff RF. Tight junctions in the blood-brain barrier promote edema formation and infarct size in stroke - Ambivalent effects of sealing proteins. J Cereb Blood Flow Metab 2021; 41:132-145. [PMID: 32054373 PMCID: PMC7747158 DOI: 10.1177/0271678x20904687] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 01/07/2023]
Abstract
The outcome of stroke is greatly influenced by the state of the blood-brain barrier (BBB). The BBB endothelium is sealed paracellularly by tight junction (TJ) proteins, i.e., claudins (Cldns) and the redox regulator occludin. Functions of Cldn3 and occludin at the BBB are largely unknown, particularly after stroke. We address the effects of Cldn3 deficiency and stress factors on the BBB and its TJs. Cldn3 tightened the BBB for small molecules and ions, limited endothelial endocytosis, strengthened the TJ structure and controlled Cldn1 expression. After middle cerebral artery occlusion (MCAO) and 3-h reperfusion or hypoxia of isolated brain capillaries, Cldn1, Cldn3 and occludin were downregulated. In Cldn3 knockout mice (C3KO), the reduction in Cldn1 was even greater and TJ ultrastructure was impaired; 48 h after MCAO of wt mice, infarct volumes were enlarged and edema developed, but endothelial TJs were preserved. In contrast, junctional localization of Cldn5 and occludin, TJ density, swelling and infarction size were reduced in affected brain areas of C3KO. Taken together, Cldn3 and occludin protect TJs in stroke, and this keeps the BBB intact. However, functional Cldn3, Cldn3-regulated TJ proteins and occludin promote edema and infarction, which suggests that TJ modulation could improve the outcome of stroke.
Collapse
Affiliation(s)
- Lars Winkler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin-Buch, Germany
| | - Rosel Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin-Buch, Germany
| | | | - Philipp Berndt
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin-Buch, Germany
| | - Sophie Dithmer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin-Buch, Germany
| | - Hans C Helms
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin-Buch, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin-Buch, Germany
| | - Kavi Devraj
- Institute of Neurology (Edinger-Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Mehmet Kaya
- School of Medicine, Department of Physiology & Koç University Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Zhihai Qin
- The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Stefan Liebner
- Institute of Neurology (Edinger-Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Hartwig Wolburg
- Institute of Pathology and Neuropathology, Universität of Tübingen, Tübingen, Germany
| | | | - Andre Rex
- Charité-Universitätsmedizin, Experimental Neurology, Berlin, Germany
| | - Ingolf E Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin-Buch, Germany
| | - Reiner F Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin-Buch, Germany
| |
Collapse
|
118
|
Neuropharmacokinetic visualization of regional and subregional unbound antipsychotic drug transport across the blood-brain barrier. Mol Psychiatry 2021; 26:7732-7745. [PMID: 34480089 PMCID: PMC8872980 DOI: 10.1038/s41380-021-01267-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023]
Abstract
Comprehensive determination of the extent of drug transport across the region-specific blood-brain barrier (BBB) is a major challenge in preclinical studies. Multiple approaches are needed to determine the regional free (unbound) drug concentration at which a drug engages with its therapeutic target. We present an approach that merges in vivo and in vitro neuropharmacokinetic investigations with mass spectrometry imaging to quantify and visualize both the extent of unbound drug BBB transport and the post-BBB cerebral distribution of drugs at regional and subregional levels. Direct imaging of the antipsychotic drugs risperidone, clozapine, and olanzapine using this approach enabled differentiation of regional and subregional BBB transport characteristics at 20-µm resolution in small brain regions, which could not be achieved by other means. Our approach allows investigation of heterogeneity in BBB transport and presents new possibilities for molecular psychiatrists by facilitating interpretation of regional target-site exposure results and decision-making.
Collapse
|
119
|
Irwin MG, Chung CKE, Wong GTC. Measuring the effect‐site. Anaesthesia 2020; 75:1583-1586. [DOI: 10.1111/anae.15186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2020] [Indexed: 11/29/2022]
Affiliation(s)
- M. G. Irwin
- Department of Anaesthesiology University of Hong Kong Queen Mary Hospital Hong Kong
| | - C. K. E. Chung
- Department of Anaesthesiology University of Hong Kong Queen Mary Hospital Hong Kong
| | - G. T. C. Wong
- Department of Anaesthesiology University of Hong Kong Queen Mary Hospital Hong Kong
| |
Collapse
|
120
|
Verheggen ICM, de Jong JJA, van Boxtel MPJ, Postma AA, Jansen JFA, Verhey FRJ, Backes WH. Imaging the role of blood-brain barrier disruption in normal cognitive ageing. GeroScience 2020; 42:1751-1764. [PMID: 33025410 PMCID: PMC7732959 DOI: 10.1007/s11357-020-00282-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
To investigate whether blood-brain barrier (BBB) disruption is a potential mechanism of usual age-related cognitive decline, we conducted dynamic contrast-enhanced (DCE) MRI to measure BBB leakage in a healthy sample, and investigated the association with longitudinal cognitive decline. In a sample of neurologically and cognitively healthy, older individuals, BBB leakage rate in the white and grey matter and hippocampus was measured using DCE MRI with pharmacokinetic modelling. Regression analysis was performed to investigate whether the leakage rate was associated with decline in cognitive performance (memory encoding, memory retrieval, executive functioning and processing speed) over 12 years. White and grey matter BBB leakages were significantly associated with decline in memory retrieval. No significant relations were found between hippocampal BBB leakage and cognitive performance. BBB disruption already being associated with usual cognitive ageing, supports that this neurovascular alteration is a possible explanation for the cognitive decline inherent to the ageing process. More insight into BBB leakage during the normal ageing process could improve estimation and interpretation of leakage rate in pathological conditions. The current results might also stimulate the search for strategies to maintain BBB integrity and help increase the proportion people experiencing successful ageing. Netherlands Trial Register number: NL6358, date of registration: 2017-03-24.
Collapse
Affiliation(s)
- Inge C M Verheggen
- Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.
- Alzheimer Center Limburg, Maastricht, The Netherlands.
| | - Joost J A de Jong
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Martin P J van Boxtel
- Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Alzheimer Center Limburg, Maastricht, The Netherlands
| | - Alida A Postma
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jacobus F A Jansen
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Frans R J Verhey
- Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Alzheimer Center Limburg, Maastricht, The Netherlands
| | - Walter H Backes
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
121
|
Bozic I, Savic D, Lavrnja I. Astrocyte phenotypes: Emphasis on potential markers in neuroinflammation. Histol Histopathol 2020; 36:267-290. [PMID: 33226087 DOI: 10.14670/hh-18-284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Astrocytes, the most abundant glial cells in the central nervous system (CNS), have numerous integral roles in all CNS functions. They are essential for synaptic transmission and support neurons by providing metabolic substrates, secreting growth factors and regulating extracellular concentrations of ions and neurotransmitters. Astrocytes respond to CNS insults through reactive astrogliosis, in which they go through many functional and molecular changes. In neuroinflammatory conditions reactive astrocytes exert both beneficial and detrimental functions, depending on the context and heterogeneity of astrocytic populations. In this review we profile astrocytic diversity in the context of neuroinflammation; with a specific focus on multiple sclerosis (MS) and its best-described animal model experimental autoimmune encephalomyelitis (EAE). We characterize two main subtypes, protoplasmic and fibrous astrocytes and describe the role of intermediate filaments in the physiology and pathology of these cells. Additionally, we outline a variety of markers that are emerging as important in investigating astrocytic biology in both physiological conditions and neuroinflammation.
Collapse
Affiliation(s)
- Iva Bozic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Savic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
122
|
Burek M, Burmester S, Salvador E, Möller-Ehrlich K, Schneider R, Roewer N, Nagai M, Förster CY. Kidney Ischemia/Reperfusion Injury Induces Changes in the Drug Transporter Expression at the Blood-Brain Barrier in vivo and in vitro. Front Physiol 2020; 11:569881. [PMID: 33281613 PMCID: PMC7688901 DOI: 10.3389/fphys.2020.569881] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/20/2020] [Indexed: 01/25/2023] Open
Abstract
Ischemia/reperfusion injury is a major cause of acute kidney injury (AKI). AKI is characterized by a sudden decrease in kidney function, systemic inflammation, oxidative stress, and dysregulation of the sodium, potassium, and water channels. While AKI leads to uremic encephalopathy, epidemiological studies have shown that AKI is associated with a subsequent risk for developing stroke and dementia. To get more insights into kidney-brain crosstalk, we have created an in vitro co-culture model based on human kidney cells of the proximal tubule (HK-2) and brain microvascular endothelial cells (BMEC). The HK-2 cell line was grown to confluence on 6-well plates and exposed to oxygen/glucose deprivation (OGD) for 4 h. Control HK-2 cells were grown under normal conditions. The BMEC cell line cerebED was grown to confluence on transwells with 0.4 μm pores. The transwell filters seeded and grown to confluence with cereEND were inserted into the plates with HK-2 cells with or without OGD treatment. In addition, cerebEND were left untreated or treated with uremic toxins, indole-3-acetic acid (IAA) and indoxyl sulfate (IS). The protein and mRNA expression of selected BBB-typical influx transporters, efflux transporters, cellular receptors, and tight junction proteins was measured in BMECs. To validate this in vitro model of kidney-brain interaction, we isolated brain capillaries from mice exposed to bilateral renal ischemia (30 min)/reperfusion injury (24 h) and measured mRNA and protein expression as described above. Both in vitro and in vivo systems showed similar changes in the expression of drug transporters, cellular receptors, and tight junction proteins. Efflux pumps, in particular Abcb1b, Abcc1, and Abcg2, have shown increased expression in our model. Thus, our in vitro co-culture system can be used to study the cellular mechanism of kidney and brain crosstalk in renal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Malgorzata Burek
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| | - Sandra Burmester
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| | - Ellaine Salvador
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| | - Kerstin Möller-Ehrlich
- Division of Nephrology, Department of Medicine I, University of Würzburg, Würzburg, Germany
| | - Reinhard Schneider
- Division of Nephrology, Department of Medicine I, University of Würzburg, Würzburg, Germany
| | - Norbert Roewer
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| | - Michiaki Nagai
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Carola Y. Förster
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| |
Collapse
|
123
|
Jansen PR, Nagel M, Watanabe K, Wei Y, Savage JE, de Leeuw CA, van den Heuvel MP, van der Sluis S, Posthuma D. Genome-wide meta-analysis of brain volume identifies genomic loci and genes shared with intelligence. Nat Commun 2020; 11:5606. [PMID: 33154357 PMCID: PMC7644755 DOI: 10.1038/s41467-020-19378-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
The phenotypic correlation between human intelligence and brain volume (BV) is considerable (r ≈ 0.40), and has been shown to be due to shared genetic factors. To further examine specific genetic factors driving this correlation, we present genomic analyses of the genetic overlap between intelligence and BV using genome-wide association study (GWAS) results. First, we conduct a large BV GWAS meta-analysis (N = 47,316 individuals), followed by functional annotation and gene-mapping. We identify 18 genomic loci (14 not previously associated), implicating 343 genes (270 not previously associated) and 18 biological pathways for BV. Second, we use an existing GWAS for intelligence (N = 269,867 individuals), and estimate the genetic correlation (rg) between BV and intelligence to be 0.24. We show that the rg is partly attributable to physical overlap of GWAS hits in 5 genomic loci. We identify 92 shared genes between BV and intelligence, which are mainly involved in signaling pathways regulating cell growth. Out of these 92, we prioritize 32 that are most likely to have functional impact. These results provide information on the genetics of BV and provide biological insight into BV's shared genetic etiology with intelligence.
Collapse
Affiliation(s)
- Philip R Jansen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mats Nagel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kyoko Watanabe
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Yongbin Wei
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeanne E Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christiaan A de Leeuw
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sophie van der Sluis
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Department of Child and Adolescent Psychiatry and Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
124
|
Yang AJT, Frendo-Cumbo S, MacPherson REK. Resveratrol and Metformin Recover Prefrontal Cortex AMPK Activation in Diet-Induced Obese Mice but Reduce BDNF and Synaptophysin Protein Content. J Alzheimers Dis 2020; 71:945-956. [PMID: 31450493 DOI: 10.3233/jad-190123] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Obesity, insulin resistance, and type 2 diabetes are established risk factors for the development of Alzheimer's disease (AD). Given this connection, two drugs, metformin (MET) and resveratrol (RESV), are considered for the clearance of amyloid-β peptides through AMPK-mediated activation of autophagy. However, overactivation of AMPK observed in late-stage AD brains and relationships between AMPK and neurogenesis (through mTORC1 inhibition), questions treatment with these drugs. OBJECTIVE To examine if MET and/or RESV supplementation activates brain AMPK, regulates markers of autophagy, and affects markers of neuronal health/neurogenesis. METHODS 8-week-old male C57BL/6J mice were fed a low (N = 12; 10% kcal fat; LFD) or high fat diet (N = 40; 60% kcal fat; HFD) for 9 weeks to induce insulin resistance and obesity. HFD mice were then treated with/without MET (250 mg/kg/day), RESV (100 mg/kg/day), or COMBO (MET: 250 mg/kg/day, RESV: 100 mg/kg/day) for 5 weeks. Hippocampus and prefrontal cortex were extracted for western blotting analysis. RESULTS Cortex AMPK (T172) and raptor (S792, the regulatory subunit of mTORC1) phosphorylation were upregulated following RESV, COMBO treatments. mTOR (S2448) and ULK1 (S555) activation was seen following MET, COMBO and RESV, COMBO treatments, respectively, in the cortex and hippocampus. p62 content was decreased following RESV, COMBO, with LC3 content being increased following RESV treatment in the cortex. Brain derived neurotropic factor (BDNF) was significantly decreased following RESV, COMBO, and synaptophysin following all treatment in the cortex. CONCLUSION These results demonstrate that while treatments upregulated markers of autophagy in the prefrontal cortex, reductions in neuronal health markers question the efficacy of AMPK as a therapy for AD.
Collapse
Affiliation(s)
- Alex J T Yang
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Scott Frendo-Cumbo
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
125
|
Dusart P, Hallström BM, Renné T, Odeberg J, Uhlén M, Butler LM. A Systems-Based Map of Human Brain Cell-Type Enriched Genes and Malignancy-Associated Endothelial Changes. Cell Rep 2020; 29:1690-1706.e4. [PMID: 31693905 DOI: 10.1016/j.celrep.2019.09.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/09/2019] [Accepted: 09/27/2019] [Indexed: 02/02/2023] Open
Abstract
Changes in the endothelium of the cerebral vasculature can contribute to inflammatory, thrombotic, and malignant disorders. The importance of defining cell-type-specific genes and their modification in disease is increasingly recognized. Here, we develop a bioinformatics-based approach to identify normal brain cell-enriched genes, using bulk RNA sequencing (RNA-seq) data from 238 normal human cortex samples from 2 independent cohorts. We compare endothelial cell-enriched gene profiles with astrocyte, oligodendrocyte, neuron, and microglial cell profiles. Endothelial changes in malignant disease are explored using RNA-seq data from 516 lower-grade gliomas and 401 glioblastomas. Lower-grade gliomas appear to be an "endothelial intermediate" between normal brain and glioblastoma. We apply our method for the prediction of glioblastoma-specific endothelial biomarkers, providing potential diagnostic or therapeutic targets. In summary, we provide a roadmap of endothelial cell identity in normal and malignant brain, using a method developed to resolve bulk RNA-seq into constituent cell-type-enriched profiles.
Collapse
Affiliation(s)
- Philip Dusart
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden; K.G. Jebsen Thrombosis Research and Expertise Centre, Department of Clinical Medicine, The Arctic University of Norway, 9019 Tromsø, Norway
| | - Björn Mikael Hallström
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jacob Odeberg
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden; K.G. Jebsen Thrombosis Research and Expertise Centre, Department of Clinical Medicine, The Arctic University of Norway, 9019 Tromsø, Norway; The University Hospital of North Norway (UNN), PB100, 9038 Tromsø, Norway; Department of Hematology, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Lynn Marie Butler
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden; K.G. Jebsen Thrombosis Research and Expertise Centre, Department of Clinical Medicine, The Arctic University of Norway, 9019 Tromsø, Norway; Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden.
| |
Collapse
|
126
|
Ristori E, Donnini S, Ziche M. New Insights Into Blood-Brain Barrier Maintenance: The Homeostatic Role of β-Amyloid Precursor Protein in Cerebral Vasculature. Front Physiol 2020; 11:1056. [PMID: 32973564 PMCID: PMC7481479 DOI: 10.3389/fphys.2020.01056] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular homeostasis is maintained by the blood-brain barrier (BBB), a highly selective structure that separates the peripheral blood circulation from the brain and protects the central nervous system (CNS). Dysregulation of BBB function is the precursor of several neurodegenerative diseases including Alzheimer’s disease (AD) and cerebral amyloid angiopathy (CAA), both related to β-amyloid (Aβ) accumulation and deposition. The origin of BBB dysfunction before and/or during CAA and AD onset is not known. Several studies raise the possibility that vascular dysfunction could be an early step in these diseases and could even precede significant Aβ deposition. Though accumulation of neuron-derived Aβ peptides is considered the primary influence driving AD and CAA pathogenesis, recent studies highlighted the importance of the physiological role of the β-amyloid precursor protein (APP) in endothelial cell homeostasis, suggesting a potential role of this protein in maintaining vascular stability. In this review, we will discuss the physiological function of APP and its cleavage products in the vascular endothelium. We further suggest how loss of APP homeostatic regulation in the brain vasculature could lead toward pathological outcomes in neurodegenerative disorders.
Collapse
Affiliation(s)
- Emma Ristori
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Marina Ziche
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
127
|
Francisco DMF, Marchetti L, Rodríguez-Lorenzo S, Frías-Anaya E, Figueiredo RM, Winter P, Romero IA, de Vries HE, Engelhardt B, Bruggmann R. Advancing brain barriers RNA sequencing: guidelines from experimental design to publication. Fluids Barriers CNS 2020; 17:51. [PMID: 32811511 PMCID: PMC7433166 DOI: 10.1186/s12987-020-00207-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND RNA sequencing (RNA-Seq) in its varied forms has become an indispensable tool for analyzing differential gene expression and thus characterization of specific tissues. Aiming to understand the brain barriers genetic signature, RNA seq has also been introduced in brain barriers research. This has led to availability of both, bulk and single-cell RNA-Seq datasets over the last few years. If appropriately performed, the RNA-Seq studies provide powerful datasets that allow for significant deepening of knowledge on the molecular mechanisms that establish the brain barriers. However, RNA-Seq studies comprise complex workflows that require to consider many options and variables before, during and after the proper sequencing process. MAIN BODY In the current manuscript, we build on the interdisciplinary experience of the European PhD Training Network BtRAIN ( https://www.btrain-2020.eu/ ) where bioinformaticians and brain barriers researchers collaborated to analyze and establish RNA-Seq datasets on vertebrate brain barriers. The obstacles BtRAIN has identified in this process have been integrated into the present manuscript. It provides guidelines along the entire workflow of brain barriers RNA-Seq studies starting from the overall experimental design to interpretation of results. Focusing on the vertebrate endothelial blood-brain barrier (BBB) and epithelial blood-cerebrospinal-fluid barrier (BCSFB) of the choroid plexus, we provide a step-by-step description of the workflow, highlighting the decisions to be made at each step of the workflow and explaining the strengths and weaknesses of individual choices made. Finally, we propose recommendations for accurate data interpretation and on the information to be included into a publication to ensure appropriate accessibility of the data and reproducibility of the observations by the scientific community. CONCLUSION Next generation transcriptomic profiling of the brain barriers provides a novel resource for understanding the development, function and pathology of these barrier cells, which is essential for understanding CNS homeostasis and disease. Continuous advancement and sophistication of RNA-Seq will require interdisciplinary approaches between brain barrier researchers and bioinformaticians as successfully performed in BtRAIN. The present guidelines are built on the BtRAIN interdisciplinary experience and aim to facilitate collaboration of brain barriers researchers with bioinformaticians to advance RNA-Seq study design in the brain barriers community.
Collapse
Affiliation(s)
- David M F Francisco
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Luca Marchetti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Sabela Rodríguez-Lorenzo
- MS Center Amsterdam, Amsterdam Neuroscience, Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eduardo Frías-Anaya
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Ricardo M Figueiredo
- GenXPro GmbH, Frankfurt/Main, Germany
- Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | | | - Ignacio Andres Romero
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Helga E de Vries
- MS Center Amsterdam, Amsterdam Neuroscience, Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland.
| |
Collapse
|
128
|
Jeske R, Albo J, Marzano M, Bejoy J, Li Y. Engineering Brain-Specific Pericytes from Human Pluripotent Stem Cells. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:367-382. [PMID: 32571167 PMCID: PMC7462039 DOI: 10.1089/ten.teb.2020.0091] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
Pericytes (PCs) are a type of perivascular cells that surround endothelial cells of small blood vessels. In the brain, PCs show heterogeneity depending on their position within the vasculature. As a result, PC interactions with surrounding endothelial cells, astrocytes, and neuron cells play a key role in a wide array of neurovascular functions such as regulating blood-brain barrier (BBB) permeability, cerebral blood flow, and helping to facilitate the clearance of toxic cellular molecules. Therefore, a reliable method of engineering brain-specific PCs from human induced pluripotent stem cells (hiPSCs) is critical in neurodegenerative disease modeling. This review summarizes brain-specific PC differentiation of hiPSCs through mesoderm and neural crest induction. Key signaling pathways (platelet-derived growth factor-B [PDGF-B], transforming growth factor [TGF]-β, and Notch signaling) regulating PC function, PC interactions with adjacent cells, and PC differentiation from hiPSCs are also discussed. Specifically, PDGF-BB-platelet-derived growth factor receptor β signaling promotes PC cell survival, TGF-β signal transduction facilitates PC attachment to endothelial cells, and Notch signaling is critical in vascular development and arterial-venous specification. Furthermore, current challenges facing the use of hiPSC-derived PCs are discussed, and their ongoing uses in neurodegenerative disease modeling are identified. Further investigations into PCs and surrounding cell interactions are needed to characterize the roles of brain PCs in various neurodegenerative disorders. Impact statement This article summarizes the work related to brain-specific pericytes (PCs) derived from human pluripotent stem cells (hPSCs). In particular, key signaling pathways regulating PC function, PC interactions with adjacent cells, and PC differentiation from hPSCs were discussed. Furthermore, current challenges facing the use of hPSC-derived PCs were identified, and their ongoing uses in neurodegenerative disease modeling were discussed. The review highlights the important role of cell-cell interactions in blood-brain barrier (BBB) models and neurodegeneration. The summarized findings are significant for establishing pluripotent stem cell-based BBB models toward the applications in drug screening and disease modeling.
Collapse
Affiliation(s)
- Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Jonathan Albo
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Mark Marzano
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Julie Bejoy
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
129
|
Santisteban MM, Ahn SJ, Lane D, Faraco G, Garcia-Bonilla L, Racchumi G, Poon C, Schaeffer S, Segarra SG, Körbelin J, Anrather J, Iadecola C. Endothelium-Macrophage Crosstalk Mediates Blood-Brain Barrier Dysfunction in Hypertension. Hypertension 2020; 76:795-807. [PMID: 32654560 DOI: 10.1161/hypertensionaha.120.15581] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypertension is a leading cause of stroke and dementia, effects attributed to disrupting delivery of blood flow to the brain. Hypertension also alters the blood-brain barrier (BBB), a critical component of brain health. Although endothelial cells are ultimately responsible for the BBB, the development and maintenance of the barrier properties depend on the interaction with other vascular-associated cells. However, it remains unclear if BBB disruption in hypertension requires cooperative interaction with other cells. Perivascular macrophages (PVM), innate immune cells closely associated with cerebral microvessels, have emerged as major contributors to neurovascular dysfunction. Using 2-photon microscopy in vivo and electron microscopy in a mouse model of Ang II (angiotensin II) hypertension, we found that the vascular segments most susceptible to increased BBB permeability are arterioles and venules >10 µm and not capillaries. Brain macrophage depletion with clodronate attenuates, but does not abolish, the increased BBB permeability in these arterioles where PVM are located. Deletion of AT1R (Ang II type-1 receptors) in PVM using bone marrow chimeras partially attenuated the BBB dysfunction through the free radical-producing enzyme Nox2. In contrast, downregulation of AT1R in cerebral endothelial cells using a viral gene transfer-based approach prevented the BBB disruption completely. The results indicate that while endothelial AT1R, mainly in arterioles and venules, initiate the BBB disruption in hypertension, PVM are required for the full expression of the dysfunction. The findings unveil a previously unappreciated contribution of resident brain macrophages to increased BBB permeability of hypertension and identify PVM as a putative therapeutic target in diseases associated with BBB dysfunction.
Collapse
Affiliation(s)
- Monica M Santisteban
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Sung Ji Ahn
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Diane Lane
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Giuseppe Faraco
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Lidia Garcia-Bonilla
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Gianfranco Racchumi
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Carrie Poon
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Samantha Schaeffer
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Steven G Segarra
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Jakob Körbelin
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.K.)
| | - Josef Anrather
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Costantino Iadecola
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| |
Collapse
|
130
|
Mészáros Á, Molnár K, Nógrádi B, Hernádi Z, Nyúl-Tóth Á, Wilhelm I, Krizbai IA. Neurovascular Inflammaging in Health and Disease. Cells 2020; 9:cells9071614. [PMID: 32635451 PMCID: PMC7407516 DOI: 10.3390/cells9071614] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
Abstract
Aging is characterized by a chronic low-grade sterile inflammation dubbed as inflammaging, which in part originates from accumulating cellular debris. These, acting as danger signals with many intrinsic factors such as cytokines, are sensed by a network of pattern recognition receptors and other cognate receptors, leading to the activation of inflammasomes. Due to the inflammasome activity-dependent increase in the levels of pro-inflammatory interleukins (IL-1β, IL-18), inflammation is initiated, resulting in tissue injury in various organs, the brain and the spinal cord included. Similarly, in age-related diseases of the central nervous system (CNS), inflammasome activation is a prominent moment, in which cells of the neurovascular unit occupy a significant position. In this review, we discuss the inflammatory changes in normal aging and summarize the current knowledge on the role of inflammasomes and contributing mechanisms in common CNS diseases, namely Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and stroke, all of which occur more frequently with aging.
Collapse
Affiliation(s)
- Ádám Mészáros
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Á.M.); (K.M.); (B.N.); (Z.H.); (Á.N.-T.); (I.W.)
- Doctoral School of Biology, University of Szeged, 6726 Szeged, Hungary
| | - Kinga Molnár
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Á.M.); (K.M.); (B.N.); (Z.H.); (Á.N.-T.); (I.W.)
- Theoretical Medicine Doctoral School, University of Szeged, 6720 Szeged, Hungary
| | - Bernát Nógrádi
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Á.M.); (K.M.); (B.N.); (Z.H.); (Á.N.-T.); (I.W.)
- Foundation for the Future of Biomedical Sciences in Szeged, Szeged Scientists Academy, 6720 Szeged, Hungary
| | - Zsófia Hernádi
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Á.M.); (K.M.); (B.N.); (Z.H.); (Á.N.-T.); (I.W.)
- Foundation for the Future of Biomedical Sciences in Szeged, Szeged Scientists Academy, 6720 Szeged, Hungary
| | - Ádám Nyúl-Tóth
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Á.M.); (K.M.); (B.N.); (Z.H.); (Á.N.-T.); (I.W.)
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Á.M.); (K.M.); (B.N.); (Z.H.); (Á.N.-T.); (I.W.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, 310414 Arad, Romania
| | - István A. Krizbai
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Á.M.); (K.M.); (B.N.); (Z.H.); (Á.N.-T.); (I.W.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, 310414 Arad, Romania
- Correspondence: ; Tel.: +36-62-599-794
| |
Collapse
|
131
|
Yshii L, Bost C, Liblau R. Immunological Bases of Paraneoplastic Cerebellar Degeneration and Therapeutic Implications. Front Immunol 2020; 11:991. [PMID: 32655545 PMCID: PMC7326021 DOI: 10.3389/fimmu.2020.00991] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Paraneoplastic cerebellar degeneration (PCD) is a rare immune-mediated disease that develops mostly in the setting of neoplasia and offers a unique prospect to explore the interplay between tumor immunity and autoimmunity. In PCD, the deleterious adaptive immune response targets self-antigens aberrantly expressed by tumor cells, mostly gynecological cancers, and physiologically expressed by the Purkinje neurons of the cerebellum. Highly specific anti-neuronal antibodies in the serum and cerebrospinal fluid represent key diagnostic biomarkers of PCD. Some anti-neuronal antibodies such as anti-Yo autoantibodies (recognizing the CDR2/CDR2L proteins) are only associated with PCD. Other anti-neuronal antibodies, such as anti-Hu, anti-Ri, and anti-Ma2, are detected in patients with PCD or other types of paraneoplastic neurological manifestations. Importantly, these autoantibodies cannot transfer disease and evidence for a pathogenic role of autoreactive T cells is accumulating. However, the precise mechanisms responsible for disruption of self-tolerance to neuronal self-antigens in the cancer setting and the pathways involved in pathogenesis within the cerebellum remain to be fully deciphered. Although the occurrence of PCD is rare, the risk for such severe complication may increase with wider use of cancer immunotherapy, notably immune checkpoint blockade. Here, we review recent literature pertaining to the pathophysiology of PCD and propose an immune scheme underlying this disabling disease. Additionally, based on observations from patients' samples and on the pre-clinical model we recently developed, we discuss potential therapeutic strategies that could blunt this cerebellum-specific autoimmune disease.
Collapse
Affiliation(s)
- Lidia Yshii
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France
| | - Chloé Bost
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France.,Department of Immunology, Purpan University Hospital Toulouse, Toulouse, France
| | - Roland Liblau
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France.,Department of Immunology, Purpan University Hospital Toulouse, Toulouse, France
| |
Collapse
|
132
|
Ahn SJ, Ruiz-Uribe NE, Li B, Porter J, Sakadzic S, Schaffer CB. Label-free assessment of hemodynamics in individual cortical brain vessels using third harmonic generation microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:2665-2678. [PMID: 32499951 PMCID: PMC7249811 DOI: 10.1364/boe.385848] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 05/04/2023]
Abstract
We show that third harmonic generation (THG) microscopy using a 1-MHz train of 1,300-nm femtosecond duration laser pulses enabled visualization of the structure and quantification of flow speed in the cortical microvascular network of mice to a depth of > 1 mm. Simultaneous three-photon imaging of an intravascular fluorescent tracer enabled us to quantify the cell free layer thickness. Using the label-free imaging capability of THG, we measured flow speed in different types of vessels with and without the presence of an intravascular tracer conjugated to a high molecular weight dextran (2 MDa FITC-dextran, 5% w/v in saline, 100 µl). We found a ∼20% decrease in flow speeds in arterioles and venules due to the dextran-conjugated FITC, which we confirmed with Doppler optical coherence tomography. Capillary flow speeds did not change, although we saw a ∼7% decrease in red blood cell flux with dextran-conjugated FITC injection.
Collapse
Affiliation(s)
- Sung Ji Ahn
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Nancy E. Ruiz-Uribe
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Baoqiang Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Jason Porter
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Sava Sakadzic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Chris B. Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
133
|
Troili F, Cipollini V, Moci M, Morena E, Palotai M, Rinaldi V, Romano C, Ristori G, Giubilei F, Salvetti M, Orzi F, Guttmann CRG, Cavallari M. Perivascular Unit: This Must Be the Place. The Anatomical Crossroad Between the Immune, Vascular and Nervous System. Front Neuroanat 2020; 14:17. [PMID: 32372921 PMCID: PMC7177187 DOI: 10.3389/fnana.2020.00017] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/23/2020] [Indexed: 12/25/2022] Open
Abstract
Most neurological disorders seemingly have heterogenous pathogenesis, with overlapping contribution of neuronal, immune and vascular mechanisms of brain injury. The perivascular space in the brain represents a crossroad where those mechanisms interact, as well as a key anatomical component of the recently discovered glymphatic pathway, which is considered to play a crucial role in the clearance of brain waste linked to neurodegenerative diseases. The pathological interplay between neuronal, immune and vascular factors can create an environment that promotes self-perpetration of mechanisms of brain injury across different neurological diseases, including those that are primarily thought of as neurodegenerative, neuroinflammatory or cerebrovascular. Changes of the perivascular space can be monitored in humans in vivo using magnetic resonance imaging (MRI). In the context of glymphatic clearance, MRI-visible enlarged perivascular spaces (EPVS) are considered to reflect glymphatic stasis secondary to the perivascular accumulation of brain debris, although they may also represent an adaptive mechanism of the glymphatic system to clear them. EPVS are also established correlates of dementia and cerebral small vessel disease (SVD) and are considered to reflect brain inflammatory activity. In this review, we describe the “perivascular unit” as a key anatomical and functional substrate for the interaction between neuronal, immune and vascular mechanisms of brain injury, which are shared across different neurological diseases. We will describe the main anatomical, physiological and pathological features of the perivascular unit, highlight potential substrates for the interplay between different noxae and summarize MRI studies of EPVS in cerebrovascular, neuroinflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Fernanda Troili
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Virginia Cipollini
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Marco Moci
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Italy
| | - Emanuele Morena
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Miklos Palotai
- Harvard Medical School, Center for Neurological Imaging, Brigham and Women's Hospital, Boston, MA, United States
| | - Virginia Rinaldi
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Carmela Romano
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Giovanni Ristori
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Marco Salvetti
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Francesco Orzi
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Charles R G Guttmann
- Harvard Medical School, Center for Neurological Imaging, Brigham and Women's Hospital, Boston, MA, United States
| | - Michele Cavallari
- Harvard Medical School, Center for Neurological Imaging, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
134
|
Chen MB, Yang AC, Yousef H, Lee D, Chen W, Schaum N, Lehallier B, Quake SR, Wyss-Coray T. Brain Endothelial Cells Are Exquisite Sensors of Age-Related Circulatory Cues. Cell Rep 2020; 30:4418-4432.e4. [PMID: 32234477 PMCID: PMC7292569 DOI: 10.1016/j.celrep.2020.03.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/13/2019] [Accepted: 03/05/2020] [Indexed: 12/28/2022] Open
Abstract
Brain endothelial cells (BECs) are key constituents of the blood-brain barrier (BBB), protecting the brain from pathogens and restricting access of circulatory factors. Yet, because circulatory proteins have prominent age-related effects on adult neurogenesis, neuroinflammation, and cognitive function in mice, we wondered whether BECs receive and potentially relay signals between the blood and brain. Using single-cell RNA sequencing of hippocampal BECs, we discover that capillary BECs-compared with arterial and venous BECs-undergo the greatest transcriptional changes in normal aging, upregulating innate immunity and oxidative stress response pathways. Short-term infusions of aged plasma into young mice recapitulate key aspects of this aging transcriptome, and remarkably, infusions of young plasma into aged mice exert rejuvenation effects on the capillary transcriptome. Together, these findings suggest that the transcriptional age of BECs is exquisitely sensitive to age-related circulatory cues and pinpoint the BBB itself as a promising therapeutic target to treat brain disease.
Collapse
Affiliation(s)
- Michelle B Chen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Andrew C Yang
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA; ChEM-H, Stanford University, Stanford, CA, USA
| | - Hanadie Yousef
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Davis Lee
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Winnie Chen
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Nicholas Schaum
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Benoit Lehallier
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, Stanford, CA 94305, USA.
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA; ChEM-H, Stanford University, Stanford, CA, USA; Department of Veterans Affairs, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
135
|
Finnie JW, Navarro MA, Uzal FA. Pathogenesis and diagnostic features of brain and ophthalmic damage produced by Clostridium perfringens type D epsilon toxin. J Vet Diagn Invest 2020; 32:282-286. [PMID: 31955669 DOI: 10.1177/1040638719900190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Clostridium perfringens type D epsilon toxin (EXT) causes an important neurologic disorder of sheep, goats and, rarely, cattle. The disease can occur in peracute, acute, subacute, and chronic forms. High circulating levels of ETX produce vasculocentric brain lesions, in which microvascular endothelial injury results in diagnostically useful perivascular and intramural extravasations of plasma protein, especially in sheep, and less frequently in goats. With lower toxin doses, a more protracted clinical course tends to occur, particularly in sheep, leading to focal, bilaterally symmetrical, necrotic foci in certain brain regions. Although these morphologic features usually permit the diagnostic pathologist to make a definitive etiologic diagnosis, there are many aspects of the pathogenesis of these cerebral lesions that are not completely understood. ETX has also been shown to produce microvascular damage in the retina of rats, resulting in severe, diffuse vasogenic edema, similar to that found in brains exposed to this neurotoxin. The pathoclisis and vascular theories offer alternative explanations of the differential susceptibility of different brain regions to the same neurotoxic insult.
Collapse
Affiliation(s)
- John W Finnie
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia (Finnie).,California Animal Health and Food Safety Laboratory System-San Bernardino Branch, School of Veterinary Medicine, University of California-Davis, San Bernardino, CA (Navarro, Uzal)
| | - Mauricio A Navarro
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia (Finnie).,California Animal Health and Food Safety Laboratory System-San Bernardino Branch, School of Veterinary Medicine, University of California-Davis, San Bernardino, CA (Navarro, Uzal)
| | - Francisco A Uzal
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia (Finnie).,California Animal Health and Food Safety Laboratory System-San Bernardino Branch, School of Veterinary Medicine, University of California-Davis, San Bernardino, CA (Navarro, Uzal)
| |
Collapse
|
136
|
Löscher W, Friedman A. Structural, Molecular, and Functional Alterations of the Blood-Brain Barrier during Epileptogenesis and Epilepsy: A Cause, Consequence, or Both? Int J Mol Sci 2020; 21:E591. [PMID: 31963328 PMCID: PMC7014122 DOI: 10.3390/ijms21020591] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
The blood-brain barrier (BBB) is a dynamic, highly selective barrier primarily formed by endothelial cells connected by tight junctions that separate the circulating blood from the brain extracellular fluid. The endothelial cells lining the brain microvessels are under the inductive influence of neighboring cell types, including astrocytes and pericytes. In addition to the anatomical characteristics of the BBB, various specific transport systems, enzymes and receptors regulate molecular and cellular traffic across the BBB. While the intact BBB prevents many macromolecules and immune cells from entering the brain, following epileptogenic brain insults the BBB changes its properties. Among BBB alterations, albumin extravasation and diapedesis of leucocytes from blood into brain parenchyma occur, inducing or contributing to epileptogenesis. Furthermore, seizures themselves may modulate BBB functions, permitting albumin extravasation, leading to activation of astrocytes and the innate immune system, and eventually modifications of neuronal networks. BBB alterations following seizures are not necessarily associated with enhanced drug penetration into the brain. Increased expression of multidrug efflux transporters such as P-glycoprotein likely act as a 'second line defense' mechanism to protect the brain from toxins. A better understanding of the complex alterations in BBB structure and function following seizures and in epilepsy may lead to novel therapeutic interventions allowing the prevention and treatment of epilepsy as well as other detrimental neuro-psychiatric sequelae of brain injury.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center of Systems Neuroscience, 30559 Hannover, Germany
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlowotski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
137
|
Mbagwu SI, Filgueira L. Differential Expression of CD31 and Von Willebrand Factor on Endothelial Cells in Different Regions of the Human Brain: Potential Implications for Cerebral Malaria Pathogenesis. Brain Sci 2020; 10:E31. [PMID: 31935960 PMCID: PMC7016814 DOI: 10.3390/brainsci10010031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022] Open
Abstract
Cerebral microvascular endothelial cells (CMVECs) line the vascular system of the brain and are the chief cells in the formation and function of the blood brain barrier (BBB). These cells are heterogeneous along the cerebral vasculature and any dysfunctional state in these cells can result in a local loss of function of the BBB in any region of the brain. There is currently no report on the distribution and variation of the CMVECs in different brain regions in humans. This study investigated microcirculation in the adult human brain by the characterization of the expression pattern of brain endothelial cell markers in different brain regions. Five different brain regions consisting of the visual cortex, the hippocampus, the precentral gyrus, the postcentral gyrus, and the rhinal cortex obtained from three normal adult human brain specimens were studied and analyzed for the expression of the endothelial cell markers: cluster of differentiation 31 (CD31) and von-Willebrand-Factor (vWF) through immunohistochemistry. We observed differences in the expression pattern of CD31 and vWF between the gray matter and the white matter in the brain regions. Furthermore, there were also regional variations in the pattern of expression of the endothelial cell biomarkers. Thus, this suggests differences in the nature of vascularization in various regions of the human brain. These observations also suggest the existence of variation in structure and function of different brain regions, which could reflect in the pathophysiological outcomes in a diseased state.
Collapse
Affiliation(s)
- Smart Ikechukwu Mbagwu
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- Department of Anatomy, Faculty of Basic Medical Sciences, Nnamdi Azikiwe University, 435101 Nnewi Campus, Nigeria
| | - Luis Filgueira
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
138
|
Abstract
The blood-brain barrier (BBB) protects the vertebrate central nervous system from harmful blood-borne, endogenous and exogenous substances to ensure proper neuronal function. The BBB describes a function that is established by endothelial cells of CNS vessels in conjunction with pericytes, astrocytes, neurons and microglia, together forming the neurovascular unit (NVU). Endothelial barrier function is crucially induced and maintained by the Wnt/β-catenin pathway and requires intact NVU for proper functionality. The BBB and the NVU are characterized by a specialized assortment of molecular specializations, providing the basis for tightening, transport and immune response functionality.The present chapter introduces state-of-the-art knowledge of BBB structure and function and highlights current research topics, aiming to understanding in more depth the cellular and molecular interactions at the NVU, determining functionality of the BBB in health and disease, and providing novel potential targets for therapeutic BBB modulation. Moreover, we highlight recent advances in understanding BBB and NVU heterogeneity within the CNS as well as their contribution to CNS physiology, such as neurovascular coupling, and pathophysiology, is discussed. Finally, we give an outlook onto new avenues of BBB research.
Collapse
Affiliation(s)
- Fabienne Benz
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Excellence Cluster Cardio Pulmonary System (CPI), Partner Site Frankfurt, Frankfurt, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.
| |
Collapse
|
139
|
Löscher W. Epilepsy and Alterations of the Blood-Brain Barrier: Cause or Consequence of Epileptic Seizures or Both? Handb Exp Pharmacol 2020; 273:331-350. [PMID: 33136189 DOI: 10.1007/164_2020_406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic, highly selective barrier primarily formed by endothelial cells connected by tight junctions that separate the circulating blood from the brain extracellular fluid, thereby preserving a narrow and stable homeostatic control of the neuronal environment. The endothelial cells lining the brain microvessels are under the inductive influence of neighboring cell types within the "neurovascular unit" including astrocytes and pericytes. In addition to the morphological characteristics of the BBB, various specific transport systems, enzymes, and receptors regulate the molecular and cellular traffic across the barrier. Furthermore, the intact BBB prevents many macromolecules and immune cells from entering the brain. This changes dramatically following epileptogenic brain insults; such insults, among other BBB alterations, lead to albumin extravasation and diapedesis of leukocytes from blood into brain parenchyma, inducing or contributing to epileptogenesis, which finally leads to development of spontaneous recurrent seizures and epilepsy. Furthermore, seizures themselves may cause BBB disruption with albumin extravasation, which has been shown to be associated with activation of astrocytes, activation of innate immune systems, and modifications of neuronal networks. However, seizure-induced BBB disruption is not necessarily associated with enhanced drug penetration into the brain, because the BBB expression of multidrug efflux transporters such as P-glycoprotein increases, most likely as a "second line defense" mechanism to protect the brain from drug toxicity. Hopefully, a better understanding of the complex BBB alterations in response to seizures and epilepsy can lead to novel therapeutic intervention to prevent epileptogenesis and the development of other detrimental sequelae of brain injury.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
140
|
Rauschenbach L. Spinal Cord Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1226:97-109. [PMID: 32030679 DOI: 10.1007/978-3-030-36214-0_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intramedullary spinal cord tumors (IMSCT) are rare entities for which there currently exist no standardized treatment paradigms. Consequently, patients usually receive treatment modalities that were established for intracerebral tumors; these approaches, however, typically result in functional impairment, recurrent tumor growth, and short overall survival. There is a distinct lack of promising research efforts in this field, which raises questions about whether spinal cord tumor microenvironment (TME) might promote the development, progression, and treatment resistance of IMSCT. In this review, we aim to examine spinal cord biology, compare spinal cord and brain microenvironments, and discuss mutual interactions between IMSCT and TME. Manipulating these pathways may provide new treatment approaches for future patient groups.
Collapse
Affiliation(s)
- Laurèl Rauschenbach
- Department of Neurosurgery, University Hospital Essen, Essen, Germany. .,DKFZ Division of Translational Neuro-Oncology at the West German Cancer Center (WTZ), German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, Essen, Germany.
| |
Collapse
|
141
|
Jarius S, Wildemann B. The history of neuromyelitis optica. Part 2: 'Spinal amaurosis', or how it all began. J Neuroinflammation 2019; 16:280. [PMID: 31883522 PMCID: PMC6935230 DOI: 10.1186/s12974-019-1594-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/23/2019] [Indexed: 01/08/2023] Open
Abstract
Neuromyelitis optica (NMO) was long considered a clinical variant of multiple sclerosis (MS). However, the discovery of a novel and pathogenic anti-astrocytic serum autoantibody targeting aquaporin-4 (termed NMO-IgG or AQP4-Ab), the most abundant water channel protein in the central nervous system, led to the recognition of NMO as a distinct disease entity in its own right and generated strong and persisting interest in the condition. NMO is now studied as a prototypic autoimmune disorder, which differs from MS in terms of immunopathogenesis, clinicoradiological presentation, optimum treatment, and prognosis. While the history of classic MS has been extensively studied, relatively little is known about the history of NMO. In Part 1 of this series we focused on the late 19th century, when the term 'neuromyelitis optica' was first coined, traced the term's origins and followed its meandering evolution throughout the 20th and into the 21st century. Here, in Part 2, we demonstrate that the peculiar concurrence of acute optic nerve and spinal cord affliction characteristic for NMO caught the attention of physicians much earlier than previously thought by re-presenting a number of very early cases of possible NMO that date back to the late 18th and early 19th century. In addition, we comprehensively discuss the pioneering concept of 'spinal amaurosis', which was introduced into the medical literature by ophthalmologists in the first half of the 19th century.
Collapse
Affiliation(s)
- S. Jarius
- Department of Neurology, Molecular Neuroimmunology Group, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - B. Wildemann
- Department of Neurology, Molecular Neuroimmunology Group, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| |
Collapse
|
142
|
Sroor HM, Hassan AM, Zenz G, Valadez-Cosmes P, Farzi A, Holzer P, El-Sharif A, Gomaa FAZM, Kargl J, Reichmann F. Experimental colitis reduces microglial cell activation in the mouse brain without affecting microglial cell numbers. Sci Rep 2019; 9:20217. [PMID: 31882991 PMCID: PMC6934553 DOI: 10.1038/s41598-019-56859-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
Inflammatory bowel disease (IBD) patients frequently suffer from anxiety disorders and depression, indicating that altered gut-brain axis signalling during gastrointestinal inflammation is a risk factor for psychiatric disease. Microglia, immune cells of the brain, is thought to be involved in a number of mental disorders, but their role in IBD is largely unknown. In the current work, we investigated whether colitis induced by dextran sulphate sodium (DSS), a murine model of IBD, alters microglial phenotypes in the brain. We found that colitis caused a reduction of Iba-1 and CD68 immunoreactivity, microglial activation markers, in specific brain regions of the limbic system such as the medial prefrontal cortex (mPFC), while other areas remained unaffected. Flow cytometry showed an increase of monocyte-derived macrophages during colitis and gene expression analysis in the mPFC showed pronounced changes of microglial markers including cluster of differentiation 86 (CD86), tumour necrosis factor-α, nitric oxide synthase 2, CD206 and chitinase-like protein 3 consistent with both M1 and M2 activation. Taken together, these findings suggest that experimental colitis-induced inflammation is propagated to the brain altering microglial function.
Collapse
Affiliation(s)
- Hoda M Sroor
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
- Microbiology and Immunology Department, Faculty of Pharmacy-Girls, Al-Azar University, Cairo, Egypt
| | - Ahmed M Hassan
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Geraldine Zenz
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Paulina Valadez-Cosmes
- Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Amany El-Sharif
- Microbiology and Immunology Department, Faculty of Pharmacy-Girls, Al-Azar University, Cairo, Egypt
| | - Fatma Al-Zahraa M Gomaa
- Microbiology and Immunology Department, Faculty of Pharmacy-Girls, Al-Azar University, Cairo, Egypt
- Pharmacognosy and Medicinal Herbs Department, Faculty of Clinical Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria.
| |
Collapse
|
143
|
Heterogeneity of Astrocytes in Grey and White Matter. Neurochem Res 2019; 46:3-14. [PMID: 31797158 DOI: 10.1007/s11064-019-02926-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes are a diverse and heterogeneous type of glial cells. The major task of grey and white matter areas in the brain are computation of information at neuronal synapses and propagation of action potentials along axons, respectively, resulting in diverse demands for astrocytes. Adapting their function to the requirements in the local environment, astrocytes differ in morphology, gene expression, metabolism, and many other properties. Here we review the differential properties of protoplasmic astrocytes of grey matter and fibrous astrocytes located in white matter in respect to glutamate and energy metabolism, to their function at the blood-brain interface and to coupling via gap junctions. Finally, we discuss how this astrocytic heterogeneity might contribute to the different susceptibility of grey and white matter to ischemic insults.
Collapse
|
144
|
Abstract
Cerebral small vessel disease (SVD) is characterized by changes in the pial and parenchymal microcirculations. SVD produces reductions in cerebral blood flow and impaired blood-brain barrier function, which are leading contributors to age-related reductions in brain health. End-organ effects are diverse, resulting in both cognitive and noncognitive deficits. Underlying phenotypes and mechanisms are multifactorial, with no specific treatments at this time. Despite consequences that are already considerable, the impact of SVD is predicted to increase substantially with the growing aging population. In the face of this health challenge, the basic biology, pathogenesis, and determinants of SVD are poorly defined. This review summarizes recent progress and concepts in this area, highlighting key findings and some major unanswered questions. We focus on phenotypes and mechanisms that underlie microvascular aging, the greatest risk factor for cerebrovascular disease and its subsequent effects.
Collapse
Affiliation(s)
- T Michael De Silva
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne Campus, Bundoora, Victoria 3086, Australia;
| | - Frank M Faraci
- Departments of Internal Medicine, Neuroscience, and Pharmacology, Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA;
| |
Collapse
|
145
|
Villabona-Rueda A, Erice C, Pardo CA, Stins MF. The Evolving Concept of the Blood Brain Barrier (BBB): From a Single Static Barrier to a Heterogeneous and Dynamic Relay Center. Front Cell Neurosci 2019; 13:405. [PMID: 31616251 PMCID: PMC6763697 DOI: 10.3389/fncel.2019.00405] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/23/2019] [Indexed: 12/27/2022] Open
Abstract
The blood–brain barrier (BBB) helps maintain a tightly regulated microenvironment for optimal central nervous system (CNS) homeostasis and facilitates communications with the peripheral circulation. The brain endothelial cells, lining the brain’s vasculature, maintain close interactions with surrounding brain cells, e.g., astrocytes, pericytes and perivascular macrophages. This function facilitates critical intercellular crosstalk, giving rise to the concept of the neurovascular unit (NVU). The steady and appropriate communication between all components of the NVU is essential for normal CNS homeostasis and function, and dysregulation of one of its constituents can result in disease. Among the different brain regions, and along the vascular tree, the cellular composition of the NVU varies. Therefore, differential cues from the immediate vascular environment can affect BBB phenotype. To support the fluctuating metabolic and functional needs of the underlying neuropil, a specialized vascular heterogeneity is required. This is achieved by variances in barrier function, expression of transporters, receptors, and adhesion molecules. This mini-review will take you on a journey through evolving concepts surrounding the BBB, the NVU and beyond. Exploring classical experiments leading to new approaches will allow us to understand that the BBB is not merely a static separation between the brain and periphery but a closely regulated and interactive entity. We will discuss shifting paradigms, and ultimately aim to address the importance of BBB endothelial heterogeneity with regard to the function of the BBB within the NVU, and touch on its implications for different neuropathologies.
Collapse
Affiliation(s)
- Andres Villabona-Rueda
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Clara Erice
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Carlos A Pardo
- Department of Neurology, Division of Neuroimmunology and Neuroinfectious Disorders, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Monique F Stins
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
146
|
Nguyen EH, Dombroe MJ, Fisk DL, Daly WT, Sorenson CM, Murphy WL, Sheibani N. Neurovascular Organotypic Culture Models Using Induced Pluripotent Stem Cells to Assess Adverse Chemical Exposure Outcomes. ACTA ACUST UNITED AC 2019; 5:92-110. [PMID: 32292797 DOI: 10.1089/aivt.2018.0025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Human-induced pluripotent stem cells (iPSCs) represent a promising cell source for the construction of organotypic culture models for chemical toxicity screening and characterization. Materials and Methods: To characterize the effects of chemical exposure on the human neurovasculature, we constructed neurovascular unit (NVU) models consisting of endothelial cells (ECs) and astrocytes (ACs) derived from human-iPSCs, as well as human brain-derived pericytes (PCs). The cells were cocultured on synthetic poly(ethylene glycol) (PEG) hydrogels that guided the self-assembly of capillary-like vascular networks. High-content epifluorescence microscopy evaluated dose-dependent changes to multiple aspects of NVU morphology. Results: Cultured vascular networks underwent quantifiable morphological changes when incubated with vascular disrupting chemicals. The activity of predicted vascular disrupting chemicals from a panel of 38 compounds (U.S. Environmental Protection Agency) was ranked based on morphological features detected in the NVU model. In addition, unique morphological neurovascular disruption signatures were detected per chemical. A comparison of PEG-based NVU and Matrigel™-based NVU models found greater sensitivity and consistency in chemical detection by the PEG-based NVU models. Discussion: We suspect that specific morphological changes may be used for discerning adverse outcome pathways initiated by chemical exposure and rapid mechanistic characterization of chemical exposure to neurovascular function. Conclusion: The use of human stem cell-derived vascular tissue and PEG hydrogels in the construction of NVU models leads to rapid detection of adverse chemical effects on neurovascular stability. The use of multiple cell types in coculture elucidates potential mechanisms of action by chemicals applied to the model.
Collapse
Affiliation(s)
- Eric H Nguyen
- Human Models for Analysis of Pathways Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Micah J Dombroe
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin
| | - Debra L Fisk
- Human Models for Analysis of Pathways Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - William T Daly
- Human Models for Analysis of Pathways Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Christine M Sorenson
- Department of Pediatrics, and University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - William L Murphy
- Human Models for Analysis of Pathways Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Nader Sheibani
- Human Models for Analysis of Pathways Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
147
|
Takahashi T, Shimohata T. Vascular Dysfunction Induced by Mercury Exposure. Int J Mol Sci 2019; 20:E2435. [PMID: 31100949 PMCID: PMC6566353 DOI: 10.3390/ijms20102435] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
Methylmercury (MeHg) causes severe damage to the central nervous system, and there is increasing evidence of the association between MeHg exposure and vascular dysfunction, hemorrhage, and edema in the brain, but not in other organs of patients with acute MeHg intoxication. These observations suggest that MeHg possibly causes blood-brain barrier (BBB) damage. MeHg penetrates the BBB into the brain parenchyma via active transport systems, mainly the l-type amino acid transporter 1, on endothelial cell membranes. Recently, exposure to mercury has significantly increased. Numerous reports suggest that long-term low-level MeHg exposure can impair endothelial function and increase the risks of cardiovascular disease. The most widely reported mechanism of MeHg toxicity is oxidative stress and related pathways, such as neuroinflammation. BBB dysfunction has been suggested by both in vitro and in vivo models of MeHg intoxication. Therapy targeted at both maintaining the BBB and suppressing oxidative stress may represent a promising therapeutic strategy for MeHg intoxication. This paper reviews studies on the relationship between MeHg exposure and vascular dysfunction, with a special emphasis on the BBB.
Collapse
Affiliation(s)
- Tetsuya Takahashi
- Department of Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata 950-2085, Japan.
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| |
Collapse
|
148
|
McAleese KE, Graham S, Dey M, Walker L, Erskine D, Johnson M, Johnston E, Thomas AJ, McKeith IG, DeCarli C, Attems J. Extravascular fibrinogen in the white matter of Alzheimer's disease and normal aged brains: implications for fibrinogen as a biomarker for Alzheimer's disease. Brain Pathol 2019; 29:414-424. [PMID: 30485582 PMCID: PMC8028661 DOI: 10.1111/bpa.12685] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022] Open
Abstract
The blood-brain barrier (BBB) regulates cerebrovascular permeability and leakage of blood-derived fibrinogen. Dysfunction of the BBB has been associated with cerebral arteriolosclerosis small vessel disease (SVD) and white matter lesions (WML). Furthermore, BBB dysfunction is associated with the pathogenesis of Alzheimer's disease (AD) with the presence of CSF plasma proteins suggested to be a potential biomarker of AD. We aimed to determine if extravascular fibrinogen in the white matter was associated with the development of AD hallmark pathologies, i.e., hyperphosphorylated tau (HPτ) and amyloid-β (Aβ), as well as SVD, cerebral amyloid angiopathy (CAA) and measures of white matter damage. Using human post-mortem brains, parietal tissue from 20 AD and 22 non-demented controls was quantitatively assessed for HPτ, Aβ, white matter damage severity, axonal density, demyelination and the burden of extravascular fibrinogen in both WML and normal appearing white matter (NAWM). SVD severity was determined by calculating sclerotic indices. WML- and NAWM fibrinogen burden was not significantly different between AD and controls nor was it associated with the burden of HPτ or Aβ pathology, or any measures of white matter damage. Increasing severity of SVD was associated with and a predictor of both higher WML- and NAWM fibrinogen burden (all P < 0.05) in controls only. In cases with minimal SVD NAWM fibrinogen burden was significantly higher in the AD cases (P < 0.05). BBB dysfunction was present in both non-demented and AD brains and was not associated with the burden of AD-associated cortical pathologies. BBB dysfunction was strongly associated with SVD but only in the non-demented controls. In cases with minimal SVD, BBB dysfunction was significantly worse in AD cases possibly indicating the influence of CAA. In conclusion, extravascular fibrinogen is not associated with AD hallmark pathologies but indicates SVD, suggesting that the presence of fibrinogen in the CSF is not a surrogate marker for AD pathology.
Collapse
Affiliation(s)
| | - Sophie Graham
- Institute of NeuroscienceNewcastle UniversityNewcastle Upon TyneUK
| | | | - Lauren Walker
- Institute of NeuroscienceNewcastle UniversityNewcastle Upon TyneUK
| | - Daniel Erskine
- Institute of NeuroscienceNewcastle UniversityNewcastle Upon TyneUK
| | - Mary Johnson
- Institute of NeuroscienceNewcastle UniversityNewcastle Upon TyneUK
| | - Eleanor Johnston
- Institute of NeuroscienceNewcastle UniversityNewcastle Upon TyneUK
| | - Alan J. Thomas
- Institute of NeuroscienceNewcastle UniversityNewcastle Upon TyneUK
| | - Ian G. McKeith
- Institute of NeuroscienceNewcastle UniversityNewcastle Upon TyneUK
| | | | - Johannes Attems
- Institute of NeuroscienceNewcastle UniversityNewcastle Upon TyneUK
| |
Collapse
|
149
|
Tyler CR, Noor S, Young TL, Rivero V, Sanchez B, Lucas S, Caldwell KK, Milligan ED, Campen MJ. Aging Exacerbates Neuroinflammatory Outcomes Induced by Acute Ozone Exposure. Toxicol Sci 2019; 163:123-139. [PMID: 29385576 DOI: 10.1093/toxsci/kfy014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of environmental stressors, particularly exposure to air pollution, in the development of neurodegenerative disease remains underappreciated. We examined the neurological effects of acute ozone (O3) exposure in aged mice, where increased blood-brain barrier (BBB) permeability may confer vulnerability to neuroinflammatory outcomes. C57BL/6 male mice, aged 8-10 weeks or 12-18 months were exposed to either filtered air or 1.0 ppm O3 for 4 h; animals received a single IP injection of sodium fluorescein (FSCN) 20 h postexposure. One-hour post-FSCN injection, animals were transcardially perfused for immunohistochemical analysis of BBB permeability. β-amyloid protein expression was assessed via ELISA. Flow cytometric characterization of infiltrating immune cells, including neutrophils, macrophages, and microglia populations was performed 20 h post-O3 exposure. Flow cytometry analysis of brains revealed increased microglia "activation" and presentation of CD11b, F4/80, and MHCII in aged animals relative to younger ones; these age-induced differences were potentiated by acute O3 exposure. Cortical and limbic regions in aged brains had increased reactive microgliosis and β-amyloid protein expression after O3 insult. The aged cerebellum was particularly vulnerable to acute O3 exposure with increased populations of infiltrating neutrophils, peripheral macrophages/monocytes, and Ly6C+ inflammatory monocytes after insult, which were not significantly increased in the young cerebellum. O3 exposure increased the penetration of FSCN beyond the BBB, the infiltration of peripheral immune cells, and reactive gliosis of microglia. Thus, the aged BBB is vulnerable to insult and becomes highly penetrable in response to O3 exposure, leading to greater neuroinflammatory outcomes.
Collapse
Affiliation(s)
- Christina R Tyler
- Los Alamos National Laboratory, Biosciences Division, Los Alamos, NM 87545.,Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87108
| | - Shahani Noor
- Department of Neurosciences, University of New Mexico Health Sciences Center, School of Medicine, Albuquerque, New Mexico 87131-0001
| | - Tamara L Young
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87108
| | - Valeria Rivero
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87108
| | - Bethany Sanchez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87108
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87108
| | - Kevin K Caldwell
- Department of Neurosciences, University of New Mexico Health Sciences Center, School of Medicine, Albuquerque, New Mexico 87131-0001
| | - Erin D Milligan
- Department of Neurosciences, University of New Mexico Health Sciences Center, School of Medicine, Albuquerque, New Mexico 87131-0001
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87108
| |
Collapse
|
150
|
Himes BT, Zhang L, Daniels DJ. Treatment Strategies in Diffuse Midline Gliomas With the H3K27M Mutation: The Role of Convection-Enhanced Delivery in Overcoming Anatomic Challenges. Front Oncol 2019; 9:31. [PMID: 30800634 PMCID: PMC6375835 DOI: 10.3389/fonc.2019.00031] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/11/2019] [Indexed: 12/30/2022] Open
Abstract
Diffuse midline gliomas harboring the H3 K27M mutation—including the previously named diffuse intrinsic pontine glioma (DIPG)—are lethal high-grade pediatric brain tumors that are inoperable and without cure. Despite numerous clinical trials, the prognosis remains poor, with a median survival of ~1 year from diagnosis. Systemic administration of chemotherapeutic agents is often hindered by the blood brain barrier (BBB), and even drugs that successfully cross the barrier may suffer from unpredictable distributions. The challenge in treating this deadly disease relies on effective delivery of a therapeutic agent to the bulk tumor as well as infiltrating cells. Therefore, methods that can enhance drug delivery to the brain are of great interest. Convection-enhanced delivery (CED) is a strategy that bypasses the BBB entirely and enhances drug distribution by applying hydraulic pressure to deliver agents directly and evenly into a target region. This technique reliably distributes infusate homogenously through the interstitial space of the target region and achieves high local drug concentrations in the brain. Moreover, recent studies have also shown that continuous delivery of drug over an extended period of time is safe, feasible, and more efficacious than standard single session CED. Therefore, CED represents a promising technique for treating midline tumors with the H3K27M mutation.
Collapse
Affiliation(s)
- Benjamin T Himes
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - Liang Zhang
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - David J Daniels
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|