101
|
Facile Route of Fabricating Long-Term Microbicidal Silver Nanoparticle Clusters against Shiga Toxin-Producing Escherichia coli O157:H7 and Candida auris. COATINGS 2020. [DOI: 10.3390/coatings10010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microbial contamination remains a significant issue for many industrial, commercial, and medical applications. For instance, microbial surface contamination is detrimental to numerous aspects of food production, infection transfer, and even marine applications. As such, intense scientific interest has focused on improving the antimicrobial properties of surface coatings via both chemical and physical routes. However, there is a lack of synthetic coatings that possess long-term microbiocidal performance. In this study, silver nanoparticle cluster coatings were developed on copper surfaces via an ion-exchange and reduction reaction, followed by a silanization step. The durability of the microbiocidal activity for these develped surfaces was tested against pathogenic bacterial and fungal species, specifically Escherichia coli O157:H7 and Candida auris, over periods of 1- and 7-days. It was observed that more than 90% of E. coli and C. auris were found to be non-viable following the extended exposure times. This facile material fabrication presents as a new surface design for the production of durable microbicidal coatings which can be applied to numerous applications.
Collapse
|
102
|
Downes KJ, Hayes M, Fitzgerald JC, Pais GM, Liu J, Zane NR, Goldstein SL, Scheetz MH, Zuppa AF. Mechanisms of antimicrobial-induced nephrotoxicity in children. J Antimicrob Chemother 2020; 75:1-13. [PMID: 31369087 PMCID: PMC6910165 DOI: 10.1093/jac/dkz325] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Drug-induced nephrotoxicity is responsible for 20% to 60% of cases of acute kidney injury in hospitalized patients and is associated with increased morbidity and mortality in both children and adults. Antimicrobials are one of the most common classes of medications prescribed globally and also among the most common causes of nephrotoxicity. A broad range of antimicrobial agents have been associated with nephrotoxicity, but the features of kidney injury vary based on the agent, its mechanism of injury and the site of toxicity within the kidney. Distinguishing nephrotoxicity caused by an antimicrobial agent from other potential inciting factors is important to facilitate both early recognition of drug toxicity and prompt cessation of an offending drug, as well as to avoid unnecessary discontinuation of an innocuous therapy. This review will detail the different types of antimicrobial-induced nephrotoxicity: acute tubular necrosis, acute interstitial nephritis and obstructive nephropathy. It will also describe the mechanism of injury caused by specific antimicrobial agents and classes (vancomycin, aminoglycosides, polymyxins, antivirals, amphotericin B), highlight the toxicodynamics of these drugs and provide guidance on administration or monitoring practices that can mitigate toxicity, when known. Particular attention will be paid to paediatric patients, when applicable, in whom nephrotoxin exposure is an often-underappreciated cause of kidney injury.
Collapse
Affiliation(s)
- Kevin J Downes
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Clinical Pharmacology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Molly Hayes
- Antimicrobial Stewardship Program, Center for Healthcare Quality & Analytics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julie C Fitzgerald
- Division of Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gwendolyn M Pais
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
- Pharmacometrics Center of Excellence, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
| | - Jiajun Liu
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
- Pharmacometrics Center of Excellence, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
- Department of Pharmacy, Northwestern Memorial Hospital, Chicago, IL, USA
| | - Nicole R Zane
- Center for Clinical Pharmacology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stuart L Goldstein
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Center for Acute Care Nephrology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Marc H Scheetz
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
- Pharmacometrics Center of Excellence, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
- Department of Pharmacy, Northwestern Memorial Hospital, Chicago, IL, USA
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Athena F Zuppa
- Center for Clinical Pharmacology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
103
|
Yuan Z, Ouyang P, Gu K, Rehman T, Zhang T, Yin Z, Fu H, Lin J, He C, Shu G, Liang X, Yuan Z, Song X, Li L, Zou Y, Yin L. The antibacterial mechanism of oridonin against methicillin-resistant Staphylococcus aureus (MRSA). PHARMACEUTICAL BIOLOGY 2019; 57:710-716. [PMID: 31622118 PMCID: PMC8871620 DOI: 10.1080/13880209.2019.1674342] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 08/22/2019] [Accepted: 09/22/2019] [Indexed: 05/29/2023]
Abstract
Context: Methicillin-resistant Staphylococcus aureus (MRSA) is a very harmful bacterium. Oridonin, a component in Rabdosia rubescens (Hemsl.) Hara (Lamiaceae), is widely used against bacterial infections in China. Objective: We evaluated oridonin effects on MRSA cell membrane and wall, protein metabolism, lactate dehydrogenase (LDH), DNA and microscopic structure. Materials and methods: Broth microdilution and flat colony counting methods were used to measure oridonin minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against USA300 strain. Electrical conductivity and DNA exosmosis were analysed to study oridonin effects (128 μg/mL) on cell membrane and wall for 0, 1, 2, 4 and 6 h. Sodium dodecyl sulphate polyacrylamide gel electrophoresis was used to detect effects on soluble protein synthesis after 6, 10 and 16 h. LDH activity was examined with an enzyme-linked immunosorbent assay. Effects of oridonin on USA300 DNA were investigated with DAPI staining. Morphological changes in MRSA following oridonin treatment were determined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results: Oridonin MIC and MBC values against USA300 were 64 and 512 μg/mL, respectively. The conductivity and DNA exosmosis level of oridonin-treated USA300 improved by 3.20±0.84% and increased by 58.63 ± 1.78 μg/mL, respectively. LDH and soluble protein levels decreased by 30.85±7.69% and 27.51 ± 1.39%, respectively. A decrease in fluorescence intensity was reported with time. Oridonin affected the morphology of USA300. Conclusions: Oridonin antibacterial mechanism was related to changes in cell membrane and cell wall permeability, disturbance in protein and DNA metabolism, and influence on bacterial morphology. Thus, oridonin may help in treating MRSA infection.
Collapse
Affiliation(s)
- Zhongwei Yuan
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Kexin Gu
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Tayyab Rehman
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Tianyi Zhang
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Zhongqiong Yin
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Hualin Fu
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Juchun Lin
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Zhixiang Yuan
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Xu Song
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Lizi Yin
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| |
Collapse
|
104
|
Rajapaksha P, Cheeseman S, Hombsch S, Murdoch BJ, Gangadoo S, Blanch EW, Truong Y, Cozzolino D, McConville CF, Crawford RJ, Truong VK, Elbourne A, Chapman J. Antibacterial Properties of Graphene Oxide–Copper Oxide Nanoparticle Nanocomposites. ACS APPLIED BIO MATERIALS 2019; 2:5687-5696. [DOI: 10.1021/acsabm.9b00754] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Piumie Rajapaksha
- Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Samuel Cheeseman
- Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Stuart Hombsch
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | | | - Sheeana Gangadoo
- Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Ewan W. Blanch
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Yen Truong
- Commonwealth Scientific and Industrial Research Organization (CSIRO) − Manufacturing, Clayton, VIC 3168, Australia
| | - Daniel Cozzolino
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Chris F. McConville
- Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Russell J. Crawford
- Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Vi Khanh Truong
- Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Aaron Elbourne
- Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - James Chapman
- Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
105
|
Fonseca-Muñoz A, Pérez-Pacheco R, Ortega-Morales BO, Reyes-Estebanez M, Vásquez-López A, Chan-Bacab M, Ruiz-Vega J, Granados-Echegoyen CA. Bactericidal Activity of Chrysomya rufifacies and Cochliomyia macellaria (Diptera: Calliphoridae) Larval Excretions-Secretions Against Staphylococcus aureus (Bacillales: Staphylococcaceae). JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1598-1604. [PMID: 31287880 DOI: 10.1093/jme/tjz109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Indexed: 06/09/2023]
Abstract
The inhibitory effect of Chrysomya rufifacies (Macquart) and Cochliomyia macellaria (Fabricius) larval excretions-secretions (ES) on Staphylococcus aureus was determined using a portable colorimetric method without the need for any dedicated spectral instrument. Polystyrene 96 well microplates were used and 100 μl of the bacterial inoculum (5 × 105 CFU/ml) plus 100 μl of the dipteran exosecretions at different concentrations were added to each well. Subsequently, 50 μl of a 1% solution of the triphenyl tetrazolium chloride stain was added to each well to determine the bacterial viability. The color development in each well was measured with the ImageJ software S. aureus was exposed to different concentrations of the ES of both species individually. At a concentration of 800 ppm ES of C. rufifacies or Co. macellaria, bacterial growth was inhibited 97.45 ± 1.70% and 82.21 ± 1.88%, respectively. As expected, exposure to a lower concentration (i.e., 50 ppm) was less inhibitory (C. rufifacies ES, 77.65 ± 4.25% and Co. macellaria ES, 43.54 ± 4.63%). This study demonstrates for the first time the bactericidal activity of C. rufifacies and Co. macellaria ES against S. aureus. This finding is promising as it could result in the identification and synthesis of proteins capable of suppressing pathogen development in wounds. Additionally, the proposed method can simplify the use of expensive laboratory instruments for antimicrobial activity determination.
Collapse
Affiliation(s)
- Alicia Fonseca-Muñoz
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad Oaxaca, Calle Hornos, Santa Cruz, Xoxocotlán, Oaxaca, México, CP
- Doctorado en Ciencias en Conservación y Aprovechamiento de Recursos Naturales, CIIDIR-IPN-Oaxaca, Oaxaca, México
| | - Rafael Pérez-Pacheco
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad Oaxaca, Calle Hornos, Santa Cruz, Xoxocotlán, Oaxaca, México, CP
| | - Benjamín Otto Ortega-Morales
- Departamento de Microbiología Ambiental y Biotecnología (DEMAB), Universidad Autónoma de Campeche (UAC), Av. Agustín Melgar s/n, Col. Buenavista, Campeche, México, CP
| | - Manuela Reyes-Estebanez
- Departamento de Microbiología Ambiental y Biotecnología (DEMAB), Universidad Autónoma de Campeche (UAC), Av. Agustín Melgar s/n, Col. Buenavista, Campeche, México, CP
| | - Alfonso Vásquez-López
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad Oaxaca, Calle Hornos, Santa Cruz, Xoxocotlán, Oaxaca, México, CP
| | - Manuel Chan-Bacab
- Departamento de Microbiología Ambiental y Biotecnología (DEMAB), Universidad Autónoma de Campeche (UAC), Av. Agustín Melgar s/n, Col. Buenavista, Campeche, México, CP
| | - Jaime Ruiz-Vega
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad Oaxaca, Calle Hornos, Santa Cruz, Xoxocotlán, Oaxaca, México, CP
| | - Carlos A Granados-Echegoyen
- Departamento de Microbiología Ambiental y Biotecnología (DEMAB), Universidad Autónoma de Campeche (UAC), Av. Agustín Melgar s/n, Col. Buenavista, Campeche, México, CP
- Centro de Estudios de Desarrollo Sustentable y Aprovechamiento de la Vida Silvestre (CEDESU), CONACYT- Universidad Autónoma de Campeche (UAC), Avenida Héroe de Nacozari, Campeche, México, CP
| |
Collapse
|
106
|
Wu M, Tong X, Liu S, Wang D, Wang L, Fan H. Prevalence of methicillin-resistant Staphylococcus aureus in healthy Chinese population: A system review and meta-analysis. PLoS One 2019; 14:e0223599. [PMID: 31647842 PMCID: PMC6812772 DOI: 10.1371/journal.pone.0223599] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/24/2019] [Indexed: 02/05/2023] Open
Abstract
Objective To comprehensively determine the prevalence of MRSA in healthy Chinese population, the influencing factors of MRSA colonization and its antibiotic resistance. Methods Articles that studied prevalence or influencing factors of MRSA carriage in healthy Chinese population were retrieved from PubMed, Ovid database, three Chinese electronic databases. The pooled prevalence of MRSA, its antibiotic resistance and influencing factors were analyzed by STATA12.0. Results 37 studies were included. The pooled prevalence of MRSA was 21.2% (95% CI: 18.5%-23.9%), and the prevalence of S.aureus was 15% (95% CI: 10%-19%), with a significant heterogeneity (MRSA: I2 = 97.6%, P<0.001; S.aureus: I2 = 98.4%, P < 0.001). In subgroup analysis, the pooled prevalence of MRSA was 28% (95%CI: 10%-51%) for Livestock-related workers, 18% (95%CI: 11%-26%) for children, 20% (95%CI: 12%-29%) for healthcare workers, 7% (95%CI: 3%-13%) for community residents. The prevalence of MRSA in studies with oxacillin disk diffusion method (28%, 95%CI: 21%-35%) seemed higher than that with the mecA gene method(12%, 95%CI: 7%-19%). MRSA in studies conducted in Taiwan was more common than in Mainland China and Hong Kong. Similar results were found in meta-regression. Influencing factors for MRSA colonization were noted in seven eligible studies, they included younger age (OR: 3.54, 95% CI: 2.38–5.26; OR: 2.24, 95% CI: 1.73–2.9), attending day care centers (DCCs) (OR: 1.95, 95% CI: 1.4–2.72; OR: 1.53, 95% CI: 1.2–1.95), flu vaccination (OR:1.73, 95% CI: 1.28–2.35), using antibiotics within the past year (OR: 2.05, 95% CI:1.35–3.11), residing in northern Taiwan (OR: 1.45, 95% CI: 1.19–1.77), regular visits to health care facility (OR: 23.83, 95% CI: 2.72–209.01), household member working in health care facility (OR: 8.98, 95% CI:1.4–55.63), and contact with livestock (OR: 6.31, 95% CI: 3.44–11.57). Moreover, MRSA was found to be highly resistant to penicillin, ampicillin, erythromycin, and clindamycin, with a pooled resistance ratio of 100, 93, 88, and 75%, respectively. However, no resistance were noted to vancomycin. Conclusion The pooled prevalence of MRSA was considerably high in health Chinese population. Additionally, these strains showed extreme resistance to penicillin, ampicillin, erythromycin and clindamycin. Public MRSA protection measures and the surveillance of MRSA should be strengthened to reduce the spread of MRSA among hospitals, communities, and livestock.
Collapse
Affiliation(s)
- Man Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Sitong Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Dongguang Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Lei Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
107
|
Tuerff D, Nunez M. More Frequent Premature Antibiotic Discontinuations and Acute Kidney Injury in the Outpatient Setting With Vancomycin Compared to Daptomycin. J Clin Pharmacol 2019; 60:384-390. [PMID: 31630403 DOI: 10.1002/jcph.1536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/27/2019] [Indexed: 01/27/2023]
Abstract
Vancomycin and daptomycin are often used in outpatient parenteral antimicrobial therapy for gram-positive coverage. Vancomycin's narrow therapeutic window poses challenges. We retrospectively assessed acute kidney injury (AKI) and other adverse drug events in outpatient parenteral antimicrobial therapy patients receiving vancomycin or daptomycin at home after hospital discharge. Among 191 patients included, AKI was the most common adverse drug event. Early antibiotic discontinuation and AKI were more frequent in the vancomycin group. Vancomycin use (odds ratio [OR], 4.57; 95% confidence interval [CI], 1.02-20.51); p = 0.04], female sex (OR, 3.28; 95%CI, 1.41-7.67; P < .01), and longer hospitalization (OR, 1.06; 95%CI, 1.01-1.11; P = .02] independently predicted moderate-to-severe AKI. In the vancomycin group, trough concentrations increased after discharge, and were higher in female compared to male patients, and in those who developed moderate-to-severe AKI compared to those who did not. Female sex (OR, 8.37; 95%CI, 2.35-29.82; P < .01) and higher concentrations (OR, 1.12; 95%CI, 1.05-1.19; P < .01) predicted moderate-to-severe AKI in patients receiving vancomycin. In conclusion, premature antibiotic discontinuations and nephrotoxicity are more frequent in patients treated at home with vancomycin compared to daptomycin. Among patients receiving vancomycin, plasma concentrations increased after hospital discharge and predicted moderate-to-severe AKI. Women had higher vancomycin concentrations and higher risk for AKI.
Collapse
Affiliation(s)
- Daniel Tuerff
- Wake Forest School of Medicine, Department of Internal Medicine, Section on Infectious Diseases, Winston-Salem, North Carolina, USA
| | - Marina Nunez
- Wake Forest School of Medicine, Department of Internal Medicine, Section on Infectious Diseases, Winston-Salem, North Carolina, USA
| |
Collapse
|
108
|
Wu J, Li B, Xiao W, Hu J, Xie J, Yuan J, Wang L. Longistylin A, a natural stilbene isolated from the leaves of Cajanus cajan, exhibits significant anti-MRSA activity. Int J Antimicrob Agents 2019; 55:105821. [PMID: 31614177 DOI: 10.1016/j.ijantimicag.2019.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/25/2019] [Accepted: 10/05/2019] [Indexed: 01/24/2023]
Abstract
Longistylin A (LLA) is an abundant stilbene isolated from the leaves of Cajanus cajan (L.) Millsp. However, the antibacterial effect of LLA is not yet understood. Therefore, in this study, a detailed investigation of the antibacterial effect of LLA, particularly against methicillin-resistant Staphylococcus aureus (MRSA), was conducted. In vitro, LLA exhibited strong antibacterial activity against MRSA with a minimum inhibitory concentration (MIC) of 1.56 µg/mL and displayed much more rapid bactericidal activity (3-log decrease in MRSA survival within 8 h) than vancomycin. A membrane-targeting experiment suggested that the antibacterial activity of LLA is associated with perturbation of the bacterial membrane potential and increased membrane permeability. Notably, LLA had relatively weak cytotoxicity to murine macrophages [50% cytotoxic concentration (CC50) = 8.61 ± 0.57 µg/mL]. In vivo, topical treatment of a skin injury with LLA improved wound healing and closure in an MRSA-infected wound healing mouse model. After 3 days treatment, LLA decreased MRSA bacterial counts in the wounded region, reduced the accumulation of immune cells at the injury site, and alleviated induction of the inflammatory cytokines tumour necrosis factor-alpha (180.74 ± 10.78 pg/mL vs. 606.57 ± 68.99 pg/mL) and interleukin-6 (87.25 ± 10.19 pg/mL vs. 280.58 ± 42.27 pg/mL) in serum.
Collapse
Affiliation(s)
- Jiewei Wu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Bailin Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Guangzhou Biye Biotechnology Co., Ltd., Guangzhou 511458, PR China
| | - Wenjing Xiao
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Juanjuan Hu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jindan Xie
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jie Yuan
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Lingli Wang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| |
Collapse
|
109
|
Mootz ML, Britt RS, Mootz AA, Lee GC, Reveles KR, Evoy KE, Teng C, Frei CR. Comparative-effectiveness of ceftaroline and daptomycin as first-line MRSA therapy for patients with sepsis admitted to hospitals in the United States Veterans Health Care System. Hosp Pract (1995) 2019; 47:186-191. [PMID: 31578888 PMCID: PMC6883169 DOI: 10.1080/21548331.2019.1676540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Objectives: This study compared hospital readmission and mortality for patients with sepsis who received ceftaroline or daptomycin as first-line MRSA therapy.Methods: This retrospective comparative-effectiveness study included adults ≥18 years old hospitalized in the United States Veterans Health Care System with sepsis between 10/1/2010-9/30/2014, who received ceftaroline or daptomycin within 14 days of hospital admission as the first antibiotic effective against methicillin resistant Staphylococcus aureus (MRSA). Patients with pneumonia, and those who received both study drugs, were excluded. Baseline characteristics were compared using Chi-square, Fischer's exact, Student's t, and Wilcoxon Rank Sum tests. Patient outcomes were compared with multivariable logistic regression models.Results: 409 patients were included (ceftaroline = 67, daptomycin = 342). Ceftaroline patients were older, less likely to be Black, more likely to have diabetes with complications, and had higher Charlson comorbidity scores. Median (interquartile range) time from admission to drug initiation was 1 (0-1) day for ceftaroline and 1 (1-3) day for daptomycin (p = 0.01). Unadjusted hospital readmission rates for ceftaroline and daptomycin, respectively, were: 30-day (25%/37%, p = 0.06), 60-day (27%/44%, p = 0.008), and 90-day (28%/46%, p = 0.01). Unadjusted mortality rates were: in-hospital (7%/12%, p = 0.4), 30-day (3%/9%, p = 0.1), 60-day (6%/12%, p = 0.2), and 90-day (7%/15%, p = 0.1). In multivariable models with all divergent baseline characteristics included as covariates, patients treated with ceftaroline were less likely to experience (OR, 95% CI): 30/60/90-day hospital readmission (0.54, 0.29-0.98; 0.42, 0.23-0.76; 0.42, 0.23-0.75) and 30/60/90-day mortality (0.23, 0.04-0.82; 0.34, 0.10-0.93; 0.34, 0.11-0.86).Conclusion: In patients with sepsis, ceftaroline was associated with fewer hospital readmissions and lower mortality as compared to daptomycin. Prospective investigations in larger, more generalized cohorts are needed to examine outcomes with specific MRSA therapies.
Collapse
Affiliation(s)
- Marilyn L. Mootz
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Rachel S. Britt
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Allison A. Mootz
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Grace C. Lee
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kelly R. Reveles
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kirk E. Evoy
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- University Health System, San Antonio, TX, USA
| | - Chengwen Teng
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Christopher R. Frei
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- University Health System, San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
110
|
Transmission events and antimicrobial susceptibilities of methicillin-resistant Staphylococcus argenteus in Stockholm. Clin Microbiol Infect 2019; 25:1289.e5-1289.e8. [DOI: 10.1016/j.cmi.2019.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 11/23/2022]
|
111
|
Nguyen DHK, Loebbe C, Linklater DP, Xu X, Vrancken N, Katkus T, Juodkazis S, Maclaughlin S, Baulin V, Crawford RJ, Ivanova EP. The idiosyncratic self-cleaning cycle of bacteria on regularly arrayed mechano-bactericidal nanostructures. NANOSCALE 2019; 11:16455-16462. [PMID: 31451827 DOI: 10.1039/c9nr05923g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanostructured mechano-bactericidal surfaces represent a promising technology to prevent the incidence of microbial contamination on a variety of surfaces and to avoid bacterial infection, particularly with antibiotic resistant strains. In this work, a regular array of silicon nanopillars of 380 nm height and 35 nm diameter was used to study the release of bacterial cell debris off the surface, following inactivation of the cell due to nanostructure-induced rupture. It was confirmed that substantial bactericidal activity was achieved against Gram-negative Pseudomonas aeruginosa (85% non-viable cells) and only modest antibacterial activity towards Staphylococcus aureus (8% non-viable cells), as estimated by measuring the proportions of viable and non-viable cells via fluorescence imaging. In situ time-lapse AFM scans of the bacteria-nanopillar interface confirmed the removal rate of the dead P. aeruginosa cells from the surface to be approximately 19 minutes per cell, and approximately 11 minutes per cell for dead S. aureus cells. These results highlight that the killing and dead cell detachment cycle for bacteria on these substrata are dependant on the bacterial species and the surface architecture studied and will vary when these two parameters are altered. The outcomes of this work will enhance the current understanding of antibacterial nanostructures, and impact upon the development and implementation of next-generation implants and medical devices.
Collapse
Affiliation(s)
- Duy H K Nguyen
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia.
| | | | - Denver P Linklater
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia. and Centre for Microphotonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - XiuMei Xu
- IMEC, Kapeldreef 75, Leuven 3001, Belgium
| | - Nandi Vrancken
- IMEC, Kapeldreef 75, Leuven 3001, Belgium and Research Group Electrochemical and Surface Engineering (SURF), Dept. of Materials & Chemistry (MACH), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Elsene, Belgium
| | - Tomas Katkus
- Centre for Microphotonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Saulius Juodkazis
- Centre for Microphotonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | | | - Vladimir Baulin
- Departament d'Enginyeria Química, Universitat Rovira i Virgili Tarragona, Spain
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia.
| | - Elena P Ivanova
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
112
|
Gatadi S, Madhavi YV, Chopra S, Nanduri S. Promising antibacterial agents against multidrug resistant Staphylococcus aureus. Bioorg Chem 2019; 92:103252. [PMID: 31518761 DOI: 10.1016/j.bioorg.2019.103252] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/10/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
Rapid emergence of multidrug resistant Staphylococcus aureus infections has created a critical health menace universally. Resistance to all the available chemotherapeutics has been on rise which led to WHO to stratify Staphylococcus aureus as high tier priorty II pathogen. Hence, discovery and development of new antibacterial agents with new mode of action is crucial to address the multidrug resistant Staphylococcus aureus infections. The egressing understanding of new antibacterials on their biological target provides opportunities for new therapeutic agents. This review underlines on various aspects of drug design, structure activity relationships (SARs) and mechanism of action of various new antibacterial agents and also covers the recent reports on new antibacterial agents with potent activity against multidrug resistant Staphylococcus aureus. This review provides attention on in vitro and in vivo pharmacological activities of new antibacterial agents in the point of view of drug discovery and development.
Collapse
Affiliation(s)
- Srikanth Gatadi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Y V Madhavi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Srinivas Nanduri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
113
|
Guo N, Liu Z, Yan Z, Liu Z, Hao K, Liu C, Wang J. Subinhibitory concentrations of Honokiol reduce α-Hemolysin (Hla) secretion by Staphylococcus aureus and the Hla-induced inflammatory response by inactivating the NLRP3 inflammasome. Emerg Microbes Infect 2019; 8:707-716. [PMID: 31119985 PMCID: PMC6534259 DOI: 10.1080/22221751.2019.1617643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Staphylococcus aureus (S. aureus) is one of the most serious human pathogens. α-Hemolysin (Hla) secreted by S. aureus is a key toxin for various infections. We herein report that Honokiol, a natural plant polyphenol, inhibits the secretion and hemolytic activity of staphylococcal Hla with concomitant growth inhibition of S. aureus and protection of S. aureus-mediated cell injury within subinhibitory concentrations. In parallel, Honokiol attenuates the staphylococcal Hla-induced inflammatory response by inhibiting NLRP3 inflammasome activation in vitro and in vivo. Consequently, the biologically active forms of the inflammatory cytokines IL-1β and IL-18 are reduced significantly in response to Honokiol in mice infected with S. aureus. Experimentally, we confirm that Honokiol binds to monomeric Hla with a modest affinity without impairing its oligomerization. Based on molecular docking analyses in silico, we make a theoretical discovery that Honokiol is located outside of the triangular region of monomeric Hla. The binding model restricts the function of the residues related to membrane channel formation, which leads to the functional disruption of the assembled membrane channel. This research creates a new paradigm for developing therapeutic agents against staphylococcal Hla-mediated infections.
Collapse
Affiliation(s)
- Na Guo
- a State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , People's Republic of China.,c Department of Food Quality and Safety , College of Food Science and Engineering, Jilin University , Changchun , People's Republic of China
| | - Zuojia Liu
- a State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , People's Republic of China
| | - Zhiqiang Yan
- a State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , People's Republic of China
| | - Zonghui Liu
- c Department of Food Quality and Safety , College of Food Science and Engineering, Jilin University , Changchun , People's Republic of China
| | - Kun Hao
- c Department of Food Quality and Safety , College of Food Science and Engineering, Jilin University , Changchun , People's Republic of China
| | - Chuanbo Liu
- a State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , People's Republic of China
| | - Jin Wang
- a State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , People's Republic of China.,b Department of Chemistry and Physics , State University of New York , Stony Brook , NY , USA
| |
Collapse
|
114
|
Ganji M, Ruiz J, Kogler W, Lung J, Hernandez J, Isache C. Methicillin-resistant Staphylococcus aureus pericarditis causing cardiac tamponade. IDCases 2019; 18:e00613. [PMID: 31453103 PMCID: PMC6704044 DOI: 10.1016/j.idcr.2019.e00613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 11/26/2022] Open
Abstract
Community acquired methicillin-resistant Staphylococcus aureus (MRSA) is an organism that can cause life threatening injuries with 6 cases of purulent pericarditis secondary to MRSA being reported so far. We report a 66 year-old -female who presented to our hospital with a two-week history of worsening shortness of breath, associated with pleuritic chest pain and chills. Patient was found to be positive for influenza type A virus two weeks prior to this presentation, but was never treated. Physical exam upon arrival showed muffled heart sounds and jugular venous distention. Electrocardiogram showed diffuse ST segment elevations along with PR segment depressions in anterolateral leads. She underwent emergent transthoracic echocardiogram that demonstrated a large pericardial effusion most noticeable around the right ventricle with impedance of right ventricle filling. Patient had a pericardial window performed and purulent fluid was drained. Pericardial fluid cultures grew MRSA. Patient was started on vancomycin along with colchicine for MRSA pericarditis and became hemodynamically stable. Pericarditis due to MRSA is extremely rare, especially in the antimicrobial era and in the absence of prior surgical interventions.
Collapse
Affiliation(s)
- Maedeh Ganji
- University of Florida-COM, Division of Cardiology, Jacksonville, FL, USA
| | - Jose Ruiz
- University of Florida-COM, Division of Cardiology, Jacksonville, FL, USA
| | - William Kogler
- University of Florida-COM, Division of Internal Medicine, Jacksonville, FL, USA
| | - Joshua Lung
- University of Florida-COM, Division of Internal Medicine, Jacksonville, FL, USA
| | - Jarelys Hernandez
- University of Florida-COM, Division of Internal Medicine, Jacksonville, FL, USA
| | - Carmen Isache
- University of Florida-COM, Division of Internal Medicine, Jacksonville, FL, USA
| |
Collapse
|
115
|
Che Hamzah AM, Yeo CC, Puah SM, Chua KH, Chew CH. Staphylococcus aureus Infections in Malaysia: A Review of Antimicrobial Resistance and Characteristics of the Clinical Isolates, 1990-2017. Antibiotics (Basel) 2019; 8:E128. [PMID: 31454985 PMCID: PMC6784215 DOI: 10.3390/antibiotics8030128] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is an important nosocomial pathogen and its multidrug resistant strains, particularly methicillin-resistant S. aureus (MRSA), poses a serious threat to public health due to its limited therapeutic options. The increasing MRSA resistance towards vancomycin, which is the current drug of last resort, gives a great challenge to the treatment and management of MRSA infections. While vancomycin resistance among Malaysian MRSA isolates has yet to be documented, a case of vancomycin resistant S. aureus has been reported in our neighboring country, Indonesia. In this review, we present the antimicrobial resistance profiles of S. aureus clinical isolates in Malaysia with data obtained from the Malaysian National Surveillance on Antimicrobial Resistance (NSAR) reports as well as various peer-reviewed published records spanning a period of nearly three decades (1990-2017). We also review the clonal types and characteristics of Malaysian S. aureus isolates, where hospital-associated (HA) MRSA isolates tend to carry staphylococcal cassette chromosome mec (SCCmec) type III and were of sequence type (ST)239, whereas community-associated (CA) isolates are mostly SCCmec type IV/V and ST30. More comprehensive surveillance data that include molecular epidemiological data would enable further in-depth understanding of Malaysian S. aureus isolates.
Collapse
Affiliation(s)
- Ainal Mardziah Che Hamzah
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Terengganu, Malaysia
| | - Chew Chieng Yeo
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Ching Hoong Chew
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Terengganu, Malaysia.
| |
Collapse
|
116
|
Dai Y, Liu J, Guo W, Meng H, Huang Q, He L, Gao Q, Lv H, Liu Y, Wang Y, Wang H, Liu Q, Li M. Decreasing methicillin-resistant Staphylococcus aureus (MRSA) infections is attributable to the disappearance of predominant MRSA ST239 clones, Shanghai, 2008-2017. Emerg Microbes Infect 2019; 8:471-478. [PMID: 30924398 PMCID: PMC6455123 DOI: 10.1080/22221751.2019.1595161] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A consistently decreasing prevalence of MRSA infections in China has been reported, however, the underlying mechanism of molecular processes responsible for this decline in MRSA infections has been poorly understood. We conducted an epidemiologic investigation to determine the dynamic changes of Staphylococcus aureus infections. A total of 3695 S. aureus isolates was recovered from 2008 to 2017, and subsequently characterized by infection types, resistance profile, and clone types. The frequency of respiratory infection decreased over the study period from 76% to 52%. The proportion of MRSA remarkably decreased (from 83.5% to 54.2%, 2008-2017) (p < .0001). The prevalence of predominant healthcare-associated MRSA (HA-MRSA) clones, ST239-t030 and ST239-t037, significantly decreased (from 20.3% to 1% and 18.4% to 0.5%, 2008-2017, respectively); both of them were replaced by the continually growing ST5-t2460 clone (from 0% to 17.3%, 2008-2017). Epidemic community-acquired MRSA (CA-MRSA) ST59 and ST398 clones also increased (from 1.0% to 5.8% and 1.8% to 10.5%, 2008-2017, respectively). These results demonstrated a significant decrease in the previously dominant HA-MRSA ST239 clones, leading to a marked decrease in the prevalence of MRSA over the past decade, and shed new light on the complex competition of S. aureus clones predominating within the health-care environment.
Collapse
Affiliation(s)
- Yingxin Dai
- a Department of Laboratory Medicine, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , People's Republic of China
| | - Junlan Liu
- a Department of Laboratory Medicine, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , People's Republic of China
| | - Wei Guo
- a Department of Laboratory Medicine, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , People's Republic of China
| | - Hongwei Meng
- a Department of Laboratory Medicine, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , People's Republic of China
| | - Qian Huang
- a Department of Laboratory Medicine, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , People's Republic of China
| | - Lei He
- a Department of Laboratory Medicine, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , People's Republic of China
| | - Qianqian Gao
- a Department of Laboratory Medicine, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , People's Republic of China
| | - Huiying Lv
- a Department of Laboratory Medicine, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , People's Republic of China
| | - Yao Liu
- a Department of Laboratory Medicine, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , People's Republic of China
| | - Yanan Wang
- a Department of Laboratory Medicine, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , People's Republic of China
| | - Hua Wang
- a Department of Laboratory Medicine, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , People's Republic of China
| | - Qian Liu
- a Department of Laboratory Medicine, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , People's Republic of China
| | - Min Li
- a Department of Laboratory Medicine, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , People's Republic of China
| |
Collapse
|
117
|
Chanchaithong P, Perreten V, Am-In N, Lugsomya K, Tummaruk P, Prapasarakul N. Molecular Characterization and Antimicrobial Resistance of Livestock-Associated Methicillin-Resistant Staphylococcus aureus Isolates from Pigs and Swine Workers in Central Thailand. Microb Drug Resist 2019; 25:1382-1389. [PMID: 31361580 DOI: 10.1089/mdr.2019.0011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study presents molecular characteristics of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) from pigs and swine workers in central Thailand. Sixty-three MRSA isolates were recovered from pigs (n = 60) and humans (n = 3). Two major LA-MRSA lineages, including sequence type (ST) 398 and clonal complex 9 (ST9 and ST4576, a novel single-locus variant of ST9), were identified. ST398 had spa type t034 (n = 55). ST9 and ST4576 had t337 (n = 8) and carried staphylococcal cassette chromosome mec (SCCmec) IX only. MRSA-ST398-t034 contained various SCCmec, including SCCmec V (n = 42), a novel SCCmec composite island (n = 12), and a nontypeable SCCmec (n = 1). All isolates were multidrug resistant and carried common resistance genes found in LA-MRSA. This is the first report of the presence of swine MRSA ST398 and multidrug resistance gene cfr in MRSA ST9 in Thailand. With identical molecular characteristics, pigs could be a source of MRSA ST398 spread to humans. A minor variation of genetic features and resistance gene carriage in both lineages represented a heterogeneous population and evolution of the endemic clones. A monitoring program and farm management, with prudent antimicrobial uses, should be implemented to reduce spreading. Strict hygiene and personal protection are also necessary to prevent transfer of LA-MRSA to humans.
Collapse
Affiliation(s)
- Pattrarat Chanchaithong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Diagnosis and Monitoring of Animal Pathogen Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nutthee Am-In
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kittitat Lugsomya
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Padet Tummaruk
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Diagnosis and Monitoring of Animal Pathogen Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
118
|
Duncan LR, Smith CJ, Flamm RK, Mendes RE. Regional analysis of telavancin and comparator antimicrobial activity against multidrug-resistant Staphylococcus aureus collected in the USA 2014-2016. J Glob Antimicrob Resist 2019; 20:118-123. [PMID: 31325617 DOI: 10.1016/j.jgar.2019.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/26/2019] [Accepted: 07/10/2019] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES The in vitro antimicrobial activities of telavancin and comparator antimicrobials were evaluated against recent Staphylococcus aureus (S. aureus) clinical isolates collected in the United States of America (USA). METHODS A total of 15882 S. aureus isolates were collected (2014-2016) as part of the SENTRY Antimicrobial Surveillance Program from sites located in all US Census Bureau divisions. Broth microdilution MIC values were measured using current reference methods. Data were stratified by year and census division, and resistance rates were analysed for significant trends. Previously published data on methicillin-resistant S. aureus (MRSA) and multidrug-resistant (MDR) MRSA isolates (collected 2011-2013) were merged with the current isolate set to examine longer term resistance trends. RESULTS Telavancin antimicrobial activity against MRSA and MDR MRSA isolates (MIC50/90 values, 0.03/0.06μg/mL for both subsets) remained unchanged over the 3-year surveillance period, and all isolates were susceptible to telavancin. No difference in telavancin activity was noted when MIC data were stratified by year or US Census Bureau division. When merged data (2011-2016) were analysed, the MRSA rate decreased for the entire USA and six individual census divisions, although the overall rate remained considerable. The overall US MDR MRSA rate also remained considerable and was unchanged from 2011-2016. CONCLUSIONS The sustained potent activity of telavancin against US S. aureus isolates (100% susceptible) and the high rates of MRSA and MDR MRSA in the USA support the continued use of telavancin to treat indicated serious infections caused by S. aureus.
Collapse
|
119
|
Li L, Okumu AA, Nolan S, English A, Vibhute S, Lu Y, Hervert-Thomas K, Seffernick JT, Azap L, Cole SL, Shinabarger D, Koeth LM, Lindert S, Yalowich JC, Wozniak DJ, Mitton-Fry MJ. 1,3-Dioxane-Linked Bacterial Topoisomerase Inhibitors with Enhanced Antibacterial Activity and Reduced hERG Inhibition. ACS Infect Dis 2019; 5:1115-1128. [PMID: 31041863 DOI: 10.1021/acsinfecdis.8b00375] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of new therapies to treat methicillin-resistant Staphylococcus aureus (MRSA) is needed to counteract the significant threat that MRSA presents to human health. Novel inhibitors of DNA gyrase and topoisomerase IV (TopoIV) constitute one highly promising approach, but continued optimization is required to realize the full potential of this class of antibiotics. Herein, we report further studies on a series of dioxane-linked derivatives, demonstrating improved antistaphylococcal activity and reduced hERG inhibition. A subseries of analogues also possesses enhanced inhibition of the secondary target, TopoIV.
Collapse
Affiliation(s)
- Linsen Li
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Antony A. Okumu
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Sheri Nolan
- Microbial Infection and Immunity, The Ohio State University, 460 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Anthony English
- Division of Pharmacology, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Sandip Vibhute
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Yanran Lu
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Katherine Hervert-Thomas
- Department of Chemistry, Ohio Wesleyan University, 61 South Sandusky Street, Delaware, Ohio 43015, United States
| | - Justin T. Seffernick
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Lovette Azap
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Serena L. Cole
- Micromyx, 4717 Campus Drive, Kalamazoo, Michigan 49008, United States
| | - D. Shinabarger
- Micromyx, 4717 Campus Drive, Kalamazoo, Michigan 49008, United States
| | - Laura M. Koeth
- Laboratory Specialists, Inc., 26214 Center Ridge Road, Westlake, Ohio 44145, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jack C. Yalowich
- Division of Pharmacology, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Daniel J. Wozniak
- Microbial Infection and Immunity, The Ohio State University, 460 West 12th Avenue, Columbus, Ohio 43210, United States
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Mark J. Mitton-Fry
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
120
|
Kistler JM, Thoder JJ, Ilyas AM. MRSA Incidence and Antibiotic Trends in Urban Hand Infections: A 10-Year Longitudinal Study. Hand (N Y) 2019; 14:449-454. [PMID: 29322874 PMCID: PMC6760093 DOI: 10.1177/1558944717750921] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Methicillin-resistant Staphylococcus aureus (MRSA) is the most reported pathogen in hand infections at urban medical centers throughout the country. Antibiotic sensitivity trends are not well known. The purposes of this study were to examine and determine the drug resistance trends for MRSA infections of the hand and to provide recommendations for empiric antibiotic treatment based on sensitivity profiles. Methods: A 10-year longitudinal, retrospective chart review was performed on all culture-positive hand infections encountered at a single urban medical center from 2005 to 2014. The proportions of all organisms were calculated for each year and collectively. MRSA infections were additionally subanalyzed for antibiotic sensitivity. Results: A total of 815 culture-positive hand infections were identified. Overall, MRSA grew on culture in 46% of cases. A trend toward decreasing annual MRSA incidence was noted over the 10-year study period. There was a steady increase in polymicrobial infections during the same time. Resistance to clindamycin increased steadily during the 10-year study, starting at 4% in 2008 but growing to 31% by 2014. Similarly, levofloxacin resistance consistently increased throughout the study, reaching its peak at 56% in 2014. Conclusions: The annual incidence of MRSA in hand infections has declined overall but remains the most common pathogen. There has been an alternative increase in the number of polymicrobial infections. MRSA resistance to clindamycin and levofloxacin consistently increased during the study period. Empiric antibiotic therapy for hand infections should not only avoid penicillin and other beta-lactams but should also consider avoiding clindamycin and levofloxacin for empiric treatment.
Collapse
Affiliation(s)
- Justin M. Kistler
- Temple University, Philadelphia, PA, USA,Justin M. Kistler, Resident Physician, Orthopaedic Surgery and Sports Medicine, Department of Orthopaedic Surgery and Sports Medicine, Temple University, 3401 North Broad Street, 5th Floor, Boyer Pavilion, Philadelphia, PA 19140, USA.
| | | | - Asif M. Ilyas
- Thomas Jefferson University, Philadelphia, PA, USA,Rothman Institute, Philadelphia, PA, USA
| |
Collapse
|
121
|
Multidrug-Resistant Bacteria and Alternative Methods to Control Them: An Overview. Microb Drug Resist 2019; 25:890-908. [DOI: 10.1089/mdr.2018.0319] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
122
|
Comparative Performance of Urinary Biomarkers for Vancomycin-Induced Kidney Injury According to Timeline of Injury. Antimicrob Agents Chemother 2019; 63:AAC.00079-19. [PMID: 30988153 DOI: 10.1128/aac.00079-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/11/2019] [Indexed: 12/29/2022] Open
Abstract
Urinary biomarkers are superior to serum creatinine for defining onset and extent of kidney injury. This study classifies the temporal predictive ability of biomarkers for vancomycin-induced kidney injury (VIKI) as defined by histopathologic damage. Male Sprague-Dawley rats (n = 125) were randomized to receive 150 to 400 mg/kg of body weight/day vancomycin via once or twice daily intraperitoneal injection over 1, 3, or 6 days. Urine was collected once during the 24 h prior to euthanasia or twice for rats treated for 6 days. Receiver operating characteristic (ROC) curves were employed to assess the urinary biomarker performances of kidney injury molecule 1 (KIM-1), clusterin, osteopontin (OPN), cystatin C, and neutrophil gelatinase-associated lipocalin (NGAL) to predict histopathologically defined VIKI (using a national standard pathological assessment scheme from hematoxylin and eosin stained kidneys). Urinary KIM-1, clusterin, and OPN outperformed cystatin C and NGAL with regard to sensitivity and specificity. For the earliest injury, urinary KIM-1 (area under the receiver operating characteristic curve [AUC], 0.662; P < 0.001) and clusterin (AUC, 0.706; P < 0.001) were the most sensitive for predicting even low-level histopathologic damage at 24 h compared to NGAL. KIM-1 and clusterin are the earliest and most sensitive predictors of VIKI. As injury progresses, KIM-1, clusterin, and OPN best define the extent of damage.
Collapse
|
123
|
Pereira MR, Rana MM. Methicillin-resistant Staphylococcus aureus in solid organ transplantation-Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13611. [PMID: 31120612 DOI: 10.1111/ctr.13611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 12/25/2022]
Abstract
These updated guidelines from the American Society of Transplantation Infectious Diseases Community of Practice review the epidemiology, diagnosis, prevention, and management of methicillin-resistant Staphylococcus aureus (MRSA) infections in solid organ transplantation. Despite an increasing armamentarium of antimicrobials active against MRSA, improved diagnostic tools, and overall declining rates of infection, MRSA infections remain a substantial cause of morbidity and mortality in solid organ transplant recipients. Pre- and post-transplant MRSA colonization is a significant risk factor for post-transplant MRSA infection. The preferred initial treatment of MRSA bacteremia remains vancomycin. Hand hygiene, chlorhexidine bathing in the ICU, central-line bundles that focus on reducing unnecessary catheter use, disinfection of patient equipment, and the environment along with antimicrobial stewardship are all aspects of an infection prevention approach to prevent MRSA transmission and decrease healthcare-associated infections.
Collapse
|
124
|
Complete Genome Sequence of Hospital-Acquired Methicillin-Resistant Staphylococcus aureus Strain WCUH29. Microbiol Resour Announc 2019; 8:8/23/e00551-19. [PMID: 31171611 PMCID: PMC6554616 DOI: 10.1128/mra.00551-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hospital-acquired methicillin-resistant Staphylococcus aureus (HA-MRSA) strain WCUH29 has been intensively and widely used as a model system for identification and evaluation of novel antibacterial targets and pathogenicity. In this announcement, we report the complete genome sequence of HA-MRSA WCUH29 (NCIMB 40771).
Collapse
|
125
|
Antimicrobial, Cytotoxic, and Anti-Inflammatory Activities of Pimenta dioica and Rosmarinus officinalis Essential Oils. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1639726. [PMID: 31205934 PMCID: PMC6530202 DOI: 10.1155/2019/1639726] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022]
Abstract
Essential oils (EOs) are natural products composed of a mixture of volatile and aromatic compounds extracted from different parts of plants that have shown antimicrobial activities against pathogens. In this study, EOs extracted from Pimenta dioica (Myrtaceae) and Rosmarinus officinalis (Lamiaceae) were assessed for their antimicrobial activities using a panel of pathogenic Gram-positive, Gram-negative, and fungal strains. The antimicrobial activity was measured by the minimal inhibitory concentration required for the growth inhibition of the microorganisms. The cytotoxicity of the EOs was tested ex vivo using the model of human-derived macrophage THP-1 cells. In addition, an inflammatory response was evaluated using the anti-inflammatory cytokine IL-10 and the proinflammatory cytokines IL-6 and TNF-α. Results showed that both EOs had antimicrobial activity and different pathogens were exposed to concentrations ranging between 600 and 2000 μg/mL. In addition, the EOs showed no inflammatory activity when exposed to human macrophages, but a potent anti-inflammatory activity was measured when the oil from Rosmarinus officinalis was exposed to macrophages. This study demonstrates that the use of EOs is an effective alternative for pathogenic bacterial and fungal control, alone or in combination with antibiotic therapy. Moreover, the oil extracted from Rosmarinus officinalis could be used as potent anti-inflammatory agent.
Collapse
|
126
|
Okwu MU, Olley M, Akpoka AO, Izevbuwa OE. Methicillin-resistant Staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: A brief review. AIMS Microbiol 2019; 5:117-137. [PMID: 31384707 PMCID: PMC6642907 DOI: 10.3934/microbiol.2019.2.117] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/04/2019] [Indexed: 11/18/2022] Open
Abstract
The increasing emergence of multidrug-resistant infection causing microorganisms has become a significant burden globally. Despite the efforts of pharmaceuticals in producing relatively new antimicrobial drugs, they have resulted in a high rate of mortality, disability and diseases across the world especially in developing countries. Supporting this claim was the report of the Centre for Disease Control and Prevention (CDC) who estimated that over 2 million illnesses and 23,000 deaths per year are attributable to antibiotic resistant pathogens in the United States. They include Methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-intermediate Staphylococcus aureus (VISA), Vancomycin-resistant Staphylococcus aureus (VRSA), Vancomycin-resistant enterococci (VRE), Extended spectrum beta-lactamases (ESBLs) producing gram-negative bacilli, Multidrug-resistant Streptococcus pneumoniae (MDRSP), Carbapenem-resistant Enterobacteriaceae (CRE) and Multidrug-resistant Acinetobacter baumannii. For MRSA, resistance is as a result of Methicillin-sensitive S. aureus (MSSA) strains that have acquired Staphylococcal Cassette Chromosome mec (SCCmec) which carries mecA gene. The gene encodes the penicillin-binding protein (PBP2a) which confers resistance to all β-lactam antibiotics. Vancomycin was previously the widely preferred drug for the treatment of MRSA infections. It is no longer the case with the emergence of S. aureus strains with reduced vancomycin sensitivity limiting the conventional treatment options for MRSA infections to very scanty expensive drugs. Presently, many researchers have reported the antibacterial activity of many plant extracts on MRSA. Hence, these medicinal plants might be promising candidates for treatment of MRSA infections. This work is a brief review on Methicillin-resistant Staphylococcus aureus (MRSA) and the anti-MRSA activities of extracts of selected medicinal plants.
Collapse
Affiliation(s)
- Maureen U. Okwu
- Department of Biological Sciences, College of Natural and Applied Sciences, Igbinedion University Okada, Edo State, Nigeria
| | - Mitsan Olley
- Department of Pathology, Igbinedion University Teaching Hospital, Okada, Edo State, Nigeria
| | - Augustine O. Akpoka
- Department of Biological Sciences, College of Natural and Applied Sciences, Igbinedion University Okada, Edo State, Nigeria
| | - Osazee E. Izevbuwa
- Department of Biological Sciences, College of Natural and Applied Sciences, Igbinedion University Okada, Edo State, Nigeria
| |
Collapse
|
127
|
Makhathini SS, Kalhapure RS, Jadhav M, Waddad AY, Gannimani R, Omolo CA, Rambharose S, Mocktar C, Govender T. Novel two-chain fatty acid-based lipids for development of vancomycin pH-responsive liposomes against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). J Drug Target 2019; 27:1094-1107. [DOI: 10.1080/1061186x.2019.1599380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sifiso S. Makhathini
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rahul S. Kalhapure
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- School of Pharmacy, The University of Texas, El Paso, TX, USA
| | - Mahantesh Jadhav
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ayman Y. Waddad
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ramesh Gannimani
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A. Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sanjeev Rambharose
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Division of Emergency Medicine, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
128
|
Gao X, Yan X, Zhang Q, Yin Y, Cao J. CD5L contributes to the pathogenesis of methicillin-resistant Staphylococcus aureus-induced pneumonia. Int Immunopharmacol 2019; 72:40-47. [PMID: 30959370 DOI: 10.1016/j.intimp.2019.03.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 11/25/2022]
Abstract
Staphylococcus aureus is a major causative microorganism in community- and healthcare-acquired pneumonia. CD5L is an important protein in the control of immune homeostasis. In this study, we found that patients with S. aureus pneumonia displayed increased levels of circulating CD5L. Likewise, mice with S. aureus pneumonia had elevated CD5L levels in the lungs. Anti-CD5L antibody protected mice from lethal pneumonia induced by methicillin-resistant S. aureus. The survival benefit obtained with antibody against CD5L was associated with an improvement of bacterial clearance and a reduction of pulmonary inflammatory cytokines and chemokines. Conversely, co-injection of recombinant CD5L and S. aureus markedly increased the lethality of S. aureus pneumonia. These findings suggest that CD5L contributed to the immunopathology of S. aureus pneumonia.
Collapse
Affiliation(s)
- Xun Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Key Laboratory of Diagnostic Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xingxing Yan
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qun Zhang
- Clinical Laboratories Center, Affiliated Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
129
|
Design, synthesis, and antibacterial evaluation of novel derivatives of NPS-2143 for the treatment of methicillin-resistant S. aureus (MRSA) infection. J Antibiot (Tokyo) 2019; 72:545-554. [PMID: 30940910 DOI: 10.1038/s41429-019-0177-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/19/2019] [Accepted: 03/04/2019] [Indexed: 02/05/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections are a significant global health challenge due to the emergence of strains exhibiting resistance to nearly all classes of antibiotics. This necessitates the rapid development of novel antimicrobials to circumvent this critical problem. Screening of compounds based on phenotypes is one of the major strategies for finding new antibiotics at present. Hence, we here performed a phenotypic screening against MRSA and identified NPS-2143 exhibiting activity against MRSA with an MIC value of 16 μg ml-1. In order to discover more potent anti-MRSA agents, a series of derivatives of NPS-2143 were designed and synthesized. The most promising compounds 48 and 49 exhibited favorable antimicrobial activity with an MIC value of 2 μg ml-1.
Collapse
|
130
|
Megiddo I, Drabik D, Bedford T, Morton A, Wesseler J, Laxminarayan R. Investing in antibiotics to alleviate future catastrophic outcomes: What is the value of having an effective antibiotic to mitigate pandemic influenza? HEALTH ECONOMICS 2019; 28:556-571. [PMID: 30746802 DOI: 10.1002/hec.3867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 11/08/2018] [Accepted: 12/10/2018] [Indexed: 05/22/2023]
Abstract
Over 95% of post-mortem samples from the 1918 pandemic, which caused 50 to 100 million deaths, showed bacterial infection complications. The introduction of antibiotics in the 1940s has since reduced the risk of bacterial infections, but growing resistance to antibiotics could increase the toll from future influenza pandemics if secondary bacterial infections are as serious as in 1918, or even if they are less severe. We develop a valuation model of the option to withhold wide use of an antibiotic until significant outbreaks such as pandemic influenza or foodborne diseases are identified. Using real options theory, we derive conditions under which withholding wide use is beneficial, and calculate the option value for influenza pandemic scenarios that lead to secondary infections with a resistant Staphylococcus aureus strain. We find that the value of withholding an effective novel oral antibiotic can be positive and significant unless the pandemic is mild and causes few secondary infections with the resistant strain or if most patients can be treated intravenously. Although the option value is sensitive to parameter uncertainty, our results suggest that further analysis on a case-by-case basis could guide investment in novel agents as well as strategies on how to use them.
Collapse
Affiliation(s)
- Itamar Megiddo
- Department of Management Science, University of Strathclyde, Glasgow, UK
- Center for Disease Dynamics, Economics & Policy, Washington, DC
| | - Dusan Drabik
- Agricultural Economics and Rural Policy Group, Wageningen University, Wageningen, The Netherlands
| | - Tim Bedford
- Department of Management Science, University of Strathclyde, Glasgow, UK
| | - Alec Morton
- Department of Management Science, University of Strathclyde, Glasgow, UK
| | - Justus Wesseler
- Agricultural Economics and Rural Policy Group, Wageningen University, Wageningen, The Netherlands
| | - Ramanan Laxminarayan
- Department of Management Science, University of Strathclyde, Glasgow, UK
- Center for Disease Dynamics, Economics & Policy, Washington, DC
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey
| |
Collapse
|
131
|
Subramanian D, Natarajan J. RNA-seq analysis reveals resistome genes and signalling pathway associated with vancomycin-intermediate Staphylococcus aureus. Indian J Med Microbiol 2019; 37:173-185. [PMID: 31745016 DOI: 10.4103/ijmm.ijmm_18_311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Context Vancomycin-intermediate Staphylococcus aureus remains one of the most prevalent multidrug-resistant pathogens causing healthcare infections that are difficult to treat. Aims This study uses a comprehensive computational analysis to systematically investigate various gene expression profiles of resistant and sensitive S. aureus strains on exposure to antibiotics. Settings and Design The transcriptional changes leading to the development of multiple antibiotic resistance were examined by an integrative analysis of nine differential expression experiments under selected conditions of vancomycin-intermediate and -sensitive strains for four different antibiotics using publicly available RNA-Seq datasets. Materials and Methods For each antibiotic, three experimental conditions for expression analysis were selected to identify those genes that are particularly involved in the development of resistance. The results were further scrutinised to generate a resistome that can be analysed for their role in the development or adaptation to antibiotic resistance. Results The 99 genes in the resistome are then compiled to create a multiple drug resistome of 25 known and novel genes identified to play a part in antibiotic resistance. The inclusion of agr genes and associated virulence factors in the identified resistome supports the role of agr quorum sensing system in multiple drug resistance. In addition, enrichment analysis also identified the kyoto encyclopedia of genes and genomes (KEGG) pathways - quorum sensing and two-component system pathways - in the resistome gene set. Conclusion Further studies on understanding the role of the identified molecular targets such as SAA6008_00181, SAA6008_01127, agrA, agrC and coa in adapting to the pressure of antibiotics at sub-inhibitory concentrations can help in learning the molecular mechanisms causing resistance to the pathogens as well as finding other potential therapeutics.
Collapse
Affiliation(s)
- Devika Subramanian
- Department of Bioinformatics, Data Mining and Text Mining Laboratory, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Jeyakumar Natarajan
- Department of Bioinformatics, Data Mining and Text Mining Laboratory, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
132
|
Kyei-Baffour K, Mohammad H, Seleem MN, Dai M. Second-generation aryl isonitrile compounds targeting multidrug-resistant Staphylococcus aureus. Bioorg Med Chem 2019; 27:1845-1854. [PMID: 30926310 DOI: 10.1016/j.bmc.2019.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/09/2019] [Accepted: 03/19/2019] [Indexed: 12/21/2022]
Abstract
Antibiotic resistance remains a major global public health threat that requires sustained discovery of novel antibacterial agents with unexploited scaffolds. Structure-activity relationship of the first-generation aryl isonitrile compounds we synthesized led to an initial lead molecule that informed the synthesis of a second-generation of aryl isonitriles. From this new series of 20 compounds, three analogues inhibited growth of methicillin-resistant Staphylococcus aureus (MRSA) (from 1 to 4 µM) and were safe to human keratinocytes. Compound 19, with an additional isonitrile group exhibited improved activity against MRSA compared to the first-generation lead compound. This compound emerged as a candidate worthy of further investigation and further reinforced the importance of the isonitrile functionality in the compounds' anti-MRSA activity. In a murine skin wound model, 19 significantly reduced the burden of MRSA, similar to the antibiotic fusidic acid. In summary, 19 was identified as a new lead aryl isonitrile compound effective against MRSA.
Collapse
Affiliation(s)
- Kwaku Kyei-Baffour
- Department of Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, United States
| | - Haroon Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, United States
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, United States; Purdue Institute of Inflammation, Immunology and Infectious Disease, 610 Purdue Mall, West Lafayette, IN 47907, United States.
| | - Mingji Dai
- Department of Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, United States; Purdue Institute of Inflammation, Immunology and Infectious Disease, 610 Purdue Mall, West Lafayette, IN 47907, United States.
| |
Collapse
|
133
|
Zhao C, Wang X, Wu L, Wu W, Zheng Y, Lin L, Weng S, Lin X. Nitrogen-doped carbon quantum dots as an antimicrobial agent against Staphylococcus for the treatment of infected wounds. Colloids Surf B Biointerfaces 2019; 179:17-27. [PMID: 30928801 DOI: 10.1016/j.colsurfb.2019.03.042] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/21/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is becoming more and more serious and has become a potential hazard to human life and health. The fabrication of some new antibacterial substances against resistant bacteria is demanded. With the wide application and research of carbon nanomaterials, nitrogen-doped carbon quantum dots (NCQDs) were synthesized by a one-step chemical route herein. The particle size of NCQDs in the range of 2-5 nm were characterized by transmission electron microscopy (TEM), atomic force microscopy, and dynamic light scattering. The functional groups and optical properties of NCQDs were investigated by UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Disk-diffusion tests showed that the NCQDs had specific antibacterial activity against Staphylococcus. TEM showed that the NCQDs could destroy the cell structure of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) but could not combat Escherichia coli. The antibacterial mechanism may be that positively charged NCQDs firstly interacted with the negatively charged bacteria, and then specifically anchored on some specific sites on the surface of Staphylococcus. The NCQDs were applied to treat wounds infected with MRSA and showed the same therapeutic effect as vancomycin. Photomicrographs of hematoxylin-eosin-stained histological sections showed that the NCQDs at concentrations effectively killing S. aureus and MRSA caused negligible toxicity to the main rat organs, including heart, liver, spleen, lung, and kidney. Thus, the NCQDs can be developed as a promising antibacterial agent for Staphylococcus. And the NCQDs are likely to treat local infections caused by Staphylococcus clinically, especially S. aureus and MRSA.
Collapse
Affiliation(s)
- Chengfei Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xuewen Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Lina Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Wen Wu
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Yanjie Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350004, China
| | - Liqing Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350004, China
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350004, China.
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350004, China.
| |
Collapse
|
134
|
Gatadi S, Lakshmi TV, Nanduri S. 4(3H)-Quinazolinone derivatives: Promising antibacterial drug leads. Eur J Med Chem 2019; 170:157-172. [PMID: 30884322 DOI: 10.1016/j.ejmech.2019.03.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/15/2019] [Accepted: 03/06/2019] [Indexed: 12/25/2022]
Abstract
Emergence of drug resistance has created unmet medical need for the development of new classes of antibiotics. Discovery of new antibacterial agents with new mode of action remains a high priority universally. 4(3H)-quinazolinone, a fused nitrogen heterocyclic compound has emerged as a biologically privileged structure, possessing a wide range of biological properties viz. anticancer, antibacterial, antitubercular, antifungal, anti-HIV, anticonvulsant, anti-inflammatory and analgesic activities. Promising antibacterial properties of quinazolinones have enthused the medicinal chemists to explore and develop this fused heterocyclic system for new antibacterial agents. Utilization of quinazolinone core for the design and synthesis of new antibacterial agents has recently gained momentum. This review aims to provide an overview of the structures and antibacterial activity of various 4(3H)-quinazolinone derivatives covering various aspects of in vitro and in vivo pharmacological activities and structure activity relationships (SARs).
Collapse
Affiliation(s)
- Srikanth Gatadi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - T Vasanta Lakshmi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srinivas Nanduri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
135
|
Jia L, Zhao J, Yang C, Liang Y, Long P, Liu X, Qiu S, Wang L, Xie J, Li H, Liu H, Guo W, Wang S, Li P, Zhu B, Hao R, Ma H, Jiang Y, Song H. Severe Pneumonia Caused by Coinfection With Influenza Virus Followed by Methicillin-Resistant Staphylococcus aureus Induces Higher Mortality in Mice. Front Immunol 2019; 9:3189. [PMID: 30761162 PMCID: PMC6364753 DOI: 10.3389/fimmu.2018.03189] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/31/2018] [Indexed: 01/20/2023] Open
Abstract
Background: Coinfection with influenza virus and bacteria is a major cause of high mortality during flu pandemics. Understanding the mechanisms behind such coinfections is of utmost importance both for the clinical treatment of influenza and the prevention and control of epidemics. Methods: To investigate the cause of high mortality during flu pandemics, we performed coinfection experiments with H1N1 influenza virus and Staphylococcus aureus in which mice were infected with bacteria at time points ranging from 0 to 7 days after infection with influenza virus. Results: The mortality rates of mice infected with bacteria were highest 0-3 days after infection with influenza virus; lung tissues extracted from these co-infected mice showed higher infiltrating cells and thicker lung parenchyma than lung samples from coinfected mice in which influenza virus was introduced at other times and sequences. The levels of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-8, and IL-6 in the 0-3 day coinfected group were significantly higher than those in the other groups (p < 0.01), as were the mRNA levels of IFN-γ, IL-6, and TNF-α. Coinfection with influenza virus and S. aureus led to high mortality rates that are directly dependent on the sequence and timing of infection by both pathogens. Moreover, coinfection following this particular schedule induced severe pneumonia, leading to increased mortality. Conclusions: Our data suggest that prevention of bacterial co-infection in the early stage of influenza virus infection is critical to reducing the risk of clinical mortality.
Collapse
Affiliation(s)
- Leili Jia
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jiangyun Zhao
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Chaojie Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yuan Liang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Pengwei Long
- Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Department of Health Care, Chinese PLA Joint Staff Headquarters Guard Bureau, Beijing, China
| | - Xiao Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shaofu Qiu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Ligui Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jing Xie
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hao Li
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Hongbo Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Weiguang Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shan Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Peng Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | | | - Rongzhang Hao
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hui Ma
- The 6th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongbin Song
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
136
|
Elbourne A, Coyle VE, Truong VK, Sabri YM, Kandjani AE, Bhargava SK, Ivanova EP, Crawford RJ. Multi-directional electrodeposited gold nanospikes for antibacterial surface applications. NANOSCALE ADVANCES 2019; 1:203-212. [PMID: 36132449 PMCID: PMC9473181 DOI: 10.1039/c8na00124c] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 05/14/2023]
Abstract
The incorporation of high-aspect-ratio nanostructures across surfaces has been widely reported to impart antibacterial characteristics to a substratum. This occurs because the presence of such nanostructures can induce the mechanical rupture of attaching bacteria, causing cell death. As such, the development of high-efficacy antibacterial nano-architectures fabricated on a variety of biologically relevant materials is critical to the wider acceptance of this technology. In this study, we report the antibacterial behavior of a series of substrata containing multi-directional electrodeposited gold (Au) nanospikes, as both a function of deposition time and precursor concentration. Firstly, the bactericidal efficacy of substrata containing Au nanospikes was assessed as a function of deposition time to elucidate the nanopattern that exhibited the greatest degree of biocidal activity. Here, it was established that multi-directional nanospikes with an average height of ∼302 nm ± 57 nm (formed after a deposition time of 540 s) exhibited the greatest level of biocidal activity, with ∼88% ± 8% of the bacterial cells being inactivated. The deposition time was then kept constant, while the concentration of the HAuCl4 and Pb(CH3COO)2 precursor materials (used for the formation of the Au nanospikes) was varied, resulting in differing nanospike architectures. Altering the Pb(CH3COO)2 precursor concentration produced multi-directional nanostructures with a wider distribution of heights, which increased the average antibacterial efficacy against both Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus bacteria. Importantly, the in situ electrochemical fabrication method used in this work is robust and straightforward, and is able to produce highly reproducible antibacterial surfaces. The results of this research will assist in the wider utilization of mechano-responsive nano-architectures for antimicrobial surface technologies.
Collapse
Affiliation(s)
- Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Victoria E Coyle
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Vi Khanh Truong
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology Haw-thorn VIC 3122 Australia
- ARC Research Hub for Australian Steel Manufacturing Wollongong New South Wales Australia
| | - Ylias M Sabri
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Ahmad E Kandjani
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Elena P Ivanova
- School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| |
Collapse
|
137
|
Howse GL, Bovill RA, Stephens PJ, Osborn HM. Synthesis and antibacterial profiles of targeted triclosan derivatives. Eur J Med Chem 2019; 162:51-58. [DOI: 10.1016/j.ejmech.2018.10.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/22/2018] [Indexed: 01/29/2023]
|
138
|
Abstract
The primary care provider will commonly see skin and soft tissue infections in the outpatient setting. Skin and soft tissue infections range from the uncomplicated impetigo to the potentially lethal necrotizing fasciitis. This article reviews these infections based on their underlying etiology: bacterial, fungal, and viral causes. This article discusses the etiology, presentation, evaluation, and management of impetigo, bullous impetigo, erysipelas, cellulitis, periorbital cellulitis, orbital cellulitis, folliculitis, furuncles, carbuncles, abscess, necrotizing fasciitis, sporotrichosis, tinea corporis, tinea pedis, tinea capitis, Herpes Simplex Virus, zoster, molluscum contagiosum, and warts.
Collapse
Affiliation(s)
- Karl T Clebak
- Department of Family and Community Medicine, Penn State College of Medicine, 121 North Nyes Road, Harrisburg, PA 17112, USA.
| | - Michael A Malone
- Department of Family Medicine, Tidelands Health MUSC Family Medicine Residency Program, 4320 Holmestown Road, Myrtle Beach, SC 29588, USA
| |
Collapse
|
139
|
Li SM, Zhou YF, Li L, Fang LX, Duan JH, Liu FR, Liang HQ, Wu YT, Gu WQ, Liao XP, Sun J, Xiong YQ, Liu YH. Characterization of the Multi-Drug Resistance Gene cfr in Methicillin-Resistant Staphylococcus aureus (MRSA) Strains Isolated From Animals and Humans in China. Front Microbiol 2018; 9:2925. [PMID: 30538695 PMCID: PMC6277690 DOI: 10.3389/fmicb.2018.02925] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 11/14/2018] [Indexed: 01/03/2023] Open
Abstract
We investigated cfr-positive and -negative MRSA strains isolated from animals and humans in different geographical areas of China, from 2011 to 2016. Twenty cfr-positive strains (15.6%) were identified from 128 MRSA strains including 17 from food animals and three from humans. The resistance rates and prevalence of the tested antibiotic resistance genes (ARGs) in the cfr-positive MRSA isolates were higher than that in the cfr-negative MRSA isolates. All cfr-positive MRSA isolates were co-carrying fexA and ermC, and had significantly higher optrA incidence rate vs. the cfr-negative isolates (P < 0.05). In addition, multilocus sequence typing (MLST) assays showed that ST9 and spa-type t899 were the most prevalent ST and spa types in the study strains. However, all of the 20 cfr-positive and 10 randomly selected cfr-negative MRSA isolates were clonally unrelated as determined by pulsed-field gel electrophoresis (PFGE) analyses. Importantly, the cfr gene was successfully transferred to a recipient Staphylococcus aureus strain RN4220 from 13 of the 20 cfr-positive MRSA isolates by electroporation. Among these 13 cfr-positive MRSA isolates, two different genetic contexts surrounding cfr were determined and each was associated with one type of cfr-carrying plasmids. Of note, the predominant genetic context of cfr was found to be a Tn558 variant and locate on large plasmids (∼50 kb) co-harboring fexA in 11 of the 13 MRSA isolates. Furthermore, the cfr gene was also identified on small plasmids (∼ 7.1 kb) that co-carried ermC in two of the 13 MRSA isolates. Our results demonstrated a high occurrence of multi-drug resistance in cfr-positive MRSA isolates, and the spread of cfr might be attributed to horizontal dissemination of similar cfr-carrying transposons and plasmids.
Collapse
Affiliation(s)
- Shu-Min Li
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu-Feng Zhou
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,LABioMed at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Liang Li
- LABioMed at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Liang-Xing Fang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jia-Hong Duan
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fan-Rui Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hua-Qing Liang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu-Ting Wu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wei-Qi Gu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yan-Qiong Xiong
- LABioMed at Harbor-UCLA Medical Center, Torrance, CA, United States.,Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Ya-Hong Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
140
|
Morales-de-Echegaray AV, Maltais TR, Lin L, Younis W, Kadasala NR, Seleem MN, Wei A. Rapid Uptake and Photodynamic Inactivation of Staphylococci by Ga(III)-Protoporphyrin IX. ACS Infect Dis 2018; 4:1564-1573. [PMID: 30175917 DOI: 10.1021/acsinfecdis.8b00125] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Antimicrobial photodynamic therapy (aPDT) is a promising method for the topical treatment of drug-resistant staphylococcal infections and can be further improved by identifying mechanisms that increase the specificity of photosensitizer uptake by bacteria. Here we show that Ga(III)-protoporphyrin IX chloride (Ga-PpIX), a fluorescent hemin analog with previously undisclosed photosensitizing properties, can be taken up within seconds by Staphylococcus aureus including multidrug-resistant strains such as MRSA. The uptake of Ga-PpIX by staphylococci is likely diffusion-limited and is attributed to the expression of high-affinity cell-surface hemin receptors (CSHRs), namely iron-regulated surface determinant (Isd) proteins. A structure-activity study reveals the ionic character of both the heme center and propionyl groups to be important for uptake specificity. Ga-PpIX was evaluated as a photosensitizer against S. aureus and several clinical isolates of MRSA using a visible light source, with antimicrobial activity at 0.03 μM with 10 s of irradiation by a 405 nm diode array (1.4 J/cm2); antimicrobial activity could also be achieved within minutes using a compact fluorescent lightbulb. GaPpIX was not only many times more potent than PpIX, a standard photosensitizer featured in clinical aPDI, but also demonstrated low cytotoxicity against HEK293 cells and human keratinocytes. Ga-PpIX uptake was screened against a diverse panel of bacterial pathogens using a fluorescence-based imaging assay, which revealed rapid uptake by several Gram-positive species known to express CSHRs, suggesting future candidates for targeted aPDT.
Collapse
|
141
|
Effects of Phage Endolysin SAL200 Combined with Antibiotics on Staphylococcus aureus Infection. Antimicrob Agents Chemother 2018; 62:AAC.00731-18. [PMID: 30038042 DOI: 10.1128/aac.00731-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/08/2018] [Indexed: 01/21/2023] Open
Abstract
Phages and their derivatives are increasingly being reconsidered for use in the treatment of bacterial infections due to the rising rates of antibiotic resistance. We assessed the antistaphylococcal effect of the endolysin SAL200 in combination with standard-of-care (SOC) antibiotics. The activity of SAL200 when it was combined with SOC antibiotics was assessed in vitro by checkerboard and time-kill assays and in vivo with murine bacteremia and Galleria mellonella infection models. SAL200 reduced the SOC antibiotic MICs and showed a ≥3-log10-CFU/ml reduction of Staphylococcus aureus counts within 30 min in time-kill assays. Combinations of SAL200 and SOC antibiotics achieved a sustained decrease of >2 log10 CFU/ml. SAL200 significantly lowered the blood bacterial density within 1 h by >1 log10 CFU/ml in bacteremic mice (P < 0.05 versus untreated mice), and SAL200 and SOC antibiotic combinations achieved the lowest levels of bacteremia. The bacterial density in splenic tissue at 72 h postinfection was the lowest in mice treated with SAL200 and SOC antibiotic combinations. SAL200 combined with SOC antibiotics also improved Galleria mellonella larva survival at 96 h postinfection. The combination of the phage endolysin SAL200 with SOC antistaphylococcal antibiotics showed synergistic effects in vitro and in vivo The combination of SAL200 with SOC antibiotics could help in the treatment of difficult-to-treat S. aureus infections.
Collapse
|
142
|
Tuning the biological activity of cationic anthraquinone analogues specifically toward Staphylococcus aureus. Eur J Med Chem 2018; 157:683-690. [PMID: 30130717 DOI: 10.1016/j.ejmech.2018.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/27/2018] [Accepted: 08/04/2018] [Indexed: 11/22/2022]
Abstract
Development of new antibacterial agents against drug resistant bacteria is an imminent task, especially against methicillin-resistant Staphylococcus aureus (MRSA). While MRSA can still be treated with broad spectrum antibiotics, the use of which often leads to the disruption of normal microbial flora leading to Clostridium difficile infection (CDI). Herein, a new class of antibacterial agent, cationic anthraquinone analogues specifically against MRSA, has been developed. Through the variation and optimization of substituents, these agents are selective toward MRSA, and not Gram negative bacteria which may avoid the problem of CDI. In addition, newly discovered lead compounds also show significantly reduced cytotoxicity against normal mammalian cells than cancerous cells. This interesting finding can alleviate the toxicity and side effect problems often associate with the use of antibiotics.
Collapse
|
143
|
Ghimire L, Paudel S, Jin L, Baral P, Cai S, Jeyaseelan S. NLRP6 negatively regulates pulmonary host defense in Gram-positive bacterial infection through modulating neutrophil recruitment and function. PLoS Pathog 2018; 14:e1007308. [PMID: 30248149 PMCID: PMC6171945 DOI: 10.1371/journal.ppat.1007308] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/04/2018] [Accepted: 08/29/2018] [Indexed: 12/27/2022] Open
Abstract
Gram-positive bacteria, including Staphylococcus aureus are endemic in the U.S., which cause life-threatening necrotizing pneumonia. Neutrophils are known to be critical for clearance of S. aureus infection from the lungs and extrapulmonary organs. Therefore, we investigated whether the NLRP6 inflammasome regulates neutrophil-dependent host immunity during pulmonary S. aureus infection. Unlike their wild-type (WT) counterparts, NLRP6 knockout (KO) mice were protected against pulmonary S. aureus infection as evidenced by their higher survival rate and lower bacterial burden in the lungs and extrapulmonary organs. In addition, NLRP6 KO mice displayed increased neutrophil recruitment following infection, and when neutrophils were depleted the protective effect was lost. Furthermore, neutrophils from the KO mice demonstrated enhanced intracellular bacterial killing and increased NADPH oxidase-dependent ROS production. Intriguingly, we found higher NK cell-mediated IFN-γ production in KO mouse lungs, and treatment with IFN-γ was found to enhance the bactericidal ability of WT and KO neutrophils. The NLRP6 KO mice also displayed decreased pyroptosis and necroptosis in the lungs following infection. Blocking of pyroptosis and necroptosis in WT mice resulted in increased survival, reduced bacterial burden in the lungs, and attenuated cytokine production. Taken together, these novel findings show that NLRP6 serves as a negative regulator of neutrophil-mediated host defense during Gram-positive bacterial infection in the lungs through regulating both neutrophil influx and function. These results also suggest that blocking NLRP6 to augment neutrophil-associated bacterial clearance should be considered as a potential therapeutic intervention strategy for treatment of S. aureus pneumonia.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- Female
- Host-Pathogen Interactions/immunology
- Humans
- Inflammasomes/immunology
- Interferon-gamma/biosynthesis
- Killer Cells, Natural/immunology
- Lung/immunology
- Lung/microbiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophil Infiltration/immunology
- Pneumonia, Necrotizing/immunology
- Pneumonia, Necrotizing/microbiology
- Pneumonia, Staphylococcal/immunology
- Pneumonia, Staphylococcal/microbiology
- Pyroptosis/immunology
- Reactive Oxygen Species/metabolism
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Staphylococcus aureus/immunology
- Up-Regulation
Collapse
Affiliation(s)
- Laxman Ghimire
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
| | - Sagar Paudel
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
| | - Liliang Jin
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
| | - Pankaj Baral
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
| | - Shanshan Cai
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
| | - Samithamby Jeyaseelan
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
- Section of Pulmonary and Critical Care, Department of Medicine, LSU Health Science Center, New Orleans, LA, United States of America
| |
Collapse
|
144
|
Synthesis and anti-staphylococcal activity of novel bacterial topoisomerase inhibitors with a 5-amino-1,3-dioxane linker moiety. Bioorg Med Chem Lett 2018; 28:2477-2480. [DOI: 10.1016/j.bmcl.2018.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/14/2018] [Accepted: 06/01/2018] [Indexed: 12/30/2022]
|
145
|
Bezerra Neto AM, Rabelo MA, Lima JLDC, Loibman SO, Leal NC, Maciel MAV. Occurrence of the vanA gene in Staphylococcus epidermidis from nasopharyngeal secretion of Health-Care Workers, Recife, Brazil. Rev Soc Bras Med Trop 2018; 51:304-309. [PMID: 29972560 DOI: 10.1590/0037-8682-0159-2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/06/2018] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION The increasing reports of vancomycin-resistant Staphylococcus strains (VRS) haves caused concern worldwide, from the laboratory detection to patient management. This study aimed to identify the occurrence of VRS strains among healthcare professionals from a university hospital. METHODS A total of 102 Staphylococcus sp. isolates from healthcare professionals, obtained in a previous study were evaluated according to standard techniques for VRS detection. RESULTS After screening inoculation of plates containing 6µg/ml of vancomycin, 19 resistant isolates were identified. The susceptibility profile to other antimicrobials revealed 18 multidrug resistant isolates. The minimum inhibitory concentration (MIC) was determined by E-test and broth microdilution. According to E-tests, of 19 isolates grown in BHI-V6, four isolates presented MIC ≥ 128 µg/ml, seven with MIC ranging from 4 to 8 µg/ml, and eight with MIC ≤ 2µg/ml. By broth microdilution, 14 isolates presented MIC ≤ 2 µg/ml and five with MIC ≥ 16µg/ml. The presence of the gene vanA was determined by PCR in the five resistant isolates, and this gene was detected in one of the strains. Furthermore, among the 19 strains, the gene mecA was found in 13 (39,4%) isolates, including the strain carrying the gene vanA. CONCLUSIONS Based on these results, we highlight the presence of one strain carrying both vanA and the mecA genes, as well as multidrug-resistant strains colonizing healthcare professionals, and their importance as potential vectors to spread strains carrying resistance genes in the hospital environment.
Collapse
Affiliation(s)
- Armando Monteiro Bezerra Neto
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Marcelle Aquino Rabelo
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Jailton Lobo da Costa Lima
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | | | - Nilma Cintra Leal
- Departamento de Microbiologia, Centro de Pesquisa Aggeu Magalhães, Fundação Oswaldo Cruz-PE, Recife, PE, Brasil
| | - Maria Amélia Vieira Maciel
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brasil.,Departamento de Microbiologia, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, PE, Brasil
| |
Collapse
|
146
|
Alalaiwe A, Wang PW, Lu PL, Chen YP, Fang JY, Yang SC. Synergistic Anti-MRSA Activity of Cationic Nanostructured Lipid Carriers in Combination With Oxacillin for Cutaneous Application. Front Microbiol 2018; 9:1493. [PMID: 30034381 PMCID: PMC6043785 DOI: 10.3389/fmicb.2018.01493] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles have become a focus of interest due to their ability as antibacterial agents. The aim of this study was to evaluate the anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of cationic nanostructured lipid carriers (NLC) combined with oxacillin against ATCC 33591 and clinical isolate. The cationic resource on the NLC surface was soyaethyl morpholinium ethosulfate (SME). NLC loaded with oxacillin was produced to assess the antibacterial activity and the effectiveness of topical application for treating cutaneous infection. The hydrodynamic diameter and zeta potential of oxacillin-loaded NLC were 177 nm and 19 mV, respectively. When combined with NLC, oxacillin exhibited synergistic MRSA eradication. After NLC encapsulation, the minimum bactericidal concentration (MBC) of oxacillin decreased from 250 to 62.5 μg/ml. The combined NLC and oxacillin reduced the MRSA biofilm thickness from 31.2 to 13.0 μm, which was lower than the effect of NLC (18.2 μm) and antibiotic (25.2 μm) alone. The oxacillin-loaded NLC showed significant reduction in the burden of intracellular MRSA in differentiated THP-1 cells. This reduction was greater than that achieved with individual treatment. The mechanistic study demonstrated the ability of cationic NLC to disrupt the bacterial membrane, leading to protein leakage. The cell surface disintegration also increased oxacillin delivery into the cytoplasm, activating the bactericidal process. Topical NLC treatment of MRSA abscess in the skin decreased the bacterial load by log 4 and improved the skin’s architecture and barrier function. Our results demonstrated that a combination of nanocarriers and an antibiotic could synergistically inhibit MRSA growth.
Collapse
Affiliation(s)
- Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Po-Liang Lu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ping Chen
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Chun Yang
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| |
Collapse
|
147
|
Hashemian SMR, Farhadi T, Ganjparvar M. Linezolid: a review of its properties, function, and use in critical care. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1759-1767. [PMID: 29950810 PMCID: PMC6014438 DOI: 10.2147/dddt.s164515] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Linezolid can be considered as the first member of the class of oxazolidinone antibiotics. The compound is a synthetic antibiotic that inhibits bacterial protein synthesis through binding to rRNA. It also inhibits the creation of the initiation complex during protein synthesis which can reduce the length of the developed peptide chains, and decrease the rate of reaction of translation elongation. Linezolid has been approved for the treatment of infections caused by vancomycin-resistant Enterococcus faecium, hospital-acquired pneumonia caused by Staphylococcus aureus, complicated skin and skin structure infections (SSSIs), uncomplicated SSSIs caused by methicillin-susceptible S. aureus or Streptococcus pyogenes, and community-acquired pneumonia caused by Streptococcus pneumoniae. Analysis of high-resolution structures of linezolid has demonstrated that it binds a deep cleft of the 50S ribosomal subunit that is surrounded by 23S rRNA nucleotides. Mutation of 23S rRNA was shown to be a linezolid resistance mechanism. Besides, mutations in specific regions of ribosomal proteins uL3 and uL4 are increasingly associated with linezolid resistance. However, these proteins are located further away from the bound drug. The methicillin-resistant S. aureus and vancomycin-resistant enterococci are considered the most common Gram-positive bacteria found in intensive care units (ICUs), and linezolid, as an antimicrobial drug, is commonly utilized to treat infected ICU patients. The drug has favorable in vitro and in vivo activity against the mentioned organisms and is considered as a useful antibiotic to treat infections in the ICU.
Collapse
Affiliation(s)
- Seyed Mohammad Reza Hashemian
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebeh Farhadi
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojdeh Ganjparvar
- Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
148
|
Hua X, Yang Q, Zhang W, Dong Z, Yu S, Schwarz S, Liu S. Antibacterial Activity and Mechanism of Action of Aspidinol Against Multi-Drug-Resistant Methicillin-Resistant Staphylococcus aureus. Front Pharmacol 2018; 9:619. [PMID: 29950995 PMCID: PMC6008372 DOI: 10.3389/fphar.2018.00619] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/23/2018] [Indexed: 12/03/2022] Open
Abstract
This study aimed at investigating the antibacterial activity of aspidinol, an extract from Dryopteris fragrans (L.) Schott, against methicillin-resistant Staphylococcus aureus (MRSA). MRSA isolates were treated with aspidinol to determine the differential expression of genes and associated pathways following the drug treatment. Aspidinol displayed significant anti-MRSA activity, both in vivo (minimum inhibitory concentration = 2 μg/mL) and in vitro, and achieved an antibacterial effect comparable to that of vancomycin. In the lethal septicemic mouse study, a dose of 50 mg/kg of either aspidinol or vancomycin provided significant protection from mortality. In the non-lethal septicemic mouse study, aspidinol and vancomycin produced a significant reduction in mean bacterial load in murine organs, including the spleen, lung, and liver. After treatment with aspidinol, we found through RNA-seq and RT-PCR experiments that the inhibition of the formation of ribosomes was the primary S. aureus cell-killing mechanism, and the inhibition of amino acid synthesis and the reduction of virulence factors might play a secondary role.
Collapse
Affiliation(s)
- Xin Hua
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qin Yang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wanjiang Zhang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhimin Dong
- Tianjin Animal Science and Veterinary Research Institute, Tianjin, China
| | - Shenye Yu
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Siguo Liu
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
149
|
Kalimuddin S, Chan YFZ, Phillips R, Ong SP, Archuleta S, Lye DC, Tan TT, Low JGH. A randomized phase 2B trial of vancomycin versus daptomycin for the treatment of methicillin-resistant Staphylococcus aureus bacteremia due to isolates with high vancomycin minimum inhibitory concentrations - results of a prematurely terminated study. Trials 2018; 19:305. [PMID: 29859132 PMCID: PMC5984763 DOI: 10.1186/s13063-018-2702-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/21/2018] [Indexed: 01/18/2023] Open
Abstract
Background Studies have suggested the reduced effectiveness of vancomycin against methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections with high vancomycin minimum inhibitory concentrations. Alternative agents such as daptomycin may be considered. We conducted a randomized controlled study comparing daptomycin against vancomycin in the treatment of MRSA bloodstream infections with high vancomycin minimum inhibitory concentrations. Methods Patients were randomized to receive vancomycin or daptomycin for a minimum of 14 days. The primary end point was the rate of all-cause mortality at day 60. Results A total of 14 patients were randomized in this study, with 7 patients in each treatment arm. The study was terminated early due to slow patient accrual. At day 60, there was one death in the vancomycin arm and none in the daptomycin arm. The median time to microbiological clearance was 4 days in both arms (IQR 3–5 days in the vancomycin arm and 3–7 days in daptomycin arm). Only one patient in the vancomycin arm had recurrence of bacteremia. Rates of adverse events were similar in both arms. There was one case of musculoskeletal toxicity and one case of drug-related nephrotoxicity - both events occurred in the daptomycin arm. None of the patients in either treatment arm required cessation of study treatment or addition of a second anti-MRSA agent because of worsening infection. Conclusion Based on the limited number of patients evaluated in this study, it remains unclear if alternative, more expensive agents such as daptomycin are superior to vancomycin in the treatment of high vancomycin minimum inhibitory concentration MRSA bloodstream infections. More studies are urgently needed but investigators may wish to consider employing novel, alternative trial methodologies to ensure a greater chance of success. Trial registration ClinicalTrials.gov, NCT01975662. Registered on 5 November 2013.
Collapse
Affiliation(s)
- Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, 20 College Road, Singapore, 169856, Singapore.
| | - Yvonne F Z Chan
- Department of Infectious Diseases, Singapore General Hospital, 20 College Road, Singapore, 169856, Singapore
| | - Rachel Phillips
- School of Population Health and Environmental Sciences, Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London, SE1 1UL, UK.,NIHR Biomedical Research Centre at Guy's and St. Thomas' NHS Foundation Trust and King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Siew Pei Ong
- Geriatric Education and Research Institute, 2 Yishun Central 2, Singapore, 768024, Singapore
| | - Sophia Archuleta
- Division of Infectious Diseases, National University Health System, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore, 119077, Singapore
| | - David Chien Lye
- Department of Infectious Diseases, Communicable Disease Centre, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Thuan Tong Tan
- Department of Infectious Diseases, Singapore General Hospital, 20 College Road, Singapore, 169856, Singapore
| | - Jenny G H Low
- Department of Infectious Diseases, Singapore General Hospital, 20 College Road, Singapore, 169856, Singapore
| |
Collapse
|
150
|
McBride S, Thurm C, Gouripeddi R, Stone B, Jaggard P, Shah SS, Tieder JS, Butcher R, Weiser J, Hall M, Keren R, Landrigan CP. Comparison of Empiric Antibiotics for Acute Osteomyelitis in Children. Hosp Pediatr 2018; 8:280-287. [PMID: 29626010 DOI: 10.1542/hpeds.2017-0079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
OBJECTIVES Broad-spectrum antibiotics are commonly used for the empiric treatment of acute hematogenous osteomyelitis and often target methicillin-resistant Staphylococcus aureus (MRSA) with medication-associated risk and unknown treatment benefit. We aimed to compare clinical outcomes among patients with osteomyelitis who did and did not receive initial antibiotics used to target MRSA. METHODS A retrospective cohort study of 974 hospitalized children 2 to 18 years old using the Pediatric Health Information System database, augmented with clinical data. Rates of hospital readmission, repeat MRI and 72-hour improvement in inflammatory markers were compared between treatment groups. RESULTS Repeat MRI within 7 and 180 days was more frequent among patients who received initial MRSA coverage versus methicillin-sensitive S aureus (MSSA)-only coverage (8.6% vs 4.1% within 7 days [P = .02] and 12% vs 5.8% within 180 days [P < .01], respectively). Ninety- and 180-day hospital readmission rates were similar between coverage groups (9.0% vs 8.7% [P = .87] and 10.9% vs 11.2% [P = .92], respectively). Patients with MRSA- and MSSA-only coverage had similar rates of 72-hour improvement in C-reactive protein values, but patients with MRSA coverage had a lower rate of 72-hour white blood cell count normalization compared with patients with MSSA-only coverage (4.2% vs 16.4%; P = .02). CONCLUSIONS In this study of children hospitalized with acute hematogenous osteomyelitis, early antibiotic treatment used to target MRSA was associated with a higher rate of repeat MRI compared with early antibiotic treatment used to target MSSA but not MRSA. Hospital readmission rates were similar for both treatment groups.
Collapse
Affiliation(s)
| | - Cary Thurm
- Children's Hospital Association, Overland Park, Kansas
| | | | | | - Phil Jaggard
- Children's Hospital Association, Overland Park, Kansas
| | - Samir S Shah
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | | | - Jason Weiser
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Matt Hall
- Children's Hospital Association, Overland Park, Kansas
| | - Ron Keren
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | |
Collapse
|