101
|
Quiroga G, Erice G, Ding L, Chaumont F, Aroca R, Ruiz-Lozano JM. The arbuscular mycorrhizal symbiosis regulates aquaporins activity and improves root cell water permeability in maize plants subjected to water stress. PLANT, CELL & ENVIRONMENT 2019; 42:2274-2290. [PMID: 30916398 DOI: 10.1111/pce.13551] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/25/2019] [Accepted: 03/22/2019] [Indexed: 05/20/2023]
Abstract
Studies have suggested that increased root hydraulic conductivity in mycorrhizal roots could be the result of increased cell-to-cell water flux via aquaporins. This study aimed to elucidate if the key effect of the regulation of maize aquaporins by the arbuscular mycorrhizal (AM) symbiosis is the enhancement of root cell water transport capacity. Thus, water permeability coefficient (Pf ) and cell hydraulic conductivity (Lpc ) were measured in root protoplast and intact cortex cells of AM and non-AM plants subjected or not to water stress. Results showed that cells from droughted-AM roots maintained Pf and Lpc values of nonstressed plants, whereas in non-AM roots, these values declined drastically as a consequence of water deficit. Interestingly, the phosphorylation status of PIP2 aquaporins increased in AM plants subjected to water deficit, and Pf values higher than 12 μm s-1 were found only in protoplasts from AM roots, revealing the higher water permeability of AM root cells. In parallel, the AM symbiosis increased stomatal conductance, net photosynthesis, and related parameters, showing a higher photosynthetic capacity in these plants. This study demonstrates a better performance of AM root cells in water transport under water deficit, which is connected to the shoot physiological performance in terms of photosynthetic capacity.
Collapse
Affiliation(s)
- Gabriela Quiroga
- Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada, Spain
| | - Gorka Erice
- Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada, Spain
| | - Lei Ding
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium
| | - Ricardo Aroca
- Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada, Spain
| |
Collapse
|
102
|
Favreau B, Denis M, Ployet R, Mounet F, Peireira da Silva H, Franceschini L, Laclau JP, Labate C, Carrer H. Distinct leaf transcriptomic response of water deficient Eucalyptus grandis submitted to potassium and sodium fertilization. PLoS One 2019; 14:e0218528. [PMID: 31220144 PMCID: PMC6586347 DOI: 10.1371/journal.pone.0218528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/04/2019] [Indexed: 01/06/2023] Open
Abstract
While potassium fertilization increases growth yield in Brazilian eucalyptus plantations, it could also increase water requirements, making trees more vulnerable to drought. Sodium fertilization, which has been shown to promote eucalyptus growth compared to K-deficient trees, could partially mitigate this adverse effect of potassium. However, little is known about the influence of K and Na fertilization on the tree metabolic response to water deficit. The aim of the present study was thus to analyze the transcriptome of leaves sampled from Eucalyptus grandis trees subjected to 37% rainfall reduction, and fertilized with potassium (K), sodium (Na), compared to control trees (C). The multifactorial experiment was set up in a field with a throughfall exclusion system. Transcriptomic analysis was performed on leaves from two-year-old trees, and data analyzed using multifactorial statistical analysis and weighted gene co-expression network analysis (WGCNA). Significant sets of genes were seen to respond to rainfall reduction, in interaction with K or Na fertilization, or to fertilization only (regardless of the water supply regime). The genes were involved in stress signaling, primary and secondary metabolism, secondary cell wall formation and photosynthetic activity. Our focus on key genes related to cation transporters and aquaporins highlighted specific regulation of ion homeostasis, and plant adjustment to water deficit. While water availability significantly affects the transcriptomic response of eucalyptus species, this study points out that the transcriptomic response is highly dependent on the fertilization regime. Our study is based on the first large-scale field trial in a tropical region, specifically designed to study the interaction between water availability and nutrition in eucalyptus. To our knowledge, this is the first global transcriptomic analysis to compare the influence of K and Na fertilization on tree adaptive traits in water deficit conditions.
Collapse
Affiliation(s)
- Bénédicte Favreau
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Marie Denis
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Raphael Ployet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Fabien Mounet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Hana Peireira da Silva
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| | - Livia Franceschini
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| | | | - Carlos Labate
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
103
|
Champeyroux C, Bellati J, Barberon M, Rofidal V, Maurel C, Santoni V. Regulation of a plant aquaporin by a Casparian strip membrane domain protein-like. PLANT, CELL & ENVIRONMENT 2019; 42:1788-1801. [PMID: 30767240 DOI: 10.1111/pce.13537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 02/11/2019] [Indexed: 05/11/2023]
Abstract
The absorption of soil water by roots allows plants to maintain their water status. At the endodermis, water transport can be affected by initial formation of a Casparian strip and further deposition of suberin lamellas and regulated by the function of aquaporins. Four Casparian strip membrane domain protein-like (CASPL; CASPL1B1, CASPL1B2, CASPL1D1, and CASPL1D2) were previously shown to interact with PIP2;1. The present work shows that CASPL1B1, CASPL1B2, and CASPL1D2 are exclusively expressed in suberized endodermal cells, suggesting a cell-specific role in suberization and/or water transport regulation. When compared with wild-type plants, and by contrast to caspl1b1*caspl1b2 double loss of function, caspl1d1*caspl1d2 double mutants showed, in some control or NaCl stress experiments and not upon abscisic acid (ABA) treatment, a weak enlargement of the continuous suberization zone. None of the mutants showed root hydraulic conductivity (Lpr ) phenotype, whether in control, NaCl, or ABA treatment conditions. The data suggest a slight negative role for CASPL1D1 and CASPL1D2 in suberization under control or salt stress conditions, with no major impact on whole root transport functions. At the molecular level, CASPL1B1 was able to physically interact with PIP2;1 and potentially could influence the regulation of aquaporins by acting on their phosphorylated form.
Collapse
Affiliation(s)
- Chloé Champeyroux
- BPMP, Univ Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
| | - Jorge Bellati
- BPMP, Univ Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
| | - Marie Barberon
- Department of Botany and Plant Biology, Université de Genève, Geneva, Switzerland
| | - Valérie Rofidal
- BPMP, Univ Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
| | - Christophe Maurel
- BPMP, Univ Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
| | - Véronique Santoni
- BPMP, Univ Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
104
|
Sahitya UL, Krishna MSR, Suneetha P. Integrated approaches to study the drought tolerance mechanism in hot pepper ( Capsicum annuum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:637-647. [PMID: 31168229 PMCID: PMC6522565 DOI: 10.1007/s12298-019-00655-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/20/2019] [Accepted: 03/13/2019] [Indexed: 05/13/2023]
Abstract
Drought is one of the predominant abiotic stresses which have phenomenal impact on crop productivity. Alterations in aquaporin gene expressions are part of complex molecular responses by plant in response to drought. To better understand the role of aquaporins in economically important crop chilli (Capsicum annuum), drought induced gene expression of twelve aquaporins was determined in drought tolerant-KCa-4884 and drought susceptible-G-4 genotypes. Conjointly, the effect of drought on leaf water status and photosynthetic parameters were evaluated. Gene expression of all examined 12 aquaporins was up-regulated in KCa-4884 and in contrast, all the aquaporin genes were down-regulated in G-4 under drought stress. Significant variations among two chilli genotypes have been recorded in photosynthetic rate (P n ), stomatal conductance (G s ), and relative water content (RWC), sub-stomatal CO2 concentration (C i ). KCa-4884 revealed significantly high rates of P n and RWC and decreased G s under water deficit conditions providing evidence for superior drought adaptive strategies. Differences in physiological parameters illustrate prevention of water loss during drought. Up-regulation of aquaporins in drought tolerant genotype implicates their possible role in water relations and photosynthetic performance even under extended drought conditions.
Collapse
Affiliation(s)
- U. Lakshmi Sahitya
- Department of Biotechnology, KLEF Deemed to be University, Guntur, Andhra Pradesh India
| | - M. S. R. Krishna
- Department of Biotechnology, KLEF Deemed to be University, Guntur, Andhra Pradesh India
| | - P. Suneetha
- Institute of Biotechnology, Professor Jaya Shankar Telangana State Agricultural University, Hyderabad, Telangana India
| |
Collapse
|
105
|
Majda C, Khalid D, Aziz A, Rachid B, Badr AS, Lotfi A, Mohamed B. Nutri-priming as an efficient means to improve the agronomic performance of molybdenum in common bean (Phaseolus vulgaris L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:654-663. [PMID: 30682615 DOI: 10.1016/j.scitotenv.2019.01.188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 05/17/2023]
Abstract
Microelements play important roles in improving crop productivity and quality. Two traditional methods of providing micronutrients are soil and foliar application, yet the cost involved and phytotoxicity risks poses a major challenge in most global agricultural areas. Nutri-priming represents thus a very promising and viable alternative to ensure that the plants' requirements for micronutrients are met. This paper explores the Mo-priming effects on the germination, growth and yield components of common bean (Phaseolus vulgaris L.). In order to accomplish this research objective, our study is divided in two phases. The first phase seeks to determine the effects of two durations (5 and 10 h) of Mo-priming on the germination parameters. Then, a greenhouse pot experiment was conducted with primed seeds showing better germination performance to assess the effects of Mo-priming on certain parameters related to biological nitrogen fixation and crop yield. Five seed pretreatments were studied, namely, 0, 0.025, 0.05, 0.1 and 0.2% of ammonium heptamolybdate ((NH4)6Mo7O24.4H2O). Unprimed seeds treated with or without the recommended dose through a soil application were used as controls. Hydropriming is sufficient to improve seed germination performance. However, 0.1% Mo-priming for 10 h improved the net CO2 assimilation rate, chlorophyll content and biological nitrogen fixation. Six times more nitrogen was fixed (65.8 kg ha-1) in these plants than in the controls. Additionally, grain yield increased by 115% compared to the negative control. Thus, compared to soil intake, nutri-priming was a very efficient experimental method.
Collapse
Affiliation(s)
- Choukri Majda
- Département d'Agronomie et d'Amélioration des Plantes, Ecole Nationale d'Agriculture de Meknès, km. 10, Route Haj Kaddour, B.P. S/40, 50001 Meknès, Morocco
| | - Daoui Khalid
- INRA, Institut National de la Recherche Agronomique, km. 10, Route Haj Kaddour, B.P. 578, Meknès, Morocco
| | - Abouabdillah Aziz
- Département d'Agronomie et d'Amélioration des Plantes, Ecole Nationale d'Agriculture de Meknès, km. 10, Route Haj Kaddour, B.P. S/40, 50001 Meknès, Morocco
| | - Bouabid Rachid
- Département d'Agronomie et d'Amélioration des Plantes, Ecole Nationale d'Agriculture de Meknès, km. 10, Route Haj Kaddour, B.P. S/40, 50001 Meknès, Morocco
| | - Alaoui-Sossé Badr
- Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| | - Aleya Lotfi
- Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Bourgogne Franche-Comté, F-25030 Besançon, France.
| | - Bourioug Mohamed
- Département d'Agronomie et d'Amélioration des Plantes, Ecole Nationale d'Agriculture de Meknès, km. 10, Route Haj Kaddour, B.P. S/40, 50001 Meknès, Morocco
| |
Collapse
|
106
|
Guo H, Guo H, Zhang L, Fan Y, Fan Y, Tang Z, Zeng F. Dynamic TMT-Based Quantitative Proteomics Analysis of Critical Initiation Process of Totipotency during Cotton Somatic Embryogenesis Transdifferentiation. Int J Mol Sci 2019; 20:E1691. [PMID: 30987365 PMCID: PMC6480670 DOI: 10.3390/ijms20071691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/03/2023] Open
Abstract
The somatic embryogenesis (SE) process of plants, as one of the typical responses to abiotic stresses with hormone, occurs through the dynamic expression of different proteins that constitute a complex regulatory network in biological activities and promotes plant totipotency. Plant SE includes two critical stages: primary embryogenic calli redifferentiation and somatic embryos development initiation, which leads to totipotency. The isobaric labels tandem mass tags (TMT) large-scale and quantitative proteomics technique was used to identify the dynamic protein expression changes in nonembryogenic calli (NEC), primary embryogenic calli (PEC) and globular embryos (GEs) of cotton. A total of 9369 proteins (6730 quantified) were identified; 805, 295 and 1242 differentially accumulated proteins (DAPs) were identified in PEC versus NEC, GEs versus PEC and GEs versus NEC, respectively. Eight hundred and five differentially abundant proteins were identified, 309 of which were upregulated and 496 down regulated in PEC compared with NEC. Of the 295 DAPs identified between GEs and PEC, 174 and 121 proteins were up- and down regulated, respectively. Of 1242 differentially abundant proteins, 584 and 658 proteins were up- and down regulated, respectively, in GEs versus NEC. We have also complemented the authenticity and accuracy of the proteomic analysis. Systematic analysis indicated that peroxidase, photosynthesis, environment stresses response processes, nitrogen metabolism, phytohormone response/signal transduction, transcription/posttranscription and modification were involved in somatic embryogenesis. The results generated in this study demonstrate a proteomic molecular basis and provide a valuable foundation for further investigation of the roles of DAPs in the process of SE transdifferentiation during cotton totipotency.
Collapse
Affiliation(s)
- Haixia Guo
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Huihui Guo
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Li Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Yijie Fan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Yupeng Fan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Zhengmin Tang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Fanchang Zeng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
107
|
Tan X, Zwiazek JJ. Stable expression of aquaporins and hypoxia-responsive genes in adventitious roots are linked to maintaining hydraulic conductance in tobacco (Nicotiana tabacum) exposed to root hypoxia. PLoS One 2019; 14:e0212059. [PMID: 30730995 PMCID: PMC6366753 DOI: 10.1371/journal.pone.0212059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/26/2019] [Indexed: 11/22/2022] Open
Abstract
Formation of adventitious roots in plants is a common response to hypoxia caused by flooding. In tobacco, after one week of root hypoxia treatment, plants produced twice as many adventitious roots as the aerated plants, but their maximum length was reduced. Hypoxia severely reduced net photosynthesis, transpiration rates, and photosynthetic light responses. Relative transcript abundance of the examined aquaporins in lateral roots was reduced by hypoxia, but in adventitious roots it remained unchanged. This apparent lack of an effect of root hypoxia on the aquaporin expression likely contributed to maintenance of high hydraulic conductance in adventitious roots. Lateral roots had lower porosity compared with adventitious roots and the expression of the ACS (1-aminocyclopropane-1-carboxylate synthase) gene was induced in hypoxic lateral roots, but not in adventitious roots, providing additional evidence that lateral roots were more affected by hypoxia compared with adventitious roots. ATP concentrations were markedly lower in both hypoxic lateral and adventitious roots compared with aerated roots, while the expression of fermentation-related genes, ADH1 (alcohol dehydrogenase 1) and PDC1 (pyruvate decarboxylase 1), was higher in lateral roots compared with adventitious roots. Since root porosity was greater in adventitious compared with lateral roots, the results suggest that the improved O2 delivery and stable root aquaporin expression in adventitious roots were likely the key factors helping flooded tobacco plants maintain high rates of root hydraulic conductance and, consequently, shoot gas exchange.
Collapse
Affiliation(s)
- Xiangfeng Tan
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Janusz J. Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
108
|
Prado K, Cotelle V, Li G, Bellati J, Tang N, Tournaire-Roux C, Martinière A, Santoni V, Maurel C. Oscillating Aquaporin Phosphorylation and 14-3-3 Proteins Mediate the Circadian Regulation of Leaf Hydraulics. THE PLANT CELL 2019; 31:417-429. [PMID: 30674691 PMCID: PMC6447024 DOI: 10.1105/tpc.18.00804] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 05/20/2023]
Abstract
The circadian clock regulates plant tissue hydraulics to synchronize water supply with environmental cycles and thereby optimize growth. The circadian fluctuations in aquaporin transcript abundance suggest that aquaporin water channels play a role in these processes. Here, we show that hydraulic conductivity (K ros) of Arabidopsis (Arabidopsis thaliana) rosettes displays a genuine circadian rhythmicity with a peak around midday. Combined immunological and proteomic approaches revealed that phosphorylation at two C-terminal sites (Ser280, Ser283) of PLASMA MEMBRANE INTRINSIC PROTEIN 2;1 (AtPIP2;1), a major plasma membrane aquaporin in rosettes, shows circadian oscillations and is correlated with K ros Transgenic expression of phosphodeficient and phosphomimetic forms of this aquaporin indicated that AtPIP2;1 phosphorylation is necessary but not sufficient for K ros regulation. We investigated the supporting role of 14-3-3 proteins, which are known to interact with and regulate phosphorylated proteins. Individual knockout plants for five 14-3-3 protein isoforms expressed in rosettes lacked circadian activation of K ros Two of these [GRF4 (14-3-3Phi); GRF10 (14-3-3Epsilon)] showed direct interactions with AtPIP2;1 in the plant and upon coexpression in Xenopus laevis oocytes and activated AtPIP2;1, preferentially when the latter was phosphorylated at its two C-terminal sites. We propose that this regulatory mechanism assists in the activation of phosphorylated AtPIP2;1 during circadian regulation of K ros.
Collapse
Affiliation(s)
- Karine Prado
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| | - Valérie Cotelle
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP 42617, F-31326, Castanet-Tolosan, France
| | - Guowei Li
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| | - Jorge Bellati
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| | - Ning Tang
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| | - Colette Tournaire-Roux
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| | - Alexandre Martinière
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| | - Véronique Santoni
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| |
Collapse
|
109
|
Feng ZJ, Liu N, Zhang GW, Niu FG, Xu SC, Gong YM. Investigation of the AQP Family in Soybean and the Promoter Activity of TIP2;6 in Heat Stress and Hormone Responses. Int J Mol Sci 2019; 20:E262. [PMID: 30634702 PMCID: PMC6359280 DOI: 10.3390/ijms20020262] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022] Open
Abstract
Aquaporins (AQPs) are one diverse family of membrane channel proteins that play crucial regulatory roles in plant stress physiology. However, the heat stress responsiveness of AQP genes in soybean remains poorly understood. In this study, 75 non-redundant AQP encoding genes were identified in soybean. Multiple sequence alignments showed that all GmAQP proteins possessed the conserved regions, which contained 6 trans-membrane domains (TM1 to TM6). Different GmAQP members consisted of distinct Asn-Pro-Ala (NPA) motifs, aromatic/arginine (ar/R) selectivity filters and Froger's positions (FPs). Phylogenetic analyses distinguished five sub-families within these GmAQPs: 24 GmPIPs, 24 GmTIPs, 17 GmNIPs, 8 GmSIPs, and 2 GmXIPs. Promoter cis-acting elements analyses revealed that distinct number and composition of heat stress and hormone responsive elements existed in different promoter regions of GmAQPs. QRT-PCR assays demonstrated that 12 candidate GmAQPs with relatively extensive expression in various tissues or high expression levels in root or leaf exhibited different expression changes under heat stress and hormone cues (abscisic acid (ABA), l-aminocyclopropane-l-carboxylic acid (ACC), salicylic acid (SA) and methyl jasmonate (MeJA)). Furthermore, the promoter activity of one previously functionally unknown AQP gene-GmTIP2;6 was investigated in transgenic Arabidopsis plants. The beta-glucuronidase (GUS) activity driven by the promoter of GmTIP2;6 was strongly induced in the heat- and ACC-treated transgenic plants and tended to be accumulated in the hypocotyls, vascular bundles, and leaf trichomes. These results will contribute to uncovering the potential functions and molecular mechanisms of soybean GmAQPs in mediating heat stress and hormone signal responses.
Collapse
Affiliation(s)
- Zhi-Juan Feng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Na Liu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Gu-Wen Zhang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Fu-Ge Niu
- Food Safety Key Lab of Zhejiang Province, The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Sheng-Chun Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Ya-Ming Gong
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
110
|
Coffey O, Bonfield R, Corre F, Althea Sirigiri J, Meng D, Fricke W. Root and cell hydraulic conductivity, apoplastic barriers and aquaporin gene expression in barley (Hordeum vulgare L.) grown with low supply of potassium. ANNALS OF BOTANY 2018; 122:1131-1141. [PMID: 29961877 PMCID: PMC6324746 DOI: 10.1093/aob/mcy110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/29/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Limited supply of mineral nutrients often reduces plant growth and transpirational water flow while increasing the ratio of water-absorbing root to water-losing shoot surface. This could potentially lead to an imbalance between water uptake (too much) and water loss (too little). The aim of the present study was to test whether, as a countermeasure, the hydraulic properties (hydraulic conductivity, Lp) of roots decrease at organ and cell level and whether any decreases in Lp are accompanied by decreases in the gene expression level of aquaporins (AQPs) or increases in apoplastic barriers to radial water movement. METHODS Barley plants were grown hydroponically on complete nutrient solution, containing 2 mm K+ (100 %), or on low-K solution (0.05 mm K+; 2.5 %), and analysed when they were 15-18 d old. Transpiration, fresh weight, surface area, shoot water potential (ψ), K and Ca concentrations, root (exudation) and cortex cell Lp (cell pressure probe), root anatomy (cross-sections) and AQP gene expression (qPCR) were analysed. KEY RESULTS The surface area ratio of root to shoot increased significantly in response to low K. This was accompanied by a small decrease in the rate of water loss per unit shoot surface area, but a large (~50 %) and significant decrease in Lp at root and cortex cell levels. Aquaporin gene expression in roots did not change significantly, due to some considerable batch-to-batch variation in expression response, though HvPIP2;5 expression decreased on average by almost 50 %. Apoplastic barriers in the endodermis did not increase in response to low K. CONCLUSIONS Barley plants that are exposed to low K adjust to an increased ratio of root (water uptake) to shoot (water loss) surface primarily through a decrease in root and cell Lp. Reduced gene expression of HvPIP2;5 may contribute to the decrease in Lp.
Collapse
Affiliation(s)
- Orla Coffey
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
| | - Ronan Bonfield
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
| | - Florine Corre
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Jane Althea Sirigiri
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
| | - Delong Meng
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
- For correspondence. E-mail
| |
Collapse
|
111
|
Landa P, Prerostova S, Langhansova L, Marsik P, Vankova R, Vanek T. Transcriptomic response of Arabidopsis thaliana roots to naproxen and praziquantel. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:301-310. [PMID: 30273854 DOI: 10.1016/j.ecoenv.2018.09.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Exposition to pharmaceutical compounds released to the environment is considered as a potential risk for various organisms. We exposed Arabidopsis thaliana plants to naproxen (NAP) and praziquantel (PZQ) in 5 µM concentration for 2 days and recorded transcriptomic response in their roots with the aim to estimate ecotoxicity and to identify gene candidates potentially involved in metabolism of both compounds. Nonsteroidal anti-inflammatory drug NAP up-regulated 105 and down-regulated 29 genes (p-value ≤ 0.1, fold change ≥ 2), while anthelmintic PZQ up-regulated 389 and down-regulated 353 genes with more rigorous p-value ≤ 0.001 (fold change ≥ 2). High number of up-regulated genes coding for heat shock proteins and other genes involved in response to biotic and abiotic stresses as well as down-regulation of genes involved in processes such as cell proliferation, transcription and water transport indicates serious negative effect of PZQ. NAP up-regulated mostly genes involved in various biological processes and signal transduction and down-regulated mainly genes involved in signal transduction and electron transport or energy pathways. Further, two cytochrome P450s (demethylation) and one methyltransferase (methylation of carboxyl group) were identified as candidates for phase I and several glutathione- and glycosyltransferases (conjugation) for phase II of NAP metabolism. Cytochrome P450s, glutathione and glycosyltransferases seem to play role also in metabolism of PZQ. Up-regulation of several ABC and MATE transporters by NAP and PZQ indicated their role in transport of both compounds.
Collapse
Affiliation(s)
- Premysl Landa
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic
| | - Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic
| | - Lenka Langhansova
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic
| | - Petr Marsik
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic.
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic
| | - Tomas Vanek
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic.
| |
Collapse
|
112
|
Molecular insights into the plasma membrane intrinsic proteins roles for abiotic stress and metalloids tolerance and transport in plants. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40502-018-0425-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
113
|
Porcel R, Bustamante A, Ros R, Serrano R, Mulet Salort JM. BvCOLD1: A novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress. PLANT, CELL & ENVIRONMENT 2018; 41:2844-2857. [PMID: 30103284 DOI: 10.1111/pce.13416] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/05/2018] [Accepted: 07/24/2018] [Indexed: 05/20/2023]
Abstract
Beta vulgaris (sugar beet) is one of the most important industrial crops. Screening of a cDNA library for sugar beet genes able to confer cold tolerance upon overexpression in yeast identified a novel aquaporin, which we named BvCOLD1. The amino acid sequence of BvCOLD1 indicated that an acidic protein (pI 5.18) is similar to tonoplast intrinsic protein aquaporins. RNA expression analysis indicated that BvCOLD1 is expressed in all sugar beet organs. Confocal microscopy of a green fluorescent protein-tagged version localized BvCOLD1 in the endoplasmic reticulum in yeast and in plant cells. Experiments in yeast showed that BvCOLD1 has an important role in transporting several molecules, among them is boron, one of the most limiting micronutrients for sugar beet cultivation. Transgenic Arabidopsis thaliana plants overexpressing BvCOLD1 showed enhanced tolerance to cold, to different abiotic stresses, and to boron deficiency at different developmental stages. Searches in databases only retrieved BvCOLD1 orthologues in genomes from the Chenopodioideae, a subfamily of the Amaranthaceae family that includes the closely related crop Spinacea oleracea and halotolerant plants such as Salicornia herbacea or Suaeda glauca. Orthologues share a conserved sequence in the carboxy terminus, not present in other aquaporins, which is required for the functionality of the protein.
Collapse
Affiliation(s)
- Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Antonio Bustamante
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Roc Ros
- Departament de Biologia Vegetal, Facultat de Farmácia, and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Spain
| | - Ramón Serrano
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - José M Mulet Salort
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
114
|
Vaziriyeganeh M, Lee SH, Zwiazek JJ. Water transport properties of root cells contribute to salt tolerance in halophytic grasses Poa juncifolia and Puccinellia nuttalliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:54-62. [PMID: 30348328 DOI: 10.1016/j.plantsci.2018.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Plant water uptake and aquaporin-mediated root water transport are among the most salt-sensitive processes in most plants, but even relatively high salt concentrations do not appear to impair water transport processes in halophytes. To develop better understanding of these processes in halophytic plants, we compared the responses to NaCl of the two halophytic grasses varying in salt tolerance, Puccinellia nuttalliana and Poa juncifolia, with the glycophytic grass Poa pratensis. The plants were hydroponically grown and subjected to different NaCl concentrations for up to 10 days. At the lower NaCl concentrations, shoot and root dry weights were drastically reduced in Poa pratensis, but increased in Puccinellia nuttalliana and Poa juncifolia. The examined treatment concentrations of up to 300 mM NaCl had either no effect (Puccinellia nuttalliana) or little effect (Poa juncifolia) on the net photosynthesis and transpiration rates in plants, but severely decreased the gas exchange parameters in Poa pratensis. Similarly, to growth and gas exchange, leaf water content in Puccinellia nuttalliana was not affected even by the highest, 300 mM NaCl concentration, while Poa pratensis showed decreased shoot water content in all examined NaCl treatments and Poa juncifolia in 150 and 300 mM NaCl. Cell hydraulic conductivity in roots of Poa pratensis also showed high sensitivity to NaCl and was drastically reduced in all examined NaCl concentrations. Cell hydraulic conductivity in Poa juncifolia roots was less affected by NaCl compared with Poa pratensis and in Puccinellia nuttalliana, cell hydraulic conductivity increased in response to NaCl treatments. Both Puccinellia nuttalliana and Poa juncifolia accumulated less Na in their shoot tissues compared with Poa pratensis. The concentrations of K in the roots of Poa pratensis sharply decreased with increasing NaCl treatment concentrations while in Puccinellia nuttalliana, K root concentrations remained high in all NaCl treatments and in Poa juncifoila, root K decreased only in the 300 mM NaCl treatment. Since K efflux from the cytoplasm can contribute to the acidification of the cytoplasm, this process could potentially lead to the inhibition of aquaporin function and reduction of root hydraulic conductivity. The, significance of stable K root concentrations in the roots of halophytes should be further investigated as a possible salt tolerance mechanism that could contribute to the maintenance of aquaporin function and root water transport under salt stress conditions.
Collapse
Affiliation(s)
- Maryamsadat Vaziriyeganeh
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada
| | - Seong Hee Lee
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada.
| |
Collapse
|
115
|
Gitto A, Fricke W. Zinc treatment of hydroponically grown barley plants causes a reduction in root and cell hydraulic conductivity and isoform-dependent decrease in aquaporin gene expression. PHYSIOLOGIA PLANTARUM 2018; 164:176-190. [PMID: 29381217 DOI: 10.1111/ppl.12697] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 05/18/2023]
Affiliation(s)
- Aurora Gitto
- School of Biology and Environmental Sciences; University College Dublin; Dublin 4 Republic of Ireland
| | - Wieland Fricke
- School of Biology and Environmental Sciences; University College Dublin; Dublin 4 Republic of Ireland
| |
Collapse
|
116
|
Sinclair SA, Senger T, Talke IN, Cobbett CS, Haydon MJ, Krämer U. Systemic Upregulation of MTP2- and HMA2-Mediated Zn Partitioning to the Shoot Supplements Local Zn Deficiency Responses. THE PLANT CELL 2018; 30:2463-2479. [PMID: 30150315 PMCID: PMC6241274 DOI: 10.1105/tpc.18.00207] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/09/2018] [Accepted: 08/24/2018] [Indexed: 05/08/2023]
Abstract
Low bioavailable concentrations of the micronutrient zinc (Zn) limit agricultural production on 40% of cultivated land. Here, we demonstrate that plant acclimation to Zn deficiency involves systemic regulation. Physiological Zn deficiency of Arabidopsis thaliana shoots results in increased root transcript levels of the membrane transport protein-encoding genes METAL TRANSPORT PROTEIN2 (MTP2) and HEAVY METAL ATPASE2 (HMA2), which are unresponsive to the local Zn status of roots. MTP2 and HMA2 act additively in the partitioning of Zn from roots to shoots. Chimeric GFP fusion proteins of MTP2 complement an mtp2 mutant and localize in the endoplasmic reticulum (ER) membrane of the outer cell layers from elongation to root hair zone of lateral roots. MTP2 restores Zn tolerance in a hypersensitive yeast mutant. These results are consistent with cell-to-cell movement of Zn toward the root vasculature inside the ER-luminal continuum through the desmotubules of plasmodesmata, under Zn deficiency. The previously described Zn deficiency response comprises transcriptional activation of target genes, including ZINC-REGULATED TRANSPORTER IRON-REGULATED TRANSPORTER PROTEIN genes ZIP4 and ZIP9, by the F-group bZIP transcription factors bZIP19 and bZIP23. We show that ZIP4 and ZIP9 respond to the local Zn status in both roots and shoots, in contrast to the systemic regulation identified here. Our findings are relevant for crop management and improvement toward combating human nutritional Zn deficiency that affects 30 to 50% of the world's population.
Collapse
Affiliation(s)
- Scott A Sinclair
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, 44801 Bochum, Germany
- BIOQUANT Center and Heidelberg Institute of Plant Sciences, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Toralf Senger
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ina N Talke
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Michael J Haydon
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, 44801 Bochum, Germany
- BIOQUANT Center and Heidelberg Institute of Plant Sciences, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Ute Krämer
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, 44801 Bochum, Germany
- BIOQUANT Center and Heidelberg Institute of Plant Sciences, University of Heidelberg, D-69120 Heidelberg, Germany
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
117
|
Tanaka H, Suzuki R, Okabe N, Suzuki T, Kodama Y. Salinity stress-responsive transcription factors in the liverwort Marchantia polymorpha. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:281-284. [PMID: 31819734 PMCID: PMC6879361 DOI: 10.5511/plantbiotechnology.18.0501a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/01/2018] [Indexed: 05/29/2023]
Abstract
Salinity stress limits plant growth and productivity. To cope with this limitation, the expression patterns of numerous genes are altered in response to salt stress; however, the regulatory mechanisms involved in these changes are unclear. In the present study, we investigated the regulation of the salinity stress response in the liverwort Marchantia polymorpha. The growth of M. polymorpha gemmalings was severely inhibited by NaCl, and RNA-sequencing and quantitative RT-PCR analyses revealed that the expression of several transcription factor gene families was induced by salinity stress. This work provides insight into the molecular mechanisms underlying the salinity stress response in M. polymorpha.
Collapse
Affiliation(s)
- Hiroyuki Tanaka
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Rin Suzuki
- Yokohama Science Frontier High School, Yokohama, Kanagawa 230-0046, Japan
| | - Nanako Okabe
- Yokohama Science Frontier High School, Yokohama, Kanagawa 230-0046, Japan
| | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| |
Collapse
|
118
|
Dietrich D. Hydrotropism: how roots search for water. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2759-2771. [PMID: 29529239 DOI: 10.1093/jxb/ery034] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/18/2018] [Indexed: 05/25/2023]
Abstract
Fresh water is an increasingly scarce resource for agriculture. Plant roots mediate water uptake from the soil and have developed a number of adaptive traits such as hydrotropism to aid water foraging. Hydrotropism modifies root growth to respond to a water potential gradient in soil and grow towards areas with a higher moisture content. Abscisic acid (ABA) and a small number of genes, including those encoding ABA signal transducers, MIZ2/GNOM, and the hydrotropism-specific MIZ1, are known to be necessary for the response in Arabidopsis thaliana, whereas the role of auxin in hydrotropism appears to vary depending on the plant species. This review will describe recent progress characterizing the hormonal regulation of hydrotropism. Recent advances in identifying the sites of hydrotropic perception and response, together with its interaction with gravitropism, will also be discussed. Finally, I will describe putative mechanisms for perception of the water potential gradient and a potential role for hydrotropism in acclimatizing plants to drought conditions.
Collapse
Affiliation(s)
- Daniela Dietrich
- Centre for Plant Integrative Biology and Plant & Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
119
|
Macho-Rivero MA, Herrera-Rodríguez MB, Brejcha R, Schäffner AR, Tanaka N, Fujiwara T, González-Fontes A, Camacho-Cristóbal JJ. Boron Toxicity Reduces Water Transport from Root to Shoot in Arabidopsis Plants. Evidence for a Reduced Transpiration Rate and Expression of Major PIP Aquaporin Genes. PLANT & CELL PHYSIOLOGY 2018; 59:836-844. [PMID: 29415257 DOI: 10.1093/pcp/pcy026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 01/26/2018] [Indexed: 05/24/2023]
Abstract
Toxic boron (B) concentrations cause impairments in several plant metabolic and physiological processes. Recently we reported that B toxicity led to a decrease in the transpiration rate of Arabidopsis plants in an ABA-dependent process within 24 h, which could indicate the occurrence of an adjustment of whole-plant water relations in response to this stress. Since plasma membrane intrinsic protein (PIP) aquaporins are key components influencing the water balance of plants because of their involvement in root water uptake and tissue hydraulic conductance, the aim of the present work was to study the effects of B toxicity on these important parameters affecting plant water status over a longer period of time. For this purpose, transpiration rate, water transport to the shoot and transcript levels of genes encoding four major PIP aquaporins were measured in Arabidopsis plants treated or not with a toxic B concentration. Our results indicate that, during the first 24 h of B toxicity, increased shoot ABA content would play a key role in reducing stomatal conductance, transpiration rate and, consequently, the water transport to the shoot. These physiological responses to B toxicity were maintained for up to 48 h of B toxicity despite shoot ABA content returning to control levels. In addition, B toxicity also caused the down-regulation of several genes encoding root and shoot aquaporins, which could reduce the cell to cell movement of water in plant tissues and, consequently, the water flux to shoot. All these changes in the water balance of plants under B toxicity could be a mechanism to prevent excess B accumulation in plant tissues.
Collapse
Affiliation(s)
- Miguel A Macho-Rivero
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla 41013, Spain
| | - M Begoña Herrera-Rodríguez
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla 41013, Spain
| | - Ramona Brejcha
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anton R Schäffner
- Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nobuhiro Tanaka
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657 Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657 Japan
| | - Agustín González-Fontes
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla 41013, Spain
| | - Juan J Camacho-Cristóbal
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla 41013, Spain
| |
Collapse
|
120
|
Feng ZJ, Xu SC, Liu N, Zhang GW, Hu QZ, Xu ZS, Gong YM. Identification of the AQP members involved in abiotic stress responses from Arabidopsis. Gene 2018; 646:64-73. [DOI: 10.1016/j.gene.2017.12.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/22/2017] [Indexed: 11/26/2022]
|
121
|
Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front Chem 2018; 6:26. [PMID: 29520357 DOI: 10.3389/fchem.2018.00026/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/01/2018] [Indexed: 05/28/2023] Open
Abstract
Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.
Collapse
Affiliation(s)
- Mouna Lamaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| | - Martin Jemo
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
- Office Chérifien des Phosphates-Africa, Casablanca, Morocco
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada
| | - Faouzi Bekkaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| |
Collapse
|
122
|
Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front Chem 2018; 6:26. [PMID: 29520357 PMCID: PMC5827537 DOI: 10.3389/fchem.2018.00026] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/01/2018] [Indexed: 01/09/2023] Open
Abstract
Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.
Collapse
Affiliation(s)
- Mouna Lamaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| | - Martin Jemo
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
- Office Chérifien des Phosphates-Africa, Casablanca, Morocco
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada
| | - Faouzi Bekkaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| |
Collapse
|
123
|
Sánchez-Romera B, Calvo-Polanco M, Ruiz-Lozano JM, Zamarreño ÁM, Arbona V, García-Mina JM, Gómez-Cadenas A, Aroca R. Involvement of the def-1 Mutation in the Response of Tomato Plants to Arbuscular Mycorrhizal Symbiosis Under Well-Watered and Drought Conditions. PLANT & CELL PHYSIOLOGY 2018; 59:248-261. [PMID: 29165704 DOI: 10.1093/pcp/pcx178] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/13/2017] [Indexed: 05/27/2023]
Abstract
Jasmonic acid (JA) and arbuscular mycorrhizal (AM) symbioses are known to protect plants against abiotic and biotic stresses, but are also involved in the regulation of root hydraulic conductance (L). The objective of this experiment was to elucidate the role of JA in the water relations and hormonal regulation of AM plants under drought by using tomato plants defective in the synthesis of JA (def-1). Our results showed that JA is involved in the uptake and transport of water through its effect on both physiological parameters (stomatal conductance and L) and molecular parameters, mainly by controlling the expression and abundance of aquaporins. We observed that def-1 plants increased the expression of seven plant aquaporin genes under well-watered conditions in the absence of AM fungus, which partly explain the increment of L by this mutation under well-watered conditions. In addition, the effects of the AM symbiosis on plants were modified by the def-1 mutation, with the expression of some aquaporins and plant hormone concentration being disturbed. On the other hand, methyl salicylate (MeSA) content was increased in non-mycorrhizal def-1 plants, suggesting that MeSA and JA can act together in the regulation of L. In a complementary experiment, it was found that exogenous MeSA increased L, confirming our hypothesis. Likewise, we confirmed that JA, ABA and SA are hormones involved in plant mechanisms to cope with stressful situations, their concentrations being controlled by the AM symbiosis. In conclusion, under well-watered conditions, the def-1 mutation mimics the effects of AM symbiosis, but under drought conditions the def-1 mutation changed the effects of the AM symbiosis on plants.
Collapse
Affiliation(s)
- Beatriz Sánchez-Romera
- Estación Experimental del Zaidín (CSIC), Department of Soil Microbiology and Symbiotic Systems, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Mónica Calvo-Polanco
- Estación Experimental del Zaidín (CSIC), Department of Soil Microbiology and Symbiotic Systems, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Estación Experimental del Zaidín (CSIC), Department of Soil Microbiology and Symbiotic Systems, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Ángel María Zamarreño
- Department of Environmental Biology, Agricultural Chemistry and Biology Group-CMI Roullier, Faculty of Sciences, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, E-12071, Castellò de la Plana, Spain
| | - Jose María García-Mina
- Department of Environmental Biology, Agricultural Chemistry and Biology Group-CMI Roullier, Faculty of Sciences, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, E-12071, Castellò de la Plana, Spain
| | - Ricardo Aroca
- Estación Experimental del Zaidín (CSIC), Department of Soil Microbiology and Symbiotic Systems, C/ Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
124
|
Flexas J, Cano FJ, Carriquí M, Coopman RE, Mizokami Y, Tholen D, Xiong D. CO2 Diffusion Inside Photosynthetic Organs. THE LEAF: A PLATFORM FOR PERFORMING PHOTOSYNTHESIS 2018. [DOI: 10.1007/978-3-319-93594-2_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
125
|
Etesami H, Jeong BR. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:881-896. [PMID: 28968941 DOI: 10.1016/j.ecoenv.2017.09.063] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/17/2017] [Accepted: 09/22/2017] [Indexed: 05/22/2023]
Abstract
In the era present, due to increasing incidences of a large number of different biotic and abiotic stresses all over the world, the growth of plants (principal crops) may be restrained by these stresses. In addition to beneficial microorganisms, use of silicon (Si)-fertilizer is known as an ecologically compatible and environmentally friendly technique to stimulate plant growth, alleviate various biotic and abiotic stresses in plants, and enhance the plant resistance to multiple stresses, because Si is not harmful, corrosive, and polluting to plants when presents in excess. Here, we reviewed the action mechanisms by which Si alleviates abiotic and biotic stresses in plants. The use of Si (mostly as industrial slags and rice straw) is predicted to become a sustainable strategy and an emerging trend in agriculture to enhance crop growth and alleviate abiotic and biotic stresses in the not too distant future. In this review article, the future research needs on the use of Si under the conditions of abiotic and biotic stresses are also highlighted.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Iran.
| | - Byoung Ryong Jeong
- Horticulture Major, Division of Applies Life Science (BK21 Plus Program), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
126
|
Junková P, Daněk M, Kocourková D, Brouzdová J, Kroumanová K, Zelazny E, Janda M, Hynek R, Martinec J, Valentová O. Mapping of Plasma Membrane Proteins Interacting With Arabidopsis thaliana Flotillin 2. FRONTIERS IN PLANT SCIENCE 2018; 9:991. [PMID: 30050548 PMCID: PMC6052134 DOI: 10.3389/fpls.2018.00991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/19/2018] [Indexed: 05/08/2023]
Abstract
Arabidopsis flotillin 2 (At5g25260) belongs to the group of plant flotillins, which are not well characterized. In contrast, metazoan flotillins are well known as plasma membrane proteins associated with membrane microdomains that act as a signaling hub. The similarity of plant and metazoan flotillins, whose functions most likely consist of affecting other proteins via protein-protein interactions, determines the necessity of detecting their interacting partners in plants. Nevertheless, identifying the proteins that form complexes on the plasma membrane is a challenging task due to their low abundance and hydrophobic character. Here we present an approach for mapping Arabidopsis thaliana flotillin 2 plasma membrane interactors, based on the immunoaffinity purification of crosslinked and enriched plasma membrane proteins with mass spectrometry detection. Using this approach, 61 proteins were enriched in the AtFlot-GFP plasma membrane fraction, and 19 of them were proposed to be flotillin 2 interaction partners. Among our proposed partners of Flot2, proteins playing a role in the plant response to various biotic and abiotic stresses were detected. Additionally, the use of the split-ubiquitin yeast system helped us to confirm that plasma-membrane ATPase 1, early-responsive to dehydration stress protein 4, syntaxin-71, harpin-induced protein-like 3, hypersensitive-induced response protein 2 and two aquaporin isoforms interact with flotillin 2 directly. Based on the results of our study and the reported properties of Flot2 interactors, we propose that Flot2 complexes may be involved in plant-pathogen interactions, water transport and intracellular trafficking.
Collapse
Affiliation(s)
- Petra Junková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
- *Correspondence: Petra Junková, ;
| | - Michal Daněk
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Daniela Kocourková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jitka Brouzdová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Kristýna Kroumanová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Enric Zelazny
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS–CEA–Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Martin Janda
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Radovan Hynek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Olga Valentová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| |
Collapse
|
127
|
Are Aquaporins (AQPs) the Gateway that Conduits Nutrients, Persistent Organic Pollutants and Perfluoroalkyl Substances (PFASs) into Plants? ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40362-017-0045-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
128
|
Vieira PM, Santos MP, Andrade CM, Souza-Neto OA, Ulhoa CJ, Aragão FJL. Overexpression of an aquaglyceroporin gene from Trichoderma harzianum improves water-use efficiency and drought tolerance in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:38-47. [PMID: 29080426 DOI: 10.1016/j.plaphy.2017.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 10/14/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
Aquaporins (AQPs) and aquaglyceroporins (AQGPs) are integral membrane proteins that mediate the transport of water and solutes, such as glycerol and urea, across membranes. AQP and AQGP genes represent a valuable tool for biotechnological improvement of plant tolerance to environmental stresses. We previously isolated a gene encoding for an aquaglyceroporin (ThAQGP), which was up-regulated in Trichoderma harzianum during interaction with the plant pathogen Fusarium solani. This gene was introduced into Nicotiana tabacum and plants were physiologically characterized. Under favorable growth conditions, transgenic progenies did not had differences in both germination and growth rates when compared to wild type. However, physiological responses under drought stress revealed that transgenic plants presented significantly higher transpiration rate, stomatal conductance, photosynthetic efficiency and faster turgor recovery than wild type. Quantitative RT-PCR analysis demonstrated the presence of ThAQGP transcripts in transgenic lines, showing the cause-effect relationship between the observed phenotype and the expression of the transgene. Our results underscore the high potential of T. harzianum as a source of genes with promising applications in transgenic plants tolerant to drought stress.
Collapse
Affiliation(s)
- Pabline Marinho Vieira
- Instituto Federal Goiano, Departamento de Ciências Biológicas, Laboratório de Biotecnologia, 75790-000, Urutaí, GO, Brazil
| | - Mirella Pupo Santos
- Universidade Federal do Rio de Janeiro, Nupem, Laboratório de Biotecnologia Vegetal, 27910-970, Macaé, RJ, Brazil
| | | | | | - Cirano José Ulhoa
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Departamento de Bioquímica e Biologia Molecular, Campus Samambaia, P.O. Box 131, 74001-970, Goiânia, GO, Brazil
| | | |
Collapse
|
129
|
Putpeerawit P, Sojikul P, Thitamadee S, Narangajavana J. Genome-wide analysis of aquaporin gene family and their responses to water-deficit stress conditions in cassava. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:118-127. [PMID: 29100101 DOI: 10.1016/j.plaphy.2017.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/13/2017] [Accepted: 10/26/2017] [Indexed: 05/27/2023]
Abstract
Cassava (Manihot esculenta Crantz) is an important economic crop in tropical countries. Although cassava is considered a drought-tolerant crop that can grow in arid areas, the impact of drought can significantly reduce the growth and yield of cassava storage roots. The discovery of aquaporin molecules (AQPs) in plants has resulted in a paradigm shift in the understanding of plant-water relationships, whereas the relationship between aquaporin and drought resistance in cassava still remains elusive. To investigate the potential role of aquaporin in cassava under water-deficit conditions, 45 putative MeAQPs were identified in the cassava genome. Six members of MeAQPs, containing high numbers of water stress-responsive motifs in their promoter regions, were selected for a gene expression study. Two cassava cultivars, which showed different degrees of responses to water-deficit stress, were used to test in in vitro and potted plant systems. The differential expression of all candidate MeAQPs were found in only leaves from the potted plant system were consistent with the relative water content and with the stomatal closure profile of the two cultivars. MePIP2-1 and MePIP2-10 were up-regulated and this change in their expression might regulate a special signal for water efflux out of guard cells, thus inducing stomatal closure under water-deficit conditions. In addition, the expression profiles of genes in the ABA-dependent pathway revealed an essential correlation with stomatal closure. The potential functions of MeAQPs and candidate ABA-dependent pathway genes in response to water deficit in the more tolerant cassava cultivar were discussed.
Collapse
Affiliation(s)
- Pattaranit Putpeerawit
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, Thailand
| | - Punchapat Sojikul
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Siripong Thitamadee
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jarunya Narangajavana
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, Thailand.
| |
Collapse
|
130
|
Paudel I, Cohen S, Shlizerman L, Jaiswal AK, Shaviv A, Sadka A. Reductions in root hydraulic conductivity in response to clay soil and treated waste water are related to PIPs down-regulation in Citrus. Sci Rep 2017; 7:15429. [PMID: 29133958 PMCID: PMC5684345 DOI: 10.1038/s41598-017-15762-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/02/2017] [Indexed: 11/09/2022] Open
Abstract
Citrus hydraulic physiology and PIP transcript levels were characterized in heavy (clay) and light (sandy loam) soils with and without treated waste water (TWW) irrigation after a summer irrigation season and at the end of a winter rainy season recovery period. Consistent reductions in clay soils compared to sandy loam were found for fresh water (FW) and TWW irrigation, respectively, in root water uptake, as well as in hydraulic conductivity of whole plant (Ks plant), stem (Ks stem) and root (Ks root). Transcript levels of most PIPs down-regulated following TWW irrigation in both soils, but relative gene expression of three PIPs was significantly higher in summer for sandy soil and FW than for clay soil and TWW; their mRNA levels was significantly correlated to Ks root. A pot experiment, which compared short term influences of saline and TWW found that both treatments, compared to FW, reduced root water uptake and PIPs mRNA levels by 2-fold after 20 days, and the decreases continued with time until the end of the experiment. These latter data indicated that salinity had an important influence. Our results suggest that plant hydraulic adjustment to soil texture and water quality occurs rapidly, i.e. within days, and is modulated by PIPs expression.
Collapse
Affiliation(s)
- Indira Paudel
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan, 5025001, Israel
- Department of Soil and Water, The Robert H. Smith Faculty of Food Agriculture and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shabtai Cohen
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan, 5025001, Israel
| | - Lyudmila Shlizerman
- Department of Fruit Trees Sciences, ARO Volcani Center, Bet Dagan, 5025001, Israel
| | - Amit K Jaiswal
- Department of Soil and Water, The Robert H. Smith Faculty of Food Agriculture and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Plant Protection, ARO Volcani Center, Bet Dagan, 5025001, Israel
| | - Avi Shaviv
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Avi Sadka
- Department of Fruit Trees Sciences, ARO Volcani Center, Bet Dagan, 5025001, Israel.
| |
Collapse
|
131
|
Kourghi M, Nourmohammadi S, Pei JV, Qiu J, McGaughey S, Tyerman SD, Byrt CS, Yool AJ. Divalent Cations Regulate the Ion Conductance Properties of Diverse Classes of Aquaporins. Int J Mol Sci 2017; 18:ijms18112323. [PMID: 29099773 PMCID: PMC5713292 DOI: 10.3390/ijms18112323] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022] Open
Abstract
Aquaporins (AQPs) are known to facilitate water and solute fluxes across barrier membranes. An increasing number of AQPs are being found to serve as ion channels. Ion and water permeability of selected plant and animal AQPs (plant Arabidopsis thaliana AtPIP2;1, AtPIP2;2, AtPIP2;7, human Homo sapiens HsAQP1, rat Rattus norvegicus RnAQP4, RnAQP5, and fly Drosophilamelanogaster DmBIB) were expressed in Xenopus oocytes and examined in chelator-buffered salines to evaluate the effects of divalent cations (Ca2+, Mg2+, Ba2+ and Cd2+) on ionic conductances. AtPIP2;1, AtPIP2;2, HsAQP1 and DmBIB expressing oocytes had ionic conductances, and showed differential sensitivity to block by external Ca2+. The order of potency of inhibition by Ca2+ was AtPIP2;2 > AtPIP2;1 > DmBIB > HsAQP1. Blockage of the AQP cation channels by Ba2+ and Cd2+ caused voltage-sensitive outward rectification. The channels with the highest sensitivity to Ca2+ (AtPIP2;1 and AtPIP2;2) showed a distinctive relief of the Ca2+ block by co-application of excess Ba2+, suggesting that divalent ions act at the same site. Recognizing the regulatory role of divalent cations may enable the discovery of other classes of AQP ion channels, and facilitate the development of tools for modulating AQP ion channels. Modulators of AQPs have potential value for diverse applications including improving salinity tolerance in plants, controlling vector-borne diseases, and intervening in serious clinical conditions involving AQPs, such as cancer metastasis, cardiovascular or renal dysfunction.
Collapse
Affiliation(s)
- Mohamad Kourghi
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Saeed Nourmohammadi
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Jinxin V Pei
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Jiaen Qiu
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Samantha McGaughey
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Stephen D Tyerman
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Caitlin S Byrt
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
132
|
Bazihizina N, Veneklaas EJ, Barrett-Lennard EG, Colmer TD. Hydraulic redistribution: limitations for plants in saline soils. PLANT, CELL & ENVIRONMENT 2017; 40:2437-2446. [PMID: 28707352 DOI: 10.1111/pce.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/25/2017] [Indexed: 06/07/2023]
Abstract
Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build-up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non-saline soils, will experience a dampened magnitude of water potential gradients in the soil-plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance.
Collapse
Affiliation(s)
- Nadia Bazihizina
- Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy
- School of Land and Food, University of Tasmania, Hobart, TAS, 7001, Australia
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Erik J Veneklaas
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
- School of Biological Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Edward G Barrett-Lennard
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
- Department of Agriculture and Food, Western Australia, 3 Baron-Hay Court, South, Perth, Western Australia, 6151, Australia
- School of Veterinary and Life Science, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia
| | - Timothy D Colmer
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
133
|
Landa P, Dytrych P, Prerostova S, Petrova S, Vankova R, Vanek T. Transcriptomic Response of Arabidopsis thaliana Exposed to CuO Nanoparticles, Bulk Material, and Ionic Copper. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10814-10824. [PMID: 28832134 DOI: 10.1021/acs.est.7b02265] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Engineered nanoparticles (ENPs) exhibit unique properties advantageous in a number of applications, but they also represent potential health and environmental risks. In this study, we investigated the phytotoxic mechanism of CuO ENPs using transcriptomic analysis and compared this response with the response to CuO bulk particles and ionic Cu2+. Ionic Cu2+ at the concentration of 0.16 mg L-1 changed transcription of 2692 genes (p value of <0.001, fold change of ≥2) after 7 days of exposure, whereas CuO ENPs and bulk particles (both in the concentration of 10 mg L-1) altered the expression of 922 and 482 genes in Arabidopsis thaliana roots, respectively. The similarity between transcription profiles of plants exposed to ENPs and ionic Cu2+ indicated that the main factor in phytotoxicity was the release of Cu2+ ions from CuO ENPs after 7 days of exposure. The effect of Cu2+ ions was evident in all treatments, as indicated by the down-regulation of genes involved in metal homeostasis and transport and the up-regulation of oxidative stress response genes. ENPs were more soluble than bulk particles, resulting in the up-regulation of metallochaperone-like genes or the down-regulation of aquaporins and metal transmembrane transporters that was also characteristic for ionic Cu2+ exposure.
Collapse
Affiliation(s)
- Premysl Landa
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany of the CAS, v.v.i. , Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Pavel Dytrych
- Department of Catalysis and Reaction Engineering, Institute of Chemical Process Fundamentals of the CAS, v.v.i. , Rozvojova 135/1, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the CAS, v.v.i. , Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague , Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Sarka Petrova
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany of the CAS, v.v.i. , Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the CAS, v.v.i. , Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Tomas Vanek
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany of the CAS, v.v.i. , Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| |
Collapse
|
134
|
Physiological and Transcriptomic Responses of Chinese Cabbage (Brassica rapa L. ssp. Pekinensis) to Salt Stress. Int J Mol Sci 2017; 18:ijms18091953. [PMID: 28895882 PMCID: PMC5618602 DOI: 10.3390/ijms18091953] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/18/2017] [Accepted: 09/04/2017] [Indexed: 11/17/2022] Open
Abstract
Salt stress is one of the major abiotic stresses that severely impact plant growth and development. In this study, we investigated the physiological and transcriptomic responses of Chinese cabbage “Qingmaye” to salt stress, a main variety in North China. Our results showed that the growth and photosynthesis of Chinese cabbage were significantly inhibited by salt treatment. However, as a glycophyte, Chinese cabbage could cope with high salinity; it could complete an entire life cycle at 100 mM NaCl. The high salt tolerance of Chinese cabbage was achieved by accumulating osmoprotectants and by maintaining higher activity of antioxidant enzymes. Transcriptomic responses were analyzed using the digital gene expression profiling (DGE) technique after 12 h of treatment by 200 mM NaCl. A total of 1235 differentially expressed genes (DEGs) including 740 up- and 495 down-regulated genes were identified. Functional annotation analyses showed that the DEGs were related to signal transduction, osmolyte synthesis, transcription factors, and antioxidant proteins. Taken together, this study contributes to our understanding of the mechanism of salt tolerance in Chinese cabbage and provides valuable information for further improvement of salt tolerance in Chinese cabbage breeding programs.
Collapse
|
135
|
Landi S, Esposito S. Nitrate Uptake Affects Cell Wall Synthesis and Modeling. FRONTIERS IN PLANT SCIENCE 2017; 8:1376. [PMID: 28848580 PMCID: PMC5550703 DOI: 10.3389/fpls.2017.01376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/24/2017] [Indexed: 05/27/2023]
Abstract
Nowadays, the relationship(s) about N assimilation and cell wall remodeling in plants remains generally unclear. Enzymes involved in cell wall synthesis/modification, and nitrogen transporters play a critical role in plant growth, differentiation, and response to external stimuli. In this review, a co-expression analysis of nitrate and ammonium transporters of Arabidopsis thaliana was performed in order to explore the functional connection of these proteins with cell-wall related enzymes. This approach highlighted a strict relationship between inorganic nitrogen transporters and cell wall formation, identifying a number of co-expressed remodeling enzymes. The enzymes involved in pectin and xyloglucan synthesis resulted particularly co-regulated together with nitrate carriers, suggesting a connection between nitrate assimilation and cell wall growth regulation. Major Facilitator Carriers, and one chloride channel, are similarly co-expressed with pectin lyase, pectinacetylesterase, and cellulose synthase. Contrarily, ammonium transporters show little or no connection with those genes involved in cell wall synthesis. Different aspects related to plant development, embryogenesis, and abiotic stress response will be discussed, given the importance in plant growth of cell wall synthesis and nitrate uptake. Intriguingly, the improvement of abiotic stress tolerance in crops concerns both these processes indicating the importance in sensing the environmental constraints and mediating a response. These evaluations could help to identify candidate genes for breeding purposes.
Collapse
|
136
|
An J, Hu Z, Che B, Chen H, Yu B, Cai W. Heterologous Expression of Panax ginseng PgTIP1 Confers Enhanced Salt Tolerance of Soybean Cotyledon Hairy Roots, Composite, and Whole Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1232. [PMID: 28769947 PMCID: PMC5512343 DOI: 10.3389/fpls.2017.01232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/29/2017] [Indexed: 05/03/2023]
Abstract
The Panax ginseng TIP gene PgTIP1 was previously demonstrated to have high water channel activity by its heterologous expression in Xenopus laevis oocytes and in yeast; it also plays a significant role in growth of PgTIP1-transgenic Arabidopsis plants under favorable conditions and has enhanced tolerance toward salt and drought treatment. In this work, we first investigated the physiological effects of heterologous PgTIP1 expression in soybean cotyledon hairy roots or composite plants mediated by Agrobacterium rhizogenes toward enhanced salt tolerance. The PgTIP1-transgenic soybean plants mediated by the pollen tube pathway, represented by the lines N and J11, were analyzed at the physiological and molecular levels for enhanced salt tolerance. The results showed that in terms of root-specific heterologous expression, the PgTIP1-transformed soybean cotyledon hairy roots or composite plants displayed superior salt tolerance compared to the empty vector-transformed ones according to the mitigatory effects of hairy root growth reduction, drop in leaf RWC, and rise in REL under salt stress. Additionally, declines in K+ content, increases in Na+ content and Na+/K+ ratios in the hairy roots, stems, or leaves were effectively alleviated by PgTIP1-transformation, particularly the stems and leaves of composite soybean plants. At the whole plant level, PgTIP1-trasgenic soybean lines were found to possess stronger root vigor, reduced root and leaf cell membrane damage, increased SOD, POD, CAT, and APX activities, steadily increased leaf Tr, RWC, and Pn values, and smaller declines in chlorophyll and carotenoid content when exposed to salt stress compared to wild type. Moreover, the distribution patterns of Na+, K+, and Cl- in the roots, stems, and leaves of salt-stressed transgenic plants were readjusted, in that the absorbed Na+ and Cl- were mainly restricted to the roots to reduce their transport to the shoots, and the transport of root-absorbed K+ to the shoots was simultaneously promoted. PgTIP1 transformation into soybean plants enhanced the expression of some stress-related genes (GmPOD, GmAPX1, GmSOS1, and GmCLC1) in the roots and leaves under salt treatment. This indicates that the causes of enhanced salt tolerance of heterologous PgTIP1-transformed soybean are associated with the positive regulation on water relations, ion homeostasis, and ROS scavenging under salt stress both at root-specific and whole plant levels.
Collapse
Affiliation(s)
- Jing An
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Zhenmin Hu
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Benning Che
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Haiying Chen
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghai, China
| | - Bingjun Yu
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Weiming Cai
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghai, China
| |
Collapse
|
137
|
Zhang DY, Kumar M, Xu L, Wan Q, Huang YH, Xu ZL, He XL, Ma JB, Pandey GK, Shao HB. Genome-wide identification of Major Intrinsic Proteins in Glycine soja and characterization of GmTIP2;1 function under salt and water stress. Sci Rep 2017; 7:4106. [PMID: 28646139 PMCID: PMC5482899 DOI: 10.1038/s41598-017-04253-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
In different plant species, aquaporins (AQPs) facilitate water movement by regulating root hydraulic conductivity under diverse stress conditions such as salt and water stresses. To improve survival and yield of crop plants, a detailed understanding of stress responses is imperative and required. We used Glycine soja genome as a tool to study AQPs, considering it shows abundant genetic diversity and higher salt environment tolerance features and identified 62 Gs AQP genes. Additionally, this study identifies major aquaporins responsive to salt and drought stresses in soybean and elucidates their mode of action through yeast two-hybrid assay and BiFC. Under stress condition, the expression analysis of AQPs in roots and leaves of two contrasting ecotypes of soybean revealed diverse expression patterns suggesting complex regulation at transcriptional level. Based on expression analysis, we identify GmTIP2;1 as a potential candidate involved in salinity and drought responses. The overexpression of GmTIP2;1 in Saccharomyces cerevisiae as well as in-planta enhanced salt and drought tolerance. We identified that GmTIP2;1 forms homodimers as well as interacts with GmTIP1;7 and GmTIP1;8. This study augments our knowledge of stress responsive pathways and also establishes GmTIP2;1 as a new stress responsive gene in imparting salt stress tolerance in soybean.
Collapse
Affiliation(s)
- Da-Yong Zhang
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Manoj Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ling Xu
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Qun Wan
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Yi-Hong Huang
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Zhao-Long Xu
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Xiao-Lan He
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Jin-Biao Ma
- Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences Urumqi, Urumqi, China
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India.
| | - Hong-Bo Shao
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China.
- JLCBE, Yancheng Teachers University, Xiwang Avenue 1, Yancheng, 224002, China.
| |
Collapse
|
138
|
Bose J, Munns R, Shabala S, Gilliham M, Pogson B, Tyerman SD. Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3129-3143. [PMID: 28472512 DOI: 10.1093/jxb/erx142] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Salt stress impacts multiple aspects of plant metabolism and physiology. For instance it inhibits photosynthesis through stomatal limitation, causes excessive accumulation of sodium and chloride in chloroplasts, and disturbs chloroplast potassium homeostasis. Most research on salt stress has focused primarily on cytosolic ion homeostasis with few studies of how salt stress affects chloroplast ion homeostasis. This review asks the question whether membrane-transport processes and ionic relations are differentially regulated between glycophyte and halophyte chloroplasts and whether this contributes to the superior salt tolerance of halophytes. The available literature indicates that halophytes can overcome stomatal limitation by switching to CO2 concentrating mechanisms and increasing the number of chloroplasts per cell under saline conditions. Furthermore, salt entry into the chloroplast stroma may be critical for grana formation and photosystem II activity in halophytes but not in glycophytes. Salt also inhibits some stromal enzymes (e.g. fructose-1,6-bisphosphatase) to a lesser extent in halophyte species. Halophytes accumulate more chloride in chloroplasts than glycophytes and appear to use sodium in functional roles. We propose the molecular identities of candidate transporters that move sodium, chloride and potassium across chloroplast membranes and discuss how their operation may regulate photochemistry and photosystem I and II activity in chloroplasts.
Collapse
Affiliation(s)
- Jayakumar Bose
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Rana Munns
- Australian Research Council Centre of Excellence in Plant Energy Biology, and School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia
| | - Matthew Gilliham
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Barry Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Stephen D Tyerman
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
139
|
Groszmann M, Osborn HL, Evans JR. Carbon dioxide and water transport through plant aquaporins. PLANT, CELL & ENVIRONMENT 2017; 40:938-961. [PMID: 27739588 DOI: 10.1111/pce.12844] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/01/2016] [Accepted: 09/22/2016] [Indexed: 05/25/2023]
Abstract
Aquaporins are channel proteins that function to increase the permeability of biological membranes. In plants, aquaporins are encoded by multigene families that have undergone substantial diversification in land plants. The plasma membrane intrinsic proteins (PIPs) subfamily of aquaporins is of particular interest given their potential to improve plant water relations and photosynthesis. Flowering plants have between 7 and 28 PIP genes. Their expression varies with tissue and cell type, through development and in response to a variety of factors, contributing to the dynamic and tissue specific control of permeability. There are a growing number of PIPs shown to act as water channels, but those altering membrane permeability to CO2 are more limited. The structural basis for selective substrate specificities has not yet been resolved, although a few key amino acid positions have been identified. Several regions important for dimerization, gating and trafficking are also known. PIP aquaporins assemble as tetramers and their properties depend on the monomeric composition. PIPs control water flux into and out of veins and stomatal guard cells and also increase membrane permeability to CO2 in mesophyll and stomatal guard cells. The latter increases the effectiveness of Rubisco and can potentially influence transpiration efficiency.
Collapse
Affiliation(s)
- Michael Groszmann
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Hannah L Osborn
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - John R Evans
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
140
|
Sabol P, Kulich I, Žárský V. RIN4 recruits the exocyst subunit EXO70B1 to the plasma membrane. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3253-3265. [PMID: 28338727 PMCID: PMC5853926 DOI: 10.1093/jxb/erx007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/09/2017] [Indexed: 05/22/2023]
Abstract
The exocyst is a conserved vesicle-tethering complex with principal roles in cell polarity and morphogenesis. Several studies point to its involvement in polarized secretion during microbial pathogen defense. In this context, we have found an interaction between the Arabidopsis EXO70B1 exocyst subunit, a protein which was previously associated with both the defense response and autophagy, and RPM1 INTERACTING PROTEIN 4 (RIN4), the best studied member of the NOI protein family and a known regulator of plant defense pathways. Interestingly, fragments of RIN4 mimicking the cleavage caused by the Pseudomonas syringae effector protease, AvrRpt2, fail to interact strongly with EXO70B1. We observed that transiently expressed RIN4, but not the plasma membrane (PM) protein aquaporin PIP2, recruits EXO70B1 to the PM. Unlike EXO70B1, RIN4 does not recruit the core exocyst subunit SEC6 to the PM under these conditions. Furthermore, the AvrRpt2 effector protease delivered by P. syringae is able to release both RIN4 and EXO70B1 to the cytoplasm. We present a model for how RIN4 might regulate the localization and putative function of EXO70B1 and speculate on the role the AvrRpt2 protease might have in the regulation of this defense response.
Collapse
Affiliation(s)
- Peter Sabol
- Charles University in Prague, Viničná, Prague, Czech Republic
| | - Ivan Kulich
- Charles University in Prague, Viničná, Prague, Czech Republic
- Correspondence:
| | - Viktor Žárský
- Charles University in Prague, Viničná, Prague, Czech Republic
- Institute of Experimental Botany, Rozvojová, Prague, Czech Republic
| |
Collapse
|
141
|
Byrt CS, Zhao M, Kourghi M, Bose J, Henderson SW, Qiu J, Gilliham M, Schultz C, Schwarz M, Ramesh SA, Yool A, Tyerman S. Non-selective cation channel activity of aquaporin AtPIP2;1 regulated by Ca 2+ and pH. PLANT, CELL & ENVIRONMENT 2017; 40:802-815. [PMID: 27620834 DOI: 10.1111/pce.12832] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/08/2016] [Accepted: 09/10/2016] [Indexed: 05/20/2023]
Abstract
The aquaporin AtPIP2;1 is an abundant plasma membrane intrinsic protein in Arabidopsis thaliana that is implicated in stomatal closure, and is highly expressed in plasma membranes of root epidermal cells. When expressed in Xenopus laevis oocytes, AtPIP2;1 increased water permeability and induced a non-selective cation conductance mainly associated with Na+ . A mutation in the water pore, G103W, prevented both the ionic conductance and water permeability of PIP2;1. Co-expression of AtPIP2;1 with AtPIP1;2 increased water permeability but abolished the ionic conductance. AtPIP2;2 (93% identical to AtPIP2;1) similarly increased water permeability but not ionic conductance. The ionic conductance was inhibited by the application of extracellular Ca2+ and Cd2+ , with Ca2+ giving a biphasic dose-response with a prominent IC50 of 0.32 mм comparable with a previous report of Ca2+ sensitivity of a non-selective cation channel (NSCC) in Arabidopsis root protoplasts. Low external pH also inhibited ionic conductance (IC50 pH 6.8). Xenopus oocytes and Saccharomyces cerevisiae expressing AtPIP2;1 accumulated more Na+ than controls. Establishing whether AtPIP2;1 has dual ion and water permeability in planta will be important in understanding the roles of this aquaporin and if AtPIP2;1 is a candidate for a previously reported NSCC responsible for Ca2+ and pH sensitive Na+ entry into roots.
Collapse
Affiliation(s)
- Caitlin S Byrt
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Manchun Zhao
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Mohamad Kourghi
- Discipline of Physiology, School of Medicine, University of Adelaide, South Australia, 5005, Australia
| | - Jayakumar Bose
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Sam W Henderson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Jiaen Qiu
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Matthew Gilliham
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Carolyn Schultz
- Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Manuel Schwarz
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Sunita A Ramesh
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Andrea Yool
- Discipline of Physiology, School of Medicine, University of Adelaide, South Australia, 5005, Australia
| | - Steve Tyerman
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| |
Collapse
|
142
|
Atieno J, Li Y, Langridge P, Dowling K, Brien C, Berger B, Varshney RK, Sutton T. Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. Sci Rep 2017; 7:1300. [PMID: 28465574 PMCID: PMC5430978 DOI: 10.1038/s41598-017-01211-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/27/2017] [Indexed: 11/12/2022] Open
Abstract
Soil salinity results in reduced productivity in chickpea. However, breeding for salinity tolerance is challenging because of limited knowledge of the key traits affecting performance under elevated salt and the difficulty of high-throughput phenotyping for large, diverse germplasm collections. This study utilised image-based phenotyping to study genetic variation in chickpea for salinity tolerance in 245 diverse accessions. On average salinity reduced plant growth rate (obtained from tracking leaf expansion through time) by 20%, plant height by 15% and shoot biomass by 28%. Additionally, salinity induced pod abortion and inhibited pod filling, which consequently reduced seed number and seed yield by 16% and 32%, respectively. Importantly, moderate to strong correlation was observed for different traits measured between glasshouse and two field sites indicating that the glasshouse assays are relevant to field performance. Using image-based phenotyping, we measured plant growth rate under salinity and subsequently elucidated the role of shoot ion independent stress (resulting from hydraulic resistance and osmotic stress) in chickpea. Broad genetic variation for salinity tolerance was observed in the diversity panel with seed number being the major determinant for salinity tolerance measured as yield. This study proposes seed number as a selection trait in breeding salt tolerant chickpea cultivars.
Collapse
Affiliation(s)
- Judith Atieno
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Yongle Li
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia
| | - Kate Dowling
- The Plant Accelerator, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia
| | - Chris Brien
- The Plant Accelerator, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia
| | - Bettina Berger
- The Plant Accelerator, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia
| | - Rajeev K Varshney
- Centre of Excellence in Genomics, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Tim Sutton
- South Australian Research and Development Institute, GPO Box 397 Adelaide, South Australia, 5001, Australia.
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
143
|
Stanfield RC, Hacke UG, Laur J. Are phloem sieve tubes leaky conduits supported by numerous aquaporins? AMERICAN JOURNAL OF BOTANY 2017; 104:719-732. [PMID: 28526726 DOI: 10.3732/ajb.1600422] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/20/2017] [Indexed: 05/04/2023]
Abstract
PREMISE OF THE STUDY Aquaporin membrane water channels have been previously identified in the phloem of angiosperms, but currently their cellular characterization is lacking, especially in tree species. Pinpointing the cellular location will help generate new hypotheses of how membrane water exchange facilitates sugar transport in plants. METHODS We studied histological sections of balsam poplar (Populus balsamifera L.) in leaf, petiole, and stem organs. Immuno-labeling techniques were used to characterize the distribution of PIP1 and PIP2 subfamilies of aquaporins along the phloem pathway. Confocal and super resolution microscopy (3D-SIM) was used to identify the localization of aquaporins at the cellular level. KEY RESULTS Sieve tubes of the leaf lamina, petiole, and stem were labeled with antibodies directed at PIP1s and PIP2s. While PIP2s were mostly observed in the plasma membrane, PIP1s showed both an internal membrane and plasma membrane labeling pattern. CONCLUSIONS The specificity and consistency of PIP2 labeling in sieve element plasma membranes points to high water exchange rates between sieve tubes and adjacent cells. The PIP1s may relocate between internal membranes and the plasma membrane to facilitate dynamic changes in membrane permeability of sieve elements in response to changing internal or environmental conditions. Aquaporin-mediated changes in membrane permeability of sieve tubes would also allow for some control of radial exchange of water between xylem and phloem.
Collapse
Affiliation(s)
- Ryan C Stanfield
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada; ORCID id: 0000-0002-7507-7550
| | - Uwe G Hacke
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada; ORCID id: 0000-0002-7507-7550
| | - Joan Laur
- Centre de Recherche en Horticulture, Université Laval, Envirotron, Québec, QC G1V0A6, Canada
| |
Collapse
|
144
|
Liao X, Guo X, Wang Q, Wang Y, Zhao D, Yao L, Wang S, Liu G, Li T. Overexpression of MsDREB6.2 results in cytokinin-deficient developmental phenotypes and enhances drought tolerance in transgenic apple plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:510-526. [PMID: 27754576 DOI: 10.1111/tpj.13401] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 05/08/2023]
Abstract
Dehydration-responsive element binding factors (DREBs) play important roles in plant growth, development, and stress signaling pathways in model plants. However, little is known about the function of DREBs in apple (Malus × domestica), a widely cultivated crop that is frequently threatened by drought. We isolated a DREB gene from Malus sieversii (Ledeb.) Roem., MsDREB6.2, and investigated its functions using overexpression analysis and chimeric repressor gene-silencing technology (CRES-T). We identified possible target genes of the protein encoded by MsDREB6.2 using electrophoretic mobility shift assays (EMSAs) and chromatin immunoprecipitation (ChIP). Overexpression of MsDREB6.2 increased the expression of a key cytokinin (CK) catabolism gene, MdCKX4a, which led to a significant reduction in endogenous CK levels, and caused a decrease in shoot:root ratio in transgenic apple plants. Overexpression of MsDREB6.2 resulted in a decrease in stomatal aperture and density and an increase in root hydraulic conductance (L0 ), and thereby enhanced drought tolerance in transgenic plants. Furthermore, manipulating the level of MsDREB6.2 expression altered the expression of two aquaporin (AQP) genes. The effect of the two AQP genes on L0 was further characterized using the AQP inhibitor HgCl2 . Based on these observations, we conclude that MsDREB6.2 enhances drought tolerance and that its function may be due, at least in part, to its influence on stomatal opening, root growth, and AQP expression. These results may have applications in apple rootstock breeding programs aimed at developing drought-resistant apple varieties.
Collapse
Affiliation(s)
- Xiong Liao
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiao Guo
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qi Wang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Yantao Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Di Zhao
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Liping Yao
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shuang Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Guojie Liu
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tianhong Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, 102206, China
| |
Collapse
|
145
|
Papadia P, Barozzi F, Hoeschele JD, Piro G, Margiotta N, Di Sansebastiano GP. Cisplatin, Oxaliplatin, and Kiteplatin Subcellular Effects Compared in a Plant Model. Int J Mol Sci 2017; 18:ijms18020306. [PMID: 28146116 PMCID: PMC5343842 DOI: 10.3390/ijms18020306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/25/2017] [Indexed: 01/09/2023] Open
Abstract
The immediate visual comparison of platinum chemotherapeutics’ effects in eukaryotic cells using accessible plant models of transgenic Arabidopsis thaliana is reported. The leading anticancer drug cisplatin, a third generation drug used for colon cancer, oxaliplatin and kiteplatin, promising Pt-based anticancer drugs effective against resistant lines, were administered to transgenic A. thaliana plants monitoring their effects on cells from different tissues. The transgenic plants’ cell cytoskeletons were labelled by the green fluorescent protein (GFP)-tagged microtubule-protein TUA6 (TUA6-GFP), while the vacuolar organization was evidenced by two soluble chimerical GFPs (GFPChi and AleuGFP) and one transmembrane GFP-tagged tonoplast intrinsic protein 1-1 (TIP1.1-GFP). The three drugs showed easily recognizable effects on plant subcellular organization, thereby providing evidence for a differentiated drug targeting. Genetically modified A. thaliana are confirmed as a possible rapid and low-cost screening tool for better understanding the mechanism of action of human anticancer drugs.
Collapse
Affiliation(s)
- Paride Papadia
- Department of Biotechnology and Environmental Sciences, University of Salento, via Monteroni-Centro Ecotekne, 73100 Lecce, Italy.
| | - Fabrizio Barozzi
- Department of Biotechnology and Environmental Sciences, University of Salento, via Monteroni-Centro Ecotekne, 73100 Lecce, Italy.
| | - James D Hoeschele
- Department of Chemistry, Eastern Michigan University, Ypsilanti, MI 48197, USA.
| | - Gabriella Piro
- Department of Biotechnology and Environmental Sciences, University of Salento, via Monteroni-Centro Ecotekne, 73100 Lecce, Italy.
| | - Nicola Margiotta
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy.
| | - Gian-Pietro Di Sansebastiano
- Department of Biotechnology and Environmental Sciences, University of Salento, via Monteroni-Centro Ecotekne, 73100 Lecce, Italy.
| |
Collapse
|
146
|
|
147
|
Manivannan A, Ahn YK. Silicon Regulates Potential Genes Involved in Major Physiological Processes in Plants to Combat Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:1346. [PMID: 28824681 PMCID: PMC5541085 DOI: 10.3389/fpls.2017.01346] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/19/2017] [Indexed: 05/20/2023]
Abstract
Silicon (Si), the quasi-essential element occurs as the second most abundant element in the earth's crust. Biological importance of Si in plant kingdom has become inevitable particularly under stressed environment. In general, plants are classified as high, medium, and low silicon accumulators based on the ability of roots to absorb Si. The uptake of Si directly influence the positive effects attributed to the plant but Si supplementation proves to mitigate stress and recover plant growth even in low accumulating plants like tomato. The application of Si in soil as well as soil-less cultivation systems have resulted in the enhancement of quantitative and qualitative traits of plants even under stressed environment. Silicon possesses several mechanisms to regulate the physiological, biochemical, and antioxidant metabolism in plants to combat abiotic and biotic stresses. Nevertheless, very few reports are available on the aspect of Si-mediated molecular regulation of genes with potential role in stress tolerance. The recent advancements in the era of genomics and transcriptomics have opened an avenue for the determination of molecular rationale associated with the Si amendment to the stress alleviation in plants. Therefore, the present endeavor has attempted to describe the recent discoveries related to the regulation of vital genes involved in photosynthesis, transcription regulation, defense, water transport, polyamine synthesis, and housekeeping genes during abiotic and biotic stress alleviation by Si. Furthermore, an overview of Si-mediated modulation of multiple genes involved in stress response pathways such as phenylpropanoid pathway, jasmonic acid pathway, ABA-dependent or independent regulatory pathway have been discussed in this review.
Collapse
Affiliation(s)
- Abinaya Manivannan
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development AdministrationJeonju, South Korea
| | - Yul-Kuyn Ahn
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development AdministrationJeonju, South Korea
- Department of Vegetable Crops, Korea National College of Agriculture and FisheriesJeonju, South Korea
- *Correspondence: Yul-Kuyn Ahn
| |
Collapse
|
148
|
Jing D, Zhang J, Xia Y, Kong L, OuYang F, Zhang S, Zhang H, Wang J. Proteomic analysis of stress-related proteins and metabolic pathways in Picea asperata somatic embryos during partial desiccation. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:27-38. [PMID: 27271942 PMCID: PMC5253475 DOI: 10.1111/pbi.12588] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/14/2016] [Accepted: 05/30/2016] [Indexed: 05/22/2023]
Abstract
Partial desiccation treatment (PDT) stimulates germination and enhances the conversion of conifer somatic embryos. To better understand the mechanisms underlying the responses of somatic embryos to PDT, we used proteomic and physiological analyses to investigate these responses during PDT in Picea asperata. Comparative proteomic analysis revealed that, during PDT, stress-related proteins were mainly involved in osmosis, endogenous hormones, antioxidative proteins, molecular chaperones and defence-related proteins. Compared with those in cotyledonary embryos before PDT, these stress-related proteins remained at high levels on days 7 (D7) and 14 (D14) of PDT. The proteins that differentially accumulated in the somatic embryos on D7 were mapped to stress and/or stimuli. They may also be involved in the glyoxylate cycle and the chitin metabolic process. The most significant difference in the differentially accumulated proteins occurred in the metabolic pathways of photosynthesis on D14. Furthermore, in accordance with the changes in stress-related proteins, analyses of changes in water content, abscisic acid, indoleacetic acid and H2 O2 levels in the embryos indicated that PDT is involved in water-deficit tolerance and affects endogenous hormones. Our results provide insight into the mechanisms responsible for the transition from morphologically mature to physiologically mature somatic embryos during the PDT process in P. asperata.
Collapse
Affiliation(s)
- Danlong Jing
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Jianwei Zhang
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Yan Xia
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Lisheng Kong
- Department of BiologyCentre for Forest BiologyUniversity of VictoriaVictoriaBCCanada
| | - Fangqun OuYang
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Shougong Zhang
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| |
Collapse
|
149
|
Wang HJ, Hsu YW, Guo CL, Jane WN, Wang H, Jiang L, Jauh GY. VPS36-Dependent Multivesicular Bodies Are Critical for Plasmamembrane Protein Turnover and Vacuolar Biogenesis. PLANT PHYSIOLOGY 2017; 173:566-581. [PMID: 27879389 PMCID: PMC5210736 DOI: 10.1104/pp.16.01356] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/19/2016] [Indexed: 05/18/2023]
Abstract
Most eukaryotic cells target ubiquitinated plasma membrane (PM) proteins for vacuolar degradation in response to environmental and developmental cues. This process involves endosomal sorting complexes required for transport (ESCRT). However, little is known about the cellular mechanisms of ESCRTs in plants. Here, we studied the function of one ESCRT-II component, VPS36, which shows ubiquitin-binding activity and may form a putative ESCRT-II with VPS22 and VPS25 in Arabidopsis (Arabidopsis thaliana). Recessive mutation of the ubiquitously expressed VPS36 causes multiple defects, including delayed embryogenesis, defective root elongation, and limited expansion of cotyledons, and these effects can be complemented by its genomic DNA. Abnormal intracellular compartments containing several membrane transporters, including members of the PIN-FORMEDs, AUXIN RESISTANT 1, and PIP1 families, were found in vps36-1 plants. Employing a genetic approach to cross vps36-1/+ with transgenic plants harboring various fluorescent protein-tagged organelle markers, as well as fluorescent probe and ultrastructural approaches, revealed PM proteins in microsomal fractions from vps36-1 seedlings and demonstrated that VPS36 is critical for forming multivesicular bodies and vacuolar biogenesis for protein degradation. Our study shows that functional VPS36 is essential for a proper endosomal sorting pathway and for vacuolar biogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Huei-Jing Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan (H.-J.W., Y.-W.H., C.-L.G., W.-N.J., G.-Y.J.)
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., L.J.)
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan (G.-Y.J.); and
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (G.Y.J.)
| | - Ya-Wen Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan (H.-J.W., Y.-W.H., C.-L.G., W.-N.J., G.-Y.J.)
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., L.J.)
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan (G.-Y.J.); and
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (G.Y.J.)
| | - Cian-Ling Guo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan (H.-J.W., Y.-W.H., C.-L.G., W.-N.J., G.-Y.J.)
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., L.J.)
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan (G.-Y.J.); and
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (G.Y.J.)
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan (H.-J.W., Y.-W.H., C.-L.G., W.-N.J., G.-Y.J.)
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., L.J.)
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan (G.-Y.J.); and
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (G.Y.J.)
| | - Hao Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan (H.-J.W., Y.-W.H., C.-L.G., W.-N.J., G.-Y.J.)
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., L.J.)
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan (G.-Y.J.); and
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (G.Y.J.)
| | - Liwen Jiang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan (H.-J.W., Y.-W.H., C.-L.G., W.-N.J., G.-Y.J.)
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., L.J.)
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan (G.-Y.J.); and
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (G.Y.J.)
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan (H.-J.W., Y.-W.H., C.-L.G., W.-N.J., G.-Y.J.);
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., L.J.);
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan (G.-Y.J.); and
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (G.Y.J.)
| |
Collapse
|
150
|
|