101
|
Li S, He Q, Wang H, Tang X, Ho KW, Gao X, Zhang Q, Shen Y, Cheung A, Wong F, Wong YH, Ip NY, Jiang L, Yung WH, Liu K. Injured adult retinal axons with Pten and Socs3 co-deletion reform active synapses with suprachiasmatic neurons. Neurobiol Dis 2014; 73:366-76. [PMID: 25448764 DOI: 10.1016/j.nbd.2014.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 09/01/2014] [Accepted: 09/12/2014] [Indexed: 11/15/2022] Open
Abstract
Despite advances in promoting axonal regeneration after adult central nervous system injury, elicitation of a large number of lesion-passing axons reform active synaptic connections with natural target neurons remains limited. By deleting both Pten and Socs3 in retinal ganglion cells, we report that optic nerve axons after prechiasm lesion robustly reinnervate the hypothalamus, form new synapses with neurons in the suprachiasmatic nucleus (SCN), and re-integrate with the existing circuitry. Photic or electric stimulation of the retinal axons induces neuronal response in SCN. However both the innervation pattern and evoked responses are not completely restored by the regenerating axons, suggesting that combining with other strategies is necessary to overcome the defective rewiring. Our results support that boosting the intrinsic growth capacity in injured neurons promotes axonal reinnervation and rewiring.
Collapse
Affiliation(s)
- Songshan Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Qinghai He
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hao Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xuming Tang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Kam Wing Ho
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xin Gao
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Qian Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yang Shen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Annie Cheung
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Francis Wong
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yung Hou Wong
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wing Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kai Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
102
|
Wang X, Cai Y, Wang H, Zeng Y, Zhuang X, Li B, Jiang L. Trans-Golgi network-located AP1 gamma adaptins mediate dileucine motif-directed vacuolar targeting in Arabidopsis. THE PLANT CELL 2014; 26:4102-18. [PMID: 25351491 PMCID: PMC4247576 DOI: 10.1105/tpc.114.129759] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/17/2014] [Accepted: 09/29/2014] [Indexed: 05/18/2023]
Abstract
Membrane proteins on the tonoplast are indispensible for vacuolar functions in plants. However, how these proteins are transported to the vacuole and how they become separated from plasma membrane proteins remain largely unknown. In this study, we used Arabidopsis thaliana vacuolar ion transporter1 (VIT1) as a reporter to study the mechanisms of tonoplast targeting. We showed that VIT1 reached the tonoplast through a pathway involving the endoplasmic reticulum (ER), Golgi, trans-Golgi network (TGN), prevacuolar compartment, and tonoplast. VIT1 contains a putative N-terminal dihydrophobic type ER export signal, and its N terminus has a conserved dileucine motif (EKQTLL), which is responsible for tonoplast targeting. In vitro peptide binding assays with synthetic VIT1 N terminus identified adaptor protein complex-1 (AP1) subunits that interacted with the dileucine motif. A deficiency of AP1 gamma adaptins in Arabidopsis cells caused relocation of tonoplast proteins containing the dileucine motif, such as VIT1 and inositol transporter1, to the plasma membrane. The dileucine motif also effectively rerouted the plasma membrane protein SCAMP1 to the tonoplast. Together with subcellular localization studies showing that AP1 gamma adaptins localize to the TGN, we propose that the AP1 complex on the TGN mediates tonoplast targeting of membrane proteins with the dileucine motif.
Collapse
Affiliation(s)
- Xiangfeng Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Hao Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
103
|
Berson T, von Wangenheim D, Takáč T, Šamajová O, Rosero A, Ovečka M, Komis G, Stelzer EHK, Šamaj J. Trans-Golgi network localized small GTPase RabA1d is involved in cell plate formation and oscillatory root hair growth. BMC PLANT BIOLOGY 2014; 14:252. [PMID: 25260869 PMCID: PMC4180857 DOI: 10.1186/s12870-014-0252-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/18/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND Small Rab GTPases are important regulators of vesicular trafficking in plants. AtRabA1d, a member of the RabA1 subfamily of small GTPases, was previously found in the vesicle-rich apical dome of growing root hairs suggesting a role during tip growth; however, its specific intracellular localization and role in plants has not been well described. RESULTS The transient expression of 35S::GFP:RabA1d construct in Allium porrum and Nicotiana benthamiana revealed vesicular structures, which were further corroborated in stable transformed Arabidopsis thaliana plants. GFP-RabA1d colocalized with the trans-Golgi network marker mCherry-VTI12 and with early FM4-64-labeled endosomal compartments. Late endosomes and endoplasmic reticulum labeled with FYVE-DsRed and ER-DsRed, respectively, were devoid of GFP-RabA1d. The accumulation of GFP-RabA1d in the core of brefeldin A (BFA)-induced-compartments and the quantitative upregulation of RabA1d protein levels after BFA treatment confirmed the association of RabA1d with early endosomes/TGN and its role in vesicle trafficking. Light-sheet microscopy revealed involvement of RabA1d in root development. In root cells, GFP-RabA1d followed cell plate expansion consistently with cytokinesis-related vesicular trafficking and membrane recycling. GFP-RabA1d accumulated in disc-like structures of nascent cell plates, which progressively evolved to marginal ring-like structures of the growing cell plates. During root hair growth and development, GFP-RabA1d was enriched at root hair bulges and at the apical dome of vigorously elongating root hairs. Importantly, GFP-RabA1d signal intensity exhibited an oscillatory behavior in-phase with tip growth. Progressively, this tip localization dissapeared in mature root hairs suggesting a link between tip localization of RabA1d and root hair elongation. Our results support a RabA1d role in events that require vigorous membrane trafficking. CONCLUSIONS RabA1d is located in early endosomes/TGN and is involved in vesicle trafficking. RabA1d participates in both cell plate formation and root hair oscillatory tip growth. The specific GFP-RabA1d subcellular localization confirms a correlation between its specific spatio-temporal accumulation and local vesicle trafficking requirements during cell plate and root hair formation.
Collapse
Affiliation(s)
- Tobias Berson
- />Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, Bonn, D-53115 Germany
| | - Daniel von Wangenheim
- />Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 15, Frankfurt am Main, 60438 Germany
| | - Tomáš Takáč
- />Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc, 783 71 Czech Republic
| | - Olga Šamajová
- />Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc, 783 71 Czech Republic
| | - Amparo Rosero
- />Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc, 783 71 Czech Republic
| | - Miroslav Ovečka
- />Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc, 783 71 Czech Republic
| | - George Komis
- />Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc, 783 71 Czech Republic
| | - Ernst HK Stelzer
- />Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 15, Frankfurt am Main, 60438 Germany
| | - Jozef Šamaj
- />Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc, 783 71 Czech Republic
| |
Collapse
|
104
|
Luo F, Fong YH, Zeng Y, Shen J, Jiang L, Wong KB. How vacuolar sorting receptor proteins interact with their cargo proteins: crystal structures of apo and cargo-bound forms of the protease-associated domain from an Arabidopsis vacuolar sorting receptor. THE PLANT CELL 2014; 26:3693-708. [PMID: 25271241 PMCID: PMC4213161 DOI: 10.1105/tpc.114.129940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In plant cells, soluble proteins are directed to vacuoles because they contain vacuolar sorting determinants (VSDs) that are recognized by vacuolar sorting receptors (VSR). To understand how a VSR recognizes its cargo, we present the crystal structures of the protease-associated domain of VSR isoform 1 from Arabidopsis thaliana (VSR1PA) alone and complexed with a cognate peptide containing the barley (Hordeum vulgare) aleurain VSD sequence of 1ADSNPIRPVT10. The crystal structures show that VSR1PA binds the sequence, Ala-Asp-Ser, preceding the NPIR motif. A conserved cargo binding loop, with a consensus sequence of 95RGxCxF100, forms a cradle that accommodates the cargo-peptide. In particular, Arg-95 forms a hydrogen bond to the Ser-3 position of the VSD, and the essential role of Arg-95 and Ser-3 in receptor-cargo interaction was supported by a mutagenesis study. Cargo binding induces conformational changes that are propagated from the cargo binding loop to the C terminus via conserved residues in switch I-IV regions. The resulting 180° swivel motion of the C-terminal tail is stabilized by a hydrogen bond between Glu-24 and His-181. A mutagenesis study showed that these two residues are essential for cargo interaction and trafficking. Based on our structural and functional studies, we present a model of how VSRs recognize their cargos.
Collapse
Affiliation(s)
- Fang Luo
- Centre for Protein Science and Crystallography, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yu Hang Fong
- Centre for Protein Science and Crystallography, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jinbo Shen
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kam-Bo Wong
- Centre for Protein Science and Crystallography, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
105
|
Toyooka K, Sato M, Kutsuna N, Higaki T, Sawaki F, Wakazaki M, Goto Y, Hasezawa S, Nagata N, Matsuoka K. Wide-range high-resolution transmission electron microscopy reveals morphological and distributional changes of endomembrane compartments during log to stationary transition of growth phase in tobacco BY-2 cells. PLANT & CELL PHYSIOLOGY 2014; 55:1544-55. [PMID: 24929423 DOI: 10.1093/pcp/pcu084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rapid growth of plant cells by cell division and expansion requires an endomembrane trafficking system. The endomembrane compartments, such as the Golgi stacks, endosome and vesicles, are important in the synthesis and trafficking of cell wall materials during cell elongation. However, changes in the morphology, distribution and number of these compartments during the different stages of cell proliferation and differentiation have not yet been clarified. In this study, we examined these changes at the ultrastructural level in tobacco Bright yellow 2 (BY-2) cells during the log and stationary phases of growth. We analyzed images of the BY-2 cells prepared by the high-pressure freezing/freeze substitution technique with the aid of an auto-acquisition transmission electron microscope system. We quantified the distribution of secretory and endosomal compartments in longitudinal sections of whole cells by using wide-range gigapixel-class images obtained by merging thousands of transmission electron micrographs. During the log phase, all Golgi stacks were composed of several thick cisternae. Approximately 20 vesicle clusters (VCs), including the trans-Golgi network and secretory vesicle cluster, were observed throughout the cell. In the stationary-phase cells, Golgi stacks were thin with small cisternae, and only a few VCs were observed. Nearly the same number of multivesicular body and small high-density vesicles were observed in both the stationary and log phases. Results from electron microscopy and live fluorescence imaging indicate that the morphology and distribution of secretory-related compartments dramatically change when cells transition from log to stationary phases of growth.
Collapse
Affiliation(s)
- Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Natsumaro Kutsuna
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8562 Japan
| | - Takumi Higaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8562 Japan
| | - Fumie Sawaki
- Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, 112-8681 Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Yumi Goto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Seiichiro Hasezawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8562 Japan
| | - Noriko Nagata
- Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, 112-8681 Japan
| | - Ken Matsuoka
- Laboratory of Plant Nutrition, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581 Japan
| |
Collapse
|
106
|
Kang H, Hwang I. Vacuolar Sorting Receptor-Mediated Trafficking of Soluble Vacuolar Proteins in Plant Cells. PLANTS 2014; 3:392-408. [PMID: 27135510 PMCID: PMC4844349 DOI: 10.3390/plants3030392] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 01/13/2023]
Abstract
Vacuoles are one of the most prominent organelles in plant cells, and they play various important roles, such as degradation of waste materials, storage of ions and metabolites, and maintaining turgor. During the past two decades, numerous advances have been made in understanding how proteins are specifically delivered to the vacuole. One of the most crucial steps in this process is specific sorting of soluble vacuolar proteins. Vacuolar sorting receptors (VSRs), which are type I membrane proteins, are involved in the sorting and packaging of soluble vacuolar proteins into transport vesicles with the help of various accessory proteins. To date, large amounts of data have led to the development of two different models describing VSR-mediated vacuolar trafficking that are radically different in multiple ways, particularly regarding the location of cargo binding to, and release from, the VSR and the types of carriers utilized. In this review, we summarize current literature aimed at elucidating VSR-mediated vacuolar trafficking and compare the two models with respect to the sorting signals of vacuolar proteins, as well as the molecular machinery involved in VSR-mediated vacuolar trafficking and its action mechanisms.
Collapse
Affiliation(s)
- Hyangju Kang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea.
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea.
| |
Collapse
|
107
|
Analysis of prevacuolar compartment-mediated vacuolar proteins transport. Methods Mol Biol 2014; 1209:119-29. [PMID: 25117279 DOI: 10.1007/978-1-4939-1420-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Transient expression using protoplasts is a quick and powerful tool for studying protein trafficking and subcellular localization in plant cells. Prevacuolar compartments (PVCs) or multivesicular bodies (MVBs) are intermediate compartments that mediate protein transport between late Golgi or trans-Golgi network (TGN) and vacuole. Both wortmannin treatment and ARA7(Q69L) expression can induce PVC homotypic fusion and PVC enlargement in plant cells. Here, we describe detailed protocols to use transient expression of protoplasts derived from Arabidopsis suspension culture cells for studying protein trafficking and localization. Using three GFP-tagged vacuolar cargo proteins and RFP-tagged PVC membrane marker as examples, we illustrate the major tools and methods, including wortmannin treatment, ARA7(Q69L) expression and immunoblot analysis, to analyze PVC-mediated vacuolar protein transport in plant cells.
Collapse
|
108
|
Cai Y, Zhuang X, Gao C, Wang X, Jiang L. The Arabidopsis Endosomal Sorting Complex Required for Transport III Regulates Internal Vesicle Formation of the Prevacuolar Compartment and Is Required for Plant Development. PLANT PHYSIOLOGY 2014; 165:1328-1343. [PMID: 24812106 PMCID: PMC4081340 DOI: 10.1104/pp.114.238378] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We have established an efficient transient expression system with several vacuolar reporters to study the roles of endosomal sorting complex required for transport (ESCRT)-III subunits in regulating the formation of intraluminal vesicles of prevacuolar compartments (PVCs)/multivesicular bodies (MVBs) in plant cells. By measuring the distributions of reporters on/within the membrane of PVC/MVB or tonoplast, we have identified dominant negative mutants of ESCRT-III subunits that affect membrane protein degradation from both secretory and endocytic pathways. In addition, induced expression of these mutants resulted in reduction in luminal vesicles of PVC/MVB, along with increased detection of membrane-attaching vesicles inside the PVC/MVB. Transgenic Arabidopsis (Arabidopsis thaliana) plants with induced expression of ESCRT-III dominant negative mutants also displayed severe cotyledon developmental defects with reduced cell size, loss of the central vacuole, and abnormal chloroplast development in mesophyll cells, pointing out an essential role of the ESCRT-III complex in postembryonic development in plants. Finally, membrane dissociation of ESCRT-III components is important for their biological functions and is regulated by direct interaction among Vacuolar Protein Sorting-Associated Protein20-1 (VPS20.1), Sucrose Nonfermenting7-1, VPS2.1, and the adenosine triphosphatase VPS4/SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1.
Collapse
Affiliation(s)
- Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., X.Z., C.G., X.W., L.J.); andChinese University of Hong Kong Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., X.Z., C.G., X.W., L.J.); andChinese University of Hong Kong Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Caiji Gao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., X.Z., C.G., X.W., L.J.); andChinese University of Hong Kong Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Xiangfeng Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., X.Z., C.G., X.W., L.J.); andChinese University of Hong Kong Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., X.Z., C.G., X.W., L.J.); andChinese University of Hong Kong Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| |
Collapse
|
109
|
Ding Y, Robinson DG, Jiang L. Unconventional protein secretion (UPS) pathways in plants. Curr Opin Cell Biol 2014; 29:107-15. [PMID: 24949560 DOI: 10.1016/j.ceb.2014.05.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/09/2014] [Accepted: 05/22/2014] [Indexed: 02/09/2023]
Abstract
As in yeast and mammalian cells, novel unconventional protein secretion (UPS) or unconventional membrane trafficking pathways are now known to operate in plants. UPS in plants is generally associated with stress conditions such as pathogen attack, but little is known about its underlying mechanism and function. Here, we present an update on the current knowledge of UPS in the plants in terms of its transport pathways, possible functions and its relationship to autophagy.
Collapse
Affiliation(s)
- Yu Ding
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - David G Robinson
- Centre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
110
|
Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. Proc Natl Acad Sci U S A 2014; 111:8293-8. [PMID: 24843126 DOI: 10.1073/pnas.1402262111] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In plants, the controlled absorption of soil nutrients by root epidermal cells is critical for growth and development. IRON-REGULATED TRANSPORTER 1 (IRT1) is the main root transporter taking up iron from the soil and is also the main entry route in plants for potentially toxic metals such as manganese, zinc, cobalt, and cadmium. Previous work demonstrated that the IRT1 protein localizes to early endosomes/trans-Golgi network (EE/TGN) and is constitutively endocytosed through a monoubiquitin- and clathrin-dependent mechanism. Here, we show that the availability of secondary non-iron metal substrates of IRT1 (Zn, Mn, and Co) controls the localization of IRT1 between the outer polar domain of the plasma membrane and EE/TGN in root epidermal cells. We also identify FYVE1, a phosphatidylinositol-3-phosphate-binding protein recruited to late endosomes, as an important regulator of IRT1-dependent metal transport and metal homeostasis in plants. FYVE1 controls IRT1 recycling to the plasma membrane and impacts the polar delivery of this transporter to the outer plasma membrane domain. This work establishes a functional link between the dynamics and the lateral polarity of IRT1 and the transport of its substrates, and identifies a molecular mechanism driving polar localization of a cell surface protein in plants.
Collapse
|
111
|
Cui Y, Zhao Q, Gao C, Ding Y, Zeng Y, Ueda T, Nakano A, Jiang L. Activation of the Rab7 GTPase by the MON1-CCZ1 Complex Is Essential for PVC-to-Vacuole Trafficking and Plant Growth in Arabidopsis. THE PLANT CELL 2014; 26:2080-2097. [PMID: 24824487 PMCID: PMC4079370 DOI: 10.1105/tpc.114.123141] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/12/2014] [Accepted: 04/22/2014] [Indexed: 05/17/2023]
Abstract
Rab GTPases serve as multifaceted organizers during vesicle trafficking. Rab7, a member of the Rab GTPase family, has been shown to perform various essential functions in endosome trafficking and in endosome-to-lysosome trafficking in mammalian systems. The Arabidopsis thaliana genome encodes eight putative Rab7 homologs; however, the detailed function and activation mechanism of Rab7 in plants remain unknown. Here, we demonstrate that Arabidopsis RABG3f, a member of the plant Rab7 small GTPase family, localizes to prevacuolar compartments (PVCs) and the tonoplast. The proper activation of Rab7 is essential for both PVC-to-vacuole trafficking and vacuole biogenesis. Expression of a dominant-negative Rab7 mutant (RABG3fT22N) induces the formation of enlarged PVCs and affects vacuole morphology in plant cells. We also identify Arabidopsis MON1 (MONENSIN SENSITIVITY1) and CCZ1 (CALCIUM CAFFEINE ZINC SENSITIVITY1) proteins as a dimeric complex that functions as the Rab7 guanine nucleotide exchange factor. The MON1-CCZ1 complex also serves as the Rab5 effector to mediate Rab5-to-Rab7 conversion on PVCs. Loss of functional MON1 causes the formation of enlarged Rab5-positive PVCs that are separated from Rab7-positive endosomes. Similar to the dominant-negative Rab7 mutant, the mon1 mutants show pleiotropic growth defects, fragmented vacuoles, and altered vacuolar trafficking. Thus, Rab7 activation by the MON1-CCZ1 complex is critical for vacuolar trafficking, vacuole biogenesis, and plant growth.
Collapse
Affiliation(s)
- Yong Cui
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qiong Zhao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Caiji Gao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
112
|
Isayenkov SV. Plant vacuoles: Physiological roles and mechanisms of vacuolar sorting and vesicular trafficking. CYTOL GENET+ 2014. [DOI: 10.3103/s0095452714020042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
113
|
Babajani G, Kermode AR. Alteration of the proteostasis network of plant cells promotes the post-endoplasmic reticulum trafficking of recombinant mutant (L444P) human β-glucocerebrosidase. PLANT SIGNALING & BEHAVIOR 2014; 9:e28714. [PMID: 24713615 PMCID: PMC4091198 DOI: 10.4161/psb.28714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
Gaucher disease is a prevalent lysosomal storage disease characterized by a deficiency in the activity of lysosomal acid β-glucosidase (glucocerebrosidase, GCase, EC 3.2.1.45). One of the most prevalent disease-causing mutations in humans is a L444P missense mutation in the GCase protein, which results in its disrupted folding in the endoplasmic reticulum (ER) and impaired post-ER trafficking. To determine whether the post-ER trafficking of this severely malfolded protein can be restored, we expressed the mutant L444P GCase as a recombinant protein in transgenic tobacco (Nicotiana tabacum L. cv Bright Yellow 2 [BY2]) cells, in which the GCase variant was equipped with a plant signal peptide to allow for secretion upon rescued trafficking out of the ER. The recombinant L444P mutant GCase was retained in the plant endoplasmic reticulum (ER). Kifunensine and Eeyarestatin I, both inhibitors of ER-associated degradation (ERAD), and the proteostasis regulators, celastrol and MG-132, increased the steady-state levels of the mutant protein inside the plant cells and further promoted the post-ER trafficking of L444P GCase, as indicated by endoglycosidase-H sensitivity- and secretion- analyses. Transcript profiling of genes encoding ER-molecular chaperones, ER stress responsive proteins, and cytoplasmic heat shock response proteins, revealed insignificant or only very modest changes in response to the ERAD inhibitors and proteostasis regulators. An exception was the marked response to celastrol which reduced the steady-state levels of cytoplasmic HSP90 transcripts and protein. As Hsp90 participates in the targeting of misfolded proteins to the proteasome pathway, its down-modulation in response to celastrol may partly account for the mechanism of improved homeostasis of L444P GCase mediated by this triterpene.
Collapse
Affiliation(s)
- Gholamreza Babajani
- Department of Biological Sciences; Simon Fraser University; Burnaby, BC Canada
| | - Allison R Kermode
- Department of Biological Sciences; Simon Fraser University; Burnaby, BC Canada
| |
Collapse
|
114
|
Toshima JY, Nishinoaki S, Sato Y, Yamamoto W, Furukawa D, Siekhaus DE, Sawaguchi A, Toshima J. Bifurcation of the endocytic pathway into Rab5-dependent and -independent transport to the vacuole. Nat Commun 2014; 5:3498. [PMID: 24667230 DOI: 10.1038/ncomms4498] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/24/2014] [Indexed: 12/27/2022] Open
Abstract
The yeast Rab5 homologue, Vps21p, is known to be involved both in the vacuolar protein sorting (VPS) pathway from the trans-Golgi network to the vacuole, and in the endocytic pathway from the plasma membrane to the vacuole. However, the intracellular location at which these two pathways converge remains unclear. In addition, the endocytic pathway is not completely blocked in yeast cells lacking all Rab5 genes, suggesting the existence of an unidentified route that bypasses the Rab5-dependent endocytic pathway. Here we show that convergence of the endocytic and VPS pathways occurs upstream of the requirement for Vps21p in these pathways. We also identify a previously unidentified endocytic pathway mediated by the AP-3 complex. Importantly, the AP-3-mediated pathway appears mostly intact in Rab5-disrupted cells, and thus works as an alternative route to the vacuole/lysosome. We propose that the endocytic traffic branches into two routes to reach the vacuole: a Rab5-dependent VPS pathway and a Rab5-independent AP-3-mediated pathway.
Collapse
Affiliation(s)
- Junko Y Toshima
- 1] Faculty of Science and Engineering, Waseda University, Wakamatsu-cho, 2-2, Shinjuku-ku, Tokyo 162-8480, Japan [2] Research Center for RNA Science, RIST, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Show Nishinoaki
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yoshifumi Sato
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Wataru Yamamoto
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Daiki Furukawa
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | | | - Akira Sawaguchi
- Department of Anatomy, University of Miyazaki Faculty of Medicine, Miyazaki 889-1692, Japan
| | - Jiro Toshima
- 1] Research Center for RNA Science, RIST, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan [2] Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
115
|
SAC phosphoinositide phosphatases at the tonoplast mediate vacuolar function in Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:2818-23. [PMID: 24550313 DOI: 10.1073/pnas.1324264111] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Phosphatidylinositol (PtdIns) is a structural phospholipid that can be phosphorylated into various lipid signaling molecules, designated polyphosphoinositides (PPIs). The reversible phosphorylation of PPIs on the 3, 4, or 5 position of inositol is performed by a set of organelle-specific kinases and phosphatases, and the characteristic head groups make these molecules ideal for regulating biological processes in time and space. In yeast and mammals, PtdIns3P and PtdIns(3,5)P2 play crucial roles in trafficking toward the lytic compartments, whereas the role in plants is not yet fully understood. Here we identified the role of a land plant-specific subgroup of PPI phosphatases, the suppressor of actin 2 (SAC2) to SAC5, during vacuolar trafficking and morphogenesis in Arabidopsis thaliana. SAC2-SAC5 localize to the tonoplast along with PtdIns3P, the presumable product of their activity. In SAC gain- and loss-of-function mutants, the levels of PtdIns monophosphates and bisphosphates were changed, with opposite effects on the morphology of storage and lytic vacuoles, and the trafficking toward the vacuoles was defective. Moreover, multiple sac knockout mutants had an increased number of smaller storage and lytic vacuoles, whereas extralarge vacuoles were observed in the overexpression lines, correlating with various growth and developmental defects. The fragmented vacuolar phenotype of sac mutants could be mimicked by treating wild-type seedlings with PtdIns(3,5)P2, corroborating that this PPI is important for vacuole morphology. Taken together, these results provide evidence that PPIs, together with their metabolic enzymes SAC2-SAC5, are crucial for vacuolar trafficking and for vacuolar morphology and function in plants.
Collapse
|
116
|
Smith JM, Salamango DJ, Leslie ME, Collins CA, Heese A. Sensitivity to Flg22 is modulated by ligand-induced degradation and de novo synthesis of the endogenous flagellin-receptor FLAGELLIN-SENSING2. PLANT PHYSIOLOGY 2014; 164:440-54. [PMID: 24220680 PMCID: PMC3875820 DOI: 10.1104/pp.113.229179] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/09/2013] [Indexed: 05/18/2023]
Abstract
FLAGELLIN-SENSING2 (FLS2) is the plant cell surface receptor that perceives bacterial flagellin or flg22 peptide, initiates flg22-signaling responses, and contributes to bacterial growth restriction. Flg22 elicitation also leads to ligand-induced endocytosis and degradation of FLS2 within 1 h. Why plant cells remove this receptor precisely at the time during which its function is required remains mainly unknown. Here, we assessed in planta flg22-signaling competency in the context of ligand-induced degradation of endogenous FLS2 and chemical interference known to impede flg22-dependent internalization of FLS2 into endocytic vesicles. Within 1 h after an initial flg22 treatment, Arabidopsis (Arabidopsis thaliana) leaf tissue was unable to reelicit flg22 signaling in a ligand-, time-, and dose-dependent manner. These results indicate that flg22-induced degradation of endogenous FLS2 may serve to desensitize cells to the same stimulus (homologous desensitization), likely to prevent continuous signal output upon repetitive flg22 stimulation. In addition to impeding ligand-induced FLS2 degradation, pretreatment with the vesicular trafficking inhibitors Wortmannin or Tyrphostin A23 impaired flg22-elicited reactive oxygen species production that was partially independent of BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1. Interestingly, these inhibitors did not affect flg22-induced mitogen-activated protein kinase phosphorylation, indicating the ability to utilize vesicular trafficking inhibitors to target different flg22-signaling responses. For Tyrphostin A23, reduced flg22-induced reactive oxygen species could be separated from the defect in FLS2 degradation. At later times (>2 h) after the initial flg22 elicitation, recovery of FLS2 protein levels positively correlated with resensitization to flg22, indicating that flg22-induced new synthesis of FLS2 may prepare cells for a new round of monitoring the environment for flg22.
Collapse
|
117
|
Viotti C. ER and vacuoles: never been closer. FRONTIERS IN PLANT SCIENCE 2014; 5:20. [PMID: 24550928 PMCID: PMC3913007 DOI: 10.3389/fpls.2014.00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/17/2014] [Indexed: 05/02/2023]
Abstract
The endoplasmic reticulum (ER) represents the gateway for intracellular trafficking of membrane proteins, soluble cargoes and lipids. In all eukaryotes, the best described mechanism of exiting the ER is via COPII-coated vesicles, which transport both membrane proteins and soluble cargoes to the cis-Golgi. The vacuole, together with the plasma membrane, is the most distal point of the secretory pathway, and many vacuolar proteins are transported from the ER through intermediate compartments. However, past results and recent findings demonstrate the presence of alternative transport routes from the ER towards the tonoplast, which are independent of Golgi- and post-Golgi trafficking. Moreover, the transport mechanism of the vacuolar proton pumps VHA-a3 and AVP1 challenges the current model of vacuole biogenesis, pointing to the endoplasmic reticulum for being the main membrane source for the biogenesis of the plant lytic compartment. This review gives an overview of the current knowledge on the transport routes towards the vacuole and discusses the possible mechanism of vacuole biogenesis in plants.
Collapse
Affiliation(s)
- Corrado Viotti
- *Correspondence: Corrado Viotti, Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Linnéusväg 6, 90187 Umeå, Sweden e-mail:
| |
Collapse
|
118
|
Ren Y, Wang Y, Liu F, Zhou K, Ding Y, Zhou F, Wang Y, Liu K, Gan L, Ma W, Han X, Zhang X, Guo X, Wu F, Cheng Z, Wang J, Lei C, Lin Q, Jiang L, Wu C, Bao Y, Wang H, Wan J. GLUTELIN PRECURSOR ACCUMULATION3 encodes a regulator of post-Golgi vesicular traffic essential for vacuolar protein sorting in rice endosperm. THE PLANT CELL 2014; 26:410-25. [PMID: 24488962 PMCID: PMC3963586 DOI: 10.1105/tpc.113.121376] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In seed plants, a major pathway for sorting of storage proteins to the protein storage vacuole (PSV) depends on the Golgi-derived dense vesicles (DVs). However, the molecular mechanisms regulating the directional trafficking of DVs to PSVs remain largely elusive. Here, we report the functional characterization of the rice (Oryza sativa) glutelin precursor accumulation3 (gpa3) mutant, which exhibits a floury endosperm phenotype and accumulates excess proglutelins in dry seeds. Cytological and immunocytochemistry studies revealed that in the gpa3 mutant, numerous proglutelin-containing DVs are misrouted to the plasma membrane and, via membrane fusion, release their contents into the apoplast to form a new structure named the paramural body. Positional cloning of GPA3 revealed that it encodes a plant-specific kelch-repeat protein that is localized to the trans-Golgi networks, DVs, and PSVs in the developing endosperm. In vitro and in vivo experiments verified that GPA3 directly interacts with the rice Rab5a-guanine exchange factor VPS9a and forms a regulatory complex with Rab5a via VPS9a. Furthermore, our genetic data support the notion that GPA3 acts synergistically with Rab5a and VPS9a to regulate DV-mediated post-Golgi traffic in rice. Our findings provide insights into the molecular mechanisms regulating the plant-specific PSV pathway and expand our knowledge of vesicular trafficking in eukaryotes.
Collapse
Affiliation(s)
- Yulong Ren
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Kunneng Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, New Territories, Hong Kong 999077, China
| | - Feng Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Gan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaohua Han
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuanyin Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Address correspondence to
| |
Collapse
|
119
|
Robinson DG, Pimpl P. Receptor-mediated transport of vacuolar proteins: a critical analysis and a new model. PROTOPLASMA 2014; 251:247-64. [PMID: 24019013 DOI: 10.1007/s00709-013-0542-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 08/20/2013] [Indexed: 05/20/2023]
Abstract
In this article we challenge the widely accepted view that receptors for soluble vacuolar proteins (VSRs) bind to their ligands at the trans-Golgi network (TGN) and transport this cargo via clathrin-coated vesicles (CCV) to a multivesicular prevacuolar compartment. This notion, which we term the "classical model" for vacuolar protein sorting, further assumes that low pH in the prevacuolar compartment causes VSR-ligand dissociation, resulting in a retromer-mediated retrieval of the VSRs to the TGN. We have carefully evaluated the literature with respect to morphology and function of the compartments involved, localization of key components of the sorting machinery, and conclude that there is little direct evidence in its favour. Firstly, unlike mammalian cells where the sorting receptor for lysosomal hydrolases recognizes its ligand in the TGN, the available data suggests that in plants VSRs interact with vacuolar cargo ligands already in the endoplasmic reticulum. Secondly, the evidence supporting the packaging of VSR-ligand complexes into CCV at the TGN is not conclusive. Thirdly, the prevacuolar compartment appears to have a pH unsuitable for VSR-ligand dissociation and lacks the retromer core and the sorting nexins needed for VSR recycling. We present an alternative model for protein sorting in the TGN that draws attention to the much overlooked role of Ca(2+) in VSR-ligand interactions and which may possibly also be a factor in the sequestration of secretory proteins.
Collapse
Affiliation(s)
- David G Robinson
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
120
|
Ding Y, Wang J, Chun Lai JH, Ling Chan VH, Wang X, Cai Y, Tan X, Bao Y, Xia J, Robinson DG, Jiang L. Exo70E2 is essential for exocyst subunit recruitment and EXPO formation in both plants and animals. Mol Biol Cell 2013; 25:412-26. [PMID: 24307681 PMCID: PMC3907280 DOI: 10.1091/mbc.e13-10-0586] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In contrast to a single copy of Exo70 in yeast and mammals, the Arabidopsis genome contains 23 paralogues of Exo70 (AtExo70). Using AtExo70E2 and its GFP fusion as probes, we recently identified a novel double-membrane organelle termed exocyst-positive organelle (EXPO) that mediates an unconventional protein secretion in plant cells. Here we further demonstrate that AtExo70E2 is essential for exocyst subunit recruitment and for EXPO formation in both plants and animals. By performing transient expression in Arabidopsis protoplasts, we established that a number of exocyst subunits (especially the members of the Sec family) are unable to be recruited to EXPO in the absence of AtExo70E2. The paralogue AtExo70A1 is unable to substitute for AtExo70E2 in this regard. Fluorescence resonance energy transfer assay and bimolecular fluorescence complementation analyses confirm the interaction between AtExo70E2 and Sec6 and Sec10. AtExo70E2, but not its yeast counterpart, is also capable of inducing EXPO formation in an animal cell line (HEK293A cells). Electron microscopy confirms the presence of double-membraned, EXPO-like structures in HEK293A cells expressing AtExo70E2. Inversely, neither human nor yeast Exo70 homologues cause the formation of EXPO in Arabidopsis protoplasts. These results point to a specific and crucial role for AtExo70E2 in EXPO formation.
Collapse
Affiliation(s)
- Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518057, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Endocytosis: At the Crossroads of Pattern Recognition Immune Receptors and Pathogen Effectors. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-3-642-41787-0_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
122
|
Stigliano E, Faraco M, Neuhaus JM, Montefusco A, Dalessandro G, Piro G, Di Sansebastiano GP. Two glycosylated vacuolar GFPs are new markers for ER-to-vacuole sorting. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:337-43. [PMID: 24184454 DOI: 10.1016/j.plaphy.2013.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/10/2013] [Indexed: 05/02/2023]
Abstract
Vacuolar Sorting Determinants (VSDs) have been extensively studied in plants but the mechanisms for the accumulation of storage proteins in somatic tissues are not yet fully understood. In this work we used two mutated versions of well-documented vacuolar fluorescent reporters, a GFP fusion in frame with the C-terminal VSD of tobacco chitinase (GFPChi) and an N-terminal fusion in frame with the sequence-specific VSD of the barley cysteine protease aleurain (AleuGFP). The GFP sequence was mutated to present an N-glycosylation site at the amino-acid position 133. The reporters were transiently expressed in Nicotiana tabacum protoplasts and agroinfiltrated in Nicotiana benthamiana leaves and their distribution was identical to that of the non-glycosylated versions. With the glycosylated GFPs we could highlight a differential ENDO-H sensitivity and therefore differential glycan modifications. This finding suggests two different and independent routes to the vacuole for the two reporters. BFA also had a differential effect on the two markers and further, inhibition of COPII trafficking by a specific dominant-negative mutant (NtSar1h74l) confirmed that GFPChi transport from the ER to the vacuole is not fully dependent on the Golgi apparatus.
Collapse
Affiliation(s)
- Egidio Stigliano
- Laboratory of Cell and Molecular Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland; CNR-IGV, Institute of Plant Genetics, Thematic Center for the Preservation of Mediterranean Plant Biodiversity, via Nazionale 44, 75025 Policoro, MT, Italy
| | | | | | | | | | | | | |
Collapse
|
123
|
Wang H, Zhuang X, Cai Y, Cheung AY, Jiang L. Apical F-actin-regulated exocytic targeting of NtPPME1 is essential for construction and rigidity of the pollen tube cell wall. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:367-79. [PMID: 23906068 DOI: 10.1111/tpj.12300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 05/03/2023]
Abstract
In tip-confined growing pollen tubes, delivery of newly synthesized cell wall materials to the rapidly expanding apical surface requires spatial organization and temporal regulation of the apical F-actin filament and exocytosis. In this study, we demonstrate that apical F-actin is essential for the rigidity and construction of the pollen tube cell wall by regulating exocytosis of Nicotiana tabacum pectin methylesterase (NtPPME1). Wortmannin disrupts the spatial organization of apical F-actin in the pollen tube tip and inhibits polar targeting of NtPPME1, which subsequently alters the rigidity and pectic composition of the pollen tube cell wall, finally causing growth arrest of the pollen tube. In addition to mechanistically linking cell wall construction and apical F-actin, wortmannin can be used as a useful tool for studying endomembrane trafficking and cytoskeletal organization in pollen tubes.
Collapse
Affiliation(s)
- Hao Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
124
|
Nodzynski T, Feraru MI, Hirsch S, De Rycke R, Niculaes C, Boerjan W, Van Leene J, De Jaeger G, Vanneste S, Friml J. Retromer subunits VPS35A and VPS29 mediate prevacuolar compartment (PVC) function in Arabidopsis. MOLECULAR PLANT 2013; 6:1849-62. [PMID: 23770835 DOI: 10.1093/mp/sst044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Intracellular protein routing is mediated by vesicular transport which is tightly regulated in eukaryotes. The protein and lipid homeostasis depends on coordinated delivery of de novo synthesized or recycled cargoes to the plasma membrane by exocytosis and their subsequent removal by rerouting them for recycling or degradation. Here, we report the characterization of protein affected trafficking 3 (pat3) mutant that we identified by an epifluorescence-based forward genetic screen for mutants defective in subcellular distribution of Arabidopsis auxin transporter PIN1-GFP. While pat3 displays largely normal plant morphology and development in nutrient-rich conditions, it shows strong ectopic intracellular accumulations of different plasma membrane cargoes in structures that resemble prevacuolar compartments (PVC) with an aberrant morphology. Genetic mapping revealed that pat3 is defective in vacuolar protein sorting 35A (VPS35A), a putative subunit of the retromer complex that mediates retrograde trafficking between the PVC and trans-Golgi network. Similarly, a mutant defective in another retromer subunit, vps29, shows comparable subcellular defects in PVC morphology and protein accumulation. Thus, our data provide evidence that the retromer components VPS35A and VPS29 are essential for normal PVC morphology and normal trafficking of plasma membrane proteins in plants. In addition, we show that, out of the three VPS35 retromer subunits present in Arabidopsis thaliana genome, the VPS35 homolog A plays a prevailing role in trafficking to the lytic vacuole, presenting another level of complexity in the retromer-dependent vacuolar sorting.
Collapse
Affiliation(s)
- Tomasz Nodzynski
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ-625 00, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Zhuang X, Wang H, Lam SK, Gao C, Wang X, Cai Y, Jiang L. A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis. THE PLANT CELL 2013; 25:4596-615. [PMID: 24249832 PMCID: PMC3875738 DOI: 10.1105/tpc.113.118307] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/06/2013] [Accepted: 10/21/2013] [Indexed: 05/17/2023]
Abstract
Autophagy is a well-defined catabolic mechanism whereby cytoplasmic materials are engulfed into a structure termed the autophagosome. In plants, little is known about the underlying mechanism of autophagosome formation. In this study, we report that SH3 DOMAIN-CONTAINING PROTEIN2 (SH3P2), a Bin-Amphiphysin-Rvs domain-containing protein, translocates to the phagophore assembly site/preautophagosome structure (PAS) upon autophagy induction and actively participates in the membrane deformation process. Using the SH3P2-green fluorescent protein fusion as a reporter, we found that the PAS develops from a cup-shaped isolation membranes or endoplasmic reticulum-derived omegasome-like structures. Using an inducible RNA interference (RNAi) approach, we show that RNAi knockdown of SH3P2 is developmentally lethal and significantly suppresses autophagosome formation. An in vitro membrane/lipid binding assay demonstrates that SH3P2 is a membrane-associated protein that binds to phosphatidylinositol 3-phosphate. SH3P2 may facilitate membrane expansion or maturation in coordination with the phosphatidylinositol 3-kinase (PI3K) complex during autophagy, as SH3P2 promotes PI3K foci formation, while PI3K inhibitor treatment inhibits SH3P2 from translocating to autophagosomes. Further interaction analysis shows that SH3P2 associates with the PI3K complex and interacts with ATG8s in Arabidopsis thaliana, whereby SH3P2 may mediate autophagy. Thus, our study has identified SH3P2 as a novel regulator of autophagy and provided a conserved model for autophagosome biogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Hao Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Sheung Kwan Lam
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Caiji Gao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiangfeng Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Address correspondence to
| |
Collapse
|
126
|
Guo J, Yuan Y, Liu Z, Zhu J. Development and structure of internal glands and external glandular trichomes in Pogostemon cablin. PLoS One 2013; 8:e77862. [PMID: 24205002 PMCID: PMC3813755 DOI: 10.1371/journal.pone.0077862] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/04/2013] [Indexed: 01/01/2023] Open
Abstract
Pogostemon cablin possesses two morphologically and ontogenetically different types of glandular trichomes, one type of bristle hair on the surfaces of leaves and stems and one type of internal gland inside the leaves and stems. The internal gland originates from elementary meristem and is associated with the biosynthesis of oils present inside the leaves and stems. However, there is little information on mechanism for the oil biosynthesis and secretion inside the leaves and stems. In this study, we identified three kinds of glandular trichome types and two kinds of internal gland in the Pogostemon cablin. The oil secretions from internal glands of stems and leaves contained lipids, flavones and terpenes. Our results indicated that endoplasmic reticulum and plastids and vacuoles are likely involved in the biosynthesis of oils in the internal glands and the synthesized oils are transported from endoplasmic reticulum to the cell wall via connecting endoplasmic reticulum membranes to the plasma membrane. And the comparative analysis of the development, distribution, histochemistry and ultrastructures of the internal and external glands in Pogostemon cablin leads us to propose that the internal gland may be a novel secretory structure which is different from external glands.
Collapse
Affiliation(s)
- Jiansheng Guo
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai, China
| | | | - Zhixue Liu
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Jian Zhu
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai, China
| |
Collapse
|
127
|
Wanner G, Schäfer T, Lütz-Meindl U. 3-D analysis of dictyosomes and multivesicular bodies in the green alga Micrasterias denticulata by FIB/SEM tomography. J Struct Biol 2013; 184:203-11. [PMID: 24135121 PMCID: PMC3899002 DOI: 10.1016/j.jsb.2013.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/30/2013] [Accepted: 10/02/2013] [Indexed: 12/24/2022]
Abstract
In the present study we employ FIB/SEM tomography for analyzing 3-D architecture of dictyosomes and formation of multivesicular bodies (MVB) in high pressure frozen and cryo-substituted interphase cells of the green algal model system Micrasterias denticulata. The ability of FIB/SEM of milling very thin ‘slices’ (5–10 nm), viewing the block face and of capturing cytoplasmic volumes of several hundred μm3 provides new insight into the close spatial connection of the ER–Golgi machinery in an algal cell particularly in z-direction, complementary to informations obtained by TEM serial sectioning or electron tomography. Our FIB/SEM series and 3-D reconstructions show that interphase dictyosomes of Micrasterias are not only closely associated to an ER system at their cis-side which is common in various plant cells, but are surrounded by a huge “trans-ER” sheath leading to an almost complete enwrapping of dictyosomes by the ER. This is particularly interesting as the presence of a trans-dictyosomal ER system is well known from mammalian secretory cells but not from cells of higher plants to which the alga Micrasterias is closely related. In contrast to findings in plant storage tissue indicating that MVBs originate from the trans-Golgi network or its derivatives our investigations show that MVBs in Micrasterias are in direct spatial contact with both, trans-Golgi cisternae and the trans-ER sheath which provides evidence that both endomembrane compartments are involved in their formation.
Collapse
Affiliation(s)
- Gerhard Wanner
- Ultrastructural Research, Faculty of Biology, Ludwig-Maximilians-University, Munich, Großhadernerstr. 2-4, D-82152 Planegg-Martinsried, Germany.
| | | | | |
Collapse
|
128
|
Qi B, Doughty J, Hooley R. A Golgi and tonoplast localized S-acyl transferase is involved in cell expansion, cell division, vascular patterning and fertility in Arabidopsis. THE NEW PHYTOLOGIST 2013; 200:444-456. [PMID: 23795888 PMCID: PMC3817529 DOI: 10.1111/nph.12385] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/23/2013] [Indexed: 05/04/2023]
Abstract
S-acylation of eukaryotic proteins is the reversible attachment of palmitic or stearic acid to cysteine residues, catalysed by protein S-acyl transferases that share an Asp-His-His-Cys (DHHC) motif. Previous evidence suggests that in Arabidopsis S-acylation is involved in the control of cell size, polarity and the growth of pollen tubes and root hairs. Using a combination of yeast genetics, biochemistry, cell biology and loss of function genetics the roles of a member of the protein S-acyl transferase PAT family, AtPAT10 (At3g51390), have been explored. In keeping with its role as a PAT, AtPAT10 auto-S-acylates, and partially complements the yeast akr1 PAT mutant, and this requires Cys(192) of the DHHC motif. In Arabidopsis AtPAT10 is localized in the Golgi stack, trans-Golgi network/early endosome and tonoplast. Loss-of-function mutants have a pleiotropic phenotype involving cell expansion and division, vascular patterning, and fertility that is rescued by wild-type AtPAT10 but not by catalytically inactive AtPAT10C(192) A. This supports the hypothesis that AtPAT10 is functionally independent of the other Arabidopsis PATs. Our findings demonstrate a growing importance of protein S-acylation in plants, and reveal a Golgi and tonoplast located S-acylation mechanism that affects a range of events during growth and development in Arabidopsis.
Collapse
Affiliation(s)
- Baoxiu Qi
- Department of Biology and Biochemistry, University of BathClaverton Down, Bath, BA2 7AY, UK
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityShandong, 271018, China
| | - James Doughty
- Department of Biology and Biochemistry, University of BathClaverton Down, Bath, BA2 7AY, UK
| | - Richard Hooley
- Department of Biology and Biochemistry, University of BathClaverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
129
|
Shen J, Suen PK, Wang X, Lin Y, Lo SW, Rojo E, Jiang L. An in vivo expression system for the identification of cargo proteins of vacuolar sorting receptors in Arabidopsis culture cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:1003-17. [PMID: 23738689 DOI: 10.1111/tpj.12257] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 05/27/2013] [Accepted: 06/04/2013] [Indexed: 05/18/2023]
Abstract
Vacuolar sorting receptors (VSRs) are type I integral membrane family proteins that in plant cells are thought to recognize cargo proteins at the late Golgi or trans-Golgi network (TGN) for vacuolar transport via the pre-vacuolar compartment (PVC). However, little is known about VSR cargo proteins in plants. Here we developed and tested an in vivo expression system for the identification of VSR cargos which is based on the premise that the expressed N-terminus of VSRs will be secreted into the culture medium along with their corresponding cargo proteins. Indeed, transgenic Arabidopsis culture cell lines expressing VSR N-terminal binding domains (VSRNTs) were shown to secrete truncated VSRs (BP80NT, AtVSR1NT and AtVSR4NT) with attached cargo molecules into the culture medium. Putative cargo proteins were identified through mass spectrometry. Several identified cargo proteins were confirmed by localization studies and interaction analysis with VSRs. The screening strategy described here should be applicable to all VSRs and will help identify and study cargo proteins for individual VSR proteins. This method should be useful for both cargo identification and protein-protein interaction in vivo.
Collapse
Affiliation(s)
- Jinbo Shen
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
130
|
Offringa R, Huang F. Phosphorylation-dependent trafficking of plasma membrane proteins in animal and plant cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:789-808. [PMID: 23945267 DOI: 10.1111/jipb.12096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/02/2013] [Indexed: 05/27/2023]
Abstract
In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these proteins. The trafficking and distribution of plasma membrane (PM)-localized TM proteins (PM proteins), especially of those PM proteins that show an asymmetric distribution over the PM, has received much attention, as their proper PM localization is crucial for elementary signaling and transport processes, and defects in their localization often lead to severe disease symptoms or developmental defects. The subcellular localization of PM proteins is dynamically regulated by post-translational modifications, such as phosphorylation and ubiquitination. These modificaitons mostly occur on sorting signals that are located in the larger cytosolic domains of the cargo proteins. Here we review the effects of phosphorylation of PM proteins on their trafficking, and present the key examples from the animal field that have been subject to studies for already several decades, such as that of aquaporin 2 and the epidermal growth factor receptor. Our knowledge on cargo trafficking in plants is largely based on studies of the family of PIN FORMED (PIN) carriers that mediate the efflux of the plant hormone auxin. We will review what is known on the subcellular distribution and trafficking of PIN proteins, with a focus on how this is modulated by phosphorylation, and identify and discuss analogies and differences in trafficking with the well-studied animal examples.
Collapse
Affiliation(s)
- Remko Offringa
- Molecular and Developmental Genetics, Institute Biology Leiden, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, Leiden University, The Netherlands
| | | |
Collapse
|
131
|
Brandizzi F, Wasteneys GO. Cytoskeleton-dependent endomembrane organization in plant cells: an emerging role for microtubules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:339-49. [PMID: 23647215 DOI: 10.1111/tpj.12227] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 05/07/2023]
Abstract
Movement of secretory organelles is a fascinating yet largely mysterious feature of eukaryotic cells. Microtubule-based endomembrane and organelle motility utilizing the motor proteins dynein and kinesin is commonplace in animal cells. In contrast, it has been long accepted that intracellular motility in plant cells is predominantly driven by myosin motors dragging organelles and endomembrane-bounded cargo along actin filament bundles. Consistent with this, defects in the acto-myosin cytoskeleton compromise plant growth and development. Recent findings, however, challenge the actin-centric view of the motility of critical secretory organelles and distribution of associated protein machinery. In this review, we provide an overview of the current knowledge on actin-mediated organelle movement within the secretory pathway of plant cells, and report on recent and exciting findings that support a critical role of microtubules in plant cell development, in fine-tuning the positioning of Golgi stacks, as well as their involvement in cellulose synthesis and auxin polar transport. These emerging aspects of the biology of microtubules highlight adaptations of an ancestral machinery that plants have specifically evolved to support the functioning of the acto-myosin cytoskeleton, and mark new trends in our global appreciation of the complexity of organelle movement within the plant secretory pathway.
Collapse
Affiliation(s)
- Federica Brandizzi
- MSU-Department of Energy-Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824-1312, USA
| | | |
Collapse
|
132
|
Jia T, Gao C, Cui Y, Wang J, Ding Y, Cai Y, Ueda T, Nakano A, Jiang L. ARA7(Q69L) expression in transgenic Arabidopsis cells induces the formation of enlarged multivesicular bodies. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2817-29. [PMID: 23682115 PMCID: PMC3697957 DOI: 10.1093/jxb/ert125] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana ARA7 (AtRabF2b), a member of the plant Rab5 small GTPases functioning in the vacuolar transport pathway, localizes to pre-vacuolar compartments (PVCs), known as multivesicular bodies (MVBs) in plant cells. Overexpression of the constitutively active GTP-bound mutant of ARA7, ARA7(Q69L), induces the formation of large ring-like structures (1-2 µm in diameter). To better understand the biology of these ARA7(Q69L)-induced ring-like structures, transgenic Arabidopsis cell lines expressing ARA7(Q69L) tagged with green fluorescent protein (GFP) under the control of a heat shock-inducible promoter were generated. In these transgenic cells, robust ring-like structures were formed after 4 h of heat shock induction. Transient co-expression, confocal imaging, and immunogold electron microscopy (immunogold-EM) experiments demonstrated that these GFP-ARA7(Q69L)-labelled ring-like structures were distinct from the Golgi apparatus and trans-Golgi network, but were labelled with an antibody against an MVB marker protein. In addition, live cell imaging and detailed EM analysis showed that the GFP-ARA7(Q69L)-induced spherical structures originated from the homotypic fusion of MVBs. In summary, it was demonstrated that GFP-ARA7(Q69L) expression is an efficient tool for studying PVC/MVB-mediated protein trafficking and vacuolar degradation in plant cells.
Collapse
Affiliation(s)
- Tianran Jia
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Caiji Gao
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yong Cui
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Junqi Wang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
133
|
Chanroj S, Padmanaban S, Czerny DD, Jauh GY, Sze H. K+ transporter AtCHX17 with its hydrophilic C tail localizes to membranes of the secretory/endocytic system: role in reproduction and seed set. MOLECULAR PLANT 2013; 6:1226-46. [PMID: 23430044 DOI: 10.1093/mp/sst032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The importance of sorting proteins and wall materials to their destination is critical for plant growth and development, though the machinery orchestrating membrane trafficking is poorly understood. Transporters that alter the environment across endomembrane compartments are thought to be important players. Using Escherichia coli and yeast, we previously showed that several Arabidopsis Cation/H(+) eXchanger (AtCHX) members were K(+) transporters with a role in pH homeostasis, though their subcellular location and biological roles in plants are unclear. Co-expression of markers with CHX16, CHX17, CHX18, or CHX19 tagged with a fluorescent protein indicated these transporters associated with plasma membrane (PM) and post-Golgi compartments. Under its native promoter, AtCHX17(1-820)-GFP localized to prevacuolar compartment (PVC) and to PM in roots. Brefeldin A diminished AtCHX17-GFP fluorescence at PM, whereas wortmannin caused formation of GFP-labeled ring-like structures, suggesting AtCHX17 trafficked among PVC, vacuole and PM. AtCHX17(1-472) lacking its carboxylic tail did not associate with PVC or PM in plant cells. Single chx17 mutant or higher-order mutants showed normal root growth and vegetative development. However, quadruple (chx16chx17chx18chx19) mutants were reduced in frequency and produced 50%-70% fewer seeds, indicating overlapping roles of several AtCHX17-related transporters in reproduction and/or seed development. Together, our results suggest that successful reproduction and seed development depend on the ability to regulate cation and pH homeostasis by AtCHX17-like transporters on membranes that traffic in the endocytic and/or secretory pathways.
Collapse
Affiliation(s)
- Salil Chanroj
- Department of Cell Biology and Molecular Genetics, and Maryland Agricultural Experiment Station, University of Maryland, College Park, MD, USA
| | | | | | | | | |
Collapse
|
134
|
Li S, Liu L, Zhuang X, Yu Y, Liu X, Cui X, Ji L, Pan Z, Cao X, Mo B, Zhang F, Raikhel N, Jiang L, Chen X. MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 2013; 153:562-74. [PMID: 23622241 DOI: 10.1016/j.cell.2013.04.005] [Citation(s) in RCA: 361] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 01/13/2013] [Accepted: 03/22/2013] [Indexed: 01/23/2023]
Abstract
Translation inhibition is a major but poorly understood mode of action of microRNAs (miRNAs) in plants and animals. In particular, the subcellular location where this process takes place is unknown. Here, we show that the translation inhibition, but not the mRNA cleavage activity, of Arabidopsis miRNAs requires ALTERED MERISTEM PROGRAM1 (AMP1). AMP1 encodes an integral membrane protein associated with endoplasmic reticulum (ER) and ARGONAUTE1, the miRNA effector and a peripheral ER membrane protein. Large differences in polysome association of miRNA target RNAs are found between wild-type and the amp1 mutant for membrane-bound, but not total, polysomes. This, together with AMP1-independent recruitment of miRNA target transcripts to membrane fractions, shows that miRNAs inhibit the translation of target RNAs on the ER. This study demonstrates that translation inhibition is an important activity of plant miRNAs, reveals the subcellular location of this activity, and uncovers a previously unknown function of the ER.
Collapse
Affiliation(s)
- Shengben Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Arabidopsis μ-adaptin subunit AP1M of adaptor protein complex 1 mediates late secretory and vacuolar traffic and is required for growth. Proc Natl Acad Sci U S A 2013; 110:10318-23. [PMID: 23733933 DOI: 10.1073/pnas.1300460110] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Adaptor protein (AP) complexes are the predominant coat proteins of membrane vesicles in post-Golgi trafficking of mammalian cells. Each AP complex contains a specific medium subunit, μ-adaptin, that selects cargo proteins bearing sequence-specific sorting motifs. Much less is known about the AP complexes and their μ subunits in plants. Because of uncertain homology, the μ-adaptins of Arabidopsis have been designated muA through muD [Happel et al. (2004) Plant J 37(5):678-693]. Furthermore, only muD has been assigned to a specific AP complex, AP-3, involved in Golgi-vacuolar trafficking [Niihama et al. (2009) Plant Cell Physiol 50(12):2057-2068, Zwiewka et al. (2011) Cell Res 21(12):1711-1722, and Wolfenstetter et al. (2012) Plant Cell 24(1):215-232]. In contrast, the μ subunit of neither the post-Golgi trafficking AP-1 complex nor the endocytic AP-2 complex has been identified. Here, we report the functional analysis of redundant AP-1 μ-adaptins AP1M1 (also known as muB1) and AP1M2 (also known as muB2). Coimmunoprecipitation revealed that both AP1M2 and its less strongly expressed isoform AP1M1 are complexed with the large subunit γ-adaptin of AP-1. In addition, AP1M2 was localized at or near the trans-Golgi network. Knockout mutations of AP1M2 impaired pollen function and arrested plant growth whereas the ap1m1 ap1m2 double mutant was nearly pollen-lethal. At the cellular level, the absence of AP1M2 entailed inhibition of multiple trafficking pathways from the trans-Golgi network to the vacuole and to the plasma membrane in interphase and to the plane of cell division in cytokinesis. Thus, AP-1 is crucial in post-Golgi trafficking in plant cells and required for cell division and plant growth.
Collapse
|
136
|
Sauer M, Delgadillo MO, Zouhar J, Reynolds GD, Pennington JG, Jiang L, Liljegren SJ, Stierhof YD, De Jaeger G, Otegui MS, Bednarek SY, Rojo E. MTV1 and MTV4 encode plant-specific ENTH and ARF GAP proteins that mediate clathrin-dependent trafficking of vacuolar cargo from the trans-Golgi network. THE PLANT CELL 2013; 25:2217-35. [PMID: 23771894 PMCID: PMC3723622 DOI: 10.1105/tpc.113.111724] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/14/2013] [Accepted: 05/30/2013] [Indexed: 05/18/2023]
Abstract
Many soluble proteins transit through the trans-Golgi network (TGN) and the prevacuolar compartment (PVC) en route to the vacuole, but our mechanistic understanding of this vectorial trafficking step in plants is limited. In particular, it is unknown whether clathrin-coated vesicles (CCVs) participate in this transport step. Through a screen for modified transport to the vacuole (mtv) mutants that secrete the vacuolar protein VAC2, we identified MTV1, which encodes an epsin N-terminal homology protein, and MTV4, which encodes the ADP ribosylation factor GTPase-activating protein nevershed/AGD5. MTV1 and NEV/AGD5 have overlapping expression patterns and interact genetically to transport vacuolar cargo and promote plant growth, but they have no apparent roles in protein secretion or endocytosis. MTV1 and NEV/AGD5 colocalize with clathrin at the TGN and are incorporated into CCVs. Importantly, mtv1 nev/agd5 double mutants show altered subcellular distribution of CCV cargo exported from the TGN. Moreover, MTV1 binds clathrin in vitro, and NEV/AGD5 associates in vivo with clathrin, directly linking these proteins to CCV formation. These results indicate that MTV1 and NEV/AGD5 are key effectors for CCV-mediated trafficking of vacuolar proteins from the TGN to the PVC in plants.
Collapse
Affiliation(s)
- Michael Sauer
- Departamento Molecular de Plantas, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Cientificas), 28049 Madrid, Spain
| | - M. Otilia Delgadillo
- Departamento Molecular de Plantas, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Cientificas), 28049 Madrid, Spain
| | - Jan Zouhar
- Departamento Molecular de Plantas, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Cientificas), 28049 Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica, 28223 Madrid, Spain
| | | | | | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Sarah J. Liljegren
- Department of Biology, University of Mississippi, Oxford, Mississippi 38677-1848
| | - York-Dieter Stierhof
- Zentrum für Molekularbiologie der Pflanzen, University of Tübingen, 72076 Tuebingen, Germany
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Marisa S. Otegui
- Department of Botany, University of Madison, Madison, Wisconsin 53706
| | | | - Enrique Rojo
- Departamento Molecular de Plantas, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Cientificas), 28049 Madrid, Spain
- Address correspondence to
| |
Collapse
|
137
|
De Benedictis M, Bleve G, Faraco M, Stigliano E, Grieco F, Piro G, Dalessandro G, Di Sansebastiano GP. AtSYP51/52 functions diverge in the post-Golgi traffic and differently affect vacuolar sorting. MOLECULAR PLANT 2013; 6:916-30. [PMID: 23087325 DOI: 10.1093/mp/sss117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant sensitive factor attachment protein receptors (SNAREs) encoded by genes of the same sub-family are generally considered as redundant in promoting vesicle-associated membrane fusion events. Nonetheless, the application of innovative experimental approaches highlighted that members of the same gene sub-family often have different functional specificities. In this work, two closely related Qc-SNAREs--the AtSYP51 and the AtSYP52--are compared in their ability to influence different secretory pathways. Their role in the vesicle sorting to the central vacuole has been revised and they were found to have a novel inhibitory function. When transiently overexpressed, the SYP51 and the SYP52 distributed between the TGN and the tonoplast. Our data demonstrate that these SYPs (syntaxin of plants) act as t-SNARE when present on the membrane of TGN/PVC, whereas they behave as inhibitory or interfering SNAREs (i-SNAREs) when they accumulate on the tonoplast. Moreover, the performed functional analysis indicated that the AtSYP51 and the AtSYP52 roles differ in the traffic to the vacuole. The findings are a novel contribution to the functional characterization of plant SNAREs that reveals additional non-fusogenic roles.
Collapse
Affiliation(s)
- Maria De Benedictis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Campus Ecotekne, 73100 Lecce, Italy
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Wang J, Shen J, Cai Y, Robinson DG, Jiang L. Successful transport to the vacuole of heterologously expressed mung bean 8S globulin occurs in seed but not in vegetative tissues. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1587-601. [PMID: 23382549 PMCID: PMC3617825 DOI: 10.1093/jxb/ert014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This study investigated the subcellular location of mung bean (Vigna radiata) 8S globulin in transient expression systems as well as in tobacco (Nicotiana tabacum) BY-2 cells and different tissues from a transgenic Arabidopsis (Arabidopsis thaliana) line stably expressing this storage globulin. When transiently expressed in protoplasts from both BY-2 cells and Arabidopsis suspension cultured cells, the 8S globulin located to structures that were neither Golgi nor pre-vacuolar compartments (PVCs). Immunogold electron microscopy of the transgenics reveals the 8S globulin-positive structures to be small, spherical, ribosome-covered endoplasmic reticulum (ER)-derived bodies. In BY-2 cells and all vegetative cells, the 8S globulin was present as a pro-form. However, in Arabidopsis embryos, with the onset of endogenous storage protein synthesis, the 8S globulin exited the ER and passed through the PVC to the protein storage vacuole where it was processed to its smaller mature form. These results clearly demonstrated that, when taken out of context and expressed in vegetative cells, the mung bean 8S storage globulin cannot exit the ER, and indicate that natural targeting of storage proteins to the vacuole should be better studied in the maturing seed.
Collapse
Affiliation(s)
- Junqi Wang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
- Department of Biology, South University of Science and Technology of China, Shenzhen, PR China
| | - Jinbo Shen
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| | - Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| | - David G. Robinson
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| |
Collapse
|
139
|
McMichael CM, Bednarek SY. Cytoskeletal and membrane dynamics during higher plant cytokinesis. THE NEW PHYTOLOGIST 2013; 197:1039-1057. [PMID: 23343343 DOI: 10.1111/nph.12122] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 12/02/2012] [Indexed: 05/08/2023]
Abstract
Following mitosis, cytoplasm, organelles and genetic material are partitioned into daughter cells through the process of cytokinesis. In somatic cells of higher plants, two cytoskeletal arrays, the preprophase band and the phragmoplast, facilitate the positioning and de novo assembly of the plant-specific cytokinetic organelle, the cell plate, which develops across the division plane and fuses with the parental plasma membrane to yield distinct new cells. The coordination of cytoskeletal and membrane dynamics required to initiate, assemble and shape the cell plate as it grows toward the mother cell cortex is dependent upon a large array of proteins, including molecular motors, membrane tethering, fusion and restructuring factors and biosynthetic, structural and regulatory elements. This review focuses on the temporal and molecular requirements of cytokinesis in somatic cells of higher plants gleaned from recent studies using cell biology, genetics, pharmacology and biochemistry.
Collapse
Affiliation(s)
- Colleen M McMichael
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr, Madison, WI, 53713, USA
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr, Madison, WI, 53713, USA
| |
Collapse
|
140
|
Stierhof YD, Viotti C, Scheuring D, Sturm S, Robinson DG. Sorting nexins 1 and 2a locate mainly to the TGN. PROTOPLASMA 2013; 250:235-40. [PMID: 22447127 DOI: 10.1007/s00709-012-0399-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 03/14/2012] [Indexed: 05/26/2023]
Abstract
The subcellular localization of the sorting nexins (SNXs) in higher plants is a matter of controversy. Previous confocal laser scanning microscopy (CLSM studies on root cells from a transgenic Arabidopsis line expressing SNX1-GFP have suggested that this SNX is present on an endosome having characteristics of both the trans-Golgi network (TGN) and the multivesicular body (MVB). In contrast, SNX2a locates exclusively to the TGN when transiently expressed in tobacco mesophyll protoplasts. By performing immunogold electron microscopy on cryofixed Arabidopsis roots, we have tried to clarify the situation. Both SNX1-GFP and endogenous SNX2a locate principally to the TGN. Labeling of MVBs could not be confirmed with any certainty.
Collapse
Affiliation(s)
- York-Dieter Stierhof
- Microscopy, Centre for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
141
|
A computational prediction of structure and function of novel homologue of Arabidopsis thaliana Vps51/Vps67 subunit in Corchorus olitorius. Interdiscip Sci 2013; 4:256-67. [PMID: 23354814 DOI: 10.1007/s12539-012-0139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 06/05/2012] [Accepted: 07/29/2012] [Indexed: 10/27/2022]
Abstract
Vps mediated vesicular transport is important for transferring macromolecules trapped inside a vesicle. Although highly abundant, Vps shows tremendous sequence variation among diverse array of species. However, this difference in sequence, which seems to also translate into substantial functional variation, is hardly characterized in Corchorus spp. Here, our computational study investigates structural and functional features of one of the Vps subunit namely Vps51/Vps67 in C. olitorius. Broad scale structural characterization revealed novel information about the overall Vps structure and binding sites. Moreover, functional analyses indicate interaction partners which were unexplored to date. Since membrane trafficking is essentially associated with nutrient uptake and chemical de-toxification, characterization of the Vps subunit can well provide us with better insight into important agronomic traits such as stress response, immune response and phytoremediation capacity.
Collapse
|
142
|
Xiang L, Etxeberria E, den Ende W. Vacuolar protein sorting mechanisms in plants. FEBS J 2013; 280:979-93. [DOI: 10.1111/febs.12092] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 11/08/2012] [Accepted: 12/11/2012] [Indexed: 01/12/2023]
Affiliation(s)
- Li Xiang
- Laboratory of Molecular Plant Biology KU Leuven Belgium
| | - Ed Etxeberria
- Horticulture Department Citrus Research and Education Center University of Florida Lake Alfred FL USA
| | - Wim den Ende
- Laboratory of Molecular Plant Biology KU Leuven Belgium
| |
Collapse
|
143
|
Abstract
The recent and massive expansion in plant genomics data has generated a large number of gene sequences for which two seemingly simple questions need to be answered: where do the proteins encoded by these genes localize in cells, and what do they do? One widespread approach to answering the localization question has been to use particle bombardment to transiently express unknown proteins tagged with green fluorescent protein (GFP) or its numerous derivatives. Confocal fluorescence microscopy is then used to monitor the localization of the fluorescent protein as it hitches a ride through the cell. The subcellular localization of the fusion protein, if not immediately apparent, can then be determined by comparison to localizations generated by fluorescent protein fusions to known signalling sequences and proteins, or by direct comparison with fluorescent dyes. This review aims to be a tour guide for researchers wanting to travel this hitch-hiker's path, and for reviewers and readers who wish to understand their travel reports. It will describe some of the technology available for visualizing protein localizations, and some of the experimental approaches for optimizing and confirming localizations generated by particle bombardment in onion epidermal cells, the most commonly used experimental system. As the non-conservation of signal sequences in heterologous expression systems such as onion, and consequent mis-targeting of fusion proteins, is always a potential problem, the epidermal cells of the Argenteum mutant of pea are proposed as a model system.
Collapse
Affiliation(s)
- David A Collings
- Biomolecular Interaction Centre, School of Biological Sciences, The University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
144
|
Lee Y, Jang M, Song K, Kang H, Lee MH, Lee DW, Zouhar J, Rojo E, Sohn EJ, Hwang I. Functional identification of sorting receptors involved in trafficking of soluble lytic vacuolar proteins in vegetative cells of Arabidopsis. PLANT PHYSIOLOGY 2013; 161:121-33. [PMID: 23175753 PMCID: PMC3532246 DOI: 10.1104/pp.112.210914] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In eukaryotic cells, protein trafficking plays an essential role in biogenesis of proteins that belong to the endomembrane compartments. In this process, an important step is the sorting of organellar proteins depending on their final destinations. For vacuolar proteins, vacuolar sorting receptors (VSRs) and receptor homology-transmembrane-RING H2 domain proteins (RMRs) are thought to be responsible. Arabidopsis (Arabidopsis thaliana) contains seven VSRs. Among them, VSR1, VSR3, and VSR4 are involved in sorting storage proteins targeted to the protein storage vacuole (PSV) in seeds. However, the identity of VSRs for soluble proteins of the lytic vacuole in vegetative cells remains controversial. Here, we provide evidence that VSR1, VSR3, and VSR4 are involved in sorting soluble lytic vacuolar and PSV proteins in vegetative cells. In protoplasts from leaf tissues of vsr1vsr3 and vsr1vsr4 but not vsr5vsr6, and rmr1rmr2 and rmr3rmr4 double mutants, soluble lytic vacuolar (Arabidopsis aleurain-like protein:green fluorescent protein [GFP] and carboxypeptidase Y:GFP and PSV (phaseolin) proteins, but not the vacuolar membrane protein Arabidopsis βFructosidase4:GFP, exhibited defects in their trafficking; they accumulated to the endoplasmic reticulum with an increased secretion into medium. The trafficking defects in vsr1vsr4 protoplasts were rescued by VSR1 or VSR4 but not VSR5 or AtRMR1. Furthermore, of the luminal domain swapping mutants between VSR1 and VSR5, the mutant with the luminal domain of VSR1, but not that of VSR5, rescued the trafficking defects of Arabidopsis aleurain-like protein:GFP and phaseolin in vsr1vsr4 protoplasts. Based on these results, we propose that VSR1, VSR3, and VSR4, but not other VSRs, are involved in sorting soluble lytic vacuolar and PSV proteins for their trafficking to the vacuoles in vegetative cells.
Collapse
|
145
|
Kang H, Kim SY, Song K, Sohn EJ, Lee Y, Lee DW, Hara-Nishimura I, Hwang I. Trafficking of vacuolar proteins: the crucial role of Arabidopsis vacuolar protein sorting 29 in recycling vacuolar sorting receptor. THE PLANT CELL 2012; 24:5058-73. [PMID: 23263768 PMCID: PMC3556975 DOI: 10.1105/tpc.112.103481] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/26/2012] [Accepted: 12/06/2012] [Indexed: 05/18/2023]
Abstract
The retromer is involved in recycling lysosomal sorting receptors in mammals. A component of the retromer complex in Arabidopsis thaliana, vacuolar protein sorting 29 (VPS29), plays a crucial role in trafficking storage proteins to protein storage vacuoles. However, it is not known whether or how vacuolar sorting receptors (VSRs) are recycled from the prevacuolar compartment (PVC) to the trans-Golgi network (TGN) during trafficking to the lytic vacuole (LV). Here, we report that VPS29 plays an essential role in the trafficking of soluble proteins to the LV from the TGN to the PVC. maigo1-1 (mag1-1) mutants, which harbor a knockdown mutation in VPS29, were defective in trafficking of two soluble proteins, Arabidopsis aleurain-like protein (AALP):green fluorescent protein (GFP) and sporamin:GFP, to the LV but not in trafficking membrane proteins to the LV or plasma membrane or via the secretory pathway. AALP:GFP and sporamin:GFP in mag1-1 protoplasts accumulated in the TGN but were also secreted into the medium. In mag1-1 mutants, VSR1 failed to recycle from the PVC to the TGN; rather, a significant proportion was transported to the LV; VSR1 overexpression rescued this defect. Moreover, endogenous VSRs were expressed at higher levels in mag1-1 plants. Based on these results, we propose that VPS29 plays a crucial role in recycling VSRs from the PVC to the TGN during the trafficking of soluble proteins to the LV.
Collapse
Affiliation(s)
- Hyangju Kang
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Soo Youn Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Kyungyoung Song
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Eun Ju Sohn
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yongjik Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Inhwan Hwang
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
- Address correspondence to
| |
Collapse
|
146
|
Engelhardt S, Boevink PC, Armstrong MR, Ramos MB, Hein I, Birch PR. Relocalization of late blight resistance protein R3a to endosomal compartments is associated with effector recognition and required for the immune response. THE PLANT CELL 2012; 24:5142-58. [PMID: 23243124 PMCID: PMC3556980 DOI: 10.1105/tpc.112.104992] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/26/2012] [Accepted: 11/10/2012] [Indexed: 05/18/2023]
Abstract
An important objective of plant-pathogen interactions research is to determine where resistance proteins detect pathogen effectors to mount an immune response. Many nucleotide binding-Leucine-rich repeat (NB-LRR) resistance proteins accumulate in the plant nucleus following effector recognition, where they initiate the hypersensitive response (HR). Here, we show that potato (Solanum tuberosum) resistance protein R3a relocates from the cytoplasm to endosomal compartments only when coexpressed with recognized Phytophthora infestans effector form AVR3a(KI) and not unrecognized form AVR3a(EM). Moreover, AVR3a(KI), but not AVR3a(EM), is also relocalized to endosomes in the presence of R3a. Both R3a and AVR3a(KI) colocalized in close physical proximity at endosomes in planta. Treatment with brefeldin A (BFA) or wortmannin, inhibitors of the endocytic cycle, attenuated both the relocalization of R3a to endosomes and the R3a-mediated HR. No such effect of these inhibitors was observed on HRs triggered by the gene-for-gene pairs Rx1/PVX-CP and Sto1/IpiO1. An R3a(D501V) autoactive MHD mutant, which triggered HR in the absence of AVR3a(KI), failed to localize to endosomes. Moreover, BFA and wortmannin did not alter cell death triggered by this mutant. We conclude that effector recognition and consequent HR signaling by NB-LRR resistance protein R3a require its relocalization to vesicles in the endocytic pathway.
Collapse
Affiliation(s)
- Stefan Engelhardt
- Division of Plant Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Petra C. Boevink
- Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Miles R. Armstrong
- Division of Plant Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Maria Brisa Ramos
- Division of Plant Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Ingo Hein
- Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Paul R.J. Birch
- Division of Plant Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- Address correspondence to
| |
Collapse
|
147
|
Gu Y, Innes RW. The KEEP ON GOING protein of Arabidopsis regulates intracellular protein trafficking and is degraded during fungal infection. THE PLANT CELL 2012; 24:4717-30. [PMID: 23192225 PMCID: PMC3531862 DOI: 10.1105/tpc.112.105254] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/12/2012] [Accepted: 11/04/2012] [Indexed: 05/18/2023]
Abstract
In plants, the trans-Golgi network and early endosomes (TGN/EE) function as the central junction for major endomembrane trafficking events, including endocytosis and secretion. Here, we demonstrate that the KEEP ON GOING (KEG) protein of Arabidopsis thaliana localizes to the TGN/EE and plays an essential role in multiple intracellular trafficking processes. Loss-of-function keg mutants exhibited severe defects in cell expansion, which correlated with defects in vacuole morphology. Confocal microscopy revealed that KEG is required for targeting of plasma membrane proteins to the vacuole. This targeting process appeared to be blocked at the step of multivesicular body (MVB) fusion with the vacuolar membrane as the MVB-associated small GTPase ARA6 was also blocked in vacuolar delivery. In addition, loss of KEG function blocked secretion of apoplastic defense proteins, indicating that KEG plays a role in plant immunity. Significantly, KEG was degraded specifically in cells infected by the fungus Golovinomyces cichoracearum, suggesting that this pathogen may target KEG to manipulate the host secretory system as a virulence strategy. Taking these results together, we conclude that KEG is a key component of TGN/EE that regulates multiple post-Golgi trafficking events in plants, including vacuole biogenesis, targeting of membrane-associated proteins to the vacuole, and secretion of apoplastic proteins.
Collapse
Affiliation(s)
- Yangnan Gu
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Roger W. Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
148
|
Ding Y, Wang J, Wang J, Stierhof YD, Robinson DG, Jiang L. Unconventional protein secretion. TRENDS IN PLANT SCIENCE 2012; 17:606-15. [PMID: 22784825 DOI: 10.1016/j.tplants.2012.06.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 05/11/2023]
Abstract
It is generally believed that protein secretion or exocytosis is achieved via a conventional ER (endoplasmic reticulum)-Golgi-TGN (trans-Golgi network)-PM (plasma membrane) pathway in the plant endomembrane system. However, such signal peptide (SP)-dependent protein secretion cannot explain the increasing number of SP-lacking proteins which are found outside of the PM in plant cells. The process by which such leaderless secretory proteins (LSPs) gain access to the cell exterior is termed unconventional protein secretion (UPS) and has been well-studied in animal and yeast cells, but largely ignored by the plant community. Here, we review the evidence for UPS in plants especially in regard to the recently discovered EXPO (exocyst-positive-organelle).
Collapse
Affiliation(s)
- Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology, the Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
149
|
Beck M, Zhou J, Faulkner C, MacLean D, Robatzek S. Spatio-temporal cellular dynamics of the Arabidopsis flagellin receptor reveal activation status-dependent endosomal sorting. THE PLANT CELL 2012; 24:4205-19. [PMID: 23085733 PMCID: PMC3516521 DOI: 10.1105/tpc.112.100263] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/17/2012] [Accepted: 09/25/2012] [Indexed: 05/18/2023]
Abstract
The activity of surface receptors is location specific, dependent upon the dynamic membrane trafficking network and receptor-mediated endocytosis (RME). Therefore, the spatio-temporal dynamics of RME are critical to receptor function. The plasma membrane receptor flagellin sensing2 (FLS2) confers immunity against bacterial infection through perception of flagellin (flg22). Following elicitation, FLS2 is internalized into vesicles. To resolve FLS2 trafficking, we exploited quantitative confocal imaging for colocalization studies and chemical interference. FLS2 localizes to bona fide endosomes via two distinct endocytic trafficking routes depending on its activation status. FLS2 receptors constitutively recycle in a Brefeldin A (BFA)-sensitive manner, while flg22-activated receptors traffic via ARA7/Rab F2b- and ARA6/Rab F1-positive endosomes insensitive to BFA. FLS2 endocytosis required a functional Rab5 GTPase pathway as revealed by dominant-negative ARA7/Rab F2b. Flg22-induced FLS2 endosomal numbers were increased by Concanamycin A treatment but reduced by Wortmannin, indicating that activated FLS2 receptors are targeted to late endosomes. RME inhibitors Tyrphostin A23 and Endosidin 1 altered but did not block induced FLS2 endocytosis. Additional inhibitor studies imply the involvement of the actin-myosin system in FLS2 internalization and trafficking. Altogether, we report a dynamic pattern of subcellular trafficking for FLS2 and reveal a defined framework for ligand-dependent endocytosis of this receptor.
Collapse
|
150
|
Ibrahim A, Hutchens HM, Berg RH, Loesch-Fries LS. Alfalfa mosaic virus replicase proteins, P1 and P2, localize to the tonoplast in the presence of virus RNA. Virology 2012; 433:449-61. [PMID: 22999257 DOI: 10.1016/j.virol.2012.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 12/25/2022]
Abstract
To identify the virus components important for assembly of the Alfalfa mosaic virus replicase complex, we used live cell imaging of Arabidopsis thaliana protoplasts that expressed various virus cDNAs encoding native and GFP-fusion proteins of P1 and P2 replicase proteins and full-length virus RNAs. Expression of P1-GFP alone resulted in fluorescent vesicle-like bodies in the cytoplasm that colocalized with FM4-64, an endocytic marker, and RFP-AtVSR2, RabF2a/Rha1-mCherry, and RabF2b/Ara7-mCherry, all of which localize to multivesicular bodies (MVBs), which are also called prevacuolar compartments, that mediate traffic to the lytic vacuole. GFP-P2 was driven from the cytosol to MVBs when expressed with P1 indicating that P1 recruited GFP-P2. P1-GFP localized on the tonoplast, which surrounds the vacuole, in the presence of infectious virus RNA, replication competent RNA2, or P2 and replication competent RNA1 or RNA3. This suggests that a functional replication complex containing P1, P2, and a full-length AMV RNA assembles on MVBs to traffic to the tonoplast.
Collapse
Affiliation(s)
- Amr Ibrahim
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|