101
|
Tarassishin L, Yin YI, Bassit B, Li YM. Processing of Notch and amyloid precursor protein by gamma-secretase is spatially distinct. Proc Natl Acad Sci U S A 2004; 101:17050-5. [PMID: 15563588 PMCID: PMC535399 DOI: 10.1073/pnas.0408007101] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
gamma-Secretase activity is associated with a presenilin (PS)-containing macromolecular complex. Whether PS contains the active site of gamma-secretase has been controversial. One challenge is to find PS that is engaged in the active gamma-secretase complex at the cell surface, where some substrates appear to be processed. In this study, we developed an intact cell photolabeling technique that allows the direct visualization of active gamma-secretase at the cell surface. We demonstrated that active gamma-secretase is present in the plasma membrane. Moreover, the PS1 heterodimer is specifically photolabeled at the cell surface by a potent inhibitor that binds to only the active gamma-secretase. We also explored the cellular processing sites of gamma-secretase for amyloid precursor protein (APP) and Notch by using small molecular probes. MRL631, a gamma-secretase inhibitor that is unable to penetrate the cell membrane, significantly blocks gamma-secretase-mediated Notch cleavage but has little effect on APP processing. These results indicate that Notch is processed at the cell surface and that the majority of APP is processed by intracellular gamma-secretase. Furthermore, the fact that inhibitors first target gamma-secretase in the plasma membrane for Notch processing, and not for APP, will have important implications for drug development to treat Alzheimer's disease and cancer.
Collapse
Affiliation(s)
- Leonid Tarassishin
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | |
Collapse
|
102
|
Kaether C, Capell A, Edbauer D, Winkler E, Novak B, Steiner H, Haass C. The presenilin C-terminus is required for ER-retention, nicastrin-binding and gamma-secretase activity. EMBO J 2004; 23:4738-48. [PMID: 15549135 PMCID: PMC535090 DOI: 10.1038/sj.emboj.7600478] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Accepted: 10/15/2004] [Indexed: 11/09/2022] Open
Abstract
gamma-Secretase is an intramembrane cleaving protease involved in Alzheimer's disease. gamma-Secretase occurs as a high molecular weight complex composed of presenilin (PS1/2), nicastrin (NCT), anterior pharynx-defective phenotype 1 and PS enhancer 2. Little is known about the cellular mechanisms of gamma-secretase assembly. Here we demonstrate that the cytoplasmic tail of PS1 fulfills several functions required for complex formation, retention of unincorporated PS1 and gamma-secretase activity. The very C-terminus interacts with the transmembrane domain of NCT and may penetrate into the membrane. Deletion of the last amino acid is sufficient to completely block gamma-secretase assembly and release of PS1 from the endoplasmic reticulum (ER). This suggests that unincorporated PS1 is actively retained within the ER. We identified a hydrophobic stretch of amino acids within the cytoplasmic tail of PS1 distinct from the NCT-binding site, which is required to retain unincorporated PS1 within the ER. Deletion of the retention signal results in the release of PS1 from the ER and the assembly of a nonfunctional gamma-secretase complex, suggesting that at least a part of the retention motif may also be required for the function of PS1.
Collapse
Affiliation(s)
- Christoph Kaether
- Laboratory for Alzheimer's and Parkinson's Disease Research, Department of Biochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-Universität, München, Germany
- Laboratory for Alzheimer's and Parkinson's Disease Research, Department of Biochemistry, Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336 München, Germany. Tel.: +49 89 218075 471/472; Fax: +49 89 218075 415; E-mail:
| | - Anja Capell
- Laboratory for Alzheimer's and Parkinson's Disease Research, Department of Biochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-Universität, München, Germany
| | - Dieter Edbauer
- Laboratory for Alzheimer's and Parkinson's Disease Research, Department of Biochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-Universität, München, Germany
| | - Edith Winkler
- Laboratory for Alzheimer's and Parkinson's Disease Research, Department of Biochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-Universität, München, Germany
| | - Bozidar Novak
- Laboratory for Alzheimer's and Parkinson's Disease Research, Department of Biochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-Universität, München, Germany
| | - Harald Steiner
- Laboratory for Alzheimer's and Parkinson's Disease Research, Department of Biochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-Universität, München, Germany
| | - Christian Haass
- Laboratory for Alzheimer's and Parkinson's Disease Research, Department of Biochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-Universität, München, Germany
- Laboratory for Alzheimer's and Parkinson's Disease Research, Department of Biochemistry, Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336 München, Germany. Tel.: +49 89 218075 471/472; Fax: +49 89 218075 415; E-mail:
| |
Collapse
|
103
|
Kang JG, Pyo YJ, Cho JW, Cho MH. Comparative proteome analysis of differentially expressed proteins induced by K+ deficiency inArabidopsis thaliana. Proteomics 2004; 4:3549-59. [PMID: 15449379 DOI: 10.1002/pmic.200400898] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mineral nutrient deficiencies constitute major limitations for plant growth on agricultural soils around the world. To identify genes that possibly play roles in plant K(+) nutrition, we employed the comparative proteome analysis for proteins isolated from Arabidopsis seedlings treated with K(+) deficiency for 3 h and 7 d. We identified genes including those encoding putative transcription factors, protein kinases, and phosphatases, proteins involved in phytohormone biosynthesis or signaling, proteins involved in carbon and energy metabolism, and other proteins possibly involved in signal transduction pathway such as 14-3-3 proteins and small G-protein. Our results suggest that those proteins may play roles in signal transduction pathways linking changes in extracellular K(+) status to alterations in gene expression facilitating K(+) homeostasis. These results yield a comprehensive picture of the post-transcriptional response for deprivation of K(+) and serve as a basic platform for further characterization of gene function and regulation in plant mineral nutrition.
Collapse
Affiliation(s)
- Jeong Gu Kang
- Department of Biology, Yonsei University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
104
|
Abstract
The amyloid-beta precursor protein is proteolytically cleaved by secretases, resulting in a series of fragments, including the amyloid-beta peptide of Alzheimer's disease. The amyloid precursor protein, when membrane anchored, could operate as a receptor. After cleavage, the soluble ectodomain exerts a trophic function in the subventricular zone. The amyloid-beta peptide itself has a depressant role in synaptic transmission, with both physiological and pathological implications. During the past two years, much time has been invested in determining the molecular pathways that regulate the processing and the signal transduction of the amyloid precursor protein. However, the absence of consistent and informative phenotypes in different loss of function animal models make elucidating the molecular actions of the amyloid-beta precursor protein an ongoing challenge.
Collapse
Affiliation(s)
- Valérie Wilquet
- Laboratory for Neuronal Cell Biology and Gene Transfer, K.U. Leuven and VIB, Department of Human Genetics, Herestraat 49, 3000 Leuven, Belgium.
| | | |
Collapse
|
105
|
Ilaya NT, Evin G, Masters CL, Culvenor JG. Nicastrin expression in mouse peripheral tissues is not co-ordinated with presenilin and is high in muscle. J Neurochem 2004; 91:230-7. [PMID: 15379903 DOI: 10.1111/j.1471-4159.2004.02718.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nicastrin was the first binding partner of presenilin (PS) shown to be a critical component of the presenilin/gamma-secretase complex essential in development and differentiation, and in generation of Alzheimer's disease Abeta amyloid peptide. To investigate the function of this glycoprotein, we compared nicastrin and presenilin protein expression in various mouse tissues. Western blot analysis of PS1, PS2 and nicastrin indicates their expression levels are not coordinated. In adult mouse, nicastrin is highly expressed in muscle membranes, whereas presenilin levels are very low. By Blue Native electrophoresis, a PS1 complex of 400 kDa was detected in lung, brain, thymus and heart; nicastrin was also detected as a 400-kDa complex in brain but in muscle it was detected with a complex mobility of 240 and 290 kDa, suggesting association with alternate protein complexes. Immunocytochemistry confirms strong intracellular expression of nicastrin in skeletal muscle and blood vessel smooth muscle. These findings suggest a function for nicastrin in muscle other than participation in the gamma-secretase complex.
Collapse
Affiliation(s)
- Nancy T Ilaya
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
106
|
Kim SH, Yin YI, Li YM, Sisodia SS. Evidence that assembly of an active gamma-secretase complex occurs in the early compartments of the secretory pathway. J Biol Chem 2004; 279:48615-9. [PMID: 15456788 DOI: 10.1074/jbc.c400396200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma-secretase complex, consisting of presenilins (PS), nicastrin (NCT), APH-1, and PEN-2, catalyzes the intramembranous proteolysis of truncated beta-amyloid precursor protein (APP) and Notch derivatives to generate the APP intracellular domain (AICD) and Notch intracellular domain (NICD), respectively. To examine the intracellular sites in which active gamma-secretase resides, we expressed NCT variants harboring either an endoplasmic reticulum (ER) retention signal (NCT-ER) or a trans-Golgi network (TGN) targeting motif (NCT-TGN) along with PS1, APH-1, and PEN-2 and examined gamma-secretase activity in these settings. In cells expressing NCT-ER and the other components, PS1 fragments hyperaccumulated, but AICD levels were not elevated. On the other hand, upon coexpression of an ER-retained APP variant or a constitutionally active Notch mutant, NDeltaE, we observed enhanced production of AICD or NICD, respectively, in cells expressing NCT-ER. Moreover, we show that membranes from cells expressing NCT-ER, NCT-TGN, or NCT-WT contain identical levels of PS1 derivatives that can be photoaffinity cross-linked to a biotinylated, benzophenone-derivatized gamma-secretase inhibitor. Finally, our cell-free gamma-secretase assays revealed nearly equivalent gamma-secretase activities in cells expressing PS1, APH-1, PEN-2, and either NCT-WT or NCT-ER. Taken together, we interpret these findings as suggesting that active gamma-secretase complex is generated in the early compartments of the secretory pathway but that these complexes are transported to late compartments in which substrates are encountered and subsequently processed within respective transmembrane segments.
Collapse
Affiliation(s)
- Seong-Hun Kim
- Department of Neurobiology, Pharmacology, and Physiology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
107
|
Periz G, Fortini ME. Functional reconstitution of gamma-secretase through coordinated expression of presenilin, nicastrin, Aph-1, and Pen-2. J Neurosci Res 2004; 77:309-22. [PMID: 15248287 DOI: 10.1002/jnr.20203] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The gamma-secretase complex has emerged as an unusual membrane-bound aspartyl protease with the ability to cleave certain substrate proteins at peptide bonds believed to be buried within the hydrophobic environment of the lipid bilayer. This cleavage is responsible for a key biochemical step in signaling from several different cell-surface receptors, and it is also crucial in generating the neurotoxic amyloid peptides that are central to the pathogenesis of Alzheimer's disease. Active gamma-secretase is a multimeric protein complex consisting of at least four different proteins, presenilin, nicastrin, Aph-1, and Pen-2, with presenilin serving as the catalytically active core of the aspartyl protease. Presenilin itself undergoes endoproteolytic maturation, a process that is tightly regulated during the assembly and maturation of gamma-secretase, and that depends on the three cofactors nicastrin, Aph-1, and Pen-2. Recent studies have demonstrated that presenilin and its three cofactors are likely to be the major proteins needed for functional reconstitution of active gamma-secretase and have begun to elucidate the specific functions of the cofactors in the ordered assembly of gamma-secretase.
Collapse
Affiliation(s)
- Goran Periz
- Laboratory of Protein Dynamics and Signaling, National Cancer Institute, Frederick, Maryland 21701, USA
| | | |
Collapse
|
108
|
Gupta-Rossi N, Six E, LeBail O, Logeat F, Chastagner P, Olry A, Israël A, Brou C. Monoubiquitination and endocytosis direct gamma-secretase cleavage of activated Notch receptor. ACTA ACUST UNITED AC 2004; 166:73-83. [PMID: 15240571 PMCID: PMC2172142 DOI: 10.1083/jcb.200310098] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Activation of mammalian Notch receptor by its ligands induces TNFalpha-converting enzyme-dependent ectodomain shedding, followed by intramembrane proteolysis due to presenilin (PS)-dependent gamma-secretase activity. Here, we demonstrate that a new modification, a monoubiquitination, as well as clathrin-dependent endocytosis, is required for gamma-secretase processing of a constitutively active Notch derivative, DeltaE, which mimics the TNFalpha-converting enzyme-processing product. PS interacts with this modified form of DeltaE, DeltaEu. We identified the lysine residue targeted by the monoubiquitination event and confirmed its importance for activation of Notch receptor by its ligand, Delta-like 1. We propose a new model where monoubiquitination and endocytosis of Notch are a prerequisite for its PS-dependent cleavage, and discuss its relevance for other gamma-secretase substrates.
Collapse
Affiliation(s)
- Neetu Gupta-Rossi
- Unité de Biologie Moléculaire de l'Expression Génique, URA 2582, CNRS, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Gowrishankar K, Zeidler MG, Vincenz C. Release of a membrane-bound death domain by gamma-secretase processing of the p75NTR homolog NRADD. J Cell Sci 2004; 117:4099-111. [PMID: 15280425 DOI: 10.1242/jcs.01263] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neurotrophin receptor alike death domain protein (NRADD) is a death-receptor-like protein with a unique ectodomain and an intracellular domain homologous to p75(NTR). Expression of NRADD results in apoptosis, but only in certain cell types. This paper characterizes the expression and proteolytic processing of the mature 55 kDa glycoprotein. N-terminally truncated NRADD is processed by a gamma-secretase activity that requires presenilins and has the same susceptibility to gamma-secretase inhibitors as the secretion of amyloid beta (A beta). The ectodomain of endogenous NRADD is shed by activation of metalloproteinases. Inhibitor studies provide evidence that NRADD is cleaved in two steps typical of regulated intramembrane proteolysis (RIP). Inhibition of gamma-secretase abrogates both the production of the soluble intracellular domain of NRADD and the appearance of NRADD in subnuclear structures. Thus, solubilized death domains with close homology to p75(NTR) might have a nuclear function. Furthermore, presenilin deficiency leads to abnormally glycosylated NRADD and overexpression of presenilin 2 inhibits NRADD maturation, which is dependent on the putative active site residue D366 but not on gamma-secretase activity. Our results demonstrate that NRADD is an additional gamma-secretase substrate and suggest that drugs against Alzheimer's disease will need to target gamma-secretase in a substrate-specific manner.
Collapse
Affiliation(s)
- Kavitha Gowrishankar
- Department of Pathology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
110
|
Shirotani K, Edbauer D, Kostka M, Steiner H, Haass C. Immature nicastrin stabilizes APH-1 independent of PEN-2 and presenilin: identification of nicastrin mutants that selectively interact with APH-1. J Neurochem 2004; 89:1520-7. [PMID: 15189355 DOI: 10.1111/j.1471-4159.2004.02447.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gamma-secretase is a high molecular mass aspartyl protease complex composed of presenilin (PS1 or PS2), nicastrin (Nct), anterior pharynx-defective-1 (APH-1) and presenilin enhancer-2 (PEN-2). The complex mediates the intramembraneous proteolysis of beta-secretase cleaved beta-amyloid precursor protein (APP) leading to the secretion of the Alzheimer's disease-associated amyloid beta-peptide (Abeta). In order to dissect functionally important domains of Nct required for gamma-secretase complex assembly, maturation, and activity we mutated evolutionary conserved amino acids. The mutant Nct variants were expressed in a cellular background with significantly reduced endogenous Nct. Mutant Nct was functionally investigated by its ability to restore PS, APH-1 and PEN-2 expression as well as by monitoring the accumulation of the APP C-terminal fragments, the immediate substrates of gamma-secretase. We identified three independent mutations within the ectodomain of Nct, which rescued expression of APH-1 but not of PEN-2 or PS and thus failed to restore gamma-secretase activity. Interestingly, these immature Nct variants selectively bound to APH-1, suggesting a stable Nct/APH-1 interaction independent of PS and PEN-2. Consistent with this finding, expression of APH-1 remained largely unaffected in the PS double knock-out and immature Nct co-immunoprecipitated with APH-1 in the absence of PS and PEN-2. Taken together, our findings suggest that immature Nct can stably interact with APH-1 to form a potential scaffold for binding of PS and PEN-2. Moreover, binding of the latter two complex partners critically depends on the integrity of the Nct ectodomain.
Collapse
Affiliation(s)
- Keiro Shirotani
- Adolf-Butenandt Institute, Department of Biochemistry, Laboratory for Alzheimer's and Parkinson's Disease Research, Ludwig-Maximilians University, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|
111
|
Wang H, Luo WJ, Zhang YW, Li YM, Thinakaran G, Greengard P, Xu H. Presenilins and gamma-secretase inhibitors affect intracellular trafficking and cell surface localization of the gamma-secretase complex components. J Biol Chem 2004; 279:40560-6. [PMID: 15247291 DOI: 10.1074/jbc.m404345200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The intramembranous cleavage of Alzheimer beta-amyloid precursor protein and the signaling receptor Notch is mediated by the presenilin (PS, PS1/PS2)-gamma-secretase complex, the components of which also include nicastrin, APH-1, and PEN-2. In addition to its essential role in gamma-secretase activity, we and others have reported that PS1 plays a role in intracellular trafficking of select membrane proteins including nicastrin. Here we examined the fate of PEN-2 in the absence of PS expression or gamma-secretase activity. We found that PEN-2 is retained in the endoplasmic reticulum and has a much shorter half-life in PS-deficient cells than in wild type cells, suggesting that PSs are required for maintaining the stability and proper subcellular trafficking of PEN-2. However, the function of PS in PEN-2 trafficking is distinct from its contribution to gamma-secretase activity because inhibition of gamma-secretase activity by gamma-secretase inhibitors did not affect the PEN-2 level or its egress from the endoplasmic reticulum. Instead, membrane-permeable gamma-secretase inhibitors, but not a membrane-impermeable derivative, markedly increased the cell surface levels of PS1 and PEN-2 without affecting that of nicastrin. In support of its role in PEN-2 trafficking, PS1 was also required for the gamma-secretase inhibitor-induced plasma membrane accumulation of PEN-2. We further showed that gamma-secretase inhibitors specifically accelerated the Golgi to the cell surface transport of PS1 and PEN-2. Taken together, we demonstrate an essential role for PSs in intracellular trafficking of the gamma-secretase components, and that selective gamma-secretase inhibitors differentially affect the trafficking of the gamma-secretase components, which may contribute to an inactivation of gamma-secretase.
Collapse
Affiliation(s)
- Hong Wang
- The Fisher Center for Alzheimer's Disease Research and the Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
112
|
Das I, Craig C, Funahashi Y, Jung KM, Kim TW, Byers R, Weng AP, Kutok JL, Aster JC, Kitajewski J. Notch Oncoproteins Depend on γ-Secretase/Presenilin Activity for Processing and Function. J Biol Chem 2004; 279:30771-80. [PMID: 15123653 DOI: 10.1074/jbc.m309252200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During normal development Notch receptor signaling is important in regulating numerous cell fate decisions. Mutations that truncate the extracellular domain of Notch receptors can cause aberrant signaling and promote unregulated cell growth. We have examined two types of truncated Notch oncoproteins that arise from proviral insertion into the Notch4 gene (Notch4/int-3) or a chromosomal translocation involving the Notch1 gene (TAN-1). Both Notch4/int-3 and TAN-1 oncoproteins lack most or all of their ectodomain. Normal Notch signaling requires gamma-secretase/presenilin-mediated proteolytic processing, but whether Notch oncoproteins are also dependent on gamma-secretase/presenilin activity is not known. We demonstrate that Notch4/int-3-induced activation of the downstream transcription factor, CSL, is abrogated in cells deficient in presenilins or treated with a pharmacological inhibitor of gamma-secretase/presenilins. Furthermore, we find that both Notch4/int-3 and TAN-1 accumulate at the cell surface, where presenilin-dependent cleavage occurs, when gamma-secretase/presenilin activity is inhibited. gamma-Secretase/presenilin inhibition effectively blocks cellular responses to Notch4/int-3, but not TAN-1, apparently because some TAN-1 polypeptides lack transmembrane domains and do not require gamma-secretase/presenilin activity for nuclear access. These studies highlight potential uses and limitations of gamma-secretase/presenilin inhibitors in targeted therapy of Notch-related neoplasms.
Collapse
MESH Headings
- Adenoviridae/genetics
- Amyloid Precursor Protein Secretases
- Animals
- Aspartic Acid Endopeptidases
- Biotinylation
- Cell Cycle
- Cell Division
- Cell Line
- Cell Membrane/metabolism
- Cells, Cultured
- Endopeptidases/metabolism
- Endothelium, Vascular/cytology
- Gene Transfer Techniques
- Genes, Reporter
- HeLa Cells
- Humans
- Ligands
- Luciferases/metabolism
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Mice
- Models, Biological
- Presenilin-1
- Protein Structure, Tertiary
- Proto-Oncogene Proteins/metabolism
- Receptor, Notch1
- Receptor, Notch2
- Receptor, Notch4
- Receptors, Cell Surface/metabolism
- Receptors, Notch
- Signal Transduction
- Transcription Factors
- Transfection
- Umbilical Veins/cytology
Collapse
Affiliation(s)
- Indranil Das
- Department of Pathology and Obstetrics/Gynecology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Hayashi I, Urano Y, Fukuda R, Isoo N, Kodama T, Hamakubo T, Tomita T, Iwatsubo T. Selective reconstitution and recovery of functional gamma-secretase complex on budded baculovirus particles. J Biol Chem 2004; 279:38040-6. [PMID: 15215237 DOI: 10.1074/jbc.m405597200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vitro reconstitution of functions of membrane proteins is often hampered by aggregation, misfolding, or lack of post-translational modifications of the proteins attributable to overexpression. To overcome this technical obstacle, we have developed a method to express multimeric integral membrane proteins in extracellular (budded) baculovirus particles that are released from Sf9 cells co-infected with multiple transmembrane proteins. We applied this method to the reconstitution of gamma-secretase, a membrane protease complex that catalyzes the intramembrane cleavage of beta-amyloid precursor protein to release Abeta peptides, the major component of amyloid deposits in Alzheimer brains as well as of Notch. When we co-infected Sf9 cells with human presenilin 1 (PS1), nicastrin, APH-1a, and PEN-2, a high-molecular-weight membrane protein complex that contained PS1 exclusively in its fragment form associated with three other cofactor proteins was reconstituted and recovered in a highly gamma-secretase-active state in budded virus particles, whereas nonfunctional PS1 holoproteins massively contaminated the parental Sf9 cell membranes. The relative gamma-secretase activity (per molar PS1 fragments) was concentrated by approximately 2.5 fold in budded virus particles compared with that in Sf9 membranes. The budded baculovirus system will facilitate structural and functional analyses of gamma-secretase, as well as screening of its binding molecules or inhibitors, and will also provide a versatile methodology for the characterization of a variety of membrane protein complexes.
Collapse
Affiliation(s)
- Ikuo Hayashi
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Zhu GD, L'Hernault SW. The Caenorhabditis elegans spe-39 gene is required for intracellular membrane reorganization during spermatogenesis. Genetics 2004; 165:145-57. [PMID: 14504223 PMCID: PMC1462752 DOI: 10.1093/genetics/165.1.145] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Caenorhabditis elegans spermatid formation involves asymmetric partitioning of cytoplasm during the second meiotic division. This process is mediated by specialized ER/Golgi-derived fibrous body-membranous organelles (FB-MOs), which have a fibrous body (FB) composed of bundled major sperm protein filaments and a vesicular membranous organelle (MO). spe-39 mutant spermatocytes complete meiosis but do not usually form spermatids. Ultrastructural examination of spe-39 spermatocytes reveals that MOs are absent, while FBs are disorganized and not surrounded by the membrane envelope usually observed in wild type. Instead, spe-39 spermatocytes contain many small vesicles with internal membranes, suggesting they are related to MOs. The spe-39 gene was identified and it encodes a novel hydrophilic protein. Immunofluorescence with a specific SPE-39 antiserum reveals that it is distributed through much of the cytoplasm and not specifically associated with FB-MOs in spermatocytes and spermatids. The spe-39 gene has orthologs in Drosophila melanogaster and humans but no homolog was identified in the yeast genome. This suggests that the specialized membrane biogenesis steps that occur during C. elegans spermatogenesis are part of a conserved process that requires SPE-39 homologs in other metazoan cell types.
Collapse
Affiliation(s)
- Guang-Dan Zhu
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences and Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
115
|
Verdile G, Groth D, Mathews PM, St George-Hyslop P, Fraser PE, Ramabhadran TV, Kwok JBJ, Schofield PR, Carter T, Gandy S, Martins RN. Baculoviruses expressing the human familial Alzheimer's disease presenilin 1 mutation lacking exon 9 increase levels of an amyloid beta-like protein in Sf9 cells. Mol Psychiatry 2004; 9:594-602. [PMID: 14993906 DOI: 10.1038/sj.mp.4001458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Presenilin 1 (PS1) plays a pivotal role in the production of the amyloid-beta protein (Abeta) that is central to the pathogenesis of Alzheimer's disease. PS1 regulates the intramembranous proteolysis of a 99-amino-acid C-terminal fragment of the amyloid precursor protein (APP-C99), a cleavage event that releases Abeta following a reaction catalyzed by an enzyme termed 'gamma-secretase'. The molecular mechanism of PS1-mediated, gamma-secretase cleavage remains largely unresolved. In particular, controversy surrounds whether PS1 includes the catalytic site of the gamma-secretase protease or whether instead PS1 mediates gamma-secretase activity indirectly, perhaps by regulating the trafficking or presentation of substrates to the 'authentic' protease, which may be a molecule distinct from PS1. To address this issue, the baculovirus expression system was used to co-express: (i) APP-C99; (ii) a pathogenic, constitutively active mutant form of PS1 lacking exon 9 (PS1DeltaE9); (iii) nicastrin and (iv) tropomyosin in Spodoptera frugiperda (Sf9) cells. Cells infected with APP-C99 alone produced an Abeta-like species, and levels of this species were enhanced by the addition of baculoviruses bearing the PS1DeltaE9 mutation. The addition to APP-C99-infected cells of baculoviruses bearing nicastrin, also a transmembrane protein, had a neutral or inhibitory effect on the reaction; tropomyosin viruses had the same effect as nicastrin viruses. These results suggest that PS1DeltaE9 molecules expressed in Sf9 cells retain the ability to modulate Abeta levels. Baculoviral-expressed PS1DeltaE9 provides a source of microgram quantities of bioactive molecules for use as starting material for purifying and reconstituting gamma-secretase activity from its individual purified component parts.
Collapse
Affiliation(s)
- G Verdile
- Sir James McCusker Alzheimer's Disease Research Unit, University of Western Australia, School of Psychiatry and Clinical Neurosciences, Hollywood Private Hospital, Nedlands, WA, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Wilson CA, Murphy DD, Giasson BI, Zhang B, Trojanowski JQ, Lee VMY. Degradative organelles containing mislocalized alpha-and beta-synuclein proliferate in presenilin-1 null neurons. J Cell Biol 2004; 165:335-46. [PMID: 15123735 PMCID: PMC2172178 DOI: 10.1083/jcb.200403061] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 03/26/2004] [Indexed: 12/21/2022] Open
Abstract
Presenilin-1 null mutation (PS1 -/-) in mice is associated with morphological alterations and defects in cleavage of transmembrane proteins. Here, we demonstrate that PS1 deficiency also leads to the formation of degradative vacuoles and to the aberrant translocation of presynaptic alpha- and beta-synuclein proteins to these organelles in the perikarya of primary neurons, concomitant with significant increases in the levels of both synucleins. Stimulation of autophagy in control neurons produced a similar mislocalization of synucleins as genetic ablation of PS1. These effects were not the result of the loss of PS1 gamma-secretase activity; however, dysregulation of calcium channels in PS1 -/- cells may be involved. Finally, colocalization of alpha-synuclein and degradative organelles was observed in brains from patients with the Lewy body variant of AD. Thus, aberrant accumulation of alpha- and beta-synuclein in degradative organelles are novel features of PS1 -/- neurons, and similar events may promote the formation of alpha-synuclein inclusions associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Christina A Wilson
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
117
|
Wada S, Morishima-Kawashima M, Qi Y, Misono H, Shimada Y, Ohno-Iwashita Y, Ihara Y. Gamma-secretase activity is present in rafts but is not cholesterol-dependent. Biochemistry 2004; 42:13977-86. [PMID: 14636066 DOI: 10.1021/bi034904j] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholesterol has been claimed to be involved in the generation and/or accumulation of amyloid beta protein (Abeta). However, the underlying molecular mechanisms have not been fully elucidated yet. Here, we have investigated the effect of membrane cholesterol content on gamma-secretase activity using Chinese hamster ovary cells stably expressing beta-amyloid precursor protein (APP) and either wild-type or N141I mutant-type presenilin 2. Cholesterol was acutely depleted from the isolated membrane by methyl-beta-cyclodextrin, and Abeta production was assessed in a cell-free assay system. Reduced cholesterol did not significantly alter the amounts of Abeta produced by either total cell membranes or cholesterol-rich low-density membrane domains. Even its extremely low levels in the latter domains did not affect Abeta production. This indicates that the membrane cholesterol content does not directly modulate the activity of gamma-secretase. To ascertain that gamma-secretase resides in cholesterol-rich membrane domains, low-density membrane domains were further fractionated with BCtheta (biotinylated theta-toxin nicked with subtilisin Carlsberg protease), which has recently been shown to bind selectively to rafts of intact cells. The membrane domains purified with BCtheta did indeed produce Abeta. These observations indicate that the gamma-cleavage required for generating Abeta occurs in rafts, but its activity is virtually cholesterol-independent.
Collapse
Affiliation(s)
- Satoko Wada
- Department of Neuropathology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
118
|
Fluhrer R, Friedlein A, Haass C, Walter J. Phosphorylation of Presenilin 1 at the Caspase Recognition Site Regulates Its Proteolytic Processing and the Progression of Apoptosis. J Biol Chem 2004; 279:1585-93. [PMID: 14576165 DOI: 10.1074/jbc.m306653200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Alzheimer's disease-associated presenilin (PS) 1 is intimately involved in gamma-secretase cleavage of beta-amyloid precursor protein and other proteins. In addition, PS1 plays a role in beta-catenin signaling and in the regulation of apoptosis. Here we demonstrate that phosphorylation of PS1 is regulated by two independent signaling pathways involving protein kinase (PK) A and PKC and that both kinases can directly phosphorylate the large hydrophilic domain of PS1 in vitro and in cultured cells. A phosphorylation site at serine residue 346 was identified that is selectively phosphorylated by PKC but not by PKA. This site is localized within a recognition motif for caspases, and phosphorylation strongly inhibits proteolytic processing of PS1 by caspase activity during apoptosis. Moreover, PS1 phosphorylation reduces the progression of apoptosis. Our data indicate that phosphorylation/dephosphorylation at the caspase recognition site provides a mechanism to reversibly regulate properties of PS1 in apoptosis.
Collapse
Affiliation(s)
- Regina Fluhrer
- Department of Neurology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | | | | | | |
Collapse
|
119
|
Abstract
The incidence of Alzheimer's disease (AD) and that of prion disorders (PrD) could not be more different. One-third of octogenarians succumb to AD, whereas Creutzfeldt-Jakob disease typically affects one individual in a million each year. However, these diseases have many common features impinging on the metabolism of neuronal membrane proteins: the amyloid precursor protein APP in the case of AD, and the cellular prion protein PrPC in PrD. APP begets the Abeta peptide, whereas PrPC begets the malignant prion protein PrPSc. Both Abeta and PrPSc are associated with disease, but we do not know what triggers their accumulation and neurotoxicity. A great deal has been learned, however, about protein folding, misfolding, and aggregation; an entirely new class of intramembrane proteases has been identified; and unsuspected roles for the immune system have been uncovered. There is reason to expect that prion research will profit from advances in the understanding of AD, and vice versa.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland.
| | | |
Collapse
|
120
|
Capell A, Kaether C, Edbauer D, Shirotani K, Merkl S, Steiner H, Haass C. Nicastrin Interacts with γ-Secretase Complex Components via the N-terminal Part of Its Transmembrane Domain. J Biol Chem 2003; 278:52519-23. [PMID: 14602727 DOI: 10.1074/jbc.c300435200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two secretases are involved in the generation of amyloid beta-peptide, the principal component of amyloid plaques in the brains of Alzheimer's disease patients. While beta-secretase is a classical aspartyl protease, gamma-secretase activity is associated with a high molecular weight complex. One of the complex components, which is critically required for gamma-secretase activity is nicastrin (NCT). Here we investigate the assembly of NCT into the gamma-secretase complex. NCT mutants either lacking the entire cytoplasmic tail, the cytoplasmic tail, and the transmembrane domain (TMD), or containing a set of heterologous TMDs were expressed in cells with strongly reduced levels of endogenous NCT. Maturation of exogenous NCT, gamma-secretase complex formation and proteolytic function was then investigated. This revealed that the cytoplasmic tail of NCT is dispensable for gamma-secretase complex assembly and function. In contrast, the authentic TMD of NCT is critically required for the interaction with gamma-secretase complex components and for formation of an active gamma-secretase complex. Neither soluble NCT lacking any membrane anchor nor NCT containing a heterologous TMD were inserted into the gamma-secretase complex. We identified the N-terminal region of the NCT TMD as a functionally important entity of NCT. These data thus demonstrate that NCT interacts with other gamma-secretase complex components via its TMD.
Collapse
Affiliation(s)
- Anja Capell
- Adolf-Butenandt-Institute, Department of Biochemistry, Laboratory for Alzheimer's and Parkinson's Disease Research, Schillerstrasse 44, Ludwig-Maximilians-University, 80336 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
121
|
Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, Copeland NG, Lee MK, Younkin LH, Wagner SL, Younkin SG, Borchelt DR. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 2003; 13:159-70. [PMID: 14645205 DOI: 10.1093/hmg/ddh019] [Citation(s) in RCA: 1224] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyloid precursor protein (APP) is endoproteolytically processed by BACE1 and gamma-secretase to release amyloid peptides (Abeta40 and 42) that aggregate to form senile plaques in the brains of patients with Alzheimer's disease (AD). The C-terminus of Abeta40/42 is generated by gamma-secretase, whose activity is dependent upon presenilin (PS 1 or 2). Missense mutations in PS1 (and PS2) occur in patients with early-onset familial AD (FAD), and previous studies in transgenic mice and cultured cell models demonstrated that FAD-PS1 variants shift the ratio of Abeta40 : 42 to favor Abeta42. One hypothesis to explain this outcome is that mutant PS alters the specificity of gamma-secretase to favor production of Abeta42 at the expense of Abeta40. To test this hypothesis in vivo, we studied Abeta40 and 42 levels in a series of transgenic mice that co-express the Swedish mutation of APP (APPswe) with two FAD-PS1 variants that differentially accelerate amyloid pathology in the brain. We demonstrate a direct correlation between the concentration of Abeta42 and the rate of amyloid deposition. We further show that the shift in Abeta42 : 40 ratios associated with the expression of FAD-PS1 variants is due to a specific elevation in the steady-state levels of Abeta42, while maintaining a constant level of Abeta40. These data suggest that PS1 variants do not simply alter the preferred cleavage site for gamma-secretase, but rather that they have more complex effects on the regulation of gamma-secretase and its access to substrates.
Collapse
Affiliation(s)
- Joanna L Jankowsky
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Selkoe D, Kopan R. Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci 2003; 26:565-97. [PMID: 12730322 DOI: 10.1146/annurev.neuro.26.041002.131334] [Citation(s) in RCA: 485] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intensive studies of three proteins--Presenilin, Notch, and the amyloid precursor protein (APP)--have led to the recognition of a direct intersection between early development and late-life neurodegeneration. Notch signaling mediates many different intercellular communication events that are essential for determining the fates of neural and nonneural cells during development and in the adult. The Notch receptor acts in a core pathway as a membrane-bound transcription factor that is released to the nucleus by a two-step cleavage mechanism called regulated intramembrane proteolysis (RIP). The second cleavage is effected by Presenilin, an unusual polytopic aspartyl protease that apparently cleaves Notch and numerous other single-transmembrane substrates within the lipid bilayer. Another Presenilin substrate, APP, releases the amyloid ss-protein that can accumulate over time in limbic and association cortices and help initiate Alzheimer's disease. Elucidating the detailed mechanism of Presenilin processing of membrane proteins is important for understanding diverse signal transduction pathways and potentially for treating and preventing Alzheimer's disease.
Collapse
Affiliation(s)
- Dennis Selkoe
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
123
|
Baulac S, LaVoie MJ, Kimberly WT, Strahle J, Wolfe MS, Selkoe DJ, Xia W. Functional γ-secretase complex assembly in Golgi/trans-Golgi network: interactions among presenilin, nicastrin, Aph1, Pen-2, and γ-secretase substrates. Neurobiol Dis 2003; 14:194-204. [PMID: 14572442 DOI: 10.1016/s0969-9961(03)00123-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Gamma-secretase is a proteolytic complex whose substrates include Notch, beta-amyloid precursor protein (APP), and several other type I transmembrane proteins. Presenilin (PS) and nicastrin are known components of this high-molecular-weight complex, and recent genetic screens in invertebrates have identified two additional gene products, Aph1 and Pen-2, as key factors in gamma-secretase activity. Here, we examined the interaction of the components of the gamma-secretase complex in Chinese hamster ovary cells stably expressing human forms of APP, PS1, Aph1, and Pen-2. Subcellular fractionation of membrane vesicles and subsequent coimmunoprecipitation of individual gamma-secretase components revealed that interactions among all proteins occurred in the Golgi/trans-Golgi network (TGN) compartments. Furthermore, incubation of the Golgi/TGN-enriched vesicles resulted in de novo generation of amyloid beta-protein and APP intracellular domain. Immunofluorescent staining of the individual gamma-secretase components supported our biochemical evidence that the gamma-secretase components assemble into the proteolytically active gamma-secretase complex in the Golgi/TGN compartment.
Collapse
Affiliation(s)
- Stephanie Baulac
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
124
|
Ling Y, Morgan K, Kalsheker N. Amyloid precursor protein (APP) and the biology of proteolytic processing: relevance to Alzheimer's disease. Int J Biochem Cell Biol 2003; 35:1505-35. [PMID: 12824062 DOI: 10.1016/s1357-2725(03)00133-x] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The processing of amyloid precursor protein (APP) generates amyloid-beta (Abeta) peptides 1-40 and 1-42. The latter is neurotoxic and its accumulation results in amyloid fibril formation and the generation of senile plaques, the hallmark of Alzheimer's disease (AD). Whilst there has been considerable progress made in understanding the generation of Abeta by alpha-, beta- and gamma-secretase activity on APP, recently enzymes involved in the degradation of Abeta have been identified including neprilysin and insulin-degrading enzyme (IDE). We review the pathways involved in proteolytic processing of APP and discuss the potential implications of aberrant proteolysis on neurodegeneration. It is conceivable that single nucleotide polymorphisms (SNPs) in the regulatory regions of genes in these proteolytic cascades, which alter their expression, could contribute to some of the age-related changes seen in AD.
Collapse
Affiliation(s)
- Yan Ling
- Division of Clinical Chemistry, Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | | | | |
Collapse
|
125
|
Nyabi O, Bentahir M, Horré K, Herreman A, Gottardi-Littell N, Van Broeckhoven C, Merchiers P, Spittaels K, Annaert W, De Strooper B. Presenilins mutated at Asp-257 or Asp-385 restore Pen-2 expression and Nicastrin glycosylation but remain catalytically inactive in the absence of wild type Presenilin. J Biol Chem 2003; 278:43430-6. [PMID: 12885769 DOI: 10.1074/jbc.m306957200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Presenilins are part of the gamma-secretase complex that is involved in the regulated intramembrane proteolysis of amyloid precursor protein and other type I integral membrane proteins. Nicastrin, Pen-2, and Aph1 are the other proteins of this complex. The Presenilins probably contribute the catalytic activity to the protease complex. However, several investigators reported normal Abeta-peptide generation in cells expressing Presenilins mutated at the putative catalytic site residue Asp-257, contradicting this hypothesis. Because endogenously expressed wild type Presenilin could contribute to residual gamma-secretase activity in these experiments, we have reinvestigated the problem by expressing mutated Presenilins in a Presenilin-negative cell line. We confirm that Presenilins with mutated Asp residues are catalytically inactive. Unexpectedly, these mutated Presenilins are still partially processed into amino- and carboxyl-terminal fragments by a "Presenilinase"-like activity. They are also able to rescue Pen-2 expression and Nicastrin glycosylation in Presenilin-negative cells and become incorporated into large approximately 440-kDa complexes as assessed by blue native gel electrophoresis. Our study demonstrates that the catalytic activity of Presenilin and its other functions in the generation, stabilization, and transport of the gamma-secretase complex can be separated and extends the concept that Presenilins are multifunctional proteins.
Collapse
Affiliation(s)
- Omar Nyabi
- Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Flanders Interuniversity Institute for Biotechnology (VIB4) and K.U.Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Morais VA, Crystal AS, Pijak DS, Carlin D, Costa J, Lee VMY, Doms RW. The transmembrane domain region of nicastrin mediates direct interactions with APH-1 and the gamma-secretase complex. J Biol Chem 2003; 278:43284-91. [PMID: 12917438 DOI: 10.1074/jbc.m305685200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicastrin (NCT) is a type I integral membrane protein that is one of the four essential components of the gamma-secretase complex, a protein assembly that catalyzes the intramembranous cleavage of the amyloid precursor protein and Notch. Other gamma-secretase components include presenilin-1 (PS1), APH-1, and PEN-2, all of which span the membrane multiple times. The mechanism by which NCT associates with the gamma-secretase complex and regulates its activity is unclear. To avoid the misfolding phenotype often associated with introducing deletions or mutations into heavily glycosylated and disulfide-bonded proteins such as NCT, we produced chimeras between human (hNCT) and Caenorhabditis elegans NCT (ceNCT). Although ceNCT did not associate with human gamma-secretase components, all of the ceNCT/hNCT chimeras interacted with gamma-secretase components from human, C. elegans, or both, indicating that they folded correctly. A region at the C-terminal end of hNCT, encompassing the last 50 residues of its ectodomain, the transmembrane domain, and the cytoplasmic domain was important for mediating interactions with human PS1, APH-1, and PEN-2. This finding is consistent with the fact that the bulk of the gamma-secretase complex proteins resides within the membrane, with relatively small extramembranous domains. Finally, hNCT associated with hAPH-1 in the absence of PS, consistent with NCT and APH-1 forming a subcomplex prior to association with PS1 and PEN-2 and indicating that the interactions between NCT with PS1 may be indirect or stabilized by the presence of APH-1.
Collapse
Affiliation(s)
- Vanessa A Morais
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Wilson CA, Doms RW, Lee VMY. Distinct presenilin-dependent and presenilin-independent ?-secretases are responsible for total cellular A? production. J Neurosci Res 2003; 74:361-9. [PMID: 14598312 DOI: 10.1002/jnr.10776] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
gamma-Secretase is the second of two proteolytic enzymes involved in the liberation of the beta-amyloid peptide (Abeta) from the amyloid precursor protein (APP). gamma-Secretase cleavage occurs at several intracellular sites, including the Golgi network and the endoplasmic reticulum/intermediate compartment (ER/IC) to produce multiple forms of the Abeta peptide that can be either secreted from the cell or remain intracellular. To date, most evidence has suggested that members of the presenilin protein family are required for gamma-secretase activity. Although it seems that presenilins are indeed necessary for the production of most secreted and intracellular Abeta particularly that generated in downstream organelles, it was shown recently that a presenilin-independent gamma-secretase is active in the ER/IC and is responsible for the production of a portion of intracellular Abeta42. We discuss the implications of this finding for the understanding of presenilin biology and speculate on the putative identity of the presenilin-independent cleavage activity.
Collapse
Affiliation(s)
- Christina A Wilson
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
128
|
Abstract
gamma-Secretase catalyzes intramembrane proteolysis of various type I membrane proteins, including the amyloid-beta precursor protein and the Notch receptor. Despite its importance in the pathogenesis of Alzheimer's disease and to normal development, this protease has eluded identification until only very recently. Four membrane proteins are now known to be members of the protease complex: presenilin, nicastrin, aph-1, and pen-2. Recent findings suggest that these four proteins are sufficient to reconstitute the active gamma-secretase complex and that together they mediate the cell surface signaling of a variety of receptors via intramembrane proteolysis.
Collapse
Affiliation(s)
- W Taylor Kimberly
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
129
|
Chyung JH, Selkoe DJ. Inhibition of receptor-mediated endocytosis demonstrates generation of amyloid beta-protein at the cell surface. J Biol Chem 2003; 278:51035-43. [PMID: 14525989 DOI: 10.1074/jbc.m304989200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sequential cleavages of the amyloid beta-protein precursor (APP) by the beta- and gamma-secretases generate the amyloid beta-protein (A beta), which plays a central role in Alzheimer's disease. Previous work provided evidence for involvement of both the secretory and endocytic pathways in A beta generation. Here, we used HeLa cells stably expressing a tetracycline-regulated dominant-negative dynamin I (dyn K44A), which selectively inhibits receptor-mediated endocytosis, and analyzed the effects on the processing of endogenous APP. Upon induction of dyn K44A, levels of mature APP rose at the cell surface, consistent with retention of APP on the plasma membrane. The alpha-secretase cleavage products of APP were increased by dyn K44A, in that alpha-APPs in medium and the C83 C-terminal stub in the membrane both rose. The beta-secretase cleavage of APP, C99, also increased modestly. The use of specific gamma-secretase inhibitors to study the accumulation of alpha- and beta-cleavage products independent of their processing by gamma-secretase confirmed that retention of APP on the plasma membrane results in increased processing by both alpha- and beta-secretases. Unexpectedly, endogenous A beta secretion was significantly increased by dyn K44A, as detected by three distinct methods: metabolic labeling, immunoprecipitation/Western blotting, and enzyme-linked immunosorbent assay. Levels of p3 (generated by sequential alpha- and gamma-cleavage) also rose. We conclude that endogenous A beta can be produced directly at the plasma membrane and that alterations in the degree of APP endocytosis may help regulate its production. Our findings are consistent with a role for the gamma-secretase complex in the processing of numerous single-transmembrane receptors at the cell surface.
Collapse
Affiliation(s)
- Jay H Chyung
- Center for Neurologic Diseases, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
130
|
LaVoie MJ, Fraering PC, Ostaszewski BL, Ye W, Kimberly WT, Wolfe MS, Selkoe DJ. Assembly of the gamma-secretase complex involves early formation of an intermediate subcomplex of Aph-1 and nicastrin. J Biol Chem 2003; 278:37213-22. [PMID: 12857757 DOI: 10.1074/jbc.m303941200] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma-secretase complex is an unusual multimeric protease responsible for the intramembrane cleavage of a variety of type 1 transmembrane proteins, including the beta-amyloid precursor protein and Notch. Genetic and biochemical data have revealed that this protease consists of the presenilin heterodimer, a highly glycosylated form of nicastrin, and the recently identified gene products, Aph-1 and Pen-2. Whereas current evidence supports the notion that presenilin comprises the active site of the protease and that the other three components are members of the active complex required for proteolytic activity, the individual roles of the three co-factors remain unclear. Here, we demonstrate that endogenous Aph-1 interacts with an immature species of nicastrin, forming a stable intermediate early in the assembly of the gamma-secretase complex, prior to the addition of presenilin and Pen-2. Our data suggest 1) that Aph-1 is involved in the early stages of gamma-secretase assembly through the stabilization and perhaps glycosylation of nicastrin and by scaffolding nicastrin to the immature gamma-secretase complex, and 2) that presenilin, and later Pen-2, bind to this intermediate during the formation of the mature protease.
Collapse
Affiliation(s)
- Matthew J LaVoie
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
131
|
Kim SH, Ikeuchi T, Yu C, Sisodia SS. Regulated hyperaccumulation of presenilin-1 and the "gamma-secretase" complex. Evidence for differential intramembranous processing of transmembrane subatrates. J Biol Chem 2003; 278:33992-4002. [PMID: 12821663 DOI: 10.1074/jbc.m305834200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intramembranous "gamma-secretase" processing of beta-amyloid precursor protein (APP) and other transmembrane proteins, including Notch, is mediated by a macromolecular complex consisting of presenilins (PSs), nicastrin (NCT), APH-1, and PEN-2. We now demonstrate that in cells coexpressing PS1, APH-1, and NCT, full-length PS1 accumulates to high levels and is fairly stable. Upon expression of PEN-2, the levels of PS1 holoprotein are significantly reduced, commensurate with an elevation in levels of PS1 fragments. These findings suggest that APH-1 and NCT are necessary for stabilization of full-length PS1 and that PEN-2 is critical for the proteolysis of stabilized PS1. In N2a and 293 cell lines that stably overexpress PS1, APH-1, NCT, and PEN-2, PS1 fragment levels are elevated by up to 10-fold over endogenous levels. In these cells, we find a marked accumulation of the APP-CTF gamma (AICD) fragment and a concomitant reduction in levels of both APP-CTF beta and CTF alpha. Moreover, the production of the gamma-secretase-generated Notch S3/NICD derivative is modestly elevated. However, we failed to observe a corresponding increase in levels of secreted A beta peptides in the medium of these cells. These results lead us to conclude that, although the PS1, APH-1, NCT, and PEN-2 are essential for gamma-secretase activity, the proteolysis of APP-CTF and Notch S2/NEXT are differentially regulated and require the activity of additional cofactors that promote production of AICD, NICD, and A beta.
Collapse
Affiliation(s)
- Seong-Hun Kim
- Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
132
|
Grbovic OM, Mathews PM, Jiang Y, Schmidt SD, Dinakar R, Summers-Terio NB, Ceresa BP, Nixon RA, Cataldo AM. Rab5-stimulated up-regulation of the endocytic pathway increases intracellular beta-cleaved amyloid precursor protein carboxyl-terminal fragment levels and Abeta production. J Biol Chem 2003; 278:31261-8. [PMID: 12761223 DOI: 10.1074/jbc.m304122200] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously identified abnormalities of the endocytic pathway in neurons as the earliest known pathology in sporadic Alzheimer's disease (AD) and Down's syndrome brain. In this study, we modeled aspects of these AD-related endocytic changes in murine L cells by overexpressing Rab5, a positive regulator of endocytosis. Rab5-transfected cells exhibited abnormally large endosomes immunoreactive for Rab5 and early endosomal antigen 1, resembling the endosome morphology seen in affected neurons from AD brain. The levels of both Abeta40 and Abeta42 in conditioned medium were increased more than 2.5-fold following Rab5 overexpression. In Rab5 overexpressing cells, the levels of beta-cleaved amyloid precursor protein (APP) carboxyl-terminal fragments (betaCTF), the rate-limiting proteolytic intermediate in Abeta generation, were increased up to 2-fold relative to APP holoprotein levels. An increase in beta-cleaved soluble APP relative to alpha-cleaved soluble APP was also observed following Rab5 overexpression. BetaCTFs were co-localized by immunolabeling to vesicular compartments, including the early endosome and the trans-Golgi network. These results demonstrate a relationship between endosomal pathway activity, betaCTF generation, and Abeta production. Our findings in this model system suggest that the endosomal pathology seen at the earliest stage of sporadic AD may contribute to APP proteolysis along a beta-amyloidogenic pathway.
Collapse
Affiliation(s)
- Olivera M Grbovic
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Abstract
The amyloid beta peptide (Abeta) is a product of the sequential gamma- and beta-secretase cleavage of amyloid precursor protein. Inhibitors of secretase enzymes have been proposed as a potential therapeutic strategy in the treatment of Alzheimer's disease. Here, we investigate the effect of inhibiting these key enzymes on the viability of a range of cell types. Treatment of rat cortical neurons for 24 hr with secretase inhibitors or an antibody that binds Abeta resulted in a marked reduction in cell viability, as measured by MTT reduction. Incubation with secretase inhibitors caused similar effects on other neuronal cell types (rat cerebellar granule neurons and the human SH-SY5Y cell line). Interestingly, rat astrocytes and a number of non-neuronal cell lines investigated (HEK293, DDT1-FM2, and human teratorhabdoid tumor cells) were unaffected by incubation with secretase inhibitors. The coincubation of Abeta1-40 prevented the toxicity of secretase inhibitors in neuronal cells. Abeta1-40 was protective in a concentration-dependent manner, and its effects were significant at concentrations as low at 10 pm. Importantly, the protective effects of Abeta were Abeta size-form specific, with the Abeta1-42 size form affording limited protection and the Abeta25-35 size form having very little protective effect. The present study demonstrates that inhibition of beta-or gamma-secretase activity induces death in neuronal cells. Importantly, this toxicity, which our data suggest is a consequence of a decline in neuronal Abeta levels, was absent in non-neuronal cells. This study further supports a key physiological role for the enigmatic Abeta peptide.
Collapse
|
134
|
Réchards M, Xia W, Oorschot VMJ, Selkoe DJ, Klumperman J. Presenilin-1 exists in both pre- and post-Golgi compartments and recycles via COPI-coated membranes. Traffic 2003; 4:553-65. [PMID: 12839498 DOI: 10.1034/j.1600-0854.2003.t01-1-00114.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Presenilin-1 is involved in intramembrane proteolysis of various proteins, but its intracellular site of action has remained elusive. Here, we determined by quantitative immunogold-electron microscopy that presenilin-1 in Chinese hamster ovary cells is present in pre-Golgi compartments as well as at the plasma membrane and endosomes. Notably, a high percentage of presenilin-1 resides in COPI-coated membranes between the endoplasmic reticulum and the Golgi complex, indicating significant recycling to the endoplasmic reticulum. By contrast, the inactive aspartate mutant presenilin-1D257A is relatively excluded from COPI-coated membranes, concomitant with increased post-Golgi levels. These data provide critical evidence for the scenario that the complex containing presenilin-1 can serve as gamma-secretase at the plasma membrane or endosomes and suggest a role for COPI-mediated retrograde transport in regulating post-Golgi levels of presenilin-1.
Collapse
Affiliation(s)
- Marloes Réchards
- Department of Cell Biology, University Medical Center and Institute for Biomembranes, Center for Biomedical Genetics, Utrecht University, 3584 CX Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
135
|
Hébert SS, Bourdages V, Godin C, Ferland M, Carreau M, Lévesque G. Presenilin-1 interacts directly with the beta-site amyloid protein precursor cleaving enzyme (BACE1). Neurobiol Dis 2003; 13:238-45. [PMID: 12901838 DOI: 10.1016/s0969-9961(03)00035-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
A neuropathological hallmark of Alzheimer's disease is the presence of amyloid plaques. The major constituent of these plaques, occurring largely in brain areas important for memory and cognition, is the 40-42 amyloid residues (Abeta). Abeta is derived from the amyloid protein precursor after cleavage by the recently identified beta-secretase (BACE1) and the putative gamma-secretase complex containing presenilin 1 (PS1). In an attempt to develop a functional secretase enzymatic assay in yeast we demonstrate a direct binding between BACE1 and PS1. This interaction was confirmed in vivo using coimmunoprecipitation and colocalization studies in human cultured cells. Our results show that PS1 preferably binds immature BACE1, thus possibly acting as a functional regulator of BACE1 maturation and/or activity.
Collapse
Affiliation(s)
- Sébastien S Hébert
- Molecular and Human Genetics Unit, CHUQ-Pavillon St-François d'Assise, 10 rue de 1' Espinay, G1L 3L5, Québec, Canada
| | | | | | | | | | | |
Collapse
|
136
|
Farquhar MJ, Gray CW, Breen KC. The over-expression of the wild type or mutant forms of the presenilin-1 protein alters glycoprotein processing in a human neuroblastoma cell line. Neurosci Lett 2003; 346:53-6. [PMID: 12850546 DOI: 10.1016/s0304-3940(03)00544-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mutations in the presenilin proteins (PS1 and PS2) are responsible for more than 70% of the cases of the familial form of Alzheimer's disease (FAD). The proteins are expressed in the cell at a low level, primarily in the endoplasmic reticulum and cis Golgi, where they have been proposed to play a role in protein processing. As protein glycosylation is a key post-translational event that occurs within the Golgi, we have investigated the effect of altered PS1 expression levels on the protein glycosylation pattern using the SH-SY5Y human neuroblastoma cell line. In cells over-expressing either the wild type or mutant (M146L) PS1-FAD proteins, there was a decrease in the expression levels of protein-bound alpha2,3-linked sialic acid residues at the level of the cell membrane. This was particularly manifest as a significant decrease in the expression of the polysialic acid chain that is linked to the core oligosaccharide of the neural cell adhesion molecule in an alpha2,3 bond. These results suggest that the over-expression of either the wild type or mutant PS1 disturbs glycoprotein processing within the Golgi.
Collapse
Affiliation(s)
- M J Farquhar
- Department of Psychiatry, University of Dundee, Ninewells Hospital Medical School, Dundee DD1 9SY, UK
| | | | | |
Collapse
|
137
|
Sun Y, Yao J, Kim TW, Tall AR. Expression of liver X receptor target genes decreases cellular amyloid beta peptide secretion. J Biol Chem 2003; 278:27688-94. [PMID: 12754201 DOI: 10.1074/jbc.m300760200] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A hallmark of Alzheimer's disease is the deposition of plaques of amyloid beta peptide (Abeta) in the brain. Abeta is thought to be formed from the amyloid precursor protein (APP) in cholesterol-enriched membrane rafts, and cellular cholesterol depletion decreases Abeta formation. The liver X receptors (LXR) play a key role in regulating genes that control cellular cholesterol efflux and membrane composition and are widely expressed in cells of the central nervous system. We show that treatment of APP-expressing cells with LXR activators reduces the formation of Abeta. LXR activation resulted in increased levels of the ATP-binding cassette transporter A1 (ABCA1) and stearoyl CoA desaturase, and expression of these genes individually decreased formation of Abeta. Expression of ABCA1 led to both decreased beta-cleavage product of APPSw (i.e. C99 peptide) and reduced gamma-secretase-cleavage of C99 peptide. Remarkably, these effects of ABCA1 on APP processing were independent of cellular lipid efflux. LXR and ABCA1-induced changes in membrane lipid organization had favorable effects on processing of APP, suggesting a new approach to the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yu Sun
- Division of Molecular Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
138
|
Pasternak SH, Bagshaw RD, Guiral M, Zhang S, Ackerley CA, Pak BJ, Callahan JW, Mahuran DJ. Presenilin-1, nicastrin, amyloid precursor protein, and gamma-secretase activity are co-localized in the lysosomal membrane. J Biol Chem 2003; 278:26687-94. [PMID: 12736250 DOI: 10.1074/jbc.m304009200] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Alzheimer's disease (AD) is caused by the cerebral deposition of beta-amyloid (Abeta), a 38-43-amino acid peptide derived by proteolytic cleavage of the amyloid precursor protein (APP). Initial studies indicated that final cleavage of APP by the gamma-secretase (a complex containing presenilin and nicastrin) to produce Abeta occurred in the endosomal/lysosomal system. However, other studies showing a predominant endoplasmic reticulum localization of the gamma-secretase proteins and a neutral pH optimum of in vitro gamma-secretase assays have challenged this conclusion. We have recently identified nicastrin as a major lysosomal membrane protein. In the present work, we use Western blotting and immunogold electron microscopy to demonstrate that significant amounts of mature nicastrin, presenilin-1, and APP are co-localized with lysosomal associated membrane protein-1 (cAMP-1) in the outer membranes of lysosomes. Furthermore, we demonstrate that these membranes contain an acidic gamma-secretase activity, which is immunoprecipitable with an antibody to nicastrin. These experiments establish APP, nicastrin, and presenilin-1 as resident lysosomal membrane proteins and indicate that gamma-secretase is a lysosomal protease. These data reassert the importance of the lysosomal/endosomal system in the generation of Abeta and suggest a role for lysosomes in the pathophysiology of AD.
Collapse
Affiliation(s)
- Stephen H Pasternak
- Research Institute, The Hospital for Sick Children, University of Toronto, Toronto M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Plant LD, Boyle JP, Smith IF, Peers C, Pearson HA. The production of amyloid beta peptide is a critical requirement for the viability of central neurons. J Neurosci 2003; 23:5531-5. [PMID: 12843253 PMCID: PMC6741264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The amyloid beta peptide (Abeta) is a product of the sequential gamma- and beta-secretase cleavage of amyloid precursor protein. Inhibitors of secretase enzymes have been proposed as a potential therapeutic strategy in the treatment of Alzheimer's disease. Here, we investigate the effect of inhibiting these key enzymes on the viability of a range of cell types. Treatment of rat cortical neurons for 24 hr with secretase inhibitors or an antibody that binds Abeta resulted in a marked reduction in cell viability, as measured by MTT reduction. Incubation with secretase inhibitors caused similar effects on other neuronal cell types (rat cerebellar granule neurons and the human SH-SY5Y cell line). Interestingly, rat astrocytes and a number of non-neuronal cell lines investigated (HEK293, DDT1-FM2, and human teratorhabdoid tumor cells) were unaffected by incubation with secretase inhibitors. The coincubation of Abeta1-40 prevented the toxicity of secretase inhibitors in neuronal cells. Abeta1-40 was protective in a concentration-dependent manner, and its effects were significant at concentrations as low at 10 pm. Importantly, the protective effects of Abeta were Abeta size-form specific, with the Abeta1-42 size form affording limited protection and the Abeta25-35 size form having very little protective effect. The present study demonstrates that inhibition of beta-or gamma-secretase activity induces death in neuronal cells. Importantly, this toxicity, which our data suggest is a consequence of a decline in neuronal Abeta levels, was absent in non-neuronal cells. This study further supports a key physiological role for the enigmatic Abeta peptide.
Collapse
Affiliation(s)
- Leigh D Plant
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
140
|
Rocchi A, Pellegrini S, Siciliano G, Murri L. Causative and susceptibility genes for Alzheimer's disease: a review. Brain Res Bull 2003; 61:1-24. [PMID: 12788204 DOI: 10.1016/s0361-9230(03)00067-4] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly population. Three genes have been identified as responsible for the rare early-onset familial form of the disease: the amyloid precursor protein (APP) gene, the presenilin 1 (PSEN1) gene and the presenilin 2 (PSEN2) gene. Mutations in these genes, however, account for less than 5% of the total number of AD cases. The remaining 95% of AD patients are mostly sporadic late-onset cases, with a complex aetiology due to interactions between environmental conditions and genetic features of the individual. In this paper, we review the most important genes supposed to be involved in the pathogenesis of AD, known as susceptibility genes, in an attempt to provide a comprehensive picture of what is known about the genetic mechanisms underlying the onset and progression of AD. Hypotheses about the role of each gene in the pathogenic pathway are discussed, taking into account the functions and molecular features, if known, of the coded protein. A major susceptibility gene, the apolipoprotein E (APOE) gene, found to be associated with sporadic late-onset AD cases and the only one, whose role in AD has been confirmed in numerous studies, will be included in a specific chapter. As the results reported by association studies are conflicting, we conclude that a better understanding of the complex aetiology that underlies AD may be achieved likely through a multidisciplinary approach that combines clinical and neurophysiological characterization of AD subtypes and in vivo functional brain imaging studies with molecular investigations of genetic components.
Collapse
Affiliation(s)
- A Rocchi
- Department of Neurosciences, Neurological Clinics, University of Pisa Medical School, Via Roma 67, 56126 Pisa, Italy
| | | | | | | |
Collapse
|
141
|
Nicastrin is required for assembly of presenilin/gamma-secretase complexes to mediate Notch signaling and for processing and trafficking of beta-amyloid precursor protein in mammals. J Neurosci 2003. [PMID: 12716934 DOI: 10.1523/jneurosci.23-08-03272.2003] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent studies indicate that nicastrin (NCT) and presenilins form functional components of a multimeric gamma-secretase complex required for the regulated intramembraneous proteolysis of Notch and beta-amyloid (Abeta) precursor protein (APP). To determine whether nicastrin is required for proteolytic processing of Notch and APP in mammals and the role of nicastrin in presenilin/gamma-secretase complex assembly, we generated nicastrin-deficient (NCT-/-) mice and derived fibroblasts from NCT-/- embryos. Nicastrin-null embryos died by embryonic day 10.5 and exhibited several patterning defects, including abnormal somite segmentation, phenotypes that are reminiscent of embryos lacking Notch1 or both presenilins. Importantly, secretion of Abeta peptides is abolished in NCT-/- fibroblasts, whereas it is reduced by approximately 50% in NCT+/- cells; the failure to generate Abeta peptides in NCT-/- cells is accompanied by destabilization of the presenilin/gamma-secretase complex and accumulation of APP-C-terminal fragments. Moreover, APP trafficking analysis in NCT-/- fibroblasts revealed a significant delay in the rate of APP reinternalization compared with that of control cells. Together, these results establish that nicastrin is an essential component of the multimeric gamma-secretase complex in mammals required for both gamma-secretase activity and APP trafficking and suggest that nicastrin may be a valuable therapeutic target for Alzheimer's disease.
Collapse
|
142
|
Shirotani K, Edbauer D, Capell A, Schmitz J, Steiner H, Haass C. Gamma-secretase activity is associated with a conformational change of nicastrin. J Biol Chem 2003; 278:16474-7. [PMID: 12644462 DOI: 10.1074/jbc.c300095200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gamma-secretase is a high molecular weight multicomponent protein complex with an unusual intramembrane-cleaving aspartyl protease activity. Gamma-secretase is intimately associated with Alzheimer disease because it catalyzes the proteolytic cleavage, which leads to the liberation of amyloid beta-peptide. At least presenilin (PS), Nicastrin (Nct), APH-1, and PEN-2 are constituents of the gamma-secretase complex, with PS apparently providing the active site of gamma-secretase. Expression of gamma-secretase complex components is tightly regulated, however little is known about the assembly of the complex. Here we demonstrate that Nct undergoes a major conformational change during the assembly of the gamma-secretase complex. The conformational change is directly associated with gamma-secretase function and involves the entire Nct ectodomain. Loss of function mutations generated by deletions failed to undergo the conformational change. Furthermore, the conformational alteration did not occur in the absence of PS. Our data thus suggest that gamma-secretase function critically depends on the structural "activation" of Nct.
Collapse
Affiliation(s)
- Keiro Shirotani
- Adolf Butenandt-Institute, Department of Biochemistry, Laboratory for Alzheimer's and Parkinson's Disease Research, Ludwig-Maximilians-University, Schillerstrasse 44, 80336 Munich, Germany
| | | | | | | | | | | |
Collapse
|
143
|
Weihofen A, Lemberg MK, Friedmann E, Rueeger H, Schmitz A, Paganetti P, Rovelli G, Martoglio B. Targeting presenilin-type aspartic protease signal peptide peptidase with gamma-secretase inhibitors. J Biol Chem 2003; 278:16528-33. [PMID: 12621027 DOI: 10.1074/jbc.m301372200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Presenilin is implicated in the pathogenesis of Alzheimer's disease. It is thought to constitute the catalytic subunit of the gamma-secretase complex that catalyzes intramembrane cleavage of beta-amyloid precursor protein, the last step in the generation of amyloidogenic Abeta peptides. The latter are major constituents of amyloid plaques in the brain of Alzheimer's disease patients. Inhibitors of gamma-secretase are considered potential therapeutics for the treatment of this disease because they prevent production of Abeta peptides. Recently, we discovered a family of presenilin-type aspartic proteases. The founding member, signal peptide peptidase, catalyzes intramembrane cleavage of distinct signal peptides in the endoplasmic reticulum membrane of animals. In humans, the protease plays a crucial role in the immune system. Moreover, it is exploited by the hepatitis C virus for the processing of the structural components of the virion and hence is an attractive target for anti-infective intervention. Signal peptide peptidase and presenilin share identical active site motifs and both catalyze intramembrane proteolysis. These common features let us speculate that gamma-secretase inhibitors directed against presenilin may also inhibit signal peptide peptidase. Here we demonstrate that some of the most potent known gamma-secretase inhibitors efficiently inhibit signal peptide peptidase. However, we found compounds that showed higher specificity for one or the other protease. Our findings highlight the possibility of developing selective inhibitors aimed at reducing Abeta generation without affecting other intramembrane-cleaving aspartic proteases.
Collapse
Affiliation(s)
- Andreas Weihofen
- Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), ETH-Hoenggerberg, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Li T, Ma G, Cai H, Price DL, Wong PC. Nicastrin is required for assembly of presenilin/gamma-secretase complexes to mediate Notch signaling and for processing and trafficking of beta-amyloid precursor protein in mammals. J Neurosci 2003; 23:3272-7. [PMID: 12716934 PMCID: PMC6742329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Recent studies indicate that nicastrin (NCT) and presenilins form functional components of a multimeric gamma-secretase complex required for the regulated intramembraneous proteolysis of Notch and beta-amyloid (Abeta) precursor protein (APP). To determine whether nicastrin is required for proteolytic processing of Notch and APP in mammals and the role of nicastrin in presenilin/gamma-secretase complex assembly, we generated nicastrin-deficient (NCT-/-) mice and derived fibroblasts from NCT-/- embryos. Nicastrin-null embryos died by embryonic day 10.5 and exhibited several patterning defects, including abnormal somite segmentation, phenotypes that are reminiscent of embryos lacking Notch1 or both presenilins. Importantly, secretion of Abeta peptides is abolished in NCT-/- fibroblasts, whereas it is reduced by approximately 50% in NCT+/- cells; the failure to generate Abeta peptides in NCT-/- cells is accompanied by destabilization of the presenilin/gamma-secretase complex and accumulation of APP-C-terminal fragments. Moreover, APP trafficking analysis in NCT-/- fibroblasts revealed a significant delay in the rate of APP reinternalization compared with that of control cells. Together, these results establish that nicastrin is an essential component of the multimeric gamma-secretase complex in mammals required for both gamma-secretase activity and APP trafficking and suggest that nicastrin may be a valuable therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Tong Li
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA
| | | | | | | | | |
Collapse
|
145
|
Abstract
The regulated intramembrane proteolysis of the amyloid precursor protein (APP) that results in the generation of a toxic 40 to 42 amino acid fragment, Abeta, and a C-terminal intracellular fragment stands central in the pathogenesis of Alzheimer's disease. The fibrillar Abeta peptide is extracellularly deposited in plaques in the amygdala, the hippocampus, and the neocortex of affected individuals. The APP intracellular fragment binds to transcription factors and is translocated to the nucleus, where it influences transcription. Regulated intramembrane proteolysis of APP is dependent on the activity of a multimeric protein complex of which the essential components are presenilin, nicastrin, PEN-2, and APH-1. Further research into this emerging field of presenilin-dependent APP proteolysis within the plane of the membrane might reveal the necessity of an additional transport step-bringing substrate and enzyme together-before APP can actually be processed.
Collapse
Affiliation(s)
- Geert Van Gassen
- Neuronal Member Trafficking Laboratory, Department of Human Genetics, Flanders Interuniversity Institute of Biotechnology (VIB04), Gasthuisberg, KULeuven, Herestraat 49, B-3000 Leuven, Belgium
| | | |
Collapse
|
146
|
Herreman A, Van Gassen G, Bentahir M, Nyabi O, Craessaerts K, Mueller U, Annaert W, De Strooper B. gamma-Secretase activity requires the presenilin-dependent trafficking of nicastrin through the Golgi apparatus but not its complex glycosylation. J Cell Sci 2003; 116:1127-36. [PMID: 12584255 DOI: 10.1242/jcs.00292] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nicastrin and presenilin are two major components of the gamma-secretase complex, which executes the intramembrane proteolysis of type I integral membrane proteins such as the amyloid precursor protein (APP) and Notch. Nicastrin is synthesized in fibroblasts and neurons as an endoglycosidase-H-sensitive glycosylated precursor protein (immature nicastrin) and is then modified by complex glycosylation in the Golgi apparatus and by sialylation in the trans-Golgi network (mature nicastrin). These modifications are not observed with exogenously overexpressed nicastrin. Under normal cell culture conditions, only mature nicastrin is expressed at the cell surface and binds to the presenilin heterodimers. Mature nicastrin has a half-life of more than 24 hours. In the absence of presenilin 1 and 2, nicastrin remains entirely endoglycosidase H sensitive, is retained in the endoplasmic reticulum and is slowly degraded. Single presenilin 1 or presenilin 2 deficiency affects glycosylation of nicastrin to a lesser extent than the combined presenilin deficiencies, suggesting a correlation between either the transport of nicastrin out of the endoplasmic reticulum or the concomitant complex glycosylation of nicastrin, and gamma-secretase activity. However, when complex glycosylation of nicastrin was inhibited using mannosidase I inhibitors, gamma-secretase cleavage of APP or Notch was not inhibited and the immature nicastrin still associates with presenilin and appears at the cell surface. Complex glycosylation of nicastrin is therefore not needed for gamma-secretase activity. Because the trafficking of nicastrin to the Golgi apparatus is dependent on presenilins, our data point to a central role of presenilin in nicastrin maturation/localization, which could help to partially resolve the 'spatial paradox'.
Collapse
Affiliation(s)
- An Herreman
- Laboratory for Neuronal Cell Biology, Center for Human Genetics, Gasthuisberg/KULeuven and Flanders Interuniversity Institute for Biotechnology (VIB), Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Murakami D, Okamoto I, Nagano O, Kawano Y, Tomita T, Iwatsubo T, De Strooper B, Yumoto E, Saya H. Presenilin-dependent gamma-secretase activity mediates the intramembranous cleavage of CD44. Oncogene 2003; 22:1511-6. [PMID: 12629514 DOI: 10.1038/sj.onc.1206298] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CD44 is the major adhesion molecule for the extracellular matrix components and is implicated in a wide variety of physiological and pathological processes including the regulation of tumor cell growth and metastasis. Our previous studies have shown that CD44 undergoes sequential proteolytic cleavages in the extracellular and transmembrane domains and the cleavage product derived from CD44 intramembranous cleavage acts as a signal transduction molecule. However, the underlying mechanism of the intramembranous cleavage of CD44 remains to be elucidated. In the present study, we report for the first time that CD44 is a substrate of the presenilin (PS)-dependent gamma-secretase. We demonstrate that the intramembranous cleavage of CD44 induced by 12-O-tetradecanoylphorbol 13-acetate (TPA) treatment or mechanical scraping is blocked by gamma-secretase inhibitors in U251MG cells and that this cleavage is also inhibited in PS-deficient mouse embryonic fibroblasts. Furthermore, we showed that PS1 is redistributed to ruffling areas of the plasma membrane similarly to CD44 after TPA treatment, supporting our biochemical observation that PS1 is involved in the intramembranous cleavage of CD44. Our present findings suggest important implications for understanding CD44-dependent signal transduction and a potential role of PS/gamma-secretase activity in the functional regulation of adhesion molecules.
Collapse
Affiliation(s)
- Daizo Murakami
- Department of Tumor Genetics and Biology, Kumamoto University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Luo WJ, Wang H, Li H, Kim BS, Shah S, Lee HJ, Thinakaran G, Kim TW, Yu G, Xu H. PEN-2 and APH-1 coordinately regulate proteolytic processing of presenilin 1. J Biol Chem 2003; 278:7850-4. [PMID: 12522139 DOI: 10.1074/jbc.c200648200] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Presenilin (PS, PS1/PS2) complexes are known to be responsible for the intramembranous gamma-secretase cleavage of the beta-amyloid precursor protein and signaling receptor Notch. PS holoprotein undergoes endoproteolysis by an unknown enzymatic activity to generate NH(2)- and COOH-terminal fragments, a process that is required for the formation of the active and stable PS/-gamma-secretase complex. Biochemical and genetic studies have recently identified nicastrin, APH-1, and PEN-2 as essential cofactors that physically interact with PS1 and are necessary for the gamma-secretase activity. However, their precise function in regulating the PS complex and gamma-secretase activity remains unknown. Here, we demonstrate that endogenous PEN-2 preferentially interacts with PS1 holoprotein. Down-regulation of PEN-2 expression by small interfering RNA (siRNA) abolishes the endoproteolysis of PS1, whereas overexpression of PEN-2 promotes the production of PS1 fragments, indicating a critical role for PEN-2 in PS1 endoproteolysis. Interestingly, accumulation of full-length PS1 resulting from down-regulation of PEN-2 is alleviated by additional siRNA down-regulation of APH-1. Furthermore, overexpression of APH-1 facilitates PEN-2-mediated PS1 proteolysis, resulting in a significant increase in PS1 fragments. Our data reveal a direct role of PEN-2 in proteolytic cleavage of PS1 and a regulatory function of APH-1, in coordination with PEN-2, in the biogenesis of the PS1 complex.
Collapse
Affiliation(s)
- Wen-jie Luo
- Fisher Center for Research on Alzheimer's Disease and Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Siman R, Velji J. Localization of presenilin-nicastrin complexes and gamma-secretase activity to the trans-Golgi network. J Neurochem 2003; 84:1143-53. [PMID: 12603837 DOI: 10.1046/j.1471-4159.2003.01616.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abundant biochemical and genetic evidence suggests that presenilins are catalytic components of gamma-secretase, the protease responsible for generating the Alzheimer amyloid beta-protein. However, the differential localization of presenilins to early secretory compartments and gamma-secretase substrates to late secretory compartments and the plasma membrane (the "spatial paradox") argues against this view. We investigated this issue by studying the localization of nicastrin, another putative gamma-secretase component, and its association with presenilin-1 into proteolytically active complexes. Glycosidase digests revealed that nicastrin exists in multiple glycoforms and is terminally sialylated, a modification often associated with the trans-Golgi network. Trafficking of nicastrin to the trans-Golgi network was confirmed by density gradient fractionation and immunofluorescence microscopy. In presenilin-deficient cells, however, nicastrin trafficking and maturation were abnormal, as the protein was restricted to early secretory compartments and failed to be sialylated. Mature sialylated nicastrin in trans-Golgi network fractions was complexed quantitatively with N- and C-terminal fragments of presenilin-1, whereas immature nicastrin present in early secretory compartments was not. Additionally, trans-Golgi network fractions contained the gamma-secretase substrate beta-amyloid precursor protein C83 and were enriched in presenilin-dependent gamma-secretase proteolytic activity. The results resolve the apparent spatial paradox by demonstrating that presenilin-nicastrin complexes and presenilin-dependent gamma-secretase activity are co-localized to a late secretory compartment. The findings provide further evidence that presenilin-containing complexes are the gamma-secretase, and indicate that presenilins also regulate gamma-secretase assembly.
Collapse
Affiliation(s)
- Robert Siman
- Department of Pharmacology, University of Pennsylvania School of Medicine, 3620 Hamilton Walk, JMB162, Philadelphia, PA 19104-6084, USA.
| | | |
Collapse
|
150
|
Ikeuchi T, Dolios G, Kim SH, Wang R, Sisodia SS. Familial Alzheimer disease-linked presenilin 1 variants enhance production of both Abeta 1-40 and Abeta 1-42 peptides that are only partially sensitive to a potent aspartyl protease transition state inhibitor of "gamma-secretase". J Biol Chem 2003; 278:7010-8. [PMID: 12493731 DOI: 10.1074/jbc.m209252200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Presenilin 1 (PS1) plays an essential role in intramembranous "gamma-secretase" processing of several type I membrane proteins, including the beta-amyloid precursor proteins (APP) and Notch1. In this report, we examine the activity of two familial Alzheimer's disease-linked PS1 variants on the production of secreted Abeta peptides and the effects of L-685,458, a potent gamma-secretase inhibitor, on inhibition of Abeta peptides from cells expressing these PS1 variants. We now report that PS1 variants enhance the production and secretion of both Abeta1-42 and Abeta1-40 peptides. More surprisingly, whereas the IC(50) for inhibition of Abeta1-40 peptide production from cells expressing wild-type PS1 is approximately 1.5 microm, cells expressing the PS1deltaE9 mutant PS1 exhibit an IC(50) of approximately 4 microm. Immunoprecipitation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry reveal that the levels of Abeta1-43 peptides are elevated in medium of PS1deltaE9 cells treated with higher concentrations of inhibitor. The differential effects of wild-type and mutant PS1 on gamma-secretase production of Abeta peptides and the disparity in sensitivity of these peptides to a potent gamma-secretase suggest that PS may be necessary, but not sufficient, to catalyze hydrolysis at the scissile bonds that generate the termini of Abeta1-40 and Abeta1-42 peptides.
Collapse
Affiliation(s)
- Takeshi Ikeuchi
- Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|