101
|
Yadeta KA, J. Thomma BPH. The xylem as battleground for plant hosts and vascular wilt pathogens. FRONTIERS IN PLANT SCIENCE 2013; 4:97. [PMID: 23630534 PMCID: PMC3632776 DOI: 10.3389/fpls.2013.00097] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 03/28/2013] [Indexed: 05/19/2023]
Abstract
Vascular wilts are among the most destructive plant diseases that occur in annual crops as well as in woody perennials. These diseases are generally caused by soil-borne bacteria, fungi, and oomycetes that infect through the roots and enter the water-conducting xylem vessels where they proliferate and obstruct the transportation of water and minerals. As a consequence, leaves wilt and die, which may lead to impairment of the whole plant and eventually to death of the plant. Cultural, chemical, and biological measures to control this group of plant pathogens are generally ineffective, and the most effective control strategy is the use of genetic resistance. Owing to the fact that vascular wilt pathogens live deep in the interior of their host plants, studies into the biology of vascular pathogens are complicated. However, to design novel strategies to combat vascular wilt diseases, understanding the (molecular) biology of vascular pathogens and the molecular mechanisms underlying plant defense against these pathogens is crucial. In this review, we discuss the current knowledge on interactions of vascular wilt pathogens with their host plants, with emphasis on host defense responses against this group of pathogens.
Collapse
Affiliation(s)
- Koste A. Yadeta
- Laboratory of Phytopathology, Wageningen UniversityWageningen, Netherlands
| | - Bart P. H. J. Thomma
- Laboratory of Phytopathology, Wageningen UniversityWageningen, Netherlands
- Centre for BioSystems GenomicsWageningen, Netherlands
| |
Collapse
|
102
|
Dou D, Zhou JM. Phytopathogen effectors subverting host immunity: different foes, similar battleground. Cell Host Microbe 2013; 12:484-95. [PMID: 23084917 DOI: 10.1016/j.chom.2012.09.003] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phytopathogenic bacteria, fungi, and oomycetes invade and colonize their host plants through distinct routes. These pathogens secrete diverse groups of effector proteins that aid infection and establishment of different parasitic lifestyles. Despite this diversity, a comparison of different plant-pathogen systems has revealed remarkable similarities in the host immune pathways targeted by effectors from distinct pathogen groups. Immune signaling pathways mediated by pattern recognition receptors, phytohormone homeostasis or signaling, defenses associated with host secretory pathways and pathogen penetrations, and plant cell death represent some of the key processes controlling disease resistance against diverse pathogens. These immune pathways are targeted by effectors that carry a wide range of biochemical functions and are secreted by completely different pathogen groups, suggesting that these pathways are a common battleground encountered by many plant pathogens.
Collapse
Affiliation(s)
- Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | | |
Collapse
|
103
|
Wide screening of phage-displayed libraries identifies immune targets in planta. PLoS One 2013; 8:e54654. [PMID: 23372747 PMCID: PMC3556032 DOI: 10.1371/journal.pone.0054654] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
Microbe-Associated Molecular Patterns and virulence effectors are recognized by plants as a first step to mount a defence response against potential pathogens. This recognition involves a large family of extracellular membrane receptors and other immune proteins located in different sub-cellular compartments. We have used phage-display technology to express and select for Arabidopsis proteins able to bind bacterial pathogens. To rapidly identify microbe-bound phage, we developed a monitoring method based on microarrays. This combined strategy allowed for a genome-wide screening of plant proteins involved in pathogen perception. Two phage libraries for high-throughput selection were constructed from cDNA of plants infected with Pseudomonas aeruginosa PA14, or from combined samples of the virulent isolate DC3000 of Pseudomonas syringae pv. tomato and its avirulent variant avrRpt2. These three pathosystems represent different degrees in the specificity of plant-microbe interactions. Libraries cover up to 2×107 different plant transcripts that can be displayed as functional proteins on the surface of T7 bacteriophage. A number of these were selected in a bio-panning assay for binding to Pseudomonas cells. Among the selected clones we isolated the ethylene response factor ATERF-1, which was able to bind the three bacterial strains in competition assays. ATERF-1 was rapidly exported from the nucleus upon infiltration of either alive or heat-killed Pseudomonas. Moreover, aterf-1 mutants exhibited enhanced susceptibility to infection. These findings suggest that ATERF-1 contains a microbe-recognition domain with a role in plant defence. To identify other putative pathogen-binding proteins on a genome-wide scale, the copy number of selected-vs.-total clones was compared by hybridizing phage cDNAs with Arabidopsis microarrays. Microarray analysis revealed a set of 472 candidates with significant fold change. Within this set defence-related genes, including well-known targets of bacterial effectors, are over-represented. Other genes non-previously related to defence can be associated through this study with general or strain-specific recognition of Pseudomonas.
Collapse
|
104
|
Dickman MB, Fluhr R. Centrality of host cell death in plant-microbe interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:543-70. [PMID: 23915134 DOI: 10.1146/annurev-phyto-081211-173027] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Programmed cell death (PCD) is essential for proper growth, development, and cellular homeostasis in all eukaryotes. The regulation of PCD is of central importance in plant-microbe interactions; notably, PCD and features associated with PCD are observed in many host resistance responses. Conversely, pathogen induction of inappropriate cell death in the host results in a susceptible phenotype and disease. Thus, the party in control of PCD has a distinct advantage in these battles. PCD processes appear to be of ancient origin, as indicated by the fact that many features of cell death strategy are conserved between animals and plants; however, some of the details of death execution differ. Mammalian core PCD genes, such as caspases, are not present in plant genomes. Similarly, pro- and antiapoptotic mammalian regulatory elements are absent in plants, but, remarkably, when expressed in plants, successfully impact plant PCD. Thus, subtle structural similarities independent of sequence homology appear to sustain operational equivalence. The vacuole is emerging as a key organelle in the modulation of plant PCD. Under different signals for cell death, the vacuole either fuses with the plasmalemma membrane or disintegrates. Moreover, the vacuole appears to play a key role in autophagy; evidence suggests a prosurvival function for autophagy, but other studies propose a prodeath phenotype. Here, we describe and discuss what we know and what we do not know about various PCD pathways and how the host integrates signals to activate salicylic acid and reactive oxygen pathways that orchestrate cell death. We suggest that it is not cell death as such but rather the processes leading to cell death that contribute to the outcome of a given plant-pathogen interaction.
Collapse
Affiliation(s)
- Martin B Dickman
- Institute for Plant Genomics and Biotechnology, Center for Cell Death and Differentiation, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA.
| | | |
Collapse
|
105
|
Tahir J, Watanabe M, Jing HC, Hunter DA, Tohge T, Nunes-Nesi A, Brotman Y, Fernie AR, Hoefgen R, Dijkwel PP. Activation of R-mediated innate immunity and disease susceptibility is affected by mutations in a cytosolic O-acetylserine (thiol) lyase in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:118-30. [PMID: 22974487 DOI: 10.1111/tpj.12021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 05/09/2023]
Abstract
O-acetylserine (thiol) lyases (OASTLs) are evolutionarily conserved proteins among many prokaryotes and eukaryotes that perform sulfur acquisition and synthesis of cysteine. A mutation in the cytosolic OASTL-A1 protein ONSET OF LEAF DEATH3 (OLD3) was previously shown to reduce the OASTL activity of the old3-1 protein in vitro and cause auto-necrosis in specific Arabidopsis accessions. Here we investigated why a mutation in this protein causes auto-necrosis in some but not other accessions. The auto-necrosis was found to depend on Recognition of Peronospora Parasitica 1 (RPP1)-like disease resistance R gene(s) from an evolutionarily divergent R gene cluster that is present in Ler-0 but not the reference accession Col-0. RPP1-like gene(s) show a negative epistatic interaction with the old3-1 mutation that is not linked to reduced cysteine biosynthesis. Metabolic profiling and transcriptional analysis further indicate that an effector triggered-like immune response and metabolic disorder are associated with auto-necrosis in old3-1 mutants, probably activated by an RPP1-like gene. However, the old3-1 protein in itself results in largely neutral changes in primary plant metabolism, stress defence and immune responses. Finally, we showed that lack of a functional OASTL-A1 results in enhanced disease susceptibility against infection with virulent and non-virulent Pseudomonas syringae pv. tomato DC3000 strains. These results reveal an interaction between the cytosolic OASTL and components of plant immunity.
Collapse
Affiliation(s)
- Jibran Tahir
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Mutsumi Watanabe
- Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
| | - Hai-Chun Jing
- Centre for Bioenergy Plants Research and Development, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China, and
| | - Donald A Hunter
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Takayuki Tohge
- Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
| | - Adriano Nunes-Nesi
- Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
| | - Yariv Brotman
- Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
| | - Rainer Hoefgen
- Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
| | - Paul P Dijkwel
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
106
|
Gawehns F, Cornelissen BJC, Takken FLW. The potential of effector-target genes in breeding for plant innate immunity. Microb Biotechnol 2012; 6:223-9. [PMID: 23279965 PMCID: PMC3815917 DOI: 10.1111/1751-7915.12023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/23/2012] [Accepted: 11/27/2012] [Indexed: 12/11/2022] Open
Abstract
Increasing numbers of infectious crop diseases that are caused by fungi and oomycetes urge the need to develop alternative strategies for resistance breeding. As an alternative for the use of resistance (R) genes, the application of mutant susceptibility (S) genes has been proposed as a potentially more durable type of resistance. Identification of S genes is hampered by their recessive nature. Here we explore the use of pathogen-derived effectors as molecular probes to identify S genes. Effectors manipulate specific host processes thereby contributing to disease. Effector targets might therefore represent S genes. Indeed, the Pseudomonas syringae effector HopZ2 was found to target MLO2, an Arabidopsis thaliana homologue of the barley S gene Mlo. Unfortunately, most effector targets identified so far are not applicable as S genes due to detrimental effects they have on other traits. However, some effector targets such as Mlo are successfully used, and with the increase in numbers of effector targets being identified, the numbers of S genes that can be used in resistance breeding will rise as well.
Collapse
Affiliation(s)
- Fleur Gawehns
- Department of Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | | | | |
Collapse
|
107
|
Faulkner C, Robatzek S. Plants and pathogens: putting infection strategies and defence mechanisms on the map. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:699-707. [PMID: 22981427 DOI: 10.1016/j.pbi.2012.08.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 06/01/2023]
Abstract
All plant organs are vulnerable to colonisation and molecular manipulation by microbes. When this interaction allows proliferation of the microbe at the expense of the host, the microbe can be described as a pathogen. In our attempts to understand the full nature of the interactions that occur between a potential pathogen and its host, various aspects of the molecular mechanisms of infection and defence have begun to be characterised. There is significant variation in these mechanisms. While previous research has examined plant-pathogen interactions with whole plant/organ resolution, the specificity of infection strategies and changes in both gene expression and protein localisation of immune receptors upon infection suggest there is much to be gained from examination of plant-microbe interactions at the cellular level.
Collapse
|
108
|
Deslandes L, Rivas S. Catch me if you can: bacterial effectors and plant targets. TRENDS IN PLANT SCIENCE 2012; 17:644-55. [PMID: 22796464 DOI: 10.1016/j.tplants.2012.06.011] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 05/18/2023]
Abstract
To suppress plant defense responses and favor the establishment of disease, phytopathogenic bacteria have gained the ability to deliver effector molecules inside host cells through the type III secretion system. Inside plant cells, bacterial effector proteins may be addressed to different subcellular compartments where they are able to manipulate a variety of host cellular components and molecular functions. Here we review how the recent identification and functional characterization of plant components targeted by bacterial effectors, as well as the discovery of new pathogen recognition capabilities evolved in turn by plant cells, have significantly contributed to further our knowledge about the intricate molecular interactions that are established between plants and their invading bacteria.
Collapse
Affiliation(s)
- Laurent Deslandes
- INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441, F-31326 Castanet-Tolosan, France
| | | |
Collapse
|
109
|
Pagnussat L, Burbach C, Baluska F, de la Canal L. An extracellular lipid transfer protein is relocalized intracellularly during seed germination. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6555-63. [PMID: 23162115 DOI: 10.1093/jxb/ers311] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant lipid transfer proteins (LTPs) constitute a family of small proteins recognized as being extracellular. In agreement with this notion, several lines of evidence have shown the apoplastic localization of HaAP10, a LTP from Helianthus annuus dry seeds. However, HaAP10 was recently detected intracellularly in imbibing seeds. To clarify its distribution, immunolocalization experiments were performed during the course of germination and confirmed its intracellular localization upon early seed imbibition. Further assays using a hydrophobic dye, FM4-64, inhibitors of vesicular traffic, and immunolocalization of the pectin rhamnogalacturonan-II, allowed the conclusion that endocytosis is activated as soon as seed imbibition starts. Furthermore, this study demonstrated that HaAP10 is endocytosed throughout imbibition. Biochemical and cellular approaches indicate that the intracellular fraction of this LTP appears associated with oil bodies and some evidence also suggest its presence in glyoxysomes. So, HaAP10 is apoplastic in dry seeds and upon imbibition is rapidly internalized and relocalized to organelles involved in lipid metabolism. The results suggest that HaAP10 may be acting as a fatty acid shuttle between the oil body and the glyoxysome during seed germination. This concept is consistent with the initial proposition that LTPs participate in the intracellular transfer of lipids which was further denied based on their apparent extracellular localization. This report reveals for the first time the relocalization of a lipid transfer protein and opens new perspectives on its role.
Collapse
Affiliation(s)
- Luciana Pagnussat
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Funes 3250, 7600 Mar del Plata, Argentina
| | | | | | | |
Collapse
|
110
|
Bar-Ziv A, Levy Y, Hak H, Mett A, Belausov E, Citovsky V, Gafni Y. The tomato yellow leaf curl virus (TYLCV) V2 protein interacts with the host papain-like cysteine protease CYP1. PLANT SIGNALING & BEHAVIOR 2012; 7:983-9. [PMID: 22827939 PMCID: PMC3474700 DOI: 10.4161/psb.20935] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The V2 protein of Tomato yellow leaf curl geminivirus (TYLCV) is an RNA-silencing suppressor that counteracts the innate immune response of the host plant. However, this anti-host defense function of V2 may include targeting of other defensive mechanisms of the plant. Specifically, we show that V2 recognizes and directly binds the tomato CYP1 protein, a member of the family of papain-like cysteine proteases which are involved in plant defense against diverse pathogens. This binding occurred both in vitro and in vivo, within living plant cells. The V2 binding site within mCYP1 was identified in the direct proximity to the papain-like cysteine protease active site.
Collapse
Affiliation(s)
- Amalia Bar-Ziv
- Institute of Plant Sciences; A.R.O.; The Volcani Center; Bet Dagan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan, Israel
| | - Yael Levy
- Institute of Plant Sciences; A.R.O.; The Volcani Center; Bet Dagan, Israel
| | - Hagit Hak
- Institute of Plant Sciences; A.R.O.; The Volcani Center; Bet Dagan, Israel
- Department of Biological Chemistry; The Alexander Silberman Institute of Life Sciences; The Hebrew University of Jerusalem; Jerusalem, Israel
| | - Anahit Mett
- Institute of Plant Sciences; A.R.O.; The Volcani Center; Bet Dagan, Israel
| | - Eduard Belausov
- Institute of Plant Sciences; A.R.O.; The Volcani Center; Bet Dagan, Israel
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology; State University of New York; Stony Brook, NY USA
| | - Yedidya Gafni
- Institute of Plant Sciences; A.R.O.; The Volcani Center; Bet Dagan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan, Israel
- Correspondence to: Yedidya Gafni;
| |
Collapse
|
111
|
Jaouannet M, Perfus-Barbeoch L, Deleury E, Magliano M, Engler G, Vieira P, Danchin EGJ, Rocha MD, Coquillard P, Abad P, Rosso MN. A root-knot nematode-secreted protein is injected into giant cells and targeted to the nuclei. THE NEW PHYTOLOGIST 2012; 194:924-931. [PMID: 22540860 DOI: 10.1111/j.1469-8137.2012.04164.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Root-knot nematodes (RKNs) are obligate endoparasites that maintain a biotrophic relationship with their hosts over a period of several weeks and induce the differentiation of root cells into specialized feeding cells. Nematode effectors synthesized in the oesophageal glands and injected into the plant tissue through the syringe-like stylet certainly play a central role in these processes. In a search for nematode effectors, we used comparative genomics on expressed sequence tag (EST) datasets to identify Meloidogyne incognita genes encoding proteins potentially secreted upon the early steps of infection. We identified three genes specifically expressed in the oesophageal glands of parasitic juveniles that encode predicted secreted proteins. One of these genes, Mi-EFF1 is a pioneer gene that has no similarity in databases and a predicted nuclear localization signal. We demonstrate that RKNs secrete Mi-EFF1 within the feeding site and show Mi-EFF1 targeting to the nuclei of the feeding cells. RKNs were previously shown to secrete proteins in the apoplasm of infected tissues. Our results show that nematodes sedentarily established at the feeding site also deliver proteins within plant cells through their stylet. The protein Mi-EFF1 injected within the feeding cells is targeted at the nuclei where it may manipulate nuclear functions of the host cell.
Collapse
Affiliation(s)
- Maëlle Jaouannet
- INRA UMR 1301, CNRS UMR 6243, Université de Nice Sophia Antipolis, 400 route des Chappes, F-06903 Sophia-Antipolis, France
| | - Laetitia Perfus-Barbeoch
- INRA UMR 1301, CNRS UMR 6243, Université de Nice Sophia Antipolis, 400 route des Chappes, F-06903 Sophia-Antipolis, France
| | - Emeline Deleury
- INRA UMR 1301, CNRS UMR 6243, Université de Nice Sophia Antipolis, 400 route des Chappes, F-06903 Sophia-Antipolis, France
| | - Marc Magliano
- INRA UMR 1301, CNRS UMR 6243, Université de Nice Sophia Antipolis, 400 route des Chappes, F-06903 Sophia-Antipolis, France
| | - Gilbert Engler
- INRA UMR 1301, CNRS UMR 6243, Université de Nice Sophia Antipolis, 400 route des Chappes, F-06903 Sophia-Antipolis, France
| | - Paulo Vieira
- INRA UMR 1301, CNRS UMR 6243, Université de Nice Sophia Antipolis, 400 route des Chappes, F-06903 Sophia-Antipolis, France
| | - Etienne G J Danchin
- INRA UMR 1301, CNRS UMR 6243, Université de Nice Sophia Antipolis, 400 route des Chappes, F-06903 Sophia-Antipolis, France
| | - Martine Da Rocha
- INRA UMR 1301, CNRS UMR 6243, Université de Nice Sophia Antipolis, 400 route des Chappes, F-06903 Sophia-Antipolis, France
| | - Patrick Coquillard
- INRA UMR 1301, CNRS UMR 6243, Université de Nice Sophia Antipolis, 400 route des Chappes, F-06903 Sophia-Antipolis, France
| | - Pierre Abad
- INRA UMR 1301, CNRS UMR 6243, Université de Nice Sophia Antipolis, 400 route des Chappes, F-06903 Sophia-Antipolis, France
| | - Marie-Noëlle Rosso
- INRA, Université Aix-Marseille, UMR1163 Biotechnologie des Champignons Filamenteux, F-13288 Marseille, France
| |
Collapse
|
112
|
Adhikari BN, Savory EA, Vaillancourt B, Childs KL, Hamilton JP, Day B, Buell CR. Expression profiling of Cucumis sativus in response to infection by Pseudoperonospora cubensis. PLoS One 2012; 7:e34954. [PMID: 22545095 PMCID: PMC3335828 DOI: 10.1371/journal.pone.0034954] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/08/2012] [Indexed: 11/29/2022] Open
Abstract
The oomycete pathogen, Pseudoperonospora cubensis, is the causal agent of downy mildew on cucurbits, and at present, no effective resistance to this pathogen is available in cultivated cucumber (Cucumis sativus). To better understand the host response to a virulent pathogen, we performed expression profiling throughout a time course of a compatible interaction using whole transcriptome sequencing. As described herein, we were able to detect the expression of 15,286 cucumber genes, of which 14,476 were expressed throughout the infection process from 1 day post-inoculation (dpi) to 8 dpi. A large number of genes, 1,612 to 3,286, were differentially expressed in pair-wise comparisons between time points. We observed the rapid induction of key defense related genes, including catalases, chitinases, lipoxygenases, peroxidases, and protease inhibitors within 1 dpi, suggesting detection of the pathogen by the host. Co-expression network analyses revealed transcriptional networks with distinct patterns of expression including down-regulation at 2 dpi of known defense response genes suggesting coordinated suppression of host responses by the pathogen. Comparative analyses of cucumber gene expression patterns with that of orthologous Arabidopsis thaliana genes following challenge with Hyaloperonospora arabidopsidis revealed correlated expression patterns of single copy orthologs suggesting that these two dicot hosts have similar transcriptional responses to related pathogens. In total, the work described herein presents an in-depth analysis of the interplay between host susceptibility and pathogen virulence in an agriculturally important pathosystem.
Collapse
Affiliation(s)
- Bishwo N. Adhikari
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Elizabeth A. Savory
- Department of Plant Pathology, Michigan State University, East Lansing, Michigan, United States of America
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Kevin L. Childs
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - John P. Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Brad Day
- Department of Plant Pathology, Michigan State University, East Lansing, Michigan, United States of America
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
113
|
Richau KH, Kaschani F, Verdoes M, Pansuriya TC, Niessen S, Stüber K, Colby T, Overkleeft HS, Bogyo M, Van der Hoorn RA. Subclassification and biochemical analysis of plant papain-like cysteine proteases displays subfamily-specific characteristics. PLANT PHYSIOLOGY 2012; 158:1583-99. [PMID: 22371507 PMCID: PMC3320171 DOI: 10.1104/pp.112.194001] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/24/2012] [Indexed: 05/18/2023]
Abstract
Papain-like cysteine proteases (PLCPs) are a large class of proteolytic enzymes associated with development, immunity, and senescence. Although many properties have been described for individual proteases, the distribution of these characteristics has not been studied collectively. Here, we analyzed 723 plant PLCPs and classify them into nine subfamilies that are present throughout the plant kingdom. Analysis of these subfamilies revealed previously unreported distinct subfamily-specific functional and structural characteristics. For example, the NPIR and KDEL localization signals are distinctive for subfamilies, and the carboxyl-terminal granulin domain occurs in two PLCP subfamilies, in which some individual members probably evolved by deletion of the granulin domains. We also discovered a conserved double cysteine in the catalytic site of SAG12-like proteases and two subfamily-specific disulfides in RD19A-like proteases. Protease activity profiling of representatives of the PLCP subfamilies using novel fluorescent probes revealed striking polymorphic labeling profiles and remarkably distinct pH dependency. Competition assays with peptide-epoxide scanning libraries revealed common and unique inhibitory fingerprints. Finally, we expand the detection of PLCPs by identifying common and organ-specific protease activities and identify previously undetected proteases upon labeling with cell-penetrating probes in vivo. This study provides the plant protease research community with tools for further functional annotation of plant PLCPs.
Collapse
|
114
|
Heskes AM, Lincoln CN, Goodger JQD, Woodrow IE, Smith TA. Multiphoton fluorescence lifetime imaging shows spatial segregation of secondary metabolites in Eucalyptus secretory cavities. J Microsc 2012; 247:33-42. [PMID: 22394321 DOI: 10.1111/j.1365-2818.2011.03593.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Multiphoton fluorescence lifetime imaging provides an excellent tool for imaging deep within plant tissues while providing a means to distinguish between fluorophores with high spatial and temporal resolution. Ideal candidates for the application of multiphoton fluorescence lifetime imaging to plants are the embedded secretory cavities found in numerous species because they house complex mixtures of secondary metabolites within extracellular lumina. Previous investigations of this type of structure have been restricted by the use of sectioned material resulting in the loss of lumen contents and often disorganization of the delicate secretory cells; thus it is not known if there is spatial segregation of secondary metabolites within these structures. In this paper, we apply multiphoton fluorescence lifetime imaging to investigate the spatial arrangement of metabolites within intact secretory cavities isolated from Eucalyptus polybractea R.T. Baker leaves. The secretory cavities of this species are abundant (up to 10 000 per leaf), large (up to 6 nL) and importantly house volatile essential oil rich in the monoterpene 1,8-cineole, together with an immiscible, non-volatile component comprised largely of autofluorescent oleuropeic acid glucose esters. We have been able to optically section into the lumina of secretory cavities to a depth of ∼80 μm, revealing a unique spatial organization of cavity metabolites whereby the non-volatile component forms a layer between the secretory cells lining the lumen and the essential oil. This finding could be indicative of a functional role of the non-volatile component in providing a protective region of low diffusivity between the secretory cells and potentially autotoxic essential oil.
Collapse
Affiliation(s)
- A M Heskes
- School of Botany, University of Melbourne, Australia.
| | | | | | | | | |
Collapse
|
115
|
Lepelley M, Amor MB, Martineau N, Cheminade G, Caillet V, McCarthy J. Coffee cysteine proteinases and related inhibitors with high expression during grain maturation and germination. BMC PLANT BIOLOGY 2012; 12:31. [PMID: 22380654 PMCID: PMC3311568 DOI: 10.1186/1471-2229-12-31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 03/01/2012] [Indexed: 05/16/2023]
Abstract
BACKGROUND Cysteine proteinases perform multiple functions in seeds, including participation in remodelling polypeptides and recycling amino acids during maturation and germination. Currently, few details exist concerning these genes and proteins in coffee. Furthermore, there is limited information on the cysteine proteinase inhibitors which influence the activities of these proteinases. RESULTS Two cysteine proteinase (CP) and four cysteine proteinase inhibitor (CPI) gene sequences have been identified in coffee with significant expression during the maturation and germination of coffee grain. Detailed expression analysis of the cysteine proteinase genes CcCP1 and CcCP4 in Robusta using quantitative RT-PCR showed that these transcripts accumulate primarily during grain maturation and germination/post germination. The corresponding proteins were expressed in E. coli and purified, but only one, CcCP4, which has a KDDL/KDEL C-terminal sequence, was found to be active after a short acid treatment. QRT-PCR expression analysis of the four cysteine proteinase inhibitor genes in Robusta showed that CcCPI-1 is primarily expressed in developing and germinating grain and CcCPI-4 is very highly expressed during the late post germination period, as well as in mature, but not immature leaves. Transcripts corresponding to CcCPI-2 and CcCPI-3 were detected in most tissues examined at relatively similar, but generally low levels. CONCLUSIONS Several cysteine proteinase and cysteine proteinase inhibitor genes with strong, relatively specific expression during coffee grain maturation and germination are presented. The temporal expression of the CcCP1 gene suggests it is involved in modifying proteins during late grain maturation and germination. The expression pattern of CcCP4, and its close identity with KDEL containing CP proteins, implies this proteinase may play a role in protein and/or cell remodelling during late grain germination, and that it is likely to play a strong role in the programmed cell death associated with post-germination of the coffee grain. Expression analysis of the cysteine proteinase inhibitor genes suggests that CcCPI-1 could primarily be involved in modulating the activity of grain CP activity; while CcCPI-4 may play roles modulating grain CP activity and in the protection of the young coffee seedlings from insects and pathogens. CcCPI-2 and CcCPI-3, having lower and more widespread expression, could be more general "house-keeping" CPI genes.
Collapse
Affiliation(s)
- Maud Lepelley
- Nestle Research and Development Center, 101 Avenue Gustave Eiffel, Tours 37097, France
| | - Mohamed Ben Amor
- Nestle Research and Development Center, 101 Avenue Gustave Eiffel, Tours 37097, France
- ROYAL SAT, Hacienda la Jarilla Apdo 47, 41300 San José de la Rinconada, Sevilla, Spain
| | - Nelly Martineau
- Nestle Research and Development Center, 101 Avenue Gustave Eiffel, Tours 37097, France
| | - Gerald Cheminade
- Nestle Research and Development Center, 101 Avenue Gustave Eiffel, Tours 37097, France
| | - Victoria Caillet
- Nestle Research and Development Center, 101 Avenue Gustave Eiffel, Tours 37097, France
| | - James McCarthy
- Nestle Research and Development Center, 101 Avenue Gustave Eiffel, Tours 37097, France
| |
Collapse
|
116
|
Canonne J, Rivas S. Bacterial effectors target the plant cell nucleus to subvert host transcription. PLANT SIGNALING & BEHAVIOR 2012; 7:217-21. [PMID: 22353865 PMCID: PMC3405691 DOI: 10.4161/psb.18885] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In order to promote virulence, Gram-negative bacteria have evolved the ability to inject so-called type III effector proteins into host cells. The plant cell nucleus appears to be a subcellular compartment repeatedly targeted by bacterial effectors. In agreement with this observation, mounting evidence suggests that manipulation of host transcription is a major strategy developed by bacteria to counteract plant defense responses. It has been suggested that bacterial effectors may adopt at least three alternative, although not mutually exclusive, strategies to subvert host transcription. T3Es may (1) act as transcription factors that directly activate transcription in host cells, (2) affect histone packing and chromatin configuration, and/or (3) target host transcription factor activity. Here, we provide an overview on how all these strategies may lead to host transcriptional re-programming and, as a result, to improved bacterial multiplication inside plant cells.
Collapse
Affiliation(s)
- Joanne Canonne
- INRA; Laboratoire des Interactions Plantes-Microorganismes (LIPM); Castanet-Tolosan, France
- CNRS; Laboratoire des Interactions Plantes-Microorganismes (LIPM); Castanet-Tolosan, France
| | - Susana Rivas
- INRA; Laboratoire des Interactions Plantes-Microorganismes (LIPM); Castanet-Tolosan, France
- CNRS; Laboratoire des Interactions Plantes-Microorganismes (LIPM); Castanet-Tolosan, France
- Correspondence to: Susana Rivas,
| |
Collapse
|
117
|
Shindo T, Misas-Villamil JC, Hörger AC, Song J, van der Hoorn RAL. A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14. PLoS One 2012; 7:e29317. [PMID: 22238602 PMCID: PMC3253073 DOI: 10.1371/journal.pone.0029317] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/24/2011] [Indexed: 01/02/2023] Open
Abstract
Secreted papain-like Cys proteases are important players in plant immunity. We previously reported that the C14 protease of tomato is targeted by cystatin-like EPIC proteins that are secreted by the oomycete pathogen Phytophthora infestans (Pinf) during infection. C14 has been under diversifying selection in wild potato species coevolving with Pinf and reduced C14 levels result in enhanced susceptibility for Pinf. Here, we investigated the role C14-EPIC-like interactions in the natural pathosystem of Arabidopsis with the oomycete pathogen Hyaloperonospora arabidopsidis (Hpa). In contrast to the Pinf-solanaceae pathosystem, the C14 orthologous protease of Arabidopsis, RD21, does not evolve under diversifying selection in Arabidopsis, and rd21 null mutants do not show phenotypes upon compatible and incompatible Hpa interactions, despite the evident lack of a major leaf protease. Hpa isolates express highly conserved EPIC-like proteins during infections, but it is unknown if these HpaEPICs can inhibit RD21 and one of these HpaEPICs even lacks the canonical cystatin motifs. The rd21 mutants are unaffected in compatible and incompatible interactions with Pseudomonas syringae pv. tomato, but are significantly more susceptible for the necrotrophic fungal pathogen Botrytis cinerea, demonstrating that RD21 provides immunity to a necrotrophic pathogen.
Collapse
Affiliation(s)
- Takayuki Shindo
- The Plant Chemetics Laboratory, Chemical Genomics Centre of the Max Planck Society and Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Johana C. Misas-Villamil
- The Plant Chemetics Laboratory, Chemical Genomics Centre of the Max Planck Society and Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Anja C. Hörger
- The Plant Chemetics Laboratory, Chemical Genomics Centre of the Max Planck Society and Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jing Song
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Renier A. L. van der Hoorn
- The Plant Chemetics Laboratory, Chemical Genomics Centre of the Max Planck Society and Max Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail:
| |
Collapse
|
118
|
Rivas S. Nuclear dynamics during plant innate immunity. PLANT PHYSIOLOGY 2012; 158:87-94. [PMID: 21951465 PMCID: PMC3252092 DOI: 10.1104/pp.111.186163] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 09/26/2011] [Indexed: 05/20/2023]
Affiliation(s)
- Susana Rivas
- INRA, UMR441, Laboratoire des Interactions Plantes-Microorganismes, F-31326 Castanet-Tolosan, France.
| |
Collapse
|
119
|
Genin S, Denny TP. Pathogenomics of the Ralstonia solanacearum species complex. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:67-89. [PMID: 22559068 DOI: 10.1146/annurev-phyto-081211-173000] [Citation(s) in RCA: 350] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ralstonia solanacearum is a major phytopathogen that attacks many crops and other plants over a broad geographical range. The extensive genetic diversity of strains responsible for the various bacterial wilt diseases has in recent years led to the concept of an R. solanacearum species complex. Genome sequencing of more than 10 strains representative of the main phylogenetic groups has broadened our knowledge of the evolution and speciation of this pathogen and led to the identification of novel virulence-associated functions. Comparative genomic analyses are now opening the way for refined functional studies. The many molecular determinants involved in pathogenicity and host-range specificity are described, and we also summarize current understanding of their roles in pathogenesis and how their expression is tightly controlled by an intricate virulence regulatory network.
Collapse
Affiliation(s)
- Stéphane Genin
- INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441, F-31326 Castanet-Tolosan, France.
| | | |
Collapse
|
120
|
Rivas S, Genin S. A plethora of virulence strategies hidden behind nuclear targeting of microbial effectors. FRONTIERS IN PLANT SCIENCE 2011; 2:104. [PMID: 22639625 PMCID: PMC3355726 DOI: 10.3389/fpls.2011.00104] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/09/2011] [Indexed: 05/24/2023]
Abstract
Plant immune responses depend on the ability to couple rapid recognition of the invading microbe to an efficient response. During evolution, plant pathogens have acquired the ability to deliver effector molecules inside host cells in order to manipulate cellular and molecular processes and establish pathogenicity. Following translocation into plant cells, microbial effectors may be addressed to different subcellular compartments. Intriguingly, a significant number of effector proteins from different pathogenic microorganisms, including viruses, oomycetes, fungi, nematodes, and bacteria, is targeted to the nucleus of host cells. In agreement with this observation, increasing evidence highlights the crucial role played by nuclear dynamics, and nucleocytoplasmic protein trafficking during a great variety of analyzed plant-pathogen interactions. Once in the nucleus, effector proteins are able to manipulate host transcription or directly subvert essential host components to promote virulence. Along these lines, it has been suggested that some effectors may affect histone packing and, thereby, chromatin configuration. In addition, microbial effectors may either directly activate transcription or target host transcription factors to alter their regular molecular functions. Alternatively, nuclear translocation of effectors may affect subcellular localization of their cognate resistance proteins in a process that is essential for resistance protein-mediated plant immunity. Here, we review recent progress in our field on the identification of microbial effectors that are targeted to the nucleus of host plant cells. In addition, we discuss different virulence strategies deployed by microbes, which have been uncovered through examination of the mechanisms that guide nuclear localization of effector proteins.
Collapse
Affiliation(s)
- Susana Rivas
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-MicroorganismesUMR 441, Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-MicroorganismesUMR 2594, Castanet-Tolosan, France
| | - Stéphane Genin
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-MicroorganismesUMR 441, Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-MicroorganismesUMR 2594, Castanet-Tolosan, France
| |
Collapse
|
121
|
Bozkurt TO, Schornack S, Win J, Shindo T, Ilyas M, Oliva R, Cano LM, Jones AME, Huitema E, van der Hoorn RAL, Kamoun S. Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proc Natl Acad Sci U S A 2011; 108:20832-7. [PMID: 22143776 PMCID: PMC3251060 DOI: 10.1073/pnas.1112708109] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In response to pathogen attack, plant cells secrete antimicrobial molecules at the site of infection. However, how plant pathogens interfere with defense-related focal secretion remains poorly known. Here we show that the host-translocated RXLR-type effector protein AVRblb2 of the Irish potato famine pathogen Phytophthora infestans focally accumulates around haustoria, specialized infection structures that form inside plant cells, and promotes virulence by interfering with the execution of host defenses. AVRblb2 significantly enhances susceptibility of host plants to P. infestans by targeting the host papain-like cysteine protease C14 and specifically preventing its secretion into the apoplast. Plants altered in C14 expression were significantly affected in susceptibility to P. infestans in a manner consistent with a positive role of C14 in plant immunity. Our findings point to a unique counterdefense strategy that plant pathogens use to neutralize secreted host defense proteases. Effectors, such as AVRblb2, can be used as molecular probes to dissect focal immune responses at pathogen penetration sites.
Collapse
Affiliation(s)
- Tolga O. Bozkurt
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | - Sebastian Schornack
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | - Joe Win
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | - Takayuki Shindo
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Muhammad Ilyas
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ricardo Oliva
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | - Liliana M. Cano
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | - Alexandra M. E. Jones
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | - Edgar Huitema
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | | | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| |
Collapse
|
122
|
Lewis JD, Lee A, Ma W, Zhou H, Guttman DS, Desveaux D. The YopJ superfamily in plant-associated bacteria. MOLECULAR PLANT PATHOLOGY 2011; 12:928-37. [PMID: 21726386 PMCID: PMC6640427 DOI: 10.1111/j.1364-3703.2011.00719.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bacterial pathogens employ the type III secretion system to secrete and translocate effector proteins into their hosts. The primary function of these effector proteins is believed to be the suppression of host defence responses or innate immunity. However, some effector proteins may be recognized by the host and consequently trigger a targeted immune response. The YopJ/HopZ/AvrRxv family of bacterial effector proteins is a widely distributed and evolutionarily diverse family, found in both animal and plant pathogens, as well as plant symbionts. How can an effector family effectively promote the virulence of pathogens on hosts from two separate kingdoms? Our understanding of the evolutionary relationships among the YopJ superfamily members provides an excellent opportunity to address this question and to investigate the functions and virulence strategies of a diverse type III effector family in animal and plant hosts. In this work, we briefly review the literature on YopJ, the archetypal member from Yersinia pestis, and discuss members of the superfamily in species of Pseudomonas, Xanthomonas, Ralstonia and Rhizobium. We review the molecular and cellular functions, if known, of the YopJ homologues in plants, and highlight the diversity of responses in different plant species, with a particular focus on the Pseudomonas syringae HopZ family. The YopJ superfamily provides an excellent foundation for the study of effector diversification in the context of wide-ranging, co-evolutionary interactions.
Collapse
Affiliation(s)
- Jennifer D Lewis
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
123
|
Bernoux M, Ellis JG, Dodds PN. New insights in plant immunity signaling activation. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:512-8. [PMID: 21723182 PMCID: PMC3191233 DOI: 10.1016/j.pbi.2011.05.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/17/2011] [Accepted: 05/26/2011] [Indexed: 05/19/2023]
Abstract
Plant disease resistance can be triggered by specific recognition of microbial effectors by plant nucleotide binding-leucine rich repeat (NB-LRR) receptors. Over the last few years, many efforts have greatly improved the understanding of effector and NB-LRR function, but have left a lot of questions as to how effector perception activates NB-LRR induction of defense signaling. This review describes exciting new findings showing similarities and differences in function of diverse plant NB-LRR proteins in terms of pathogen recognition and where and how resistance proteins are activated. Localization studies have shown that some NB-LRRs can activate signaling from the cytosol while others act in the nucleus. Also, the structural determination of two NB-LRR signaling domains demonstrated that receptor oligomerization is fundamental for the activation of resistance signaling.
Collapse
Affiliation(s)
- Maud Bernoux
- CSIRO Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| | - Jeffrey G. Ellis
- CSIRO Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| | - Peter N. Dodds
- CSIRO Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
124
|
Meier I, Somers DE. Regulation of nucleocytoplasmic trafficking in plants. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:538-46. [PMID: 21764628 DOI: 10.1016/j.pbi.2011.06.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 05/20/2023]
Abstract
The timing and position of molecular components within the cell are clearly important in the context of signal transduction. One challenge in attaining correct cellular positioning is the nuclear envelope, which separates the cell into two fundamentally different compartments. Molecular passaging from one to the other is highly selective due to the required recognition by the nucleocytoplasmic transport machinery. It is becoming increasingly clear that a highly diverse set of mechanisms have developed to allow environmental (biotic and abiotic) and endogenous signals to alter the nucleocytoplasmic partitioning of key molecules. In many cases this occurs by adjusting the access of the regulated species to the canonical import/export machinery. Recent studies are uncovering the sophistication and complexity of the processes that use the canonical transport machinery in the service of a diversity of signaling pathways.
Collapse
Affiliation(s)
- Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
125
|
Canonne J, Marino D, Jauneau A, Pouzet C, Brière C, Roby D, Rivas S. The Xanthomonas type III effector XopD targets the Arabidopsis transcription factor MYB30 to suppress plant defense. THE PLANT CELL 2011; 23:3498-511. [PMID: 21917550 PMCID: PMC3203416 DOI: 10.1105/tpc.111.088815] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/16/2011] [Accepted: 08/30/2011] [Indexed: 05/17/2023]
Abstract
Plant and animal pathogens inject type III effectors (T3Es) into host cells to suppress host immunity and promote successful infection. XopD, a T3E from Xanthomonas campestris pv vesicatoria, has been proposed to promote bacterial growth by targeting plant transcription factors and/or regulators. Here, we show that XopD from the B100 strain of X. campestris pv campestris is able to target MYB30, a transcription factor that positively regulates Arabidopsis thaliana defense and associated cell death responses to bacteria through transcriptional activation of genes related to very-long-chain fatty acid (VLCFA) metabolism. XopD specifically interacts with MYB30, resulting in inhibition of the transcriptional activation of MYB30 VLCFA-related target genes and suppression of Arabidopsis defense. The helix-loop-helix domain of XopD is necessary and sufficient to mediate these effects. These results illustrate an original strategy developed by Xanthomonas to subvert plant defense and promote development of disease.
Collapse
Affiliation(s)
- Joanne Canonne
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, F-31326 Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France
| | - Daniel Marino
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, F-31326 Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France
| | - Alain Jauneau
- Fédération de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, F-31320 Castanet-Tolosan, France
| | - Cécile Pouzet
- Fédération de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, F-31320 Castanet-Tolosan, France
| | - Christian Brière
- Surfaces Cellulaires et Signalisation Chez les Végétaux, Université de Toulouse, Unité Mixte de Recherche, Centre National de la Recherche Scientifique–Université Paul Sabatier 5546, F31320 Castanet-Tolosan, France
| | - Dominique Roby
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, F-31326 Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France
| | - Susana Rivas
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, F-31326 Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France
- Address correspondence to
| |
Collapse
|
126
|
Bernoux M, Ve T, Williams S, Warren C, Hatters D, Valkov E, Zhang X, Ellis JG, Kobe B, Dodds PN. Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 2011; 9:200-211. [PMID: 21402359 DOI: 10.1016/j.chom.2011.02.009] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/21/2010] [Accepted: 02/07/2011] [Indexed: 12/23/2022]
Abstract
The Toll/interleukin-1 receptor (TIR) domain occurs in animal and plant immune receptors. In the animal Toll-like receptors, homodimerization of the intracellular TIR domain is required for initiation of signaling cascades leading to innate immunity. By contrast, the role of the TIR domain in cytoplasmic nucleotide-binding/leucine-rich repeat (NB-LRR) plant immune resistance proteins is poorly understood. L6 is a TIR-NB-LRR resistance protein from flax (Linum usitatissimum) that confers resistance to the flax rust phytopathogenic fungus (Melampsora lini). We determine the crystal structure of the L6 TIR domain and show that, although dispensable for pathogenic effector protein recognition, the TIR domain alone is both necessary and sufficient for L6 immune signaling. We demonstrate that the L6 TIR domain self-associates, most likely forming a homodimer. Analysis of the structure combined with site-directed mutagenesis suggests that self-association is a requirement for immune signaling and reveals distinct surface regions involved in self-association, signaling, and autoregulation.
Collapse
Affiliation(s)
- Maud Bernoux
- CSIRO Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| | - Thomas Ve
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Infectious Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Simon Williams
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Infectious Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christopher Warren
- CSIRO Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| | - Danny Hatters
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Eugene Valkov
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Infectious Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xiaoxiao Zhang
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Infectious Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jeffrey G Ellis
- CSIRO Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Infectious Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Peter N Dodds
- CSIRO Plant Industry, Canberra, Australian Capital Territory 2601, Australia.
| |
Collapse
|
127
|
Ravensdale M, Nemri A, Thrall PH, Ellis JG, Dodds PN. Co-evolutionary interactions between host resistance and pathogen effector genes in flax rust disease. MOLECULAR PLANT PATHOLOGY 2011; 12:93-102. [PMID: 21118351 PMCID: PMC2999005 DOI: 10.1111/j.1364-3703.2010.00657.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant-pathogen co-evolutionary selection processes are continuous, complex and occur across many spatial and temporal scales. Comprehensive studies of the flax-flax rust pathosystem have led to the postulation of the gene-for-gene model, a genetic paradigm describing recognition events between host disease resistance proteins and pathogen effector proteins. The identification of directly interacting fungal effector proteins and plant disease resistance proteins in this pathosystem has facilitated the study of both the physical nature of these interactions and the evolutionary forces that have resulted in a molecular arms race between these organisms. The flax-flax rust pathosystem has also been detailed on the scale of interacting populations, and the integration of molecular- and population-scale datasets represents a unique opportunity to further our understanding of many poorly understood facets of host-pathogen dynamics. In this article, we discuss recent developments and insights in the flax-flax rust pathosystem and their implications for both long-term co-evolutionary dynamics in natural settings, as well as short-term co-evolutionary dynamics in agro-ecosystems.
Collapse
|
128
|
van der Hoorn RAL, Colby T, Nickel S, Richau KH, Schmidt J, Kaiser M. Mining the Active Proteome of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2011; 2:89. [PMID: 22639616 PMCID: PMC3355598 DOI: 10.3389/fpls.2011.00089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/08/2011] [Indexed: 05/20/2023]
Abstract
Assigning functions to the >30,000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied activity-based protein profiling (ABPP). ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed activities of 76 Arabidopsis proteins. These proteins represent over 10 different protein classes that contain over 250 Arabidopsis proteins, including cysteine, serine, and metalloproteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed additional protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities, e.g., of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry, and proteomics.
Collapse
Affiliation(s)
- Renier A. L. van der Hoorn
- Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- *Correspondence: Renier A. L. van der Hoorn, Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany. e-mail:
| | - Tom Colby
- Proteomics Service Unit, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Sabrina Nickel
- Fakultät für Biologie, Chemische Biologie, Zentrum für Medizinische Biotechnologie, University of Duisburg-EssenEssen, Germany
| | - Kerstin H. Richau
- Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Jürgen Schmidt
- Proteomics Service Unit, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Markus Kaiser
- Fakultät für Biologie, Chemische Biologie, Zentrum für Medizinische Biotechnologie, University of Duisburg-EssenEssen, Germany
| |
Collapse
|
129
|
Deslandes L, Rivas S. The plant cell nucleus: a true arena for the fight between plants and pathogens. PLANT SIGNALING & BEHAVIOR 2011; 6:42-8. [PMID: 21258210 PMCID: PMC3122004 DOI: 10.4161/psb.6.1.13978] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/10/2010] [Indexed: 05/20/2023]
Abstract
Communication between the cytoplasm and the nucleus is a fundamental feature shared by both plant and animal cells. Cellular factors involved in the transport of macromolecules through the nuclear envelope, including nucleoporins, importins and Ran-GTP related components, are conserved among a variety of eukaryotic systems. Interestingly, mutations in these nuclear components compromise resistance signalling, illustrating the importance of nucleocytoplasmic trafficking in plant innate immunity. Indeed, spatial restriction of defence regulators by the nuclear envelope and stimulus-induced nuclear translocation constitute an important level of defence-associated gene regulation in plants. A significant number of effectors from different microbial pathogens are targeted to the plant cell nucleus. In addition, key host factors, including resistance proteins, immunity components, transcription factors and transcriptional regulators shuttle between the cytoplasm and the nucleus, and their level of nuclear accumulation determines the output of the defence response, further confirming the crucial role played by the nucleus during the interaction between plants and pathogens. Here, we discuss recent findings that situate the nucleus at the frontline of the mutual recognition between plants and invading microbes.
Collapse
Affiliation(s)
- Laurent Deslandes
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR CNRS-INRA, Castanet Tolosan, France
| | | |
Collapse
|
130
|
Slootweg E, Roosien J, Spiridon LN, Petrescu AJ, Tameling W, Joosten M, Pomp R, van Schaik C, Dees R, Borst JW, Smant G, Schots A, Bakker J, Goverse A. Nucleocytoplasmic distribution is required for activation of resistance by the potato NB-LRR receptor Rx1 and is balanced by its functional domains. THE PLANT CELL 2010; 22:4195-215. [PMID: 21177483 PMCID: PMC3027179 DOI: 10.1105/tpc.110.077537] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 10/18/2010] [Accepted: 11/19/2010] [Indexed: 05/18/2023]
Abstract
The Rx1 protein, as many resistance proteins of the nucleotide binding-leucine-rich repeat (NB-LRR) class, is predicted to be cytoplasmic because it lacks discernable nuclear targeting signals. Here, we demonstrate that Rx1, which confers extreme resistance to Potato virus X, is located both in the nucleus and cytoplasm. Manipulating the nucleocytoplasmic distribution of Rx1 or its elicitor revealed that Rx1 is activated in the cytoplasm and cannot be activated in the nucleus. The coiled coil (CC) domain was found to be required for accumulation of Rx1 in the nucleus, whereas the LRR domain promoted the localization in the cytoplasm. Analyses of structural subdomains of the CC domain revealed no autonomous signals responsible for active nuclear import. Fluorescence recovery after photobleaching and nuclear fractionation indicated that the CC domain binds transiently to large complexes in the nucleus. Disruption of the Rx1 resistance function and protein conformation by mutating the ATP binding phosphate binding loop in the NB domain, or by silencing the cochaperone SGT1, impaired the accumulation of Rx1 protein in the nucleus, while Rx1 versions lacking the LRR domain were not affected in this respect. Our results support a model in which interdomain interactions and folding states determine the nucleocytoplasmic distribution of Rx1.
Collapse
Affiliation(s)
- Erik Slootweg
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
van den Burg HA, Takken FLW. SUMO-, MAPK-, and resistance protein-signaling converge at transcription complexes that regulate plant innate immunity. PLANT SIGNALING & BEHAVIOR 2010; 5:1597-601. [PMID: 21150289 PMCID: PMC3115111 DOI: 10.4161/psb.5.12.13913] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 10/09/2010] [Indexed: 05/20/2023]
Abstract
Upon pathogen perception plant innate immune receptors activate various signaling pathways that trigger host defenses. PAMP-triggered defense signaling requires mitogen-activated protein kinase (MAPK) pathways, which modulate the activity of transcription factors through phosphorylation. Here, we highlight that the same transcription factors are also targets for conjugation by SUMO (Small ubiquitin-like modifier). SUMO conjugation determines recruitment and activity of chromatin-modifying enzymes, and thereby indirectly controls gene expression. SUMO conjugation is essential to suppress defense signaling in non-infected plants. Resistance protein signaling and SUMO conjugation also converge at transcription complexes. For example, the TIR-NB-LRR protein SNC1 interacts with histone deacetylase HDA19 and the transcriptional co-repressor Topless-related 1; both are SUMO targets. We present a model in which SUMO conjugation can transform transcription activators into repressors, thereby preventing defense induction in the absence of a pathogen.
Collapse
|
132
|
Slootweg E, Roosien J, Spiridon LN, Petrescu AJ, Tameling W, Joosten M, Pomp R, van Schaik C, Dees R, Borst JW, Smant G, Schots A, Bakker J, Goverse A. Nucleocytoplasmic distribution is required for activation of resistance by the potato NB-LRR receptor Rx1 and is balanced by its functional domains. THE PLANT CELL 2010; 22:4195-4215. [PMID: 21177483 DOI: 10.2307/41059420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The Rx1 protein, as many resistance proteins of the nucleotide binding-leucine-rich repeat (NB-LRR) class, is predicted to be cytoplasmic because it lacks discernable nuclear targeting signals. Here, we demonstrate that Rx1, which confers extreme resistance to Potato virus X, is located both in the nucleus and cytoplasm. Manipulating the nucleocytoplasmic distribution of Rx1 or its elicitor revealed that Rx1 is activated in the cytoplasm and cannot be activated in the nucleus. The coiled coil (CC) domain was found to be required for accumulation of Rx1 in the nucleus, whereas the LRR domain promoted the localization in the cytoplasm. Analyses of structural subdomains of the CC domain revealed no autonomous signals responsible for active nuclear import. Fluorescence recovery after photobleaching and nuclear fractionation indicated that the CC domain binds transiently to large complexes in the nucleus. Disruption of the Rx1 resistance function and protein conformation by mutating the ATP binding phosphate binding loop in the NB domain, or by silencing the cochaperone SGT1, impaired the accumulation of Rx1 protein in the nucleus, while Rx1 versions lacking the LRR domain were not affected in this respect. Our results support a model in which interdomain interactions and folding states determine the nucleocytoplasmic distribution of Rx1.
Collapse
Affiliation(s)
- Erik Slootweg
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Tasset C, Bernoux M, Jauneau A, Pouzet C, Brière C, Kieffer-Jacquinod S, Rivas S, Marco Y, Deslandes L. Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis. PLoS Pathog 2010; 6:e1001202. [PMID: 21124938 PMCID: PMC2987829 DOI: 10.1371/journal.ppat.1001202] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 10/21/2010] [Indexed: 12/23/2022] Open
Abstract
Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as “guards”. The Ralstonia solanacearum effector protein PopP2 triggers immunity in Arabidopsis following its perception by the RRS1-R resistance protein. Here, we show that PopP2 interacts with RRS1-R in the nucleus of living plant cells. PopP2 belongs to the YopJ-like family of cysteine proteases, which share a conserved catalytic triad that includes a highly conserved cysteine residue. The catalytic cysteine mutant PopP2-C321A is impaired in its avirulence activity although it is still able to interact with RRS1-R. In addition, PopP2 prevents proteasomal degradation of RRS1-R, independent of the presence of an integral PopP2 catalytic core. A liquid chromatography/tandem mass spectrometry analysis showed that PopP2 displays acetyl-transferase activity leading to its autoacetylation on a particular lysine residue, which is well conserved among all members of the YopJ family. These data suggest that this lysine residue may correspond to a key binding site for acetyl-coenzyme A required for protein activity. Indeed, mutation of this lysine in PopP2 abolishes RRS1-R-mediated immunity. In agreement with the guard hypothesis, our results favour the idea that activation of the plant immune response by RRS1-R depends not only on the physical interaction between the two proteins but also on its perception of PopP2 enzymatic activity. Plant and animal bacterial pathogens have evolved to produce virulence factors, called type III effectors, which are injected into host cells to suppress host defences and provide an environment beneficial for pathogen growth. Type III effectors from pathogenic bacteria display enzymatic activities, often mimicking an endogenous eukaryotic activity, to target host signalling pathways. Elucidation of strategies used by pathogens to manipulate host protein activities is a subject of fundamental interest in pathology. PopP2 is a YopJ-like effector from the soil borne root pathogen Ralstonia solanacearum. Here, in addition to demonstrating PopP2 ability to stabilize the expression of its cognate Arabidopsis RRS1-R resistance protein and physically interact with it, we investigated the enzymatic activity of PopP2. Bacterial YopJ-like effectors are predicted to act as acetyl-transferases on host components. However, only two YopJ-like proteins from animal pathogens have been shown to be active acetyl-transferases. We show that PopP2 displays autoacetyl-transferase activity targeting a lysine residue well-conserved among YopJ-like family members. This lysine is a critical residue since its mutation prevents autoacetylation of PopP2 and abolishes its recognition by the host. This study provides new clues on the multiple properties displayed by bacterial type III effectors that may be used to target defense-related host components.
Collapse
Affiliation(s)
- Céline Tasset
- Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
| | - Maud Bernoux
- Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
| | - Alain Jauneau
- Institut Fédératif de Recherche 40, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Cécile Pouzet
- Institut Fédératif de Recherche 40, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Christian Brière
- Surfaces Cellulaires et Signalisation chez les Végétaux, Université de Toulouse, UMR CNRS-Université Paul Sabatier 5546, Castanet-Tolosan, France
| | | | - Susana Rivas
- Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
| | - Yves Marco
- Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
| | - Laurent Deslandes
- Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
- * E-mail:
| |
Collapse
|
134
|
Padmanabhan MS, Dinesh-Kumar SP. All hands on deck—the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1368-80. [PMID: 20923348 DOI: 10.1094/mpmi-05-10-0113] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant innate immunity is mediated by cell membrane and intracellular immune receptors that function in distinct and overlapping cell-signaling pathways to activate defense responses. It is becoming increasingly evident that immune receptors rely on components from multiple organelles for the generation of appropriate defense responses. This review analyzes the defense-related functions of the chloroplast, nucleus, and endoplasmic reticulum (ER) during plant innate immunity. It details the role of the chloroplasts in synthesizing defense-specific second messengers and discusses the retrograde signal transduction pathways that exist between the chloroplast and nucleus. Because the activities of immune modulators are regulated, in part, by their subcellular localization, the review places special emphasis on the dynamics and nuclear–cytoplasmic transport of immune receptors and regulators and highlights the importance of this process in generating orderly events during an innate immune response. The review also covers the recently discovered contributions of the ER quality-control pathways in ensuring the signaling competency of cell surface immune receptors or immune regulators.
Collapse
Affiliation(s)
- Meenu S Padmanabhan
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis 95616, USA
| | | |
Collapse
|
135
|
Esteban-García B, Garrido-Cárdenas JA, Alonso DL, García-Maroto F. A distinct subfamily of papain-like cystein proteinases regulated by senescence and stresses in Glycine max. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1101-8. [PMID: 20462657 DOI: 10.1016/j.jplph.2010.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/03/2010] [Accepted: 03/03/2010] [Indexed: 05/29/2023]
Abstract
GMCP3 encodes a cystein proteinase of Glycine max belonging to the papain-like family (C1A in MEROPS database) that was previously found to be involved in the mobilization of protein reserves during seed germination. Here, we report that GMCP3 is induced by senescence and diverse stresses in non-seed tissues, thus indicating a more general function in plants. Cladistic analysis of papain-like proteins of plants indicated that GMCP3, along with related proteases of other species, belongs to a distinct new group within the C1A family, which can also be distinguished by the four-exon structure of the gene. We also describe the genomic organization of GMCP3 revealing the presence of two closely related copies that are transcriptionally regulated in a similar way, although only one appears to be functional.
Collapse
Affiliation(s)
- Belén Esteban-García
- Grupo de Biotecnología de Productos Naturales (BIO-279), Facultad de Ciencias Experimentales, Universidad de Almería, 04120 Almería, Spain
| | | | | | | |
Collapse
|
136
|
Froidure S, Canonne J, Daniel X, Jauneau A, Brière C, Roby D, Rivas S. AtsPLA2-alpha nuclear relocalization by the Arabidopsis transcription factor AtMYB30 leads to repression of the plant defense response. Proc Natl Acad Sci U S A 2010; 107:15281-6. [PMID: 20696912 PMCID: PMC2930548 DOI: 10.1073/pnas.1009056107] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The hypersensitive response (HR), characterized by a rapid and localized cell death at the inoculation site, is one of the most efficient resistance reactions to pathogen attack in plants. The transcription factor AtMYB30 was identified as a positive regulator of the HR and resistance responses during interactions between Arabidopsis and bacteria. Here, we show that AtMYB30 and the secreted phospholipase AtsPLA(2)-alpha physically interact in vivo, following the AtMYB30-mediated specific relocalization of AtsPLA(2)-alpha from cytoplasmic vesicles to the plant cell nucleus. This protein interaction leads to repression of AtMYB30 transcriptional activity and negative regulation of plant HR. Moreover, Atspla(2)-alpha mutant plants are more resistant to bacterial inoculation, whereas AtsPLA(2)-alpha overexpression leads to decreased resistance, confirming that AtsPLA(2)-alpha is a negative regulator of AtMYB30-mediated defense. These data underline the importance of cellular dynamics and, particularly, protein translocation to the nucleus, for defense-associated gene regulation in plants.
Collapse
Affiliation(s)
- Solène Froidure
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Unité Mixte de Recherche, Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, F-31320 Castanet-Tolosan, France
| | - Joanne Canonne
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Unité Mixte de Recherche, Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, F-31320 Castanet-Tolosan, France
| | - Xavier Daniel
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Unité Mixte de Recherche, Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, F-31320 Castanet-Tolosan, France
| | - Alain Jauneau
- Institut Fédératif de Recherche 40, Plateforme Imagerie, Pôle de Biotechnologie Végétale, F-31320 Castanet-Tolosan, France; and
| | - Christian Brière
- Surfaces Cellulaires et Signalisation Chez les Végétaux, Université de Toulouse Unité Mixte de Recherche, Centre National de la Recherche Scientifique-Université Paul Sabatier 5546, BP 42617 Auzeville, 31326 Castanet-Tolosan, France
| | - Dominique Roby
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Unité Mixte de Recherche, Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, F-31320 Castanet-Tolosan, France
| | - Susana Rivas
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Unité Mixte de Recherche, Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, F-31320 Castanet-Tolosan, France
| |
Collapse
|
137
|
Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 2010. [PMID: 20585331 DOI: 10.1038/nrg2812x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Plants are engaged in a continuous co-evolutionary struggle for dominance with their pathogens. The outcomes of these interactions are of particular importance to human activities, as they can have dramatic effects on agricultural systems. The recent convergence of molecular studies of plant immunity and pathogen infection strategies is revealing an integrated picture of the plant-pathogen interaction from the perspective of both organisms. Plants have an amazing capacity to recognize pathogens through strategies involving both conserved and variable pathogen elicitors, and pathogens manipulate the defence response through secretion of virulence effector molecules. These insights suggest novel biotechnological approaches to crop protection.
Collapse
Affiliation(s)
- Peter N Dodds
- Commonwealth Scientific and Industrial Research Organisation, Division of Plant Industry, GPO BOX 1600, Canberra, Australian Capital Territory 2601, Australia.
| | | |
Collapse
|
138
|
Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 2010. [PMID: 20585331 DOI: 10.1038/nrg2812>] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plants are engaged in a continuous co-evolutionary struggle for dominance with their pathogens. The outcomes of these interactions are of particular importance to human activities, as they can have dramatic effects on agricultural systems. The recent convergence of molecular studies of plant immunity and pathogen infection strategies is revealing an integrated picture of the plant-pathogen interaction from the perspective of both organisms. Plants have an amazing capacity to recognize pathogens through strategies involving both conserved and variable pathogen elicitors, and pathogens manipulate the defence response through secretion of virulence effector molecules. These insights suggest novel biotechnological approaches to crop protection.
Collapse
Affiliation(s)
- Peter N Dodds
- Commonwealth Scientific and Industrial Research Organisation, Division of Plant Industry, GPO BOX 1600, Canberra, Australian Capital Territory 2601, Australia.
| | | |
Collapse
|
139
|
Jelenska J, van Hal JA, Greenberg JT. Pseudomonas syringae hijacks plant stress chaperone machinery for virulence. Proc Natl Acad Sci U S A 2010; 107:13177-82. [PMID: 20615948 PMCID: PMC2919979 DOI: 10.1073/pnas.0910943107] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Plant heat shock protein Hsp70 is the major target of HopI1, a virulence effector of pathogenic Pseudomonas syringae. Hsp70 is essential for the virulence function of HopI1. HopI1 directly binds Hsp70 through its C-terminal J domain and stimulates Hsp70 ATP hydrolysis activity in vitro. In plants, HopI1 forms large complexes in association with Hsp70 and induces and recruits cytosolic Hsp70 to chloroplasts, the site of HopI1 localization. Deletion of a central P/Q-rich repeat region disrupts HopI1 virulence but not Hsp70 interactions or association with chloroplasts. Thus, HopI1 must not only bind Hsp70 through its J domain, but likely actively affects Hsp70 activity and/or specificity. At high temperature, HopI1 is dispensable for P. syringae pathogenicity, unless excess Hsp70 is provided. A working hypothesis is that Hsp70 has a defense-promoting activity(s) that HopI1 or high temperature can subvert. Enhanced susceptibility of Hsp70-depleted plants to nonpathogenic strains of P. syringae supports a defense-promoting role for Hsp70.
Collapse
Affiliation(s)
- Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Jodocus A. van Hal
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
140
|
Chen HJ, Su CT, Lin CH, Huang GJ, Lin YH. Expression of sweet potato cysteine protease SPCP2 altered developmental characteristics and stress responses in transgenic Arabidopsis plants. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:838-847. [PMID: 20129700 DOI: 10.1016/j.jplph.2010.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 12/26/2009] [Accepted: 01/12/2010] [Indexed: 05/26/2023]
Abstract
In this report a full-length cDNA, SPCP2, which encoded a putative papain-like cysteine protease was isolated from senescent leaves of sweet potato (Ipomoea batatas). SPCP2 contained 1101 nucleotides (366 amino acids) in its open reading frame, and exhibited high amino acid sequence identities (ca. 68% to 83%) with plant cysteine proteases, including Actinidia deliciosa, Arabidopsis thaliana, Brassica oleracea, Phaseolus vulgaris, Pisum sativa, Vicia faba, Vicia sativa and Vigna mungo. RT-PCR analysis showed that SPCP2 gene expression was enhanced significantly in natural senescent leaves and in dark-, abscisic acid- (ABA-), jasmonic acid- (JA-) and ethephon-induced senescent leaves, but was almost not detected in mature green leaves, stems, and roots. Transgenic Arabidopsis with constitutive SPCP2 expression exhibited earlier floral transition from vegetative to reproductive growth, higher percentage of incompletely developed siliques per plant, reduced average fresh weight and lower germination percentage of seed, and higher salt and drought stress tolerance compared to those of control. Based on these results we conclude that sweet potato papain-like cysteine protease, SPCP2, is a functional senescence-associated gene, and its expression causes altered developmental characteristics and stress responses in transgenic Arabidopsis plants.
Collapse
Affiliation(s)
- Hsien-Jung Chen
- Department of Biological Sciences, National Sun Yat-sen University, 804 Kaohsiung, Taiwan.
| | | | | | | | | |
Collapse
|
141
|
Sahu PP, Rai NK, Chakraborty S, Singh M, Chandrappa PH, Ramesh B, Chattopadhyay D, Prasad M. Tomato cultivar tolerant to Tomato leaf curl New Delhi virus infection induces virus-specific short interfering RNA accumulation and defence-associated host gene expression. MOLECULAR PLANT PATHOLOGY 2010; 11:531-44. [PMID: 20618710 PMCID: PMC6640424 DOI: 10.1111/j.1364-3703.2010.00630.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) infection causes significant yield loss in tomato. The availability of a conventional tolerance source against this virus is limited in tomato. To understand the molecular mechanism of virus tolerance in tomato, the abundance of viral genomic replicative intermediate molecules and virus-directed short interfering RNAs (siRNAs) by the host plant in a naturally tolerant cultivar H-88-78-1 and a susceptible cultivar Punjab Chhuhara at different time points after agroinfection was studied. We report that less abundance of viral replicative intermediate in the tolerant cultivar may have a correlation with a relatively higher accumulation of virus-specific siRNAs. To study defence-related host gene expression in response to ToLCNDV infection, the suppression subtractive hybridization technique was used. A library was prepared from tolerant cultivar H-88-78-1 between ToLCNDV-inoculated and Agrobacterium mock-inoculated plants of this cultivar at 21 days post-inoculation (dpi). A total of 106 nonredundant transcripts was identified and classified into 12 different categories according to their putative functions. By reverse Northern analysis and quantitative real-time polymerase chain reaction (qRT-PCR), we identified the differential expression pattern of 106 transcripts, 34 of which were up-regulated (>2.5-fold induction). Of these, eight transcripts showed more than four fold induction. qRT-PCR analysis was carried out to obtain comparative expression profiling of these eight transcripts between Punjab Chhuhara and H-88-78-1 on ToLCNDV infection. The expression patterns of these transcripts showed a significant increase in differential expression in the tolerant cultivar, mostly at 14 and 21 dpi, in comparison with that in the susceptible cultivar, as analysed by qRT-PCR. The probable direct and indirect relationship of siRNA accumulation and up-regulated transcripts with the ToLCNDV tolerance mechanism is discussed.
Collapse
Affiliation(s)
- Pranav Pankaj Sahu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | | | | | | | | | | | |
Collapse
|
142
|
|
143
|
He C, Nora GP, Schneider EL, Kerr ID, Hansell E, Hirata K, Gonzalez D, Sajid M, Boyd SE, Hruz P, Cobo ER, Le C, Liu WT, Eckmann L, Dorrestein PC, Houpt ER, Brinen LS, Craik CS, Roush WR, McKerrow J, Reed SL. A novel Entamoeba histolytica cysteine proteinase, EhCP4, is key for invasive amebiasis and a therapeutic target. J Biol Chem 2010; 285:18516-27. [PMID: 20378535 DOI: 10.1074/jbc.m109.086181] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Entamoeba histolytica cysteine proteinases (EhCPs) play a key role in disrupting the colonic epithelial barrier and the innate host immune response during invasion of E. histolytica, the protozoan cause of human amebiasis. EhCPs are encoded by 50 genes, of which ehcp4 (ehcp-a4) is the most up-regulated during invasion and colonization in a mouse cecal model of amebiasis. Up-regulation of ehcp4 in vivo correlated with our finding that co-culture of E. histolytica trophozoites with mucin-producing T84 cells increased ehcp4 expression up to 6-fold. We have expressed recombinant EhCP4, which was autocatalytically activated at acidic pH but had highest proteolytic activity at neutral pH. In contrast to the other amebic cysteine proteinases characterized so far, which have a preference for arginine in the P2 position, EhCP4 displayed a unique preference for valine and isoleucine at P2. This preference was confirmed by homology modeling, which revealed a shallow, hydrophobic S2 pocket. Endogenous EhCP4 localized to cytoplasmic vesicles, the nuclear region, and perinuclear endoplasmic reticulum (ER). Following co-culture with colonic cells, EhCP4 appeared in acidic vesicles and was released extracellularly. A specific vinyl sulfone inhibitor, WRR605, synthesized based on the substrate specificity of EhCP4, inhibited the recombinant enzyme in vitro and significantly reduced parasite burden and inflammation in the mouse cecal model. The unique expression pattern, localization, and biochemical properties of EhCP4 could be exploited as a potential target for drug design.
Collapse
Affiliation(s)
- Chen He
- Department of Pathology and Medicine, University of California, San Diego, California 92103-8416, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Mukaihara T, Tamura N, Iwabuchi M. Genome-wide identification of a large repertoire of Ralstonia solanacearum type III effector proteins by a new functional screen. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:251-62. [PMID: 20121447 DOI: 10.1094/mpmi-23-3-0251] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The gram-negative plant-pathogenic bacterium Ralstonia solanacearum utilizes the hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS) to cause disease in plants. To determine the entire repertoire of effector proteins possessed by R. solanacearum RS1000, we constructed a transposon carrying a calmodulin-dependent adenylate cyclase reporter that can be used to specifically detect rip (Ralstonia protein injected into plant cells) genes by monitoring the cAMP level in plant leaves inoculated with insertion mutants. From the new functional screen using this transposon, we identified 38 new Rip proteins translocated into plant cells via the Hrp T3SS. In addition, most of the 34 known effectors of RS1000 could be detected by the screen, except for three effectors that appear to be small in size or only weakly expressed. Finally, we identified 72 Rips in RS1000, which include 68 effector proteins classified into over 50 families and four extracellular components of the Hrp T3SS. Interestingly, one-third of the effectors are specific to R. solanacearum. Many effector proteins contain various repeated amino acid sequences or known enzyme motifs. We also show that most of the R. solanacearum effector proteins, but not Hrp extracellular components, require an Hrp-associated protein, HpaB, for their effective translocation into plant cells.
Collapse
Affiliation(s)
- Takafumi Mukaihara
- Agricultural Experimental Station, Okayama Prefectural General Agriculture Center, 1174-1 Koda-Oki, Akaiwa 709-0801, Japan.
| | | | | |
Collapse
|
145
|
A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc Natl Acad Sci U S A 2010; 107:2343-8. [PMID: 20133878 DOI: 10.1073/pnas.0913320107] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Remorin proteins have been hypothesized to play important roles during cellular signal transduction processes. Induction of some members of this multigene family has been reported during biotic interactions. However, no roles during host-bacteria interactions have been assigned to remorin proteins until now. We used root nodule symbiosis between Medicago truncatula and Sinorhizobium meliloti to study the roles of a remorin that is specifically induced during nodulation. Here we show that this oligomeric remorin protein attaches to the host plasma membrane surrounding the bacteria and controls infection and release of rhizobia into the host cytoplasm. It interacts with the core set of symbiotic receptors that are essential for perception of bacterial signaling molecules, and thus might represent a plant-specific scaffolding protein.
Collapse
|
146
|
Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, Shiraishi T, Iwabuchi M, Narusaka Y. RRS1 and RPS4 provide a dual Resistance-gene system against fungal and bacterial pathogens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:218-26. [PMID: 19519800 DOI: 10.1111/j.1365-313x.2009.03949.x] [Citation(s) in RCA: 278] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Colletotrichum higginsianum is a fungal pathogen that infects a wide variety of cruciferous plants, causing important crop losses. We have used map-based cloning and natural variation analysis of 19 Arabidopsis ecotypes to identify a dominant resistance locus against C. higginsianum. This locus named RCH2 (for recognition of C. higginsianum) maps in an extensive cluster of disease-resistance loci known as MRC-J in the Arabidopsis ecotype Ws-0. By analyzing natural variations within the MRC-J region, we found that alleles of RRS1 (resistance to Ralstonia solanacearum 1) from susceptible ecotypes contain single nucleotide polymorphisms that may affect the encoded protein. Consistent with this finding, two susceptible mutants, rrs1-1 and rrs1-2, were identified by screening a T-DNA-tagged mutant library for the loss of resistance to C. higginsianum. The screening identified an additional susceptible mutant (rps4-21) that has a 5-bp deletion in the neighboring gene, RPS4-Ws, which is a well-characterized R gene that provides resistance to Pseudomonas syringae pv. tomato strain DC3000 expressing avrRps4 (Pst-avrRps4). The rps4-21/rrs1-1 double mutant exhibited similar levels of susceptibility to C. higginsianum as the single mutants. We also found that both RRS1 and RPS4 are required for resistance to R. solanacearum and Pst-avrRps4. Thus, RPS4-Ws and RRS1-Ws function as a dual resistance gene system that prevents infection by three distinct pathogens.
Collapse
Affiliation(s)
- Mari Narusaka
- Research Institute for Biological Sciences, 7549-1 Yoshikawa, Kibityuo, Kaga-gun, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
147
|
Collier SM, Moffett P. NB-LRRs work a "bait and switch" on pathogens. TRENDS IN PLANT SCIENCE 2009; 14:521-9. [PMID: 19720556 DOI: 10.1016/j.tplants.2009.08.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 07/27/2009] [Accepted: 08/03/2009] [Indexed: 05/21/2023]
Abstract
Plant genomes encode large numbers of highly variable nucleotide binding leucine-rich repeat (NB-LRR) disease resistance proteins. These proteins have been studied extensively to understand their evolution and the molecular basis of their function. Multiple studies indicate that the C-terminal LRR domain plays a pivotal role in defining pathogen recognition specificity. However, a growing body of evidence suggests that the N-termini of NB-LRR proteins also function in pathogen recognition. To formulate a framework that can explain the underlying principles governing NB-LRR function while accommodating findings from different experimental systems, we present a "bait and switch" model. This model proposes a two-step recognition process involving interactions with both cellular cofactors (bait) and the LRR domain, which in turn activates the molecular switch leading to disease resistance.
Collapse
Affiliation(s)
- Sarah M Collier
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | | |
Collapse
|
148
|
Lewis JD, Guttman DS, Desveaux D. The targeting of plant cellular systems by injected type III effector proteins. Semin Cell Dev Biol 2009; 20:1055-63. [PMID: 19540926 DOI: 10.1016/j.semcdb.2009.06.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 06/11/2009] [Accepted: 06/12/2009] [Indexed: 01/05/2023]
Abstract
The battle between phytopathogenic bacteria and their plant hosts has revealed a diverse suite of strategies and mechanisms employed by the pathogen or the host to gain the higher ground. Pathogens continually evolve tactics to acquire host resources and dampen host defences. Hosts must evolve surveillance and defence systems that are sensitive enough to rapidly respond to a diverse range of pathogens, while reducing costly and damaging inappropriate misexpression. The primary virulence mechanism employed by many bacteria is the type III secretion system, which secretes and translocates effector proteins directly into the cells of their plant hosts. Effectors have diverse enzymatic functions and can target specific components of plant systems. While these effectors should favour bacterial fitness, the host may be able to thwart infection by recognizing the activity or presence of these foreign molecules and initiating retaliatory immune measures. We review the diverse host cellular systems exploited by bacterial effectors, with particular focus on plant proteins directly targeted by effectors. Effector-host interactions reveal different stages of the battle between pathogen and host, as well as the diverse molecular strategies employed by bacterial pathogens to hijack eukaryotic cellular systems.
Collapse
Affiliation(s)
- Jennifer D Lewis
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON M5S3B2, Canada
| | | | | |
Collapse
|
149
|
Rafiqi M, Bernoux M, Ellis JG, Dodds PN. In the trenches of plant pathogen recognition: Role of NB-LRR proteins. Semin Cell Dev Biol 2009; 20:1017-24. [PMID: 19398031 DOI: 10.1016/j.semcdb.2009.04.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 04/17/2009] [Accepted: 04/17/2009] [Indexed: 01/05/2023]
Abstract
As in nearly every discipline of plant biology, new insights are constantly changing our understanding of plant immunity. It is now clear that plant immunity is controlled by two layers of inducible responses: basal responses triggered by conserved microbial features and specific responses triggered by gene-for-gene recognition of pathogen effector proteins by host resistance (R) proteins. The nucleotide-binding domain leucine-rich repeat (NB-LRR) class of R proteins plays a major role in the combat against a wide range of plant pathogens. The variation that has been generated and is maintained within these conserved proteins has diversified their specificity, subcellular localisations, activation and recognition mechanisms, allowing them to specifically adapt to different plant-pathogen interaction systems. This review addresses recent advances in the molecular role of NB-LRR proteins in pathogen recognition and activation of plant defence responses.
Collapse
Affiliation(s)
- Maryam Rafiqi
- Plant Cell Biology Group, Research School of Biological Sciences, Australian National University, Canberra, ACT 2601, Australia.
| | | | | | | |
Collapse
|
150
|
Poueymiro M, Cunnac S, Barberis P, Deslandes L, Peeters N, Cazale-Noel AC, Boucher C, Genin S. Two type III secretion system effectors from Ralstonia solanacearum GMI1000 determine host-range specificity on tobacco. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:538-50. [PMID: 19348572 DOI: 10.1094/mpmi-22-5-0538] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The model pathogen Ralstonia solanacearum GMI1000 is the causal agent of the bacterial wilt disease that attacks many solanaceous plants and other hosts but not tobacco (Nicotiana spp.). We found that two type III secretion system effector genes, avrA and popP1, are limiting the host range of strain GMI1000 on at least three tobacco species (N. tabacum, N. benthamiana, and N. glutinosa). Both effectors elicit the hypersensitive response (HR) on these tobacco species, although in different manners; AvrA is the major determinant recognized by N. tabacum and N. benthamiana, while PopP1 appears to be the major HR elicitor on N. glutinosa. Only the double inactivation of the avrA and popP1 genes allowed GMI1000 to wilt tobacco plants, thus showing that GMI1000 intrinsically possesses the functions necessary to wilt tobacco plants. A focused analysis on AvrA revealed that the first 58 N-terminal amino acids are sufficient to direct its injection into plant cells. We identified a hypervariable region in avrA, which contains variable numbers of tandem repeats (VNTR), each composed of 12 base pairs. We show that an 18-amino acid region in which the VNTR insertion occurs is an important domain involved in HR elicitation on N. benthamiana. avrA appears to be the target of various DNA insertions or mobile elements that probably allow R. solanacearum to evade the recognition and defense responses of tobacco.
Collapse
Affiliation(s)
- Marie Poueymiro
- Laboratoire des Interactions Plantes Micro-organismes, UMR CNRS-INRA 2594/441, Castanet Tolosan, France
| | | | | | | | | | | | | | | |
Collapse
|