101
|
Catacchio CR, Alagna F, Perniola R, Bergamini C, Rotunno S, Calabrese FM, Crupi P, Antonacci D, Ventura M, Cardone MF. Transcriptomic and genomic structural variation analyses on grape cultivars reveal new insights into the genotype-dependent responses to water stress. Sci Rep 2019; 9:2809. [PMID: 30809001 PMCID: PMC6391451 DOI: 10.1038/s41598-019-39010-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/12/2018] [Indexed: 12/29/2022] Open
Abstract
Grapevine (Vitis vinifera L.) is importantly cultivated worldwide for table grape and wine production. Its cultivation requires irrigation supply, especially in arid and semiarid areas. Water deficiency can affect berry and wine quality mostly depending on the extent of plant perceived stress, which is a cultivar-specific trait. We tested the physiological and molecular responses to water deficiency of two table grape cultivars, Italia and Autumn royal, and we highlighted their different adaptation. Microarray analyses revealed that Autumn royal reacts involving only 29 genes, related to plant stress response and ABA/hormone signal transduction, to modulate the response to water deficit. Instead, cultivar Italia orchestrates a very broad response (we found 1037 differentially expressed genes) that modifies the cell wall organization, carbohydrate metabolism, response to reactive oxygen species, hormones and osmotic stress. For the first time, we integrated transcriptomic data with cultivar-specific genomics and found that ABA-perception and -signalling are key factors mediating the varietal-specific behaviour of the early response to drought. We were thus able to isolate candidate genes for the genotype-dependent response to drought. These insights will allow the identification of reliable plant stress indicators and the definition of sustainable cultivar-specific protocols for water management.
Collapse
Affiliation(s)
- C R Catacchio
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - F Alagna
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy
- ENEA, Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile, Centro Ricerche Trisaia, Rotondella (MT), Italy
| | - R Perniola
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy
| | - C Bergamini
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy
| | - S Rotunno
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy
| | - F M Calabrese
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - P Crupi
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy
| | - D Antonacci
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy
| | - M Ventura
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| | - M F Cardone
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy.
| |
Collapse
|
102
|
Xing X, Jiang J, Huang Y, Zhang Z, Song A, Ding L, Wang H, Yao J, Chen S, Chen F, Fang W. The Constitutive Expression of a Chrysanthemum ERF Transcription Factor Influences Flowering Time in Arabidopsis thaliana. Mol Biotechnol 2019; 61:20-31. [PMID: 30448907 DOI: 10.1007/s12033-018-0134-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AP2/ERF transcription factors (TFs) represent valuable targets for the genetic manipulation of crop plants, as they participate in the control of metabolism, growth and development, as well as in the plants' response to environmental stimuli. Here, an ERF TF encoded by the chrysanthemum (Chrysanthemum morifolium) genome, designated CmERF110, was cloned and functionally characterized. The predicted CmERF110 polypeptide included a conserved DNA-binding AP2/ERF domain. A transient expression experiment revealed that the protein was deposited in the nucleus, and a transactivation experiment in yeast suggested that it had no transcriptional activity. The gene was transcribed in the chrysanthemum root, stem and leaf, with its transcript level following a circadian rhythm under both long and short days. The effect of constitutively expressing the gene in Arabidopsis thaliana was to accelerate flowering. Transcriptional profiling implied that its effect on floral initiation operated through the photoperiod pathway.
Collapse
Affiliation(s)
- Xiaojuan Xing
- Key Laboratory of Landscape Agriculture, College of Horticulture, Ministry of Agriculture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, Republic of China
| | - Jiafu Jiang
- Key Laboratory of Landscape Agriculture, College of Horticulture, Ministry of Agriculture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, Republic of China
| | - Yaoyao Huang
- Key Laboratory of Landscape Agriculture, College of Horticulture, Ministry of Agriculture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, Republic of China
| | - Zixin Zhang
- Key Laboratory of Landscape Agriculture, College of Horticulture, Ministry of Agriculture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, Republic of China
| | - Aiping Song
- Key Laboratory of Landscape Agriculture, College of Horticulture, Ministry of Agriculture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, Republic of China
| | - Lian Ding
- Key Laboratory of Landscape Agriculture, College of Horticulture, Ministry of Agriculture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, Republic of China
| | - Haibing Wang
- Key Laboratory of Landscape Agriculture, College of Horticulture, Ministry of Agriculture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, Republic of China
| | - Jianjun Yao
- Shanghai Honghua Horticulture Co. Ltd., Shanghai, 200070, China
| | - Sumei Chen
- Key Laboratory of Landscape Agriculture, College of Horticulture, Ministry of Agriculture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, Republic of China
| | - Fadi Chen
- Key Laboratory of Landscape Agriculture, College of Horticulture, Ministry of Agriculture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, Republic of China
| | - Weimin Fang
- Key Laboratory of Landscape Agriculture, College of Horticulture, Ministry of Agriculture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, Republic of China.
| |
Collapse
|
103
|
Hu Y, Lu Y, Zhao Y, Zhou DX. Histone Acetylation Dynamics Integrates Metabolic Activity to Regulate Plant Response to Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1236. [PMID: 31636650 PMCID: PMC6788390 DOI: 10.3389/fpls.2019.01236] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/05/2019] [Indexed: 05/20/2023]
Abstract
Histone lysine acetylation is an essential chromatin modification for epigenetic regulation of gene expression during plant response to stress. On the other hand, enzymes involved in histone acetylation homeostasis require primary metabolites as substrates or cofactors whose levels are greatly influenced by stress and growth conditions in plants. In addition, histone lysine acylation that requires similar enzymes for deposition and removal as histone acetylation has been recently characterized in plant. Results on understanding the intrinsic relationship between histone acetylation/acylation, metabolism and stress response in plants are accumulating. In this review, we summarize recent advance in the field and propose a model of interplay between metabolism and epigenetic regulation of genes expression in plant adaptation to stress.
Collapse
Affiliation(s)
- Yongfeng Hu
- College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Yue Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Institute of Plant Science of Paris-Saclay (IPS2), CNRS, INRA, University Paris-sud 11, University Paris-Saclay, Orsay, France
- *Correspondence: Dao-Xiu Zhou,
| |
Collapse
|
104
|
Wang L, Qiao H. New Insights in Transcriptional Regulation of the Ethylene Response in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:790. [PMID: 31275338 PMCID: PMC6591485 DOI: 10.3389/fpls.2019.00790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/31/2019] [Indexed: 05/19/2023]
Abstract
As any living organisms, plants must respond to a wide variety of environmental stimuli. Plant hormones regulate almost all aspects of plant growth and development. Among all the plant hormones, ethylene is the only gaseous plant hormone that plays pleiotropic roles in plant growth, plant development and stress responses. Transcription regulation is one main mechanism by which a cell orchestrates gene activity. This control allows the cell or organism to respond to a variety of intra- and extracellular signals and thus mount a response. Here we review the progress of transcription regulation in the ethylene response.
Collapse
Affiliation(s)
- Likai Wang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
- *Correspondence: Hong Qiao,
| |
Collapse
|
105
|
Xie Z, Nolan TM, Jiang H, Yin Y. AP2/ERF Transcription Factor Regulatory Networks in Hormone and Abiotic Stress Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:228. [PMID: 30873200 PMCID: PMC6403161 DOI: 10.3389/fpls.2019.00228] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/11/2019] [Indexed: 05/18/2023]
Abstract
Dynamic environmental changes such as extreme temperature, water scarcity and high salinity affect plant growth, survival, and reproduction. Plants have evolved sophisticated regulatory mechanisms to adapt to these unfavorable conditions, many of which interface with plant hormone signaling pathways. Abiotic stresses alter the production and distribution of phytohormones that in turn mediate stress responses at least in part through hormone- and stress-responsive transcription factors. Among these, the APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) family transcription factors (AP2/ERFs) have emerged as key regulators of various stress responses, in which they also respond to hormones with improved plant survival during stress conditions. Apart from participation in specific stresses, AP2/ERFs are involved in a wide range of stress tolerance, enabling them to form an interconnected stress regulatory network. Additionally, many AP2/ERFs respond to the plant hormones abscisic acid (ABA) and ethylene (ET) to help activate ABA and ET dependent and independent stress-responsive genes. While some AP2/ERFs are implicated in growth and developmental processes mediated by gibberellins (GAs), cytokinins (CTK), and brassinosteroids (BRs). The involvement of AP2/ERFs in hormone signaling adds the complexity of stress regulatory network. In this review, we summarize recent studies on AP2/ERF transcription factors in hormonal and abiotic stress responses with an emphasis on selected family members in Arabidopsis. In addition, we leverage publically available Arabidopsis gene networks and transcriptome data to investigate AP2/ERF regulatory networks, providing context and important clues about the roles of diverse AP2/ERFs in controlling hormone and stress responses.
Collapse
|
106
|
Ma X, Zhang X, Yang L, Tang M, Wang K, Wang L, Bai L, Song C. Hydrogen peroxide plays an important role in PERK4-mediated abscisic acid-regulated root growth in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:165-174. [PMID: 32172758 DOI: 10.1071/fp18219] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/18/2018] [Indexed: 05/24/2023]
Abstract
Abscisic acid (ABA) is a crucial factor that affects primary root tip growth in plants. Previous research suggests that reactive oxygen species (ROS), especially hydrogen peroxide, are important regulators of ABA signalling in root growth of Arabidopsis. PROLINE-RICH EXTENSIN-LIKE RECEPTOR KINASE 4 (PERK4) plays an important role in ABA responses. Arabidopsis perk4 mutants display attenuated sensitivity to ABA, especially in primary root growth. To gain insights into the mechanism(s) of PERK4-associated ABA inhibition of root growth, in this study we investigated the involvement of ROS in this process. Normal ROS accumulation in the primary root in response to exogenous ABA treatment was not observed in perk4 mutants. PERK4 deficiency prohibits ABA-induced expression of RESPIRATORY BURST OXIDASE HOMOLOGUE (RBOH) genes, therefore the perk4-1 mutant showed decreased production of ROS in the root. The perk4-1/rbohc double mutant displayed the same phenotype as the perk4 and rbohc single mutants in response to exogenous ABA treatment. The results suggest that PERK4-stimulated ROS accumulation during ABA-regulated primary root growth may be mediated by RBOHC.
Collapse
Affiliation(s)
- Xiaonan Ma
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Xiaoran Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Ling Yang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Mengmeng Tang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Kai Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Li Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Ling Bai
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Chunpeng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| |
Collapse
|
107
|
Warmerdam S, Sterken MG, Van Schaik C, Oortwijn MEP, Lozano‐Torres JL, Bakker J, Goverse A, Smant G. Mediator of tolerance to abiotic stress ERF6 regulates susceptibility of Arabidopsis to Meloidogyne incognita. MOLECULAR PLANT PATHOLOGY 2019; 20:137-152. [PMID: 30160354 PMCID: PMC6430479 DOI: 10.1111/mpp.12745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 05/04/2023]
Abstract
Root-knot nematodes transform vascular host cells into permanent feeding structures to selectively withdraw their nutrients from host plants during the course of several weeks. The susceptibility of host plants to root-knot nematode infections is thought to be a complex trait involving many genetic loci. However, genome-wide association (GWA) analysis has so far revealed only four quantitative trait loci (QTLs) linked to the reproductive success of the root-knot nematode Meloidogyne incognita in Arabidopsis thaliana, which suggests that the genetic architecture underlying host susceptibility could be much simpler than previously thought. Here, we report that, by using a relaxed stringency approach in a GWA analysis, we could identify 15 additional loci linked to quantitative variation in the reproductive success of M. incognita in Arabidopsis. To test the robustness of our analysis, we functionally characterized six genes located in a QTL with the lowest acceptable statistical support and smallest effect size. This led us to identify ETHYLENE RESPONSE FACTOR 6 (ERF6) as a novel susceptibility gene for M. incognita in Arabidopsis. ERF6 functions as a transcriptional activator and suppressor of genes in response to various abiotic stresses independent of ethylene signalling. However, whole-transcriptome analysis of nematode-infected roots of the Arabidopsis erf6-1 knockout mutant line showed that allelic variation at this locus may regulate the conversion of aminocyclopropane-1-carboxylate (ACC) into ethylene by altering the expression of 1-aminocyclopropane-1-carboxylate oxidase 3 (ACO3). Our data further suggest that tolerance to abiotic stress mediated by ERF6 forms a novel layer of control in the susceptibility of Arabidopsis to M. incognita.
Collapse
Affiliation(s)
- Sonja Warmerdam
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Mark G. Sterken
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Casper Van Schaik
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Marian E. P. Oortwijn
- Plant BreedingWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Jose L. Lozano‐Torres
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Jaap Bakker
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Aska Goverse
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Geert Smant
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| |
Collapse
|
108
|
Bourguet P, de Bossoreille S, López-González L, Pouch-Pélissier MN, Gómez-Zambrano Á, Devert A, Pélissier T, Pogorelcnik R, Vaillant I, Mathieu O. A role for MED14 and UVH6 in heterochromatin transcription upon destabilization of silencing. Life Sci Alliance 2018; 1:e201800197. [PMID: 30574575 PMCID: PMC6291795 DOI: 10.26508/lsa.201800197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 01/11/2023] Open
Abstract
The TFIIH component UVH6 and the mediator subunit MED14 are differentially required for the release of heterochromatin silencing, and MED14 regulates non-CG DNA methylation in Arabidopsis. Constitutive heterochromatin is associated with repressive epigenetic modifications of histones and DNA which silence transcription. Yet, particular mutations or environmental changes can destabilize heterochromatin-associated silencing without noticeable changes in repressive epigenetic marks. Factors allowing transcription in this nonpermissive chromatin context remain poorly known. Here, we show that the transcription factor IIH component UVH6 and the mediator subunit MED14 are both required for heat stress–induced transcriptional changes and release of heterochromatin transcriptional silencing in Arabidopsis thaliana. We find that MED14, but not UVH6, is required for transcription when heterochromatin silencing is destabilized in the absence of stress through mutating the MOM1 silencing factor. In this case, our results raise the possibility that transcription dependency over MED14 might require intact patterns of repressive epigenetic marks. We also uncover that MED14 regulates DNA methylation in non-CG contexts at a subset of RNA-directed DNA methylation target loci. These findings provide insight into the control of heterochromatin transcription upon silencing destabilization and identify MED14 as a regulator of DNA methylation.
Collapse
Affiliation(s)
- Pierre Bourguet
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Stève de Bossoreille
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Leticia López-González
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Marie-Noëlle Pouch-Pélissier
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ángeles Gómez-Zambrano
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Anthony Devert
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Thierry Pélissier
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Romain Pogorelcnik
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Isabelle Vaillant
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Olivier Mathieu
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
109
|
Khaskheli AJ, Ahmed W, Ma C, Zhang S, Liu Y, Li Y, Zhou X, Gao J. RhERF113 Functions in Ethylene-Induced Petal Senescence by Modulating Cytokinin Content in Rose. PLANT & CELL PHYSIOLOGY 2018; 59:2442-2451. [PMID: 30101287 DOI: 10.1093/pcp/pcy162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/05/2018] [Indexed: 05/21/2023]
Abstract
In rose (Rosa hybrida), flower senescence is accelerated by ethylene and delayed by cytokinins (CTKs). However, the effectors that regulate these processes are not currently understood. In this study, we identified an APETALA2/ethylene-responsive factor (AP2/ERF) gene, RhERF113, which was induced by ethylene and up-regulated during flower senescence in most floral organs, including sepal, petal, stamen and pistil. The virus-induced gene silencing (VIGS) of RhERF113 expression accelerated rose flower senescence, which was accompanied by a lower CTK content in the flowers. This accelerated senescence could be restored by exogenous CTK treatment. Moreover, the expression levels of genes related to CTK biosynthesis and signaling, including ISOPENTENYL TRANSFERASE 5 (RhIPT5), RhIPT8, HISTIDINE KINASE 2 (RhHK2), RhHK3, CYTOKININ RESPONSE REGULATOR 3 (RhCRR3), RhCRR5, RhCRR8, HOMEOBOX PROTEIN 6 (RhHB6) and PATHOGENESIS-RELATED 10.1 (RhPR10.1), were decreased in the RhERF113-silenced rose flowers. Taken together, our results demonstrate that RhERF113 delays ethylene-induced flower senescence by increasing the CTK content of the floral tissues.
Collapse
Affiliation(s)
- Allah Jurio Khaskheli
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| | - Waqas Ahmed
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| | - Chao Ma
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| | - Shuai Zhang
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| | - Yanyan Liu
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| | - Yuqi Li
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| | - Xiaofeng Zhou
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| | - Junping Gao
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| |
Collapse
|
110
|
Yang J, Liu Y, Yan H, Tian T, You Q, Zhang L, Xu W, Su Z. PlantEAR: Functional Analysis Platform for Plant EAR Motif-Containing Proteins. Front Genet 2018; 9:590. [PMID: 30555515 PMCID: PMC6283911 DOI: 10.3389/fgene.2018.00590] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023] Open
Abstract
The Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motifs, which were initially identified in members of the Arabidopsis ethylene response factor (ERF) family, are transcriptional repression motifs in plants and are defined by the consensus sequence patterns of either LxLxL or DLNxxP. EAR motif-containing proteins can function as transcription repressors, thus interacting with co-repressors, such as TOPLESS and AtSAP18, affecting the structure of chromatin by histone modifications and thereby repressing gene transcription. EAR motif-containing proteins are highly conserved across diverse plant species and play important roles in hormone signal transduction, stress responses and development, but they have not been identified in most plants. In this study, we identified 20,542 EAR motif-containing proteins from 71 plant species based on a Hidden Markov Model and orthologous gene search, and then we constructed a functional analysis platform for plant EAR motif-containing proteins (PlantEAR, http://structuralbiology.cau.edu.cn/plantEAR) by integrating a variety of functional annotations and processed data. Several tools were provided as functional support for EAR motif-containing proteins, such as browse, search, co-expression and protein-protein interaction (PPI) network analysis as well as cis-element analysis and gene set enrichment analysis (GSEA). In addition, basing on the identified EAR motif-containing proteins, we also explored their distribution in various species and found that the numbers of EAR motif-containing proteins showed an increasing trend in evolution from algae to angiosperms.
Collapse
Affiliation(s)
- Jiaotong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yue Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hengyu Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tian Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qi You
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liwei Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
111
|
Peng Y, Hou F, Bai Q, Xu P, Liao Y, Zhang H, Gu C, Deng X, Wu T, Chen X, Ali A, Wu X. Rice Calcineurin B-Like Protein-Interacting Protein Kinase 31 (OsCIPK31) Is Involved in the Development of Panicle Apical Spikelets. FRONTIERS IN PLANT SCIENCE 2018; 9:1661. [PMID: 30524455 PMCID: PMC6262370 DOI: 10.3389/fpls.2018.01661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 10/25/2018] [Indexed: 05/08/2023]
Abstract
Panicle apical abortion (PAA) causes severe yield losses in rice production, but details about its development and molecular basis remain elusive. Herein, a PAA mutant, paa1019, was identified among the progeny of an elite indica maintainer rice line Yixiang 1B (YXB) mutagenized population obtained using ethyl methyl sulfonate. The abortion rate of spikelets in paa1019 was observed up to 60%. Genetic mapping combined with Mutmap analysis revealed that LOC_Os03g20380 harbored a single-bp substitution (C to T) that altered its transcript length. This gene encodes calcineurin B-like protein-interacting protein kinase 31 (OsCIPK31) localized into the cytoplasm, and is preferentially expressed in transport tissues of rice. Complementation of paa1019 by transferring the open reading frame of LOC_Os03g20380 from YXB reversed the mutant phenotype, and conversely, gene editing by knocking out of OsCIPK31 in YXB results in PAA phenotype. Our results support that OsCIPK31 plays an important role in panicle development. We found that dysregulation is caused by the disruption of OsCIPK31 function due to excessive accumulation of ROS, which ultimately leads to cell death in rice panicle. OsCIPK31 and MAPK pathway might have a synergistic effect to lead ROS accumulation in response to stresses. Meanwhile the PAA distribution is related to IAA hormone accumulation in the panicle. Our study provides an understanding of the role of OsCIPK31 in panicle development by responding to various stresses and phytohormones.
Collapse
Affiliation(s)
- Yongbin Peng
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Feixue Hou
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Que Bai
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Peizhou Xu
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Yongxiang Liao
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Hongyu Zhang
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Chaojian Gu
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Xiaoshu Deng
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Tingkai Wu
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Xiaoqiong Chen
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Asif Ali
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Xianjun Wu
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| |
Collapse
|
112
|
An JP, Zhang XW, Xu RR, You CX, Wang XF, Hao YJ. Apple MdERF4 negatively regulates salt tolerance by inhibiting MdERF3 transcription. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:181-188. [PMID: 30348317 DOI: 10.1016/j.plantsci.2018.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 05/08/2023]
Abstract
Phytohormone ethylene is involved in salt stress response. As a key regulator of ethylene signaling, ethylene response factors (ERFs) have been reported to regulate salt stress tolerance. However, there are few studies on the relationship between ERFs in salt stress response. In this study, we isolated a salt-responsive gene MdERF4. Overexpression of MdERF4 negatively regulated salt stress tolerance and ethylene response, which was contrary to that of MdERF3 transgenic lines. Biochemical assays showed that MdERF4 directly bound to the DRE motif of MdERF3 promoter and suppressed its transcription. In addition, genetic analysis revealed that MdERF4 was involved in ethylene-mediated salt tolerance. Taken together, these findings demonstrated the transcriptional regulation between MdERF4 and MdERF3 in salt stress response and provided new insight into the ethylene-modulated salt stress response.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Rui-Rui Xu
- College of Biological and Agricultural Engineering, Weifang University, Weifang, 261061, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
113
|
Ji Y, Chen P, Chen J, Pennerman KK, Liang X, Yan H, Zhou S, Feng G, Wang C, Yin G, Zhang X, Hu Y, Huang L. Combinations of Small RNA, RNA, and Degradome Sequencing Uncovers the Expression Pattern of microRNA⁻mRNA Pairs Adapting to Drought Stress in Leaf and Root of Dactylis glomerata L. Int J Mol Sci 2018; 19:E3114. [PMID: 30314311 PMCID: PMC6213654 DOI: 10.3390/ijms19103114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022] Open
Abstract
Drought stress is a global problem, and the lack of water is a key factor that leads to agricultural shortages. MicroRNAs play a crucial role in the plant drought stress response; however, the microRNAs and their targets involved in drought response have not been well elucidated. In the present study, we used Illumina platform (https://www.illumina.com/) and combined data from miRNA, RNA, and degradome sequencing to explore the drought- and organ-specific miRNAs in orchardgrass (Dactylis glomerata L.) leaf and root. We aimed to find potential miRNA⁻mRNA regulation patterns responding to drought conditions. In total, 519 (486 conserved and 33 novel) miRNAs were identified, of which, 41 miRNAs had significant differential expression among the comparisons (p < 0.05). We also identified 55,366 unigenes by RNA-Seq, where 12,535 unigenes were differently expressed. Finally, our degradome analysis revealed that 5950 transcripts were targeted by 487 miRNAs. A correlation analysis identified that miRNA ata-miR164c-3p and its target heat shock protein family A (HSP70) member 5 gene comp59407_c0 (BIPE3) may be essential in organ-specific plant drought stress response and/or adaptation in orchardgrass. Additionally, Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses found that "antigen processing and presentation" was the most enriched downregulated pathway in adaptation to drought conditions. Taken together, we explored the genes and miRNAs that may be involved in drought adaptation of orchardgrass and identified how they may be regulated. These results serve as a valuable genetic resource for future studies focusing on how plants adapted to drought conditions.
Collapse
Affiliation(s)
- Yang Ji
- Sichuan Animal Science Academy, Chengdu 610066, China.
| | - Peilin Chen
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jing Chen
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Kayla K Pennerman
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Xiaoyu Liang
- Sichuan Animal Science Academy, Chengdu 610066, China.
| | - Haidong Yan
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Sifan Zhou
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Guangyan Feng
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Chengran Wang
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Guohua Yin
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Xinquan Zhang
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yuanbin Hu
- Sichuan Animal Science Academy, Chengdu 610066, China.
| | - Linkai Huang
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
114
|
Cao FY, DeFalco TA, Moeder W, Li B, Gong Y, Liu XM, Taniguchi M, Lumba S, Toh S, Shan L, Ellis B, Desveaux D, Yoshioka K. Arabidopsis ETHYLENE RESPONSE FACTOR 8 (ERF8) has dual functions in ABA signaling and immunity. BMC PLANT BIOLOGY 2018; 18:211. [PMID: 30261844 PMCID: PMC6161326 DOI: 10.1186/s12870-018-1402-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/29/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND ETHYLENE RESPONSE FACTOR (ERF) 8 is a member of one of the largest transcription factor families in plants, the APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) superfamily. Members of this superfamily have been implicated in a wide variety of processes such as development and environmental stress responses. RESULTS In this study we demonstrated that ERF8 is involved in both ABA and immune signaling. ERF8 overexpression induced programmed cell death (PCD) in Arabidopsis and Nicotiana benthamiana. This PCD was salicylic acid (SA)-independent, suggesting that ERF8 acts downstream or independent of SA. ERF8-induced PCD was abolished by mutations within the ERF-associated amphiphilic repression (EAR) motif, indicating ERF8 induces cell death through its transcriptional repression activity. Two immunity-related mitogen-activated protein kinases, MITOGEN-ACTIVATED PROTEIN KINASE 4 (MPK4) and MPK11, were identified as ERF8-interacting proteins and directly phosphorylated ERF8 in vitro. Four putative MPK phosphorylation sites were identified in ERF8, one of which (Ser103) was determined to be the predominantly phosphorylated residue in vitro, while mutation of all four putative phosphorylation sites partially suppressed ERF8-induced cell death in N. benthamiana. Genome-wide transcriptomic analysis and pathogen growth assays confirmed a positive role of ERF8 in mediating immunity, as ERF8 knockdown or overexpression lines conferred compromised or enhanced resistance against the hemibiotrophic bacterial pathogen Pseudomonas syringae, respectively. CONCLUSIONS Together these data reveal that the ABA-inducible transcriptional repressor ERF8 has dual roles in ABA signaling and pathogen defense, and further highlight the complex influence of ABA on plant-microbe interactions.
Collapse
Affiliation(s)
- Feng Yi Cao
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2 Canada
| | - Thomas A. DeFalco
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2 Canada
- Present address: Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2 Canada
| | - Bo Li
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843 USA
| | - Yunchen Gong
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2 Canada
- Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2 Canada
| | - Xiao-Min Liu
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4 Canada
| | - Masatoshi Taniguchi
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2 Canada
- Present address: Kyoto Research Laboratories, YMC CO., LTD., 59 Yonnotsubo-cho Iwakuraminami, Sakyo-ku, Kyoto, 606-0033 Japan
| | - Shelley Lumba
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2 Canada
| | - Shigeo Toh
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2 Canada
- Present address: Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571 Japan
| | - Libo Shan
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843 USA
| | - Brian Ellis
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4 Canada
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2 Canada
- Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2 Canada
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2 Canada
- Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2 Canada
| |
Collapse
|
115
|
Plant Desiccation Tolerance and its Regulation in the Foliage of Resurrection “Flowering-Plant” Species. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The majority of flowering-plant species can survive complete air-dryness in their seed and/or pollen. Relatively few species (‘resurrection plants’) express this desiccation tolerance in their foliage. Knowledge of the regulation of desiccation tolerance in resurrection plant foliage is reviewed. Elucidation of the regulatory mechanism in resurrection grasses may lead to identification of genes that can improve stress tolerance and yield of major crop species. Well-hydrated leaves of resurrection plants are desiccation-sensitive and the leaves become desiccation tolerant as they are drying. Such drought-induction of desiccation tolerance involves changes in gene-expression causing extensive changes in the complement of proteins and the transition to a highly-stable quiescent state lasting months to years. These changes in gene-expression are regulated by several interacting phytohormones, of which drought-induced abscisic acid (ABA) is particularly important in some species. Treatment with only ABA induces desiccation tolerance in vegetative tissue of Borya constricta Churchill. and Craterostigma plantagineum Hochstetter. but not in the resurrection grass Sporobolus stapfianus Gandoger. Suppression of drought-induced senescence is also important for survival of drying. Further research is needed on the triggering of the induction of desiccation tolerance, on the transition between phases of protein synthesis and on the role of the phytohormone, strigolactone and other potential xylem-messengers during drying and rehydration.
Collapse
|
116
|
Bai Z, Li W, Jia Y, Yue Z, Jiao J, Huang W, Xia P, Liang Z. The ethylene response factor SmERF6 co-regulates the transcription of SmCPS1 and SmKSL1 and is involved in tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. PLANTA 2018; 248:243-255. [PMID: 29704055 DOI: 10.1007/s00425-018-2884-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/26/2018] [Indexed: 05/03/2023]
Abstract
The SmERF6, which recognizes the GCC-box of SmCPS1 and SmKSL1 promoter in nucleus, regulates the tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. Tanshinone, an important medicinal ingredient in Salvia miltiorrhiza, is best known for its use in medicine. However, the transcription factor regulation of tanshinone biosynthesis is unclear. Here, we isolated and identified a transcription factor in the ERF family of S. miltiorrhiza, SmERF6, which was screened from an S. miltiorrhiza cDNA library by the promoters of two key tanshinone synthesis genes (SmKSL1 and SmCPS1); this factor regulated tanshinone biosynthesis. The gene was highly expressed in the root and responded to ethylene treatment. SmERF6 modulated tanshinone biosynthesis by directly binding to an ethylene-responsive element (GCC-box) of the SmKSL1 and SmCPS1 promoters and activating their transcription. Overexpression of SmERF6 in the hairy roots increased their tanshinone accumulation, and SmERF6 silencing by RNAi led to a lower tanshinone content. Furthermore, tanshinone accumulation maintained homeostasis with the total phenolic acid and flavonoid contents in S. miltiorrhiza. These findings elucidated how SmERF6 directly co-regulates the transcription of SmCPS1 and SmKSL1 and modulates tanshinone synthesis to accelerate the metabolic flux of tanshinone accumulation in S. miltiorrhiza.
Collapse
Affiliation(s)
- Zhenqing Bai
- College of Life Science, Northwest A&F University, Yangling, 712100, China
- College of Life Science, Yan'an University, Yan'an, China
| | - Wenrui Li
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yanyan Jia
- College of Life Science, Northwest A&F University, Yangling, 712100, China
| | - Zhiyong Yue
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jie Jiao
- College of Life Science, Northwest A&F University, Yangling, 712100, China
| | - Wenli Huang
- College of Life Science, Northwest A&F University, Yangling, 712100, China
| | - Pengguo Xia
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zongsuo Liang
- College of Life Science, Northwest A&F University, Yangling, 712100, China.
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
117
|
Wang H, Zhao S, Mao K, Dong Q, Liang B, Li C, Wei Z, Li M, Ma F. Mapping QTLs for water-use efficiency reveals the potential candidate genes involved in regulating the trait in apple under drought stress. BMC PLANT BIOLOGY 2018; 18:136. [PMID: 29940853 PMCID: PMC6019725 DOI: 10.1186/s12870-018-1308-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 05/10/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Improvement of water-use efficiency (WUE) can effectively reduce production losses caused by drought stress. A better understanding of the genetic determination of WUE in crops under drought stress has great potential value for developing cultivars adapted to arid regions. To identify the genetic loci associated with WUE and reveal genes responsible for the trait in apple, we aim to map the quantitative trait loci (QTLs) for carbon isotope composition, the proxy for WUE, applying two contrasting irrigating regimes over the two-year experiment and search for the candidate genes encompassed in the mapped QTLs. RESULTS We constructed a high-density genetic linkage map with 10,172 markers of apple, using single nucleotide polymorphism (SNP) markers obtained through restriction site-associated DNA sequencing (RADseq) and a final segregating population of 350 seedlings from the cross of Honeycrisp and Qinguan. In total, 33 QTLs were identified for carbon isotope composition in apple under both well-watered and drought-stressed conditions. Three QTLs were stable over 2 years under drought stress on linkage groups LG8, LG15 and LG16, as validated by Kompetitive Allele-Specific PCR (KASP) assays. In those validated QTLs, 258 genes were screened according to their Gene Ontology functional annotations. Among them, 28 genes were identified, which exhibited significant responses to drought stress in 'Honeycrisp' and/or 'Qinguan'. These genes are involved in signaling, photosynthesis, response to stresses, carbohydrate metabolism, protein metabolism and modification, hormone metabolism and transport, transport, respiration, transcriptional regulation, and development regulation. They, especially those for photoprotection and relevant signal transduction, are potential candidate genes connected with WUE regulation in drought-stressed apple. CONCLUSIONS We detected three stable QTLs for carbon isotope composition in apple under drought stress over 2 years, and validated them by KASP assay. Twenty-eight candidate genes encompassed in these QTLs were identified. These stable genetic loci and series of genes provided here serve as a foundation for further studies on marker-assisted selection of high WUE and regulatory mechanism of WUE in apple exposed to drought conditions, respectively.
Collapse
Affiliation(s)
- Haibo Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Qinglong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Bowen Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zhiwei Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
118
|
|
119
|
Li X, Tao S, Wei S, Ming M, Huang X, Zhang S, Wu J. The mining and evolutionary investigation of AP2/ERF genes in pear (Pyrus). BMC PLANT BIOLOGY 2018; 18:46. [PMID: 29558898 PMCID: PMC5859658 DOI: 10.1186/s12870-018-1265-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/08/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND In plants, ERF genes participate in a variety of regulatory pathways, such as plant growth and biotic and/or abiotic stress responses. Although the genome of Chinese white pear ('Dangshansuli') has been released, knowledge regarding the ERF family in pear, such as gene functions, evolutionary history and expression patterns, remains limited. RESULTS In our study, a total of 155 members of ERF families were identified in pear (Pyrus bretschneideri). The Ka and Ks values suggested that whole-genome duplication (WGD) and dispersed duplication have effectively contributed to the expansion of the pear ERF family. Gene structure and phylogeny analysis divided the PbrERF family into 12 groups, and their gene functions were predicted by comparative analysis. qRT-PCR was carried out to verify the relative expression levels of 7 genes in group III using wild and cultivated pear fruits at three key developmental stages. Wild samples had higher expression of these genes than cultivated samples, especially at the enlarged fruit stage. The transcriptome data of pear seedlings subjected to dehydration treatment further revealed that 4 of the 7 genes responded to drought conditions. CONCLUSION The AP2/ERF gene family is greatly expanded in pear. Comparative analysis revealed the probability of ERF genes performing functional roles in multiple pathways. Expression analysis at different stages of pear fruit development in wild and cultivated samples indicated that genes in group III might be involved in abiotic and/or biotic stresses. Further transcriptome data on seedlings subjected to drought treatment verified the potential role of ERF genes in stress response. These results will provide a valuable reference for understanding the function and evolution of the ERF family in higher plants.
Collapse
Affiliation(s)
- Xiaolong Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shutian Tao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shuwei Wei
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Meiling Ming
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaosan Huang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jun Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
120
|
Li H, Li K, Guo Y, Guo J, Miao K, Botella JR, Song CP, Miao Y. A transient transformation system for gene characterization in upland cotton ( Gossypium hirsutum). PLANT METHODS 2018; 14:50. [PMID: 29977323 PMCID: PMC6013946 DOI: 10.1186/s13007-018-0319-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/18/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Genetically modified cotton accounts for 64% of the world's cotton growing area (22.3 million hectares). The genome sequencing of the diploid cotton progenitors Gossypium raimondii and Gossypium arboreum as well as the cultivated Gossypium hirsutum has provided a wealth of genetic information that could be exploited for crop improvement. Unfortunately, gene functional characterization in cotton is lagging behind other economically important crops due to the low efficiency, lengthiness and technical complexity of the available stable transformation methods. We present here a simple, fast and efficient method for the transient transformation of G. hirsutum that can be used for gene characterization studies. RESULTS We developed a transient transformation system for gene characterization in upland cotton. Using β-glucuronidase as a reporter for Agrobacterium-mediated transformation assays, we evaluated multiple transformation parameters such as Agrobacterium strain, bacterial density, length of co-cultivation, chemicals and surfactants, which can affect transformation efficiency. After the initial characterization, the Agrobacterium EHA105 strain was selected and a number of binary constructs used to perform gene characterization studies. 7-days-old cotton seedlings were co-cultivated with Agrobacterium and transient gene expression was observed 5 days after infection of the plants. Transcript levels of two different transgenes under the control of the cauliflower mosaic virus (CaMV) 35S promoter were quantified by real-time reverse transcription PCR (qRT-PCR) showing a 3-10 times increase over the levels observed in non-infected controls. The expression patterns driven by the promoters of two G. hirsutum genes as well as the subcellular localization of their corresponding proteins were studied using the new transient expression system and our observations were consistent with previously published results using Arabidopsis as a heterologous system. CONCLUSIONS The Agrobacterium-mediated transient transformation method is a fast and easy transient expression system enabling high transient expression and transformation efficiency in upland cotton seedlings. Our method can be used for gene functional studies such as promoter characterization and protein subcellular localization in cotton, obviating the need to perform such studies in a heterologous system such as Arabidopsis.
Collapse
Affiliation(s)
- Haipeng Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
| | - Kun Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
| | - Yutao Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
| | - Jinggong Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
| | - Kaiting Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
- School of Life Science, Southwest University, No. 1, Tiansheng Road, Beibei, Chongqing, 400715 China
| | - Jose R. Botella
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD Australia
| | - Chun-Peng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
| |
Collapse
|
121
|
Wakeel A, Ali I, Khan AR, Wu M, Upreti S, Liu D, Liu B, Gan Y. Involvement of histone acetylation and deacetylation in regulating auxin responses and associated phenotypic changes in plants. PLANT CELL REPORTS 2018; 37:51-59. [PMID: 28948334 DOI: 10.1007/s00299-017-2205-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/05/2017] [Indexed: 05/04/2023]
Abstract
The most recent outcomes about the transcription factors and transcription complexes mediated auxin signaling pathway by the histone acetylation and deacetylation. The phytohormone auxin, is required to regulate its accumulation spatiotemporally and responses to orchestrate various developmental levels in plants. Histone acetylation and deacetylation modulate auxin biosynthesis, its distribution and accumulation. In the absence of auxin, histone deacetylase represses the expression of auxin-responsive genes. Various transcription factors and transcription complexes facilitate the proper regulation of auxin signaling pathway genes. The primary and lateral root development, promotion of flowering and initiation of seed germination are all regulated by auxin-mediated histone acetylation and deacetylation. These findings conclude the auxin mode of action, which is mediated by histone acetylation and deacetylation, and associated phenotypic responses in plants, along with the underlying mechanism of these modifications.
Collapse
Affiliation(s)
- Abdul Wakeel
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Imran Ali
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Minjie Wu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sakila Upreti
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Dongdong Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Bohan Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
122
|
Kulkarni M, Soolanayakanahally R, Ogawa S, Uga Y, Selvaraj MG, Kagale S. Drought Response in Wheat: Key Genes and Regulatory Mechanisms Controlling Root System Architecture and Transpiration Efficiency. Front Chem 2017; 5:106. [PMID: 29259968 PMCID: PMC5723305 DOI: 10.3389/fchem.2017.00106] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/07/2017] [Indexed: 12/24/2022] Open
Abstract
Abiotic stresses such as, drought, heat, salinity, and flooding threaten global food security. Crop genetic improvement with increased resilience to abiotic stresses is a critical component of crop breeding strategies. Wheat is an important cereal crop and a staple food source globally. Enhanced drought tolerance in wheat is critical for sustainable food production and global food security. Recent advances in drought tolerance research have uncovered many key genes and transcription regulators governing morpho-physiological traits. Genes controlling root architecture and stomatal development play an important role in soil moisture extraction and its retention, and therefore have been targets of molecular breeding strategies for improving drought tolerance. In this systematic review, we have summarized evidence of beneficial contributions of root and stomatal traits to plant adaptation to drought stress. Specifically, we discuss a few key genes such as, DRO1 in rice and ERECTA in Arabidopsis and rice that were identified to be the enhancers of drought tolerance via regulation of root traits and transpiration efficiency. Additionally, we highlight several transcription factor families, such as, ERF (ethylene response factors), DREB (dehydration responsive element binding), ZFP (zinc finger proteins), WRKY, and MYB that were identified to be both positive and negative regulators of drought responses in wheat, rice, maize, and/or Arabidopsis. The overall aim of this review is to provide an overview of candidate genes that have been identified as regulators of drought response in plants. The lack of a reference genome sequence for wheat and non-transgenic approaches for manipulation of gene functions in wheat in the past had impeded high-resolution interrogation of functional elements, including genes and QTLs, and their application in cultivar improvement. The recent developments in wheat genomics and reverse genetics, including the availability of a gold-standard reference genome sequence and advent of genome editing technologies, are expected to aid in deciphering of the functional roles of genes and regulatory networks underlying adaptive phenological traits, and utilizing the outcomes of such studies in developing drought tolerant cultivars.
Collapse
Affiliation(s)
- Manoj Kulkarni
- Canadian Wheat Improvement Flagship Program, National Research Council Canada (NRC-CNRC), Saskatoon, SK, Canada
| | - Raju Soolanayakanahally
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Satoshi Ogawa
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yusaku Uga
- Institute of Crop Science (NICS), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Michael G. Selvaraj
- Agrobioversity Research Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Sateesh Kagale
- Canadian Wheat Improvement Flagship Program, National Research Council Canada (NRC-CNRC), Saskatoon, SK, Canada
| |
Collapse
|
123
|
Guo JE, Hu Z, Li F, Zhang L, Yu X, Tang B, Chen G. Silencing of histone deacetylase SlHDT3 delays fruit ripening and suppresses carotenoid accumulation in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 265:29-38. [PMID: 29223340 DOI: 10.1016/j.plantsci.2017.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 05/15/2023]
Abstract
The acetylation levels of histones on lysine residues are regulated by histone acetyltransferases and histone deacetylases, which play an important but understudied role in the control of gene expression in plants. There is an increasing research focus on histone deacetylation in crops, but to date, there is little information regarding tomato. With the aim of characterizing the tomato HD2 family of histone deacetylases, an RNA interference (RNAi) expression vector of SlHDT3 was constructed and transformed into tomato plants. The time of fruit ripening was delayed and the shelf life of the fruit was prolonged in SlHDT3 RNAi lines. The accumulation of carotenoid was decreased by altering of the carotenoid pathway flux. Ethylene content was also reduced and expression of ethylene biosynthetic genes (ACS2, ACS4 and ACO1, ACO3) and ripening-associated genes (RIN, E4, E8, PG, Pti4 and LOXB) was significantly down-regulated in SlHDT3 RNAi lines. The expression of genes involved in fruit cell wall metabolism (HEX, MAN, TBG4, XTH5 and XYL) was inhibited compared with wild type. These results indicate that SlHDT3 functions as a positive regulator of fruit ripening by affecting ethylene synthesis and carotenoid accumulation and that SlHDT3 lies upstream of SlMADS-RIN in the fruit ripening regulatory network.
Collapse
Affiliation(s)
- Jun-E Guo
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Fenfen Li
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Lincheng Zhang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Xiaohui Yu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Boyan Tang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China.
| |
Collapse
|
124
|
Tian H, Chen S, Yang W, Wang T, Zheng K, Wang Y, Cheng Y, Zhang N, Liu S, Li D, Liu B, Wang S. A novel family of transcription factors conserved in angiosperms is required for ABA signalling. PLANT, CELL & ENVIRONMENT 2017; 40:2958-2971. [PMID: 28857190 DOI: 10.1111/pce.13058] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 05/18/2023]
Abstract
The plant hormone abscisic acid (ABA) plays a crucial role in regulating plant responses to environmental stresses. Interplay of several different proteins including the PYR/PYL/RCAR receptors, A-group PP2C protein phosphatases, SnRK2 protein kinases, and downstream transcription factors regulates ABA signalling. We report here the identification of a family of ABA-induced transcription repressors (AITRs) that act as feedback regulators in ABA signalling. We found that the expression of all the 6 Arabidopsis AITR genes was induced by exogenously ABA, and their expression levels were decreased in ABA biosynthesis mutant aba1-5. BLAST searches showed that AITRs are exclusively present in angiosperms. When recruited to the promoter region of a reporter gene by a fused DNA binding domain, all AITRs inhibited reporter gene expression in transfected protoplasts. In Arabidopsis, aitr mutants showed reduced sensitivity to ABA and to stresses such as salt and drought. Quantitative RT-PCR analysis demonstrated that the ABA-induced response of PP2C and some PYR/PYL/RCAR genes was reduced in AITR5 transgenic plants but increased in an aitr2 aitr5 aitr6 triple mutant. These results provide important new insights into the regulation of ABA signalling in plants, and such information may lead to the production of plants with enhanced resistance to environmental stresses.
Collapse
Affiliation(s)
- Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Siyu Chen
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Wenting Yang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Kaijie Zheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Shanda Liu
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Dongqiu Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| |
Collapse
|
125
|
Luxmi R, Garg R, Srivastava S, Sane AP. Expression of the SIN3 homologue from banana, MaSIN3, suppresses ABA responses globally during plant growth in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:69-82. [PMID: 28969804 DOI: 10.1016/j.plantsci.2017.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 08/12/2017] [Accepted: 08/26/2017] [Indexed: 06/07/2023]
Abstract
The SIN3 family of co-repressors is a family of highly conserved eukaryotic repressor proteins that regulates diverse functions in yeasts and animals but remains largely uncharacterized functionally even in plants like Arabidopsis. The sole SIN3 homologue in banana, MaSIN3, was identified as a 1408 amino acids, nuclear localized protein conserved to other SIN3s in the PAH, HID and HCR domains. Interestingly, MaSIN3 over-expression in Arabidopsis mimics a state of reduced ABA responses throughout plant development affecting growth processes such as germination, root growth, stomatal closure and water loss, flowering and senescence. The reduction in ABA responses is not due to reduced ABA levels but due to suppression of expression of several transcription factors mediating ABA responses. Transcript levels of negative regulators of germination (ABI3, ABI5, PIL5, RGL2 and RGL3) are reduced post-imbibition while those responsible for GA biosynthesis are up-regulated in transgenic MaSIN3 over-expressers. ABA-associated transcription factors are also down-regulated in response to ABA treatment. The HDAC inhibitors, SAHA and sodium butyrate, in combination with ABA differentially suppress germination in control and transgenic lines suggesting the recruitment by MaSIN3 of HDACs involved in suppression of ABA responses in different processes. The studies provide an insight into the ability of MaSIN3 to specifically affect a subset of developmental processes governed largely by ABA.
Collapse
Affiliation(s)
- Raj Luxmi
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, Rafi Marg, New Delhi 110001, India
| | - Rashmi Garg
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, Rafi Marg, New Delhi 110001, India
| | - Sudhakar Srivastava
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow 226001, India; French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University, Beer Sheva 84105, Israel
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, Rafi Marg, New Delhi 110001, India.
| |
Collapse
|
126
|
Liu W, Karemera NJU, Wu T, Yang Y, Zhang X, Xu X, Wang Y, Han Z. The ethylene response factor AtERF4 negatively regulates the iron deficiency response in Arabidopsis thaliana. PLoS One 2017; 12:e0186580. [PMID: 29045490 PMCID: PMC5646859 DOI: 10.1371/journal.pone.0186580] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/03/2017] [Indexed: 12/26/2022] Open
Abstract
Iron (Fe) deficiency is one of many conditions that can seriously damage crops. Low levels of photosynthesis can lead to the degradation of chlorophyll content and impaired respiration in affected plants, which together cause poor growth and reduce quality. Although ethylene plays an important role in responses to Fe deficiency, a limited number of studies have been carried out on ethylene response factor (ERFs) as components of plant regulation mechanisms. Thus, this study aimed to investigate the role of AtERF4 in plant responses to Fe deficiency. Results collected when Arabidopsis thaliana was grown under Fe deficient conditions as well as in the presence of 1-aminocyclopropane-1-carboxylic acid (ACC) revealed that leaf chlorosis did not occur over short timescales and that chloroplast structural integrity was retained. At the same time, expression of the chlorophyll degradation-related genes AtPAO and AtCLH1 was inhibited and net H+ root flux was amplified. Our results show that chlorophyll content was enhanced in the mutant erf4, while expression of the chlorophyll degradation gene AtCLH1 was reduced. Ferric reductase activity in roots was also significantly higher in the mutant than in wild type plants, while erf4 caused high levels of expression of the genes AtIRT1 and AtHA2 under Fe deficient conditions. We also utilized yeast one-hybrid technology in this study to determine that AtERF4 binds directly to the AtCLH1 and AtITR1 promoter. Observations show that transient over-expression of AtERF4 resulted in rapid chlorophyll degradation in the leaves of Nicotiana tabacum and the up-regulation of gene AtCLH1 expression. In summary, AtERF4 plays an important role as a negative regulator of Fe deficiency responses, we hypothesize that AtERF4 may exert a balancing effect on plants subject to nutrition stress.
Collapse
Affiliation(s)
- Wei Liu
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| | - N. J. Umuhoza Karemera
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| | - Ting Wu
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| | - Yafei Yang
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| | - Xinzhong Zhang
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| | - Xuefeng Xu
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| | - Yi Wang
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| | - Zhenhai Han
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Beijing Municipality of Stress Physiology and Molecular Biology of Fruit Trees, Beijing, China
| |
Collapse
|
127
|
Kan J, Liu T, Ma N, Li H, Li X, Wang J, Zhang B, Chang Y, Lin J. Transcriptome analysis of Callery pear (Pyrus calleryana) reveals a comprehensive signalling network in response to Alternaria alternata. PLoS One 2017; 12:e0184988. [PMID: 28934298 PMCID: PMC5608294 DOI: 10.1371/journal.pone.0184988] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/05/2017] [Indexed: 01/17/2023] Open
Abstract
The pear is an important temperate fruit worldwide that is produced by a group of species in the genus Pyrus. Callery pear (Pyrus calleryana Decne) is characterized by high resistance to multiple diseases, good adaptability, and high ornamental value, and is therefore widely planted in pear orchards for edible fruit production or as stock. Plant pathogens are a major threat to pear yield. Black spot disease, caused by the filamentous fungus Alternaria alternata, is one of the most serious diseases in pear. Elucidation of resistant genes to black spot disease is extremely important for understanding the underlying mechanisms as well as for the development of resistant cultivars. In this study, high-throughput single-strand RNA-sequencing was used to compare the transcriptome profiles of Callery pear leaves before and after A. alternata incubation for 7 days. The analysis yielded 73.3 Gb of clean data that were mapped onto the reference genome of the Chinese pear, and differentially expressed gene(DEG)s were identified with |log2FC| ≥ 1. Functional annotation demonstrated that black spot disease promoted great changes in the overall metabolism, and enrichment analysis of gene ontology terms showed that most of them are closely linked to signalling network and photosynthesis. Specifically, the genes included mainly transcription factors and genes involved in calcium signalling and ethylene and jasmonate pathways. Eight members of the ethylene response factor transcription factor gene family Group IX, including ERF1, ERF7, and ERF105, were up-regulated to 2.03–3.37-fold compared with CK, suggesting their role in the defence response to pathogen infection. Additionally, multiple transcription factors involved in biotic stresses, such as NAC78, NAC2, MYB44, and bHLH28, were up-regulated. Furthermore, we identified 144 long non-coding (lnc)RNAs, providing new insight into the involvement of lncRNAs in the response to black spot disease. Our study provides valuable data on the molecular genetics and functional genomic mechanisms of resistance to black spot disease in Callery pear. A good understanding of the molecular response to this disease will allow the development of durable and environmentally friendly control strategies.
Collapse
Affiliation(s)
- Jialiang Kan
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/ Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, China
| | - Tingli Liu
- Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Na Ma
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/ Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, China
| | - Hui Li
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/ Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, China
| | - Xiaogang Li
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/ Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, China
| | - Jinyan Wang
- Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Baolong Zhang
- Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Youhong Chang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/ Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, China
- * E-mail: (YC); (JL)
| | - Jing Lin
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/ Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, China
- * E-mail: (YC); (JL)
| |
Collapse
|
128
|
Owji H, Hajiebrahimi A, Seradj H, Hemmati S. Identification and functional prediction of stress responsive AP2/ERF transcription factors in Brassica napus by genome-wide analysis. Comput Biol Chem 2017; 71:32-56. [PMID: 28961511 DOI: 10.1016/j.compbiolchem.2017.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 01/08/2023]
Abstract
Using homology and domain authentication, 321 putative AP2/ERF transcription factors were identified in Brassica napus, called BnAP2/ERF TFs. BnAP2/ERF TFs were classified into five major subfamilies, including DREB, ERF, AP2, RAV, and BnSoloist. This classification is based on phylogenetic analysis, motif identification, gene structure analysis, and physiochemical characterization. These TFs were annotated based on phylogenetic relationship with Brassica rapa. BnAP2/ERF TFs were located on 19 chromosomes of B. napus. Orthologs and paralogs were identified using synteny-based methods Ks calculation within B. napus genome and between B. napus with other species such as B. rapa, Brassica oleracea, and Arabidopsis thaliana indicated that BnAP2/ERF TFs were formed through duplication events occurred before B. napus formation. Kn/Ks values were between 0 and 1, suggesting the purifying selection among BnAP2/ERF TFs. Gene ontology annotation, cis-regulatory elements and functional interaction networks suggested that BnAP2/ERF TFs participate in response to stressors, including drought, high salinity, heat and cold as well as developmental processes particularly organ specification and embryogenesis. The identified cis-regulatory elements in the upstream of BnAP2/ERF TFs were responsive to abscisic acid. Analysis of the expression data derived from Illumina Hiseq 2000 RNA sequencing revealed that BnAP2/ERF genes were highly expressed in the roots comparing to flower buds, leaves, and stems. Also, the ERF subfamily was over-expressed under salt and fungal treatments. BnERF039 and BnERF245 are candidates for salt-tolerant B. napus. BnERF253-256 and BnERF260-277 are potential cytokinin response factors. BnERF227, BnERF228, BnERF234, BnERF134, BnERF132, BnERF176, and BnERF235 were suggested for resistance against Leptosphaeria maculan and Leptosphaeria biglobosa.
Collapse
Affiliation(s)
- Hajar Owji
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Hajiebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Seradj
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
129
|
Sun L, Li Y, Miao W, Piao T, Hao Y, Hao FS. NADK2 positively modulates abscisic acid-induced stomatal closure by affecting accumulation of H 2O 2, Ca 2+ and nitric oxide in Arabidopsis guard cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 262:81-90. [PMID: 28716423 DOI: 10.1016/j.plantsci.2017.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 05/04/2023]
Abstract
NAD kinase2 (NADK2) plays key roles in chloroplastic NADP biosynthesis, stress adaptation and modulation of cellular metabolisms in Arabidopsis. However, it is unknown whether and how NADK2 affects abscisic acid (ABA)-mediated stomatal movement. Here, we detected that null mutant nadk2 was more sensitive to drought stress than WT, and NADK2 gene was active in guard cells. Furthermore, NADK2 mutation impaired ABA-induced stomatal closure and ABA inhibition of light-promoted stomatal opening. NADK2 disruption also impaired ABA-stimulated accumulation of H2O2, Ca2+ and nitric oxide (NO) in guard cells, but did not affect the stomatal closure evoked by exogenous H2O2, Ca2+ or NO. Expression analysis revealed that ABA-promoted increases in transcripts of AtrbohD, AtrbohF and NIA1 were markedly arrested in guard cells of nadk2 compared with those of WT. Besides, genetic evidence indicated that NADK2 acted synergistically with OST1 and ABI1 during ABA-induced stomatal closure. Together, these results suggest that NADK2 is an essential positive regulator, and functions upstream of H2O2 in guard cell ABA signaling. It stimulates stomatal closure mainly through increasing the generation of H2O2, Ca2+ and NO in guard cells in Arabidopsis.
Collapse
Affiliation(s)
- Lirong Sun
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Yaping Li
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Wenwen Miao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Tingting Piao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Yang Hao
- Henan University Minsheng College, Kaifeng 475004, China; Shanxi Ding Xin Kang Hua Pharmaceutical Company Limited, Taiyuan 030006, China.
| | - Fu-Shun Hao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
130
|
|
131
|
Santaniello A, Scartazza A, Gresta F, Loreti E, Biasone A, Di Tommaso D, Piaggesi A, Perata P. Ascophyllum nodosum Seaweed Extract Alleviates Drought Stress in Arabidopsis by Affecting Photosynthetic Performance and Related Gene Expression. FRONTIERS IN PLANT SCIENCE 2017; 8:1362. [PMID: 28824691 PMCID: PMC5541053 DOI: 10.3389/fpls.2017.01362] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/21/2017] [Indexed: 05/05/2023]
Abstract
Drought represents one of the most relevant abiotic stress affecting growth and yield of crop plants. In order to improve the agricultural productivity within the limited water and land resources, it is mandatory to increase crop yields in presence of unfavorable environmental stresses. The use of biostimulants, often containing seaweed extracts, represents one of the options for farmers willing to alleviate abiotic stress consequences on crops. In this work, we investigated the responses of Arabidopsis plants treated with an extract from the brown alga Ascophyllum nodosum (ANE), under drought stress conditions, demonstrating that ANE positively influences Arabidopsis survival. Pre-treatment with ANE induced a partial stomatal closure, associated with changes in the expression levels of genes involved in ABA-responsive and antioxidant system pathways. The pre-activation of these pathways results in a stronger ability of ANE-treated plants to maintain a better photosynthetic performance compared to untreated plants throughout the dehydration period, combined with a higher capacity to dissipate the excess of energy as heat in the reaction centers of photosystem II. Our results suggest that drought stressed plants treated with ANE are able to maintain a strong stomatal control and relatively higher values of both water use efficiency (WUE) and mesophyll conductance during the last phase of dehydration. Simultaneously, the activation of a pre-induced antioxidant defense system, in combination with a more efficient energy dissipation mechanism, prevents irreversible damages to the photosynthetic apparatus. In conclusion, pre-treatment with ANE is effective to acclimate plants to the incoming stress, promoting an increased WUE and dehydration tolerance.
Collapse
Affiliation(s)
| | - Andrea Scartazza
- Institute of Agroenvironmental and Forest Biology, Consiglio Nazionale delle RicercheRome, Italy
| | - Francesco Gresta
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant’AnnaPisa, Italy
| | - Elena Loreti
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle RicerchePisa, Italy
| | | | | | | | - Pierdomenico Perata
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant’AnnaPisa, Italy
| |
Collapse
|
132
|
Zhang C, Li C, Liu J, Lv Y, Yu C, Li H, Zhao T, Liu B. The OsABF1 transcription factor improves drought tolerance by activating the transcription of COR413-TM1 in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4695-4707. [PMID: 28981779 PMCID: PMC5853872 DOI: 10.1093/jxb/erx260] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Water deprivation causes substantial losses in crop yields around the world. In this study, we show that when overexpressed in transgenic rice (Oryza sativa), the bZIP transcription factor OsABF1 confers distinctly different drought-tolerance phenotypes when tethered to the transcriptional activator VP16 versus the transcriptional repressor EAR. We performed chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) assays on transgenic rice lines and determined that OsABF1 binds to DNA sequences containing an ACGT core motif. Analysis of the overlap between the RNA-sequencing and chromatin immunoprecipitation-sequencing data identified 242 OsABF1 target genes involved in multiple aspects of the drought response. Overexpression of one of these genes, COR413-TM1, which encodes a putative thylakoid membrane protein, resulted in a drought-tolerance phenotype without obvious side effects. In addition, OsABF1 directly regulates the expression of the protein phosphatase 2C (OsPP48 and OsPP108) and bZIP (OsbZIP23, OsbZIP46, and OsbZIP72) genes, thus forming a complex feedback circuit in the drought/abscisic acid signaling pathway.
Collapse
Affiliation(s)
- Chunyu Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cong Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yandong Lv
- College of Agricultural Sciences, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chunsheng Yu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Correspondence: or
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Correspondence: or
| |
Collapse
|
133
|
Mun BG, Lee SU, Park EJ, Kim HH, Hussain A, Imran QM, Lee IJ, Yun BW. Analysis of transcription factors among differentially expressed genes induced by drought stress in Populus davidiana. 3 Biotech 2017; 7:209. [PMID: 28667649 PMCID: PMC5493580 DOI: 10.1007/s13205-017-0858-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/17/2017] [Indexed: 11/26/2022] Open
Abstract
Populus davidiana is native to the Korean Peninsula and is one of the most dominant and abundantly growing forest trees in eastern Asia. Compared to other Populus species such as P. trichocarpa, P. euphratica, and P. tremula, relatively little is known about P. davidiana. Here, we performed transcriptomic analysis of P. davidiana under drought stress induced by 10% polyethylene glycol. A total of 12,403 and 12,414 differentially expressed genes (DEGs) were successfully annotated with the P. trichocarpa reference genome after 6 and 12 h of treatment, respectively. Of these, a total of 404 genes (238 up-regulated and 166 down-regulated) after 6 h and 359 genes (187 up-regulated and 172 down-regulated) after 12 h of treatment were identified as transcription factors. Transcription factors known to be key genes for drought stress response, such as AP2-EREB, WRKY, C2H2, and NAC, were identified. This results suggesting that early induction of these genes affected initiation of transcriptional regulation in response to drought stress. Quantitative real-time PCR results of selected genes showed highly significant (R = 0.93) correlation with RNA-Seq data. Interestingly, the expression pattern of some transcription factors was P. davidiana specific. The sequence of P. davidiana ortholog of P. trichocarpa gene POPTR_0018s10230, which plays an important role in plant response to drought, was further analyzed as our RNA-Seq results showed highly significant changes in the expression of this gene following the stress treatment. Sequence of the gene was compared to P. trichocarpa gene sequence using cloning-based sequencing. Additionally, we generated a predicted 3D protein structure for the gene product. Results indicated that the amino acid sequence of P. davidiana-specific POPTR_0018s10230 is different at six different positions compared to P. trichocarpa, resulting in a significantly different structure of the protein. Identifying the transcription factors expressed in P. davidiana under drought stress will not only offer clues for understanding the underlying mechanisms involved in drought stress physiology but also serve as a basis for future molecular studies on this species.
Collapse
Affiliation(s)
- Bong-Gyu Mun
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang-Uk Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eung-Jun Park
- Division of Forest Biotechnology, Korea Forest Research Institute, Suwon, 16631, Republic of Korea
| | - Hyun-Ho Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Adil Hussain
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Agriculture, Abdul Wali Khan University, Mardan, Pakistan
| | - Qari Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Byung-Wook Yun
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
134
|
Wang H, Li S, Teng S, Liang H, Xin H, Gao H, Huang D, Lang Z. Transcriptome profiling revealed novel transcriptional regulators in maize responses to Ostrinia furnacalis and jasmonic acid. PLoS One 2017; 12:e0177739. [PMID: 28520800 PMCID: PMC5433750 DOI: 10.1371/journal.pone.0177739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/02/2017] [Indexed: 12/12/2022] Open
Abstract
Chewing insects cause severe yield losses in crop production worldwide. Crop plants counteract chewing insects by transcriptionally promoting a repertoire of defense gene products that are either toxic to, or attractive to the natural enemies of, pest insects. However, the complexity of the transcriptional reprogramming in plant defense response against chewing insects is still not well understood. In this study, the genome-wide early responses in maize seedlings to Asian corn borer (ACB, Ostrinia furnacalis) and also to jasmonic acid(JA), the pivotal phytohormone controlling plant defense response against herbivory, were transcriptionally profiled by RNA-Seq. Clustering of differentially expressed genes (DEGs) along with functional enrichment analysis revealed important biological processes regulated in response to ACB infestation and/or jasmonic acid. Moreover, DEGs with distinct expression patterns were differentially enriched with diverse families of cis-elements on their promoters. Multiple inventories of differentially expressed transcription factors (DETFs) in each DEG group were also analyzed. A transient expression assay using transfected maize protoplastswas established to examine the potential roles of DETFs in maize defense response and JA signaling, and this was used to show that ZmNAC60, an ACB- and JA-inducible DETF, represented a novel positive regulator of JA and defense pathway genes. This study provided a comprehensive transcriptional picture for the early dynamics of maize defense responses and JA signaling, and the identification of DETFs offered potential targets for further functional genomics investigation of master regulators in maize defense responses against herbivory.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shengyan Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shouzhen Teng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Haisheng Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Hongjia Xin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Hongjiang Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Dafang Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zhihong Lang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
135
|
Kuang JF, Chen JY, Liu XC, Han YC, Xiao YY, Shan W, Tang Y, Wu KQ, He JX, Lu WJ. The transcriptional regulatory network mediated by banana (Musa acuminata) dehydration-responsive element binding (MaDREB) transcription factors in fruit ripening. THE NEW PHYTOLOGIST 2017; 214:762-781. [PMID: 28044313 DOI: 10.1111/nph.14389] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 11/16/2016] [Indexed: 05/24/2023]
Abstract
Fruit ripening is a complex, genetically programmed process involving the action of critical transcription factors (TFs). Despite the established significance of dehydration-responsive element binding (DREB) TFs in plant abiotic stress responses, the involvement of DREBs in fruit ripening is yet to be determined. Here, we identified four genes encoding ripening-regulated DREB TFs in banana (Musa acuminata), MaDREB1, MaDREB2, MaDREB3, and MaDREB4, and demonstrated that they play regulatory roles in fruit ripening. We showed that MaDREB1-MaDREB4 are nucleus-localized, induced by ethylene and encompass transcriptional activation activities. We performed a genome-wide chromatin immunoprecipitation and high-throughput sequencing (ChIP-Seq) experiment for MaDREB2 and identified 697 genomic regions as potential targets of MaDREB2. MaDREB2 binds to hundreds of loci with diverse functions and its binding sites are distributed in the promoter regions proximal to the transcriptional start site (TSS). Most of the MaDREB2-binding targets contain the conserved (A/G)CC(G/C)AC motif and MaDREB2 appears to directly regulate the expression of a number of genes involved in fruit ripening. In combination with transcriptome profiling (RNA sequencing) data, our results indicate that MaDREB2 may serve as both transcriptional activator and repressor during banana fruit ripening. In conclusion, our study suggests a hierarchical regulatory model of fruit ripening in banana and that the MaDREB TFs may act as transcriptional regulators in the regulatory network.
Collapse
Affiliation(s)
- Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xun-Cheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yan-Chao Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yun-Yi Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ke-Qiang Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jun-Xian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
136
|
Zhao Y, Chang X, Qi D, Dong L, Wang G, Fan S, Jiang L, Cheng Q, Chen X, Han D, Xu P, Zhang S. A Novel Soybean ERF Transcription Factor, GmERF113, Increases Resistance to Phytophthora sojae Infection in Soybean. FRONTIERS IN PLANT SCIENCE 2017; 8:299. [PMID: 28326092 PMCID: PMC5339286 DOI: 10.3389/fpls.2017.00299] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/20/2017] [Indexed: 05/18/2023]
Abstract
Phytophthora root and stem rot of soybean caused by the oomycete Phytophthora sojae, is a destructive disease worldwide. Ethylene response factors (ERFs) play important roles in regulating plant biotic and abiotic stress tolerance. In this study, a new ERF gene, GmERF113, was isolated from the highly resistant soybean 'Suinong 10.' Sequence analysis suggested that the protein encoded by GmERF113 contained a conserved AP2/ERF domain of 58 amino acid and belonged to the B-4 subgroup of the ERF subfamily. Expression of GmERF113 was significantly induced by P. sojae, ethylene, and methyl jasmonate. GmERF113 protein localized to the nucleus when transiently expressed in Arabidopsis protoplasts, could bind to the GCC-box, and acted as a transcription activator. In addition, a region of the full-length GmERF113, GmERF113-II, interacted with a basic helix-loop-helix transcription factor (GmbHLH) in yeast cells. Full-length GmERF113 also interacted with GmbHLH in planta. GmERF113-overexpressing transgenic plants in susceptible cultivar 'Dongnong 50' soybean exhibited increased resistance to P. sojae and positively regulated the expression of the pathogenesis-related genes, PR1 and PR10-1. These results indicate that GmERF113 may play a crucial role in the defense of soybean against P. sojae infection.
Collapse
Affiliation(s)
- Yuanling Zhao
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Xin Chang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Dongyue Qi
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Lidong Dong
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Guangjin Wang
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Sujie Fan
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Liangyu Jiang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Qun Cheng
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Xi Chen
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Dan Han
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Pengfei Xu
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| |
Collapse
|
137
|
Opposing Transcriptional Mechanisms Regulate Toxoplasma Development. mSphere 2017; 2:mSphere00347-16. [PMID: 28251183 PMCID: PMC5322347 DOI: 10.1128/msphere.00347-16] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/01/2017] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma infections are lifelong because of the development of the bradyzoite tissue cyst, which is effectively invisible to the immune system. Despite the important clinical consequences of this developmental pathway, the molecular basis of the switch mechanisms that control tissue cyst formation is still poorly understood. Significant changes in gene expression are associated with tissue cyst development, and ApiAP2 transcription factors are an important mechanism regulating this developmental transcriptome. However, the molecular composition of these ApiAP2 complexes and the operating principles of ApiAP2 mechanisms are not well defined. Here we establish that competing ApiAP2 transcriptional mechanisms operate to regulate this clinically important developmental pathway. The Toxoplasma biology that underlies human chronic infection is developmental conversion of the acute tachyzoite stage into the latent bradyzoite stage. We investigated the roles of two alkaline-stress-induced ApiAP2 transcription factors, AP2IV-3 and AP2IX-9, in bradyzoite development. These factors were expressed in two overlapping waves during bradyzoite development, with AP2IX-9 increasing expression earlier than AP2IV-3, which peaked as AP2IX-9 expression was declining. Disruption of the AP2IX-9 gene enhanced, while deletion of AP2IV-3 gene decreased, tissue cyst formation, demonstrating that these factors have opposite functions in bradyzoite development. Conversely, conditional overexpression of FKBP-modified AP2IX-9 or AP2IV-3 with the small molecule Shield 1 had a reciprocal effect on tissue cyst formation, confirming the conclusions of the knockout experiments. The AP2IX-9 repressor and AP2IV-3 activator tissue cyst phenotypes were borne out in gene expression studies that determined that many of the same bradyzoite genes were regulated in an opposite manner by these transcription factors. A common gene target was the canonical bradyzoite marker BAG1, and mechanistic experiments determined that, like AP2IX-9, AP2IV-3 regulates a BAG1 promoter-luciferase reporter and specifically binds the BAG1 promoter in parasite chromatin. Altogether, these results suggest that the AP2IX-9 transcriptional repressor and the AP2IV-3 transcriptional activator likely compete to control bradyzoite gene expression, which may permit Toxoplasma to better adapt to different tissue environments and select a suitable host cell for long-term survival of the dormant tissue cyst. IMPORTANCEToxoplasma infections are lifelong because of the development of the bradyzoite tissue cyst, which is effectively invisible to the immune system. Despite the important clinical consequences of this developmental pathway, the molecular basis of the switch mechanisms that control tissue cyst formation is still poorly understood. Significant changes in gene expression are associated with tissue cyst development, and ApiAP2 transcription factors are an important mechanism regulating this developmental transcriptome. However, the molecular composition of these ApiAP2 complexes and the operating principles of ApiAP2 mechanisms are not well defined. Here we establish that competing ApiAP2 transcriptional mechanisms operate to regulate this clinically important developmental pathway.
Collapse
|
138
|
Caarls L, Van der Does D, Hickman R, Jansen W, Verk MCV, Proietti S, Lorenzo O, Solano R, Pieterse CMJ, Van Wees SCM. Assessing the Role of ETHYLENE RESPONSE FACTOR Transcriptional Repressors in Salicylic Acid-Mediated Suppression of Jasmonic Acid-Responsive Genes. PLANT & CELL PHYSIOLOGY 2017; 58:266-278. [PMID: 27837094 DOI: 10.1093/pcp/pcw187] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 10/27/2016] [Indexed: 05/28/2023]
Abstract
Salicylic acid (SA) and jasmonic acid (JA) cross-communicate in the plant immune signaling network to finely regulate induced defenses. In Arabidopsis, SA antagonizes many JA-responsive genes, partly by targeting the ETHYLENE RESPONSE FACTOR (ERF)-type transcriptional activator ORA59. Members of the ERF transcription factor family typically bind to GCC-box motifs in the promoters of JA- and ethylene-responsive genes, thereby positively or negatively regulating their expression. The GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Here, we investigated whether SA-induced ERF-type transcriptional repressors, which may compete with JA-induced ERF-type activators for binding at the GCC-box, play a role in SA/JA antagonism. We selected ERFs that are transcriptionally induced by SA and/or possess an EAR transcriptional repressor motif. Several of the 16 ERFs tested suppressed JA-dependent gene expression, as revealed by enhanced JA-induced PDF1.2 or VSP2 expression levels in the corresponding erf mutants, while others were involved in activation of these genes. However, SA could antagonize JA-induced PDF1.2 or VSP2 in all erf mutants, suggesting that the tested ERF transcriptional repressors are not required for SA/JA cross-talk. Moreover, a mutant in the co-repressor TOPLESS, that showed reduction in repression of JA signaling, still displayed SA-mediated antagonism of PDF1.2 and VSP2. Collectively, these results suggest that SA-regulated ERF transcriptional repressors are not essential for antagonism of JA-responsive gene expression by SA. We further show that de novo SA-induced protein synthesis is required for suppression of JA-induced PDF1.2, pointing to SA-stimulated production of an as yet unknown protein that suppresses JA-induced transcription.
Collapse
Affiliation(s)
- Lotte Caarls
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| | - Dieuwertje Van der Does
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| | - Richard Hickman
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| | - Wouter Jansen
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| | - Marcel C Van Verk
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
- Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| | - Silvia Proietti
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| | - Oscar Lorenzo
- Departamento de Fisiologia Vegetal, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biologia, Universidad de Salamanca, Salamanca, Spain
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, CH Utrecht, The Netherlands
| |
Collapse
|
139
|
Li K, Yang F, Zhang G, Song S, Li Y, Ren D, Miao Y, Song CP. AIK1, A Mitogen-Activated Protein Kinase, Modulates Abscisic Acid Responses through the MKK5-MPK6 Kinase Cascade. PLANT PHYSIOLOGY 2017; 173:1391-1408. [PMID: 27913741 PMCID: PMC5291029 DOI: 10.1104/pp.16.01386] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/29/2016] [Indexed: 05/03/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily conserved signal transduction module involved in transducing extracellular signals to the nucleus for appropriate cellular adjustment. This cascade essentially consists of three components: a MAPK kinase kinase (MAPKKK), a MAPK kinase, and a MAPK, connected to each other by the event of phosphorylation. Here, we report the characterization of a MAPKKK, ABA-INSENSITIVE PROTEIN KINASE1 (AIK1), which regulates abscisic acid (ABA) responses in Arabidopsis (Arabidopsis thaliana). T-DNA insertion mutants of AIK1 showed insensitivity to ABA in terms of both root growth and stomatal response. AIK1 functions in ABA responses via regulation of root cell division and elongation, as well as stomatal responses. The activity of AIK1 is induced by ABA in Arabidopsis and tobacco (Nicotiana benthamiana), and the Arabidopsis protein phosphatase type 2C, ABI1, a negative regulator of ABA signaling, restricts AIK1 activity by dephosphorylation. Bimolecular fluorescence complementation analysis showed that MPK3, MPK6, and AIK1 interact with MKK5. The single mutant seedlings of mpk6 and mkk5 have similar phenotypes to aik1, but mkk4 does not. AIK1 was localized in the cytoplasm and shown to activate MKK5 by protein phosphorylation, which was an ABA-activated process. Constitutively active MKK5 in aik1 mutant seedlings complements the ABA-insensitive root growth phenotype of aik1 The activity of MPK6 was increased by ABA in wild-type seedlings, but its activation by ABA was impaired in aik1 and aik1 mkk5 mutants. These findings clearly suggest that the AIK1-MKK5-MPK6 cascade functions in the ABA regulation of primary root growth and stomatal response.
Collapse
Affiliation(s)
- Kun Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Fengbo Yang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Guozeng Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Shufei Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Yuan Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Dongtao Ren
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Chun-Peng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| |
Collapse
|
140
|
Sanyal SK, Kanwar P, Yadav AK, Sharma C, Kumar A, Pandey GK. Arabidopsis CBL interacting protein kinase 3 interacts with ABR1, an APETALA2 domain transcription factor, to regulate ABA responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 254:48-59. [PMID: 27964784 DOI: 10.1016/j.plantsci.2016.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 05/08/2023]
Abstract
Calcium (Ca2+) plays a vital role as a second messenger in several signaling pathways in plants. The calcineurin B-like proteins (CBLs) represent a family of plant calcium-binding proteins that function in propagating Ca2+ signals by interacting with CBL interacting protein kinases (CIPKs). Phosphorylation of CBL by CIPK is essential for the module to display full activity towards its target protein. Previous genetic analysis showed that the function of CBL9-CIPK3 module was implicated in negatively regulating seed germination and early development. In the present study, we have biochemically investigated the interaction of CBL9-CIPK3 module and our findings show that CBL9 is phosphorylated by CIPK3. Moreover, Abscisic acid repressor 1 (ABR1) is identified as the downstream target of CIPK3 and CIPK3-ABR1 function to regulate ABA responses during seed germination. Our study also indicates that the role of ABR1 is not limited to seed germination but it also regulates the ABA dependent processes in the adult stage of plant development. Combining our results, we conclude that the CBL9-CIPK3-ABR1 pathway functions to regulate seed germination and ABA dependent physiological processes in Arabidopsis.
Collapse
Affiliation(s)
- Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Akhilesh K Yadav
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Cheshta Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Ashish Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India.
| |
Collapse
|
141
|
Sanyal SK, Kanwar P, Samtani H, Kaur K, Jha SK, Pandey GK. Alternative Splicing of CIPK3 Results in Distinct Target Selection to Propagate ABA Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1924. [PMID: 29225607 PMCID: PMC5705611 DOI: 10.3389/fpls.2017.01924] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/24/2017] [Indexed: 05/20/2023]
Abstract
Calcium (Ca2+) signaling is pivotal in transmission of information in the cell. Various Ca2+ sensing molecules work to sense and relay the encrypted messages to the intended targets in the cell to maintain this signal transduction. CBL-interacting protein kinases (CIPKs) are crucial components of Ca2+ signal transduction during various abiotic stresses. Although there are intron rich CIPKs in the plant genome but very little has been reported about their alternative splicing. Moreover the physiological significance of this event in the Ca2+ signaling is still elusive. Therefore in this study, we have selected CIPK3, which has highest number of splice variants amongst Arabidopsis CIPKs. Expression profiling of five splice variants of CIPK3 by qRT-PCR in four Arabidopsis thaliana ecotypes revealed preferential transcript accumulation but similar subcellular localization of the variants and interaction with similar CBLs. ABA and drought treatment resulted in the higher accumulation of the alternately spliced transcripts of CIPK3 in Arabidopsis ecotype Wassilewkija. The transcripts of CIPK3.1 and CIPK3.4 are relatively more induced compared to other alternative splice variants. Out of four splice variants studied, we found CIPK3.1 and CIPK3.2 showing preference for ABR1, a previously reported interactor of CIPK3. We conclude that the differential expression and choice of downstream partner by CIPK3-splice variants might be one of the mechanisms of Ca2+ mediated preferential regulation of ABA and other stress signals.
Collapse
|
142
|
Hong E, Lim CW, Han SW, Lee SC. Functional Analysis of the Pepper Ethylene-Responsive Transcription Factor, CaAIEF1, in Enhanced ABA Sensitivity and Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:1407. [PMID: 28878786 PMCID: PMC5572256 DOI: 10.3389/fpls.2017.01407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/28/2017] [Indexed: 05/08/2023]
Abstract
Abscisic acid (ABA) is a plant hormone that plays a critical role in the response to environmental stress conditions, especially regulation of the stomatal aperture under water-deficit conditions. The signal transduction occurring during the stress response is initiated by transcription of defense-related genes. Here, we isolated the pepper ethylene-responsive transcription factor CaAIEF1 (Capsicum annuum ABA Induced ERF 1). The CaAIEF1 gene was significantly induced after exposure to ABA, drought, and high salinity. Fusion of the acidic domain in the C-terminal region of CaAIEF1 to the GAL4 DNA-binding domain had a transactivation effect on the reporter gene in yeast. Further, the CaAIEF1-GFP fusion constructs localized in the nucleus. We used CaAIEF1-silenced plants and CaAIEF1-overexpressing (OX) plants to elucidate the biological function of CaAIEF1 in response to ABA and drought stress. CaAIEF1-silenced pepper plants and CaAIEF1-OX Arabidopsis plants displayed drought-sensitive and -tolerant phenotypes, respectively, which were characterized by regulation of transpirational water loss and stomatal aperture. In drought stress condition, quantitative RT-PCR analyses revealed that the expression levels of pepper stress-related genes were higher in CaAIEF1-silenced pepper plants than control plants. Moreover, expression levels of Arabidopsis stress-related genes were significantly reduced in CaAIEF1-OX plants compared with control plants in drought stress condition. Our findings suggest that CaAIEF1 positively regulates the drought stress response and the ABA signaling.
Collapse
Affiliation(s)
- Eunji Hong
- Department of Life Science (BK21 Program), Chung-Ang UniversitySeoul, South Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang UniversitySeoul, South Korea
| | - Sang-Wook Han
- Department of Integrative Plant Science, Chung-Ang UniversityAnseong, South Korea
- *Correspondence: Sang-Wook Han, Sung Chul Lee,
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang UniversitySeoul, South Korea
- *Correspondence: Sang-Wook Han, Sung Chul Lee,
| |
Collapse
|
143
|
Luo M, Cheng K, Xu Y, Yang S, Wu K. Plant Responses to Abiotic Stress Regulated by Histone Deacetylases. FRONTIERS IN PLANT SCIENCE 2017; 8:2147. [PMID: 29326743 PMCID: PMC5737090 DOI: 10.3389/fpls.2017.02147] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
In eukaryotic cells, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are modulated by histone acetyltransferases and histone deacetylases (HDACs). Recent studies indicate that HDACs play essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance regarding the plant HDACs and their functions in the regulation of abiotic stress responses. The role of HDACs in autophagy was also discussed.
Collapse
Affiliation(s)
- Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Ming Luo, Keqiang Wu,
| | - Kai Cheng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yingchao Xu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Songguang Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Keqiang Wu
- College of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- *Correspondence: Ming Luo, Keqiang Wu,
| |
Collapse
|
144
|
Phukan UJ, Jeena GS, Tripathi V, Shukla RK. Regulation of Apetala2/Ethylene Response Factors in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:150. [PMID: 28270817 PMCID: PMC5318435 DOI: 10.3389/fpls.2017.00150] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/25/2017] [Indexed: 05/18/2023]
Abstract
Multiple environmental stresses affect growth and development of plants. Plants try to adapt under these unfavorable condition through various evolutionary mechanisms like physiological and biochemical alterations connecting various network of regulatory processes. Transcription factors (TFs) like APETALA2/ETHYLENE RESPONSE FACTORS (AP2/ERFs) are an integral component of these signaling cascades because they regulate expression of a wide variety of down stream target genes related to stress response and development through different mechanism. This downstream regulation of transcript does not always positively or beneficially affect the plant but also they display some developmental defects like senescence and reduced growth under normal condition or sensitivity to stress condition. Therefore, tight auto/cross regulation of these TFs at transcriptional, translational and domain level is crucial to understand. The present manuscript discuss the multiple regulation and advantage of plasticity and specificity of these family of TFs to a wide or single downstream target(s) respectively. We have also discussed the concern which comes with the unwanted associated traits, which could only be averted by further study and exploration of these AP2/ERFs.
Collapse
Affiliation(s)
- Ujjal J. Phukan
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic PlantsLucknow, India
| | - Gajendra S. Jeena
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic PlantsLucknow, India
| | - Vineeta Tripathi
- Botany Division, CSIR-Central Drug Research InstituteLucknow, India
| | - Rakesh K. Shukla
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic PlantsLucknow, India
- *Correspondence: Rakesh K. Shukla
| |
Collapse
|
145
|
Fu CC, Han YC, Qi XY, Shan W, Chen JY, Lu WJ, Kuang JF. Papaya CpERF9 acts as a transcriptional repressor of cell-wall-modifying genes CpPME1/2 and CpPG5 involved in fruit ripening. PLANT CELL REPORTS 2016; 35:2341-2352. [PMID: 27502602 DOI: 10.1007/s00299-016-2038-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 08/04/2016] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE CpERF9 controls papaya fruit ripening through transcriptional repression of cell-wall-modifying genes CpPME1/2 and CpPG5 by directly binding to their promoters. Papaya fruit ripening is an intricate and highly coordinated developmental process which is controlled by the action of ethylene and expression of numerous ethylene-responsive genes. Ethylene response factors (ERFs) representing the last regulators of ethylene-signaling pathway determine the specificities of ethylene response. However, knowledge concerning the transcriptional controlling mechanism of ERF-mediated papaya fruit ripening is limited. In the present work, a gene-encoding AP2/ERF protein with two ERF-associated amphiphilic repression (EAR) motifs, named CpERF9, was characterized from papaya fruit. CpERF9 was found to localize in nucleus, and possess transcriptional repression ability. CpERF9 expression steadily decreased during papaya fruit ripening, while several genes encoding pectin methylesterases (PMEs) and polygalacturonases (PGs), such as CpPME1/2 and CpPG5, were gradually increased, paralleling the decline of fruit firmness. Electrophoretic mobility shift assay (EMSA) demonstrated a specific binding of CpERF9 to promoters of CpPME1/2 and CpPG5, via the GCC-box motif. Transient expression of CpERF9 in tobacco repressed CpPME1/2 and CpPG5 promoter activities, which was depended on two EAR motifs of CpERF9 protein. Taken together, these findings suggest that papaya CpERF9 may act as a transcriptional repressor of several cell-wall modifying genes, such as CpPME1/2 and CpPG5, via directly binding to their promoters.
Collapse
Affiliation(s)
- Chang-Chun Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yan-Chao Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiu-Ye Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
146
|
Sanyal SK, Rao S, Mishra LK, Sharma M, Pandey GK. Plant Stress Responses Mediated by CBL-CIPK Phosphorylation Network. Enzymes 2016; 40:31-64. [PMID: 27776782 DOI: 10.1016/bs.enz.2016.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
At any given time and location, plants encounter a flood of environmental stimuli. Diverse signal transduction pathways sense these stimuli and generate a diverse array of responses. Calcium (Ca2+) is generated as a second messenger due to these stimuli and is responsible for transducing the signals downstream in the pathway. A large number of Ca2+ sensor-responder components are responsible for Ca2+ signaling in plants. The sensor-responder complexes calcineurin B-like protein (CBL) and CBL-interacting protein kinases (CIPKs) are pivotal players in Ca2+-mediated signaling. The CIPKs are the protein kinases and hence mediate signal transduction mainly by the process of protein phosphorylation. Elaborate studies conducted in Arabidopsis have shown the involvement of CBL-CIPK complexes in abiotic and biotic stresses, and nutrient deficiency. Additionally, studies in crop plants have also indicated their role in the similar responses. In this chapter, we review the current literature on the CBL and CIPK network, shedding light into the enzymatic property and mechanism of action of CBL-CIPK complexes. We also summarize various reports on the functional modulation of the downstream targets by the CBL-CIPK modules across all plant species.
Collapse
Affiliation(s)
- S K Sanyal
- University of Delhi South Campus, New Delhi, India
| | - S Rao
- University of Delhi South Campus, New Delhi, India
| | - L K Mishra
- University of Delhi South Campus, New Delhi, India
| | - M Sharma
- University of Delhi South Campus, New Delhi, India
| | - G K Pandey
- University of Delhi South Campus, New Delhi, India.
| |
Collapse
|
147
|
Abstract
Reversible histone acetylation and deacetylation at the N-terminus of histone tails play a crucial role in regulation of gene activity. Hyperacetylation of histones relaxes chromatin structure and is associated with transcriptional activation, whereas hypoacetylation of histones induces chromatin compaction and gene repression. Histone acetylation and deacetylation are catalyzed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. Emerging evidences revealed that plant HATs and HDACs play essential roles in regulation of gene expression in plant development and plant responses to environmental stresses. Furthermore, HATs and HDACs were shown to interact with various chromatin-remodeling factors and transcription factors involved in transcriptional regulation of multiple developmental processes.
Collapse
Affiliation(s)
- X Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - S Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - C-W Yu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - C-Y Chen
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - K Wu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
148
|
Zhou X, Zhang ZL, Park J, Tyler L, Yusuke J, Qiu K, Nam EA, Lumba S, Desveaux D, McCourt P, Kamiya Y, Sun TP. The ERF11 Transcription Factor Promotes Internode Elongation by Activating Gibberellin Biosynthesis and Signaling. PLANT PHYSIOLOGY 2016; 171:2760-70. [PMID: 27255484 PMCID: PMC4972265 DOI: 10.1104/pp.16.00154] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/30/2016] [Indexed: 05/18/2023]
Abstract
The phytohormone gibberellin (GA) plays a key role in promoting stem elongation in plants. Previous studies show that GA activates its signaling pathway by inducing rapid degradation of DELLA proteins, GA signaling repressors. Using an activation-tagging screen in a reduced-GA mutant ga1-6 background, we identified AtERF11 to be a novel positive regulator of both GA biosynthesis and GA signaling for internode elongation. Overexpression of AtERF11 partially rescued the dwarf phenotype of ga1-6 AtERF11 is a member of the ERF (ETHYLENE RESPONSE FACTOR) subfamily VIII-B-1a of ERF/AP2 transcription factors in Arabidopsis (Arabidopsis thaliana). Overexpression of AtERF11 resulted in elevated bioactive GA levels by up-regulating expression of GA3ox1 and GA20ox genes. Hypocotyl elongation assays further showed that overexpression of AtERF11 conferred elevated GA response, whereas loss-of-function erf11 and erf11 erf4 mutants displayed reduced GA response. In addition, yeast two-hybrid, coimmunoprecipitation, and transient expression assays showed that AtERF11 enhances GA signaling by antagonizing the function of DELLA proteins via direct protein-protein interaction. Interestingly, AtERF11 overexpression also caused a reduction in the levels of another phytohormone ethylene in the growing stem, consistent with recent finding showing that AtERF11 represses transcription of ethylene biosynthesis ACS genes. The effect of AtERF11 on promoting GA biosynthesis gene expression is likely via its repressive function on ethylene biosynthesis. These results suggest that AtERF11 plays a dual role in promoting internode elongation by inhibiting ethylene biosynthesis and activating GA biosynthesis and signaling pathways.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Zhong-Lin Zhang
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Jeongmoo Park
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Ludmila Tyler
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Jikumaru Yusuke
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Kai Qiu
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Edward A Nam
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Shelley Lumba
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Darrell Desveaux
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Peter McCourt
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Yuji Kamiya
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| |
Collapse
|
149
|
Asensi-Fabado MA, Amtmann A, Perrella G. Plant responses to abiotic stress: The chromatin context of transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:106-122. [PMID: 27487458 DOI: 10.1016/j.bbagrm.2016.07.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/09/2016] [Accepted: 07/26/2016] [Indexed: 12/29/2022]
Abstract
The ability of plants to cope with abiotic environmental stresses such as drought, salinity, heat, cold or flooding relies on flexible mechanisms for re-programming gene expression. Over recent years it has become apparent that transcriptional regulation needs to be understood within its structural context. Chromatin, the assembly of DNA with histone proteins, generates a local higher-order structure that impacts on the accessibility and effectiveness of the transcriptional machinery, as well as providing a hub for multiple protein interactions. Several studies have shown that chromatin features such as histone variants and post-translational histone modifications are altered by environmental stress, and they could therefore be primary stress targets that initiate transcriptional stress responses. Alternatively, they could act downstream of stress-induced transcription factors as an integral part of transcriptional activity. A few experimental studies have addressed this 'chicken-and-egg' problem in plants and other systems, but to date the causal relationship between dynamic chromatin changes and transcriptional responses under stress is still unclear. In this review we have collated the existing information on concurrent epigenetic and transcriptional responses of plants to abiotic stress, and we have assessed the evidence using a simple theoretical framework of causality scenarios. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
| | - Anna Amtmann
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow, G128QQ, UK
| | - Giorgio Perrella
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow, G128QQ, UK.
| |
Collapse
|
150
|
Sah SK, Reddy KR, Li J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:571. [PMID: 27200044 DOI: 10.3389/fpls.2016.00571/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/13/2016] [Indexed: 05/27/2023]
Abstract
Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression.
Collapse
Affiliation(s)
- Saroj K Sah
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Mississippi State, Mississippi, MS, USA
| | - Kambham R Reddy
- Department of Plant and Soil Sciences, Mississippi State University Mississippi State, Mississippi, MS, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Mississippi State, Mississippi, MS, USA
| |
Collapse
|