101
|
Tauroursodeoxycholic acid (TUDCA) inhibits influenza A viral infection by disrupting viral proton channel M2. Sci Bull (Beijing) 2019; 64:180-188. [PMID: 32288967 PMCID: PMC7104969 DOI: 10.1016/j.scib.2018.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/22/2018] [Accepted: 07/22/2018] [Indexed: 01/20/2023]
Abstract
Influenza is a persistent threat to human health and there is a continuing requirement for updating anti-influenza strategies. Initiated by observations of different endoplasmic reticulum (ER) responses of host to seasonal H1N1 and highly pathogenic avian influenza (HPAI) A H5N1 infections, we identified an alternative antiviral role of tauroursodeoxycholic acid (TUDCA), a clinically available ER stress inhibitor, both in vitro and in vivo. Rather than modulating ER stress in host cells, TUDCA abolished the proton conductivity of viral M2 by disrupting its oligomeric states, which induces inefficient viral infection. We also showed that M2 penetrated cells, whose intracellular uptake depended on its proton channel activity, an effect observed in both TUDCA and M2 inhibitor amantadine. The identification and application of TUDCA as an inhibitor of M2 proton channel will expand our understanding of IAV biology and complement current anti-IAV arsenals.
Collapse
|
102
|
Vrijens P, Noppen S, Boogaerts T, Vanstreels E, Ronca R, Chiodelli P, Laporte M, Vanderlinden E, Liekens S, Stevaert A, Naesens L. Influenza virus entry via the GM3 ganglioside-mediated platelet-derived growth factor receptor β signalling pathway. J Gen Virol 2019; 100:583-601. [PMID: 30762518 DOI: 10.1099/jgv.0.001235] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The possible resistance of influenza virus against existing antiviral drugs calls for new therapeutic concepts. One appealing strategy is to inhibit virus entry, in particular at the stage of internalization. This requires a better understanding of virus-host interactions during the entry process, including the role of receptor tyrosine kinases (RTKs). To search for cellular targets, we evaluated a panel of 276 protein kinase inhibitors in a multicycle antiviral assay in Madin-Darby canine kidney cells. The RTK inhibitor Ki8751 displayed robust anti-influenza A and B virus activity and was selected for mechanistic investigations. Ki8751 efficiently disrupted the endocytic process of influenza virus in different cell lines carrying platelet-derived growth factor receptor β (PDGFRβ), an RTK that is known to act at GM3 ganglioside-positive lipid rafts. The more efficient virus entry in CHO-K1 cells compared to the wild-type ancestor (CHO-wt) cells indicated a positive effect of GM3, which is abundant in CHO-K1 but not in CHO-wt cells. Entering virus localized to GM3-positive lipid rafts and the PDGFRβ-containing endosomal compartment. PDGFRβ/GM3-dependent virus internalization involved PDGFRβ phosphorylation, which was potently inhibited by Ki8751, and desialylation of activated PDGFRβ by the viral neuraminidase. Virus uptake coincided with strong activation of the Raf/MEK/Erk cascade, but not of PI3K/Akt or phospholipase C-γ. We conclude that influenza virus efficiently hijacks the GM3-enhanced PDGFRβ signalling pathway for cell penetration, providing an opportunity for host cell-targeting antiviral intervention.
Collapse
Affiliation(s)
- Pieter Vrijens
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sam Noppen
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Talitha Boogaerts
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Els Vanstreels
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Roberto Ronca
- 2Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paola Chiodelli
- 2Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Manon Laporte
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Evelien Vanderlinden
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sandra Liekens
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Annelies Stevaert
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lieve Naesens
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
103
|
Chamberlain N, Korwin-Mihavics BR, Nakada EM, Bruno SR, Heppner DE, Chapman DG, Hoffman SM, van der Vliet A, Suratt BT, Dienz O, Alcorn JF, Anathy V. Lung epithelial protein disulfide isomerase A3 (PDIA3) plays an important role in influenza infection, inflammation, and airway mechanics. Redox Biol 2019; 22:101129. [PMID: 30735910 PMCID: PMC6365984 DOI: 10.1016/j.redox.2019.101129] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 11/18/2022] Open
Abstract
Protein disulfide isomerases (PDI) are a family of redox chaperones that catalyze formation or isomerization of disulfide bonds in proteins. Previous studies have shown that one member, PDIA3, interacts with influenza A virus (IAV) hemagglutinin (HA), and this interaction is required for efficient oxidative folding of HA in vitro. However, it is unknown whether these host-viral protein interactions occur during active infection and whether such interactions represent a putative target for the treatment of influenza infection. Here we show that PDIA3 is specifically upregulated in IAV-infected mouse or human lung epithelial cells and PDIA3 directly interacts with IAV-HA. Treatment with a PDI inhibitor, LOC14 inhibited PDIA3 activity in lung epithelial cells, decreased intramolecular disulfide bonds and subsequent oligomerization (maturation) of HA in both H1N1 (A/PR8/34) and H3N2 (X31, A/Aichi/68) infected lung epithelial cells. These reduced disulfide bond formation significantly decreased viral burden, and also pro-inflammatory responses from lung epithelial cells. Lung epithelial-specific deletion of PDIA3 in mice resulted in a significant decrease in viral burden and lung inflammatory-immune markers upon IAV infection, as well as significantly improved airway mechanics. Taken together, these results indicate that PDIA3 is required for effective influenza pathogenesis in vivo, and pharmacological inhibition of PDIs represents a promising new anti-influenza therapeutic strategy during pandemic and severe influenza seasons.
Collapse
Affiliation(s)
- Nicolas Chamberlain
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Bethany R Korwin-Mihavics
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Emily M Nakada
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Sierra R Bruno
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - David G Chapman
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, United States; Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, Australia; Translational Airways Group, School of Life Sciences, University of Technology, Sydney, Australia
| | - Sidra M Hoffman
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Benjamin T Suratt
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Oliver Dienz
- Department of Surgery, University of Vermont College of Medicine, Burlington, VT, United States
| | - John F Alcorn
- Division of Pulmonary Medicine, Allergy, and Immunology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States.
| |
Collapse
|
104
|
Verma DK, Gupta D, Lal SK. Host Lipid Rafts Play a Major Role in Binding and Endocytosis of Influenza A Virus. Viruses 2018; 10:v10110650. [PMID: 30453689 PMCID: PMC6266268 DOI: 10.3390/v10110650] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/08/2018] [Accepted: 10/13/2018] [Indexed: 12/14/2022] Open
Abstract
Influenza still remains one of the most challenging diseases, posing a significant threat to public health. Host lipid rafts play a critical role in influenza A virus (IAV) assembly and budding, however, their role in polyvalent IAV host binding and endocytosis had remained elusive until now. In the present study, we observed co-localization of IAV with a lipid raft marker ganglioside, GM1, on the host surface. Further, we isolated the lipid raft micro-domains from IAV infected cells and detected IAV protein in the raft fraction. Finally, raft disruption using Methyl-β-Cyclodextrin revealed significant reduction in IAV host binding, suggesting utilization of host rafts for polyvalent binding on the host cell surface. In addition to this, cyclodextrin mediated inhibition of raft-dependent endocytosis showed significantly reduced IAV internalization. Interestingly, exposure of cells to cyclodextrin two hours post-IAV binding showed no such reduction in IAV entry, indicating use of raft-dependent endocytosis for host entry. In summary, this study demonstrates that host lipid rafts are selected by IAV as a host attachment factors for multivalent binding, and IAV utilizes these micro-domains to exploit raft-dependent endocytosis for host internalization, a virus entry route previously unknown for IAV.
Collapse
Affiliation(s)
- Dileep Kumar Verma
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Dinesh Gupta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Sunil Kumar Lal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
- School of Science and Tropical Medicine & Biology Platform, Monash University, Malaysia, Bandar Sunway, Selangor, DE 47500, Malaysia.
| |
Collapse
|
105
|
Günther J, Seyfert HM. The first line of defence: insights into mechanisms and relevance of phagocytosis in epithelial cells. Semin Immunopathol 2018; 40:555-565. [PMID: 30182191 PMCID: PMC6223882 DOI: 10.1007/s00281-018-0701-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/09/2018] [Indexed: 12/16/2022]
Abstract
Epithelial tissues cover most of the external and internal surfaces of the body and its organs. Inevitably, these tissues serve as first line of defence against inorganic, organic, and microbial intruders. Epithelial cells are the main cell type of these tissues. Besides their function as cellular barrier, there is growing evidence that epithelial cells are of particular relevance as initial sensors of danger and also as executers of adequate defence responses. These cells feature various essential functions to maintain tissue integrity in health and disease. In this review, we survey some of the different innate immune functions of epithelial cells in mucosal tissues being constantly exposed to a plethora of harmless contaminants but also of pathogens. We discuss how epithelial cells avoid inadequate immune responses in such conditions. In particular, we will focus on the diverse types and mechanisms of phagocytosis used by epithelial cells to not only maintain homeostasis but to also harness the host response against invading pathogens.
Collapse
Affiliation(s)
- Juliane Günther
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, 18196, Dummerstorf, Germany.
| | - Hans-Martin Seyfert
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, 18196, Dummerstorf, Germany
| |
Collapse
|
106
|
Furushima D, Ide K, Yamada H. Effect of Tea Catechins on Influenza Infection and the Common Cold with a Focus on Epidemiological/Clinical Studies. Molecules 2018; 23:molecules23071795. [PMID: 30037024 PMCID: PMC6100025 DOI: 10.3390/molecules23071795] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 01/14/2023] Open
Abstract
Influenza and the common cold are acute infectious diseases of the respiratory tract. Influenza is a severe disease that is highly infectious and can progress to life-threating diseases such as pneumonia or encephalitis when aggravated. Due to the fact that influenza infections and common colds spread easily via droplets and contact, public prevention measures, such as hand washing and facial masks, are recommended for influenza prophylaxis. Experimental studies have reported that tea catechins inhibited influenza viral adsorption and suppressed replication and neuraminidase activity. They were also effective against some cold viruses. In addition, tea catechins enhance immunity against viral infection. Although the antiviral activity of tea catechins has been demonstrated, the clinical evidence to support their utility remains inconclusive. Since the late 1990s, several epidemiological studies have suggested that the regular consumption of green tea decreases influenza infection rates and some cold symptoms, and that gargling with tea catechin may protect against the development of influenza infection. This review briefly summarizes the effect of tea catechins on influenza infection and the common cold with a focus on epidemiological/clinical studies, and clarifies the need for further studies to confirm their clinical efficacy.
Collapse
Affiliation(s)
- Daisuke Furushima
- Department of Drug Evaluation & Informatics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8002, Japan.
| | - Kazuki Ide
- Department of Drug Evaluation & Informatics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8002, Japan.
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto 606-8501, Japan.
- Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan.
| | - Hiroshi Yamada
- Department of Drug Evaluation & Informatics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8002, Japan.
| |
Collapse
|
107
|
Yip TF, Selim ASM, Lian I, Lee SMY. Advancements in Host-Based Interventions for Influenza Treatment. Front Immunol 2018; 9:1547. [PMID: 30042762 PMCID: PMC6048202 DOI: 10.3389/fimmu.2018.01547] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
Influenza is a major acute respiratory infection that causes mortality and morbidity worldwide. Two classes of conventional antivirals, M2 ion channel blockers and neuraminidase inhibitors, are mainstays in managing influenza disease to lessen symptoms while minimizing hospitalization and death in patients with severe influenza. However, the development of viral resistance to both drug classes has become a major public health concern. Vaccines are prophylaxis mainstays but are limited in efficacy due to the difficulty in matching predicted dominant viral strains to circulating strains. As such, other potential interventions are being explored. Since viruses rely on host cellular functions to replicate, recent therapeutic developments focus on targeting host factors involved in virus replication. Besides controlling virus replication, potential targets for drug development include controlling virus-induced host immune responses such as the recently suggested involvement of innate lymphoid cells and NADPH oxidases in influenza virus pathogenesis and immune cell metabolism. In this review, we will discuss the advancements in novel host-based interventions for treating influenza disease.
Collapse
Affiliation(s)
- Tsz-Fung Yip
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| | - Aisha Sami Mohammed Selim
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ida Lian
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore, Singapore
| | - Suki Man-Yan Lee
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
108
|
Zmora P, Hoffmann M, Kollmus H, Moldenhauer AS, Danov O, Braun A, Winkler M, Schughart K, Pöhlmann S. TMPRSS11A activates the influenza A virus hemagglutinin and the MERS coronavirus spike protein and is insensitive against blockade by HAI-1. J Biol Chem 2018; 293:13863-13873. [PMID: 29976755 PMCID: PMC6130959 DOI: 10.1074/jbc.ra118.001273] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/15/2018] [Indexed: 12/25/2022] Open
Abstract
The influenza virus hemagglutinin (HA) facilitates viral entry into target cells. Cleavage of HA by host cell proteases is essential for viral infectivity, and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease (TTSP) TMPRSS2 has been identified as an HA activator in cell culture and in the infected host. However, it is less clear whether TMPRSS2-related enzymes can also activate HA for spread in target cells. Moreover, the activity of cellular serine protease inhibitors against HA-activating TTSPs is poorly understood. Here, we show that TMPRSS11A, another member of the TTSP family, cleaves and activates the influenza A virus (FLUAV) HA and the Middle East respiratory syndrome coronavirus spike protein (MERS-S). Moreover, we demonstrate that TMPRSS11A is expressed in murine tracheal epithelium, which is a target of FLUAV infection, and in human trachea, suggesting that the protease could support FLUAV spread in patients. Finally, we show that HA activation by the TMPRSS11A-related enzymes human airway tryptase and DESC1, but not TMPRSS11A itself, is blocked by the cellular serine protease inhibitor hepatocyte growth factor activator inhibitor type-1 (HAI-1). Our results suggest that TMPRSS11A could promote FLUAV spread in target cells and that HA-activating TTSPs exhibit differential sensitivity to blockade by cellular serine protease inhibitors.
Collapse
Affiliation(s)
- Pawel Zmora
- From the Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany,
| | - Markus Hoffmann
- From the Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Heike Kollmus
- the Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Anna-Sophie Moldenhauer
- From the Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Olga Danov
- the Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of REBIRTH Cluster of Excellence, 30625 Hannover, Germany, and
| | - Armin Braun
- the Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of REBIRTH Cluster of Excellence, 30625 Hannover, Germany, and
| | - Michael Winkler
- From the Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Klaus Schughart
- the Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.,the University of Veterinary Medicine Hannover, 30599 Hannover, Germany.,the Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Stefan Pöhlmann
- From the Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany, .,the Faculty of Biology and Psychology, University of Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
109
|
Klemm C, Boergeling Y, Ludwig S, Ehrhardt C. Immunomodulatory Nonstructural Proteins of Influenza A Viruses. Trends Microbiol 2018; 26:624-636. [PMID: 29373257 DOI: 10.1016/j.tim.2017.12.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 12/23/2022]
Abstract
Influenza epidemics and pandemics still represent a severe public health threat and cause significant morbidity and mortality worldwide. As intracellular parasites, influenza viruses are strongly dependent on the host cell machinery. To ensure efficient production of progeny viruses, viral proteins extensively interfere with cellular signalling pathways to inhibit antiviral responses or to activate virus-supportive functions. Here, we review various functions of the influenza virus nonstructural proteins NS1, PB1-F2, and PA-X in infected cells and how post-transcriptional modifications of these proteins affect the viral life cycle. Furthermore, we discuss newly discovered interactions between these proteins and the antiviral interferon response.
Collapse
Affiliation(s)
- Carolin Klemm
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - Yvonne Boergeling
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - Christina Ehrhardt
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany.
| |
Collapse
|
110
|
Zhou X, Zheng J, Ivan FX, Yin R, Ranganathan S, Chow VTK, Kwoh CK. Computational analysis of the receptor binding specificity of novel influenza A/H7N9 viruses. BMC Genomics 2018; 19:88. [PMID: 29764421 PMCID: PMC5954268 DOI: 10.1186/s12864-018-4461-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Influenza viruses are undergoing continuous and rapid evolution. The fatal influenza A/H7N9 has drawn attention since the first wave of infections in March 2013, and raised more grave concerns with its increased potential to spread among humans. Experimental studies have revealed several host and virulence markers, indicating differential host binding preferences which can help estimate the potential of causing a pandemic. Here we systematically investigate the sequence pattern and structural characteristics of novel influenza A/H7N9 using computational approaches. RESULTS The sequence analysis highlighted mutations in protein functional domains of influenza viruses. Molecular docking and molecular dynamics simulation revealed that the hemagglutinin (HA) of A/Taiwan/1/2017(H7N9) strain enhanced the binding with both avian and human receptor analogs, compared with the previous A/Shanghai/02/2013(H7N9) strain. The Molecular Mechanics - Poisson Boltzmann Surface Area (MM-PBSA) calculation revealed the change of residue-ligand interaction energy and detected the residues with conspicuous binding preference. CONCLUSION The results are novel and specific to the emerging influenza A/Taiwan/1/2017(H7N9) strain compared with A/Shanghai/02/2013(H7N9). Its enhanced ability to bind human receptor analogs, which are abundant in the human upper respiratory tract, may be responsible for the recent outbreak. Residues showing binding preference were detected, which could facilitate monitoring the circulating influenza viruses.
Collapse
Affiliation(s)
- Xinrui Zhou
- 0000 0001 2224 0361grid.59025.3bSchool of Computer Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Jie Zheng
- 0000 0001 2224 0361grid.59025.3bSchool of Computer Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
- 0000 0004 0637 0221grid.185448.4Genome Institute of Singapore, A*STAR, Singapore, 138672 Singapore
| | - Fransiskus Xaverius Ivan
- 0000 0001 2224 0361grid.59025.3bSchool of Computer Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Rui Yin
- 0000 0001 2224 0361grid.59025.3bSchool of Computer Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Shoba Ranganathan
- 0000 0001 2158 5405grid.1004.5Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109 Australia
| | - Vincent T. K. Chow
- 0000 0001 2180 6431grid.4280.eDepartment of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545 Singapore
| | - Chee-Keong Kwoh
- 0000 0001 2224 0361grid.59025.3bSchool of Computer Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| |
Collapse
|
111
|
NDV entry into dendritic cells through macropinocytosis and suppression of T lymphocyte proliferation. Virology 2018; 518:126-135. [PMID: 29481983 DOI: 10.1016/j.virol.2018.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 01/27/2023]
Abstract
Newcastle disease virus (NDV) causes major economic losses in the poultry industry. Previous studies have shown that NDV utilizes different pathways to infect various cells, including dendritic cells (DCs). Here, we demonstrate that NDV gains entry into DCs mainly via macropinocytosis and clathrin-mediated endocytosis. The detection of cytokines interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-12 (IL-12), interleukin-4 (IL-4) and interleukin-10 (IL-10) indicates that NDV significantly induces Th1 responses and lowers Th2 responses. Furthermore, NDV entry into DCs resulted in the upregulation of TNF-related apoptosis-inducing ligand (TRAIL) and cleaved caspase-3 proteins, which in turn activated the extrinsic apoptosis pathway and induced DCs apoptosis. Transwell® co-culture demonstrated that direct contact between live NDV-stimulated DCs and T cells, rather than heated-inactivated NDV, inhibited CD4+ T cell proliferation. Taken together, these findings provide new insights into the mechanism underlying NDV infections, particularly in relation to antigen presentation cells and suppression of T cell proliferation.
Collapse
|
112
|
Ai H, Wu X, Qi M, Zhang L, Hu H, Zhao Q, Zhao J, Liu H. Study on the Mechanisms of Active Compounds in Traditional Chinese Medicine for the Treatment of Influenza Virus by Virtual Screening. Interdiscip Sci 2018; 10:320-328. [PMID: 29500549 DOI: 10.1007/s12539-018-0289-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/23/2018] [Indexed: 12/28/2022]
Abstract
In recent years, new strains of influenza virus such as H7N9, H10N8, H5N6 and H5N8 had continued to emerge. There was an urgent need for discovery of new anti-influenza virus drugs as well as accurate and efficient large-scale inhibitor screening methods. In this study, we focused on six influenza virus proteins that could be anti-influenza drug targets, including neuraminidase (NA), hemagglutinin (HA), matrix protein 1 (M1), M2 proton channel (M2), nucleoprotein (NP) and non-structural protein 1 (NS1). Structure-based molecular docking was utilized to identify potential inhibitors for these drug targets from 13144 compounds in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. The results showed that 56 compounds could inhibit more than two drug targets simultaneously. Further, we utilized reverse docking to study the interaction of these compounds with host targets. Finally, the 22 compound inhibitors could stably bind to host targets with high binding free energy. The results showed that the Chinese herbal medicines had a multi-target effect, which could directly inhibit influenza virus by the target viral protein and indirectly inhibit virus by the human target protein. This method was of great value for large-scale virtual screening of new anti-influenza virus compounds.
Collapse
Affiliation(s)
- Haixin Ai
- Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Shenyang, Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang, 110036, China
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Xuewei Wu
- Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Shenyang, Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang, 110036, China
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Mengyuan Qi
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Li Zhang
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Huan Hu
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Qi Zhao
- School of Mathematics, Liaoning University, Shenyang, 110036, China
| | - Jian Zhao
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Hongsheng Liu
- Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Shenyang, Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang, 110036, China.
- School of Life Science, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
113
|
Speerstra S, Chistov AA, Proskurin GV, Aralov AV, Ulashchik EA, Streshnev PP, Shmanai VV, Korshun VA, Schang LM. Antivirals acting on viral envelopes via biophysical mechanisms of action. Antiviral Res 2018; 149:164-173. [DOI: 10.1016/j.antiviral.2017.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 01/04/2023]
|
114
|
Mutations in the Influenza A Virus M1 Protein Enhance Virus Budding To Complement Lethal Mutations in the M2 Cytoplasmic Tail. J Virol 2017; 92:JVI.00858-17. [PMID: 29046451 DOI: 10.1128/jvi.00858-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 10/12/2017] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus M1 and M2 proteins play important roles in virus assembly and in the morphology of virus particles. Mutations in the distal cytoplasmic tail region of M2, and in particular a tyrosine-to-alanine mutation at residue 76 (Y76A), were essential for infectious virus production and filament formation while having limited effects on total virus particle budding. Using a novel selection method, mutations at seven different M1 amino acids (residue 73, 94, 135, 136, or 138 or a double mutation, 93/244) that are not found in circulating influenza virus strains or have not been previously identified to play a role in influenza A virus assembly were found to complement the lethal M2Y76A mutation. These M1 suppressor mutations restored infectious virus production in the presence of M2Y76A and mediated increased budding and filament formation even in the absence of M2. However, the efficiency of infectious virus replication was still dependent on the presence of the distal region of the M2 cytoplasmic tail. The data suggest that influenza A virus budding and genome incorporation can occur independently and provide further support for complementary roles of the M1 and M2 proteins in virus assembly.IMPORTANCE Influenza virus particle assembly involves the careful coordination of various viral and host factors to optimally produce infectious virus particles. We have previously identified a mutation at position 76 of the influenza A virus M2 protein that drastically reduces infectious virus production and filament formation with minimal effects on virus budding. In this work, we identified suppressor mutations in the M1 protein which complement this lethal M2 mutation by increasing the efficiency with which virus particles bud from infected cells and restoring filament formation at the infected-cell surface. M2 distal cytoplasmic domain sequences were still required for optimal infectivity. This indicates that M1 and M2 can functionally replace each other in some, but not all, aspects of virus particle assembly.
Collapse
|
115
|
Integrative gene network analysis identifies key signatures, intrinsic networks and host factors for influenza virus A infections. NPJ Syst Biol Appl 2017; 3:35. [PMID: 29214055 PMCID: PMC5712526 DOI: 10.1038/s41540-017-0036-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 10/17/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus, with the limited coding capacity of 10–14 proteins, requires the host cellular machinery for many aspects of its life cycle. Knowledge of these host cell requirements not only reveals molecular pathways exploited by the virus or triggered by the immune system, but also provides further targets for antiviral drug development. To uncover novel pathways and key targets of influenza infection, we assembled a large amount of data from 12 cell-based gene-expression studies of influenza infection for an integrative network analysis. We systematically identified differentially expressed genes and gene co-expression networks induced by influenza infection. We revealed the dedicator of cytokinesis 5 (DOCK5) played potentially an important role for influenza virus replication. CRISPR/Cas9 knockout of DOCK5 reduced influenza virus replication, indicating that DOCK5 is a key regulator for the viral life cycle. DOCK5’s targets determined by the DOCK5 knockout experiments strongly validated the predicted gene signatures and networks. This study systematically uncovered and validated fundamental patterns of molecular responses, intrinsic structures of gene co-regulation, and novel key targets in influenza virus infection. Molecular response to influenza infection involves a large number of interacting pathways in the form of complex molecular networks. Most studies on influenza infection have largely focused on testing specific molecules and hypotheses with limited data. Therefore, a global picture of molecular interactions in influenza infection is missing. In this study, we performed an integrative network analysis on a large amount of data from 12 cell-based gene expression studies of influenza infections. By combining differential expression, co-expression networks, and gene knockout experiments, we uncovered and validated fundamental patterns of molecular responses, intrinsic structures of gene co-regulation, and novel key targets in influenza infection. Our findings pave the way for other functional investigations into identifying novel therapeutic targets against influenza infection.
Collapse
|
116
|
Abstract
Viruses are obligate intracellular parasites that utilize cellular machinery for many aspects of their replication cycles. Enveloped viruses generally rely upon host vesicular trafficking machinery to direct their structural proteins and genomes to sites of virus replication, assembly, and budding. Rab GTPases have been implicated in the replication of many important viral pathogens infecting humans. This review provides a summary of virus-Rab protein interactions, with a particular focus on the role of Rab-related trafficking pathways on late events in the lifecycle of herpesviruses and of HIV-1.
Collapse
Affiliation(s)
- Paul Spearman
- a Infectious Diseases, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| |
Collapse
|
117
|
Shin WJ, Seong BL. Type II transmembrane serine proteases as potential target for anti-influenza drug discovery. Expert Opin Drug Discov 2017; 12:1139-1152. [DOI: 10.1080/17460441.2017.1372417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Woo-Jin Shin
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
- Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
118
|
Shim JM, Kim J, Tenson T, Min JY, Kainov DE. Influenza Virus Infection, Interferon Response, Viral Counter-Response, and Apoptosis. Viruses 2017; 9:E223. [PMID: 28805681 PMCID: PMC5580480 DOI: 10.3390/v9080223] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/27/2017] [Accepted: 08/08/2017] [Indexed: 01/04/2023] Open
Abstract
Human influenza A viruses (IAVs) cause global pandemics and epidemics, which remain serious threats to public health because of the shortage of effective means of control. To combat the surge of viral outbreaks, new treatments are urgently needed. Developing new virus control modalities requires better understanding of virus-host interactions. Here, we describe how IAV infection triggers cellular apoptosis and how this process can be exploited towards the development of new therapeutics, which might be more effective than the currently available anti-influenza drugs.
Collapse
Affiliation(s)
| | - Jinhee Kim
- Institut Pasteur Korea, Gyeonggi-do 13488, Korea.
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu 50090, Estonia.
| | - Ji-Young Min
- Institut Pasteur Korea, Gyeonggi-do 13488, Korea.
| | - Denis E Kainov
- Institut Pasteur Korea, Gyeonggi-do 13488, Korea.
- Institute of Technology, University of Tartu, Tartu 50090, Estonia.
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7028, Norway.
| |
Collapse
|
119
|
van de Wakker SI, Fischer MJ, Oosting RS. New drug-strategies to tackle viral-host interactions for the treatment of influenza virus infections. Eur J Pharmacol 2017; 809:178-190. [DOI: 10.1016/j.ejphar.2017.05.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/24/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022]
|
120
|
Verma AK, Gupta S, Singh SP, Nagpure NS. An update on mechanism of entry of white spot syndrome virus into shrimps. FISH & SHELLFISH IMMUNOLOGY 2017; 67:141-146. [PMID: 28587833 DOI: 10.1016/j.fsi.2017.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/29/2017] [Accepted: 06/03/2017] [Indexed: 05/19/2023]
Abstract
Host-parasite relationships can be best understood at the level of protein-protein interaction between host and pathogen. Such interactions are instrumental in understanding the important stages of life cycle of pathogen such as adsorption of the pathogen on host surface followed by effective entry of pathogen into the host body, movement of the pathogen across the host cytoplasm to reach the host nucleus and replication of the pathogen within the host. White Spot Disease (WSD) is a havoc for shrimps and till date no effective treatment is available against the disease. Moreover information regarding the mechanism of entry of White Spot Syndrome Virus (WSSV) into shrimps, as well as knowledge about the protein interactions occurring between WSSV and shrimp during viral entry are still at very meagre stage. A cumulative and critically assessed information on various viral-shrimp interactions occurring during viral entry can help to understand the exact pathway of entry of WSSV into the shrimp which in turn can be used to device drugs that can stop the entry of virus into the host. In this context, we highlight various WSSV and shrimp proteins that play role in the entry mechanism along with the description of the interaction between host and pathogen proteins.
Collapse
Affiliation(s)
- Arunima Kumar Verma
- Department of Zoology, Autonomous Government P.G. College, Satna, Madhya Pradesh, India.
| | - Shipra Gupta
- Bioinformatics Centre, Biotech Park, Sector-G, Jankipuram, Lucknow, 226021, Uttar Pradesh, India
| | - Shivesh Pratap Singh
- Department of Zoology, Autonomous Government P.G. College, Satna, Madhya Pradesh, India
| | - Naresh Sahebrao Nagpure
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Mumbai, 40006, India
| |
Collapse
|
121
|
Serfass JM, Takahashi Y, Zhou Z, Kawasawa YI, Liu Y, Tsotakos N, Young MM, Tang Z, Yang L, Atkinson JM, Chroneos ZC, Wang HG. Endophilin B2 facilitates endosome maturation in response to growth factor stimulation, autophagy induction, and influenza A virus infection. J Biol Chem 2017; 292:10097-10111. [PMID: 28455444 PMCID: PMC5473216 DOI: 10.1074/jbc.m117.792747] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 04/27/2017] [Indexed: 12/19/2022] Open
Abstract
Endocytosis, and the subsequent trafficking of endosomes, requires dynamic physical alterations in membrane shape that are mediated in part by endophilin proteins. The endophilin B family of proteins contains an N-terminal Bin/amphiphysin/Rvs (N-BAR) domain that induces membrane curvature to regulate intracellular membrane dynamics. Whereas endophilin B1 (SH3GLB1/Bif-1) is known to be involved in a number of cellular processes, including apoptosis, autophagy, and endocytosis, the cellular function of endophilin B2 (SH3GLB2) is not well understood. In this study, we used genetic approaches that revealed that endophilin B2 is not required for embryonic development in vivo but that endophilin B2 deficiency impairs endosomal trafficking in vitro, as evidenced by suppressed endosome acidification, EGFR degradation, autophagic flux, and influenza A viral RNA nuclear entry and replication. Mechanistically, although the loss of endophilin B2 did not affect endocytic internalization and lysosomal function, endophilin B2 appeared to regulate the trafficking of endocytic vesicles and autophagosomes to late endosomes or lysosomes. Moreover, we also found that despite having an intracellular localization and tissue distribution similar to endophilin B1, endophilin B2 is dispensable for mitochondrial apoptosis. Taken together, our findings suggest that endophilin B2 positively regulates the endocytic pathway in response to growth factor signaling, autophagy induction, and viral entry.
Collapse
Affiliation(s)
| | | | - Zhixiang Zhou
- the Department of Pediatrics
- the College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Yuka Imamura Kawasawa
- From the Department of Pharmacology
- the Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, and
| | - Ying Liu
- From the Department of Pharmacology
| | | | | | | | | | | | - Zissis C Chroneos
- the Department of Pediatrics
- the Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033 and
| | - Hong-Gang Wang
- From the Department of Pharmacology,
- the Department of Pediatrics
| |
Collapse
|
122
|
Baharom F, Thomas OS, Lepzien R, Mellman I, Chalouni C, Smed-Sörensen A. Visualization of early influenza A virus trafficking in human dendritic cells using STED microscopy. PLoS One 2017; 12:e0177920. [PMID: 28591131 PMCID: PMC5462357 DOI: 10.1371/journal.pone.0177920] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/05/2017] [Indexed: 12/01/2022] Open
Abstract
Influenza A viruses (IAV) primarily target respiratory epithelial cells, but can also replicate in immune cells, including human dendritic cells (DCs). Super-resolution microscopy provides a novel method of visualizing viral trafficking by overcoming the resolution limit imposed by conventional light microscopy, without the laborious sample preparation of electron microscopy. Using three-color Stimulated Emission Depletion (STED) microscopy, we visualized input IAV nucleoprotein (NP), early and late endosomal compartments (EEA1 and LAMP1 respectively), and HLA-DR (DC membrane/cytosol) by immunofluorescence in human DCs. Surface bound IAV were internalized within 5 min of infection. The association of virus particles with early endosomes peaked at 5 min when 50% of NP+ signals were also EEA1+. Peak association with late endosomes occurred at 15 min when 60% of NP+ signals were LAMP1+. At 30 min of infection, the majority of NP signals were in the nucleus. Our findings illustrate that early IAV trafficking in human DCs proceeds via the classical endocytic pathway.
Collapse
Affiliation(s)
- Faezzah Baharom
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Oliver S. Thomas
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Rico Lepzien
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ira Mellman
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, United States of America
| | - Cécile Chalouni
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, United States of America
| | - Anna Smed-Sörensen
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
123
|
Shi Y, Zhang B, Lu Y, Qian C, Feng Y, Fang L, Ding Z, Cheng D. Antiviral activity of phenanthrenes from the medicinal plant Bletilla striata against influenza A virus. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:273. [PMID: 28532402 PMCID: PMC5441103 DOI: 10.1186/s12906-017-1780-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/08/2017] [Indexed: 12/17/2022]
Abstract
Background Influenza represents a serious public health concern. The emergence of resistance to anti-influenza drugs underlines the need to develop new drugs. This study aimed to evaluate the anti-influenza viral activity and possible mechanisms of 12 phenanthrenes from the medicinal plant Bletilla striata (Orchidaceae family). Methods Twelve phenanthrenes were isolated and identified from B. striata. Influenza virus A/Sydney/5/97 (H3N2) propagated in embryonated chicken eggs was used. Phenanthrenes mixed with the virus were incubated at 37 °C for 1 h and then inoculated into 9-day-old embryonated chicken eggs via the allantoic route to survey the antiviral activity in vivo. A (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H–tetrazolium) (MTS)-based assay was performed to evaluate the reduction of cytopathic effect induced by H3N2 on Madin-Darby canine kidney (MDCK) cells. The hemagglutination inhibition assay was used to study the blockage of virus receptors by the phenanthrenes, and the neuraminidase (NA) inhibition assay to evaluate the effects of the release of virus. The synthesis of influenza viral matrix protein mRNA in response to compound treatment was measured by real-time polymerase chain reaction. Results This study showed that phenanthrenes 1, 2, 3, 4, 6, 9, 10, 11, and 12 significantly inhibited the viruses in vivo, with inhibition rates of 20.7, 79.3, 17.2, 34.5, 34.5, 34.5, 44.8, 75.9, and 34.5%, respectively. In MDCK models, the phenanthrenes did not show significant antiviral activity when administered as pretreatment, while phenanthrenes 2, 3, 4, 6, 7 10, and 11 exhibited inhibitory activities as simultaneous treatment with 50% inhibition concentration (IC50) ranging from 14.6 ± 2.4 to 43.3 ± 5.3 μM. The IC50 ranged from 18.4 ± 3.1 to 42.3 ± 3.9 μM in the post-treatment assays. Compounds 1, 3, 4, 6, 10, and 11 exhibited an inhibitory effect on NA; and compounds 2, 3, 4 6, 7, 10, and 11 resulted in the reduced transcription of virus matrix protein mRNA. However, no compound could inhibit hemagglutination by the influenza virus. Conclusion Phenanthrenes from B. striata had strong anti-influenza viral activity in both embryonated eggs and MDCK models, and diphenanthrenes seemed to have stronger inhibition activity compared with monophenanthrenes. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-1780-6) contains supplementary material, which is available to authorized users.
Collapse
|
124
|
Tavares LP, Teixeira MM, Garcia CC. The inflammatory response triggered by Influenza virus: a two edged sword. Inflamm Res 2017; 66:283-302. [PMID: 27744631 DOI: 10.1007/s00011-016-0996-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023] Open
Abstract
Influenza A virus (IAV) is a relevant respiratory tract pathogen leading to a great number of deaths and hospitalizations worldwide. Secondary bacterial infections are a very common cause of IAV associated morbidity and mortality. The robust inflammatory response that follows infection is important for the control of virus proliferation but is also associated with lung damage, morbidity and death. The role of the different components of immune response underlying protection or disease during IAV infection is not completely elucidated. Overall, in the context of IAV infection, inflammation is a 'double edge sword' necessary to control infection but causing disease. Therefore, a growing number of studies suggest that immunomodulatory strategies may improve disease outcome without affecting the ability of the host to deal with infection. This review summarizes recent aspects of the inflammatory responses triggered by IAV that are preferentially involved in causing severe pulmonary disease and the anti-inflammatory strategies that have been suggested to treat influenza induced immunopathology.
Collapse
Affiliation(s)
- Luciana P Tavares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana C Garcia
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, 21040360, Rio de Janeiro, Brazil.
| |
Collapse
|
125
|
Lee J, Kim J, Son K, d'Alexandry d'Orengiani ALPH, Min JY. Acid phosphatase 2 (ACP2) is required for membrane fusion during influenza virus entry. Sci Rep 2017; 7:43893. [PMID: 28272419 PMCID: PMC5341025 DOI: 10.1038/srep43893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023] Open
Abstract
Influenza viruses exploit host factors to successfully replicate in infected cells. Using small interfering RNA (siRNA) technology, we identified six human genes required for influenza A virus (IAV) replication. Here we focused on the role of acid phosphatase 2 (ACP2), as its knockdown showed the greatest inhibition of IAV replication. In IAV-infected cells, depletion of ACP2 resulted in a significant reduction in the expression of viral proteins and mRNA, and led to the attenuation of virus multi-cycle growth. ACP2 knockdown also decreased replication of seasonal influenza A and B viruses and avian IAVs of the H7 subtype. Interestingly, ACP2 depletion had no effect on the replication of Ebola or hepatitis C virus. Because ACP2 is known to be a lysosomal acid phosphatase, we assessed the role of ACP2 in influenza virus entry. While neither binding of the viral particle to the cell surface nor endosomal acidification was affected in ACP2-depleted cells, fusion of the endosomal and viral membranes was impaired. As a result, downstream steps in viral entry were blocked, including nucleocapsid uncoating and nuclear import of viral ribonucleoproteins. Our results established ACP2 as a necessary host factor for regulating the fusion step of influenza virus entry.
Collapse
Affiliation(s)
- Jihye Lee
- Respiratory Viruses Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam, Gyeonggi, Republic of Korea
| | - Jinhee Kim
- Respiratory Viruses Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam, Gyeonggi, Republic of Korea
| | - Kidong Son
- Respiratory Viruses Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam, Gyeonggi, Republic of Korea
| | | | - Ji-Young Min
- Respiratory Viruses Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam, Gyeonggi, Republic of Korea
| |
Collapse
|
126
|
Haghani A, Mehrbod P, Safi N, Kadir FAA, Omar AR, Ideris A. Edible bird's nest modulate intracellular molecular pathways of influenza A virus infected cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:22. [PMID: 28056926 PMCID: PMC5216576 DOI: 10.1186/s12906-016-1498-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 12/06/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Edible Bird's Nest (EBN) as a popular traditional Chinese medicine is believed to have health enhancing and antiviral activities against influenza A virus (IAV); however, the molecular mechanism behind therapeutic effects of EBN is not well characterized. METHODS In this study, EBNs that underwent different enzymatic preparation were tested against IAV infected cells. 50% cytotoxic concentration (CC50) and 50% inhibitory concentration (IC50) of the EBNs against IAV strain A/Puerto Rico/8/1934(H1N1) were determined by HA and MTT assays. Subsequently, the sialic acid content of the used EBNs were analyzed by fluorometric HPLC. Western Blotting and immunofluorescent staining were used to investigate the effects of EBNs on early endosomal trafficking and autophagy process of influenza virus. RESULTS This study showed that post inoculations of EBNs after enzymatic preparations have the highest efficacy to inhibit IAV. While CC50 of the tested EBNs ranged from 27.5-32 mg/ml, the IC50 of these compounds ranged between 2.5-4.9 mg/ml. EBNs could inhibit IAV as efficient as commercial antiviral agents, such as amantadine and oseltamivir with different mechanisms of action against IAV. The antiviral activity of these EBNs correlated with the content of N-acetyl neuraminic acid. EBNs could affect early endosomal trafficking of the virus by reducing Rab5 and RhoA GTPase proteins and also reoriented actin cytoskeleton of IAV infected cells. In addition, for the first time this study showed that EBNs can inhibit intracellular autophagy process of IAV life cycle as evidenced by reduction of LC3-II and increasing of lysosomal degradation. CONCLUSIONS The results procured in this study support the potential of EBNs as supplementary medication or alternative to antiviral agents to inhibit influenza infections. Evidently, EBNs can be a promising antiviral agent; however, these natural compounds should be screened for their metabolites prior to usage as therapeutic approach.
Collapse
Affiliation(s)
- Amin Haghani
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Parvaneh Mehrbod
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nikoo Safi
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | | | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Aini Ideris
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
127
|
Abstract
At every step of their replication cycle influenza viruses depend heavily on their host cells. The multifaceted interactions that occur between the virus and its host cell determine the outcome of the infection, including efficiency of progeny virus production, tropism, and pathogenicity. In order to understand viral disease and develop therapies for influenza it is therefore pertinent to study the intricate interplay between influenza viruses and their required host factors. Here, we review the current knowledge on host cell factors required by influenza virus at the different stages of the viral replication cycle. We also discuss the roles of host factors in zoonotic transmission of influenza viruses and their potential for developing novel antivirals.
Collapse
|
128
|
Samir M, Vaas LAI, Pessler F. MicroRNAs in the Host Response to Viral Infections of Veterinary Importance. Front Vet Sci 2016; 3:86. [PMID: 27800484 PMCID: PMC5065965 DOI: 10.3389/fvets.2016.00086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
The discovery of small regulatory non-coding RNAs has been an exciting advance in the field of genomics. MicroRNAs (miRNAs) are endogenous RNA molecules, approximately 22 nucleotides in length, that regulate gene expression, mostly at the posttranscriptional level. MiRNA profiling technologies have made it possible to identify and quantify novel miRNAs and to study their regulation and potential roles in disease pathogenesis. Although miRNAs have been extensively investigated in viral infections of humans, their implications in viral diseases affecting animals of veterinary importance are much less understood. The number of annotated miRNAs in different animal species is growing continuously, and novel roles in regulating host–pathogen interactions are being discovered, for instance, miRNA-mediated augmentation of viral transcription and replication. In this review, we present an overview of synthesis and function of miRNAs and an update on the current state of research on host-encoded miRNAs in the genesis of viral infectious diseases in their natural animal host as well as in selected in vivo and in vitro laboratory models.
Collapse
Affiliation(s)
- Mohamed Samir
- TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany; Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Lea A I Vaas
- TWINCORE, Center for Experimental and Clinical Infection Research , Hannover , Germany
| | - Frank Pessler
- TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Center for Infection Research, Braunschweig, Germany
| |
Collapse
|
129
|
Meta- and Orthogonal Integration of Influenza "OMICs" Data Defines a Role for UBR4 in Virus Budding. Cell Host Microbe 2016; 18:723-35. [PMID: 26651948 DOI: 10.1016/j.chom.2015.11.002] [Citation(s) in RCA: 699] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/06/2015] [Accepted: 11/10/2015] [Indexed: 12/24/2022]
Abstract
Several systems-level datasets designed to dissect host-pathogen interactions during influenza A infection have been reported. However, apparent discordance among these data has hampered their full utility toward advancing mechanistic and therapeutic knowledge. To collectively reconcile these datasets, we performed a meta-analysis of data from eight published RNAi screens and integrated these data with three protein interaction datasets, including one generated within the context of this study. Further integration of these data with global virus-host interaction analyses revealed a functionally validated biochemical landscape of the influenza-host interface, which can be queried through a simplified and customizable web portal (http://www.metascape.org/IAV). Follow-up studies revealed that the putative ubiquitin ligase UBR4 associates with the viral M2 protein and promotes apical transport of viral proteins. Taken together, the integrative analysis of influenza OMICs datasets illuminates a viral-host network of high-confidence human proteins that are essential for influenza A virus replication.
Collapse
|
130
|
Bourgade K, Dupuis G, Frost EH, Fülöp T. Anti-Viral Properties of Amyloid-β Peptides. J Alzheimers Dis 2016; 54:859-878. [DOI: 10.3233/jad-160517] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Karine Bourgade
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gilles Dupuis
- Department of Biochemistry, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric H. Frost
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Tamàs Fülöp
- Department of Medicine, Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
131
|
Tombari W, Ghram A. Production of a truncated recombinant HA1 for influenza A H9 subtype screening. Biologicals 2016; 44:546-555. [PMID: 27666434 DOI: 10.1016/j.biologicals.2016.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/23/2016] [Accepted: 07/29/2016] [Indexed: 12/20/2022] Open
Abstract
Hemagglutinin is the major component of membrane protein and plays a major role in virus entry into host cells through their receptors and it is predicted to elicit the production neutralizing antibodies. Our aim is to assess the potential of a truncated rHA1 domain, encoding residues 157-260 to detect influenza A H9 specific antibodies. The predicted characteristics of this protein revealed that it is a hydrophobic protein possessing predominant antigenicity and composed of random coils (48%) and extended strand (28%) but few α-helix (6.33%) and β-sheet (7%). A 312 pb HA1 gene was amplified and cloned in pET23b(+) vector including an C-terminal polyHis as a fusion partner, transformed and expressed in Escherichia coli cells as inclusion bodies. The truncated protein was solubilized with 8 M urea, purified by immobilized metal affinity chromatography and then detected by western blot with anti-His and H9-specific polyclonal antibodies. The test demonstrated high specificity (100%) and sensibility (98%). The immunoreactivity of the truncated rHA1 assessed revealed that only antisera against H9 yielded a specific and strong reactivity, with no cross-reactivity against negative sera. This study demonstrates that the truncated rHA1 may serve as a useful tool for rapid and easy surveillance of H9 infection.
Collapse
Affiliation(s)
- Wafa Tombari
- University Tunis El Manar, Institute Pasteur of Tunis, Laboratory of Epidemiology and Veterinary Microbiology, 13, Place Pasteur, BP 74, Tunis-Belvédère, 1002, Tunisia.
| | - Abdeljelil Ghram
- University Tunis El Manar, Institute Pasteur of Tunis, Laboratory of Epidemiology and Veterinary Microbiology, 13, Place Pasteur, BP 74, Tunis-Belvédère, 1002, Tunisia
| |
Collapse
|
132
|
Identification of pyrrolo[3,2-c]pyridin-4-amine compounds as a new class of entry inhibitors against influenza viruses in vitro. Biochem Biophys Res Commun 2016; 478:1594-601. [DOI: 10.1016/j.bbrc.2016.08.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/27/2016] [Indexed: 01/03/2023]
|
133
|
Liu Q, Zhou YH, Ye F, Yang ZQ. Antivirals for Respiratory Viral Infections: Problems and Prospects. Semin Respir Crit Care Med 2016; 37:640-6. [PMID: 27486742 PMCID: PMC7171711 DOI: 10.1055/s-0036-1584803] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past two decades, several newly emerging and reemerging viral respiratory pathogens including several influenza viruses (avian influenza and pandemic influenza), severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV), have continued to challenge medical and public health systems. Thereafter, the development of cost-effective, broad-spectrum antiviral agents is the urgent mission of both virologists and pharmacologists. Current antiviral developments have focused targets on viral entry, replication, release, and intercellular pathways essential for viral life cycle. Here, we review the current literature on challenges and prospects in the development of these antivirals.
Collapse
Affiliation(s)
- Qiang Liu
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, China
| | - Yuan-Hong Zhou
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, China
| | - Feng Ye
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, China
| | - Zhan-Qiu Yang
- State Key Laboratory of Virology, Institute of Medical Virology, School of Medicine, Wuhan University, Wuhan, China
| |
Collapse
|
134
|
Chen DY, Husain M. Caspase-mediated degradation of host cortactin that promotes influenza A virus infection in epithelial cells. Virology 2016; 497:146-156. [PMID: 27471953 DOI: 10.1016/j.virol.2016.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 01/09/2023]
Abstract
Influenza A virus (IAV) is well-known to exploit host factors to its advantage. Here, we report that IAV exploits host cortactin, an actin filament-stabilising protein for infection in epithelial cells. By using RNA interference-mediated knockdown and overexpression approach, we demonstrate that cortactin promotes IAV infection. However, cortactin polypeptide undergoes the degradation during late IAV infection. By perturbing the lysosome and proteasome, two main compartments governing the degradation of mammalian proteins, we demonstrate that a lysosome-associated apoptotic pathway mediates the degradation of cortactin in IAV-infected cells. However, we could not detect cleaved cortactin fragments by western blotting using the antibodies recognising either N-terminal/Central or C-terminal cortactin regions, which suggested the presence of multiple caspase cleavage sites. Indeed, CaspDB, a recently-described database predicted up to 35 caspase cleavage motifs present across cortactin polypeptide. The data presented indicate that host cortactin potentially has a dual but contrasting role during IAV infection.
Collapse
Affiliation(s)
- Da-Yuan Chen
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Matloob Husain
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
135
|
JNJ872 inhibits influenza A virus replication without altering cellular antiviral responses. Antiviral Res 2016; 133:23-31. [PMID: 27451344 DOI: 10.1016/j.antiviral.2016.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 02/04/2023]
Abstract
JNJ-63623872 (formally known as VX-787; referred to here as JNJ872) is an orally bioavailable compound, which is in phase II clinical trials for the treatment of influenza A virus (IAV) infections. Here we show that JNJ872 inhibits at nanomolar concentrations the transcription of viral RNA in IAV-infected human macrophages by targeting a highly conserved site on the cap-snatching domain of influenza polymerase basic 2 protein (PB2). Furthermore, even lower concentrations of JNJ872 protected macrophages from IAV-mediated death when given in combination with 100 nM gemcitabine, which also attenuated transcription and replication of viral RNA. Importantly, treating human macrophages with JNJ872 allowed expression of many immune-related and other genes, involved in antiviral responses, such as indoleamine 2,3-dioxygenase 1 (IDO), and cytosolic 5'-nucleotidase 3A (NT5C3A). Moreover, our targeted metabolomics analysis indicate that treatment with JNJ782 did not interfere with metabolic responses to infection, which further supported our transcriptomics results. Thus, VX-737 alone or in combination with other drugs could be beneficial for treating IAV infected patients, because it would allow the development of antiviral responses and, thereby, protect individuals from current and future infections with closely related IAV strains.
Collapse
|
136
|
Blijleven JS, Boonstra S, Onck PR, van der Giessen E, van Oijen AM. Mechanisms of influenza viral membrane fusion. Semin Cell Dev Biol 2016; 60:78-88. [PMID: 27401120 DOI: 10.1016/j.semcdb.2016.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 11/18/2022]
Abstract
Influenza viral particles are enveloped by a lipid bilayer. A major step in infection is fusion of the viral and host cellular membranes, a process with large kinetic barriers. Influenza membrane fusion is catalyzed by hemagglutinin (HA), a class I viral fusion protein activated by low pH. The exact nature of the HA conformational changes that deliver the energy required for fusion remains poorly understood. This review summarizes our current knowledge of HA structure and dynamics, describes recent single-particle experiments and modeling studies, and discusses their role in understanding how multiple HAs mediate fusion. These approaches provide a mechanistic picture in which HAs independently and stochastically insert into the target membrane, forming a cluster of HAs that is collectively able to overcome the barrier to membrane fusion. The new experimental and modeling approaches described in this review hold promise for a more complete understanding of other viral fusion systems and the protein systems responsible for cellular fusion.
Collapse
Affiliation(s)
- Jelle S Blijleven
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Sander Boonstra
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Erik van der Giessen
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Antoine M van Oijen
- School of Chemistry, Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522, Australia.
| |
Collapse
|
137
|
Abstract
Influenza A virus is a pathogen of global medical importance causing significant health and socio-economic costs every year. Influenza virus is an unusual pathogen in that it is pleomorphic, capable of forming virions ranging in shape from spherical to filamentous. Despite decades of research on the influenza virus, much remains unknown about the formation of filamentous influenza viruses and their role in the viral replication cycle. Here, we discuss what is known about influenza virus assembly and budding, focusing on the viral and host factors that are involved in the determination of viral morphology. Whilst the biological function of the filamentous morphology remains unknown, recent results suggest a role in facilitating viral spread in vivo. We discuss these results and speculate on the consequences of viral morphology during influenza virus infection of the human respiratory tract.
Collapse
Affiliation(s)
- Matthew D Badham
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Jeremy S Rossman
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| |
Collapse
|
138
|
Chai N, Swem LR, Reichelt M, Chen-Harris H, Luis E, Park S, Fouts A, Lupardus P, Wu TD, Li O, McBride J, Lawrence M, Xu M, Tan MW. Two Escape Mechanisms of Influenza A Virus to a Broadly Neutralizing Stalk-Binding Antibody. PLoS Pathog 2016; 12:e1005702. [PMID: 27351973 PMCID: PMC4924800 DOI: 10.1371/journal.ppat.1005702] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/23/2016] [Indexed: 12/22/2022] Open
Abstract
Broadly neutralizing antibodies targeting the stalk region of influenza A virus (IAV) hemagglutinin (HA) are effective in blocking virus infection both in vitro and in vivo. The highly conserved epitopes recognized by these antibodies are critical for the membrane fusion function of HA and therefore less likely to be permissive for virus mutational escape. Here we report three resistant viruses of the A/Perth/16/2009 strain that were selected in the presence of a broadly neutralizing stalk-binding antibody. The three resistant viruses harbor three different mutations in the HA stalk: (1) Gln387Lys; (2) Asp391Tyr; (3) Asp391Gly. The Gln387Lys mutation completely abolishes binding of the antibody to the HA stalk epitope. The other two mutations, Asp391Tyr and Asp391Gly, do not affect antibody binding at neutral pH and only slightly reduce binding at low pH. Interestingly, they enhance the fusion ability of the HA, representing a novel mechanism that allows productive membrane fusion even in the presence of antibody and hence virus escape from antibody neutralization. Therefore, these mutations illustrate two different resistance mechanisms used by IAV to escape broadly neutralizing stalk-binding antibodies. Compared to the wild type virus, the resistant viruses release fewer progeny viral particles during replication and are more sensitive to Tamiflu, suggesting reduced viral fitness. IAV causes seasonal epidemics and periodic pandemics that result in significant morbidity and mortality worldwide. The effectiveness of influenza vaccines is highly variable because the virus evolves rapidly and causes antibody mismatch. The use of neuraminidase inhibitors, the current standard of treatment for IAV infection, is limited by their lack of efficacy beyond 48 hours of symptom onset and by the emergence of drug resistant viruses. Recently, broadly neutralizing antibodies targeting the conserved stalk region of IAV HA have been discovered. These antibodies are able to block the infection of many or even all IAV strains, and hold great promise as the next generation of anti-flu treatment. Nonetheless, virus resistance to these antibodies has not been thoroughly studied despite the common view that broadly neutralizing stalk-binding antibodies are less permissive for mutational escape due to the functional importance of their highly conserved epitopes. In this study, we isolated three resistant viruses to a stalk-binding antibody that was previously shown to neutralize all IAV tested. Interestingly, they use two distinct mechanisms to escape the antibody, abolishing antibody binding or enhancing membrane fusion. Our study emphasizes the need to consider novel escape mechanisms when studying virus resistance to broadly neutralizing stalk-binding antibodies.
Collapse
Affiliation(s)
- Ning Chai
- Infectious Diseases Department, Genentech, South San Francisco, California, United States of America
- * E-mail: (NC); (MWT)
| | - Lee R. Swem
- Infectious Diseases Department, Genentech, South San Francisco, California, United States of America
| | - Mike Reichelt
- Pathology Department, Genentech, South San Francisco, California, United States of America
| | - Haiyin Chen-Harris
- Bioinformatics & Computational Biology Department, Genentech, South San Francisco, California, United States of America
- Cancer Immunology Department, Genentech, South San Francisco, California, United States of America
| | - Elizabeth Luis
- Protein Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Summer Park
- Translational Immunology Department, Genentech, South San Francisco, California, United States of America
| | - Ashley Fouts
- Infectious Diseases Department, Genentech, South San Francisco, California, United States of America
| | - Patrick Lupardus
- Structural Biology Department, Genentech, South San Francisco, California, United States of America
| | - Thomas D. Wu
- Bioinformatics & Computational Biology Department, Genentech, South San Francisco, California, United States of America
| | - Olga Li
- Development Sciences Department, Genentech, South San Francisco, California, United States of America
| | - Jacqueline McBride
- Development Sciences Department, Genentech, South San Francisco, California, United States of America
| | - Michael Lawrence
- Bioinformatics & Computational Biology Department, Genentech, South San Francisco, California, United States of America
| | - Min Xu
- Translational Immunology Department, Genentech, South San Francisco, California, United States of America
| | - Man-Wah Tan
- Infectious Diseases Department, Genentech, South San Francisco, California, United States of America
- * E-mail: (NC); (MWT)
| |
Collapse
|
139
|
Alame MM, Massaad E, Zaraket H. Peramivir: A Novel Intravenous Neuraminidase Inhibitor for Treatment of Acute Influenza Infections. Front Microbiol 2016; 7:450. [PMID: 27065996 PMCID: PMC4815007 DOI: 10.3389/fmicb.2016.00450] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/21/2016] [Indexed: 12/20/2022] Open
Abstract
Peramivir is a novel cyclopentane neuraminidase inhibitor of influenza virus. It was approved by the Food and Drug Administration in December 2014 for treatment of acute uncomplicated influenza in patients 18 years and older. For several months prior to approval, the drug was made clinically available under Emergency Use authorization during the 2009 H1N1 influenza pandemic. Peramivir is highly effective against human influenza A and B isolates as well as emerging influenza virus strains with pandemic potential. Clinical trials demonstrated that the drug is well-tolerated in adult and pediatric populations. Adverse events are generally mild to moderate and similar in frequency to patients receiving placebo. Common side effects include gastrointestinal disorders and decreased neutrophil counts but are self-limiting. Peramivir is administered as a single-dose via the intravenous route providing a valuable therapeutic alternative for critically ill patients or those unable to tolerate other administration routes. Successful clinical trials and post-marketing data in pediatric populations in Japan support the safety and efficacy of peramivir in this population where administration of other antivirals might not be feasible.
Collapse
Affiliation(s)
- Malak M Alame
- The School of Pharmacy, Lebanese International University Beirut, Lebanon
| | - Elie Massaad
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of BeirutBeirut, Lebanon; Center for Infectious Diseases Research, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|
140
|
Gschweitl M, Ulbricht A, Barnes CA, Enchev RI, Stoffel-Studer I, Meyer-Schaller N, Huotari J, Yamauchi Y, Greber UF, Helenius A, Peter M. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. eLife 2016; 5:e13841. [PMID: 27008177 PMCID: PMC4846373 DOI: 10.7554/elife.13841] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/23/2016] [Indexed: 01/01/2023] Open
Abstract
Cullin-3 (CUL3)-based ubiquitin ligases regulate endosome maturation and trafficking of endocytic cargo to lysosomes in mammalian cells. Here, we report that these functions depend on SPOPL, a substrate-specific CUL3 adaptor. We find that SPOPL associates with endosomes and is required for both the formation of multivesicular bodies (MVBs) and the endocytic host cell entry of influenza A virus. In SPOPL-depleted cells, endosomes are enlarged and fail to acquire intraluminal vesicles (ILVs). We identify a critical substrate ubiquitinated by CUL3-SPOPL as EPS15, an endocytic adaptor that also associates with the ESCRT-0 complex members HRS and STAM on endosomes. Indeed, EPS15 is ubiquitinated in a SPOPL-dependent manner, and accumulates with HRS in cells lacking SPOPL. Together, our data indicates that a CUL3-SPOPL E3 ubiquitin ligase complex regulates endocytic trafficking and MVB formation by ubiquitinating and degrading EPS15 at endosomes, thereby influencing influenza A virus infection as well as degradation of EGFR and other EPS15 targets. DOI:http://dx.doi.org/10.7554/eLife.13841.001 Individual cells can move material, collectively referred to as cargo, from the outside environment into the cell interior via a process known as endocytosis. The cell then has different routes to transport the packages of cargo, called endocytic vesicles, to specific locations within the cell. Protein-based molecular machines move the cargo and control how it is selected and targeted to different destinations. For example, a molecular machine that contains a protein called CUL3 labels other components of the system with a chemical tag to regulate the route cargo takes in mammalian cells. However, it was not clear how CUL3 can selectively attach the chemical labels. Gschweitl, Ulbricht et al. have now found that another protein called SPOPL provides selectivity for the CUL3-based machine during endocytosis in human cells. The experiments show that SPOPL attaches to endocytic vesicles, and that CUL3 and SPOPL work together to label a specific component of these vesicles called EPS15. The label changes how EPS15 interacts with other proteins. When SPOPL is not present in a cell, EPS15 is unnaturally stable and occupies many of the routes used by endocytic cargos. The cargo directly interacting with EPS15 is then routed on the fast lane to its destination, while other cargo accumulate in a kind of molecular traffic jam. Other proteins like SPOPL are specific for the endocytic system. Exchange of SPOPL with these similar proteins in the CUL3 machine is likely to chemically label a different set of endocytic proteins. Gschweitl, Ulbricht et al.’s next challenge is to identify the selectivity, targeting and coordination of these exchangeable components in the endocytic system. DOI:http://dx.doi.org/10.7554/eLife.13841.002
Collapse
Affiliation(s)
- Michaela Gschweitl
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Anna Ulbricht
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Christopher A Barnes
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Radoslav I Enchev
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Ingrid Stoffel-Studer
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Nathalie Meyer-Schaller
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Jatta Huotari
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Yohei Yamauchi
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Urs F Greber
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ari Helenius
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Matthias Peter
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| |
Collapse
|
141
|
Jans J, elMoussaoui H, de Groot R, de Jonge MI, Ferwerda G. Actin- and clathrin-dependent mechanisms regulate interferon gamma release after stimulation of human immune cells with respiratory syncytial virus. Virol J 2016; 13:52. [PMID: 27004689 PMCID: PMC4802911 DOI: 10.1186/s12985-016-0506-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/14/2016] [Indexed: 12/02/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) can cause recurrent and severe respiratory tract infections. Cytoskeletal proteins are often involved during viral infections, either for cell entry or the initiation of the immune response. The importance of actin and clathrin dynamics for cell entry and the initiation of the cellular immune response against RSV in human immune cells is not known yet. The aim of this study was to investigate the role of actin and clathrin on cell entry of RSV and the subsequent effect on T cell activation and interferon gamma release in human immune cells. Methods Peripheral blood mononuclear cells and purified monocytes were isolated from healthy adults and stimulated in vitro with RSV. Actin and clathrin dynamics were inhibited with respectively cytochalasin D and chlorpromazine. T cell receptor signaling was inhibited with cyclosporin A. Flow cytometry was used to determine the role of actin and clathrin on cell entry and T cell activation by RSV. Enzyme-linked immunosorbent assays were used to investigate the contribution of actin and clathrin on the release of interferon gamma. Results Cell entry, virus gene transcription and interferon gamma release are actin-dependent. Post-endocytic processes like the increased expression of major histocompatibility complex II on monocytes , T cell activation and the release of interferon gamma are clathrin-dependent. Finally, T cell receptor signaling affects T cell activation, whereas soluble interleukin 18 is dispensable. Conclusion Analysis of cell entry and interferon gamma release after infection with RSV reveals the importance of actin- and clathrin-dependent signaling in human immune cells. Insights into the cellular biology of the human immune response against respiratory syncytial virus will provide a better understanding of disease pathogenesis and may prove useful in the development of preventive strategies.
Collapse
Affiliation(s)
- Jop Jans
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Science, Radboud university medical center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Hicham elMoussaoui
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Science, Radboud university medical center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ronald de Groot
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Science, Radboud university medical center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Science, Radboud university medical center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Gerben Ferwerda
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Science, Radboud university medical center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
142
|
Chang SY, Park JH, Kim YH, Kang JS, Min JY. A natural component from Euphorbia humifusa Willd displays novel, broad-spectrum anti-influenza activity by blocking nuclear export of viral ribonucleoprotein. Biochem Biophys Res Commun 2016; 471:282-9. [DOI: 10.1016/j.bbrc.2016.01.123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/20/2016] [Indexed: 12/29/2022]
|
143
|
Abstract
Sulfatide is a 3-O-sulfated galactosylceramide that is abundantly expressed in the gastrointestinal tract, kidney, trachea, and particularly the central nervous system. Cellular sulfatide is mainly localized in the Golgi apparatus, cellular membrane, and lysosomes in cytosol. Since our earlier report showed that the influenza A virus specifically binds to sulfatide, we have investigated the roles of sulfatide in the influenza A virus lifecycle. The viral binding is independent of sialic acids, which function as virus receptors in virus attachment to the host cell surface. Sulfatide is recognized by the ectodomain of the viral envelope glycoprotein hemagglutinin (HA). Nascent HA is transported on the surface membrane of infected cells. The binding of HA with sulfatide on the cell surface induces apoptosis through potential loss of the mitochondrial membrane and nuclear translocation of apoptosis-inducing factor in mitochondria, where PB1-F2 peptide from the viral gene is accumulated. In the nucleus of infected cells, viral ribonucleoprotein (vRNP) complexes are formed from viral RNA genomes, viral nucleoprotein, and viral RNA polymerase subunits, and these complexes are selectively exported into cytosol through the nuclear membrane. The apoptosis significantly enhances the nuclear export of vRNP complexes, resulting in efficient formation of progeny viruses and facilitation of virus replication. At that time, activation of the Raf/mitogen-activated protein extracellular kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway through sulfatide is associated with virus replication. Our studies have demonstrated that sulfatide is not a viral receptor for virus infection, and that the binding of HA with sulfatide functions as an initiation switch for the formation of progeny viruses.
Collapse
Affiliation(s)
- Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | | |
Collapse
|
144
|
Söderholm S, Anastasina M, Islam MM, Tynell J, Poranen MM, Bamford DH, Stenman J, Julkunen I, Šaulienė I, De Brabander JK, Matikainen S, Nyman TA, Saelens X, Kainov D. Immuno-modulating properties of saliphenylhalamide, SNS-032, obatoclax, and gemcitabine. Antiviral Res 2015; 126:69-80. [PMID: 26738783 DOI: 10.1016/j.antiviral.2015.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/21/2015] [Accepted: 12/24/2015] [Indexed: 12/24/2022]
Abstract
Influenza A viruses (IAVs) impact the public health and global economy by causing yearly epidemics and occasional pandemics. Several anti-IAV drugs are available and many are in development. However, the question remains which of these antiviral agents may allow activation of immune responses and protect patients against co- and re-infections. To answer to this question, we analysed immuno-modulating properties of the antivirals saliphenylhalamide (SaliPhe), SNS-032, obatoclax, and gemcitabine, and found that only gemcitabine did not impair immune responses in infected cells. It also allowed activation of innate immune responses in lipopolysaccharide (LPS)- and interferon alpha (IFNα)-stimulated macrophages. Moreover, immuno-mediators produced by gemcitabine-treated IAV-infected macrophages were able to prime immune responses in non-infected cells. Thus, we identified an antiviral agent which might be beneficial for treatment of patients with severe viral infections.
Collapse
Affiliation(s)
- Sandra Söderholm
- Institute of Biotechnology, University of Helsinki, Finland; Finnish Institute of Occupational Health (TTL), Helsinki, Finland
| | - Maria Anastasina
- The Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Finland
| | | | - Janne Tynell
- National Institute for Health and Welfare (THL), Helsinki, Finland
| | | | - Dennis H Bamford
- Institute of Biotechnology, University of Helsinki, Finland; Department of Biosciences, University of Helsinki, Finland
| | - Jakob Stenman
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Ilkka Julkunen
- National Institute for Health and Welfare (THL), Helsinki, Finland; Department of Virology, University of Turku, Turku, Finland
| | - Ingrida Šaulienė
- Department of Environmental Research, Siauliai University, Siauliai, Lithuania
| | - Jef K De Brabander
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, USA
| | | | - Tuula A Nyman
- Institute of Biotechnology, University of Helsinki, Finland
| | - Xavier Saelens
- Medical Biotechnology Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Denis Kainov
- The Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Finland; Department of Virology, University of Turku, Turku, Finland.
| |
Collapse
|
145
|
Pohl MO, Stertz S. Measuring Attachment and Internalization of Influenza A Virus in A549 Cells by Flow Cytometry. J Vis Exp 2015:e53372. [PMID: 26575457 DOI: 10.3791/53372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Attachment to target cells followed by internalization are the very first steps of the life cycle of influenza A virus (IAV). We provide here a detailed protocol for measuring relative changes in the amount of viral particles that attach to A549 cells, a human lung epithelial cell line, as well as in the amount of particles that are internalized into the cell. We use biotinylated virus which can be easily detected following staining with Cy3-labeled streptavidin (STV-Cy3). We describe the growth, purification and biotinylation of A/WSN/33, a widely used IAV laboratory strain. Cold-bound biotinylated IAV particles on A549 cells are stained with STV-Cy3 and measured using flow cytometry. To investigate uptake of viral particles, cold-bound virus is allowed to internalize at 37 °C. In order to differentiate between external and internalized viral particles, a blocking step is applied: Free binding spots on the biotin of attached virus on the cell surface are bound by unlabeled streptavidin (STV). Subsequent cell permeabilization and staining with STV-Cy3 then enables detection of internalized viral particles. We present a calculation to determine the relative amount of internalized virus. This assay is suitable to measure effects of drug-treatments or other manipulations on attachment or internalization of IAV.
Collapse
Affiliation(s)
- Marie O Pohl
- Institute of Medical Virology, University of Zurich
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich;
| |
Collapse
|
146
|
Huang J, Li F, Wu J, Yang F. White spot syndrome virus enters crayfish hematopoietic tissue cells via clathrin-mediated endocytosis. Virology 2015; 486:35-43. [PMID: 26397221 DOI: 10.1016/j.virol.2015.08.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/21/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
White spot syndrome virus (WSSV) is a major pathogen of aquacultured shrimp. However, the mechanism of its entry remains poorly understood. In this study, by analyzing the internalization of WSSV using crayfish hematopoietic tissue (HPT) cells, we showed that WSSV virions were engulfed by cell membrane invaginations sharing the features of clathrin-coated pits and then internalized into coated cytoplasmic vesicles. Further investigation indicated that WSSV internalization was significantly inhibited by chlorpromazine (CPZ) but not genistein. The internalized virions were colocalized with endogenous clathrin as well as transferrin which undergoes clathrin-dependent uptake. Preventing endosome acidification by ammonium chloride (NH4Cl) or chloroquine (CQ) dramatically reduced WSSV entry as well. Moreover, disturbance of dynamin activity or depletion of membrane cholesterol also blocked WSSV uptake. These data indicate that WSSV enters crayfish HPT cells via clathrin-mediated endocytosis in a pH-dependent manner, and membrane cholesterol as well as dynamin is critical for efficient viral entry.
Collapse
Affiliation(s)
- Jiajun Huang
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Fang Li
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| | - Junjun Wu
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| |
Collapse
|
147
|
Zmora P, Moldenhauer AS, Hofmann-Winkler H, Pöhlmann S. TMPRSS2 Isoform 1 Activates Respiratory Viruses and Is Expressed in Viral Target Cells. PLoS One 2015; 10:e0138380. [PMID: 26379044 PMCID: PMC4574978 DOI: 10.1371/journal.pone.0138380] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/28/2015] [Indexed: 12/02/2022] Open
Abstract
The cellular protease TMPRSS2 cleaves and activates the influenza virus hemagglutinin (HA) and TMPRSS2 expression is essential for viral spread and pathogenesis in mice. Moreover, severe acute respiratory syndrome coronavirus (SARS-CoV) and other respiratory viruses are activated by TMPRSS2. However, previous studies on viral activation by TMPRSS2 focused on a 492 amino acids comprising form of the protein (isoform 2) while other TMPRSS2 isoforms, generated upon alternative splicing of the tmprss2 mRNA, have not been characterized. Here, we show that the mRNA encoding a TMPRSS2 isoform with an extended N-terminal cytoplasmic domain (isoform 1) is expressed in lung-derived cell lines and tissues. Moreover, we demonstrate that TMPRSS2 isoform 1 colocalizes with HA and cleaves and activates HA. Finally, we show that isoform 1 activates the SARS-CoV spike protein for cathepsin L-independent entry into target cells. Our results indicate that TMPRSS2 isoform 1 is expressed in viral target cells and might contribute to viral activation in the host.
Collapse
Affiliation(s)
- Pawel Zmora
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| | | | | | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- * E-mail:
| |
Collapse
|
148
|
Watanabe T, Kawaoka Y. Influenza virus-host interactomes as a basis for antiviral drug development. Curr Opin Virol 2015; 14:71-8. [PMID: 26364134 DOI: 10.1016/j.coviro.2015.08.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 01/07/2023]
Abstract
Currently, antiviral drugs that target specific viral protein functions are available for the treatment of influenza; however, concern regarding the emergence of drug-resistant viruses is warranted, as is the urgent need for new antiviral targets, including non-viral targets, such as host cellular factors. Viruses rely on host cellular functions to replicate, and therefore a thorough understanding of the roles of virus-host interactions during influenza virus replication is essential to develop novel anti-influenza drugs that target the host factors involved in virus replication. Here, we review recent studies that used several approaches to identify host factors involved in influenza virus replication. These studies have permitted the construction of an interactome map of virus-host interactions in the influenza virus life cycle, clarifying the entire life cycle of this virus and accelerating the development of new antiviral drugs with a low propensity for the development of resistance.
Collapse
Affiliation(s)
- Tokiko Watanabe
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA; Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
149
|
Mathys L, Balzarini J. The role of cellular oxidoreductases in viral entry and virus infection-associated oxidative stress: potential therapeutic applications. Expert Opin Ther Targets 2015; 20:123-43. [PMID: 26178644 DOI: 10.1517/14728222.2015.1068760] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Cellular oxidoreductases catalyze thiol/disulfide exchange reactions in susceptible proteins and contribute to the cellular defense against oxidative stress. Oxidoreductases and oxidative stress are also involved in viral infections. In this overview, different aspects of the role of cellular oxidoreductases and oxidative stress during viral infections are discussed from a chemotherapeutic viewpoint. AREAS COVERED Entry of enveloped viruses into their target cells is triggered by the interaction of viral envelope glycoproteins with cellular (co)receptor(s) and depends on obligatory conformational changes in these viral envelope glycoproteins and/or cellular receptors. For some viruses, these conformational changes are mediated by cell surface-associated cellular oxidoreductases, which mediate disulfide bridge reductions in viral envelope glycoprotein(s). Therefore, targeting these oxidoreductases using oxidoreductase inhibitors might yield an interesting strategy to block viral entry of these viruses. Furthermore, since viral infections are often associated with systemic oxidative stress, contributing to disease progression, the enhancement of the cellular antioxidant defense systems might have potential as an adjuvant antiviral strategy, slowing down disease progression. EXPERT OPINION Promising antiviral data were obtained for both strategies. However, potential pitfalls have also been identified for these strategies, indicating that it is important to carefully assess the benefits versus risks of these antiviral strategies.
Collapse
Affiliation(s)
- Leen Mathys
- a 1 Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10 blok x - bus 1030, Leuven, Belgium
| | - Jan Balzarini
- b 2 Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10 blok x - bus 1030, Leuven, Belgium +32 16 3 37352 ; +32 16 3 37340 ;
| |
Collapse
|
150
|
Casanova T, Van de Paar E, Desmecht D, Garigliany MM. Hyporeactivity of Alveolar Macrophages and Higher Respiratory Cell Permissivity Characterize DBA/2J Mice Infected by Influenza A Virus. J Interferon Cytokine Res 2015; 35:808-20. [PMID: 26134384 DOI: 10.1089/jir.2014.0237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Influenza A virus remains a major public health problem. Mouse models have been widely used to study influenza infection in mammals. DBA/2J and C57BL/6J represent extremes in terms of susceptibility to influenza A infection among inbred laboratory mouse strains. Several studies focused specifically on the factors responsible for the susceptibility of DBA/2J or the resistance of C57BL/6J and resulted in impressive lists of candidate genes or factors over- or underexpressed in one of the strains. We adopted a different phenotypical approach to identify the critical steps of the infection process accounting for the differences between DBA/2J and C57BL/6J strains. We concluded that both a dysfunction of alveolar macrophages and an increased permissivity of respiratory cells rendered DBA/2J more susceptible to influenza infection.
Collapse
Affiliation(s)
- Tomás Casanova
- Department of Veterinary Pathology, University of Liège , Liège, Belgium
| | - Els Van de Paar
- Department of Veterinary Pathology, University of Liège , Liège, Belgium
| | - Daniel Desmecht
- Department of Veterinary Pathology, University of Liège , Liège, Belgium
| | | |
Collapse
|