101
|
McAusland L, Vialet-Chabrand S, Jauregui I, Burridge A, Hubbart-Edwards S, Fryer MJ, King IP, King J, Pyke K, Edwards KJ, Carmo-Silva E, Lawson T, Murchie EH. Variation in key leaf photosynthetic traits across wheat wild relatives is accession dependent not species dependent. THE NEW PHYTOLOGIST 2020; 228:1767-1780. [PMID: 32910841 DOI: 10.1111/nph.16832] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/03/2020] [Indexed: 05/26/2023]
Abstract
The wild relatives of modern wheat represent an underutilized source of genetic and phenotypic diversity and are of interest in breeding owing to their wide adaptation to diverse environments. Leaf photosynthetic traits underpin the rate of production of biomass and yield and have not been systematically explored in the wheat relatives. This paper identifies and quantifies the phenotypic variation in photosynthetic, stomatal, and morphological traits in up to 88 wheat wild relative accessions across five genera. Both steady-state measurements and dynamic responses to step changes in light intensity are assessed. A 2.3-fold variation for flag leaf light and CO2 -saturated rates of photosynthesis Amax was observed. Many accessions showing higher and more variable Amax , maximum rates of carboxylation, electron transport, and Rubisco activity when compared with modern genotypes. Variation in dynamic traits was also significant; with distinct genus-specific trends in rates of induction of nonphotochemical quenching and rate of stomatal opening. We conclude that utilization of wild relatives for improvement of photosynthesis is supported by the existence of a high degree of natural variation in key traits and should consider not only genus-level properties but variation between individual accessions.
Collapse
Affiliation(s)
- Lorna McAusland
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | | | - Iván Jauregui
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | | | - Stella Hubbart-Edwards
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - Michael J Fryer
- School of Life Science, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Ian P King
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - Julie King
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - Kevin Pyke
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | | | | | - Tracy Lawson
- School of Life Science, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| |
Collapse
|
102
|
Ko SS, Jhong CM, Lin YJ, Wei CY, Lee JY, Shih MC. Blue Light Mediates Chloroplast Avoidance and Enhances Photoprotection of Vanilla Orchid. Int J Mol Sci 2020; 21:E8022. [PMID: 33126662 PMCID: PMC7663427 DOI: 10.3390/ijms21218022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Vanilla orchid, which is well-known for its flavor and fragrance, is cultivated in tropical and subtropical regions. This shade-loving plant is very sensitive to high irradiance. In this study, we show that vanilla chloroplasts started to have avoidance movement when blue light (BL) was higher than 20 μmol m-2s-1 and significant avoidance movement was observed under BL irradiation at 100 μmol m-2s-1 (BL100). The light response curve indicated that when vanilla was exposed to 1000 μmol m-2s-1, the electron transport rate (ETR) and photochemical quenching of fluorescence (qP) were significantly reduced to a negligible amount. We found that if a vanilla orchid was irradiated with BL100 for 12 days, it acquired BL-acclimation. Chloroplasts moved to the side of cells in order to reduce light-harvesting antenna size, and chloroplast photodamage was eliminated. Therefore, BL-acclimation enhanced vanilla orchid growth and tolerance to moderate (500 μmol m-2s-1) and high light (1000 μmol m-2s-1) stress conditions. It was found that under high irradiation, BL-acclimatized vanilla maintained higher ETR and qP capacity than the control without BL-acclimation. BL-acclimation induced antioxidant enzyme activities, reduced ROS accumulation, and accumulated more carbohydrates. Moreover, BL-acclimatized orchids upregulated photosystem-II-associated marker genes (D1 and PetC), Rubisco and PEPC transcripts and sustained expression levels thereof, and also maximized the photosynthesis rate. Consequently, BL-acclimatized orchids had higher biomass. In short, this study found that acclimating vanilla orchid with BL before transplantation to the field might eliminate photoinhibition and enhance vanilla growth and production.
Collapse
Affiliation(s)
- Swee-Suak Ko
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan; (C.-M.J.); (Y.-J.L.)
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chung-Min Jhong
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan; (C.-M.J.); (Y.-J.L.)
| | - Yi-Jyun Lin
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan; (C.-M.J.); (Y.-J.L.)
| | - Ching-Yu Wei
- National Chiayi University Department of Forestry and Natural Resources, Chiayi 600, Taiwan;
| | - Ju-Yin Lee
- National Taiwan University Department of Horticulture and Landscape Architecture, Taipei 10617, Taiwan;
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
103
|
Salter WT, Merchant A, Trethowan RM, Richards RA, Buckley TN. Wide variation in the suboptimal distribution of photosynthetic capacity in relation to light across genotypes of wheat. AOB PLANTS 2020; 12:plaa039. [PMID: 32968474 PMCID: PMC7494244 DOI: 10.1093/aobpla/plaa039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/05/2020] [Indexed: 05/22/2023]
Abstract
Suboptimal distribution of photosynthetic capacity in relation to light among leaves reduces potential whole-canopy photosynthesis. We quantified the degree of suboptimality in 160 genotypes of wheat by directly measuring photosynthetic capacity and daily irradiance in flag and penultimate leaves. Capacity per unit daily irradiance was systematically lower in flag than penultimate leaves in most genotypes, but the ratio (γ) of capacity per unit irradiance between flag and penultimate leaves varied widely across genotypes, from less than 0.5 to over 1.2. Variation in γ was most strongly associated with differences in photosynthetic capacity in penultimate leaves, rather than with flag leaf photosynthesis or canopy light penetration. Preliminary genome-wide association analysis identified nine strong marker-trait associations with this trait, which should be validated in future work in other environments and/or materials. Our modelling suggests canopy photosynthesis could be increased by up to 5 % under sunny conditions by harnessing this variation through selective breeding for increased γ.
Collapse
Affiliation(s)
- William T Salter
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Brownlow Hill, NSW, Australia
| | - Andrew Merchant
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Brownlow Hill, NSW, Australia
| | - Richard M Trethowan
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Brownlow Hill, NSW, Australia
| | | | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
- Corresponding author’s e-mail address:
| |
Collapse
|
104
|
Moreno JC, Mi J, Agrawal S, Kössler S, Turečková V, Tarkowská D, Thiele W, Al-Babili S, Bock R, Schöttler MA. Expression of a carotenogenic gene allows faster biomass production by redesigning plant architecture and improving photosynthetic efficiency in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1967-1984. [PMID: 32623777 DOI: 10.1111/tpj.14909] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 05/11/2023]
Abstract
Because carotenoids act as accessory pigments in photosynthesis, play a key photoprotective role and are of major nutritional importance, carotenogenesis has been a target for crop improvement. Although carotenoids are important precursors of phytohormones, previous genetic manipulations reported little if any effects on biomass production and plant development, but resulted in specific modifications in carotenoid content. Unexpectedly, the expression of the carrot lycopene β-cyclase (DcLCYB1) in Nicotiana tabacum cv. Xanthi not only resulted in increased carotenoid accumulation, but also in altered plant architecture characterized by longer internodes, faster plant growth, early flowering and increased biomass. Here, we have challenged these transformants with a range of growth conditions to determine the robustness of their phenotype and analyze the underlying mechanisms. Transgenic DcLCYB1 lines showed increased transcript levels of key genes involved in carotenoid, chlorophyll, gibberellin (GA) and abscisic acid (ABA) biosynthesis, but also in photosynthesis-related genes. Accordingly, their carotenoid, chlorophyll, ABA and GA contents were increased. Hormone application and inhibitor experiments confirmed the key role of altered GA/ABA contents in the growth phenotype. Because the longer internodes reduce shading of mature leaves, induction of leaf senescence was delayed, and mature leaves maintained a high photosynthetic capacity. This increased total plant assimilation, as reflected in higher plant yields under both fully controlled constant and fluctuating light, and in non-controlled conditions. Furthermore, our data are a warning that engineering of isoprenoid metabolism can cause complex changes in phytohormone homeostasis and therefore plant development, which have not been sufficiently considered in previous studies.
Collapse
Affiliation(s)
- Juan C Moreno
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Jianing Mi
- King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Shreya Agrawal
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Stella Kössler
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Veronika Turečková
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Wolfram Thiele
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Salim Al-Babili
- King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ralph Bock
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Mark Aurel Schöttler
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
105
|
Ko SS, Jhong CM, Shih MC. Blue Light Acclimation Reduces the Photoinhibition of Phalaenopsis aphrodite (Moth Orchid). Int J Mol Sci 2020; 21:ijms21176167. [PMID: 32859101 PMCID: PMC7503704 DOI: 10.3390/ijms21176167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 01/15/2023] Open
Abstract
The moth orchid is an important ornamental crop. It is very sensitive to high light irradiation due to photoinhibition. In this study, young orchid tissue culture seedlings and 2.5” potted plants pretreated under blue light (BL, λmax = 450 nm) at 100 µmol m−2 s−1 for 12 days (BL acclimation) were found to have an increased tolerance to high light irradiation. After BL acclimation, orchids had an increased anthocyanin accumulation, enhanced chloroplast avoidance, and increased chlorophyll fluorescence capacity whenever they were exposed to high light of 1000 μmol m−2 s−1 for two weeks (HL). They had higher Fv/Fm, electron transport rate (ETR), chlorophyll content, catalase activity and sucrose content when compared to the control without BL acclimation. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that transcript levels of phototropins, D1, RbcS, PEPCK, Catalase and SUT2 were upregulated in the BL-acclimated orchids. Consequently, BL acclimation orchids had better growth when compared to the control under long-term high light stress. In summary, this study provides a solution, i.e., BL acclimation, to reduce moth orchid photoinhibition and enhance growth before transplantation of the young tissue culture seedlings and potted plants into greenhouses, where they usually suffer from a high light fluctuation problem.
Collapse
Affiliation(s)
- Swee-Suak Ko
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan;
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan;
- Correspondence: ; Tel.: +886-6-5056630 (ext. 206); Fax: +886-6-5056631 (ext. 206)
| | - Chung-Min Jhong
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan;
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan;
| |
Collapse
|
106
|
Efficient photosynthesis in dynamic light environments: a chloroplast's perspective. Biochem J 2020; 476:2725-2741. [PMID: 31654058 PMCID: PMC6792033 DOI: 10.1042/bcj20190134] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
In nature, light availability for photosynthesis can undergo massive changes on a very short timescale. Photosynthesis in such dynamic light environments requires that plants can respond swiftly. Expanding our knowledge of the rapid responses that underlie dynamic photosynthesis is an important endeavor: it provides insights into nature's design of a highly dynamic energy conversion system and hereby can open up new strategies for improving photosynthesis in the field. The present review focuses on three processes that have previously been identified as promising engineering targets for enhancing crop yield by accelerating dynamic photosynthesis, all three of them involving or being linked to processes in the chloroplast, i.e. relaxation of non-photochemical quenching, Calvin–Benson–Bassham cycle enzyme activation/deactivation and dynamics of stomatal conductance. We dissect these three processes on the functional and molecular level to reveal gaps in our understanding and critically discuss current strategies to improve photosynthesis in the field.
Collapse
|
107
|
Surface Canopy Position Determines the Photosystem II Photochemistry in Invasive and Native Prosopis Congeners at Sharjah Desert, UAE. FORESTS 2020. [DOI: 10.3390/f11070740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Plants have evolved photoprotective mechanisms in order to counteract the damaging effects of excess light in hyper-arid desert environments. We evaluated the impact of surface canopy positions on the photosynthetic adjustments and chlorophyll fluorescence attributes (photosystem II photochemistry, quantum yield, fluorescence quenching, and photon energy dissipation), leaf biomass and nutrient content of sun-exposed leaves at the south east (SE canopy position) and shaded-leaves at the north west (NW canopy position) in the invasive Prosopis juliflora and native Prosopis cineraria in the extreme environment (hyper-arid desert area, United Arab Emirates (UAE)). The main aim of this research was to study the photoprotection mechanism in invasive and native Prosopis congeners via the safe removal—as thermal energy—of excess solar energy absorbed by the light collecting system, which counteracts the formation of reactive oxygen species. Maximum photosynthetic efficiency (Fv/Fm) from dark-adapted leaves in P. juliflora and P. cineraria was higher on NW than SE canopy position while insignificant difference was observed within the two Prosopis congeners. Greater quantum yield was observed in P. juliflora than P. cineraria on the NW canopy position than SE. With the change of canopy positions from NW to SE, the reduction of the PSII reaction center activity in the leaves of both Prosopis congeners was accelerated. On the SE canopy position, a significant decline in the electron transport rate (ETR) of in the leaves of both Prosopis congeners occurred, which might be due to the blockage of electron transfer from QA to QB on the PSII acceptor side. On the SE canopy position; Prosopis leaves dissipated excess light energy by increasing non-photochemical quenching (NPQ). However, in P. cineraria, the protective ability of NPQ decreased, which led to the accumulation of excess excitation energy (1 − qP)/NPQ and the aggravation of photoinhibition. The results also explain the role of different physiological attributes contributing to invasiveness of P. juliflora and to evaluate its liaison between plasticity of these characters and invasiveness.
Collapse
|
108
|
Yamori W, Kusumi K, Iba K, Terashima I. Increased stomatal conductance induces rapid changes to photosynthetic rate in response to naturally fluctuating light conditions in rice. PLANT, CELL & ENVIRONMENT 2020; 43:1230-1240. [PMID: 31990076 DOI: 10.1111/pce.13725] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/06/2020] [Accepted: 01/19/2020] [Indexed: 05/08/2023]
Abstract
A close correlation between stomatal conductance and the steady-state photosynthetic rate has been observed for diverse plant species under various environmental conditions. However, it remains unclear whether stomatal conductance is a major limiting factor for the photosynthetic rate under naturally fluctuating light conditions. We analysed a SLAC1 knockout rice line to examine the role of stomatal conductance in photosynthetic responses to fluctuating light. SLAC1 encodes a stomatal anion channel that regulates stomatal closure. Long exposures to weak light before treatments with strong light increased the photosynthetic induction time required for plants to reach a steady-state photosynthetic rate and also induced stomatal limitation of photosynthesis by restricting the diffusion of CO2 into leaves. The slac1 mutant exhibited a significantly higher rate of stomatal opening after an increase in irradiance than wild-type plants, leading to a higher rate of photosynthetic induction. Under natural conditions, in which irradiance levels are highly variable, the stomata of the slac1 mutant remained open to ensure efficient photosynthetic reaction. These observations reveal that stomatal conductance is important for regulating photosynthesis in rice plants in the natural environment with fluctuating light.
Collapse
Affiliation(s)
- Wataru Yamori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Institute for Sustainable Agro-Ecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, Japan
| | - Kensuke Kusumi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Koh Iba
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
- Core Research for Evolutionary Science and Technology (CREST), JST, Saitama, Japan
| | - Ichiro Terashima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Core Research for Evolutionary Science and Technology (CREST), JST, Saitama, Japan
| |
Collapse
|
109
|
Yan N, Gai X, Xue L, Du Y, Shi J, Liu Y. Effects of NtSPS1 Overexpression on Solanesol Content, Plant Growth, Photosynthesis, and Metabolome of Nicotiana tabacum. PLANTS 2020; 9:plants9040518. [PMID: 32316447 PMCID: PMC7238068 DOI: 10.3390/plants9040518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/12/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Nicotiana tabacum solanesyl diphosphate synthase 1 (NtSPS1) is the key enzyme in solanesol biosynthesis. However, changes in the solanesol content, plant growth, photosynthesis, and metabolome of tobacco plants after NtSPS1 overexpression (OE) have not been previously reported. In the present study, these parameters, as well as photosynthetic gas exchange, chlorophyll content, and chlorophyll fluorescence parameters, were compared between NtSPS1 OE and wild type (WT) lines of tobacco. As expected, NtSPS1 OE significantly increased solanesol content in tobacco leaves. Although NtSPS1 OE significantly increased leaf growth, photosynthesis, and chlorophyll content, the chlorophyll fluorescence parameters in the leaves of the NtSPS1 OE lines were only slightly higher than those in the WT leaves. Furthermore, NtSPS1 OE resulted in 64 differential metabolites, including 30 up-regulated and 34 down-regulated metabolites, between the OE and WT leaves. Pathway enrichment analysis of these differential metabolites identified differentially enriched pathways between the OE and WT leaves, e.g., carbon fixation in photosynthetic organisms. The maximum carboxylation rate of RuBisCO and the maximum rate of RuBP regeneration were also elevated in the NtSPS1 OE line. To our knowledge, this is the first study to confirm the role of NtSPS1 in solanesol biosynthesis and its possible functional mechanisms in tobacco.
Collapse
Affiliation(s)
- Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
- Correspondence: (N.Y.); (Y.L.); Tel.: +86-532-8870-1035 (N.Y. & Y.L.)
| | - Xiaolei Gai
- Yunnan Tobacco Leaf Company, Kunming 650000, China;
| | - Lin Xue
- Anhui Wannan Tobacco Leaf Co., Ltd., Xuancheng 242000, China;
| | - Yongmei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada;
| | - Yanhua Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
- Correspondence: (N.Y.); (Y.L.); Tel.: +86-532-8870-1035 (N.Y. & Y.L.)
| |
Collapse
|
110
|
Condon AG. Drying times: plant traits to improve crop water use efficiency and yield. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2239-2252. [PMID: 31912130 DOI: 10.1093/jxb/eraa002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/07/2020] [Indexed: 05/13/2023]
Abstract
Crop water use efficiency (WUE) has come into sharp focus as population growth and climate change place increasing strain on the water used in cropping. Rainfed crops are being challenged by an upward trend in evaporative demand as average temperatures rise and, in many regions, there is an increased irregularity and a downward trend in rainfall. In addition, irrigated cropping faces declining water availability and increased competition from other users. Crop WUE would be improved by, first, ensuring that as much water as possible is actually transpired by the crop rather than being wasted. Deeper roots and greater early crop vigour are two traits that should help achieve this. Crop WUE would also be improved by achieving greater biomass per unit water transpired. A host of traits has been proposed to address this outcome. Restricting crop transpiration through lower stomatal conductance is assessed as having limited utility compared with traits that improve carbon gain, such as enhancements to photosynthetic biochemistry and responsiveness, or greater mesophyll conductance. Ultimately, the most useful outcomes for improved crop WUE will probably be achieved by combining traits to achieve synergistic benefit. The potential utility of trait combinations is supported by the results of crop simulation modelling.
Collapse
|
111
|
Photosynthetic Response Mechanism of Soil Salinity-Induced Cross-Tolerance to Subsequent Drought Stress in Tomato Plants. PLANTS 2020; 9:plants9030363. [PMID: 32187994 PMCID: PMC7154942 DOI: 10.3390/plants9030363] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/28/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Soil salinization and water shortage cause ion imbalance and hyperosmoticity in plant cells, adversely impairing photosynthesis efficiency. How soil salinity-induced photosynthetic acclimation influences the cross-tolerance to drought conditions represents a promising research topic. This study was to reveal the photosynthetic mechanism of soil salinity-induced resistance to the subsequent drought stress in tomato leaves through comprehensive photosynthesis-related spectroscopy analysis. We conducted soil salinity pretreatment and subsequent drought stress experiments, including irrigation with 100 mL water, 100 mL 100 mM NaCl solution (NaCl100), 50 mL water, and 50 mL 100 mM NaCl solution (NaCl50) for five days, followed by five-day drought stress. The results showed that soil salinity treatment by NaCl decreased the rate of photosynthetic gas exchange but enhanced CO2 assimilation, along with photosystem II [PS(II)] and photosystem I [PS(I)] activity and photochemical efficiency in tomato plants compared with water pretreatment after subsequent drought stress. NaCl100 and NaCl50 had the capacity to maintain non-photochemical quenching (NPQ) of chlorophyll fluorescence and the cyclic electron (CEF) flow around PSI in tomato leaves after being subjected to subsequent drought stress, thus avoiding the decrease of photosynthetic efficiency under drought conditions. NaCl100 and NaCl50 pretreatment induced a higher proton motive force (pmf) and also alleviated the damage to the thylakoid membrane and adenosine triphosphate (ATP) synthase of tomato leaves caused by subsequent drought stress. Overall, soil salinity treatment could enhance drought resistance in tomato plants by inducing NPQ, maintaining CEF and pmf that tradeoff between photoprotection and photochemistry reactions. This study also provides a photosynthetic perspective for salt and drought cross-tolerance.
Collapse
|
112
|
Batista-Silva W, da Fonseca-Pereira P, Martins AO, Zsögön A, Nunes-Nesi A, Araújo WL. Engineering Improved Photosynthesis in the Era of Synthetic Biology. PLANT COMMUNICATIONS 2020; 1:100032. [PMID: 33367233 PMCID: PMC7747996 DOI: 10.1016/j.xplc.2020.100032] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/20/2020] [Accepted: 02/08/2020] [Indexed: 05/08/2023]
Abstract
Much attention has been given to the enhancement of photosynthesis as a strategy for the optimization of crop productivity. As traditional plant breeding is most likely reaching a plateau, there is a timely need to accelerate improvements in photosynthetic efficiency by means of novel tools and biotechnological solutions. The emerging field of synthetic biology offers the potential for building completely novel pathways in predictable directions and, thus, addresses the global requirements for higher yields expected to occur in the 21st century. Here, we discuss recent advances and current challenges of engineering improved photosynthesis in the era of synthetic biology toward optimized utilization of solar energy and carbon sources to optimize the production of food, fiber, and fuel.
Collapse
Affiliation(s)
- Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Wagner L. Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
113
|
Walker BJ, Kramer DM, Fisher N, Fu X. Flexibility in the Energy Balancing Network of Photosynthesis Enables Safe Operation under Changing Environmental Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E301. [PMID: 32121540 PMCID: PMC7154899 DOI: 10.3390/plants9030301] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022]
Abstract
Given their ability to harness chemical energy from the sun and generate the organic compounds necessary for life, photosynthetic organisms have the unique capacity to act simultaneously as their own power and manufacturing plant. This dual capacity presents many unique challenges, chiefly that energy supply must be perfectly balanced with energy demand to prevent photodamage and allow for optimal growth. From this perspective, we discuss the energy balancing network using recent studies and a quantitative framework for calculating metabolic ATP and NAD(P)H demand using measured leaf gas exchange and assumptions of metabolic demand. We focus on exploring how the energy balancing network itself is structured to allow safe and flexible energy supply. We discuss when the energy balancing network appears to operate optimally and when it favors high capacity instead. We also present the hypothesis that the energy balancing network itself can adapt over longer time scales to a given metabolic demand and how metabolism itself may participate in this energy balancing.
Collapse
Affiliation(s)
- Berkley J. Walker
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - David M. Kramer
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Nicholas Fisher
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
| | - Xinyu Fu
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
| |
Collapse
|
114
|
Sukhova E, Khlopkov A, Vodeneev V, Sukhov V. Simulation of a nonphotochemical quenching in plant leaf under different light intensities. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2020; 1861:148138. [PMID: 31825810 DOI: 10.1016/j.bbabio.2019.148138] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
An analysis of photosynthetic response on action of stressors is an important problem, which can be solved by experimental and theoretical methods, including mathematical modeling of photosynthetic processes. The aim of our work was elaboration of a mathematical model, which simulated development of a nonphotochemical quenching under different light conditions. We analyzed two variants of the model: the first variant included a light-induced activation of the electron transport chain; in contrast, the second variant did not describe this activation. Both variants of the model described interactions between transitions from open reaction centers to closed ones (and vice versa) and development of the nonphotochemical quenching. Investigation of both variants of the model showed well qualitative and quantitative accordance between simulated and experimental changes in coefficient of the nophotochemical quenching which were analyzed under different light regimes: (i) the stepped increase of the light intensity without dark intervals between steps, (ii) periodical illuminations by different light intensities with constant durations which were separated by constant dark intervals, and (iii) periodical illuminations by the constant light intensity with different durations which were separated by different dark intervals. Thus, the model can be used for theoretical prediction of stress changes in photosynthesis under fluctuations in light intensity and search of optimal regimes of plant illumination.
Collapse
Affiliation(s)
- Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
| | - Andrey Khlopkov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Vodeneev
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
115
|
Cazzaniga S, Kim M, Bellamoli F, Jeong J, Lee S, Perozeni F, Pompa A, Jin E, Ballottari M. Photosystem II antenna complexes CP26 and CP29 are essential for nonphotochemical quenching in Chlamydomonas reinhardtii. PLANT, CELL & ENVIRONMENT 2020; 43:496-509. [PMID: 31724187 PMCID: PMC7004014 DOI: 10.1111/pce.13680] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/04/2019] [Indexed: 05/08/2023]
Abstract
Photosystems must balance between light harvesting to fuel the photosynthetic process for CO2 fixation and mitigating the risk of photodamage due to absorption of light energy in excess. Eukaryotic photosynthetic organisms evolved an array of pigment-binding proteins called light harvesting complexes constituting the external antenna system in the photosystems, where both light harvesting and activation of photoprotective mechanisms occur. In this work, the balancing role of CP29 and CP26 photosystem II antenna subunits was investigated in Chlamydomonas reinhardtii using CRISPR-Cas9 technology to obtain single and double mutants depleted of monomeric antennas. Absence of CP26 and CP29 impaired both photosynthetic efficiency and photoprotection: Excitation energy transfer from external antenna to reaction centre was reduced, and state transitions were completely impaired. Moreover, differently from higher plants, photosystem II monomeric antenna proteins resulted to be essential for photoprotective thermal dissipation of excitation energy by nonphotochemical quenching.
Collapse
Affiliation(s)
| | - Minjae Kim
- Department of Life ScienceHanyang UniversitySeoulSouth Korea
| | | | - Jooyoen Jeong
- Department of Life ScienceHanyang UniversitySeoulSouth Korea
| | - Sangmuk Lee
- Department of Life ScienceHanyang UniversitySeoulSouth Korea
| | | | - Andrea Pompa
- Dipartimento di Scienze BiomolecolariUniversità degli Studi di UrbinoUrbinoItaly
- Istituto di Bioscienze e BiorisorseConsiglio Nazionale delle RicerchePerugiaItaly
| | - EonSeon Jin
- Department of Life ScienceHanyang UniversitySeoulSouth Korea
| | | |
Collapse
|
116
|
Murchie EH, Ruban AV. Dynamic non-photochemical quenching in plants: from molecular mechanism to productivity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:885-896. [PMID: 31686424 DOI: 10.1111/tpj.14601] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 05/02/2023]
Abstract
Photoprotection refers to a set of well defined plant processes that help to prevent the deleterious effects of high and excess light on plant cells, especially within the chloroplast. Molecular components of chloroplast photoprotection are closely aligned with those of photosynthesis and together they influence productivity. Proof of principle now exists that major photoprotective processes such as non-photochemical quenching (NPQ) directly determine whole canopy photosynthesis, biomass and yield via prevention of photoinhibition and a momentary downregulation of photosynthetic quantum yield. However, this phenomenon has neither been quantified nor well characterized across different environments. Here we address this problem by assessing the existing literature with a different approach to that taken previously, beginning with our understanding of the molecular mechanism of NPQ and its regulation within dynamic environments. We then move to the leaf and the plant level, building an understanding of the circumstances (when and where) NPQ limits photosynthesis and linking to our understanding of how this might take place on a molecular and metabolic level. We argue that such approaches are needed to fine tune the relevant features necessary for improving dynamic NPQ in important crop species.
Collapse
Affiliation(s)
- Erik H Murchie
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
117
|
Bellan A, Bucci F, Perin G, Alboresi A, Morosinotto T. Photosynthesis Regulation in Response to Fluctuating Light in the Secondary Endosymbiont Alga Nannochloropsis gaditana. PLANT & CELL PHYSIOLOGY 2020; 61:41-52. [PMID: 31511895 DOI: 10.1093/pcp/pcz174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
In nature, photosynthetic organisms are exposed to highly dynamic environmental conditions where the excitation energy and electron flow in the photosynthetic apparatus need to be continuously modulated. Fluctuations in incident light are particularly challenging because they drive oversaturation of photosynthesis with consequent oxidative stress and photoinhibition. Plants and algae have evolved several mechanisms to modulate their photosynthetic machinery to cope with light dynamics, such as thermal dissipation of excited chlorophyll states (non-photochemical quenching, NPQ) and regulation of electron transport. The regulatory mechanisms involved in the response to light dynamics have adapted during evolution, and exploring biodiversity is a valuable strategy for expanding our understanding of their biological roles. In this work, we investigated the response to fluctuating light in Nannochloropsis gaditana, a eukaryotic microalga of the phylum Heterokonta originating from a secondary endosymbiotic event. Nannochloropsis gaditana is negatively affected by light fluctuations, leading to large reductions in growth and photosynthetic electron transport. Exposure to light fluctuations specifically damages photosystem I, likely because of the ineffective regulation of electron transport in this species. The role of NPQ, also assessed using a mutant strain specifically depleted of this response, was instead found to be minor, especially in responding to the fastest light fluctuations.
Collapse
Affiliation(s)
- Alessandra Bellan
- Department of Biology, University of Padova, Via U. Bassi 58/B, Padova 35121, Italy
| | - Francesca Bucci
- Department of Biology, University of Padova, Via U. Bassi 58/B, Padova 35121, Italy
| | - Giorgio Perin
- Department of Biology, University of Padova, Via U. Bassi 58/B, Padova 35121, Italy
| | - Alessandro Alboresi
- Department of Biology, University of Padova, Via U. Bassi 58/B, Padova 35121, Italy
| | - Tomas Morosinotto
- Department of Biology, University of Padova, Via U. Bassi 58/B, Padova 35121, Italy
| |
Collapse
|
118
|
Wang F, Yan J, Ahammed GJ, Wang X, Bu X, Xiang H, Li Y, Lu J, Liu Y, Qi H, Qi M, Li T. PGR5/PGRL1 and NDH Mediate Far-Red Light-Induced Photoprotection in Response to Chilling Stress in Tomato. FRONTIERS IN PLANT SCIENCE 2020; 11:669. [PMID: 32547581 PMCID: PMC7270563 DOI: 10.3389/fpls.2020.00669] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 04/29/2020] [Indexed: 05/19/2023]
Abstract
Plants experience low ambient temperature and low red to far-red ratios (L-R/FR) of light due to vegetative shading and longer twilight durations in cool seasons. Low temperature induce photoinhibition through inactivation of the photosynthetic apparatus, however, the role of light quality on photoprotection during cold stress remains poorly understood. Here, we report that L-R/FR significantly prevents the overreduction of the entire intersystem electron transfer chain and the limitation of photosystem I (PSI) acceptor side, eventually alleviating the cold-induced photoinhibition. During cold stress, L-R/FR activated cyclic electron flow (CEF), enhanced protonation of PSII subunit S (PsbS) and de-epoxidation state of the xanthophyll cycle, and promoted energy-dependent quenching (qE) component of non-photochemical quenching (NPQ), enzyme activity of Foyer-Halliwell-Asada cycle and D1 proteins accumulation. However, L-R/FR -induced photoprotection pathways were compromised in tomato PROTON GRADIENT REGULATION5 (PGR5) and PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1A (PGRL1A) co-silenced plants and NADH DEHYDROGENASE-LIKE COMPLEX M (NDHM) -silenced plants during cold stress. Our results demonstrate that both PGR5/PGRL1- and NDH-dependent CEF mediate L-R/FR -induced cold tolerance by enhancing the thermal dissipation and the repair of photodamaged PSII, thereby mitigating the overreduction of electron carriers and the accumulation of reactive oxygen species. The study indicates that there is an anterograde link between photoreception and photoprotection in tomato plants during cold stress.
Collapse
Affiliation(s)
- Feng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
- *Correspondence: Feng Wang, ;
| | - Jiarong Yan
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, China
| | - Xiujie Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xin Bu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hengzuo Xiang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yanbing Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jiazhi Lu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yufeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
- Tianlai Li,
| |
Collapse
|
119
|
Garcia-Molina A, Leister D. Accelerated relaxation of photoprotection impairs biomass accumulation in Arabidopsis. NATURE PLANTS 2020; 6:9-12. [PMID: 31907400 DOI: 10.1038/s41477-019-0572-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/21/2019] [Indexed: 05/22/2023]
Abstract
Faster onset of photoprotection could potentially increase biomass accumulation. Indeed, this has been realized in tobacco VPZ lines by overexpression of three photoprotective proteins in parallel. To explore the range of application of this approach, we generated Arabidopsis VPZ lines. These lines triggered photoprotection more rapidly, but growth rate and biomass accumulation were impaired under fluctuating light. This implies that the strategy might interfere with other mechanisms controlling excitation energy distribution, or with source-sink relationships or plastid signalling.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- Plant Molecular Biology, Faculty of Biology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig Maximilians University of Munich, Munich, Germany.
| |
Collapse
|
120
|
Landi M, Zivcak M, Sytar O, Brestic M, Allakhverdiev SI. Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148131. [PMID: 31816291 DOI: 10.1016/j.bbabio.2019.148131] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/17/2019] [Accepted: 11/28/2019] [Indexed: 01/08/2023]
Abstract
Light spectra significantly influence plant metabolism, growth and development. Here, we review the effects of monochromatic blue, red and green light compared to those of multispectral light sources on the morpho-anatomical, photosynthetic and molecular traits of herbaceous plants. Emphasis is given to the effect of light spectra on the accumulation of secondary metabolites, which are important bioactive phytochemicals that determine the nutritional quality of vegetables. Overall, blue light may promote the accumulation of phenylpropanoid-based compounds without substantially affecting plant morpho-anatomical traits compared to the effects of white light. Red light, conversely, strongly alters plant morphology and physiology compared to that under white light without showing a consistent positive effect on secondary metabolism. Due to species-specific effects and the small shifts in the spectral band within the same color that can substantially affect plant growth and metabolism, it is conceivable that monochromatic light significantly affects not only plant photosynthetic performance but also the "quality" of plants by modulating the biosynthesis of photoprotective compounds.
Collapse
Affiliation(s)
- Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic.
| | - Oksana Sytar
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic; Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia; Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia; Department of Plant Physiology, M.V. Lomonosov Moscow State University, Moscow, Russia; Department of Molecular and Cell Biology, Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow Region, Russia; Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Baku, Azerbaijan; King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
121
|
Nunes B, Veiga V, Frankenbach S, Serôdio J, Pinto G. Evaluation of physiological changes induced by the fluoroquinolone antibiotic ciprofloxacin in the freshwater macrophyte species Lemna minor and Lemna gibba. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 72:103242. [PMID: 31473558 DOI: 10.1016/j.etap.2019.103242] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
The worldwide increase in the consumption of antibiotics is becoming a concern for the scientific community, since the presence of their residues in the wild poses specific challenges, especially in ecotoxicological terms. Currently, antibiotics are used for a wide range of purposes, being used against bacterial diseases but also as growth promoters. As a result, their environmental presence can affect wild organisms, especially those from the aquatic environment. This scenario leads to the need of characterizing the toxicity of antibiotics, especially towards non-target organisms. In this study we selected two species of aquatic macrophytes, Lemna minor and Lemna gibba, which are standard plant species inscribed in ecotoxicological testing guidelines. In this work we characterized the toxic effects of the quinolone antibiotic ciprofloxacin (in levels of 0.005, 0.013, 0.031, 0.078, and 0.195 mg/L), focusing on its potential toxicity towards photosynthetic mechanisms, and pro-oxidant effects. These objectives were attained by measuring the concentrations of chlorophyll a and b, and carotenoids levels. The determination of the quantum yield allowed assessing the effects of ciprofloxacin on the photochemical efficiency of the Photosystem II (PSII). The pro-oxidant effects induced by ciprofloxacin were evaluated by measuring oxidative stress biomarkers, such as catalase activity, and also by determining lipoperoxidation levels. The obtained results showed no differences in terms of the content of both chlorophylls a and b, or any change in the photochemical efficiency of the PSII; however, the global carotenoids content of L. gibba were significantly decreased. The activity of the anti-oxidant enzyme catalase was also significantly increased in L. minor. L. gibba showed a decrease in lipid peroxidation levels, but only for the two lowest concentrations of ciprofloxacin. The global set of data shows the activation of the anti-oxidant defensive system of both plant species, a response that was likely activated by the pro-oxidant character of ciprofloxacin. Our data demonstrate the interference of this therapeutic compound at different levels of plant metabolism, at ecologically relevant concentrations. In fact, the obtained results are of ecological relevance since they illustrate deleterious effects that may compromise the physiology of aquatic non-target plant species.
Collapse
Affiliation(s)
- Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, Laboratório Associado (CESAM, LA) Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Vítor Veiga
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Silja Frankenbach
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, Laboratório Associado (CESAM, LA) Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - João Serôdio
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, Laboratório Associado (CESAM, LA) Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Glória Pinto
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, Laboratório Associado (CESAM, LA) Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
122
|
Sayed OH, Masrahi YS, Remesh M, Al-Ammari B. Coffee production in southern Saudi Arabian highlands: Current status and water conservation. Saudi J Biol Sci 2019; 26:1911-1914. [PMID: 31762674 PMCID: PMC6864149 DOI: 10.1016/j.sjbs.2019.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 11/25/2022] Open
Abstract
Work aimed at assessing status and introducing water conservation regimes for coffee production in southern Saudi Arabian highlands. Data on farm locations, altitudes, areas, practices, irrigation, tree density, and annual coffee production were analyzed. Field experiment using chlorophyll fluorescence and different irrigation regimes was conducted to examine effects of reducing irrigation frequency on photosynthesis. Results indicated that Coffea arabica L. is commonly grown at altitudes of 1300–1400 m. Plants grown at 4–6 Trees m−2 using 100 kg ha−1 mineral fertilizer produce an average of 3 t ha−1. High frequency 2-day-intervals irrigation regime practiced by farmers during the dry season presents ecological challenge to limited local artesian water resources. Changes in chlorophyll fluorescence under 14-day-intervals irrigation regime initiated water stress that markedly inhibited Photosystem II efficiency and quantum yield and increased non-photochemical energy dissipation. Applying a 7-day-intervals irrigation regime induced less inhibitory effects on Photosystem II. Results also indicated that shifting from 2-day-intervals irrigation regime to 7-day-intervals regime improves coffee agroecology and directs coffee production towards sustainability.
Collapse
|
123
|
Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI. Genetic strategies for improving crop yields. Nature 2019; 575:109-118. [PMID: 31695205 PMCID: PMC7024682 DOI: 10.1038/s41586-019-1679-0] [Citation(s) in RCA: 603] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022]
Abstract
The current trajectory for crop yields is insufficient to nourish the world's population by 20501. Greater and more consistent crop production must be achieved against a backdrop of climatic stress that limits yields, owing to shifts in pests and pathogens, precipitation, heat-waves and other weather extremes. Here we consider the potential of plant sciences to address post-Green Revolution challenges in agriculture and explore emerging strategies for enhancing sustainable crop production and resilience in a changing climate. Accelerated crop improvement must leverage naturally evolved traits and transformative engineering driven by mechanistic understanding, to yield the resilient production systems that are needed to ensure future harvests.
Collapse
Affiliation(s)
- Julia Bailey-Serres
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, USA.
- Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands.
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research and Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Elizabeth A Ainsworth
- Global Change and Photosynthesis Research Unit, Agricultural Research Service, US Department of Agriculture, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Julian I Schroeder
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
- Food and Fuel for the 21st Century, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
124
|
Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI. Genetic strategies for improving crop yields. Nature 2019. [PMID: 31695205 DOI: 10.1038/s41586-019-1679-1670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The current trajectory for crop yields is insufficient to nourish the world's population by 20501. Greater and more consistent crop production must be achieved against a backdrop of climatic stress that limits yields, owing to shifts in pests and pathogens, precipitation, heat-waves and other weather extremes. Here we consider the potential of plant sciences to address post-Green Revolution challenges in agriculture and explore emerging strategies for enhancing sustainable crop production and resilience in a changing climate. Accelerated crop improvement must leverage naturally evolved traits and transformative engineering driven by mechanistic understanding, to yield the resilient production systems that are needed to ensure future harvests.
Collapse
Affiliation(s)
- Julia Bailey-Serres
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, USA.
- Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands.
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research and Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Elizabeth A Ainsworth
- Global Change and Photosynthesis Research Unit, Agricultural Research Service, US Department of Agriculture, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Julian I Schroeder
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
- Food and Fuel for the 21st Century, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
125
|
Cerqueira JVA, Silveira JAG, Carvalho FEL, Cunha JR, Lima Neto MC. The regulation of P700 is an important photoprotective mechanism to NaCl-salinity in Jatropha curcas. PHYSIOLOGIA PLANTARUM 2019; 167:404-417. [PMID: 30737801 DOI: 10.1111/ppl.12908] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 05/11/2023]
Abstract
Salinity commonly affects photosynthesis and crop production worldwide. Salt stress disrupts the fine balance between photosynthetic electron transport and the Calvin cycle reactions, leading to over-reduction and excess energy within the thylakoids. The excess energy triggers reactive oxygen species (ROS) overproduction that causes photoinhibition in both photosystems (PS) I and II. However, the role of PSI photoinhibition and its physiological mechanisms for photoprotection have not yet been fully elucidated. In the present study, we analyzed the effects of 15 consecutive days of 100 mM NaCl in Jatropha curcas plants, primarily focusing on the photosynthetic electron flow at PSI level. We found that J. curcas plants have important photoprotective mechanisms to cope with the harmful effects of salinity. We show that maintaining P700 in an oxidized state is an important photoprotector mechanism, avoiding ROS burst in J. curcas exposed to salinity. In addition, upon photoinhibition of PSI, the highly reduced electron transport chain triggers a significant increase in H2 O2 content which can lead to the production of hydroxyl radical by Mehler reactions in chloroplast, thereby increasing PSI photoinhibition.
Collapse
Affiliation(s)
- João V A Cerqueira
- Department of Molecular Biology and Biochemistry, Federal University of Ceará, Fortaleza, 60440-970, Brazil
| | - Joaquim A G Silveira
- Department of Molecular Biology and Biochemistry, Federal University of Ceará, Fortaleza, 60440-970, Brazil
| | - Fabrício E L Carvalho
- Department of Molecular Biology and Biochemistry, Federal University of Ceará, Fortaleza, 60440-970, Brazil
| | - Juliana R Cunha
- Department of Molecular Biology and Biochemistry, Federal University of Ceará, Fortaleza, 60440-970, Brazil
| | - Milton C Lima Neto
- Bioscience Institute, São Paulo State University (UNESP), São Vicente, 11330-900, Brazil
| |
Collapse
|
126
|
Pinnola A. The rise and fall of Light-Harvesting Complex Stress-Related proteins as photoprotection agents during evolution. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5527-5535. [PMID: 31424076 DOI: 10.1093/jxb/erz317] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/22/2019] [Indexed: 05/18/2023]
Abstract
Photosynthesis depends on light. However, excess light can be harmful for the photosynthetic apparatus because it produces reactive oxygen species (ROS) that cause photoinhibition. Oxygenic organisms evolved photoprotection mechanisms to counteract light-dependent ROS production, including preventive dissipation of excited states of chlorophyll (1Chl*) into heat in the process termed non-photochemical quenching (NPQ). This consists in the activation of 1Chl* quenching reactions when the thylakoid luminal pH drops below 5.2. In turn, acidification occurs when the rate of the CO2 reducing cycle is saturated and cannot regenerate ADP+Pi, thus inhibiting ATPase activity and the return of protons (H+) to the stromal compartment. The major and fastest component of NPQ is energy quenching, qE, which in algae depends on the Light-Harvesting Complex Stress-Related (LHCSR) proteins. In mosses, LHCSR proteins have remained the major catalysts of energy dissipation, but a minor contribution also occurs via a homologous protein, Photosystem II Subunit S (PSBS). In vascular plants, however, LHCSR has disappeared and PSBS is the only pH-sensitive trigger of qE. Why did PSBS replace LHCSR in the later stages of land colonization? Both PSBS and LHCSR belong to the Light Harvesting Complex superfamily (LHC) and share properties such as harboring protonatable residues that are exposed to the chloroplast lumen, which is essential for pH sensing. However, there are also conspicuous differences: LHCSR binds chlorophylls and xanthophylls while PSBS does not, implying that the former may well catalyse quenching reactions while the latter needs pigment-binding partners for its quenching function. Here, the evolution of quenching mechanisms for excess light is reviewed with a focus on the role of LHCSR versus PSBS, and the reasons for the redundancy of LHCSR in vascular plants as PSBS became established.
Collapse
Affiliation(s)
- Alberta Pinnola
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
127
|
Anna BB, Grzegorz B, Marek K, Piotr G, Marcin F. Exposure to High-Intensity Light Systemically Induces Micro-Transcriptomic Changes in Arabidopsis thaliana Roots. Int J Mol Sci 2019; 20:ijms20205131. [PMID: 31623174 PMCID: PMC6829545 DOI: 10.3390/ijms20205131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 01/25/2023] Open
Abstract
In full sunlight, plants often experience a light intensity exceeding their photosynthetic capacity and causing the activation of a set of photoprotective mechanisms. Numerous reports have explained, on the molecular level, how plants cope with light stress locally in photosynthesizing leaves; however, the response of below-ground organs to above-ground perceived light stress is still largely unknown. Since small RNAs are potent integrators of multiple processes including stress responses, here, we focus on changes in the expression of root miRNAs upon high-intensity-light (HL) stress. To achieve this, we used Arabidopsis thaliana plants growing in hydroponic conditions. The expression of several genes that are known as markers of redox changes was examined over time, with the results showing that typical HL stress signals spread to the below-ground organs. Additionally, micro-transcriptomic analysis of systemically stressed roots revealed a relatively limited reaction, with only 17 up-regulated and five down-regulated miRNAs. The differential expression of candidates was confirmed by RT-qPCR. Interestingly, the detected differences in miRNA abundance disappeared when the roots were separated from the shoots before HL treatment. Thus, our results show that the light stress signal is induced in rosettes and travels through the plant to affect root miRNA levels. Although the mechanism of this regulation is unknown, the engagement of miRNA may create a regulatory platform orchestrating adaptive responses to various simultaneous stresses. Consequently, further research on systemically HL-regulated miRNAs and their respective targets has the potential to identify attractive sequences for engineering stress tolerance in plants.
Collapse
Affiliation(s)
- Barczak-Brzyżek Anna
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warszawa, Poland.
| | - Brzyżek Grzegorz
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warszawa, Poland.
| | - Koter Marek
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warszawa, Poland.
| | - Gawroński Piotr
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warszawa, Poland.
| | - Filipecki Marcin
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warszawa, Poland.
| |
Collapse
|
128
|
Junker-Frohn LV, Kleiber A, Jansen K, Gessler A, Kreuzwieser J, Ensminger I. Differences in isoprenoid-mediated energy dissipation pathways between coastal and interior Douglas-fir seedlings in response to drought. TREE PHYSIOLOGY 2019; 39:1750-1766. [PMID: 31287896 DOI: 10.1093/treephys/tpz075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/21/2019] [Accepted: 05/12/2019] [Indexed: 06/09/2023]
Abstract
Plants have evolved energy dissipation pathways to reduce photooxidative damage under drought when photosynthesis is hampered. Non-volatile and volatile isoprenoids are involved in non-photochemical quenching of excess light energy and scavenging of reactive oxygen species. A better understanding of trees' ability to cope with and withstand drought stress will contribute to mitigate the negative effects of prolonged drought periods expected under future climate conditions. Therefore we investigated if Douglas-fir (Pseudotsuga menziesii(Mirb.)) provenances from habitats with contrasting water availability reveal intraspecific variation in isoprenoid-mediated energy dissipation pathways. In a controlled drought experiment with 1-year-old seedlings of an interior and a coastal Douglas-fir provenance, we assessed the photosynthetic capacity, pool sizes of non-volatile isoprenoids associated with the photosynthetic apparatus, as well as pool sizes and emission of volatile isoprenoids. We observed variation in the amount and composition of non-volatile and volatile isoprenoids among provenances, which could be linked to variation in photosynthetic capacity under drought. The coastal provenance exhibited an enhanced biosynthesis and emission of volatile isoprenoids, which is likely sustained by generally higher assimilation rates under drought. In contrast, the interior provenance showed an enhanced photoprotection of the photosynthetic apparatus by generally higher amounts of non-volatile isoprenoids and increased amounts of xanthophyll cycle pigments under drought. Our results demonstrate that there is intraspecific variation in isoprenoid-mediated energy dissipation pathways among Douglas-fir provenances, which may be important traits when selecting provenances suitable to grow under future climate conditions.
Collapse
Affiliation(s)
- Laura Verena Junker-Frohn
- Department of Biology, Graduate Programs in Cell & Systems Biology and Ecology & Evolutionary Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON, Canada
- Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Wonnhaldestr. 4, 79100 Freiburg, Germany
| | - Anita Kleiber
- Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany
| | - Kirstin Jansen
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Arthur Gessler
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
- Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zürich, Switzerland
- Swiss Federal Research Institute WSL, Zürcherstr. 111, 8903 Birmensdorf, Switzerland
| | - Jürgen Kreuzwieser
- Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany
| | - Ingo Ensminger
- Department of Biology, Graduate Programs in Cell & Systems Biology and Ecology & Evolutionary Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON, Canada
- Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Wonnhaldestr. 4, 79100 Freiburg, Germany
| |
Collapse
|
129
|
Zheng Z, Gao S, Wang G. High salt stress in the upper part of floating mats of Ulva prolifera, a species that causes green tides, enhances non-photochemical quenching. JOURNAL OF PHYCOLOGY 2019; 55:1041-1049. [PMID: 31062364 DOI: 10.1111/jpy.12881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Salt stress is a major abiotic stress factor that can induce many adverse effects on photosynthetic organisms. Plants and algae have developed several mechanisms that help them respond to adverse environments. Non-photochemical quenching (NPQ) is one of these mechanisms. The thalli of algae in the intertidal zone that are attached to rocks can be subjected to salt stress for a short period of time due to the rise and fall of the tide. Ulva prolifera causes green tides and can form floating mats when green tides occur and the upper part of the thalli is subjected to high salt stress for a long period of time. In this study, we compared the Ulva prolifera photosynthetic activities and NPQ kinetics when it is subjected to different salinities over various periods of time. Thalli exposed to a salinity of 90 for 4 d showed enhanced NPQ, and photosynthetic activities decreased from 60 min after exposure up to 4 d. This indicated that the induction of NPQ in Ulva prolifera under salt stress was closely related to the stressing extent and stressing time. The enhanced NPQ in the treated samples exposed for 4 d may explain why the upper layer of the floating mats formed by Ulva prolifera thalli were able to survive in the harsh environment. Further inhibitor experiments demonstrated that the enhanced NPQ was xanthophyll cycle and transthylakoid proton gradient-dependent. However, photosystem II subunit S and light-harvesting complex stress-related protein didn't over accumulate and may not be responsible for the enhanced NPQ.
Collapse
Affiliation(s)
- Zhenbing Zheng
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shan Gao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
130
|
Maseyk K, Lin T, Cochavi A, Schwartz A, Yakir D. Quantification of leaf-scale light energy allocation and photoprotection processes in a Mediterranean pine forest under extensive seasonal drought. TREE PHYSIOLOGY 2019; 39:1767-1782. [PMID: 31274163 DOI: 10.1093/treephys/tpz079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/16/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Photoprotection strategies in a Pinus halepensis Mill. forest at the dry timberline that shows sustained photosynthetic activity during 6-7 month summer drought were characterized and quantified under field conditions. Measurements of chlorophyll fluorescence, leaf-level gas exchange and pigment concentrations were made in both control and summer-irrigated plots, providing the opportunity to separate the effects of atmospheric from soil water stress on the photoprotection responses. The proportion of light energy incident on the leaf surface ultimately being used for carbon assimilation was 18% under stress-free conditions (irrigated, winter), declining to 4% under maximal stress (control, summer). Allocation of absorbed light energy to photochemistry decreased from 25 to 15% (control) and from 50% to 30% (irrigated) between winter and summer, highlighting the important role of pigment-mediated energy dissipation processes. Photorespiration or other non-assimilatory electron flow accounted for 15-20% and ~10% of incident light energy during periods of high and low carbon fixation, respectively, representing a proportional increase in photochemical energy going to photorespiration in summer but a decrease in the absolute amount of photorespiratory CO2 loss. Resilience of the leaf photochemical apparatus was expressed in the complete recovery of photosystem II (PSII) efficiency (ΦPSII) and relaxation of the xanthophyll de-epoxidation state on the diurnal cycle throughout the year, and no seasonal decrease in pre-dawn maximal PSII efficiency (Fv/Fm). The response of CO2 assimilation and photoprotection strategies to stomatal conductance and leaf water potential appeared independent of whether stress was due to atmospheric or soil water deficits across seasons and treatments. The range of protection characteristics identified provides insights into the relatively high carbon economy under these dry conditions, conditions that are predicted for extended areas in the Mediterranean and other regions due to global climate change.
Collapse
Affiliation(s)
- Kadmiel Maseyk
- Department of Earth and Planetary Science, Weizmann Institute of Science, Herzl St, Rehovot 76100, Israel
- School of Environment, Earth and Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Tongbao Lin
- Department of Earth and Planetary Science, Weizmann Institute of Science, Herzl St, Rehovot 76100, Israel
- College of Agronomy, Henan Agricultural University, Nongye Road, Zhengzhou 450002, Henan, P.R. China
| | - Amnon Cochavi
- Department of Earth and Planetary Science, Weizmann Institute of Science, Herzl St, Rehovot 76100, Israel
| | - Amnon Schwartz
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, the Hebrew University of Jerusalem, Herzl St, Rehovot 76100, Israel
| | - Dan Yakir
- Department of Earth and Planetary Science, Weizmann Institute of Science, Herzl St, Rehovot 76100, Israel
| |
Collapse
|
131
|
McAusland L, Atkinson JA, Lawson T, Murchie EH. High throughput procedure utilising chlorophyll fluorescence imaging to phenotype dynamic photosynthesis and photoprotection in leaves under controlled gaseous conditions. PLANT METHODS 2019; 15:109. [PMID: 31548849 PMCID: PMC6749646 DOI: 10.1186/s13007-019-0485-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/14/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND As yields of major crops such as wheat (T. aestivum) have begun to plateau in recent years, there is growing pressure to efficiently phenotype large populations for traits associated with genetic advancement in yield. Photosynthesis encompasses a range of steady state and dynamic traits that are key targets for raising Radiation Use Efficiency (RUE), biomass production and grain yield in crops. Traditional methodologies to assess the full range of responses of photosynthesis, such a leaf gas exchange, are slow and limited to one leaf (or part of a leaf) per instrument. Due to constraints imposed by time, equipment and plant size, photosynthetic data is often collected at one or two phenological stages and in response to limited environmental conditions. RESULTS Here we describe a high throughput procedure utilising chlorophyll fluorescence imaging to phenotype dynamic photosynthesis and photoprotection in excised leaves under controlled gaseous conditions. When measured throughout the day, no significant differences (P > 0.081) were observed between the responses of excised and intact leaves. Using excised leaves, the response of three cultivars of T. aestivum to a user-defined dynamic lighting regime was examined. Cultivar specific differences were observed for maximum PSII efficiency (F v'/F m'-P < 0.01) and PSII operating efficiency (F q'/F m'-P = 0.04) under both low and high light. In addition, the rate of induction and relaxation of non-photochemical quenching (NPQ) was also cultivar specific. A specialised imaging chamber was designed and built in-house to maintain gaseous conditions around excised leaf sections. The purpose of this is to manipulate electron sinks such as photorespiration. The stability of carbon dioxide (CO2) and oxygen (O2) was monitored inside the chambers and found to be within ± 4.5% and ± 1% of the mean respectively. To test the chamber, T. aestivum 'Pavon76' leaf sections were measured under at 20 and 200 mmol mol-1 O2 and ambient [CO2] during a light response curve. The F v'/F m'was significantly higher (P < 0.05) under low [O2] for the majority of light intensities while values of NPQ and the proportion of open PSII reaction centers (qP) were significantly lower under > 130 μmol m-2 s-1 photosynthetic photon flux density (PPFD). CONCLUSIONS Here we demonstrate the development of a high-throughput (> 500 samples day-1) method for phenotyping photosynthetic and photo-protective parameters in a dynamic light environment. The technique exploits chlorophyll fluorescence imaging in a specifically designed chamber, enabling controlled gaseous environment around leaf sections. In addition, we have demonstrated that leaf sections do not different from intact plant material even > 3 h after sampling, thus enabling transportation of material of interest from the field to this laboratory based platform. The methodologies described here allow rapid, custom screening of field material for variation in photosynthetic processes.
Collapse
Affiliation(s)
- Lorna McAusland
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD UK
| | - Jonathan A. Atkinson
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ UK
| | - Erik H. Murchie
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD UK
| |
Collapse
|
132
|
Pollastri S, Jorba I, Hawkins TJ, Llusià J, Michelozzi M, Navajas D, Peñuelas J, Hussey PJ, Knight MR, Loreto F. Leaves of isoprene-emitting tobacco plants maintain PSII stability at high temperatures. THE NEW PHYTOLOGIST 2019; 223:1307-1318. [PMID: 30980545 DOI: 10.1111/nph.15847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/07/2019] [Indexed: 05/13/2023]
Abstract
At high temperatures, isoprene-emitting plants display a higher photosynthetic rate and a lower nonphotochemical quenching (NPQ) compared with nonemitting plants. The mechanism of this phenomenon, which may be very important under current climate warming, is still elusive. NPQ was dissected into its components, and chlorophyll fluorescence lifetime imaging microscopy (FLIM) was used to analyse the dynamics of excited chlorophyll relaxation in isoprene-emitting and nonemitting plants. Thylakoid membrane stiffness was also measured using atomic force microscope (AFM) to identify a possible mode of action of isoprene in improving photochemical efficiency and photosynthetic stability. We show that, when compared with nonemitters, isoprene-emitting tobacco plants exposed at high temperatures display a reduced increase of the NPQ energy-dependent component (qE) and stable (1) chlorophyll fluorescence lifetime; (2) amplitude of the fluorescence decay components; and (3) thylakoid membrane stiffness. Our study shows for the first time that isoprene maintains PSII stability at high temperatures by preventing the modifications of the surrounding environment, namely providing a more steady and homogeneous distribution of the light-absorbing centres and a stable thylakoid membrane stiffness. Isoprene photoprotects leaves with a mechanism alternative to NPQ, enabling plants to maintain a high photosynthetic rate at rising temperatures.
Collapse
Affiliation(s)
- Susanna Pollastri
- Institute for Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
- Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK
| | - Ignasi Jorba
- University of Barcelona and Institute for Bioengineering of Catalonia - The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Timothy J Hawkins
- Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK
| | - Joan Llusià
- CSIC, Global Ecology Unit CREAF-CSIC-Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Marco Michelozzi
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| | - Daniel Navajas
- University of Barcelona and Institute for Bioengineering of Catalonia - The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK
| | - Marc R Knight
- Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Piazzale Aldo Moro 7, 00185, Rome, Italy
- Department of Biology, University of Naples Federico II, via Cinthia, 80126, Naples, Italy
| |
Collapse
|
133
|
Fang P, Yan M, Chi C, Wang M, Zhou Y, Zhou J, Shi K, Xia X, Foyer CH, Yu J. Brassinosteroids Act as a Positive Regulator of Photoprotection in Response to Chilling Stress. PLANT PHYSIOLOGY 2019; 180:2061-2076. [PMID: 31189657 PMCID: PMC6670110 DOI: 10.1104/pp.19.00088] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/03/2019] [Indexed: 05/20/2023]
Abstract
Photoprotection is an important strategy adopted by plants to avoid photoinhibition under stress conditions. However, the way in which photoprotection is regulated is not fully understood. Here, we demonstrate that tomato (Solanum lycopersicum) mutants of brassinosteroid (BR) biosynthesis (dwf) and related signaling through BRASSINAZOLE-RESISTANT1 (bzr1) are more sensitive to (PSII and PSI photoinhibition, with decreased cyclic electron flow around PSI and lower nonphotochemical quenching, accumulation of PSII subunit S (PsbS), violaxanthin deepoxidase (VDE) activity, and D1 protein abundance. Chilling induced the accumulation of active BRs and activated BZR1, which directly activates the transcription of RESPIRATORY BURST OXIDASE HOMOLOG1 (RBOH1) and hydrogen peroxide production in the apoplast. While apoplastic hydrogen peroxide is essential for the induction of PROTON GRADIENT REGULATION5 (PGR5)-dependent cyclic electron flow, PGR5 participates in the regulation of chilling- and BR-dependent induction of nonphotochemical quenching, accumulation of D1, VDE, and PsbS proteins, transcription of genes involved in redox signaling, hormone signaling, and activity of several antioxidant enzymes. Mutations in BZR1 and PGR5 or suppressed transcription of RBOH1 compromised chilling- and BR-induced photoprotection, resulting in increased sensitivity to photoinhibition. These results demonstrate that BRs act as a positive regulator of photoprotection in a redox-PGR5-dependent manner in response to chilling stress in tomato.
Collapse
Affiliation(s)
- Pingping Fang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Mengyu Yan
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Cheng Chi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Mengqi Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China
| |
Collapse
|
134
|
Höhner R, Galvis VC, Strand DD, Völkner C, Krämer M, Messer M, Dinc F, Sjuts I, Bölter B, Kramer DM, Armbruster U, Kunz HH. Photosynthesis in Arabidopsis Is Unaffected by the Function of the Vacuolar K + Channel TPK3. PLANT PHYSIOLOGY 2019; 180:1322-1335. [PMID: 31053658 PMCID: PMC6752931 DOI: 10.1104/pp.19.00255] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/25/2019] [Indexed: 05/21/2023]
Abstract
Photosynthesis is limited by the slow relaxation of nonphotochemical quenching, which primarily dissipates excess absorbed light energy as heat. Because the heat dissipation process is proportional to light-driven thylakoid lumen acidification, manipulating thylakoid ion and proton flux via transport proteins could improve photosynthesis. However, an important aspect of the current understanding of the thylakoid ion transportome is inaccurate. Using fluorescent protein fusions, we show that the Arabidopsis (Arabidopsis thaliana) two-pore K+ channel TPK3, which had been reported to mediate thylakoid K+ flux, localizes to the tonoplast, not the thylakoid. The localization of TPK3 outside of the thylakoids is further supported by the absence of TPK3 in isolated thylakoids as well as the inability of isolated chloroplasts to import TPK3 protein. In line with the subcellular localization of TPK3 in the vacuole, we observed that photosynthesis in the Arabidopsis null mutant tpk3-1, which carries a transfer DNA insertion in the first exon, remains unaffected. To gain a comprehensive understanding of how thylakoid ion flux impacts photosynthetic efficiency under dynamic growth light regimes, we performed long-term photosynthesis imaging of established and newly isolated transthylakoid K+- and Cl--flux mutants. Our results underpin the importance of the thylakoid ion transport proteins potassium cation efflux antiporter KEA3 and voltage-dependent chloride channel VCCN1 and suggest that the activity of yet unknown K+ channel(s), but not TPK3, is critical for optimal photosynthesis in dynamic light environments.
Collapse
Affiliation(s)
- Ricarda Höhner
- Plant Physiology, School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236
| | - Viviana Correa Galvis
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, 14476 Potsdam, Germany
| | - Deserah D Strand
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, 14476 Potsdam, Germany
| | - Carsten Völkner
- Plant Physiology, School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236
| | - Moritz Krämer
- Plant Physiology, School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236
| | - Michaela Messer
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, 14476 Potsdam, Germany
| | - Firdevs Dinc
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, 14476 Potsdam, Germany
| | - Inga Sjuts
- Ludwig Maximilian University Munich, Department I, Plant Biochemistry, 82152 Planegg-Martinsried, Germany
| | - Bettina Bölter
- Ludwig Maximilian University Munich, Department I, Plant Biochemistry, 82152 Planegg-Martinsried, Germany
| | - David M Kramer
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Ute Armbruster
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, 14476 Potsdam, Germany
| | - Hans-Henning Kunz
- Plant Physiology, School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236
| |
Collapse
|
135
|
Escaray FJ, Antonelli CJ, Carrasco P, Ruiz OA. Interspecific hybridization improves the performance of Lotus spp. under saline stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:202-210. [PMID: 31128690 DOI: 10.1016/j.plantsci.2019.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Salinity is one of the most frequent limiting conditions in pasture production for grazing livestock. Legumes, such as Lotus spp. with high forage quality and capable of adapting to different environments, improves pasture performance in restrictive areas. In order to determine potential cultivars with better forage traits, the current study assess the response to salt stress of L. tenuis, L. corniculatus and a novel L. tenuis x L. corniculatus accession. For this purpose, chlorophyll fluorescence, biomass production, ion accumulation and anthocyanins and proanthocyanidins levels have been evaluated in control and salt-treated plants PSII activity was affected by salt in L. tenuis, but not in L. corniculatus or hybrid plants. Analyzed accessions showed similar values of biomass, Na+ and K+ levels after salt treatment. Increasing Cl- concentrations were observed in all accessions. However, hybrid plants accumulate Cl- in stems at higher levels than their parental. At the same time, the levels of anthocyanins considerably increased in L. tenuis x L. corniculatus stems. Chloride and anthocyanin accumulation in stems could explain the best performance of hybrid plants after a long saline treatment. Finally, as proanthocyanidins levels were no affected by salt, L. tenuis x L. corniculatus plants maintained adequate levels to be used as ruminant feed. In conclusion, these results suggest that hybrid plants have a high potential to be used as forage on salt-affected lands. High Cl- and anthocyanins accumulation in Lotus spp. stems seems to be a trait associated to salinity tolerance, with the possibility of being used in legume breeding programs.
Collapse
Affiliation(s)
- Francisco José Escaray
- Unidad de Biotecnología 1, Instituto Tecnológico de Chascomús (INTECh) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Cristian Javier Antonelli
- Unidad de Biotecnología 1, Instituto Tecnológico de Chascomús (INTECh) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Pedro Carrasco
- Departament de Bioquìmica y Biologia Molecular, Universitat de València, Spain
| | - Oscar Adolfo Ruiz
- Unidad de Biotecnología 1, Instituto Tecnológico de Chascomús (INTECh) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV / INTA), Argentina.
| |
Collapse
|
136
|
Khuong TTH, Robaglia C, Caffarri S. Photoprotection and growth under different lights of Arabidopsis single and double mutants for energy dissipation (npq4) and state transitions (pph1). PLANT CELL REPORTS 2019; 38:741-753. [PMID: 30915529 DOI: 10.1007/s00299-019-02403-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/13/2019] [Indexed: 05/22/2023]
Abstract
Arabidopsis single and double mutants for energy dissipation (npq4) and state transitions (pph1, blocked in State II) show enhanced growth and flowers + siliques production under controlled low-light conditions. Non-photochemical quenching (NPQ) is a short-term regulation important to maintain efficient photosynthesis and to avoid photooxidative damages by dissipation of excess energy. Full activation of NPQ in plants requires the protonation of the PsbS protein, which is the sensor of the low lumenal pH triggering the thermal dissipation. State transitions are a second important photosynthetic regulation to respond to changes in light quality and unbalanced excitation of photosystems. State transitions allow energy redistribution between PSI and PSII through the reversible exchange of LHCII antenna complexes between photosystems thanks to the opposite action of the STN7 kinase and PPH1 phosphatase: phosphorylation of LHCII promotes its mobilization from PSII to PSI, while dephosphorylation has the opposite effect. In this work, we produced the pph1/npq4 double mutant and characterized some photosynthetic, growth and reproduction properties in comparison with wild-type and single-mutant plants in high- and low-light conditions. Results indicate that in high light, the pph1 mutant maintains good photoprotection ability, while npq4 plants show more susceptibility to photodamages. The pph1/npq4 double mutant showed a resistance to high-light stress similar to that of the single npq4 mutant. In low-light condition, the single mutants showed a significant increase of growth and flowering compared to wild-type plants and this effect was further enhanced in the pph1/npq4 double mutant. Results suggest that photosynthetic optimisation to improve crop growth and productivity might be possible, at least under controlled low-light conditions, by modifying NPQ and regulation of state transitions.
Collapse
Affiliation(s)
- Thi Thu Huong Khuong
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, 13009, Marseille, France.
- Cell Technology Laboratory-CFB, Vietnam National University of Forestry, Hanoi, Vietnam.
- The Key Laboratory of Enzyme and Protein Technology (KLEPT), Hanoi University of Science (HUS), Vietnam National University in Hanoi (VNU), Hanoi, Vietnam.
| | - Christophe Robaglia
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, 13009, Marseille, France
| | - Stefano Caffarri
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, 13009, Marseille, France.
| |
Collapse
|
137
|
Anjum S, Bazai ZA, Rizwan S, Benincasa C, Mehmood K, Siddique N, Shaheen G, Mehmood Z, Azam M, Sajjad A. Elemental Characterization of Medicinal Plants and Soils from Hazarganji Chiltan National Park and Nearby Unprotected Areas of Balochistan, Pakistan. J Oleo Sci 2019; 68:443-461. [PMID: 31061264 DOI: 10.5650/jos.ess19004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this work was to evaluate the variability in elemental composition of seven medicinal plants and their respective soils belonging to protected and nearby unprotected sites of the Hazarganji Chiltan National Park. The medical plants under study were Achillea wilhelmsii C. Koch, Peganum harmala Linn, Sophora mollis (Royle) Baker, Perovskia atriplicifolia Benth, Seriphidium quettense (Podlech.) Ling, Hertia intermedia (Bioss) O. Ktze, and Nepeta praetervisa Rech. F. Macro (C, H, N, S, K, Ca), micro (Cl, Cu, Fe, Mn, and Zn), beneficial (Al, Co, Na), others (As, Br, Cr, Cs, Hf, Pb, Rb, Sb, Sr, Sn, V and Th) and rare earth elements (Ce, Eu, La, Lu, Nd Sc, Sm, Tb and Yb) were characterized by means of standard organic elemental and instrumental neutron activation methodologies and by flame atomic absorption spectroscopy. Results showed that, among macro nutrients, carbon concentration was the highest element in both plant and soil samples followed by H and K. Elements such as Cl, Na and Fe were detected in considerably good amounts; all the other elements were found in trace quantities. Principal component analysis (PCA) was applied to identify spatial variation in elemental composition of medicinal plants, in which 80-90% of the total variance in whole set of data was found. In particular, the findings highlighted the presence of essential and beneficial elements such as C, H, N, K, Ca, Fe, Mn and Na, in samples from protected sites, while potentially dangerous elements such as Al, As, Br and Cr were detected in samples from unprotected sites. These results emphasized on the need for rational exploitation of valuable medicinal plants and supporting protected areas as an excellent source of biodiversity conservation.
Collapse
Affiliation(s)
| | | | - Sabeena Rizwan
- Department of Chemistry, Sardar Bahadur Khan, Women's University
| | | | | | | | | | - Zahid Mehmood
- Institute of Biochemistry, University of Balochistan
| | - Muhammad Azam
- Institute of Biochemistry, University of Balochistan
| | - Ashif Sajjad
- Institute of Biochemistry, University of Balochistan
| |
Collapse
|
138
|
Perin G, Bellan A, Bernardi A, Bezzo F, Morosinotto T. The potential of quantitative models to improve microalgae photosynthetic efficiency. PHYSIOLOGIA PLANTARUM 2019; 166:380-391. [PMID: 30578540 DOI: 10.1111/ppl.12915] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
The massive increase in carbon dioxide concentration in the atmosphere driven by human activities is causing huge negative consequences and new sustainable sources of energy, food and materials are highly needed. Algae are unicellular photosynthetic microorganisms that can provide a highly strategic contribution to this challenge as alternative source of biomass to complement crops cultivation. Algae industrial cultures are commonly limited by light availability, and biomass accumulation is strongly dependent on their photon-to-biomass conversion efficiency. Investigation of algae photosynthetic metabolism is thus strategic for the generation of more efficient strains with higher productivity. Algae are cultivated at industrial scale in conditions highly different from the natural niches they adapted to and strains development efforts must fully consider the seminal influence on productivity of regulatory mechanism of photosynthesis as well as of cultivation parameters like cells concentration, light distribution in the culture, mixing, nutrients and carbon dioxide availability. In this review we will focus in particular on how mathematical models can account for the complex influence of all environmental parameters and can be exploited for development of improved algae strains.
Collapse
Affiliation(s)
- Giorgio Perin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B 35131, Padova, Italy
| | - Alessandra Bellan
- Department of Biology, University of Padova, Via Ugo Bassi 58/B 35131, Padova, Italy
| | - Andrea Bernardi
- Department of Industrial Engineering, University of Padova, Via Marzolo 9 35131, Padova, Italy
- Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, SW7 2AZ, London, UK
| | - Fabrizio Bezzo
- Department of Industrial Engineering, University of Padova, Via Marzolo 9 35131, Padova, Italy
| | - Tomas Morosinotto
- Department of Biology, University of Padova, Via Ugo Bassi 58/B 35131, Padova, Italy
| |
Collapse
|
139
|
Dubey AK, Kumar N, Kumar A, Ansari MA, Ranjan R, Gautam A, Sahu N, Pandey V, Behera SK, Mallick S, Pande V, Sanyal I. Over-expression of CarMT gene modulates the physiological performance and antioxidant defense system to provide tolerance against drought stress in Arabidopsis thaliana L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:54-65. [PMID: 30597317 DOI: 10.1016/j.ecoenv.2018.12.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
Drought is one of the major abiotic stresses which negatively affect plant growth and crop yield. Metallothionein (MTs) is a low molecular weight protein, mainly involved in metal homeostasis, while, its role in drought stress is still to be largely explored. The present study was aimed to investigate the role of MT gene against drought stress. The chickpea MT based on its up-regulation under drought stress was overexpressed in Arabidopsis thaliana to explore its role in mitigation of drought stress. The total transcript of MT gene was up to 30 fold higher in transgenic lines. Arabidopsis plants transformed with MT gene showed longer roots, better efficiency of survival and germination, larger siliques and higher biomass compared to WT. The physiological variables (A, WUE, G, E, qP and ETR) of WT plants were reduced during drought stress which recovered in transgenic Arabidopsis lines. The enzymatic and non-enzymatic antioxidant (APX, GPX, POD, GR, GRX, GST, CAT, MDHAR, ASc and GSH) levels were also enhanced in transgenic lines to provide tolerance. Simultaneously, drought responsive amino acids, i.e. proline and cysteine contents were higher in transgenic lines. Overall, the results suggest that MT gene is actively involved in the mitigation of drought stress and could be the choice for genetic engineering strategy to overcome drought stress.
Collapse
Affiliation(s)
- Arvind Kumar Dubey
- CSIR-National Botanical Research Institute, Lucknow, India; Department of Biotechnology, Kumaun University, Bhimtal Campus, Nainital, India
| | - Navin Kumar
- CSIR-National Botanical Research Institute, Lucknow, India
| | - Anil Kumar
- CSIR-National Botanical Research Institute, Lucknow, India; Department of Biotechnology, Kumaun University, Bhimtal Campus, Nainital, India
| | - Mohd Akram Ansari
- CSIR-National Botanical Research Institute, Lucknow, India; Department of Biotechnology, Kumaun University, Bhimtal Campus, Nainital, India
| | - Ruma Ranjan
- CSIR-National Botanical Research Institute, Lucknow, India
| | | | - Nayan Sahu
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Vivek Pandey
- CSIR-National Botanical Research Institute, Lucknow, India
| | | | | | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal Campus, Nainital, India
| | | |
Collapse
|
140
|
Climate change and abiotic stress mechanisms in plants. Emerg Top Life Sci 2019; 3:165-181. [DOI: 10.1042/etls20180105] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022]
Abstract
Abstract
Predicted global climatic change will perturb the productivity of our most valuable crops as well as detrimentally impact ecological fitness. The most important aspects of climate change with respect to these effects relate to water availability and heat stress. Over multiple decades, the plant research community has amassed a highly comprehensive understanding of the physiological mechanisms that facilitate the maintenance of productivity in response to drought, flooding, and heat stress. Consequently, the foundations necessary to begin the development of elite crop varieties that are primed for climate change are in place. To meet the food and fuel security concerns of a growing population, it is vital that biotechnological and breeding efforts to harness these mechanisms are accelerated in the coming decade. Despite this, those concerned with crop improvement must approach such efforts with caution and ensure that potentially harnessed mechanisms are viable under the context of a dynamically changing environment.
Collapse
|
141
|
Jones MA. Retrograde signalling as an informant of circadian timing. THE NEW PHYTOLOGIST 2019; 221:1749-1753. [PMID: 30299544 DOI: 10.1111/nph.15525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 1749 I. The circadian system is responsive to environmental change 1749 II. Photoassimilates regulate circadian timing 1750 III. Retrograde signals contribute to circadian timing 1750 IV. Conclusions 1752 Acknowledgements 1752 References 1752 SUMMARY: The circadian system comprises interlocking transcriptional-translational feedback loops that regulate gene expression and consequently modulate plant development and physiology. In order to maximize utility, the circadian system is entrained by changes in temperature and light, allowing endogenous rhythms to be synchronized with both daily and seasonal environmental change. Although a great deal of environmental information is decoded by a suite of photoreceptors, it is also becoming apparent that changes in cellular metabolism also contribute to circadian timing, through either the stimulation of metabolic pathways or the accumulation of metabolic intermediates as a consequence of environmental stress. As the source of many of these metabolic byproducts, mitochondria and chloroplasts have begun to be viewed as environmental sensors, and rapid advancement of this field is revealing the complex web of signalling pathways initiated by organelle perturbation. This review highlights recent advances in our understanding of how this metabolic regulation influences circadian timing.
Collapse
Affiliation(s)
- Matthew A Jones
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
142
|
Mhatre A, Patil S, Agarwal A, Pandit R, Lali AM. Influence of nitrogen source on photochemistry and antenna size of the photosystems in marine green macroalgae, Ulva lactuca. PHOTOSYNTHESIS RESEARCH 2019; 139:539-551. [PMID: 29987549 DOI: 10.1007/s11120-018-0554-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Ulva lactuca is regarded as a prospective energy crop for biorefinery owing to its affluent biochemical composition and high growth rate. In fast-growing macroalgae, biomass development strictly depends on external nitrogen pools. Additionally, nitrogen uptake rates and photosynthetic pigment content vary with type of nitrogen source and light conditions. However, the combined influence of nitrogen source and light intensity on photosynthesis is not widely studied. In present study, pale green phenotype of U. lactuca was obtained under high light (HL) condition when inorganic nitrogen (nitrate) in the media was substituted with organic nitrogen (urea). Further, pale green phenotype survived the saturating light intensities in contrast to the normal pigmented control which bleached in HL. Detailed analysis of biochemical composition and photosynthesis was performed to understand functional antenna size and photoprotection in pale green phenotype. Under HL, urea-grown cultures exhibited increased growth rate, carbohydrate and lipid content while substantial reduction in protein, chlorophyll content and PSII antenna size was observed. Further, in vivo slow and polyphasic chlorophyll a (Chl a) fluorescence studies revealed reduction in excitation pressure on PSII along with low non-photochemical quenching thus, transmitting most of the absorbed energy into photochemistry. The results obtained could be correlated to previous report on cultivation of U. lactuca through saturating summer intensities (1000 µmole photons m-2 s-1) in urea based: poultry litter extract (PLE). Having proved critical role of urea in conforming photoprotection, the application PLE was authenticated for futuristic, sustainable and year-round biomass cultivation.
Collapse
Affiliation(s)
- Akanksha Mhatre
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Smita Patil
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Akanksha Agarwal
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Reena Pandit
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| | - Arvind M Lali
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| |
Collapse
|
143
|
Mishra KB, Mishra A, Kubásek J, Urban O, Heyer AG. Low temperature induced modulation of photosynthetic induction in non-acclimated and cold-acclimated Arabidopsis thaliana: chlorophyll a fluorescence and gas-exchange measurements. PHOTOSYNTHESIS RESEARCH 2019; 139:123-143. [PMID: 30306531 DOI: 10.1007/s11120-018-0588-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/24/2018] [Indexed: 05/23/2023]
Abstract
Cold acclimation modifies the photosynthetic machinery and enables plants to survive at sub-zero temperatures, whereas in warm habitats, many species suffer even at non-freezing temperatures. We have measured chlorophyll a fluorescence (ChlF) and CO2 assimilation to investigate the effects of cold acclimation, and of low temperatures, on a cold-sensitive Arabidopsis thaliana accession C24. Upon excitation with low intensity (40 µmol photons m- 2 s- 1) ~ 620 nm light, slow (minute range) ChlF transients, at ~ 22 °C, showed two waves in the SMT phase (S, semi steady-state; M, maximum; T, terminal steady-state), whereas CO2 assimilation showed a linear increase with time. Low-temperature treatment (down to - 1.5 °C) strongly modulated the SMT phase and stimulated a peak in the CO2 assimilation induction curve. We show that the SMT phase, at ~ 22 °C, was abolished when measured under high actinic irradiance, or when 3-(3, 4-dichlorophenyl)-1, 1- dimethylurea (DCMU, an inhibitor of electron flow) or methyl viologen (MV, a Photosystem I (PSI) electron acceptor) was added to the system. Our data suggest that stimulation of the SMT wave, at low temperatures, has multiple reasons, which may include changes in both photochemical and biochemical reactions leading to modulations in non-photochemical quenching (NPQ) of the excited state of Chl, "state transitions," as well as changes in the rate of cyclic electron flow through PSI. Further, we suggest that cold acclimation, in accession C24, promotes "state transition" and protects photosystems by preventing high excitation pressure during low-temperature exposure.
Collapse
Affiliation(s)
- Kumud B Mishra
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
- Department of Experimental Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Anamika Mishra
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Jiří Kubásek
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Arnd G Heyer
- Department of Plant Biotechnology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70567, Stuttgart, Germany
| |
Collapse
|
144
|
The increase of photosynthetic carbon assimilation as a mechanism of adaptation to low temperature in Lotus japonicus. Sci Rep 2019; 9:863. [PMID: 30696867 PMCID: PMC6351645 DOI: 10.1038/s41598-018-37165-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/25/2018] [Indexed: 11/15/2022] Open
Abstract
Low temperature is one of the most important factors affecting plant growth, it causes an stress that directly alters the photosynthetic process and leads to photoinhibition when severe enough. In order to address the photosynthetic acclimation response of Lotus japonicus to cold stress, two ecotypes with contrasting tolerance (MG-1 and MG-20) were studied. Their chloroplast responses were addressed after 7 days under low temperature through different strategies. Proteomic analysis showed changes in photosynthetic and carbon metabolism proteins due to stress, but differentially between ecotypes. In the sensitive MG-1 ecotype acclimation seems to be related to energy dissipation in photosystems, while an increase in photosynthetic carbon assimilation as an electron sink, seems to be preponderant in the tolerant MG-20 ecotype. Chloroplast ROS generation was higher under low temperature conditions only in the MG-1 ecotype. These data are consistent with alterations in the thylakoid membranes in the sensitive ecotype. However, the accumulation of starch granules observed in the tolerant MG-20 ecotype indicates the maintenance of sugar metabolism under cold conditions. Altogether, our data suggest that different acclimation strategies and contrasting chloroplast redox imbalance could account for the differential cold stress response of both L. japonicus ecotypes.
Collapse
|
145
|
Cruz JA, Savage LJ, Zegarac R, Hall CC, Satoh-Cruz M, Davis GA, Kovac WK, Chen J, Kramer DM. Dynamic Environmental Photosynthetic Imaging Reveals Emergent Phenotypes. Cell Syst 2018; 2:365-77. [PMID: 27336966 DOI: 10.1016/j.cels.2016.06.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/29/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
Abstract
Understanding and improving the productivity and robustness of plant photosynthesis requires high-throughput phenotyping under environmental conditions that are relevant to the field. Here we demonstrate the dynamic environmental photosynthesis imager (DEPI), an experimental platform for integrated, continuous, and high-throughput measurements of photosynthetic parameters during plant growth under reproducible yet dynamic environmental conditions. Using parallel imagers obviates the need to move plants or sensors, reducing artifacts and allowing simultaneous measurement on large numbers of plants. As a result, DEPI can reveal phenotypes that are not evident under standard laboratory conditions but emerge under progressively more dynamic illumination. We show examples in mutants of Arabidopsis of such "emergent phenotypes" that are highly transient and heterogeneous, appearing in different leaves under different conditions and depending in complex ways on both environmental conditions and plant developmental age. These emergent phenotypes appear to be caused by a range of phenomena, suggesting that such previously unseen processes are critical for plant responses to dynamic environments.
Collapse
Affiliation(s)
- Jeffrey A Cruz
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Linda J Savage
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Robert Zegarac
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Christopher C Hall
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Mio Satoh-Cruz
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Geoffry A Davis
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - William Kent Kovac
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jin Chen
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - David M Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
146
|
Herritt M, Dhanapal AP, Purcell LC, Fritschi FB. Identification of genomic loci associated with 21chlorophyll fluorescence phenotypes by genome-wide association analysis in soybean. BMC PLANT BIOLOGY 2018; 18:312. [PMID: 30497384 DOI: 10.1186/s12870-018-1517-1519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/02/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Photosynthesis is able to convert solar energy into chemical energy in the form of biomass, but the efficiency of photosynthetic solar energy conversion is low. Chlorophyll fluorescence measurements are rapid, non-destructive, and can provide a wealth of information about the efficiencies of the photosynthetic light reaction processes. Efforts aimed at assessing genetic variation and/or mapping of genetic loci associated with chlorophyll fluorescence phenotypes have been rather limited. RESULTS Evaluation of SoySNP50K iSelect SNP Beadchip data from the 189 genotypes phenotyped in this analysis identified 32,453 SNPs with a minor allele frequency (MAF) ≥ 5%. A total of 288 (non-unique) SNPs were significantly associated with one or more of the 21 chlorophyll fluorescence phenotypes. Of these, 155 were unique SNPs and 100 SNPs were only associated with a single fluorescence phenotype, while 28, 11, 2, and 14 SNPs, were associated with two, three, four and five or more fluorescence phenotypes, respectively. The 288 non-unique SNPs represent 155 unique SNPs that mark 53 loci. The 155 unique SNPs included 27 that were associated with three or more phenotypes, and thus were called multi-phenotype SNPs. These 27 multi-phenotype SNPs marked 13 multi-phenotype loci (MPL) identified by individual SNPs associated with multiple chlorophyll fluorescence phenotypes or by more than one SNP located within 0.5 MB of other multi-phenotype SNPs. CONCLUSION A search in the genomic regions highlighted by these 13 MPL identified genes with annotations indicating involvement in photosynthetic light dependent reactions. These, as well as loci associated with only one or two chlorophyll fluorescence traits, should be useful to develop a better understanding of the genetic basis of photosynthetic light dependent reactions as a whole as well as of specific components of the electron transport chain in soybean. Accordingly, additional genetic and physiological analyses are necessary to determine the relevance and effectiveness of the identified loci for crop improvement efforts.
Collapse
Affiliation(s)
- Matthew Herritt
- Division of Plant Science, University of Missouri, Columbia, MO, 65211, USA
| | | | - Larry C Purcell
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72704, USA
| | - Felix B Fritschi
- Division of Plant Science, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
147
|
Herritt M, Dhanapal AP, Purcell LC, Fritschi FB. Identification of genomic loci associated with 21chlorophyll fluorescence phenotypes by genome-wide association analysis in soybean. BMC PLANT BIOLOGY 2018; 18:312. [PMID: 30497384 PMCID: PMC6267906 DOI: 10.1186/s12870-018-1517-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/02/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Photosynthesis is able to convert solar energy into chemical energy in the form of biomass, but the efficiency of photosynthetic solar energy conversion is low. Chlorophyll fluorescence measurements are rapid, non-destructive, and can provide a wealth of information about the efficiencies of the photosynthetic light reaction processes. Efforts aimed at assessing genetic variation and/or mapping of genetic loci associated with chlorophyll fluorescence phenotypes have been rather limited. RESULTS Evaluation of SoySNP50K iSelect SNP Beadchip data from the 189 genotypes phenotyped in this analysis identified 32,453 SNPs with a minor allele frequency (MAF) ≥ 5%. A total of 288 (non-unique) SNPs were significantly associated with one or more of the 21 chlorophyll fluorescence phenotypes. Of these, 155 were unique SNPs and 100 SNPs were only associated with a single fluorescence phenotype, while 28, 11, 2, and 14 SNPs, were associated with two, three, four and five or more fluorescence phenotypes, respectively. The 288 non-unique SNPs represent 155 unique SNPs that mark 53 loci. The 155 unique SNPs included 27 that were associated with three or more phenotypes, and thus were called multi-phenotype SNPs. These 27 multi-phenotype SNPs marked 13 multi-phenotype loci (MPL) identified by individual SNPs associated with multiple chlorophyll fluorescence phenotypes or by more than one SNP located within 0.5 MB of other multi-phenotype SNPs. CONCLUSION A search in the genomic regions highlighted by these 13 MPL identified genes with annotations indicating involvement in photosynthetic light dependent reactions. These, as well as loci associated with only one or two chlorophyll fluorescence traits, should be useful to develop a better understanding of the genetic basis of photosynthetic light dependent reactions as a whole as well as of specific components of the electron transport chain in soybean. Accordingly, additional genetic and physiological analyses are necessary to determine the relevance and effectiveness of the identified loci for crop improvement efforts.
Collapse
Affiliation(s)
- Matthew Herritt
- Division of Plant Science, University of Missouri, Columbia, MO 65211 USA
| | | | - Larry C. Purcell
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704 USA
| | - Felix B. Fritschi
- Division of Plant Science, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
148
|
|
149
|
Serôdio J, Schmidt W, Frommlet JC, Christa G, Nitschke MR. An LED-based multi-actinic illumination system for the high throughput study of photosynthetic light responses. PeerJ 2018; 6:e5589. [PMID: 30202661 PMCID: PMC6128260 DOI: 10.7717/peerj.5589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/15/2018] [Indexed: 11/20/2022] Open
Abstract
The responses of photosynthetic organisms to light stress are of interest for both fundamental and applied research. Functional traits related to the photoinhibition, the light-induced loss of photosynthetic efficiency, are particularly interesting as this process is a key limiting factor of photosynthetic productivity in algae and plants. The quantitative characterization of light responses is often time-consuming and calls for cost-effective high throughput approaches that enable the fast screening of multiple samples. Here we present a novel illumination system based on the concept of ‘multi-actinic imaging’ of in vivo chlorophyll fluorescence. The system is based on the combination of an array of individually addressable low power RGBW LEDs and custom-designed well plates, allowing for the independent illumination of 64 samples through the digital manipulation of both exposure duration and light intensity. The illumination system is inexpensive and easily fabricated, based on open source electronics, off-the-shelf components, and 3D-printed parts, and is optimized for imaging of chlorophyll fluorescence. The high-throughput potential of the system is illustrated by assessing the functional diversity in light responses of marine macroalgal species, through the fast and simultaneous determination of kinetic parameters characterizing the response to light stress of multiple samples. Although the presented illumination system was primarily designed for the measurement of phenotypic traits related to photosynthetic activity and photoinhibition, it can be potentially used for a number of alternative applications, including the measurement of chloroplast phototaxis and action spectra, or as the basis for microphotobioreactors.
Collapse
Affiliation(s)
- João Serôdio
- Department of Biology and CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - William Schmidt
- Department of Biology and CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Jörg C Frommlet
- Department of Biology and CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Gregor Christa
- Department of Biology and CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Matthew R Nitschke
- Department of Biology and CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
150
|
|